Preface

The theme of the Geophysical Fluid Dynamics Program for summer 2025 was Instabilities
and Bifurcations in GFD. The first week of principal lectures were delivered by Joseph
Pedlosky (WHOI), focusing on the baroclinic instability and other linear and nonlinear
instabilities in a geophysical context. The second week of principal lectures were delivered
by Laurette Tuckerman (ESPCI Paris), who taught the mathematical underpinnings needed
to understand instabilities and bifurcations in fluid systems. These proceedings contain
notes on the ten principal lectures, produced by student fellows together with the lecturers.
They also contain reports by the student fellows on their summer research projects. Detailed
notes are not included for the summer’s many other stimulating activities, which included
near-daily research seminars, a tutorial on geophysical models by Glenn Flierl, a tutorial on
the Dedalus code by Keaton Burns, a presentation by the summer’s co-directors on how to
give good talks, and an example of a very good talk: the Sears Public Lecture by Jennifer
MacKinnon (UC San Diego) entitled ”Fresh, Salty or Spicy: How Layering of Different
Types of Water Controls Heat, Hurricanes and Habitats in the Gulf of Mexico.”

The co-directors this year were Pascale Garaud (UC Santa Cruz) and David Goluskin
(University of Victoria). The program fully supported twelve student fellow — two more
than usual:

e Edoardo Bellincioni, University of Twente

e Emma Bouckley, University of Cambridge

e Marion Cocusse, Ecole Polytechnique

e Isabela Conde, University of New South Wales
e David Darrow, MIT

e Theo Lewy, University of Cambridge

o Kyle McKee, MIT

e Andrés Posada, Queen’s University

e Heng Quan, Princeton University

e Farid Rajkotia-Zaheer, University of Victoria
e Alexandre Tlili, CEA Saclay

e Lin Yao, University of Chicago

Nearly all long-term visitors advised or co-advised the fellows’ projects, and all fellows
presented their projects beautifully in the program’s final week. Laboratory projects were
facilitated by able support from Anders Jensen, and the large administrative side of the
summer was run smoothly as usual by Julie Hildebrandt and Janet Fields. Lastly, this year’s
Distinguished Scholar Award was presented to Keaton Burns, for his academic excellence,
service to the GFD community supporting use of the Dedalus code, and dedication to
mentoring the next generation of fellows.
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GFD 2025 Lecture 1: Introduction to Quasi-Geostrophic Theory

Joseph Pedlosky; notes by Edoardo Bellincioni and Emma Bouckley

June 16, 2025

This lecture summarizes Chapters 6 and 7 of the Geophysical Fluid Dynamics book
by J. Pedlosky [2]

1 Basics of QG Theory

This lecture series focuses on quasigeostrophic motion of fluids in geophysical systems. First and
foremost, let us review some of the basic theory. We consider a system with a horizontal length
scale L, a vertical length scale D, a velocity scale U, which is defined on a sphere that rotates
with a frequency of ). The Coriolis parameter is fy = 2Qsind at a latitude 9. The Rossby
number Ro nondimensionalises the rotation effect as

U

ROZfO—L. (1)

Ro compares the inertial timescale U/L with the rotation timescale 1/ fp, hence for rotation to be
the dominant effect, we require Ro < 1. This is referred to as Quasi-Geostrophy (QG).

In systems where the effect of rotation is non-negligible, we can anticipate the magnitude of the
horizontal pressure gradients to be of the same order as the Coriolis acceleration. At the same time,
for a fluid with a vertical background density profile ps = ps(2), the vertical pressure gradients will
be of the same order as buoyancy effects. Hence, an expression for the density can be found that
accounts for the rotation effects.

p = ps(2)(1+RoFy) , (2)
f3L?

with F' = D being a parameter that compares the horizontal Coriolis effects fo L with the vertical
buoyancy effects gD (in general is F' < 1), and p a O(1) dimensionless buoyancy perturbation
with an O(1) variation over O(L) length scales.

We can now consider the simple case of a fluid parcel that is displaced vertically, and receives a
restoring force by buoyancy (gravity). It is easy to derive that the motion has an intrinsic oscillatory
frequency, which takes the form

2__£aps
Nt = (3)

This frequency takes the name of Brunt—V4iisild frequency.
Having introduced N, we can define a “deformation radius” (so-called internal Rossby radius of
deformation) which will turn out to be the characteristic scale of instabilities of interest:

ND
LDzia
f

and restrain our interest to the motions whose horizontal length scale is of the same order as the
deformation radius. As a reference, the deformation radius is in the order of 100 km in the ocean,

(4)



and 1000 km in the atmosphere, and this corresponds to the typical eddy size (oceanic eddies and
atmospheric cyclones).

Finally, we can compare the vertical (buoyancy) stratification, that acts with a frequency N on
a length scale D, with the horizontal (Coriolis) stratification, that acts with a frequency fo on a
length scale L, using the parameter

N2 D?

S= (5)

For our problems of interest, where we have assumed L is order Lp, this quantity is of order 1.

In what follows, we use L to scale all horizontal length scales, and D to scale the vertical length
scale, U to scale the horizontal velocities, RoU D /L for the vertical velocity, L/U to scale time, and
RofoUL to scale pressure (the density has already implicitly been rescaled in equation 2).

For small Rossby number, it can be shown that the governing balances in the momentum
equation reduce to hydrostatic and geostrophic balances, expressed in the following dimensionless
equations:

_ Ipo

v =5 (6)
_ Ipo

U= (7)
_ Ipo

PO = s (8)

Note that the index 0 on the flow quantities represents the first term in a series expansion in Rossby
number, see [2]. Notably, it follows that the horizontal flow is non-divergent, which allows us to
introduce a stream function for the horizontal velocity v = pg.

2 Conservation of Vorticity

In a rotating system, potential vorticity is conserved, and there are three major contributors to
that potential vorticity. First, is the relative vorticity of the flow
(91)0 auO

COZ%_Ty- (9)

Secondly, variations of the Coriolis parameter, which can be expanded in first order as

when expressed dimensionally, can cause dimensional planetary vorticity variations Sy. And lastly
vertical gradients of py (the first term in the expansion in Rossby number of the variable density
field) divided by the stratification parameter S (which measures the background stratification, and
can also vary with z).

From the original system of equations one can derive the following governing equation for
conservation of potential vorticity (Quasi-geostrophic Potential Vorticity equation, QGPV) where
hereafter, 5 and y are both dimensionless

aQ d 9 (0o
(ﬂ‘dt[@”y‘az(sﬂ‘o (1D

where the notation d/dt denotes the derivative following horizontal fluid motions (the vertical
velocity only coming in at the next order). The above equation is a conservation equation for



the total vorticity of the flow, ), and accounts for: the intrinsic vorticity of the flow; for changes
in vorticity due to latitudinal motion in the [-plane; and for vertical stretching in a stratified
environment.

3 The Perturbed Zonal Flow

For our system, which is on the g-plane and whose stratification is measured by the parameter S,
the evolution of the stream function is governed by

2 2
0w o 8] {3¢+M+3<18w>+ﬁy]=o,

o2 0y2 | 92\ S 0z

— 12
ot  Ox0dy Oy ox (12)

that holds under the assumption of vertical hydrostatics and D <« L, with the boundary conditions
of having a non-slip, solid boundary below (the Earth’s surface) and a free-slip fluid above (a higher
layer of air or water).

We are now going to consider perturbations to a background zonal flow whose stream function
is only a function of the vertical and latitudinal coordinates ¥(y, z), with a corresponding zonal
velocity Uy = —0,¥(y, z). Under these assumptions,the background potential vorticity is

- O*v o (10V
_ —~ (=== 13
@=0vt Bp +az<saz>’ (13)
beta S~~~
effect  horizontal vertical
shear shear
whose y-derivative reads ~
00 _, Uy 0 (100 1)
oy oy2 0z \S 0z
If we now add a perturbation to the stream function, such that
1/)(:1;7 y7 '27 t) = q](y7 Z) —"_80('%7 y? Z? t) ) (15)
this corresponds to a perturbation ¢ = ¢(z,v, z,t) to the background vorticity Q. The equation for
q will read
2o 0% 0 [10p
S T ST . I 16
g 8$2+8y2+02(56z> (16)
Hence its evolution is given by
0 0 O 0Q Opdq Op Oq
—+Up— - —— -——1]=0. 17
(aﬁ “m)‘”ax 8y+<8x8y Dy O (7)

3.1 Necessary conditions for instability

The non-linearity of eq. (17) renders it difficult to consider in full. Instead, we shall specify that
the initial stream function perturbation ¢ is small and as such can neglect terms of order ¢? and

higher,
9 9 0p0Q

An energy equation may be found by multiplying eq. (18) by ¢ and integrating over the volume
of the fluid. The resultant equation relates the rate of change of the sum of kinetic and available



potential energies of the disturbance to the respective growth or decay of perturbation energy. It
can be shown from consideration of this energy equation that, in the absence of dissipation, the
effect of the fluctuations on the mean flow is merely to redistribute the x-averaged zonal momentum.
From this, we may specify the following necessary condition for instability:

b oQ (10— LT10oUy 60—
0= — (=n?) dyd —— 1> d
/0 I <at” ) vars || {s oz ot" L !
1 1 an 8773 0 —
— —— | =n? d 19
/_1 [(S 0z 0Oy ) at” L:o v (9)
where 7 is the meridional displacement of a fluid element, defined via

— = ) s 20
1 0y (20)
and np is the variation of the lower boundary and the overbar illustrates an average in the z-
direction. The boundary terms are evaluated at the lower boundary z = 0 and the upper boundary
z = zp. In the absence of boundary contributions, this necessary condition for instability may be

simplified to
2T 1 8@ 8)
0= — | =n?| dy dz. 21
/0 /—1 dy <8tn Y 2D

If the base state is unstable to perturbations to the flow, then obviously the energy of perturbations
must grow with time, equally, the displacement in the y-direction of any line of fluid elements n must
grow. Since unstable growth requires dn2/9t > 0, we may conclude from eq. (21) that the potential
vorticity gradient of the base state Q/dy must be positive in some domain of i and negative in some
others for instability to occur. Note however that in the case of a horizontal temperature gradient
on the boundaries, which manifests as a vertical shear 0Uy/0z on the boundary through thermal
wind balance (combining hydrostatic balance and geostrophic balance), instability is allowed even
if the potential vorticity gradient in the base state does not change sign.

Let us propose an example that is explanatory of the effect of a y-gradient of the potential
vorticity @, sketched in the following figure

Y A Q) Ve \
AR N

Figure 1: Sketch of an example where the effect of the y-gradient of Q is stabilizing.

We are in a situation where there is a positive gradient of Q(y), as sketched on the left side of the
figure. We first consider a fluid parcel that gets displaced towards the North (higher y), indicated



by the red dashed circle. Given the background gradient of @, it will start rotating clockwise to
counteract the increase of f. This will induce a motion in the neighbouring parcels, which will then
be shifted north on the left and south on the right, as sketched in green. Similarly as for the red
parcel, the green parcels will start rotating, in opposite directions. The effect of the neighbouring
parcels on the red parcel is to push it southwards. Hence, the effect of a positive y-gradient of Q is
stabilizing.

A second condition for stability is found if,

Uogg <0, for all y, z, (22)
1 8Ug 8’!’]3
— - 2> =0, 2
Uy <S P 2y ) 0 z2=0 (23)
Uy 0Uy
T 5, S z =27 (24)

This is a sufficient condition for stability, and the violation of it is a necessary condition for insta-
bility. This condition is related to the uniqueness of the solution if potential vorticity is conserved
along streamlines.

Let us further suppose that the base velocity field Uy is related to a potential vorticity Q = Q(¥),
which is a function of the stream function alone. The condition in eq. (22) is now equivalent to
dQ/dV < 0. Whether the solution is unique also depends on the sign of dQ/dV.

Consider, for example, Q(¥) = a?¥ and suppose, for simplicity, that the potential vorticity is
just the relative vorticity V2W. If a® < 0 such that dQ/d¥ < 0 and ¥ = 0 on the boundaries, then
the solution can always be added to a forced solution and the solution is non-unique. By eq. (22),
this non-unique solution is unstable to small perturbations and conversely a? > 0, a unique solution,
implies stability.

3.2 Normal mode solutions

In order to determine the instability of these zonal flows, we look for a normal mode solution of
the form

o, ,2,t) = Re [@(y, )] (25)

where ¢ = ¢, +ic; and ¢; > 0 corresponds to exponential growth. Upon substitution into eq. (18),
we obtain an equation for ®

0100 0°® oQ
— 4+ — k% d— =0. 2
(o —c) {825 9z y? } * Jy 0 (26)
The boundary conditions may be expressed as
i)
(U — c)gz + [Saanj - %UZO} ®=0 at the lower boundary, (27)
i)
(Uo — c)gz - 8820(1) = at the upper boundary. (28)

It is helpful to consider what we may know a priori about the phase speed ¢, and growth speed
kc;. It was first shown by Howard [1] that the complex eigenvalue ¢, in the absence of the § effect,



Figure 2: The semicircle in the complex plane in which complex phase speed ¢ must lie. The dotted
semicircle illustrates the domain in the absence of the 5 effect, and the solid semicircle illustrates
the expansion of this upon the inclusion of the g effect. The shaded region is not a possible domain
for c.

must lie in a semicircle centred at (Upax + Umin)/2 with radius (Umax — Umin)/2. Upon including
the 3 effect, this semicircle is extended as follows:

Umax - Umin 2 6 Umax - Umin Umax - Umin 2 2
—nax _ min > (¢ — —Rax__Zmin 2 2
(=) e () (v P) vd @

Note that ¢, < Upmax and as such a portion of the semicircle is excluded, which is expressed
graphically in fig. 2. It is also true that bottom topography sloping in the north-south y direction
may add a [-like effect which allows for unstable modes with ¢, > Upax.

4 The 2-Layer Model

The potential vorticity equation (12) is a non-linear partial differential equation with four indepen-
dent variables x, y, z and t. We may consider simplifying this system by replacing the continuous
density stratification considered previously with a multi-layer system of homogeneous fluid layers
of uniform but distinct densities; the simplest such system is a two-layer model. Consider, as illus-
trated in fig. 3, an upper fluid of density p; and a lower fluid of density ps with p; < p2 bounded
between rigid walls at y = £1. We introduce stream functions for each layer of fluid ,,, where the
subscript n = 1, 2 refers to the upper and lower layers respectively. We will consider a base flow
with stream function W, (y) which is purely zonal, such that U,(y) = —d¥, /dy. When there is
shear between the layers (U; # Us), the interface tilts at a fixed slope corresponding to this shear.

In the absence of friction and bottom topography and in parallel with eq. (12), the stream
functions satisfy

o 0P, 0 0OY, 0 2 n _ _




Figure 3: Model set-up for 2-layer system.

where V%, = 92/0x? 4+ 8?/0y? is the horizontal Laplacian and F), is the stratification parameter
defined by

- f3L?
= = )0 D’ (3D

where pg is now the background mean density and D, is the undisturbed depths of the two layers.
The base flow potential vorticity in each layer is given by

>,
dy?

Qn:ﬁy+

— F, (=)™ (¥ — ¥y). (32)
Let ¢, be the disturbance stream function, so that

wn = \Iln(y) + Son(x7 Y, t)' (33)

There is a corresponding disturbance potential vorticity g, = V¢, — Fo(—1)"(¢2 — p1). When
substituted into eq. (30) this gives

Q Q dn, d@n dpn % B Opn, % .
<8t + Un@:{;) I+ or dy + < oxr Oy oy O0xr ) 0- (34)

We are considering a small perturbation ¢, and as such, for linear analysis, we neglect terms of
O(¢2) in eq. (34) which simplifies to

— 4+ U,— | qn =0. 35
<8t * 8x> Gt Ox dy (35)
As in the continuously stratified case, the boundary conditions are given by

0pn

We then seek normal mode solutions in the form

wn = Re @n(y)eik(x*"’t) , (37)



with ¢ = ¢, + ic¢;. Upon substitution into eq. (35), we obtain the ordinary differential equation for
d,:

d?®,,
dy?

dQn
E2®, — F(=1)"(®y — ®1)| + @, Z/ =0, (38)

(Un —0)

with boundary conditions
d, =0, at y = +1, forn=1, 2. (39)

Growing solutions exist for eigensolutions ®,, whose corresponding eigenvalue ¢ has a positive
imaginary component ¢; > 0. In addition, since the coefficients of eq. (35) are real, the complex
conjugate solution similarly exists ®; with eigenvalue c¢*. As such, unstable modes correspond to
C; 75 0.

Through manipulation of the derivative of potential vorticities eq. (32) we arrive at the condition

: Le,2 dQ
i D, _7nl TRy = 0. 40
2 /_1|Un—c|2 Y (40)

n=1

Therefore, for ¢; to be non-zero and thus the system unstable, the base state potential vorticity
gradient dQ,/dy must be somewhere positive and somewhere negative. It is not necessary for
dQ,/dy to vanish anywhere in the domain. For example, the potential vorticity gradient may be
positive in one layer and negative in another.
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GFD 2025 Lecture 2: Weakly Nonlinear Theory: The 2-layer
Model, Critical Shears for Instability, Multiple Time Scales for
Supercritical Flows, Chaos

Joseph Pedlosky; notes by Marion Cocusse and Isabela Conde

June 17, 2025

This lecture summarizes three papers: ’Finite Amplitude Baroclinic Waves’, by J. Pedlosky, in

J. Atm. Sci, 1970 [2], 'Finite Amplitude Baroclinic Waves with small dissipation’, by J. Pedlosky,
in J. Atm. Sci, 1971 [3] and 'Chaotic and periodic behavior of finite-amplitude baroclinic waves’
by J. Pedlosky and C. Frenzen, in J. Atm. Sci, 1980 [6].

1 Introduction

In the first lecture, we discussed how to formulate theories to find whether a given current structure
was unstable and, if so, the form of the growing perturbation and its growth rate. In this section,
we will explore what happens next: does it grow forever? Or, more likely, what happens when the
initial exponential growth has passed?

To do this, we need to understand the cause of the instability. There are various types of
instabilities and consequently, different barriers to growth. In some cases, the initial perturbation
must overcome dissipative effects that prevent growth. For example, for thermal convection, the
thermal dissipation and viscous dissipation need to be overcome. In non-rotating shear flows,
viscosity damps out instability, so the Reynolds number of the flow needs to exceed a certain value
for instability to occur. In those cases, the development of the amplitude of the instability usually
follows a simple form: initial exponential growth followed by a smooth transition to a steady state
as nonlinear effects come into play [8], [9]. Figure 1 shows such time evolution of the amplitude of
the instability for a non-rotating viscous shear flow.

However, in our case, the barriers for instability are not due to viscous or dissipative
effects. They are rather due to non-dissipative stabilizing effects like the g effect. For the 2-
layer model where the flows are independent of y but different in each layer (Phillips’ model,
[7]) presented here, the criterion for instability requires the potential vorticity to have a
different sign in each layer. For other cases, the threshold for instability may depend on the
Rossby radius of deformation.

2 Overcoming Stability Induced by [ Effect

2.1 Linear Problem

We look at a two layer model with two main hypotheses on the undisturbed flow :
e We consider a basic state of uniform velocities in each layer U; and Us in the same direction
but of different magnitudes.



Figure 1: Ilustration of the time evolution of the square of the amplitude of the perturbation for
a non-rotating viscous shear flow. From [2].

e The undisturbed layer thicknesses are equal (each layer has the same mass) so Dy = Dy =
D/2.

Within this framework, the governing equations for the upper and lower layer are as follows (see
Lecture 1):
O O 0 OYp O ) )
<8t+ or 9y Oy Ox (V21 + F(42 — 1) + By) V2, (1)
O Oy 0  Os O

2 _ 2
<8t+ E@iy — ay@x) (V 1/)2+F(¢1 —1/12)4-53/) = —rV*“Yq, (2)

where F' = F} = F; (see previous lecture), namely
2f2L?
9((p2 — p1)/po) D

The terms in —rV?21), represent a small amount of dissipation. At first, we will focus on the case
where friction is small enough to be ignored: » = 0. We can now wonder if an instability can
equilibrate without friction, and if so; how?

F= (3)

The interface between the two layers forms a linear slope in y and proportional to the shear,
allowing for potential energy to build up. The equation for the thickness of the lower layer ho is:

ha(y) = eF(Uy — Ua)y + 5, ()

where the factor 1/2 corresponds to the ratio of the thickness of individual layers to the total
thickness, and ¢ is the Rossby number. In terms of stream functions, the basic state can be written
as :

0
O = _y, (5)
vy = ~Usy. (6)
Let us consider a linear disturbance of the form

Up = 11)7(?) + on(x,y,t), withn=1,2. (7)
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Linearizing equations (1)-(2) and neglecting friction (r = 0) leads to the lowest order:

9, 5, i1
(87&+U13x> (V2014 Flp2 — ¢1)) +%(5+F(U1—U2))=07 (8)
5, 5, ipa
(2022 (Veut o = ) + 982 (3 P01 - 1) =0, )
with the following boundary conditions:
%:%:o, aty=0,1. (10)
This leads to solutions in the form:
v1 = Re (Aeia(”*d) sin(mwy)) , (11)
w2 = Re (’yAeia(gg_Ct) Sin(mﬂ'y)) , (12)

where the sine function ensures the vanishing of the flow at the boundaries, A is the constant
amplitude of the wave in the first layer, and v the constant ratio of the amplitude of the wave in
the second layer to the one in the first layer, a the longitudinal wave number, m an integer and c a
phase speed that is complex. If the imaginary part of ¢ is greater than zero, the perturbation can
grow exponentially.

Substituting this solution into equations (8)-(9) leads to the following set of equations:

(c—=U) (k2 + F) + B+ FUs — yF(c — Uy) = 0, (13)
v [(e=Ua)(k2, + F) + B — FUy| — F(c—Us) =0 (14)

where k,, is the total wave number, such that k2, = o? +m?r?, and Uy = U; — Us is the shear. This
can be viewed, for example, as two equations for the unknown amplitude ratio v, and solutions are
possible only if

_Ui+Uy Bk +F) | (4B°F2 — kUL (4F — ky,)'? (15)
‘T k2, (k2, + 2F) 212, (k2, + 2F) ‘

The quantity ¢ has a non-zero imaginary part if and only if the radicand of (15) is negative, i.e., if
and only if

432 F?
2 2 _ 2
Us > U; = R @F? — R and k&, <2F, (16)

with U, the critical shear above which we get growing waves. Figure 2 shows U, as a function of
k2, (both quantities are normalized), and only the positive branch U, > 0 is shown for clarity. The
case Us < 0 can be obtained by reflection around the k2, axis.

2.2 Non-linear Problem
2.2.1 First order problem

We will suppose that for a given wave number we exceed the critical shear by a small amount A:

Us = Uc(km) + A, A< U,. (17)

11



Figure 2: (a) Critical shear U, as a function of wave number in the case where the undisturbed
layer thickness is the same in both layers. (b) The imaginary part of ¢ as a function of the wave
number for Us; = 23/ F, i.e., for a shear which is twice the minimum critical shear. From [5].

From (15), we can get the imaginary part of c:

\/§ F A 1/2
¢ =+ (M) (U> +O(A). (18)

We see that the growth rate is of order A'/2 rather than of order A. Since the real part of the
phase speed will be order 1, the growth rate will be significantly smaller. This suggests that the
problem has two time scales. The first one is the advective time scale which will be the scale of the
real part of the wave’s phase speed (the wave is getting advected as it is growing), the second time
scale is slower and of the order of the growth rate. This slow time is therefore defined by:

T = |A|Y?. (19)
This is in contrast with the usual slow time scale of viscous shear flow, of order |A|.

We will consider the solution to be a function of these two time scales, so the time derivative
becomes:

9 172 0

ot + 14| T (20)

All dependent variables, such as the stream functions, now depend on both the fast and the slow
time scales. Introducing this gives the chance for weakly nonlinear effects to balance the growth of

the instability.

By writing the equations for the upper and lower layer explicitly as a function of ¢t and 7', and
letting Uy = Us +Us = Uy + U + A, as well as ¢ = wﬁf’) + ¢n, we obtain (this time, keeping all of

12



the nonlinear terms):

0 0p1
9T + (U2 + U+ A)ax) (V21 + Flp2 — 1)) + E(ﬁ + FU,. + FA)

+J (@1,V2801 + F(p2 — 1)) =0,

9 a9 9 (v2 _ %205 py
<8t+m’ 8T+U28>(V<P2+F(<P1 <P2))+ax(ﬁ FU. - FA)

+J (92, Vs + F(p1 — ¢2)) =0,

where J denotes the usual Jacobian.
The solution ¢,, is also expanded as an asymptotic series in |A]

on = [A1Y200 +]A|pR +

1/2.

We can now expand the equations in a series in powers of \A|1/ 2. Keeping the lowest order only to
begin with, we have:

(1)

0 0 0
+ (U2 +Ue) 5 (Vzwﬁl) + Fpy) - w(f))) + (pl (B + FU,) = (21)
ot or
) ) a5
+Ug ) (Ve + el — o)) + P2 (8- FU) = 0. (22)
ot ox
Note how this recovers the linear problem with Us; = U.. Similarly expanding the boundary

conditions we have:
1 1
e _ ey
Ox oz
As in the previous section, solutions can be sought in the form of a wave, whose amplitude now
varies on the slow timescale T":

=0, fory=0,1. (23)

gogl) = Re (A(T)eio‘(x%t) sin(mﬂ'y)) , (24)
gpgl) = Re ('yA(T)ew‘(x_Ct) sin(mwy)) , (25)
(1) (1)

where the sine appears to satisfy the boundary conditions that ;" and ¢,

U k2 +F K2+ F FU,
CZUQ—I——C—M and = m L (B+FU) '

2 k2,(k2, + 2F) F FUy+U;—¢)
To this order, + is real so there is no phase difference between the solutions in the two layers. To
get a phase difference, which is crucial to have baroclinic release of potential energy, we need to

compute the solution to the next order.

vanish at y = 0,1, and

(26)

2.2.2 Second order problem

At the next order, the nonlinear problem is given by:

(& + @2+ U)Z] |2l + Pl - o) + + 223+ FU,)
= =7 [, 72" + Pl - @9ﬂ-£{V%9+F(m—¢Pﬂ, (27)
0
[%+%%1W%9+F<@fw9ﬂ + %2 (3 - FU,)

—J [wél),VQ 3+ F(ef” w(l))] or [V%S) + F(pf - wél))} : (28)
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The nonlinear Jacobian terms are all zero as there is no phase difference for the waves. We look
for a solution of the above equations of the form:

()0%2) — Re [Ag) (T)eia(x—ct) sin (mﬂ‘y)] . (29)

Substituting this solution into the governing equation, we have

@ _ 4 _ _(1\dd| B+FU.
AT - A= <iaF> ar [(Ug +U.—¢)?|’ (30)
_ dA [ B — FU,
_A(Q) 1A(2) — _ T yea p=LlUe . 1
Y A (zaF) dT | (Us — )2 (1)

The two left-hand sides being proportional to one another, solutions only exist provided:
dA (B+ FU,) 9 (B —FU.)
_ 5 + Y 2 =0.
dT' \ (Uz + U, — ¢) (U —¢)
(%)

(32)

For instability to occur we must have dA/ar # 0, so a necessary condition for instability is that ()
must go to zero. It can be shown using the expression for v obtained earlier that this is indeed
true. Then, solving for Agz)/A?), we can get the solutions up to O(A):

¢1 = |A|Y? Re {Aeia(z*d) sin(mﬂy)} (33)

IAY?2 B4+ FU. 1dA

— A 1/2 A ia(z—ct) athnied
p2 = |A[/7 Re § Ae sin(my) x ioF (Uy+ U, —¢)2 AdT

v+

(34)

(+)

Although we don’t yet know how the amplitude A will vary on the long timescale (the scale of the
amplitude growth) we can infer important features of the solution in terms of A. By understanding
what the amplitude depends on, we can draw conclusions about solutions and necessary conditions
for instability. This is due to the amplitude’s effect on the interface slope and therefore the change
in available potential energy and associated phase speed.

For example, we see that (%) is a proportionality constant indicating a phase shift between ¢
and @9, where there is a dependence of zonal mean flow of the layers and the amplitude growth rate
A~Y'dA/dT. The phase shift is important for transporting energy through waves, taking available
potential energy from the tilted interface between the two layers. There will be a phase shift only
if %% has a non-zero real part (otherwise, this is just a change in the amplitude).

To find the amplitude equation, it is important to note that another solution can be added at

this order, which is independent of = and ¢, and therefore satisfies equations (27) and (28), namely:
o) =0 (y,T). (35)

This represents a correction to the zonal flow O(]A]). Balancing the terms that are independent
of x and t, and after extensive algebra, we obtain the equation for the correction to the mean flow

14



driven by the self-interaction of the wave field (see [2] for detail):

o 620 B+ FU.) dA? .

9T 8y; + F(@g) — (1)52)) 4(52 i _)C)2 |dT’ mm sin(2mny), (36)
o [820? B+ FU,) dA? .

3T 8y§ F(<I>§2) <I>g2)) —4((5_2 T —)0)2 l1T| mm sin(2mmy), (37)

where the left-hand side of equations (36-37) represents the change in potential vorticity on the
slow timescale while the right-hand side is due to the non-linearity of the wave growth, which is
independent of both z and ¢ and only dependent on the slow timescale and unknown amplitude.

Equations (36-37) can now be integrated on the slow timescale T' to obtain:

sinh[V2F(y — )] [ mn
cosh \/F/2 F/2

A2 - 1A)]) (8 + FU.)
8(2m?n2 4+ F) (Uy+ U, — ¢)?

<I>§2) = —<I>é2) =— X mm [sin(Qmwy) -

2.2.3 Third order problem: the amplitude equations

Finally, moving on to the next order O(AS/ 2), and requiring that secular terms that would lead to
growth of the amplitude on the fast timescale vanish, we obtain the amplitude equation:

d?A
5 = @l A— PNAJAD)P - |AO), (33)

where the constant N is given by:

N (it + 1) | (8 + FUm*n*U. |

8(k2, + 2F)(Us + U, — )2

4tanh /F 2m2m?
k2 (2F — k2)) + 4m>n? (K2, oF — kA
m( m) T Amm( F)+( m) F/2 P+ F

and the complex part of the base state’s phase speed satisfies

2 _ 262 F? A
00 \ kA (K2, 4+2F)2 ) \|A|U. )

We see from the amplitude equation for A that if A > 0, c(%i > 0 so A would grow at the rate of the
linear instability, initially when the amplitude is near its initial value, but eventually the growth
will be halted when the amplitude grows much larger than its initial value. It is like a mass-spring
oscillator whose restoring force increases with the amplitude of the oscillation.

The solution to the amplitude equation for A (equation 38) is aided by writing a general form of
A as A = Re". Substituting this ansatz into the equation for A leads to (see [2] for detail):

ﬁ<$> L (39)

2
<§;€> = a®[c§; + NR*(0)|R? — —5 —
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Figure 3: Potential against energy. From [2].

where F is an integral of motion, given by:

2 4 2
_ N2 2 2 p2 a*NR(0) L
2E = QO — COiR (O) — 2 + RQ(O)’

This is identical to the classical equation in particle mechanics where L is the angular momentum
of a particle at radius R from the centre and whose energy E is given above in terms of initial
conditions.

(41)

and where,

In the simplest case where L is zero (which will be true if at T'= 0, L = 0 then it will remain so),
then:

1 (dR\?
2 2NR4
V(R) = =[eoi + NR*(0)]R? + ———. (44)

Figure 3 shows the relation between V(R) and E. We see that depending on initial conditions, F
could be greater than zero, in which case the solution goes through zero before growing again. This
was highly unexpected: instead of the flow amplitude growing monotonically until saturation as in
Figure 1, the nonlinearities here produce oscillations!

3 Instability, Oscillations and Chaos Due to Friction

In the previous section, we saw that the nonlinear frictionless baroclinic wave can oscillate indefi-
nitely. However, we had ignored friction, so one may ask what is the effect of friction?

16



Figure 4: The solid line is the critical condition curve with friction, and the dotted curve is the
critical condition in the absence of friction F,. = k7./2. From [5].

In this section, we study the effect of friction, and ignore the g effect, for simplicity. By setting
B =0, we will show that oscillations are not only caused by the 3 effect as in the previous section,
but can also be caused by friction!

We consider again the two layer model with equal layer heights (when at rest). In the presence
of Ekman friction (r # 0) and absence of 3, the linear stability problem reveals that

U+ Uy (R +F) | [RAU2(K — 4F2) — 4k22F% k2]

45
2 k(k2, + 2F) 2k2, (k2, + 2F) (45)
We see that instability is possible when F' exceeds the critical parameter F,:
2L2 k2 27.2 k2
_ J0 _

F= &Q>F6—?m+k2(]’2”. (46)

o 2 ——

T

This time, F,. depends on the friction through the term in (f). For low longitudinal wave number
k in particular, friction becomes important. In what follows, we assume that

F=F.+A, (47)
with A small and r = O(AY2) [6].

Without going into details (the reader is referred to [3] and [6] to see them), the problem can
be solved using a multiscale method, which is overall similar but not identical to the one presented
in the previous section.

With the same definitions and notations, but with some appropriate rescaling of the amplitude
function A, of the slow time 7', and of the stream function @gm = —@gQ) compared with the previous
section, [3] and [6] showed that the amplitude equation in the g =0, r # 0 case is

929\
Oy?

¢A 3 dA
ar? 27T

1
A+ A/ dy sin(2mmy) =0, (48)
0
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where
r  2kn

Y= WTUS’ (49)
and @52) evolves according to
o (02?4 020?  [9A? 2\
3T ( o ko, @77 | +~ o2 = <6T +27A )Sln(Qmwy). (50)
This problem must usually be solved numerically. By Fourier expanding @gQ) as
gl & .
- al = Y Uj(T)sin(jmy), (51)
Y §=1,3,5...
and defining for simplicity
dA
B=— A 2
o T4 (52)
and 8
Jm 2
U;(T) = AY(T)+ V(T 53
]( ) (j2—4m2)(j2ﬂ'2+k72n)( ( )+ j( ))7 ( )
[6] obtains the following system of equations:
dA
— =B—~A 4
dT 7 (54)
dB v 72 2m? (k —0.5)2(A2 + V)
—=——B4+—A+A-——A 55
ar ~ 2P T At AT ; [(k—05)2 — m2]2[(k — 0.5)% + k2, /4n?] (55)
Ve g

T 08 T2 AT [A%((k — 0.5)* + k2, /27%) — (k — 0.5)*V4], for k > 1. (56)

In the numerical solutions presented below, the system of equations was truncated at k = 12.

The nature of the solutions with friction, somewhat unexpectedly (at least for Joe!) was often
periodic. At a fixed wave number, increasing «y leads to a period-doubling cascade (see, e.g., Figures
5 and 6). For even larger values of v, the solutions became aperiodic and chaotic (see Figure 7).
Finally, for sufficiently large v, the solutions reach a steady state (see Figure 8). Figure 9 shows
the series of bifurcations in the parameter space =, ky,.
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Figure 5: Left: Phase trajectory of asymmetric limit cycle where v = 0.12, and k,,, /7 = v/2. Right:
Time history of the solution with the same coefficients as a [6].

Figure 6: Phase portrait for v = 0.13 and k,,, /7 = v/2. The change in v produces period doubling

[6].
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Figure 7: For values of v slightly larger than 1.2 the period doubles until we have an aperiodic
cycle. The right panel shows the phase portrait of an aperiodic solution where v = 0.1330 and
km/m = /2, the bottom shows time series for these values.
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Figure 8: Time series where v = 0.23 and k,,/m = v/6. We see that for values of v large enough,
the solution reaches a steady state.

Feigenbaum Constant

In 1978, Mitchel Feigenbaum discovered a fascinating fact [1]. He examined the simple first
order difference equation, which he suggested as a model for population evolution from one
generation to the next.

Tpp1 = V[ (2n)

Where f was a simple quadratic in x, as a simple model of population dynamics. Remarkably,
he found solutions for z, that as a function of n were periodic for some values of 7. As 7
increased the solutions were periodic in n with the periods doubling as that parameter increased
leading eventually to aperiodic or chaotic solutions. The critical values of + for the nth period
doubling were found to satisfy the relationship

Vi — V-1
Yi+1 — V5

= (C = 4.669201

C is now called the Feigenbaum constant and, remarkably, the critical values of our ~ satisfy
the Feigenbaum ratio. Why, we’re not sure.

Finally, in the discussion until now, we have looked only at the case where 3 is zero. Further
work including the planetary vorticity gradient § can be found in [4], and shows a regularizing
effect due to 8 as shown in Figure 11.
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Figure 9: Results from numerical integration completed in [6]. “The entries along each line of
constant a/m (a = ky, in these notes) are not entered linearly with v. The number of each entry
refers to the corresponding value of . The entry LC refers to a simple “dog-bone” limit cycle.
Entries labelled 2T, 4T, or 8T LC refer to limit cycle solutions with two, four or eight times the
fundamental period. Aperiodic solutions are so labelled. Periodic solutions whose phase plane
trajectories are not derived by period doubling of the fundamental are also noted with a crude
representation of the phase space cycle. [...] Solid line is a rough rendering of their linear stability”

[6].
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Figure 10: The nature of the instability beyond the asymptotic regime remains similar for O(A)
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Figure 11: Figure from [4]
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GFD 2025 Lecture 3: Topography-induced Radiative Baroclinic
Instability

Joseph Pedlosky, with notes by David Darrow, Theo Lewy and Kyle McKee
June 18, 2025

This lecture summarizes 'Radiation-induced baroclinic instability’ by J. Pedlosky and R.M.
Samelson, 1991, GAFD, 58, 2/3.

1 Problem Motivation

Topography often plays a stabilizing role in shallow water systems — for instance, a constant slope
can have a stabilizing effect on the baroclinic instability discussed in Lecture 1. Here, we discuss a
system in which this topography can promote instability, as well as excite traveling waves that can
propagate through an otherwise stable system. We choose to analyze a layered model (piecewise-
homogeneous densities) since it permits a simpler mathematical treatment while still elucidating
the key physics of the problem. In particular, our model reveals that the presence of topography
may induce a radiative baroclinic instability.

2 System Formulation

We consider the two-layer flow depicted in Figure 2. The system comprises two layers of
fluid, the top layer having a mean height Hj, a density p, and velocity U,x~. The bottom
fluid layer has mean height H,, a larger density p + Ap, and zero velocity. The entire
system rotates with a Coriolis parameter f = fo + Soy. The system is bounded above by an
impermeable rigid lid, and below by topography hp(y), which is flat except in the small
region —a < y < a, where the gradient is constant.
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Figure 1: Approximate illustration of the model setup. From [1]

We proceed by first outlining the approximations used in analyzing this model, and then we
find the base state associated with this flow. The assumptions in our analyses are listed as follows.

1. We assume that the Ekman number based on the vertical scales of interest, £ = ﬁ, is
small. The Ekman number measures the relative importance of friction as compared with
the Coriolis acceleration, and F < 1 allows us to neglect frictional forces in our analyses. In
the ocean, this number can be extremely small, outside of a small boundary layer of width
Lg, within which £ < 1 no longer holds and frictional effects become important. While the
Ekman layer is often on the order of tens of meters in the ocean, H; and Ho might be on the
order of kilometers.

2. We assume that the Rossby number is small, ¢ = fOLL < 1, which implies that the dominant
balance in the Navier-Stokes equations — as written in the rotating frame — must be between
the Coriolis term, pressure gradient, and gravitational force (i.e., inertial terms drop out).

3. We assume the layers to be shallow in the sense that the vertical length scale is much smaller
than the horizontal, § = Hy /Ly < 1. This allows us to make the hydrostatic approximation,
wherein the vertical momentum equations dictates that the dominant balance in the vertical
is between gravity and a vertical pressure gradient.

4. We assume that the upper surface is rigid and at a fixed pressure, py. When Ap/p <
1, and the uppermost boundary is a fluid of much smaller density than p, this is a good
approximation. Heuristically, this is due to the uppermost surface requiring a factor of p/Ap
more energy to deform than the interface between the layers, meaning it is much harder to
deform.

The equations governing this 2-layer model are the same as in Lecture 1, which after linearization
become:

0 0 0Q1 0
<at+Ulaaj> (V21/J1+F1(1b2—¢1)) +;2ylad;l 207 (1)
0 Q2 0
5 (Ve — Fo(v2 — 1)) 832 78%1:2 =0, (2)
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where

foL? BoL? U,
F, = , = , Uh=—=1, 3
and the background PV gradients are
90
8le = B+ F1U; in the top layer , (4)
0Q2 :
By B — FyU; in the bottom layer where |y| > a, (5)
00 oL
By B — FyUp + a in the bottom layer where |y| < a (6)
where 2L on
0 B
_fo L 7
= O T oy (7)

represents the topography slope.

3 Radiative Instability

We now consider the ansatz of ¥, = ¢,(y)e*@=) within layers n = 1,2. Using the linearized
potential vorticity equations derived above, we obtain the equations for the eigenmodes ¢, (y):

(Uy —¢) [(;:2 — k%) + Fi(¢g — ¢1)] + (B+ F1Uy)¢1 =0, (8)
d2
e [W K)o — Falda - ¢1>] LB BUG=0  lyl>a (9)
2
e [(ij ~R)é2 — Falda — <z>1>] L(B-BUita)b=0 lyl<a (10)

where the first equation comes from the upper layer, the second from the non-sloping region in the
lower layer, and the third from the sloping region in the lower layer. We will solve these subject to
continuity conditions on ¢y, d¢,/dy at y = +a for n = 1,2, as well as that ¢,, remain bounded as
y — £oo. It will be useful to consider a supercriticality parameter

A:FQUl—B—a.

Consistent with Rayleigh’s theorem (see lecture 1), we will see than an instability develops in our
system when A > 0, meaning that the potential vorticity gradient has opposite signs in the different
layers. The solution can be deduced straightforwardly in the general case, but it is enlightening to
examine the limit ¢ < 1, corresponding to topography with a length scale much shorter than the
deformation radius. With this in mind, we define a local spatial variable

¢=2
a
around y = 0, which allows us to modify (10) as
d? Aa?
dg); —a® [(k* + F2)ps + Fagn] + T¢2 =0. (11)
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Balancing this equation requires the last term to be O(1), meaning that ¢ = O(a?). For convenience,

we define
B Aa?

C

62 =0(1).
One could now expand (8) and (10) in powers of a to recover a solution in the region |y| < a. The
most unstable solution is the even one; up to O(a?), it reads

CF2

b1 = EC’cos(t%) + D, ¢z = C cos(0) — DT’

A

with D and C' undetermined.
We now turn our attention to the region y > a and solve equations (8) and (9) to leading order
in a. These are constant-coefficient ODEs and hence have exponential solutions, which we write as

(12)

el my-a) 4,

_ 1P il(y—a) —m(y—a)
e , e + Be
B — FrUs

— Aeilly—a) _ e
®1 2 5- R, ;

(13)

with undetermined coefficients A and B, as well as wavenumber | = (8/U; — k?)'/2? and decay rate

m = ((8 — FoUy)/c)'/?. While the general solution also contains terms with exponents —il(y — a)

and +m(y—a), we discount these by assuming no radiation is coming into the system from y = +o0,

and that ¢1, ¢o is bounded there. The first term in both expressions corresponds to a travelling

wave radiating in the positive y direction, while the second term is a decaying boundary layer.
Matching the streamfunctions ¢; and the velocity fields d¢;/dy at y = a yields

, c\1/2 . A 1/2
A = Fl <Z) C (Sln@ + </B—F’2[]1> cos 0 y

D= A,
1 1

B = —ACF2 (

A + 6—.FQU1> +CCOS@,

and the dispersion relation

. B — FRU \Y?
7l [tan@ (A)

3/2 _ 1/2
= Fibse <1 + W) tand + (A> .
A(,B—FQUl)l/Q A /B_FQUl

To lowest order in a, this implies that

o\ 1/2 _ 1/2
C A

and thus
Aa?

[tan—"[(8 — FoUy)/ A2

To leading order, then, c is real and independent of wavenumber. The next correction allows for

an instability:

6
2iF Fac) [1 LB FQUl] 2R FyA%0 [1 N B_FQUI} / [tan—l (5—%)1/2] |

AT TOT B - R A A |- B0y A A
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The asymptotic approach taken above provides a good approximation to the true solution (see
Figure 2), demonstrating the validity of the derived dispersion relation in the small a regime.

Figure 2: The real and imaginary phase speed for Fy = F5 =U; =1, a=0.1, A =05, § =2
calculated using asymptotics (dashed) and numerically (solid). From [1].

The flow is unstable when Im(c;) > 0, ie., if | = (3/U; — k?)'/? is real. When this occurs,
the region outside of the sloping region must support a traveling Rossby wave, suggesting that the
presence of radiation is required for instability in this system.

To summarize, we have found a system that would be stable if it had boundaries at y = 4a, and
would also be stable without these boundaries if there were no g-effect to support the radiation of
Rossby waves. This means that the radiation is essential in this case to promote the development
of the instability by allowing energy to be radiated away from topography.
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GFD 2025 Lecture 4: Nonlinear Downstream Development of
Unstable Baroclinic Waves

Joseph Pedlosky; notes by Andrés Posada-Bedoya, Heng Quan, Farid Rajkotia-Zaheer

June 20, 2025

This lecture summarizes the papers 'The Nonlinear Downstream Development of Baroclinic
Instability’ by J. Pedlosky, 2011, Journal of Marine Research, 69, 705, and ’The effect of beta
on the downstream development of unstable, chaotic baroclinic waves’, by J. Pedlosky, Journal of
Physical Oceanography, 2019, 49, 2337. While writing these notes, we noted some typos in the
original papers, and have corrected them here to the best of our abilities. Terms that differ from the
original papers are marked in red. It is possible that some unidentified typos remain. The general
results are robust, however!

1 Introduction

The Gulf Stream and the Kuroshio Extension are among the most energetic and dynamic currents
in the ocean. Downstream of the separation points of their respective western boundaries, they
become free, inertial, unstable jets characterized by large-amplitude meanders and eddies. The
observed time-dependent meandering path eventually leads to turbulence and can be explained in
terms of instabilities of the hypothetical flow that, in principle, could exist without such fluctuations.

This lecture presents two simplified models of the spatial and temporal downstream development
of linear and nonlinear instabilities sustained by a baroclinic current with no horizontal shear in
a channel flow. The models can be considered idealized representations of the response of ocean
currents to naturally introduced perturbations at their separation point from the boundary, such
as the Gulf Stream and the Kuroshio Extension.

2 Setup

We consider a two-layer stratified, rotating channel as shown in Figure 1. Both layers have the same
rest thickness H and a constant zonal base flow U,, (n = 1,2). The flow is semi-infinite 0 < z < oo,
where x is the downstream coordinate. The coordinate across the channel is y and the width of the
channel is L. We will study how a time-dependent boundary condition applied at the origin x =0
affects the downstream unstable current in space and time.

We will study a model without the S-effect [2] as well as a model with the S-effect [3].
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Figure 1: The problem setup. Layers are indicated by the subscript n.

L

2.1 Model 1: two layers, friction and =0

We first consider the standard two-layer quasi-geostrophic model without the p-effect. If we as-
sume the viscous friction has a linear damping term in the momentum equation, then the quasi-
geostrophic potential vorticity equation is

0 06w D O O

g g V20, — F (—1)" (g — = —rV%,, n=12. 1
5t B oy oy Be LV Vo T (D W gl = Vi, W
The quantity ¢, in this equation is the geostrophic stream function. The parameter F,, = %

where ¢/ = ”QP;Q’“ g, and the right-hand side is the frictional sink of potential vorticity. The parameter
r is a nondimensional ratio between the linear friction damping time scale and the advective time
scale. The non-dimensional domain is now x > 0 and 0 < y < 1.

The stream function can be written as

wn =—Unpy + <Pn($ay7t)7 (2)

where —U,y is the stream function of the base flow and ¢(x,y,t) is the perturbation. Given that,
the quasi-geostrophic potential vorticity equation becomes

_ Opn, 0

o aray U, e

= —rVip,, n=12.

o Opn 0 .
[ . [V, — F(=1)" (p2 — Uay — 1 + Ury)]

3)

The sum of the n = 1 equation and the n = 2 equation yields the equation for the barotropic
stream function perturbation g = %((pl + ©2), namely

9 0 ) Us & _, ) 1 ) )
dl = s Z - - . 4
<at+UBax)v vB+ awv er+J (¢B,V @B)+4J(¢T,V er) rVipp (4)

Here, the barotropic base flow is Ug = %(Ul + Us) and the shear base flow is Uy = Uy — Us.
The difference of the n = 1 equation and the n = 2 equation yields the equation for the baroclinic
stream function perturbation o1 = @1 — @2, namely
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ot ox ox
+J (o1, Viep) = —rVipr.

0 0 0
( + UB) [V2er — 2For] + Us—— [V?¢p + 2F g + J (¢, Vior — 2For)

()

The boundary conditions in y are

0 ©B
G:B{ or } 0. v=0, (6)

We then perform a linear stability analysis. Normal modes of the stream functions that satisfy
these boundary conditions are given by

on = ApetF*= gin jry, §=1,2,3, ... (7)
The equations for the normal modes of g = #ei(’”_m) sin jry and @7 = (A —Ag)eFo=wh) sin jry
are
. . Us .
(—iw + ikUp)(—K?pp) + Zslk(—KQQOT) =rK2%ppg, (8)
(—iw + ikUp)(—K? — 2F)or + Usik(2F — K*)pp = 1K pr, (9)

where the total wavenumber K = v/k% + [2 where | = jm. From these two equations, we can derive
the following dispersion relation:

1
(iw — ikUp)(K* + 2F)(iw — ikUp — 1) — Z/<;2U§(2F — K% = rK*(iw — ikUg — r). (10)

Writing the frequency as w = w, + iw,, the imaginary part of the dispersion relation is trivially
solved for w, = kUpg, and the real part of the dispersion relation becomes:

1
(K% 4+ 2F)w? 4 2r(K* + F)w; = Z1<;2U§(2F - K?) —r?K?. (11)

For any velocity shear Ug exceeding the critical value

2rK

Us >U. = )
k (2F — K2)'/?

(12)

the right-hand side of equation (11) will be positive, and w; will have a positive root corresponding
to exponential growth and instability at any wavenumber. In the following we will consider shears
that are greater than the critical shear by an amount A. We will discuss two cases. One is
the » = O(1) case, i.e., the linear momentum damping timescale is comparable to the advective
timescale; the other is the r = O(A) case, i.e., the nearly inviscid case where the linear momentum
damping timescale is much smaller than the advective timescale.

2.2 Model 2: two layers, friction and 3 # 0

This model is the same as the model described in section 2.1, now considering 8 # 0. The quasi-
geostrophic potential vorticity equation (1) now becomes :

D O D0 D
gt Odx oy Oy Ox
n=12.

[VZhn — Fu(=1)" (b2 — ¢1) + By] = —rVZ¢n, (13)
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As a result, the nondimensional equations for the barotropic streamfunction and the baroclinic
streamfunction become

0 0 Us 0 1
< + UB> V2pp + —>—Vior +J (pB, Vip) + ZJ (¢, Vier)

ot ox 4 Ox (14)
0
+ 8L = Vs,
ox
9 9 2 9 oo 2
— 4+ Up—— | [VPor — 2F¢r] + Us— [V’¢p + 2Fpp| + J (¢B, Vier — 2Fpr)
ot ox ox (15)

0
+J (¢r, Viep) + ﬂ% = —rVpr.

In this model, we will only consider a small § effect and study the critical curve for instability
in terms of F', which is at the lowest order independent of 5. By contrast with what we have done
in the § = 0 model, here we fix the shear, and write the condition for instability, i.e., w; > 0 as
F > I, where

K? 2r7K?
2 k2U?

In this model we will only consider the case F' = F,+A with a small beta effect, i.e., § = O(A/?)
and a small friction »r = O(A), in which case we can approximate F, ~ K?2/2.

F, = (16)

3 Nonlinear Instability Theory

We follow the structure of [2] and [3] and develop the nonlinear theory for the two models described
above. We begin with the dissipative case, i.e., r = O(1) (case 1) and then move onto the nearly
inviscid case 1 = O(A) (case 2). Both these cases, as in [2], are treated without 3. We close the
section by briefly discussing the case when 8 # 0 and r = O(A) (case 3), by following [3].

3.1 Casel: 5=0,r=0(1)

This section presents the linear and non-linear analysis via asymptotic expansion of the model with
dissipation i.e., case 1. Assuming r = O(1), the minimum value of U, (see equation 12) over all
wavenumbers k (for given [ > 0) can be computed to be

2r

Uso = TS 17/0 0
2F)12 |

(17)

and is achieved when K2 = [v/2F. For these parameter values, w, = kUp and w; = 0. We introduce
slow time and space scales,

T=I|Alt=¢t, X=|Alz=¢ex, U,=U,+A.

We will expand the barotropic and baroclinic stream functions in terms of the small parameter .
We assume the asymptotic series will have the form

o =r¢|o® +epM 4 €2¢(2) + ] (18)

Note that ¢(z,t, X, T). For a well-posed asymptotic expansion we require a relation between the
order of € and A. As discussed in [2], the proper relation is e = O(v/A).
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Substituting the expansions (18) into (4) and (5) and keeping only the lowest order terms
recovers the linear equations for Ug; = Us,,

USO
(Or + UpOy) V2805§?) + TanQSDg?) = TV2<,0§_§), (19)
19
0+ Updy) [V26) = 2P| + U [ V26 + 2P| = —r 920,

Notice the absence of nonlinear terms captured by the Jacobians at this order. It is easy to see
these won’t enter (19) since they would be of order 2. As such, (19) are a set of coupled linear

PDEs, we assume the ansatz,

90%)) ;AB(X T)exp (i (kz — wt)) sinly + *,
(20)
1

o) = SAT(X, T) exp (i (kz — wi)) sinly + *,

where here k and w are the wavenumber and frequency of the linear solution for Us = U,,. Here x
represent the complex conjugates and Ap and Ar are the wave amplitudes that are functions of the
slow variables only. We may readily derive a relation between the barotropic and baroclinic ampli-
tudes by employing the properties of the marginally stable solution. Substituting the ansatz (20)
into the barotropic equation in (19) and noting that at the marginal stability curve the advecting
part of the equation would be zero, yields the relation

Ar(X,T) = kuT Ap(X,T). (21)

Going then to the next order, matching terms that are O(e?),

Uso 1
Dtv2 (1) TamVQQO’_(Z}) +J (SD(BE))’ v? (0)> + ZJ (‘P’E{“)7 VZ (0)> TVQSO(B)7
Dy [ V2 = 2F o] + Upols V26 + 2P0 | (22)

+7 (¢ 9260 = 2Pe) + 7 (o), 9260 ) = —r v,

where Dy = 0; +UpJd,. in the fast variables. Notice the appearance of the non-linear self-interaction
terms captured by the Jacobians acting on solutions from the previous order. We may think of
them as forcing terms at this order. Furthermore, using the ansatz (20) allows us to make the
following simplifications using standard algebraic properties of the Jacobian bracket. Consider the
following

T(¢9.729) = 1 (69, K20 =0, 7 (42.9%) = 7 (o0, -2 =o0.

Then using the anti-symmetry property of the arguments, the Jacobians in the second equation in
(22) are

T (2, 9260 — 2P0 + 7 (40, v29)
:J(%DSB)’*KQSO(T) 2F<p(0)> +J<(10§9)’ K2<P(O)>

=2FJ (<p§9>,<p§§)) (23)

35



We are particularly interested in solutions that provide corrections to the mean flow, i.e., solutions

for gpg)T that are invariant in ¢ and x. These readily satisfy (using equation 21):

9
87y2(pB =0, (24)
and o l
1y 4AF .
g = 1 snCly) [ Asl’, (25)
whose solution can be obtained straightforwardly
F.
cpg}) =op(X,y,T) = T sin(2ly) |Ag|* + Cry + Dr. (26)

We define &1 to be the correction to the mean flow. The constants of integration Cr and Dp are
really functions of the slow variables X and 7. Furthermore, from the boundary conditions at the
origin adapted to the slow spatial scale, we have,

8X<pg) =0, 3Xgog}) =0, at y=0,1,
and it follows that Cr = D7 = 0, and similarly for gog) =0.

At next order i.e., O(¢®), the expansion begins to include variations on the slow space and
time scales and the correction to the mean flow i.e., 7. Furthermore, some of the terms at this
order become resonant, so to avoid secular growth of terms, we require a solvability condition.
This condition can be expressed in terms of the behaviour of the barotropic amplitude Ap. After
extensive algebra, that can be found in [2],

0 0
<8T+UB8)(> Ap —cAp+ NAp ’AB’2:0, (27)

where:

A kK (2F - K"

TIAl 2 F+K?Z
€ FE2K?*(2F — K*) — 81*(F — K?)
NEG 2F — K2 ‘

(28)

Keep in mind (27) also yields information on Az through the relation (21).

The PDE (27) can be solved via the method of characteristics. Letting s denote the characteristic
variable, the characteristic ODEs are
d d d
—T=1, —X=Up, —Agp=o0cAp— NAg|Ag]>. 29
ds ds A P B 5l4s| (29)
It is clear from the first ODE that s = T and from the second that Xy = X — UgT where Xj
is constant on the characteristic. Hence, the characteristic curves are linear. Furthermore, in the
(X, T)-plane, the line X = UpT separates characteristic curves that intersect the X-axis from those
that intersect the T-axis. As such, the domain is partitioned into two regions; the first region, for
characteristic curves that intersect the X-axis, the intersection points prescribe the initial data at
T = 0. The second region, for characteristic curves that intersect the T-axis, the intersection points
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prescribe the boundary data influenced by the forcing at X = 0. As such, we may find our solution
at the wave-front i.e., X > UpT in region one and behind the wave front, i.e., X < UgT in region
two. The following figure shows the linear characteristic curves and the separation into the two
regions.

Figure 2: Characteristic curves in the (X,7T) plane. From [2].

With this in mind, we first solve the ODE for Ap in (29) in region 2, that is behind the wave
front for X < UgT. The ODE is separable and can be solved analytically by direct integration.
Following the formulation as in the paper, it is convenient to express the solution as Z = AQB.
Letting Z,(Tp) denote the square of the amplitude of forcing at the origin, the solution takes the
form,

Z, (T — X/Ug) e*X/Us

T+ NZ,(T — X/Up) (e20X/Up — 1) (30)

Notice, we have expressed the solution as a function of time and so the solution will propagate as
To=T—- X/Up.

In similar fashion, perhaps more standard in the characteristic method while solving PDE,
solution in region one, i.e. X > UpT, solutions are determined by the initial data Z;(Xj),

B Zp (X —UgT)e? ™
14+ Y (2T — 1) Zy(X ~ UgT)’

Z (31)

Note that the solution will be continuous across the front as long as the matching condition Z,(0) =
Z1(0) is obeyed. The following figures plot the amplitude solution Ap and the correction & for
some example parameter values.
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Figure 3: Amplitude of the barotropic mode Ap as a function of X. Given the choice of parameters
for the plot, the front is located at X = 4. From [2].

Figure 4: Example plot of the streamlines of the correction to the mean flow ®7. The plot looks
down onto the (X, y)-plane.From [2].

Note to the reader: beyond this point, we did not fully double-check the algebra from [2] and [3].
Only the obvious typos continue to be marked in red, but it is possible that other typos and algebraic
mistakes remain. They do not affect the main results described.
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3.2 Case2: f=0,r=0(A)

We now consider the problem when the friction is small, i.e. 7 = O(A), with A representing the
supercriticality. In this limit, the right-hand side of (11) reduces to ~ k2U2(2F — K?)/4, so the
condition for instability does not involve the shear and can most simply be written in terms of the

parameter F' (see Figure 5), as

24 k2
F>F, = ; , (32)

which reaches a minimum when k£ = 0.

Figure 5: Critical curve for baroclinic instability in the two-layer system with (r # 0) and without
(r = 0) friction effects. The supercriticality, A, measures the distance above the critical curve, at
a fixed k. Adapted from [1].

Thus, analogously to the model described in 3.1, here we make the following assumptions:

1. The dissipation is small:

r=O0(A). (33)

2. The basic flow is only slightly supercritical with respect to the rotational Froude number F':

2
F:FC+A:%—|—A, A<l (34)

3. The theory to be developed will be a long wavelength theory for the instability. We will
suppose that k is small and to be consistent with (34), expand it as

k=AY2ko+ Aky + .., (35)

while also,
w:A1/2WQ+AW1+..., (36)
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such that according to linear theory!,

wo = koUB, (37)
ko
—klUB 21/21<2—k0)1/2_ (38)

In addition, we consider that the solution will be a function of fast and slow space and time
variables. We introduce the fast space and time coordinates £ and 7, and the slow space and time
coordinates X and T, respectively. From the assumptions above, the instability oscillates in space
and time over the fast timescale A2, while its amplitude evolves in space and time over the slower
timescale A. Hence, the new space and time scales are related to x,t and A as:

=AY, T =At (40)

The barotropic and baroclinic stream function perturbations are also functions of £, X, 7 and T.
For example:

Oz 0& (41)
0B _ A172.0 i
ot e e

The perturbation stream functions will be expanded in an asymptotic series in the small am-
plitude € = O(A'/2), as before:

0 1

op = e(oly) + eply

or (tp(o)—i-ecpg,})—i-e @é)+...).

L2 ),
€ ¥B ) (42)

These transformations, along with the assumptions (34), (35), and (36), were inserted into (14) and
(15). At the lowest order in €, we recover as usual the linear problem for the critical parameters,
whose solution is:

(pgg) = fAB(X, T)ei(kog_“’oﬂ sin(ly) + *

]{?0 :LL)Q/UB.

At the next order in €, we obtain the corrections 4,0( ) and <p( ) , which can be added to the lowest-
order solutions to get:

0) a _ (AB(X ,7T)

o ety = (F2G e 4 sinty) + 0(a12), (13)

(0) (1) _ A1/2 (4 o 9 Ap(X,T) R : 1/2
o +eop A <k0Us [8T+U 6X+A 5 + x| sin(ly) +AY=®p(y, X, T), (44)

where 0 = ko — woT and @7 is the baroclinic correction to the mean flow and is a function of only
the slow space and time scales X, T" and y, as in the previous section.

!Note to the reader: the expression for w1, while identical here to that of [2], might be missing terms in 7 that are
formally of the same order.
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Assuming solutions of the mean flow correction in the form
&p = P(X,T)sin(2ly), (45)

we obtain at the next order an evolution equation for the correction to the mean flow driven by the
time dependence of the instability amplitude and the friction:

0 0 4 r e 2F. (0 0 r 2
(o7 o) 7 557 = =5 (o + O 25 ) ol 0

which is coupled to the evolution of the instability amplitude,

d o\ 3r (0 o ) % o o
<({')’I'+UB&X> AB+§Z <W+UBM> AB—O' AB_Al/Ql koUsABP—O, (47)

where 02Ap in (47) is the growth term of the instability amplitude, and the last term on the left
is the alteration in the growth rate by its interaction with the base flow, where

2_ﬂ3(l2, 2)713,7"72
2 0/ 2 A2

g

Some parameters in (46) and (47) can be removed by the following rescalings,

T =0T, X' =0X/Upg, Ap = ApgA, P = PP, v =r/Ao, (48)
where )
=AY2, P=—T . A= 19
€ ) 0 k(Q)USly 0 kola ( )
so that after dropping the primes, we obtain the final amplitude equations:
o o\, 3 [(d 8
0 0 4 0 0
— 4+ — | P+ AP =— || = + — | |A]> + 2+|A4?| . 1
<8T+8X> T 57 [<3T+ax>’ "+ 2 |] (51)

As in the previous section for the case r = O(1) (see (29) and Figure 2), the characteristics are

given by the advection by the barotropic mean flow Up (now equal to 1 in these rescaled units),
dX ar
— =1 — =1 52
ds ’ ds ’ (52)

where s is the variable along the characteristic. In terms of this characteristic coordinate s, the
system (50) and (51) can be written as the set of first-order differential equations:

dA
— =—A+B 53
- ~A + B, (53)
dB
- —%B + (144%/2) A— AJA]? - RA, (54)
dR 4 6
= _Z —~|Al?
=~ R+ 4P, (55)
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where we have introduced the new function R such that
P=—|A?—-R. (56)

This set of ordinary differential equations is of the form of the well-known Lorenz equations.
For a range of moderately small ~, the solutions have a chaotic behaviour, as can be illustrated
by comparing the solution along four characteristics that are closely spaced at s = 0 (Figure 6).
The chaotic divergence of the solutions with increasing distance along the characteristics implies
changes of order one from one characteristic to its neighbour.

Figure 6: The solution for A along four characteristics closely spaced at s = 0. Adapted from [2].

The solution of system (53), (54), (55), (56) can be found by integrating those equations along
each characteristic and, to find the solution for fixed time, it is only necessary to label the charac-
teristic by its initial intersection with the 7' axis as shown in Figure 7.

For a given X and T, the solution is found by evaluating the amplitude on each characteristic
at the level line T' = constant, whose starting value is simply Ty = s —T. Even if the starting values
of Ty are close, the chaotic character of the solutions along each characteristic will introduce very
rapid changes of the solution at fixed T" from one characteristic to its neighbor and hence from one
value of X to the next. That is, the sensitivity of the solutions along the characteristics to very
small changes in the starting values can lead to very large changes in the solution as a function of
X if the solution is carried far enough in s, i.e. in X, for the chaotic behavior to manifest itself.

As an example, consider a situation with no perturbation ahead of the front, i.e. at T'= 0 the
perturbation is zero everywhere and the solution is forced by the condition at the origin,

A0, T)=1—e 1, (57)

where ¢ is a parameter. This forcing has been chosen since it is monotonic, and so the oscillations
seen in the solution are internally generated. Figure 8 shows the response in X of the wave amplitude
at three times, 7' = 3, 6, and 10 for the region behind the front. For short times (7" = 3, Fig. 8a),
the solution is very smooth but as time goes on the chaotic behavior begins to manifest itself and
rapid variations of the solution are clearly seen behind the front, with the emergence of a second
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Figure 7: The solution at time T is obtained from the solution along each of the characteristics
emanating from s = X = 0. Even for small differences 15 — 17, the variation along the line T" =
constant can vary rapidly due to the chaotic behavior of the solution along the characteristics, e.g.,
the sensitivity to the initial conditions at the origin. Adapted from [2].

region of increasing gradient (7' = 10, Fig. 8c). For a large time, the forcing approaches a constant
and the behavior along each characteristic will be nearly identical, which is why the rapid behavior
seems to be restricted to the region near the front.

Figure 8: The amplitude of perturbations behind the advancing front at three times (a) 7' = 3,
(b) T =6, (c) T = 10, when the system is forced at the origin as A(0,T) = 1 — e~ 9. The rapid
variation occurs when the length of the characteristic is large enough to manifest chaotic behavior.
Parameters of the problem are v = 0.12, ap = 0.5, ¢ = 1, and ds = 0.01. Adapted from [2].

If instead of the forcing (57), the system is forced by
A(0,T) = asin(2nT/ Tperiod), (58)

the solution manifests chaotic behavior in the form of rapid variations of amplitude which occur well
behind the front (Figure 9), demonstrating that it is not the front that excites the rapid variation
but the sensitivity to slightly varying initial conditions from one characteristic to its neighbor.
These regions of rapid variations in amplitude with X are thus regions that have relatively
large meridional (i.e., y) velocities and rapid changes in those velocities. Thus, even though the
characteristics remain simple, straight parallel lines, the divergence of the solutions on neighboring
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characteristics exhibits a behaviour that resembles a “chaotic shock”, though not in the traditional
sense of gas dynamics or the nonlinear bending and overlap of the characteristic curves in hyperbolic
systems [2]. Tt is the chaotic character of the solutions along those characteristics and the divergence
of the solutions on neighboring characteristics that provides the shrinking scales in the behavior of
the solution.

Figure 9: The amplitude of perturbations behind the advancing front at 7' = 8, when the system is
forced at the origin as asin(277"/Tperioa), with a = 0.5 and Tperiog = 5. Parameters of the problem
are v = 0.12, and ds = 0.01. Adapted from [2].

3.3 Case3: f#0,r=0(A)

As in the previous section, we consider r = O(A), i.e a nearly inviscid situation with weak frictional
effects. We now include a small 3 effect, with § = O(A!/?). Similar to what we have done in the
£ = 0 model, we introduce fast space and time coordinates £ and 7, and the slow space and time
coordinates X and T respectively, as :

E=AYV2, X =Aux,

59
T=AY% T =At (59)
Repeating the asymptotic series expansion, we derive at the lowest order in e,
O — A(x, T)e*o <) gin 1y + «
e (X,T) y (60)

@gg)):(l CZUBa FC:l2/2a

where * denotes the complex conjugate of the preceding expression.
In comparison with the previous section, the first order correction now has an additional term
involving S,

(1) 4 [ [0 0 ir Bko
- 9y L arTay Ly
T T, {Z <8T * Bax) TAY T ARe (61)

x e sinly +  + op(X,y,T),
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where @7 satisfies, at the next order

0 0 O*®r r 0?®r
((9T UBax) <8y2 - 2FC(I)T> + NEED

= A1/2 i [<8T +Up Byy |A]” + A1/2 |A]7]| sin(2ly).
Assuming a solution of the form & = P(X,T)sin(2ly) leads to

4r e 4 0 0 9 2r o
<6T+U38X>P+5AP__A1/25[<8T UBaX>|A| M'A']

The evolution equation for the amplitude A is determined at the third order O(A%/?),

0 0 \? 3/r . Bko B, B,
(8T+UB<9X> A+3 <A_ZA1/212) <8T+UB<9X>A

_ 2 _ € kOU -
oA INCRTE AP =0, where
o RoR)RUT v Bhy B
812 2A T A AL/212 T A4
Rescaling the variables according to
;o o oX o / _ / i Bko
T =0T, X = 0 A=A,A", P=PFP, 6_785A1/2l2’
where 2 AL/2
oA 5 T
PO = 9 A2 = 7P07 = N
a2, T4 7T As
we have
o 8 2
87T+87X ’7—|—Zb A— A(1+P)_0

ar "
o 9 B 9 )
<6T+6X>P+ =P = [ 3T ax) |Al +27P]

Letting as before P = —|A|?> + R, we have

B, 0 \2 3 0 B
<+> A+ 5y +ib) <+>A—A+A(|A|2+R):0,

oT  0X oT 0X
o 0 4 6
(w*ax)”ﬁ“ﬂf"-

(63)

(64)

(65)

(66)

(67)

(68)

The effect of 3 is explicitly contained in the b term of the A equation, and in ¢ (and therefore 7).

As in the 8 = 0 model, the characteristics are given by:
T—-X=Tp.

We study an example in which the boundary condition at X = 0 is given by

A0, T =1T,) = asin 20T/ Tperiod -

(69)

(70)

When § is small, the system will behave like the 5 = 0 case. When [ is large, it can suppress
chaos along characteristics, but not before the amplitudes of the real and imaginary parts of the
amplitude have had time to grow and differ by O(1) on neighboring characteristics (Figure 10).
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Figure 10: The evolution of the real (solid) and imaginary (dashed) parts of the amplitude along
two neighboring characteristics when (nondimensional 3) b = 0.5. From [3].
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GFD 2025 Lecture 5: On the Shoulder of Giants — Eady’s and
Charney’s Models

Joseph Pedlosky; notes by Alexandre Tlili and Lin Yao

June 20, 2025

1 Eady

1.1 A bit of history

Eric Eady (1915-1966) was a British meteorological researcher who made a significant contribution
to the understanding of atmospheric dynamics. While pursuing his Ph.D. at Imperial College
London, he developed a simplified model to explain the formation of large-scale weather waves in
the troposphere. At that time, the mechanisms behind the generation of such waves were poorly
understood. The Norwegian School, led by the meteorologist Vilhelm Bjerknes, emphasized the
role of weather fronts in driving these instabilities. Eady’s model, along with the subsequent work
by Charney (discussed in Section 2), is widely regarded as one of the first mathematical frameworks
capable of explaining the generation of large-scale instabilities in stably stratified, rotating, sheared
flows. The instability Eady described came to be known as the baroclinic instability.

Figure 1: Eric Eady on Victoria’s bridge above the Cam river in Cambridge.
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1.2 Eady’s model of baroclinic instability
1.2.1 With a flat bottom

This section summarizes chapter 7.7 of [6].

Figure 2: Idealized setup used in Eady’s model of baroclinic instability. A constant vertical shear
0.U > 0 is balanced by a negative horizontal buoyancy gradient d,8B < 0 in accordance to the
thermal wind relation. Top and cross-stream boundaries are stress-free walls and the domain is
infinite in the x-direction. The colored lines on the right-section show the tilted surfaces of constant
buoyancy.

In his seminal 1949 paper [3], Eady introduced an idealized atmospheric model that demon-
strated the development of baroclinic instability. He considered a zonal flow U = U (z)é; with
constant vertical shear U, geostrophically balanced by a horizontal buoyancy gradient B, = — foU,
in the y-direction. This configuration results in tilted isopycnals (surfaces of constant buoyancy),
with a slope of foU,N~2 in the y-direction (see Figure 2). The flow is bounded by stress-free, rigid
walls both above and below, as well as on the sides, but is infinite in the z-direction. The vertical
buoyancy gradient, represented by the Brunt-Viisila frequency N, and the planetary vorticity fo
are assumed to be constant, with no consideration of the S-effect. In geostrophic equilibrium, the
divergent-free horizontal velocities and buoyancy field are related through a stream function ¥ as

(U, V,B) = (=¥, ¥, 2N? + fo,) (1)

where the buoyancy B is divided into background stratification zN? and perturbation fo¥, induced
by the flow due to the thermal wind balance.
Under the anelastic approximation [6], the potential vorticity conservation equation reads

f02 p 0<z<D
(Op + 0,¥0y — 0yV0,) | Vau + Wy + ?62 W\PZ =0 for 0<y<l’ (2)

with p(z) the background density at rest. Assuming that the height D of the channel is small
in comparison to the vertical length scale of density variations (N2D/g < 1), we recover the
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Boussinesq approximation and the potential vorticity equation can be written as

f2 0<z<D
(O + 0,00, — 9, V0,) (xym + Uy, + 0, (zv02‘1’)> —0 for {0 cyer (3)

This approximation is well justified for the Ocean, much less for the atmosphere. Nonetheless, we
will present the results of Eady’s model in this specific case, and will relax this assumption later
for Charney’s model.

In the absence of friction, the walls impose an impermeability condition on the normal velocity.
For the side boundaries, we assume that the stream function vanishes. For the top and bottom
boundaries, we apply the buoyancy equation and set the vertical velocity to zero. These two
conditions are expressed as follows:

U=0 at y=0, L, (4)
(0 + 0, Y0, — 0,90, fo¥, = —w[,N* =0 at 2=0,D. (5)
The equations can be non-dimensionalized using
- L . - -
(r,y) = L(z,y), t= Wt’ z=Dz, U =DLUYV,. (6)

Dropping the tildes for brevity, equations (3-5) become

_ 0<z<1
(Or + 0,90,y — 0,V 0,) (\I/m + W, + S 1\1122) =0 for {0 <l (7)
U =0 at y=0,1 (8)
(Op + 0,90y — 0y ¥0,) ¥, =0 at z2=0, 1, (9)

with S = (N2D?)/(f3L?) being the squared ratio of the Rossby deformation radius by the horizontal
scale. For the base flow described above, the nondimensional streamfunction can be computed as
Uy (y, z) = —zy with uniformly zero potential vorticity, and the velocity reads Up(z) = z.

We are interested in the linear stability of the base flow. Let us consider a perturbation with
stream function v such that the total stream function is ¥(x,y,z,t) = Vo(y, z) + ¥(x,y, 2, 1).
Linearizing equations (7-9) for a small perturbation ¢ gives

_ 0<z<1
(875 + UO(Z)ax) (77/}11 + ¢yy +S 1%2) =0 for {0 <y<l1 ) (10)
with boundary conditions
(0 + Up(2)0z) ¥, — (0,Up)by =0 at z2=0,1, (11)
=0 at y=0,1. (12)

Equations (10-12) being independent of x and ¢, and since 1 is vanishing at the boundaries
y =0 and y = 1, we consider the normal mode

¥(z,y,2,t) = Re | A(2)e™ =D sin(L,y) | (13)
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with ¢, = nm for any positive integer n. Note that we do not consider the case k = 0 here, for
which we can show that the growth rate is zero. Injecting this ansatz into the equations results in
the following system

(z—c) (A"(z) = S(2 + kP A(2)) =0
—cA'(2) — A(2) =0 at z=0, (14)
(1-c)A(z)— A 0
Introducing the scaled wavenumber u = (S(k? + £2))'/2 > 0, the continuously differentiable
solutions A(z) can be expressed as A(z) = asinh(uz) + bcosh(puz), with constants a,b chosen to
ensure the boundary conditions (14.b/c). Solving for a and b leads to the system

{ apc+b =0,

15
a[p(l — ¢)cosh p — sinh ] + b [u(1 — ¢) sinh o — cosh p] = 0. (15)

A nonzero amplitude solution exists provided that the discriminant of the system vanishes, leading
to a simple quadratic equation for ¢

thy 1
CQ_C+<COMM_/P>:0' (16)

The dispersion relation is finally given by the quadratic formula as

c:;i;\/(g—tanhg> <%—cothg), (17)

where we used the hyperbolic identity coth p = (tanh(u/2)+coth(u/2))/2 to factorize the radicand.
As p > 0, we have p/2 > tanh(p/2) and the condition for the radicand to be nonnegative is to
have /2 > coth(y/2), which is true only if x> u(®) ~ 2.3994.

Thus, small-wavelength perturbations with p > u(c) generate traveling waves, while pertur-
bations with large enough wavelengths are unstable. Those results are summarized in Figure 3,
showing the complex phase speed ¢ of the perturbation (equation 17) as a function of the scaled

wavenumber .

Eady’s model is regarded as one of the simplest models for baroclinic instability, but one has
to realize that very little was known about the quasi-geostrophic theory at the time. Indeed, Eady
had to derive the QG theory from scratch in his PhD work and 1949 paper. Together with Charney,
Eady was able to show that the atmosphere did not need fronts to generate weather waves through
the baroclinic instability, by isolating the minimal ingredients for the latter to occur, namely a
vertical shear balanced by a horizontal buoyancy gradient. Instead, it was shown later in [4] that
weather front formation could be explained within QG theory, feeding from the weather waves
generated by the baroclinic instability.

1.2.2 With sloping bottom

Following [7], let us now examine the impact of topography on the instability by introducing a
sloping bottom hp(y) = sy in the y-direction. We assume a constant negative slope s < 0 towards
positive y, which is shallow enough for the boundary conditions to still be applied at z = 0,
rather than at z = hp(y). While the upper boundary condition remains unchanged, the lower
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Figure 3: Complex phase-speed of the disturbance as a function of the scaled wavenumber p =
S(kZ + £2), in Eady’s model with a flat bottom. There exists a critical scale wavenumber (%)
2.3994 above which the disturbance are traveling waves, but below which an instability occurs.

Q

boundary condition is modified, as the vertical velocity no longer vanishes at the bottom. Instead,
(dimensional) vertical velocity at the bottom can be expressed as

w(z =0) = v(z = 0)h(y) = ¥ (z = 0)hp(y) (18)
such that the (dimensional) buoyancy equation evaluated at the bottom boundary becomes
(0 + 0, Y0, — 0,0, fo¥, = —wN? = —N?h(y)¥, at z=0. (19)
Using the same non-dimensionalization as in the case with no slope, the dimensionless linearized
equations around the base flow ¥y(y, z) = —yz become
(9 + U(2)0s) (Ve + gy + 5 0022) = 0 fm{gzzzi, (20)
(01 + Up(2)0z) . — (0.Up)hy = 0 at z=1, (21)
(Or + Uo(2)0) ¥ — (0:Uo + ar)py =0 at z2=0, (22)
=0 at y=0,1, (23)

with Up(z) = z. The new dimensionless parameter measuring the topographic slope in the equations

is
sN?2

- fO Uz
which can be interpreted as the ratio of the topographic slope to the isopycnals slope. We introduced
a minus sign for convenience, so ap > 0 if the two are sloping in the opposite direction. Substituting
the normal mode given by equation (13) gives

(z—¢) (A"(2) = S(2 + K} A(2)) =
—cA'(z) = (1+ar)A
(1-c)A(z)— A

(24)

aT —

0 for 0<z<1,
z)=0 at z=0, (25)
0

51



Following the exact same steps as in the case of a flat bottom, we can obtain the dispersion relation
for the phase speed as

1 h 1 hp)? h 1
C:<1+aTC°t M)i\/ <1+aTCOt “) —(1+ar) (COt “—2>, (26)
2 p 4 7 7 Iz

with the scaled wavenumber defined as u? = S(k? + ¢2) as before. The perturbation is a traveling
wave if the radicand is positive, but grows exponentially if the radicand is negative. Solving for the
critical values of ap is straightforward but cumbersome, and gives

O‘gf,)i = ptanh g — 2tanh? p & 2\/(,11 — tanh p) (1 — tanh? H) tanh /. (27)

For a given value of scaled wavenumber g, the perturbation is unstable provided that ag lies

between the two critical values ozgrc)i, and stable otherwise. The stability diagram is given in

Figure 4. It shows that large-wavelength perturbations (u < ,u(c)) that were previously unstable
can be stabilized by the topography if the bottom slope is strong enough. On the other hand,
small-wavelength perturbations (u > ,u(c)), which were stable for a flat bottom, can in certain cases
become unstable in the presence of topography, when the bottom is sloping in the opposite direction
of the isopycnals (ag > 0). However, this instability region becomes exponentially narrower as the
scaled wavenumber p grows.

Figure 4: Stability diagram for Eady’s model in the case of a sloping bottom. The scaled wavenum-
ber 1 is defined by u? = S(k? + £2) and the slope of the boundary is measured by ar defined in
equation (24). Previously unstable long wavelength perturbations can be stabilized by topography,
and previously stable short wavelength disturbances can become unstable. Figure from [7].

In both cases — whether or not topography is included — the instability arises from the in-
teraction between two waves located at the upper and lower boundaries. This raises the question
of whether the upper boundary is truly relevant for modeling atmospheric dynamics. Moreover,
we have neglected both the g-effect and non-Boussinesq behavior. While these simplifications may
be justifiable in a rudimentary ocean model, they omit key features necessary for representing the
atmosphere. This gap is addressed by Charney’s model, which is introduced in the following section.
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Figure 5: Jule Charney with some of the other members at the Institute for Advanced Studies
(IAS) in Princeton.

2 Charney

This lecture summarizes Chapter 7.8 of [6].

2.1 History

Jule Charney (1917-1981) in an American meteorologist, considered as one of the fathers of modern
meteorology after World War II. He participated in the development of numerical weather prediction
models, and proposed a variety of mathematical models for the circulation of the atmosphere.

Charney was originally interested in aeronautics before starting his PhD, but was advised in
particular by von Karmén to consider pursuing a career in meteorology, where a good contribution
could be made. He enrolled under the official supervision of Holmboe and was advised by Rossby
among others. After his PhD, he pursued a postdoc in Oslo, during which he developed the quasi-
geostrophic approximation for atmosphere modeling. In his 1947 paper [2], he was able to suggest
a model for the generation of large-scale weather waves in a set-up similar to Eady’s model, but
without upper boundary and incorporating planetary vorticity gradient.

2.2 Charney’s model
Charney’s assumptions include:

e Constant vertical wind shear ‘glzj*,

e Inviscid flow,

N2D?
fng ’

Constant stratification parameter S =

-1
Constant density scale height H = (—i%) ,

ps 0z
. 3#0.

Note that in the units selected in equation (6), the unit time is L/DOU, [0z, so the dimensionless
Bis B = B«L?/DOU,/0z.. The smaller the background shear the larger 3 is.
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The overall setup is similar to Eady’s model, as illustrated in Figure 2, but with two key
differences. First, Charney’s model includes the S-effect. Second, the upper boundary is placed at
zr — 400 rather than a finite height.

Charney essentially derived the quasi-geostrophic potential vorticity equation (QGPVE) from
first principles. Here, we leverage existing QG theory and present the nondimensionalized QGPV
perturbation equation, as given in [6]:

0 0 d¢ 01y
U =0 28
<8t+08> ““oray (28)
where Up is the basic state zonal flow, with corresponding stream function ¥ such that:
ov
Up=2z=—— 29
0 z ay ) ( )
q is the perturbation PV,
82¢ 0%¢ 1 9 0P
— 30
02 T a2 Oy? * psS 0z < (92’) (30)

where ¢ is the stream function perturbation, and Il is the basic state PV, defined as

v 1 9 ([ 0¥ 1 0 ( 0¥
- ) = — — . 31
By+32+p5582<p582> ﬁy+p358z<psaz> (81)
Substituting equation (29) into equation (31), we have the PV gradient of the basic state, given
by:

ol 1 0 Uy 1 Ops 1
— e s~ = — = . 2
oy P o50s (p 9z ) =50 P s (32)
Thus, the full perturbation QGPV equation (28) becomes:
0 0%¢  0%¢ 1 0 1o 99 1
+ U — — 0. 33
<at 08)[82+8y +,08S82< az)} (5+ > (33)
The boundary conditions in y are:
¢
— = = +1.
6$ 07 y

Because the coefficients are independent of x and ¢, the solution can be written in terms of
normal modes:

¢ = Re[®(y, 2)e™ =] = Re[®(y, z)e™ D ekeit], (34)

Then equation (33) becomes

1 9 0P e, 1
=0 555z (#52) * 57 ~°9] + (7 775) 0 =0 )

with boundary conditions in y:

=0, at y = £1. (36)

The boundary conditions in z are discussed below.
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To satisfy the y— boundary conditions, we assume the solutions of the form

O = A(z)sin(lpy), b, =nm,n=0,1,2,.... (37)
Then equation (35) reduces to:
d?A  1dA 1
- — —=——p‘A — A=
(z—c¢) (dz2 T M > + (55’—1— H) 0, (38)

where as before:

(12 +22)
Here, p is the total horizontal wavenumber measured in units of the Rossby deformation radius
Ly = NsD/fo.
The lower boundary condition is (same as equation 14):
dA
4L A=0.2=0. 40
S , 2 (40)

The upper boundary in Charney’s model is at z = +o00. In this case, there is no clear definition
of fluid depth as in Eady’s model, so the vertical scale of the unstable disturbances selects its
own vertical scale. This is in contrast with Eady’s model, where the vertical scale of the unstable
disturbances is the full depth of the fluid layer.

To see why this may be the case, recall from the first lecture that a necessary condition for
instability (re-written here in the notations of this lecture and specifically for the Charney model)
is that the following holds

1 27 2 1 2 1 2
ps|®| ano} / { |9 } / [ 19 ]
d/ dz { + d S T — — d S =0.
/1 Y 1o Uo—cl 0y | T )Y ool " SV TP,

(41)
In the Eady model, 0Ily/0y = 0, so this equation can only be satisfied if the eigenmode interacts
with the background shear and stratification near both boundaries. However, when 0lly/dy =
B+1/HS > 0, a balance can exist even if || — 0 as 2z — +o00. In that case, the mode can adjust
its structure near the lower boundary to compensate the first integral in (41). More specifically, as
the background shear becomes smaller, i.e., as  increases, the eigenfunction concentrates near the
lower boundary so even for weak shear the instability condition can be satisfied.

The vertical scale of perturbations can be estimated noting that:

2
SE?;—BS+;—EJ;6%F-JJ\%D+QED<}1K+;>. (42)
where we have identified the new lengthscale
B

as the vertical length scale over which the advection of PV balances the stretching of planetary
vorticity by the vertical velocity field. The dominant term in equation (42) corresponds to the
smaller of two vertical scales. This means that the vertical scale of the perturbation is given by

D = min{h, H,}. (44)
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When D = h,, the horizontal length scale is

fO aU*
NsD Ns Oz
L = = 18 Tk . 45
T 8 (#)
Dimensionally, the growth rate is
U D 0U,
7 ¢ <Ld) Ld 82* ( )

Equations (44) - (46) thus show that the S-effect alters the horizontal and vertical scales of the
perturbations, but not directly their growth rate.

This dimensional argument can be verified through more formal calculations of the eigenmodes
and their growth rates. Equation (38) can be reduced to a standard type by the following trans-
formation:

A(z) = (z — ¢)e”* F(z), (47)
where )
0 5  0%2\2
VQ—(M +4> ) (48)
and b
Equation (38) becomes
d*F dF
deQJr(?—f)dfg—(l—r)F—O, (50)
where £ is a new variable defined by
£ = (2= (0" +4u*)"?, (51)
and the parameter r is given by
1
po__ 01 (52)

(02 + 4p2)1/2”

Equation (50) is the confluent hypergeometric equation. Charney said that he felt great relief
when he realized the equation he had to deal with was a standard mathematical equation. However,
the solutions are not tabulated, and it was an immense challenge to use them to discuss the
instability of the sheared zonal flow. Charney had no computer to help evaluate the final dispersion
relation. He had only a hand-operated mechanical calculator. Colleagues remembered him working
late at night and his wife, Eleanor, bringing him supper so he could work without taking a break.
The results of his labors produced a curve of zero growth rate in the shear vs. wave length (or
zonal wavenumber) parameter space. The curve is shown here in Figure 6.

Using a standard perturbation method, Charney was able to show that slightly above the curve
¢ became complex with a positive imaginary part, i.e., unstable. It was natural to assume that the
flow was stable for weaker shears below the curve. This was a widely accepted result.

Charney went on to further work of importance. For years he headed the pioneering project
at the Institute for Advance Studies (Princeton) to begin work on using numerical models and
computers to forecast the weather i.e., the development of instabilities to finite amplitude as could
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Figure 6: Charney’s stability curve for r = 1, from [2].

be foreseen by his stability work. He was also the first to provide an inertial model of the western
boundary current with no dependence on artificial viscosity coefficients.

Fifteen years later Alewyn Burger submitted a paper to Tellus, a Swedish journal founded by
Rossby, that claimed that Charney was in error and that his model was unstable for all shears except
at a countable (but infinite) number of curves in the (k, %g* ) plane ! Those curves correspond to the
parameter r = an integer in the confluent hypergeometric equation. Charney’s curve corresponds
tor=1.

Later calculations by Kuo [5] help clarify the problem by studying the normal mode problem
in the limit 6 — 0. In that paper, Kuo showed the frequency and the growth rate as a function of
r (Figure 7). It turns out the Charney mode is the mode with the largest growth rate. The higher
modes correspond to lower growth rates, and the transition from one unstable domain to another

occurs at integer values of 7.

2.3 The scientific legacy of Charney

How did Charney react to Burger’s critique? With remarkable grace. Despite Tellus initially
rejecting Burger’s paper, the U.S. meteorology community invited him to present his results at
MIT and WHOI. Charney publicly praised Burger’s work and hosted him for dinner at his home,
with a young Pedlosky in attendance. Burger’s paper was soon published [1].

Charney’s impact extended beyond this model. He taught GFD (Figure 8) and, perhaps as
importantly, what it really meant to be an honest scientist.

His later contributions were also fundamental. For example, he pioneered numerical weather
prediction and developed the first inertial Gulf Stream model. He also derived the QGPVE from
the primitive equations and applied it to forecast models (Figure 9).
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Figure 7: The real and imaginary parts of ¢ as calculated by Kuo for the case 6 — 0. In this figure,
the frequency of the wave ¢, is proportional to —n,, and the growth rate ¢; is proportional to —mn;.
From [5].

Figure 8: Charney teaching a class.
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Figure 9: A letter from Charney. He derived and applied the QGPVE to weather prediction.
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GFD 2025 Lecture 6: Dynamical Systems and Bifurcations

Laurette Tuckerman; notes by David Darrow and Heng Quan

June 23, 2025

1 Introduction
A dynamical system can be defined as:
@ = f(x),z, f vectors in RY (1)

Some systems with other forms can be rewritten as dynamical systems. For example:

&= flx,t) = $<Z> - (f(wl’ 0)> with 0 = ¢ 2)
p= it = G (5)= () winv=s ¥

2 Analysis of One-dimensional Systems

2.1 Fixed points and linear stability

A fixed point T of the dynamical system & = f(x) is a solution to

0= f(@). (4)
The linear stability of the fixed point T can be studied by:

x(t) =7 + €(t)

d _ _
@t =f(z+e)
é=f(z)+ f'(@)e+ %f"(f)é T (5)
~ f'(z)e

e(t) = ' @e(0)

If f/(z) > 0, a perturbation € will grow exponentially in time so the fixed point T is unstable. If
1 (z) <0, the fixed point T is stable.

We assume that f depends on a parameter . A steady bifurcation is defined as a change in
the number of fixed points (roots of f).
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Figure 1: Saddle-node bifurcation diagrams. In each case, there exist two branches of fixed points,

one stable and one unstable, on one side of ; = 0, and no fixed points on the other side.

2.2 Saddle-node bifurcations

Consider the example
fla, p) = p— a2,

This is called the normal form of the saddle-node bifurcation. Its fixed points are

7=+
which exist only for u > 0. Their stability is determined by
(1) = 224 = —2(/pn) = F2/p.

We can see that T, = +,/u is stable, whereas 7 = —,/p is unstable.
In addition to (6), there exist three other possible cases:

[, p) = _:U'+$2
flm,p) =p—a°

fla,p) = —p —a?

We summarize their stability in the bifurcation diagram shown in Fig.1
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Figure 2: Pitchfork bifurcation diagrams. A branch of fixed points gives rise to two new branches
when a critical value of p is crossed. The bifurcation is called a supercritical (subcritical) pitchfork if
the new branches are stable (unstable). More generally, the bifurcation is supercritical (subcritical)
if the two new branches are more stable (less stable) than the branch between them.

2.3 Pitchfork bifurcations

The normal forms of the pitchfork bifurcation are:

flz,p) = po —2°

P ) = i+ o o
fla,p) = —px + 2

[ —

We plot the corresponding bifurcation diagrams in Fig.2. We consider the form f(z,u) = pr — 27,
whose fixed points are
0 for all p

r=4/pu foru>0

8l
Il

Ozf(u—52)2>{

and whose stability is given by:

7 forz =0

(12)
p—3p=—-2u forz==/u

f'(@) = p—32" = {
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Figure 3: Left: bifurcation diagram for & = px + 23 — 2°/10. The fifth-order term stabilizes the
trajectories near a subcritical pitchfork bifurcation. This term causes two saddle-node bifurcations.
As p is increased, there is first one fixed point, then five, then finally three fixed points. Right:
diagram for an imperfect pitchfork bifurcation # = 1/27 4+ puz — 2. The constant term represents
an imperfection that causes the system to prefer one of the two branches. The pitchfork bifurcation
has been transformed into a saddle-node bifurcation.

The fixed point = 0 is therefore stable for © < 0 and becomes unstable at y = 0, where the new
branches of fixed points 7 = 4,/ are created. These new fixed points are stable. This is called a
supercritical pitchfork bifurcation. By contrast, as summarized in Fig.2, the form f(x, u) = px+ 23
is called a subcritical pitchfork bifurcation.

We can generate variations of the pitchfork bifurcation by adding stablizing higher-order terms
or constants, resulting in imperfect pitchfork bifurcations as illustrated in Fig. 3.

2.4 Transcritical bifurcations

The normal form of a transcritical bifurcation is:

The stability analysis yields

_ _ z=0
O_x(ﬂ_m)z{xzu 14
o B wforz =0 (14)
f(@)=p—2z= o
—uforz=p

Thus T = 0 is stable for p < 0, unstable for u > 0, whereas T = p does the opposite. If we add a
stablizing higher-order term, the bifurcation diagram will change, as illustrated in Fig.4.

2.5 General Conditions

For any function as introduced in (1), the conditions for (Z, ) to be a bifurcation point of the
designated type is summarized in Fig. 5. For a cubic function generalizing a supercritical pitchfork
bifurcation:

f(2) = a+ px + Ba® — 23 (15)

64



Figure 4: Bifurcation diagrams for a transcritical bifurcation (left) and for a transcritical bifurcation
with an added cubic term, leading to an additional stabilizing saddle-node bifurcation (right).

Figure 5: Summary of conditions on f(u,z) for 1D bifurcations.

The possible bifurcation diagrams are summarized in Fig. 6. Equation (15), along with figure 6, is
called the unfolding of the pitchfork bifurcation.
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Figure 6: Unfolding of the pitchfork. Bifurcation diagrams (u,Z) showing the roots of 0 = o +
px + Bx? — 23 for nine values of (o, 3). The pitchfork bifurcation occurs for « = 8 = 0 and a
transcritical bifurcation for a = 0. For 0 < a < 32/27 and $3/27 < a < 0, there are three saddle-
node bifurcations; for other non-zero values of a and 3, there is a single saddle-node bifurcation.
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3 Systems With Two or More Dimensions

3.1 From one to many dimensions

Consider a dynamical system
l':f(fﬂ), z, f ERNa (16)

whose fixed points are the zeros of f. To study the stability of a given fixed point Z, consider a
small perturbation z(t) = T + ¢(t). To leading order, we find

e=Df(T)e, (17)

where Df is the Jacobian matrix of f, with components [Df];; = 0f;/0x;. The solution to our
linearized system is given by .
e(t) = PT@e(0), (18)

with the matrix exponential defined via its Taylor series by

1

i (At 4. (19)

1
eM =14 At + 5(Alt)2 +
In particular, a diagonal matrix can be exponentiated element-wise:

At eMit

)\gt 6)‘2t
exp . = . , (20)

Ant eANt

and if a matrix A is diagonalized as A = VAV !, it can be shown that its exponential can be
computed in terms of its eigenvalues: et = VelMy 1,

The eigenvalues of D f thus tell us whether a system is stable or unstable to perturbations, and
moreover, in which directions perturbations will grow. In particular, the system is stable if and
only if the real parts of all of the eigenvalues of D f(Z) are negative, and unstable otherwise. If it
is unstable, then perturbations will grow along the eigenvectors corresponding to each eigenvalue
of positive real part.

In the simplest situation, we have 0 > Ao > As..., and Re A\; changes sign at a bifurcation. By
projecting onto the eigenvector vy corresponding to A;, we obtain a one-dimensional equation for
the bifurcating mode of the system. The first terms in the Taylor series of this equation determine
whether we have a saddle-node, pitchfork, or transcritical bifurcation. It is in this way that we
obtain bifurcations in physical systems with a large number of degrees of freedom, such as thermal
convection.

3.2 Systems with complex eigenvalues

Linearizations of real dynamical systems can have complex eigenvalues, which couple the dynamics
of two distinct modes. Consider the case

A - —w . At _ Cf)SL«)t —sinwt . (21)
w sin wt coswt

This matrix can be diagonalized over the complex plane, but not over the real line. As a result,
if we want to write our system in terms of two real variables, their evolution will necessarily be
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Figure 7: When (z1,z2) evolves according to a linear system which is a 2 x 2 Jordan block, the
coordinate x1 can start to grow, even if the negative eigenvalue of the matrix eventually leads to
exponential decay. Here, A = —1, z1(0) = 0.01, and z2(0) = 1.

coupled. 2 x 2 blocks of this form can arise in larger systems. As an example, we find

)\1 e)\lt
) At el coswt  —ett sinwt
A= = t t
w Y et sin wt et cos wt
)\4 6)\4t

(22)

3.3 Jordan blocks and transient growth

Different dynamics can occur when a matrix is non-diagonalizable. For instance, the Jordan block

A= <A i) (23)

has only one eigenvector, v = (1,0)”. It also has generalized eigenvectors, which are the solutions

u to
(A—XNu x . (24)

Here, it is easy to verify that v = (u1,u2)” is a generalized eigenvector whenever uy # 0. We
typically form an orthonormal basis of eigenvectors and generalized eigenvectors within the A-
eigenspace: v = (1,0)7, u = (0,1)7.

The resulting dynamics can again be found using the matrix exponential:

a-(MY) = e (M), (25)

Al 1t t2/2!
B= Al — Bt = M 1t . (26)
A 1

The teM terms in these dynamics correspond to transient growth, as depicted in Figure 7.

Two-dimensional linear dynamical systems are straightforward to classify. We classify all of the
possible two-dimensional linear systems in Figure 8, and we show the dependence on the trace and
determinant of the corresponding matrix in Figure 9.
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Figure 8: All of the possible linear behaviors of a fixed point of a two-dimensional system.
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Figure 9: Behavior of two-dimensional linear systems as a function of the trace and determinant of
the corresponding 2 x 2 matrix.
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Figure 10: Top: a supercritical Hopf bifurcation (« > 0), showing the appearance of a stable limit
cycle as p crosses zero. Bottom: a subcritical Hopf bifurcation (« < 0), showing the appearance of
an unstable limit cycle.

3.4 Hopf bifurcation

Of particular note is the rightmost portion of Figure 9, where the matrix A of our system has two
complex eigenvalues, A; and A\ = A}. In this scenario, if Re(A1) = Re(\2) changes sign (and thus
the trace of the matrix), then the system undergoes a Hopf bifurcation. The simplest nonlinear
equation displaying this behavior can be written

2= (p+iw)z — (a+if)|z*= (27)
for a complex variable z = re®. In polar coordinates, we find
P = pr —ars, 0 =w— Bri. (28)

These dynamics correspond to a pitchfork bifurcation in the radial direction and a (potentially-
radius-dependent) rotation in the polar angle. The fixed points of r are r = 0 and r = \/u/«, and
the latter describes a limit cycle with constant angular speed 0=w— Bu/a.

The bifurcation is either supercritical or subcritical depending on the sign of «, and it arises at
the critical value 4 = p. = 0. When p < 0 and a > 0, the only stable point lies at the origin, and all
trajectories tend toward it (in a spiral motion). When p > 0 and « > 0, the aforementioned limit
cycle appears; interior trajectories spiral outward toward it, and exterior trajectories spiral inward
toward it. The subcritical bifurcation, for o < 0, is similar, and both are depicted in Figure 10.

3.5 Global bifurcations leading to limit cycles

In addition to Hopf bifurcations, global bifurcations can create or destroy limit cycles in two di-
mensions. Two limit cycles can undergo a saddle-node bifurcation in much the same way as two
fixed points in the 1-D case. This occurs with the model system

= ar(p— pe — (1 —r3)?), 0=w. (29)

71



< K= >

Figure 11: A SNIPER (Saddle-Node In a PERiodic Orbit) bifurcation, where two fixed points in
an invariant circle give way to a limit cycle.

As p crosses jic, two limit cycles appear near r., with stability depending on the sign of a.

Furthermore, a saddle-node bifurcation of two fixed points can lead to a limit cycle if the two
fixed points lie on a closed trajectory. The following system depicts a SNIPER (Saddle-Node
In a PERiodic Orbit / Saddle-Node Infinite PERiod), also known as a saddle-node homoclinic
bifurcation, an Andronov bifurcation, or a SNIC (Saddle-Node on Invariant Circle):

F=r(1—7r%, 6 =pu+1+cosh. (30)

This system admits a circle r = 1 which is invariant under the dynamics. The circle is only a limit
cycle when p > 0 (or when p < —2), and otherwise it contains two fixed points, one stable and the
other unstable.

A third way of creating or destroying a limit cycle relies on the proximity of two fixed points:
one saddle and one spiral. At a homoclinic bifurcation, one of the trajectories leaving the saddle
circles the spiral point and returns to the saddle. This trajectory is called a homoclinic cycle and
takes an infinite time to complete (i.e., to leave or reach the saddle point). An example is provided
by the following system:

i=y, y=-p-z+a’—ay, (31)

whose behavior is depicted in Figure 12. One can distinguish the various kinds of bifurcations
involving limit cycles by investigating the amplitude and period of the cycles involved near the
bifurcation. A summary is given in Table 1.
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Homoclinic bifurcation

|
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r =1y
gy = —p—x+a’—xy

Figure 12: A homoclinic bifurcation. For u < —1/4, there are no fixed points. At y = —1/4,
a saddle-node bifurcation gives rise to two steady states, a saddle (hollow dot) and another state
which becomes a spiral node (solid dot). At p = 0, the spiral node undergoes a Hopf bifurcation,
leading to the creation of a limit cycle, which is reached by all trajectories leaving the spiral node
and some trajectories leaving the saddle. By p = 1/4, the limit cycle has been destroyed by colliding
with the saddle.

‘ Amplitude  Period

Supercritical Hopf O(u'/?) 0(1)

Saddle-node of periodic orbits O(1) O(1)
Saddle-node in periodic orbit (SNIPER) 0(1) O(u=17?)
Homoclinic O(1) O(log )

Table 1: The amplitudes and periods of limit cycles involved in various kinds of bifurcations as a
function of the control parameter u, where the bifurcation occurs at u = 0.
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GFD 2025 Lecture 7: Symmetry

Laurette Tuckerman; notes by Emma Bouckley and Theo Lewy

June 24, 2025

1 Reflection Symmetry

(a) (b)

Figure 1: 2D velocity field that is (a) symmetric and (b) antisymmetric under reflection in x.

We begin by considering a rectangular box and formalizing reflection symmetry in x for velocity
fields. The velocity fields in figure la coincide with our intuitive picture of symmetric and anti-
symmetric velocity fields. The reflection operator « is defined to act on a 2D velocity field (u,v)

o(4) @ = () o )

This definition describes reflection of a vector field about the axis z = 0. Note that « reverses the
sign of u but not that of v, just as would a mirror. Definition (1) satisfies the essential property
of a reflection operator: x? = I, where I is the identity. The symmetric velocity field of figure la
satisfies:

via:

KU =1 (2a)
while the antisymmetric velocity field of figure 1b satisfies:
Ku = —u (2b)

A general velocity field will be neither symmetric nor antisymmetric. It can be decomposed into
symmetric and antisymmetric components via:

Us = %(I + K)u (3a)

o = 5~ K (3D)
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We will return to vector fields shortly, but for the moment, let us now step back and define and
study some simpler reflection operators, in order to extract some important mathematical ideas.
We will call each of these reflection operators by the same name, x, although they will be different
operators, acting on different kinds of objects. The operator x and the identity I together form
the two-element group Zy = {I,k}. A group is defined to be a set and an operation combining two
elements of the set to form another element. The operation must be associative, i.e., a(bc) = (ab)c,
but not necessarily commutative (ab # ba). The table describing Z5 is given below:

KR

K
I

xR |-

I
K

For a function f(z), we can define a reflection operator via:

(kf)(x) = f(—x) (4)
This definition corresponds to our intuition. We have (kcos)(xz) = cos(z), and so cos(x) is sym-
metric about x = 0 and (ksin)(z) = —sin(z), so that sin(x) is antisymmetric.

Even simpler than a function f is the scalar a, and the definition

Ka = —a (5)
Suppose a evolves according to the equation:
d

“a=g(a) (6)

We say that a system whose evolution is governed by ¢ has reflection symmetry or is equivariant
with respect to k if gk = kg, i.e., if ¢ and k commute. For x defined by (5), this means that the

two quantities
(95)(a) = g(—a)

(kg)(a) = —g(a)
must be equal, i.e., that g must be an odd function of a. Now suppose that g is a third-order

polynomial, or consider the Taylor expansion of g truncated to cubic order. If g is an odd function
of a, then

(7)

d
7=t g3a® = (g1 + gsa*)a (8)

Note that this is the normal form for a pitchfork bifurcation.
Let us generalize the definition (5) to act on vectors (a,s) containing two components, one
called antisymmetric, a, and one called symmetric, s.

(-

(For the moment, we will use column and row vectors interchangeably.) We see that

()~ ) mae() -0
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which coincides with definitions (2a) and (2b) of symmetric and antisymmetric vectors. Symmetric
solutions are of the form (0, s), antisymmetric solutions of the form (a, 0), and asymmetric solutions
(neither symmetric nor antisymmetric) are of the form (a, s).

Now, we need a vector function G, which acts on and produces two-dimensional vectors, to

govern the evolution of (a, s):
d (a\ (g
& () =can= (1)@ ()

G is equivariant with respect to & of (9) if

K (i) (a,s) = <Z> K(a, s) (12)
()@= (7) a0 13

This means that ¢ and h must be antisymmetric and symmetric functions of a, respectively. Again
specifying g and h to be third-order polynomials, or Taylor series truncated to this order, we obtain

9(a,

2 2 3 2 2
( S —g00 — 9g10@ — go1s — g20a4 — g11GaS — go2sS — g30a — g21a S — g12aS° — go3s

s) =
) =
g(—a, s) = goo — g10a + go1s + g20a° — gr1as + go2s> — gsoa® + ga1a’s — gi2as® + goss®
) =
s) =

i.e., if

goo + g10a + go1s + 92061 + g11a8 + 9028 + g3oa + gzla s+ 912a8 + 9035
3

(a, s) = hgo + hipa + ho1s + hgoa + hiias + hOQS + h30a + h21a S+ hmas + h038
h(—a,

In order to satisfy (13), all terms in g containing even powers of a must vanish, while all terms in
h containing odd powers of ¢ must vanish. The result is:

g g10a + gr1as + gapa® + gioas®
p— 1
<h> (a’ S) <h00 + ho1s + h20a2 + h0282 + h21a2s + h()383 ( 4a)

= hoo — h1oa + ho1s + haoa® — hi1as + hoas® — hoa® + ha1a®s — hizas® + hogs®

_ (g10 + 9115 + 91252 + g30a®)a
hoo + ho1s + hQQS + h038 + (hzo + h218)

(5’}3 ) (14c)
— 3(a?,5) <g> + (a2, 5) <§)) (14d)

Lines (14c¢)-(14d) apply to general g, h, not merely to cubic polynomials. The functions g and
h have as their arguments s and a?, which are said to be invariants. An invariant f is a scalar
function of (a, s), which satisfies fx = f. In contrast, an equivariant is a vector function (g, h) of
(a, s), as is k, which commutes with . This means, in effect, that (g, h) is transformed by « in the

satne way as (a, ).
() = Glarn) < ()

(14b)

(15)
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ie., g(—a,s) = —g(a,s) and h(—a,s) = h(a,s) as we have seen, meaning that g must be an odd
and h an even function of a. An invariant is a scalar function of (a,s) which remains the same
when its arguments are acted on by k.

ot (7))
flas) < (Z)

ie., f(—a,s) = f(a,s), meaning that f must be an even function of a. The functions f(a,s) =a
and f(a,s) = s both have this property, so they are both invariants. In fact, all invariants can be
written as functions of a® and s, and any function of a? and s is an invariant. Expression (14d)
states that the most general equivariant is expressible as a superposition of a few basic equivariants
(here, (a,0) and (0, 1)) with coefficients that are general functions of a few basic invariants (here,
a? and s). This remains true in more complicated situations.

We emphasize the difference between a system G, which is k-equivariant and a solution, which
is k-symmetric. It is definitely not true that solutions to a k-equivariant system are symmetric.
However, there certainly are consequences of k-equivariance, of which some are:

(16)

2

1. If (a,s) is a time-dependent or stationary solution to a k-equivariant system, then
k(a,s) = (—a,s) is also a solution.

This follows from applying  to both sides of (14) and commuting x with d/dt and with G. This
statement means that asymmetric solutions (a, s),a # 0, occur in pairs (+a, s). For example, the
existence of the solution in figure 1b in a reflection-symmetric domain implies the existence of
another solution, with the arrows reversed. For symmetric solutions (0, s), the statement does not
lead to any new solutions. It follows that:

2. If a k-equivariant system has a unique solution, then that solution is symmetric.

This is the case, for example, if G is a linear system or for the Navier-Stokes equations at sufficiently
low Reynolds number.

Let us now discuss the consequences of symmetry on a linear system, where G consists of a
matrix acting on (a, s). Selecting only linear terms from (14a), we get

(2 =)= ) C) i

The matrix G is diagonal, a consequence of its k symmetry. Thus, a and s are not coupled by the
linear evolution. Eigenvectors of G are either symmetric or antisymmetric, and not a superposition
of the two. This will remain true in more general settings. Consider a general matrix or linear
operator (G, multiplication by which commutes with some reflection operator x on a general vector
or function u.

3. If (\,u) is an eigenpair of the linear system G, then ku is also an eigenvector of G with the
same etgenvalue A

This is easily demonstrated:

Gu =M = kGu =kl = Gkru = Iku (18)
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There are two ways for this to happen. One way is for ku to be a multiple of u. In this case,

Ku = cu
K2 = Keu
u=cu
c==+1 (19)
Either ¢ = 1, in which case u is symmetric, or ¢ = —1, in which case u is antisymmetric.

Now suppose that xu is not a multiple of u. Then A is an eigenvalue of G with two different
linearly independent eigenvectors, i.e., A is a multiple eigenvalue of G. This may happen, but is
unlikely, unless parameters are especially adjusted to make it so or the system has some other special
feature that we have not taken into account. For example, in (17) we would require gi19 = ho1.
This is unlikely, since symmetric and antisymmetric vectors, such as the velocity fields depicted
in figures la and 1b, would not be expected to evolve in the same way. However, if v and xu are
indeed two linearly independent eigenvectors of G, we may define symmetric and antisymmetric
eigenvectors as follows:

I+k L . I+k K+ 1
5 u, which is symmetric since s 5 U = 5 U
(20)
I—k . ) L. I—k k—1
u, which is antisymmetric since s g U= 5 U

Let us return to the reflection operator (1) defined for 2D velocity fields and apply it to the
Navier-Stokes equations:

—(udy + v0y)u — Opp + (9% + 02)u
(- () (35) = (e
v v v —(u8y + vy)v — Oyp + V(02 + (95)1)

subject to O,u + dyv = 0. We wish to verify whether this system of equations is equivariant
with respect to k. The non-trivial part of this calculation is how to treat differentiation. We
first establish that the action of differentiation on (kf)(z) = f(—=z) is (kf)'(z) = —f'(—x) and
(kf)"(x) = f"(—z). This can be seen by considering first principles on f(z) = (kf)(z) = f(—z).

Armed with these results, we calculate the action of the Navier-Stokes evolution operator NS
defined in (21) on k(u,v)|(z,y) = (—u,v)(—z,y). Operation by  is equivalent to u,z,d, —
—u, —x, =0, and p,v,y, 0y — p,v,y, Oy.

u ~((=u)(=0s) +v3y)(—u) — (=0z)p + (0} + 9;)(~u)
sy (1)] e - o (o) (2
—((=u)(=0z) +vIy)v — Oyp + v(0; + 9;)v
Acting in the opposite order, we obtain:
wvs) ()] o = () (o)
—[—(u0y + vOy)u — Ozp + v(92 + GZ)U]

—(uBy + vy v — Oyp + V(02 + 8;)1)
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which is identical to the previous result. This is unsurprising: we do not expect any general
equations of continuum physics to distinguish between the left and right halves of a domain or
between left-going and right-going motion.

It is boundary conditions and body forces that determine whether a system has reflection
symmetry. Figures la and 1b depict a rectangular box. In a geometry that lacked reflection
symmetry in z, there would be no possibility of reflection symmetry for the system. Even in a
rectangular box, however, only certain boundary conditions will meet the requirement of reflection
symmetry. General Dirichlet boundary conditions for a rectangular geometry are:

u(z = +1,y) = ax(y)
v(z = +£1,y) = b+(y)
u(z,y = +h) = cy(x)
v(z,y = £h) =ds(z)

(24)

Acting with x on these boundary conditions transforms the left-hand-side concerning (u,v), but
not the right-hand-side concerning known functions.
—u(z=Fly)=as(y) = ul@==ly)=—ax(y)
v =TFly) =bsly) = +1,y) = bx(y)r
—u(—z,y = th) =cy(z) = (z,y = £h) = —cy(—x)
v(—z,y==+h)=di(z) = v(z,y==xh)=di(—2)

(x

<

(25)

e

The four transformed boundary conditions in (25) are equivalent to the boundary conditions (24)
of the original system if

a+(y) = —ax(y)
b+ (y) = bx(y)
ct(z) = —cx(—x) (26)

d(z) = ds(—x)
Other types of boundary conditions, for example, Neumann conditions on the normal derivatives,
or a combination of Dirichlet and Neumann conditions, could also be considered. For the system
to be reflection-symmetric in x, however, the boundary conditions on the left side x = —1 and on
the right side x = 41 must be of the same type.

We return to the types of flows shown in figure la and 1b in the beginning of this section.
Figure 2a shows an asymmetric flow us + u, (neither symmetric nor antisymmetric). Reflection
in z transforms ug + u, into a different asymmetric flow ws; — u, shown in Figure 2b. Assuming
reflection symmetry in z, these two flows are dynamically equivalent: it makes no difference whether
fluid descends on the left and rises on the right or vice versa. Transition from a symmetric flow to
the asymmetric flows us + u, will always occur via a pitchfork bifurcation, shown on the left in
figure 3. This reasoning applies in a reflection-symmetric domain whenever the number of cells is
odd.

Two symmetric flows us and u, are illustrated in Figures 2c and e. Both are unchanged under &,
as shown in Figures 2d and f. Transition to these flows will therefore be associated with transcritical
bifurcations, as shown in the figure 3(right). This reasoning applies in reflection-symmetric domains
whenever the number of cells is even. In fact, u), = —us, but without any further assumptions, us
and u), are not equivalent: flow rising along the walls and falling in the center is not necessarily
equivalent to the opposite. In Boussinesq convection, the further assumption is made that fluid
rising and falling are dynamically equivalent, and so a transition to +us takes place via a pitchfork
bifurcation, independent of whether the number of cells is even or odd.
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Figure 2: a) asymmetric flow us + u, is mapped into flow below (b) by the z-reflection operator .
The two flows are therefore dynamically equivalent. (¢, e) symmetric flows ug, v}, are mapped onto
themselves (d, f) by &.

Figure 3: Pitchfork bifurcation (left) associated with bifurcation to asymmetric flow and transcrit-
ical bifurcation (right) associated to symmetric flow.

2 Rotation

2.1 Symmetry groups

The most important symmetry groups of the plane are given by Z,,, representing the group of
rotations of an n-gon, and D,,, the same group with the addition of reflections about any of the
axes of the n-gon. Figure 4 illustrates several of these symmetry groups. The triangle, square,
and circle on the second row have symmetries D3, Dy, and O(2). In the first row, distinguishing
features have been added to each of the shapes in order to break reflection symmetry. As a result,
the objects on the first row have symmetries Z3, Z4, and SO(2).

Let us focus on O(2). We begin by studying steady bifurcations. For this purpose, we represent
a point (z,y) on the plane by the complex number z. We then can represent the action of rotation
by 6 and reflection in y by:

Spz = ety
- (27)
Kz =2
A crucial fact is that rotation and reflection do not commute:
kSpz = K e2)=e"z
(e”2) (28)

Sprz = Spz =€z
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Figure 4: Objects on the first row have symmetries Z3, Z4, and SO(2). Those on the second row
have symmetries D3, Dy, and O(2).

with the exception of rotation by 7. Sy and k are called the generators of the group O(2), since
any element of O(2) can be formed as combinations of these elements.

Before continuing, let us illustrate how the representation (27) acts on a function w(6,t), where
0 is a direction with reflection and rotation symmetry. The function w can be written as:

w(O,1) = %(z(t)eie 4 2(t)e ) (29)

The real part of z can be seen as the coefficient of cos(f), while the imaginary part of z is the
coefficient of sin(6). The operations (27) on z then correspond to the following operations on w:

(Sgow)(0) = w(B + o)
(kw)(0) = w(-0)

We now discuss transitions that can occur in a dynamical system with symmetry group O(2).

. (30)

2.2  Circle pitchfork bifurcation

Let us now return to the abstract setting and determine which functional forms are equivariant,
i.e., which commute with the operations in (27). We consider monomials of = and y or, more
conveniently, of z and Z.

f(Z, Z) = fon2" 2" (31)

where f is complex. Considering reflection, we have

/if(Z, 2) = f(Z, 2) = 7mn5mzn (32&)
f(’%(z7 2)) = frmZ" 2" (32b)
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Thus, for f to commute with s, the coefficient f,,,, must be real. In order for f to commute with
Sy for all 8, we calculate

Sof(z,2) = € f(2,2) = € frun2zm2" (33a)
F(S0(2,2) = frn(€?2)™(€02) = frme™zme "0 5" (33b)

Thus, we require that e~ = ¢ which can only hold for all § if m —n = 1. This leads to
polynomials of the form:

f(2,2) = froz + fa12%2 + f32232% + - -
= (o foalo P+ faalel! ++)z = F(J2P) ()

where f is a general real function of |z|2. In the terms introduced in the previous section, the scalar
|22 is invariant under the group O(2) and the complex number (or two-component vector) z is
equivariant. Truncating (34) at cubic order, we derive the evolution equation:

d

= = (n—alzP)z (35)
The steady states of (35) are z = 0 and |z| = /u/a, which exist only for p/a > 0, as illustrated
in figure 5. We consider i to be the bifurcation parameter, such as a relative Reynolds number
(Re — Re.)/Re. or Rayleigh number (Ra — Ra.)/Ra.. The transition occurring at p = 0 is called
a circle pitchfork, because a “circle” of steady states, z = \/u/« e’ is created as u crosses zero.

Figure 5: Circle pitchfork bifurcation. The upper diagrams correspond to the supercritical case, the
lower diagrams to the subcritical case. Leftmost are the bifurcation diagrams in the (u,r) plane,
middle and rightmost are phase portraits in the (x,y) plane. Stable steady states are designated
by solid dots or solid curves. Unstable steady states are shown as hollow dots or dashed curves.

We may write (35) in Cartesian coordinates z = x + iy:

B (ol ) (36a)
W — (= ala? )y (36)
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or in polar coordinates z = re®:

dr
i (b — ar?)r (37a)
db

Equation (37a) shows that the amplitude r undergoes an ordinary pitchfork bifurcation and (37b)
shows that the phase 6 shows no tendency to move. The stability of the trivial state and the
bifurcating circle of states can be calculated from either (36a)-(36b) or (37a)-(37b) via the Jacobian
matrix:

p— a(3z% + y?) —2axy
J(z,y) = 5 5 (38)
—2axy p— afx® + 3y°)
or in polar coordinates
= 3ar? 0
To calculate the stability of the trivial state, we use
Jz=0y=0 =" ° (40)
? 0 ,Ux

which has ;1 as a double eigenvalue. The trivial state (0, 0) is stable for 4 < 0 and has two unstable
directions (corresponding to the two directions of the plane) for 1 > 0. Note that the polar form
J(r,0) of equation (39) would seem to indicate that the two eigenvalues of (0,0) are p and 0. This
contradictory result arises from the fact that 6 is not well defined at the origin, so that J(r,@) is
also not well defined at the origin.

For the bifurcating circle of states, we may write

(-5 P 3-[

whose eigenvalues are —2p and 0. The circle pitchfork can be supercritical or subcritical, according
to the sign of a. If & > 0, then the circle of bifurcating states exists for 4 > 0 and the eigenvalue
—2u corresponds to contraction onto the circle \/u/a, i.e., stability. If o < 0, then the circle of
bifurcating states exists for u < 0 and the eigenvalue —2u corresponds to expansion away from the
circle, i.e., instability. The eigenvalue 0 corresponds to the phase invariance, i.e., the fact that the
system shows no tendency to move in the direction 6.

2.3 0O(2) and SO(2)

We now briefly contrast O(2) and SO(2). The group SO(2) omits the reflection x. SO(2) symmetry
leads to the same equation (34) as in the O(2) case, but, because (32a) and (32b) are not required
to be equal, the function f can be complex. Allowing complex coefficients, the normal form (35)
becomes

% = (p+iw — (a+iB)|z*)z (42)

whose polar form is:

= [(u —ar?) +i(w+ ﬁr2)]7“ei9

Tl—

d(re®) dr dOY 4
at "t ) €
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dr

pri (1 — ar®)r (43a)
de
—r=wt Br? (43Db)

According to (43b), there is usually motion along the 6 direction, contrary to the case of O(2),

Figure 6: Left: axisymmetric Taylor vortices (reproduced from Tagg [4]). Right: spiral Taylor
vortices (reproduced from Antonijoan et al. [1].)

We illustrate the difference between O(2) and SO(2) with the example of Taylor-Couette flow,
the flow between differentially rotating concentric cylinders, whose common axis will be assumed
to be oriented in the vertical direction; see figure 6. When this flow is modeled with a periodic
axial direction, there is translational axial symmetry in the system. In addition, reflections exist in
the axial direction, as gravity can be ignored (its contributions can be absorbed into a hydrostatic
pressure term). Hence there is O(2) symmetry in the axial direction. In the azimuthal direction,
we have rotational symmetry. However, the imposed rotation of the cylinders serves to differenti-
ate clockwise from counter-clockwise rotation, and hence the azimuthal direction has only SO(2)
symimetry.

When the two cylinders rotate in the same direction, the first transition to occur breaks the
axial (O(2)) symmetry and leads to Taylor-vortices, shown on the left in figure 6. These are steady
states which resemble tori stacked vertically along the axis of the cylinders. In the infinite-length
context, a pair of these vortices define an axially periodic domain and the phase parametrizes a
circle of steady states. The azimuthal symmetry is retained.

In contrast, when the ratio between the cylinders’ rotation rates is sufficiently negative, the
first transition is to spirals, shown on the right in figure 6, which break the azimuthal (SO(2))
symmetry as well as the axial symmetry. These spirals have a well-defined rotation rate in the
azimuthal direction. However, because of the axial reflection-symmetry, spirals of two varieties
exist, of opposite chirality and direction of motion in the axial direction.

2.4  Hopf bifurcation and O(2) symmetry

The normal form (35) is inadequate for describing many phenomena that occur in an O(2) sym-
metric configuration, such as Hopf bifurcation and more complicated spatial structures. This is a
consequence of the inadequacy of (27). In particular, the two-dimensional normal form (35) cannot
describe a Hopf bifurcation that breaks O(2) symmetry. Such a Hopf bifurcation involves a four-
dimensional eigenspace, for the following reason. The coefficients of cos(f) and sin(f) obey identical
equations, leading to a block diagonal Jacobian (one block for cos and one for sin). If each block
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contained a single component, then the Jacobian would be a diagonal 2 x 2 matrix, which cannot
have complex eigenvalues. Thus, in order for the Jacobian to have complex eigenvalues, each of
the two blocks must contain at least two components, leading to a Jacobian whose minimum size
is 4 x 4.

Having argued for the need for a four-dimensional normal form, we consider a field u as repre-
sented by

(B, 1) = [(24:(t) + 2 (8))e” + (24.(t) + 2 (t))e "] (44)

where z is the complex amplitude (representing the amplitude and phase) of left-going traveling
waves and z_ is that of right-going traveling waves. At linear order, the evolution of zy(t) is

described by . .
a 24 . Wz
dt <z_> - (—z’wz_> (45)

w(®,t) = 24 (0D 2 ()0t 4 2, (0)e 10+t 4 2 (0)e~1 0wt (46)

so that the linear evolution is

with z4(0) arbitrary initial amplitudes.
The addition of nonlinear terms compatible with the O(2) symmetry greatly restricts the pos-
sible equilibria. We can represent O(2) on four-dimensional vectors (z4, z_) via:

Spy (21, 2-) = (e, 07 )

K(zg,2-) = (-, 24) (47)

The mathematics of the derivation of the normal form are also more complicated than in the case
of a steady bifurcation. Without justification, we give the simplest cubic order equivariant system
of evolution equations:

. 9 ) )
d <z+> _ [+ iw + alz— |2 4+ b(|z4 2 + 2= *)] 2+ "
a2 [ —iw + @z 2 4+ b(|z4 2 + 2= )] 2=

Note that equations (48) are independent of the phases ¢1. Defining z = rye®*, we derive

d

% = (p+arZ +b.(r} +12))rs (49a)
do+ 2 2, .2

o =+ (w+airz + bi(ry +12)) (49b)

The solutions for which dry /dt = 0 are:
the origin: r4 =0,7_ =0

the left traveling waves: ry = ,/——,7r_ =0, qﬁ =w——

. b; 50
the right traveling waves: r4 =0,7_ = _bﬂ’ P_ = —(w — &) (50)
T

. T ) wla; + 2b;)
the stand LTy == =tlw-——"7—
e standing waves: r =1 m ;P (v ar + 2b, )
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Figure 7: Standing waves in Rayleigh-Bénard convection in a cylinder with I' = R/H = 1.47 and
Pr = 1 at at Ra = 26000. Top row: temperature versus 6 at (r,z) = (0.7,0.3) at five successive
times during one oscillation period T. Middle and bottom rows: contours of temperature (middle)
and of azimuthal velocity (bottom) on the midplane at t = 0, T/6, 2T /6, 3T/6, 4T /6, 5T /6. From
Bororniska and Tuckerman [2].

Figure 8: Counter-clockwise traveling wave in Rayleigh-Bernard convection in a cylinder with I' =
R/H = 1.47 and Pr = 1 at Ra = 26 000. Top row: temperature versus angle 6 for (r,z) = (0.7,
0.3), at four different instants during one oscillation period T . Middle and bottom rows: contours
of temperature (middle) and of azimuthal velocity (bottom) on the midplane at t = 0, T/6, 2T/6,
3T/6, 4T/6, 5T /6. From Boronska and Tuckerman [2].
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Standing and traveling waves are illustrated for a simulation of Rayleigh-Bernard convection in a
cylindrical container in figures 7 and 8.

According to the signs and magnitudes of a and b, the standing waves and traveling waves
branch in the same or the opposite directions in p. If b, < 0 (> 0), then the traveling waves exist
for p > 0 (< 0). If a, +2b, < 0 (> 0), then the standing waves exist for ;1 > 0 (< 0). The lines
b, = 0 and a, + 2b, = 0 thus divide the (a,, b,) plane into four sections, as shown in figure 9.

The stability of these states is calculated as follows. At the origin, since angles are not defined,
we must write the Jacobian in its Cartesian representation, as we did in (40) concerning the circle
pitchfork. We will not do this here and just state that at the origin, the Jacobian is p times
the identity and hence has four eigenvalues that change sign at p, along with a four-dimensional
eigenspace.

For the non-zero states, we can write the Jacobian in the polar (r4,r_, ¢4, ¢_) coordinates:

p+ arr? + b (r2 +1r2) + 2b,r% 2(ap + by)r_ry 00
2(ar + bp)r_ry pA+arrt +b,(r2 +r2)+2br2 0 0 (51)

2(),‘7"_;,_ 2(&,‘ + bi)r_ 0 O

—2((17; + bi)T‘+ —2b;r ¢ 0 0

Since (51) is block lower-triangular, its eigenvalues and eigenvectors are those of its diagonal blocks,
as shown by the following reasoning:

A 0 |X X
e ol =] &
AX =X N (A, X)) is an eigenpair of A X=0
r
CX+DY =)Y Y =(\I-D)"lCX (A\,Y) is an eigenpair of D

(53)

Therefore, the eigenvalues of (51) are those of the lower-right and upper-left blocks. The lower-right
block contains only zeros, leading to two zero eigenvalues, whose corresponding eigenvectors are
¢+. The eigenvalues of the upper-left block are obtained via the formula for a general 2 x 2 matrix:

[‘c‘ Z} (54)

d —d\?
/\i:a; + (“2 ) +be (55)

via

(In (55), a, b, ¢, d are unrelated to the notation used for the Hopf-O(2) problem.) Substituting the
elements of (51) and the solutions (50) into (55) leads to

the origin: p along ry, p along r_

the left traveling waves: — 2y along r, _Gbr o along r_
T
the right traveling waves: — 2u along r_, o along r (56)
T
. 2a, 1 .
the standing waves: — 2y along (r4,7—), ———— perpendicular to (r4,r_)
ar + 2b,

87



r
SWel -
— TN\
SH"‘-‘“ \‘
\‘\
su T
ST
™
-SW

Figure 9: Stability and branching direction of standing waves (SW) and traveling waves (TW) in
the parameter plane of the nonlinear coefficients (a,,b,). From Knobloch [3].
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Figure 10: Phase diagrams for Hopf bifurcation with O(2) symmetry when b, < 0. Each diagram
shows the (r,r_) plane. Left diagrams: p < 0. Right diagrams: p > 0. Top row: —2b, < a,.
Middle row: 0 < a, < —2b,.. Bottom row: a, < 0.
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If b, < 0, then the traveling waves exist for g > 0, as shown in (50). Since —2u < 0, they are
stable if and only if a,/b, > 0, i.e., in the lower left quadrant of the (a,,b,) plane, as shown in
figure 9. If b, > 0, then the traveling waves exist for y < 0, so —2u > 0 and they are not stable.
Similarly, if a, + 2b, < 0, then the standing waves exist for 4 > 0 and they are stable if a, > 0,
i.e., in the upper-left wedge of the (a,,b,) plane. If a, 4+ 2b, > 0, then the standing waves exist for
1 < 0 and so —2u > 0 and they are not stable.

Some general conclusions are that either the standing waves or the traveling waves are stable,
or neither are stable. If one solution is stable, it is that which has the largest amplitude 4 /7“3r +7r2.
If neither is stable, then 71 — oo for some choices of initial conditions or p-values, unless higher
order terms are added to (48) or (49a). This is shown in figures 9 and 10.

To write down the symmetries of the solutions, we must introduce another transformation,

namely that of translation in time:
Tiu(t) = u(t +to) (57)

The group of all the translations in time Sy, is called S*. The original homogeneous stationary
state, before bifurcation to waves, has the full space-time symmetry group O(2) x S'. A traveling
wave solution has the space-time symmetry

(Thy Sutow) (0, 1) = u(0 + wto, t + to) = u(6,t) (58)

for any to. This set of space-time symmetries, parametrized by tg, forms a group isomorphic
to SO(2), which is called SO(2). The subgroup of transformations leaving a particular solution
invariant is called its isotropy subgroup; the isotropy subgroup of a traveling wave solution is §5(2)
Standing waves have an ordinary spatial reflection symmetry in 6:

(ku)(8,t) = u(—0) = u(6,t) (59)

(For simplicity, we have taken the axis of reflection, which does not move, to be at § = 0.) Standing
waves also have the space-time reflection symmetry:

(TrpoSru)(6,8) = w (0+ 7.t + =) = u(6,t) (60)

w
The transformation in (60) is called Z§ and is a special case of that in (58). The group of trans-
formations leaving a standing wave solution invariant, i.e., its isotropy subgroup, is called Z5 x Z5.

We can arrange the original symmetry group and the isotropy subgroups in a diagram called the
lattice of isotropy subgroups, as shown in figure 11.
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GFD 2025 Lecture 8: Applications to the Eckhaus Instability, D4
Scenario, and Others

Laurette Tuckerman; notes by Edoardo Bellincioni, Marion Cocusse and Alexandre Tlili

June 25, 2025

In these lecture notes, we examine how symmetries evolve as fluid systems undergo bifurcations.
Using Rayleigh-Bénard convection in a cylindrical cell as a primary example, we trace how solutions
emerge from a symmetric base state and progressively break symmetries through successive bifur-
cations. The mathematical framework of group theory, particularly dihedral groups like Dy, helps
us understand which solutions can exist and how they relate to one another. We explore several
applications including Couette-Taylor flow and shear-driven cavity flows, showing how symmetry
considerations predict the structure of bifurcation diagrams. The notes conclude with the Eckhaus

instability, demonstrating how spatially periodic patterns can become unstable through secondary
bifurcations.

1 An Illustrative Example of O(2) Symmetry

1800 +
2000 +
3000 +
5000 +

| |
I I
(=] [=] (=]
(=] [=] (=]
(=] o (=]
o o o
— o [%2]
Ra

Figure 1: Bororiska and Tuckerman [2], figure 2) Bifurcation diagram for Rayleigh-Bénard con-
vection in a cylindrical cell, showing Rayleigh number in the horizontal and a response parameter
in the vertical. The solid and dashed curves correspond to steady states (without specifying the
stability of the states). The bifurcations are indicated by the solid dots. The small sketches are
schematic representations of the states on each branch.
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Boroniska and Tuckerman [2] numerically investigated the stability of Rayleigh-Bénard states,
as previously described in an experimental work by Hof et al. [4]. This case is illustrative in the
sense that its bifurcation diagram (figure 1) is densely populated with curves in a seemingly random
fashion, but qualitative arguments can be extracted by discussing the symmetries of the problem.

A cylindrical Rayleigh—Bénard cell has two classes of symmetries:

e O(2) symmetry in the angle 6, hence azimuthal rotation and reflection:
[Ro, (ur, ug, u, T)|(r,0, 2) = (ur, ug,uz, T)(r,0 — 0o, 2)
and
(Ko, (Ur, ug, uz, T)](r, 0, 2) = (up, —ug, uz, T)(r,26p — 0, 2)

e Boussinesq symmetry Zs, associated to the transformation B that maps z — —z and T +—
—T, which corresponds to flipping the vertical direction and the hot/cold plates. (In the
z-midplane cross-sections in the figures, B corresponds to inverting the colorbars):

[B(u'r: Uug, Uz, T)](Tv 07 Z) = (u'r"a Uug, —Ug, —T)(T’, 97 _Z)

These symmetry operators are generators for the group OQ(2) x Zso, which consist of all products of
these operators.

1 20 3
L L \ L ‘ k‘{ L K\“'i ‘ L L L L ‘ L L L L r\ L L L

1800 1850 1900-... 1950 2000‘:_» 2050
" Ra

Figure 2: (from Bororiska and Tuckerman [2], figure 3). Expanded version of the low-Ra range
of figure 1. Four of the branches that originate from the conductive state are identified as m = 1
(dipole), m = 2 (pizza) m = 0 (two-tori), and m = 3 (marigold).

We first analyze the bifurcation diagram close to the conductive state, which corresponds to
H/Ra = 0, the dashed horizontal line in figure 1. The quantity H is the maximum absolute value
over the ring at (r = 0.3, 6, z = 0) of the deviation of the temperature from that of the conductive
state. Because the conductive state is homogeneous in #, analysis of its linear stability leads to
eigenfunctions, which are necessarily trigonometric functions of . The branches that bifurcate from
the conductive state are not trigonometric, because of the harmonics produced by nonlinear terms,
but they are periodic functions of 6 with the same wavelength as the eigenvectors. An expanded
portion of the lower left portion of figure is shown in figure 2.
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From their horizontal cross-sections, it is clear that all of the branches that bifurcate from
the conductive state are periodic in 6 with a wavenumber m. The mode (eigenvector) m = 1 is
referred to as a dipole mode, m = 2 as pizza, m = 0 as two-tori, and the m = 3 as marigold. We
will analyze the evolution of each branch in the order that they bifurcate from the homogeneous
conductive state. In each case, except for m = 0, the bifurcation is a circle pitchfork leading from
the conductive branch with its B x O(2) symmetry to a set (“circle”) of branches. Each state along
the branch has D, symmetry, where the group is generated by reflection g, for some 6y and by
the 2m-fold rotation B R/, as we will see below.

Asymmetric

Three Rolls E—

Three rolls 30000

1832 2100 2300 2500 3000 8000 10000 © 20000 1 30000
Tiger :
1832 2100 2300 2500 3000 5 8000 Condu ctive :
‘ 1828 3762 21078 22125

Figure 3: (from Bororiska and Tuckerman [2], figure 14) Schematic bifurcation diagram following
the evolution of the m = 1 modes that originate and evolve from the conductive state. The thicker
line indicates a stable portion of the branch.

’H { H ! /J w{ H!f-'!;,-rF'om- Rolls

. Pizza
/lﬁﬁ.’) Dm0 2700 3000 5000 10000 Q

1490 Conductive

|
1848 1870 2353 22660
Figure 4: (from Bororiska and Tuckerman [2], figure 5) Schematic bifurcation diagram for the
m = 2 modes that originate and evolve from the conductive state. The thicker line indicates a
stable portion of the branch.

Starting with m = 1, shown in figure 3, we note that this bifurcation leads to two branches
that emerge from the same bifurcation point but separate at higher Ra. Following the upper
branch, we notice that the dipole evolves into three rolls, then becomes stable and later further
undergoes a bifurcation leading to asymmetric three rolls, where the asymmetry here means broken
Dy symmetry. The lower branch also evolves, creating a patched pattern, which at higher Ra
evolves into what the authors call a tiger pattern. We note that even though the two branches
evolve, they both remain invariant under the transformations generated by BR, and kg, where kg
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is azimuthal reflection with respect to an axis, which here is almost horizontal, leading to symmetry
group Dy = Zsy X Zo. Indeed, symmetries can change only at a bifurcation. A secondary pitchfork
bifurcation to the asymmetric three-roll state breaks the Zo X Zo symmetry, leaving only the Zs
symmetry corresponding to kg. Thus, bifurcations lead to successive symmetry breakings of steady
solutions. The remaining symmetries form a subgroup of the symmetries prior to the bifurcation
and are conserved along each branch until the next bifurcation.

The branch that corresponds to m = 2 is shown in figure 4. We note that at Ra ~ 1879, the
branch transitions from being unstable to stable, and at Ra ~ 2353 there is a secondary pitchfork
bifurcation. The bottom branch retains the features of the initial pizza pattern, which is symmetric
under the transformations generated by BR;, and ko where rg is either of the two azimuthal
reflections preserving the symmetry of the pizza; these generate the group 4. The bifurcation
leading to the generation of the four-roll pattern breaks the D, symmetry and only retains the
Dy & Zo X Zo symmetry, which is a subgroup of Dy.

Figure 2 showed only a single branch with m = 0, but a closer look at the Ra = 2050 region of
figure 1 reveals a second branch (in red), also marked as a torus mode. The evolution of all of these
branches is shown in figure 5. It is clear that, in these cases, the Q(2) symmetry in 6 is retained.

020

2360 2100

One-torus

— : Conductive

1862 2300 2328 207G A915 5438 12711

Figure 5: (from Bororiska and Tuckerman [2], figure 8) Schematic bifurcation diagram for the
m = 0 modes that originate and evolve from the conductive state, plus the one-torus state, which
does not originate from the conductive state. The thicker line indicates a stable portion of the
branch.

However the Boussinesq symmetry is broken in an ordinary (not circle) pitchfork bifurcation, so
that for each branch shown in figure 5, there exists another branch with the yellow and purple colors
(hot vs. cold along with upflow vs. downflow) reversed. The two two-tori branches are connected
via a turning point at Ra = 12711, with the top branch being mostly stable and the bottom being
unstable. The one-torus branch does not bifurcate from the conductive state, but rather appears
via a turning point at Ra = 3076. Like the two-tori, part of the upper branch is stable while the
lower branch is unstable.
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Figure 6: (from Bororiska and Tuckerman [2], figure 12) Schematic bifurcation diagram for the
m = 3 modes that originate and evolve from the conductive state. The thicker line indicates
stability.

Lastly, we address the evolution of the branch corresponding to m = 3. The conductive branch
undergoes a circle pitchfork bifurcation at Ra = 1985 creating the marigold branch, which is always
unstable and which has Dg = D3 x Zo symmetry. At Ra = 4103, the marigold branch gives rise
to the (unstable) Mitsubishi branch through a pitchfork bifurcation. This pitchfork breaks the
BRy; 6 symmetry, as seen by the fact that in the Mitsubishi flows, the purple and yellow portions
are qualitatively different. The Mitsubishi branch then undergoes a turning point at Ra = 18762,
evolving into the cloverleaf branch, which, through another turning point at Ra = 4634, evolves
into the Mercedes branch. The Mercedes branch becomes stable for Ra > 5503 and is the only
stable branch of the set. Mitsubishi, cloverleaf and Mercedes states all have D3 symmetry.

2 A Bit of Theory About the Dihedral D, Group

The dihedral group D4 corresponds to the symmetries of the square. This group is generated by the
two following transformations: the rotation p of angle 7/2, and the reflection  along the horizontal
axis. In complex notation, these two transformations are written as

(1)

Pz ™2y =iz
K:izr—2Z
where Z stands for the complex conjugate of z. For example, a reflection along the vertical axis is
given by p~1kp (or equivalently by p?k). Similarly, a reflection along the diagonal starting from the
upper-right corner can written as px (Figure 7). In general, the group Dy is formed by the eight
distinct elements that can be generated as products of x and p. The multiplication table (called
the Cayley table or group table) of Dy is given in Table 1.
The ten subgroups of Dy (i.e. the subsets which are themselves groups) are
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Figure 7: Dy is the group of symmetries of a square. For instance, the reflection along the diagonal
starting from the upper-right corner can be expressed as a combination of a reflection s along the
horizontal axis, and a counter-clockwise rotation p by 7 /2. Colors track the positions of the corners.

el o[22 10 & [ 6 |np?]np]
e || e | p | ||| k| K |Kp®|Kp
p|l o | PP P e ||| K| Rp | R
e I IO N 7 I L B
Pl e | p | PP ke | KpP KPP K
k|l k| me [ RP KPP e | p | 0P ] PP
kp || wp | K2 KPP k| PP e | p | PP
kp® || kp? | kPP | Kk |k || 0| PP e | p
kp® | kp® | k| kp [P o | 0P| PP e

Table 1: The multiplication table for the dihedral group D4 shows all products ab, where a is the

first column and b in the first row. Note that the group is not commutative, and the commutation

rule is given by pk = kp~ L.

e With 2 elements : {e, p?}, {e,x}, {e, rp}, {e, kp?} and {e, kp3},
e With 4 elements : {e, p, p?, p*}, {e, p?, &, kp?} and {e, p?, kp, kp>}

and the two trivial subgroups {e} and Dy itself. The four subgroups consisting of two elements are
all isomorphic to (i.e., have the same structure as) Zsa, but the three subgroups of four elements
are of two fundamentally different types. Indeed, we have {e, p, p?, p3} = Z4 but {e, p?, s, kp?} =
{e, p?, kp, kp>} = Zy x Zs, where = designates isomorphism.

Finally, one can observe that the multiplication table of D4 is partitioned into four regions,
giving it a large-scale structure (Figure 8). More precisely, we have (p")(p™) € {p’,¢ € Z},
(kp™)(p™) € {kp" L € Z}, (p™)(kp™) € {kp’, € € Z} and (kp")(kp™) € {p%, £ € Z} for all integers n
and m. In a sense, we would like to state that

rot. rot. flip flip rot.
4 l V4 4 4
{o} {0} ={rp"} {rp"} ={r'}

{kp'} - {p"} = {p"} - {rp"} = {kp"}
—— e e
flip rot. rot. flip flip

such that the subsets {p’} and {xp’} “behave” as elements of Zs.
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Figure 8: (adapted from Weisstein [8], figure 2) Visual multiplication table for the dihedral group
Dy4. Colors are chosen to highlight the large-scale 2 x 2 structure of the multiplication table, which
will be discussed using the concept of quotient group.

This idea is formalized using the concept of quotient group. Indeed, given a normal subgroup
N of a group G (i.e., N verifies the property that ¥n € N,Vg € G,g " 'ng € N), one can define
the quotient group G/N = {gN,g € G}, where gN = {gn,n € N}. In other words, G/N is the
set of equivalence classes to the modulo relation x ~ y <= yx~! € N. Using the property that N
is normal, one can show that the set G/N forms a group under the composition law - defined as
(aN)-(bN) = (ab)N. However, even though it is tempting to say that G/N = G; — G = N x G,
it is not true in general. Instead, the useful relationship between G/N, G and N can be expressed
with the concept of group extension, but this is beyond the scope of this lecture.

In the case of the dihedral group Dy, the subgroup of rotations N = {e,p,p?, p°} = Zy is a
normal subgroup and we can thus construct the quotient group Dy/N = {N,xN} formed by the
set of rotations N and the set of reflections kN. We can easily show that D4/N is isomorphic to
Zs, which confirms the intuition presented in (2), but Dy is not isomorphic to N X Zg = Zy X Zo.
The other non-trivial normal subgroups of Dy are {e,p?} = Zo, {e, p?, k,kp*} = Zy X Zo and
{e, p?, kp, kp®} = 7o X Zs.

3 A System with D; Symmetry

As discussed previously, the D group describes the symmetries of a square. Figure 9a illustrates
the fact that a rotation of 90° of any field — an eigenvector or a nonlinear solution — yields a
dynamically equivalent field. Figure 9b illustrates summation: the sum of two eigenvectors with
the same eigenvalue is an eigenvector with the same eigenvalue. Summation does not create new
nonlinear solutions. The situation is as follows. An eigenvector can be rotated by 90° to form
another eigenvector with the same eigenvalue. Furthermore, any linear combination of these two
eigenvectors (and not just the equal superpositions illustrated in Figure 9b) is also an eigenvector,
i.e. there exists a doubly infinite set of eigenvectors, all with the same eigenvalue. The inclusion
of nonlinear terms, which are consistent with (equivariant with respect to) Dy symmetry, greatly
restricts the number of solutions. We are familiar with the fact that nonlinear terms determine
the amplitude of nonlinear solutions (unlike eigenvectors, which can have any amplitude). More
generally, nonlinear terms also drastically restrict the form of possible solutions. In the case of Dy,
precisely eight solutions are produced by a pitchfork bifurcation, as we shall now discuss.
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(a) (b)

Figure 9: Tllustration of the properties of the Dy symmetry on convective rolls. (a) 90° rotation of
an eigenvector leads to an eigenvector with same eigenvalue, rotation of a nonlinear solution leads
to another nonlinear solution. (b) The sum of two eigenvectors with the same eigenvalue is an
eigenvector with the same eigenvalue.

The following system captures the essence of a bifurcation breaking Dy symmetry:

p=(u—ap® —bg*)p, (3a)
q=(pn—bp®—ag®)q. (3b)

This system has eight non trivial equilibrium solutions; we can call four of them rectangular and
call the other four diagonal.

p1 =\ p/a, q =0,
(4)

rectangular solutions :
D2 = 07 q2 = + IU/CL,

ps=F\/p/(a+b), g =+/p/(a+b),

_ _ (5)
pa=F\/p/(a+b), q1=F/p/(a+b).

diagonal solutions : {

They are represented in the (p,q) plane in figure 10. Figure 11 shows the stability and branch-
ing directions of the rectangular and diagonal solutions in the parameter plane of the nonlinear
coefficients (a,b).
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Figure 10: Two-dimensional representation of rectangular and diagonal solutions of a system with
D4 symmetry. The labels next to the triangles correspond to the subscripts of the solutions in (4).

Figure 11: Stability and branching directions of rectangular (R) and diagonal (D) solutions in the
parameter plane of the nonlinear coefficients (a,b). Solid (dashed) curves indicate stable (unstable)
branches.

This symmetry is found in many systems and contexts. Of these, we can highlight the spirals
and ribbons in counter-rotating Couette-Taylor flow. Spirals (analogous to what we have called
diagonal solutions) were computed and observed in counter-rotating Couette—Taylor flow for the
first time by Taylor in 1923, while ribbons (analogous to what we have called rectangular solutions)
were predicted mathematically to exist by Chossat and Iooss [3] and observed experimentally in
Tagg et al. [5] much later, in the mid-1980s.
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4 Steady State Mode Interaction

Let us return to @(2) symmetry. The instability of a state that is homogeneous (featureless) in
0 is governed by a system of linear partial differential equations, which is also homogeneous in
#. The solutions to such equations are necessarily exponential or trigonometric, more specifically
trigonometric in the periodic direction 6.

So far, we have considered one spatial wavenumber at a time. Let us define a function w that
has two wavenumbers, m and n, for the 6 dependence, in order to describe situations in which these
two spatial structures compete and interact. We write:

1 . . , .
w(f) = 3 (zme’me + zne™ 4 7070 4 Zne_m6> . (6)

Reflection in # and rotation (translation) 6 should have the effect:

(Spow)(0) = w(0 + 0p) = % (Zmeim(0+c90) 4 2, e(0+00) 4 5 —im(6+60) | Znem(ewo)) ’ (7a)
(50)(6) = w(~0) = 5 (2me ™™ + 2™ 4 2™ 4 2,67 (7b)

This motivates us to prescribe the action of Sy, on (2, 2p):
Soo (Zms 2n) = (eimeozm, emeozn), (8a)
K(Zm, 2n) = (Zm, Zn)- (8b)

We now seek the general form of functions f(z,, 2, ), which are equivalent with respect to (8). We
consider monomials:

qzr 38

p
Fomzn) = () Gomszn) = (rorespiiZcs). o)

As in the single-wavelength case, equivariance with respect to x (kf = fk) leads to the requirement
that the coefficients in (9) be real. Equivariance with respect to Sy (Spf = fSp) leads to:

emo f. 2h 2lzr 78
S 2 2 — . mpqrs~m n_ m_n , 10a
of (zms 2n) <€m9fnpqrsz£1zngnzfl (10a)
15 (z . ) _ fmpqrs(eimHZm)p(einezn)q(efimHEm)r(efinazn)s (10b)
0\<my<n) — fnpqrs(ezmﬁzm)p(emezn)q(e—zmﬁzm)r(e—znﬁgn)s .
This leads to the requirements that:

Jmpgrs = 0 or m = mp + ng — mr — ns, (11a)
Jnpgrs = 0 or n = mp + ng — mr — ns. (11Db)

Using this, it is possible to ascertain that a basis for the invariants is:
]zm]2, \anQ, and A =z Z" 4+ Z0 2 (12)

i.e. that all invariants are products and sums of these three, and that a basis for the equivariants
Zm, 0 Zn=lym 0
(5)-(2) (%) (). "
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meaning that all equivariants are sums of these four, with coefficients that are invariants. Thus,
the most general equivariant evolution equation is of the form:

d (zm Zm 0 zn-lm
i (2)=e (@) el oo™ o) a9

where a, b, ¢, d are functions of (|2, |?),|2a|?, A).

Let us now consider (14) truncated to cubic order. Assume m +mn — 1 > 3. (The two remaining
cases (1,2) and (1,3) lead to different analyses.) Then, neither the last invariant nor the last two
equivariants contribute at this order, and the most general equivariant is:

m 0
(ap + am\zm\Q + an|zn|2) <ZO > + (bo + bm|zm|2 + bn|zn|2) <z > ) (15)
n

That is, the most general set of evolution equations in the case that m +n — 1 > 3 is independent
to cubic order of the values of m and n and is:

dzm
E — (a0 + aml2ml? + anl2al?)2m, (16a)
dzp 9 9

dt = (bO+bm|2m‘ +bn|zn‘ )Zn- (16b)

Note that (3) for the D4 case are a special case of (16), in which the coefficients in the two equations
are the same, because p and g are related by symmetry whereas z,, and z, are not.

Since the coefficients a,b are real, the phases play no role and we may replace the complex
Zm, 2n by real values z,,, x,. The equations are then just those that apply to the case of rectangular
symmetry, Zs X Zs. Let us calculate the steady states of (16). We have:

Ty = 0 or ag + a2, + apz® =0 and (17a)

Ty = 0 or by + bpx?, + bz = 0. (17b)

We may plot these conditions in a two-dimensional plane (z,,x,). The conditions on the left
are the two perpendicular axes, while those on the right are equations for ellipses or hyperbolas,
depending on the signs of coefficients a,b. The steady states are the intersections of conditions
(17a) with conditions (17b), the existence of which depend on the values of coefficients a,b. An
example of this graphical construction is shown in figure 12, as a function of bifurcation parameter
u for coefficients ag = p,bp = u — 1,y = by = —1,a, = by, = —2.

the origin : x,, =0, x, =0, (18a)

the pure m modes : 22, = —ag/am, xp =0, (18b)

the pure n modes :  ,, =0, 2 = —by/bn, (18¢)
bn—b bm — b

the mixed modes : z2, = M, o 90%m = 20%m (18d)

brCn — Qmbn —(bman — amby)’
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Figure 12: Graphical construction for steady solutions (x,,x,). Solid curves are solutions to
conditions (17a), dashed curves are solutions to conditions (17b). Steady states are intersections of
the two types of curves, where one of conditions (17a) and one of conditions (17b) are simultaneously
satisfied. Solid dots are pure m modes, solid triangles are pure n modes, and open circles are mixed
modes. For the coefficient values a9 = u,bg = u — 1,4, = by, = —1,a, = by, = —2 used here,the
pure m mode appears at p = 0, the pure n mode at ;o = 1, and the mixed modes at p = 2.

This mode interaction scenario can be illustrated with the example of a shear-driven cavity flow
studied by Bengana et al. [1]. Although [1] describes successive Hopf bifurcations to limit cycles,
the same basic scenario holds as for the case of successive pitchfork bifurcations to steady states,
since the equations governing the amplitudes of the limit cycles are also given by (16).

Figure 13 shows the deviation of the instantaneous vertical velocity from its temporal mean for
each of the two limit cycles, LCy and LCs. These are analogous to the two pure-mode solutions
(18b) and (18c¢), although here, the fluctuations circulate counter-clockwise around the cavity. The
subscripts 2,3 labeling the limit cycles refer to the number of maxima of the vertical velocity
deviation for each limit cycle.

(a) (b)

Figure 13: (adapted from Bengana et al. [1]) Instantaneous vertical velocity fluctuations for Re =
4500. (a) Along the top of the cavity, two maxima (yellow) of the vertical velocity fluctuations can
be counted for the LCy mode. (b) Along the top of the cavity, three maxima of the vertical velocity
fluctuations can be counted for the LC3 mode.
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The bifurcation diagram is shown in figure 14. For this case, the base flow undergoes a first
Hopf bifurcation at Rey = 4126, leading to LC5 (in blue in figure 14) and a second Hopf bifurcation
at Res = 4348 leads to LC3 (in red in figure 14). There also exists a quasi-periodic state (QP),
analogous to the mixed-mode solution (18d) (in black in figure 14), that connects LCo and LC3
via subcritical secondary Hopf bifurcations. QP mediates changes in the stability of LCs and LCs.
There is a range of bistability between the two subcritical secondary Hopf bifurcations, over which
both LCy and LC3 are stable.

Figure 14: (from Bengana et al. [1], figure 4) (a) Bifurcation diagram of the shear-driven cavity
flow for Re € [4000,5000]. The deviation from the mean of the streamwise velocity at one point
is plotted against the Reynolds number. The solid dots on the curves and the thick ticks on the
abscissa show the critical Reynolds numbers. The integers show the number of unstable directions
(counting a complex conjugate pair as a single direction). The first Hopf bifurcation occurs at
Res = 4126 and the second at Res =~ 4348, giving rise to limit cycles LCy and LCj3, respectively.
In the range between Re} and Rel, there exists a quasi-periodic state QP, which is created and
annihilated by subcritical secondary Hopf bifurcations. (b) From left to right, the schematic phase
portraits corresponding to the bifurcation diagram. Black dots and hollow circles show the stable
and unstable states. (i) Stable base flow. (ii) Stable limit cycle LCy is shown as bifurcating in
the vertical direction, destabilizing the base flow. (iii) Unstable LCjs is shown as bifurcating in the
horizontal direction. (iv) QP emerges, stabilizing LCs. (v) QP moves away from LCs and towards
LCy. (vi) QP has disappeared, destabilizing LCs.
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5 Eckhaus Instability

The Eckhaus instability is a secondary instability in which a one-dimensional, spatially periodic
pattern becomes unstable, leading to a transition to another state of a different spatial period. We
illustrate this phenomenon through the Ginzburg-Landau (GL) equation:

DA = A + OpA — |A]PA, . (19)

where we assume a spatially periodic domain of length L. In (19), A represents an envelope for
a pattern with favored wavenumber ¢, i.e., the physical quantity is A(z,t)e’%” + c.c. so that a
wavenumber @ for A is a deviation (Figure 15). For any fixed wavenumber @, the GL equation
admits the steady periodic solution Ag(z) = (pu — Q*)Y? exp(iQzx), provided that p > po = Q%
Solution Ag emerges through a pitchfork bifurcation from the conductive base state A = 0 at
i = pg, and we therefore consider the regime p > g in what follows.

Figure 15: Schematic representations of convection rolls in a Rayleigh-Bénard setup. The physical
quantity A(x,t)e® + c.c. may represent, for example, the vertical velocity in the horizontal mid-
plane. For a fixed value of ¢, the number of rolls can be varied by changing the envelope A(z,t).
From top to bottom, we show cases with ¢. + Q = 3, ¢. + Q = 4, and ¢. + @ = 5, respectively.

To determine whether Ag is stable, we study the evolution of the modulated field A(x,t) =
(1+a(z,t))Ag(x) for a small perturbation a(z,t). The linearized dynamics can be written as

0ia = QZana + Ozt — (:u - Q2)(CL + a)a (20)

where = denotes complex conjugation. We separate a into its real and imaginary parts a = a + 8.
We then expand each in a Fourier series and treat each wavenumber +k separately, since they are
not coupled by (20). Abbreviating their k*" Fourier coefficients as & and 3, respectively, we obtain

i = —2iQkS — kK& — 2(u — QHa, o)
O3 = +2iQké — k* .
The eigenvalues of the system (21) are real and given by
NE == (1= Q2+ K2) /(200 + (n— Q2)2. (22)

For k = 0 (uniform modulation), we find that & decays at a rate —2(u — Q2) < 0, while /3
remains constant, reflecting the phase invariance of the GL equation. These are the eigenvalues
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and eigenvectors corresponding to the circle pitchfork that created Ag. (Circle pitchforks are
discussed in Lecture 7 and in Section 1 of this Lecture.) Consequently, Ag(x) is always stable to
uniform amplitude modulation.

For k > 0, both eigenvalues are negative when g > u’é = 3Q? — k?/2, while at least one
eigenvalue is positive if p < /ﬂé, leading to instability of state Ag to modulating perturbations with
wavenumbers k. Therefore, we conclude that

Aq is unstable iff p < ug"i“ =3Q% - k2, /2 (23)
where ki, denotes the infimum (smallest) of the nonzero wavenumbers admissible in the domain.
Thus, Ag exists as a steady solution for u > ug = Q?, but is unstable as long as u < ugmm. As
 increases, Ag is stabilized through a series of secondary pitchfork bifurcations corresponding to
decreasing values of k until k,,,;,, at which Ag finally becomes stable. Only the first branch Ay is
born stable.

In an infinite domain, kn;, = 0 and we recover the classical Eckhaus curve NOQ = 3Q?. For
a periodic domain of finite length L, however, we have kyin = 27/L, so that Ag is stabilized
for smaller values of u, since the finite domain size suppresses long-wavelength modulations which
would otherwise be unstable.

Although the downward shift of the Eckhaus boundary by k2, /2 « (27/L)? in finite domains
appears to vanish in the large-domain limit (L — o0), it was observed by Tuckerman and Barkley
[6] that this shift is comparable in size to the spacing of ;g between adjacent wavenumbers and
therefore cannot be ignored. As a result, the influence of finite-domain effects on the Eckhaus
stability boundary remains significant for all domain sizes. Notably, this finding does not depend
on starting from the Ginzburg-Landau equation; it can also be derived from the Swift—-Hohenberg
equation [7].

We conclude this lecture by a description of the bifurcation diagram of the Eckhaus instability
shown in Figure 16 for a finite periodic domain. Rescaling the GL equation, we set L = 27, for
which the minimal admissible nonzero wavenumber is ki, = 1. When pu < 0, the conductive
state A = 0 is linearly stable to all perturbations. As p becomes slightly positive, the conductive
state becomes unstable to perturbations with mode number ) = 0 and undergoes a supercritical
pitchfork bifurcation. The resulting finite-amplitude steady solution Ag(z) = |/ is stable, since p
is positive and thus exceeds p} = 3 x 02 — 1/2 = —1/2. This is the first branch in Figure 16.

When p traverses 11 = 1, the conductive state becomes unstable to perturbations with wavenum-
ber @ = 1, leading to the creation of the steady finite-amplitude solution A;(x) = /i — 1 €®. This
is the beginning of the second branch from the conductive state. Unlike Ag, which is stable at onset,
solution A; is unstable to modulations of the form (1 + ecosz) for p < ul =3 x 12 —1/2 = 5/2.
Increasing p along the branch, p eventually exceeds 5/2 and the state A;(z) becomes stable. This
corresponds to the second part of the second branch, after the secondary pitchfork bifurcation.

Finally, consider the branch corresponding to As(z) = /i — 4€%®. When p > ps = 4, the
conductive state also becomes unstable to perturbations with wavenumber () = 2 and a steady
solution Ay(z) is created. When it is created, As(x) is unstable to modulations by both (1+€cosx)
and (1 + ecos2z). When pu traverses p3 = 3 x 22 — 22/2 = 12 — 2 = 10, Ay(x) becomes stable to
modulation by (1 + ecos2x) (second part of the third branch), and finally becomes stable when
exceeds ps =3 x 22 —12/2 =12 — 1/2 = 23/2 (third and last part of the third branch).

This pattern continues for all other branches. The conductive state becomes unstable to
perturbations with wavenumber @ for u > pg = Q?, leading to the creation of the solution
Ag(x) = (u—Q?)'/? '9®. This solution becomes stable for ;1 > ub = 3Q? —1/2, after Q secondary
pitchfork bifurcations.
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Figure 16: (from Tuckerman and Barkley [6], figures 2 and 3) Left: bifurcation diagram for the
Eckhaus instability in a periodic domain. Labels on the branches indicate the number of directions
to which it is unstable. Stable branches are represented by solid curves, unstable branches by
dashed curves. All branches A = Ag originate from pitchfork bifurcations of the conductive state
A = 0 Except for the first branch, Ag, all are initially unstable and then stabilized after a series
of secondary pitchfork bifurcations. Right: schematic phase portraits at various values of p. The
coordinates represent projections of the first two or three unstable directions of the conductive
state. Stable steady states are indicated by filled circles, unstable steady states by hollow circles.
The values of p correspond to the Greek letter labels on the bifurcation diagram at left.
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GFD 2025 Lecture 9: Maps, Period Doubling and Floquet Theory

Laurette Tuckerman; notes by Isabela Conde, Andrés Posada-Bedoya, Lin Yao

June 26, 2025

1 Discrete Dynamical Systems or Mappings

We now shift from considering continuous time to a discrete system that is evaluated at each n
time step, i.e:

Tny1 = f(2n) z, f € RY (1)

1.1 Stability of fixed points

To study the stability of this system, we add some perturbation, € as in continuous systems. In
this case we add a discrete ¢, such that x,, = ¥ 4+ €,. Then 1D linear stability is determined via:

T=f(T+en)
= @) + [ @en + " (@)
coengr ~ f(Z)en (2)

We see that if |f/(Z)| < 1, then || decreases and T is stable, conversely if |f/(Z)] > 1 <= |¢]
increases, then the system is unstable. The situation in which f/(Z) = 0 so that e,+1 ~ 1 f”(2)e2,
is called superstability.

We extend this to multidimensional systems, for which f’(Z) is replaced by the Jacobian D f (%)
and T is a stable fixed point if all of the eigenvalues of p of D f(Z) satisfy |u| < 1, i.e. if all of the
eigenvalues lie inside a unit circle.

Figure 1 shows three different cases for eigenvalues u of a real system leaving the unit circle:

(i) An eigenvalue may exit the unit circle at (1,0).

(ii) A complex conjugate pair of eigenvalues may exit the unit circle at e,

(7i) A complex conjugate pair of eigenvalues may exit the unit circle at (—1,0)

Figure 2 gives a graphical reconstruction of cases (i) and (iii) for a linear map of the form f(z) = cx
for different values of c. We plot function f(x) in black and a diagonal line (y = z)) in red. From
some initial point zy, we draw a vertical line until it reaches the function, f(z) then a horizontal
line until it hits the diagonal at x;. Repeating this process creates a procedure for iterating f. We
note that there exists a fixed point at z = 0, which is stable when |¢| < 1 and unstable for |c| > 1.
We can also see from these iterative maps that trajectories proceed monotonically for ¢ > 0 and
oscillate when ¢ < 0.
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Figure 1: Unit circle showing different possibilities for eigenvalues p. The blue arrow traverses the
unit circle at (—,0), the green arrows traverse at e**, and the red arrow traverses at (—1,0).

Figure 2: Graphical construction for iterating maps. f(z) = cx with various slopes c.

(1'070) — (l'o,xl = f(l’o)) = (x1,71) = (:nl,mg = f(ml)) . (3)

As in continuous systems, a loss of stability indicates the occurrence of a bifurcation. Loss of
stability is associated with various types of bifurcations. Case (ii), when eigenvalues cross at +e',
leads to a secondary Hopf, or Neimark—Sacker, bifurcation to a torus. We will not discuss this case
here. Case (i), when eigenvalues cross at +1, leads to a steady bifurcation, analogous to those seen
for continuous dynamical systems.
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1.2 Steady bifurcations

A steady bifurcation in a discrete-time system may be a saddle-node, a pitchfork, or a transcritical
bifurcation. We can write simple equations that display steady bifurcations analogous to those
found for flows.

1.2.1 Saddle-node bifurcation

¢_>$n+1_33n:,u_33% == xn—l-l:f(xn):xn"i‘:u_x% (4)

Fixed points &,/u satisfying f(z) = & exist for u > 0. Their stability is calculated via

@) =a+p—a?

flla)=1-2zf(xy/p) =1F2/p<1 for p>0

1.2.2 Pitchfork bifurcation

= Tpy1 — Ty = Ty — 20 = Tpp = f(Tn) = + pz, — (5)
The fixed points 0, 4,/x satisfy f(Z) = 2. Their stability is calculated via
flx)=a+pz—23 = f'(z) =1+ p— 22>
F0)=14+p<1 forpu<0
f(Eyp)=1—p<1 foru>0

Subcritical pitchfork bifurcations and transcritical bifurcations can also occur in discrete-time dy-
namical systems. Saddle-node and pitchfork (super and subcritical) bifurcations are illustrated in
Figure 3.

1.3 Period doubling and the logistic map

Case (ui) of Figure 1, when an eigenvalue crosses at —1, leads to a flip, or a period-doubling
bifurcation, a phenomenon that cannot occur for continuous dynamical systems. We now discuss
this case in the context of the logistic map, defined as

Tny1 = flan) = axy (1 —2,), z,€[0,1], 0<a<A4. (6)

f is a quadratic function mapping [0, 1] into itself, with minima at the two endpoints f(0) = f(1) =0
and a maximum at the midpoint f(1/2) = a/4.

1.3.1 Fixed points and period-doubling
The fixed points of the logistic map (6) satisfy f(z) = z, giving

_ _ 1
=0 or == - (7)
Linear stability follows from
f@)=a(-22), fO)=a [(1-1)=2-a (8)
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Figure 3: Steady bifurcations for discrete dynamical systems. Top row: Saddle-node bifurcation.
fx) =z +pu— 2% for p = —0.2 (left) and for g = 0.2 (middle). Middle row: Supercritical
pitchfork. f(z) = z + px — 23 for u = —0.2 (left) and for y = 0.4 (middle). Bottom row:
Subcritical pitchfork. f(z) = x + px + 23 for 4 = —0.4 (left) and for u = 0.2 (middle). Right:
corresponding bifurcation diagrams.
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Hence, z = 0 is stable for a < 1, and £ = 1 — 1/a is stable for 1 < a < 3.
At a =3, f/(1—1/a) = —1 and the fixed point undergoes a flip (period-doubling) bifurcation
(Figure 4). To find the ensuing two-cycle, define

F2(x) = f(f(2), (9)

and solve f2(z) = z. One finds two new real roots

a+1++/(a—3)(a+1) (10)
2a ’

12 =
which exist for a > 3. Their stability is determined by
(F3) (@) (£2) (22) = f'(21) f'(22) = —a® + 20+ 4, (11)
and the two-cycle loses stability at
2 _ _ _
—a’4+2a+4=+41 = a=3 or a=1+V6= 3.4495. (12)

Equation (12) shows that the two-cycle of f is created via a steady-state pitchfork bifurcation at
a = 3 and that this two-cycle loses stability via a flip bifurcation at a = 3.4495, leading to a four-
cycle. Examples of f2(x) and the new fixed points x1 2 are shown in the right portion of Figure 4,
with @ = 1.6 and a = 3.4. We see that f? undergoes a pitchfork bifurcation.

a=3.04 f2(x)

0.5 - 05 - -

0 0.5 1

Figure 4: Behavior of logistic map leading to period doubling. Left: For a = 3.04, the initial value
T converges to a two-cycle, given by x1 and z3. Right: Graph of f2(x). For a = 1.6, f2 has the
same fixed points as f, namely x = 0 (unstable, hollow dot) and x = 1 — 1/a (stable, filled dot).
For a = 3.4, the fixed point = 1 — 1/a has become unstable, and f? has two new stable fixed
points z1 2 (filled triangles), which together comprise a two-cycle for f.

Figure 5 shows the z values belonging to the stable regime at each value of a: fixed point,
two-cycle, etc. Feigembaum [4], simultaneously with Coullet and Tresser [2] discovered that the
successive period-doubing bifurcations occur at successively smaller intervals in r and accumulate
at the Feigenbaum point as ~ 3.5699 (Table 1). This is called the period-doubling cascade.
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Figure 5: Bifurcation diagram for logistic map, showing period-doubling cascade and periodic
windows. For each value of a, dots show the x values belonging to the stable fixed point, two-cycle,

n 2" a, Ap=an—apn-1 0n=An_1/A,
0 1 1 — —

1 3 2 —

2 4 3.44948 0.449 4.45

3 8 3.54408 0.0948 4.747

4 16 3.56872 0.0244 4.640

5 32 3.5698912 0.00116 4.662

oo 0o 3.569945672... O 4.669

Table 1: Period-doubling cascade for logistic map.

1.3.2 Renormalization

The universality of the period-doubling cascade can be understood via a renormalization operator
proposed by Cvitanovié [4, footnote 4]:

Tlf)(w) = — f(f(~aw) = == f-az), (13)
where f?(z) = f(f(z)). Repeated application yields
Tf@) = — TSP (ax) — 6la) asn oo, (14
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Figure 6: Renormalization cascade for the period-doubling route to chaos.

with the fixed-point function ¢ satisfying

8(r) = TIo]() = —~ P*(~aa). (15)

Here, we can view T as itself a mapping on mappings, with ¢ a fixed point of T'. In a power-series
expansion about x = 0,

p(x) =1—-062> +ex' +Ca®+--- with 6~ 1.528, € ~0.105, ¢ ~ 0.0267. (16)

Each renormalization step effectively doubles the period:

f L T[f] - rZescaled ’ T[f] L T2 [f] - iescaled ) Tn[f] - rQeanled' (17)

Here the subscript “rescaled” indicates the uniform coordinate and amplitude rescaling by a needed
to keep the quadratic maximum at x = 0 of height 1.

The sequence of bifurcation parameter values {a,} for which an attractive 2"-cycle appears
can be extracted by tracking where the rescaled map 7" ![f,, ](z) first touches marginal stability
(derivative = —1 at the fixed point). One finds

In—1 =2, 46692 (n — oo). (18)
Qp — An—1
This value is universal to all map families with quadratic maxima. The process of period-doubling

is shown in Figure 6 in the context of renormalization. There are several horizontal “slices,” each
representing the map at successive bifurcation stages where a stable orbit of period 2" appears as
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the control parameter a increases. The downward arrow labeled T indicates the renormalization
operator that takes the map with a 2"t!-cycle, rescales it in both amplitude and horizontal coor-
dinate by the universal factor a, and produces a map with a 2"—cycle. In the limit n — oo, after
repeated application of T, the rescaled map converges to the fixed-point function ¢(x), shown on
the top layer; its unstable direction governs the geometry of all period-doubling cascades.

1.3.3 Periodic windows

Within the chaotic regime of the logistic map, there exist narrow intervals of the control
parameter a where stable periodic orbits reappear. These are known as periodic windows. For
example, in Figure 5, chaos gives way to a stable period-3 cycle at ¢ ~ 3.83. This window
includes a full period-doubling cascade:

period-3 — period-6 — period-12 — --- (19)

before returning to chaos. Similar windows exist for other periods (e.g., 5, 6, 7, etc.), embedded
within the chaotic sea.

These windows arise due to saddle-node bifurcations, where a stable and an unstable periodic
orbit of the same period are simultaneously created. As a increases, the stable orbit undergoes its
own period-doubling cascade, eventually becoming chaotic. This local cascade mirrors the global
structure of the original bifurcation diagram, exemplifying the self-similarity of the system.

According to Sharkovskii’s theorem, the existence of a period-3 orbit implies the existence of
periodic orbits of all other periods. The period-3 window thus plays a special role in demonstrating
the onset of chaos. Periodic windows illustrate how order and chaos can coexist and alternate, even
in simple one-dimensional maps like the logistic map.

1.4 Example: period-doubling in Rayleigh-Bénard convection

Rayleigh-Bénard convection is the fluid motion that arises when a layer of fluid is heated from below
and cooled from above. When the temperature difference exceeds a critical value, the system un-
dergoes a transition from a conductive to a convective state. At higher temperature gradients (i.e.,
higher Rayleigh numbers), the system can exhibit increasingly complex time-dependent behaviors.
One such route to chaos observed in experiments is via a period-doubling cascade.

1. As the Rayleigh number Ra increases, the initially steady convection rolls become time-
periodic.

2. Further increase in Ra leads to a bifurcation where the oscillation period doubles: the system
alternates between two distinct states over each cycle.

3. This period-doubling continues:
period-1 — period-2 — period-4 — period-8 — --- (20)
until the motion becomes chaotic.

Such behavior was observed in laboratory experiments using high-Prandtl-number fluids con-
fined between plates with well-controlled boundary conditions by Libchaber et al. [7]. Time series
of temperature fluctuations or velocity at a point within the cell reveal a classic Feigenbaum-
type cascade, shown in figure 7. This provides a striking experimental realization of the universal
period-doubling route to chaos in a physically extended, fluid-dynamical system.
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Figure 7: Time series of temperature at a point in a Rayleigh-Bénard cell showing a sequence of
period doublings as the Rayleigh number increases. From [7].

1.5 Continuous flows to discrete maps

Since physical systems are governed by differential equations, continuous-time dynamical systems
would seem a more natural framework than discrete-time systems for physical applications. Where
do discrete-time mappings come from? A limit cycle is a closed trajectory of a continuous-time
dynamical system. Representing limit cycles as fixed points of discrete systems often make these
limit cycles easier to analyze. In three dimensions, this is done by selecting the points at which
a limit cycle successively traverses a plane, or, in higher dimensions, a hypersurface. Figure 8
illustrates the correspondence between limit cycles and fixed points of a discrete system, called a
Poincaré map.

2 Floquet Theory

Once a limit cycle has been created by one of the paths described above, it too can undergo bifurca-
tions and change stability, analogously to fixed points. Floquet theory provides the mathematical
framework to describe the linear stability of limit cycles in dynamical systems. Its framework is
analogous to the eigenvalue theory for linear systems with constant coefficients, extended to sys-
tems with periodic coefficients. In the context of nonlinear systems, Floquet theory is used to study
small perturbations around periodic orbits, helping determine whether the system returns to the
orbit (stable) or diverges (unstable).
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Figure 8: Top row: schematic timeseries. Left: Limit cycle before any bifurcation. Middle: After
a pitchfork bifurcation, the original limit cycle is unstable and there exist two limit cycles, one
on either side of the original limit cycle. Right: After a period-doubling bifurcation, the resulting
limit cycle alternates between two versions of the original limit cycle. Bottom row: Poincaré map.
Left: Limit cycle pierces the plane once. Middle: Unstable limit cycle (dotted curve) surrounded by
two new stable limit cycles (solid curves), formed by a pitchfork bifurcation. Each is a fixed point
of the Poincaré map. Right: A limit cycle (solid curve) produced by a period-doubling bifurcation
pierces the plane twice, at two points surrounding the fixed point of the original limit cycle (dashed
curve).

2.1 Linear equations with periodic coefficients

A linear differential equation with constant coefficients such as
at +bx +cxr =0 (21)

has as its general solution

At

z(t) = areMt + age?! (22)

where A o are the two solutions of the quadratic equation,
aX? +bA+c=0. (23)

This form can be generalized to equations in which the coefficients are not constant, but periodic
functions:
a(t)i +b(t)x + c(t)z =0 (24)

where a, b and ¢ are periodic functions with period T'. The general solution of (24), analogous to
the solution (22), is
z(t) = a1 (t)eM! + ag(t)et? (25)

Functions o 2(t) have the same period as a(t), b(t) and c(t) and are called Floquet functions. The
exponents A\; and Ay are called Floquet exponents. In contrast to the exponents in (22), these are
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not the roots of a polynomial and must be calculated numerically or asymptotically. The values

1 = eMT ) o = 27T are called Floquet multipliers.
Similarly, for a general first-order and N** order system:
i=ct)x = z(t) =eMa(t) (26)
N N
)™ =0 = )= etla(t) (27)
n=0 n=1

where a,(t)’s have period T.

2.2 Application to limit cycles

Now consider a nonlinear dynamical system:

&= f() (28)
with a periodic solution (limit cycle) of period T":
z(t+T)=2z(t) (29)
We perturb around the limit cycle:
a(t) = z(t) + e(t) (30)
where €(t) is assumed to remain small. Substituting into the equation gives
T+é= f(Z(t)+ F(Tt)elt) + f(Z(t)e(t) + ... (31)
which by neglecting high-order terms leads to
= f'(z(t))e(t) (32)
which is of the Floquet form (26). Therefore:
e(t) = eMa(t) (33)

with «(t) periodic with period T. The limit cycle Z(t) is stable if the real part of A is negative. If

A is complex, this indicates that the period of the perturbation e is different from that of the limit
cycle Z(t). In order to ensure uniqueness of the imaginary part of A\, we choose:

T

tm(\) € (—7, 7|

m(A) T

The remainder can be absorbed into the periodic function a(t), as illustrated in Figure 9.

(34)

Figure 9: Stability region for Floquet exponents A (left) and for Floquet multipliers e*” (right).
The imaginary A axis on the left is mapped into the unit circle on the right.
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For a multidimensional system of dimension N, the equations above can be generalized to:

é=Df(z(t))e (35)
N

e(t) = eMlay(t) (36)
Jj=1

There are N Floquet exponents and Floquet functions and the limit cycle Z is stable if all the real
parts of the exponents are negative. The Floquet multipliers and Floquet functions are eigenvalues
and eigenvectors of the monodromy matrix defined as follows. Let M (t) be an N x N matrix whose
evolution equation and initial condition are:

M = Df(z(t)M,  M(0) =1, (37)

where M (T') is called the monodromy matrix. Thus, determining the Floquet exponents requires
integrating the evolution equations linearized about z(t). The limit cycle Z(t) is stable if all Floquet
exponents have negative real parts or, equivalently, if all Floquet multipliers are within the unit
circle; see figure 9.

2.3 Examples from fluid dynamics
2.3.1 Faraday instability

Faraday discovered in 1831 that vertically vibrating a thin fluid layer produces a pattern of standing
waves with lattice patterns of hexagons and squares. More exotic patterns such as quasicrystals
and oscillons were later found in the 1990s by imposing a vibration containing two frequencies; see
Figure 10.

Figure 10: Quasicrystalline patterns of surface waves obtained by vertically oscillating a fluid layer
with a two-frequency forcing function. From [3] (left) and [5] (right).

In a frame oscillating with the container, the vibration appears as an oscillatory gravitational
force:

G(t) =g (1 — acos(wt)) (38a)
G(t) = g (1 — [acos(mwt) + bcos(nwt + ¢o)]) (38b)
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We wish to determine the conditions for the free surface to become linearly unstable. Considering
an homogeneous domain in the horizontal, with bounded solutions in the horizontal directions, and
the different eigenvectors k decoupled, the perturbation of the surface height is expanded as:

C(x,y, ) =D e™*Gel(t) (39)

k

Because of the time-periodic forcing, this is a Floquet problem:

Gty = S M p (1) (40)

J

where flz (t) are T-periodic and )\i are the Floquet exponents. In the inviscid, sinusoidal forcing
case, the problem reduces to the Mathieu equation:

G,

2 + wi[l — acos(wt)]Ce = 0 (41)

where wg is a parameter combining the densities of the upper and lower fluids, the surface tension,
the wavenumber k and the gravitational acceleration g. Instability occurs when one of the Floquet
multipliers = e satisfies || > 1. A value of = —1 indicates a subharmonic response (period
doubling), while y = +1 indicates a harmonic response, as illustrated in Figure 11.

Figure 11: Instability tongues for the Faraday problem in an inviscid fluid. Inside the tongues, one
of the Floquet multipliers p exceeds one in absolute value. In a harmonic tongue (H), ¢ > 1 for
some g, while in a subharmonic tongue (SH) p < 1. Adapted from Kumar and Tuckerman [6].
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2.3.2 Cylinder wake

Consider the flow past a circular cylinder. At low Reynolds number, the flow is steady. As Re
increases, periodic vortex shedding (the von Kérmdan vortex street) appears (Figure 12), forming a
limit cycle.

At higher Re, this limit cycle becomes unstable to 3D perturbations. Let Usp(x,y,t) be the
2D time-periodic (i.e., limit cycle) solution:

1
0Usp = —(Uap - V)Uap — VPap + EAUQD- (42)

Figure 12: Von Karman vortex street in the lab (left, photograph by S. Taneda; reproduced in [10])
and in nature (right, off the Juan Fernandez Islands, Chile, [8]). For the photo on the right, the
Taylor-Proudman theorem for a rapidly rotating earth implies that a mountain creates a wake at
altitudes far above it.

A perturbation uzp is a solution to the Navier-Stokes equations linearized around Usp:

1

Owugp = —(Uap - V)uzp — (usp - V)Uap — Vpsp + 7o

A’LL?,D, (43)

which is a Floquet problem in time via the periodic flow Usp. We can therefore decompose usp as

usp ~ eiﬂzeABth (337 Y, t) (44)
where fg is T-periodic and Ag is a Floquet exponent. The corresponding multiplier is pug = ersT
For each (3 there is a set of Floquet functions and multipliers.

The Floquet analysis was carried out numerically by Barkley and Henderson [1]. There are
actually two bifurcations, to modes with different wavenumbers 8 at different Reynolds numbers
Re, as shown in Figure 13. It turns out that the limit cycle undergoes a steady bifurcation, i.e., p
traverses the unit circle at 1, not at —1 nor at e*”. Thus, the temporal behavior of the new 3D
solutions is similar to that of the 2D flow. The bifurcation is a circle pitchfork, in that any spatial
phase in z is permitted.
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Figure 13: Three-dimensional flow past a cylinder. Left: at Re = 210, mode A with a wavelength
near four times the cylinder diameter. Right: at Re = 250, mode B with a wavelength near the
cylinder diameter. From Thompson et al. [9].
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GFD 2025 Lecture 10: Patterns of Turbulence

Laurette Tuckerman; notes by Kyle Mckee and Farid Rajkotia-Zaheer

June 27, 2025

1 Introduction

The main purpose of this lecture was to introduce the concept of pattern formation in flows transi-
tioning from a laminar state to a turbulent one, with a specific focus on planar bounded shear flows.
The lecture began with a historical overview of literature describing the transition to turbulence
from a laminar base state, an active area of research that dates back over 100 years [29, 34]. The
lecture moved on to a discussion of pattern formation within flows (now containing turbulence) that
have deviated from the laminar base state. The latter part of the lecture focused on understand-
ing pattern formation in a more broad class of shear flows including Taylor-Couette flow (TCF),
cylindrical Poiseuille flow (CPF), and Waleffe flow (WF). A more comprehensive presentation of
the latter material may be found in a review paper by the lecturer, “Patterns in Wall-Bounded
Shear-Flows”, Tuckerman et al. [42].

2 Previous Approaches to Transition

One seeks to characterize the transition to turbulence from a laminar base state by a critical value
of the Reynolds number, measuring the ratio of the advective to viscous forces; Reynolds (1895)
[30] originally denoted this dimensionless number by K, but 15 years later, Sommerfeld (1909) [34]
named it after Reynolds. This section offers a brief overview of historical approaches to describing
the transition from laminar to turbulent flow. While many have since been replaced by modern
theories, these early efforts remain valuable for understanding how successive hypotheses paved the
way for today’s understanding.

2.1 Linear Stability theory

Mathematical analyses of the linear stability of viscous parallel base states trace back to Sommerfeld,
who derived an equation describing the evolution of small perturbations to a steady laminar viscous
parallel base flow U(y)&. The equation — now called the Orr-Sommerfeld (OS) equation — is a
fourth-order linear differential equation for a streamfunction of the form ¥ = ¢(y, t) exp (icz)

—(D* - a®) ¢y = —ia (1 (D? - 0‘2)2 ~U(D*-a?) + D2U> ¢, (1)
, iaR
=B

EZ(i)

whose eigenvalues indicate whether perturbations grow or decay. Note that Squire (1933) [35]
pointed out that for linear stability, we may restrict our attention to two-dimensional disturbance
since the stability of any three-dimensional disturbance corresponds to the stability problem of a
two-dimensional disturbance at a lower Reynolds number.
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An especially interesting feature of wall-bounded shear flows is that they become unstable for
Reynolds numbers much lower than linear theory predicts. By solving the OS equation, Somerfeld’s
student Heisenberg 1924 [16] obtained a linear stability threshold for plane Poiseuille flow (PPF)
of 5610, within a few percent of the exact value of 5772.22 obtained by Orszag 1971 [22] and others
[20, 37] However, for PPF, experiments have shown that instability occurs at around Re =~ 1000.
For planar Couette flow (PCF), linear stability predicts stability at all Reynolds numbers (R, — o0)
[31], while both experiments [38, 5] and numerical simulations [12, 33] show a transition from the
laminar state at Reynolds numbers on the order of 300-400.

Because of the contrast between transition and the linear instability threshold, exploring the
route to turbulence is a very active area of research. An overview of candidate theories describing
this transition, some of which have been accepted and rejected over the years, are presented in the
following sections.

2.2 Transient growth and non-normal operators

Although it has been shown for bounded domains that the OS operator admits a complete set
of eigenfunctions, these eigenfunctions are not orthogonal because B~1L of (1) is non-normal [27,
39]. One consequence of this is the possibility of large transient growth despite linear stability.
The notion of transient growth of non-orthogonal eigenfunctions can be demonstrated through a
prototypical example in R?, as follows. Suppose the normalized eigenvectors of some operator are
v1 = (1,0)7 and vy = (1,€)7/v/1 + €2, where 0 < € < 1 and eigenvalues given by \; 2 = —1, —10,
so that the system is linearly stable (any initial condition decays to (0,0)7 ast — co). For an initial
condition xp = (1,1)7, (t) = (1 — ) vy exp (—t) + Lvgexp (—10¢). At an intermediate time (e.g.,
t = 1), the coefficient of the second eigenvector has almost completely decayed and the norm of the
vector @ has increased by a factor of ||x(1)||/||x(0)|| ~ O (1/e). The more parallel the eigenvectors
and the larger the discrepency between their eigenvalues, the larger the transient growth. The key
takeaway is that eigenvalues arising from linear stability are insufficient for describing the evolution
when the operator is non-normal. A related concept for analysing stability in systems described by

non-normal operators is the pseudospectrum [27].

2.3 Other theoretical approaches

Although Squire’s theorem tells us that the state that first becomes linearly unstable (at the lowest
Reynolds number) corresponds to a two-dimensional disturbance, it fails to describe experiments,
indicating that linear stability does not capture all of the physics. Orszag and Patera [24] examined
three-dimensional secondary stability superposed on a slightly perturbed two-dimensional planar
Poiseuille flow and found that three-dimensional perturbations grew from this state at Re =~ 1000.
This fully three-dimensional viewpoint was also supported by [23]. At a similar time, a framework
for relating turbulence to chaos and strange attractors was investigated [32, 36, 6].

2.4 Waleffe’s self-sustaining process for shear flows

In the 1990s, focus shifted to determining the smallest periodic boxes that could sustain turbulence
in numerical simulations [18, 15]. This ultimately led to the development by Waleffe [43] of the self-
sustaining process (SSP) for wall-bounded shear flows, which is now widely accepted as describing
transitional turbulence in shear flows.

We demonstrate the SSP by simulating plane Couette flow (PCF) in the minimal flow unit as
found by Hamilton et al [15]. We denote the streamwise direction by X, the wall-normal direction
by y, and the spanwise direction by z. Lengths are non-dimensionalized by the wall separation.

124



The flow is driven by the relative motion of impenetrable rigid walls at y = +1. The governing
equations are the Navier—Stokes equations without body forcing;:

ou+ (u-Vju+Vp= éVQu, V-u=0, u(z,xl,2)==+x. (2)

We enforce periodicity in the streamwise and spanwise directions, using the minimum lengths
L, = 1757 and L, = 1.27 determined by [15] needed to sustain turbulence in PCF at Re = 400.
The spatial resolution of 16 x 16 x 33 for the domain was found to suffice [15].

We ran simulations of this configuration using the software package Dedalus [7], with Re = 625
and initial data designed to excite the SSP. Figure 1 illustrates the first step of the SSP [43]:
streamwise vortices (left) advect the streamwise velocity contours (right), which would be straight
for the laminar flow U = yXx. The resulting spanwise dependence of the streamwise velocity
constitutes the streaks. These become wavy through a linear instability, shown in Figure 2, which
is the second step of the SSP. The third and final feature of the SSP is the generation of the
streamwise vortices by the nonlinear self-interaction of the wavy streaks.

Figure 1: Velocity field in the HKW cell as seen from the y, z-plane. Left: velocity vectors for
the cross-flow velocities, v and w, capture the streamwise vortices. Right: streamwise velocity is
advected by the vortices.

Figure 2: Snapshots of streamwise velocity containing wavy streaks in plane Couette flow in the
HKW cell [15]. The snapshots are taken in the x, z-plane with y fixed at the mid-plane. Time
increases from left to right.

3 Turbulent-Laminar Bands in Shear Flows

Experiments by [1, 9, 26] have revealed that transitions to turbulence (between laminar and turbu-
lent flow) in wall-bounded shear flows are characterized by the appearance of long oblique bands.
These bands have been observed both numerically and experimentally in plane Couette (PCF)
[26, 4, 12], plane Poiseuille [40, 41] and Taylor-Couette (TC) [9, 21, 11] flows, as well as in less
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canonical flows, such as annular pipes [17] and rotor-stator flows [10]. Turbulent bands in shear
flows appear as regular patterns [26], with a wavelength that is 20 times the length scale of the
shear layer. For this reason, they can only be accommodated in domains that have two large and
one small dimension. This is not the case in a pipe, whose circumference is comparable to its radius,
and so transitional turbulence in pipes does not contain bands, but rather puffs [44, 3], which play
a similar role.

A turbulent-laminar pattern in PCF is shown in figure 3, taken from [42]. The turbulent bands
are oriented obliquely with respect to the streamwise direction. However, the primary structures
within each band are still streamwise aligned. These correspond to the streamwise vortices and
streaks shown in the simulation of PCF within the HKW minimal flow unit illustrated in figures 1
and 2.

Figure 3: Turbulent-laminar pattern in PCF at Re = 350 calculated within a rectangular box,
which is tilted with respect to the streamwise direction at an angle that matches the angle of the
bands observed in experiment. Left: result of time-dependent simulation. Middle: Sketch of tilted
box used in these simulations, whose dimensions must be such as to accommodate the small-scale
streamwise streaks (red and blue bars) as well as the large-scale oblique turbulent bands. Right:
steady state calculated by numerical continuation. Left and middle panels from [4], right panel
from [28].

We now seek to understand the transition to turbulence in the absence of walls. Waleffe flow
(WF) [43], serves as a model that can be studied to understand this transition to turbulence. The

boundary conditions are stress-free
ou, 0,v, w =0, (3)

and the flow is driven by a trigonometric body force of the form sin(fSy). The resulting flow is
visualized in figure4, with the laminar solution represented by the dashed curve.
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Figure 4: Schematic of the laminar solution of Waleffe flow and domain setup.

Although the boundary conditions and setup of PCF and WF are different, the idea is to use
WF to mimic the interior of PCF. That is, we use WF to mimic the bulk flow of PCF excluding
boundary layers. Figure 5 shows the construction for this procedure. Figure 5a) compares the
linear laminar flow of PCF with the sinusoidal laminar flow of WF (though using different scalings
for the height and velocity, for reasons that will soon be made clear). Figure 5b) shows that the
mean of turbulent PCF at Re = 500 has boundary layers located at |y| 2 0.625, but that it is
almost linear in the interior region |y| < 0.625. Although laminar WF is sinusoidal, its turbulent
mean is linear, matching (when scaled as shown) the interior region of the turbulent mean of PCF.
We therefore use turbulent WF, a flow without any boundary layers, to mimic turbulent PCF over
its interior region. Figure 6 compares simulations of PCF and WF, demonstrating that oblique

a) b)

Figure 5: Comparison of PCF (solid red curve) with rigid boundaries and WF (dashed blue curve).
a) Laminar PCF is linear, while laminar WF flow is sinusoidal. b) The turbulent mean of PCF for
Re = 500 is linear in the interior |y| < 0.625, with boundary layers for |y| 2 0.625. The turbulent
mean of WF is linear throughout its domain, with no boundary layers. Thus, a scaled version of
WF flow can be used to mimic the interior of PCF.

turbulent bands also appear in the stress-free WF. Moreover, the bands have the same wavelength
and angle in the two flows. (The Reynolds number for WF has been redefined to use the reduced
height and velocity scales shown in Figure 5.) Notice the surprising feature that walls are not
necessary to reproduce the features of transitional turbulence in wall-bounded shear flows. All that
is needed is confinement and shear.

127



Figure 6: Simulations of PCF, WF and MWF. All three flows display turbulent bands with the
same angle and wavelength. The difference in Reynolds numbers is due to the fact that no scaling
has been carried out to compensate for the effectively much coarser resolution and consequently
reduced viscous dissipation of MWEF. Figure taken from [42].

This finding has both theoretical and numerical consequences. To explore this, inspired by
Waleffe’s model when illustrating the SSP in PCF, the velocity components are expanded in low-
order modes in y,

u(z,y, 2) = uo(x, 2) + ui(x, 2) sin(By) + ua(z, 2) cos(28y) + ug(z, z) sin(38y),
v(x,y, z) = vi(x, 2) cos(By) + va(z, z) sin(2Py) + vs(x, 2) cos(38y), (4)
w(z,y, z) = wo(z, z) + wi(z, 2) sin(By) + wa(z, z) cos(2Py) + ws(x, z) sin(35y).

As before, x and z are periodic directions while y is wall-normal and § = 7/2H, with H the wall sep-
aration. Incompressibility can be automatically imposed using a poloidal-toroidal decomposition,
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which in the horizontally periodic box takes the form

u= f(y)e:c +g(y)ez + v S ¢($7y72)ey + V X v X ¢(xay7 Z)ey’ (5)

where f(y)e; + g(y)e, is the mean field and purely a function of the wall-normal coordinate, y.
Furthermore, ¢ and 1 are the poloidal and toroidal potential functions respectively. Substituting
(5) into the Navier-Stokes equations, we obtain a system of 7 PDEs in (x, z,t) and 6 ODEs for
the non-constant means f and g. We note that Waleffe’s original model of the SSP used free-
slip boundary conditions and is contained within this system. Simulating this model Waleffe flow
(MWTF), one finds that the flow displays the same transitional behavior as PCF and fully resolved
WF, as shown in figure 6.

4 Continuous or Discontinuous Transition to Turbulence

A central question regarding the transition to turbulence is whether it is continuous or discontin-
uous. In the classic transitions to Rayleigh—-Bénard convection or Taylor—Couette flow via super-
critical bifurcations, rolls appear everywhere, with an intensity that is infinitesimal at onset and
increases with the Reynolds or Rayleigh number. In contrast, transitional turbulence is intermit-
tent: the turbulence is of a constant intensity, or nearly so, but it occupies only a small fraction of
the domain at onset, called the turbulent fraction F;. The question is whether F} is a continuous
function of the Reynolds number. Pomeau (1986)[25] conjectured that the transition might belong
to the universality class of directed percolation. This would imply not only that F; would depend
continuously on Re, but also that power laws with specific exponents would hold near onset. This
conjecture has been verified by Chantry et al. 2017 [8] for MWF (see Figure 7a)) and then by Klotz
et al. (2022) [19] in a very narrow TCF apparatus used to approximate PCF.

A closely related approach to studying the threshold arises from the dynamical behavior of
turbulent bands or puffs, more specifically their tendency to decay (returning to laminar flow) or
to split (propagating the turbulence, since the two resulting puffs or bands grow in size). These
are both statistical processes, with characteristic lifetimes that depend on the Reynolds number.
The threshold is defined as the Reynolds number at which the characteristic lifetimes of these two
processes are equal, i.e. the likelihood of splitting overtakes that of decay, marking a critical point
for sustained turbulence.

This analysis was first developed and carried out both numerically and experimentally for pipe
flow by Avila et al. (2011) [2] who determined that the threshold was Repipe = 2040. This was
followed by Shi et al. (2013) [33], who determined that the threshold for PCF was Repcr = 325
(where we have denoted Repcr merely by Re in other parts of this document), and by Gomé et al.
(2020, 2022) [13, 14], who determined that the threshold for sustained turbulence in PPF was
Reppr = 980 (see Figure 7b)). The difference in these thresholds is due primarily to the different
conventions (velocity and length scales) used for defining the Reynolds numbers in these three flows.
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2)

b)

Figure 7: a) Turbulent fraction F; as a function of Reynolds number Reywr for Model Waleffe
Flow. F; goes continuously to zero at the threshold Refwr ~ 173.75 with the directed percolation
power law [Remwr — Re§yp]®?8. From [8].

b) Timescales for decay (red and magenta, 74) and for splitting (black and purple, 75) as a function
of Reppr. The two curves display double exponential behavior and cross at Reppp ~ 980. Solid
symbols are computed using the Monte Carlo method (a large number of simulations) and hollow
symbols with the rare-event algorithm of Adaptative Multilevel Splitting. From [13].
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Secondary Shear Instabilities on Kelvin-Helmholtz Braids

Emma Bouckley

August 19, 2025

1 Introduction

Stratified shear flows are prevalent in nature, both in the atmosphere and ocean [18]. Owing
to this abundance, the instability of these flows has been extensively studied in the literature
[13]. In particular, the Kelvin-Helmholtz (KH) instability has been thoroughly investigated
as the dominant mode of instability when shear and buoyancy layers are of comparable
thickness. The most notable theoretical result from this body of work is the Miles-Howard
theorem [6, 11], which states that a sufficient condition for the stability is Ri > 0.25, where
the Richardson number Ri represents a ratio of stabilising stratification to destabilising
shear. The secondary instabilities that subsequently develop on the initial KH instability
play a crucial role in the transition to turbulence and the associated mixing [14].

We refer to one wavelength of the KH instability as a ‘billow,” consisting of a thick
region of overturning —the core— and a long thin region of shear —the braid— connecting
adjacent cores. Like the background flow, the braid is a region of stratified shear flow,
however, it is more complex; the braid experiences both a straining from the growing cores
of the primary billow and an accelerating shear associated with the tilting of the braid.
The stability of the braid is therefore complicated. Observations from strongly stratified
estuarine shear flow have suggested that most of the mixing occurs along these braid regions
rather than within the core as might be expected [5], suggesting the presence of secondary
instabilities along the braid. This guides our focus in this report to the occurrence of braid
shear instabilities.

Mashayek and Peltier [9, 10] illuminate the ‘zoo’ of secondary instabilities that may de-
velop on the primary billow, investigating the competition between braid shear instabilities
and those in the core. They hypothesise the emergence of braid shear instabilities beyond
a critical Reynolds number that depends on the Prandtl and Richardson numbers, and
the discussion presented there forms the major motivation of our work. Indeed, secondary
shear instabilities on the braid have been considered by many; most approaches develop
simple analytical models of braid flow, derived from the Boussinesq equations in a tilted
frame of reference, and compare these with the braid flow from simulations [3, 10, 12, 17].
These works often draw an analogy between the stability of the braid and that of a strip
of vorticity, drawing on Dritschel et al. [4] to better understand the conditions for braid
instability. Owing to the complexity of the braid flow, the problem is also related to the
growth of a primary KH billow with an accelerating background flow [7].

In some natural settings, we can expect high Reynolds numbers (Re =~ 10°), high Prandtl
numbers (Pr ~ 10%), and strong stratification (Ri ~ 0.20) [5], a parameter regime that is
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challenging to tackle experimentally and numerically. For this report, we wish to interrogate
the high Reynolds number regime, and as such we fix Pr = 1 and run 2D simulations to
ensure the flow is fully resolved. While 3D secondary instabilities are crucial, dominated by
a shear-aligned convective instability, the low remains 2D until the primary billow saturates
[1, 2]. The use of 2D simulations allows us to determine the initial mechanism of secondary
instability. However, once significant overturning occurs in either primary or secondary
cores, gravitational collapse is expected to induce a 3D transition to turbulence. Our 2D
results, therefore, can provide insight as to where we would first expect 3D turbulence.

In this report, we shall explore how the occurrence of secondary shear instabilities
changes as we extend current literature values to high Reynolds and Richardson number
through 2D direct numerical simulations (DNS). Following previous literature, we similarly
develop our own inviscid reduced model in a frame of reference aligned with the tilted braid,
however, we opt to include the often-excluded transient evolution of the braid to predict
the timescales on which we may expect shear instabilities to develop on the braid. With
this aim in mind, we begin by laying out the general analytical model framework in sec-
tion 2, and describe the corresponding theoretical and numerical braid analysis methods
in section 3; this is where we develop our reduced model for the braid. In section 4, we
investigate convergence of the simulations and the impact of resolution. We then quantify
the primary instability in section 5 before analysing the secondary instabilities in section 6.
Finally, a discussion of the results in presented in section 7.

2 Theoretical and Numerical Problem Set-up

Figure 1: The set-up for stratified shear flow, with sketches of initial velocity U(z) and
buoyancy B(z) profiles. The shear layer thickness is 2d.

Consider a 2-dimensional stably stratified flow with streamwise coordinate x and span-

wise coordinate z evolving in time ¢, as illustrated in fig. 1. The flow is assumed to be
incompressible with small density variations, valid for the Boussinesq approximation. Thus,
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incompressibility, Navier-Stokes and continuity give

V-u=0, (1)
Du 1

= ——Vp+bz+ vV, 2
i P p+bzZ+v (2)

Db
— =kV? 3
o = KV, (3)
where u is fluid velocity, p is pressure deviation from hydrostatic pressure, v kinematic
viscosity, x diffusivity of the density field and b = —pg/py is the buoyancy, a measure

of the deviation of density p from the background density pg multiplied by gravitational
acceleration g.

The flow is horizontally periodic in the domain [—L,/2, L,/2] and is subject to free-slip
(Ou/0z = 0, where u is the horizontal component of velocity) and no-flux conditions (w = 0
and 0b/0z=0, where w is the vertical component of velocity) at the rigid boundaries at
z = —L,/2, L,/2. The flow is initialised with parallel shear flow with the dimensional
profiles for velocity and buoyancy are chosen to be of the form

U(z)& = AU tanh (2) Z, (4)
B(z) = ABtanh (2) , (5)

where AU and AB are the dimensional change of velocity and buoyancy across the respec-
tive layers of equal thickness 2d.

This flow is well established to be unstable to the 2D Kelvin-Helmholtz (KH) instability
when the Richardson number, defined to be

dAB

Ri= (xe (6)

is less than a quarter [6, 11].

To non-dimensionalise the system, lengths are scaled with d, velocities with AU, buoy-
ancy with (AU)?/d, time with d/AU and pressures with pgAU2. Under this scaling, the
governing eqs. (1) to (3) are as follows,

V-u=0, (7)
Du 1
- _ _ b+ — V2
Dt Vp + bz + Rev u, (8)
Db 1 9

Dt PrRe ’

with initial conditions

U(z)& = tanh(z)&, (10)
B(z) = Ritanh(z). (11)
These equations include 3 dimensionless numbers: the Reynolds number Re = AUd/v

a ratio of inertial to viscous forces; the Prandtl number Pr = v/k a ratio of viscous diffusiv-
ity to mass diffusivity and the aforementioned Richardson number a ratio of stratification
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to shear. Note here that the non-dimensionalisation is chosen such that the Richardson
number is in the initial condition for buoyancy, as this is convenient for the chosen mod-
elling software, Oceananigans. In this report, we shall be concerned with flows within the
parameter space 103 < Re < 10% and 0.05 < Ri < 0.20. For brevity, we are not concerned
with the influence of the Prandtl number and as such it will be set to unity, although a
brief discussion of increasing Prandtl will be presented in section 7. A set of 16 simulations
form the basis of our analysis with parameter values Re = 103, 10%, 10°, and 10° and
Ri = 0.05, 0.10, 0.15, and 0.20. Case names are labelled ‘c_Re_Ri’ such that ¢_.103_0.05 is
a simulation with Re = 10% and Ri = 0.05.

Simulations are run using Oceananigans in Julia, a second-order centred-difference finite
volume scheme [19]. The simulation code is adapted from that originally developed by
John Taylor and made available on GitHub. The horizontal domain length L, is chosen
to be the wavelength of the fastest growing mode of the linear stability analysis for the
KH instability [15], therefore restricting the domain to one billow length and consequently
excluding the pairing instability which is the subject of other work but is not our focus
here [12]. The vertical domain length L, = 20 is chosen to be sufficiently large to minimise
the wall boundary effects on instability growth. The flow is instigated with a perturbation
of the fastest growing mode and noise with kinetic energy 10~* of the initial parallel flow
to kick-start KH instability growth. Due to the large Reynolds number range, we utilise
a stretched grid in the z direction to admit an increased resolution in the central region
while minimising the increased numerical load. The precise details of this grid and the
convergence of solutions under increasing resolution is discussed in detail in section 4.

3 Theoretical and Numerical Methods for Braid Analysis

The KH billow has a distinctive shape which can be easily illustrated, as in fig. 2a, composed
of two distinctive regions, which we shall refer to as the ‘core’ and the ‘braid’. The core is
the region of greatest interface displacement and consists of overturning where denser fluid
is lifted over lighter fluid. The braid is an extended sloping region of shear connecting the
bottom of one core to the top of the following core; the angle of inclination of the braid is
dictated by the core size. There are many secondary instabilities associated with the KH
billow, notably the 3D convective instability from the overturning in the core and the 2D
shear instability found on the braid, illustrated in fig. 2b, which is the focus of our report.
Shear instabilities are not solely restricted to the central braid region and in fact may occur
in the overturning layers of the core, however, for practicality we refine our consideration
to the central region of the braid that may be considered sufficiently detached from the
cores. For simplicity, we shall generically refer to a flow being either braid unstable or core
unstable, determined by the location of the initial secondary instability.

An example simulation of the development of the braid shear instability is presented
in fig. 3. Initially, solely the primary billow is developing (¢ = 50) before shear billows
are triggered on the braid (¢ = 75). These billows are advected into the core before the
subsequent collapse of the overturning cores. In order to capture and quantify these braid
shear instabilities, we must employ theoretical and numerical methods to analyse the braid,
which are presented in the following sections.
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(a) (b)

Figure 2: Schematic of the Kelvin-Helmholtz instability, with orange arrows indicating flow
velocity. Panel (a) illustrates the primary instability, and panel (b) illustrates secondary
shear instabilities on the braid of the primary instability.

Figure 3: Plots of buoyancy b for Re = 10% and Ri = 0.20 at time snapshots noted in
respective panel titles.

3.1 Theoretical braid analysis

Following the Corcos and Sherman [3] theory for modelling braid regions, we begin by
defining a new braid-aligned coordinate system tilted at an angle ¢ to the horizontal. Al-
though in reality the angle of inclination varies slightly along the braid, the variation is
insignificant (as we will see) and ¢ can be regarded as an average braid inclination over the
extended braid region. This frame of reference consists of an along-braid coordinate 2’ and

Figure 4: Schematic of the braid-aligned coordinate system.
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cross-braid coordinate 2z’ defined by

z' =z cos(¢) + zsin(g), (12)
2 = —zsin(¢) + z cos(e). (13)

where we have assumed that the inflection point of the braid is located at x =0, z = 0 and
therefore also at 2/ = 0. 2’ = 0. By taking the curl of eq. (8) to find the vertical vorticity
w equation, and transforming eqs. (7) to (9) to this tilted coordinate system, the governing
equations are now,

a b b 1

7 7 7 12 14
ot Yow Yar T RePrV b, (14)
Ow 0w ;0w ob ., 0b 1 _p

ot = “or Vo COS¢6$’ + Sm(ﬁ(%’ + ReV s (15)

where v/ and w’ refer to the braid-aligned velocities which are parallel and perpendicular
to the braid, respectively. Vorticity w is invariant under this rotation:

u' = ucos(¢) + wsin(¢) (16)
w' = —usin(¢) + w cos(¢) (17)
ou Ow ou Ouw

wz@z oxr 07  ox

(18)

Our braid region is a long and thin of flow, and so we assume that gradients in 2’ are
greater than those in 2/, and as such we may neglect the 9/9z" terms:

b _ ob 1 P

P2y =77 1
ot Yoy + RePr 0z'?’ (19)
Oow ;0w . ob 1 d%w

In particular, this assumption is adequate as long as the cores are sufficiently far from the
braid so as not to disrupt the field. Note that this also implies that vorticity is identical to
braid aligned shear w = du'/9z’.

We further assume a uniform strain field w’ = —v2’ local to the braid to be justified via
simulations later; we shall refer to « as the strain. This reduces egs. (19) and (20) to

o 9 1 9%

ot =% 92 " RePr o2 (21)
ow Ow . ob 1 0w

From this point, the literature differs in the method in which to make these equations
tractable. Corcos and Sherman [3] continue to consider a similarity solution for the full
egs. (21) and (22) at Pr = 1. Smyth [12] extends the analysis up to Pr = 7 by assuming
a steady-state solutions where straining is balanced by viscous dissipation. Mashayek and
Peltier [10] considers a frozen background flow, assuming a separation in timescales, to
perform a linear stability analysis on the braid.
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Much like Corcos and Sherman [3], we are interested in a transient analysis, however,
to probe the high-Re limit, we consider an inviscid regime, dropping the viscous diffusion
term. The buoyancy equation is now simply,

b b

o~
~

ot~ oz

which is solved with a self-similar form b = Ri tanh(z’/d(¢)) with an exponential decay of
buoyancy thickness 0(t);

(23)

S5(t) = e~ o, (24)

We may further define a braid-aligned buoyancy b = bcos(¢), which evolves as bV =
Ricos(¢)tanh(2'/0(t)). If the braid is strained for a sufficiently long time without the
onset of secondary instabilities, we may expect the braid thickness § to reach viscous length
scales. This limit would require the viscous diffusion term to be included to balance strain-
ing. This is the regime in which the analysis of Smyth [12] is valid.

The inviscid vorticity balance is

ow 0w ov’

— ~ 2 — + tan(¢)—. 25

ot =7 g g (25)
While the straining term will similarly thin the vorticity layer, the baroclinic acceleration
term is imperative for the expected generation of vorticity along the braid. We focus
on modelling the evolution of the strength of vorticity |w| or equivalently the magnitude
of braid-aligned shear (recall, w ~ du'/dz') and as such drop the straining term in the

following balance:
2 (|ow
ot \ |07

The initial value for shear is simply du'/9z’" = 1, found from the initial background flow. We
shall approximate that the evolution of strain is linear in time such that v =~ (dvy1/dt)t + o
where dv;/dt is the strain growth rate and 7 is the initial strain, both to be found from
simulations. Note, we will also assume a linear rate of increase for the braid angle ¢ =~
(dp1/dt)t + ¢o. The initial values for angle ¢ and strain vy are both small but non-zero
due to initial fastest growing mode perturbation.

We now have a semi-analytical model for shear 0u’/9z’ and buoyancy gradient 9b' /92’
evolution on the braid that requires only an input of initial value and linear growth rate of
¢ and v from simulation data. Our inviscid model may be summarised as

> ~ tan(¢)§z//. (26)

1d
3(0) = exp |5~ ] 27)
ob' | Ricos(¢)
72l = 5 2%)
ou’

dt. (29)

t d¢q oy
5| = l—i—/o tan (dtt+¢0> 97

We will explore the efficacy of this model and the constitutive assumptions later in section 6.
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Figure 5: Buoyancy field b for ¢.10°.0.20 at time snapshots noted in respective panel titles.
The left column is the original coordinate system, with the braid location marked by a
white line. The central region of the braid is highlighted in orange and corresponds to the
braid-aligned field illustrated in the right column.

3.2 Numerical braid analysis

In this subsection, we describe the numerical braid analysis which allows us to make quanti-
tative justification of the theoretical inviscid model laid out in the previous subsection. We
demonstrate this analysis on two snapshots of a simulation to show the possible outputs of
this numerical analysis (figs. 5 and 6).

The initial perturbation of the fastest growing mode is positioned so that the braid is
located in the centre of the domain, with the cores at the periphery. Therefore, we can
reliably locate the braid region in the central half region [—L,/4, L, /4]. To find the braid,
we follow the fitting procedure outlined in Smyth [12].

The braid is defined to be the region of strong shear and as such we find the location of
the braid in z for a given x coordinate as the point of greatest shear du/9z (or equivalently
the strongest buoyancy gradient 0b/Jz, assuming these are co-located) over the z domain.
We use the two neighbouring grid points to interpolate and find the true z value at which
the gradient is maximised. By systematically repeating this in the central half region we
construct a pointwise function zj(z) for the braid location. We choose to fit a cubic function
ze() to zp(x); this smooths out the braid and allows us to still locate the original braid as
small perturbations grow (see fig. 5).

Given the smoothed braid location z.(x), we find the z-dependent angle of inclination
of the braid ¢ from the gradient of z.(z) using tan(¢(z)) = dz./dz. As we shall see, the
braid is often flat enough to be considered of constant angle, and so we take the average
of qNS(x) along the braid to be representative of generic braid inclination ¢ which is directly
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Figure 6: Profiles of averaged buoyancy b and braid-aligned velocities v’ and w’ for
c_109.0.10, the flow in fig. 5, at t = 50. The black dashed line illustrates the assumed
uniform strain field.

correlated with the amplitude of the primary billow.

We focus again on the central half region of the braid = € [-L,/8, L;/8] to calculate the
braid-aligned flow. At each x point, transect are taken centred at and perpendicular to the
braid z. of length L, /4. This allows us to construct a grid of along-braid 2’ and cross-braid 2’
points. The spacing of this tilted grid is chosen to reflect the original simulation resolution.
At each grid point, we interpolate from the original simulation data to reconstruct a braid
-aligned field for buoyancy b and along-braid shearing velocity u’ and cross-braid straining
velocity w’, as is seen in fig. 5 where the braid is fixed at 2z’ = 0. This allows for clear
visualisation of the secondary instability growth.

Before the growth of secondary instabilities, the flow is assumed to be uniform in z’,
and so we average along x’ to construct profiles of b, v’ and w’ (see fig. 6). Here we can
clearly observe the strong shear profile in «’ and a straining velocity w’ which drives flow
into the braid. As previously discussed in section 3.1, we shall assume a uniform straining
field vz’. To find v, we fit a cubic curve to w’(z") and take v to be the gradient of this curve
at z = 0. Figure 6 shows the comparison of such a linear approximation to w’, which has
good agreement with w’ in 2z’ € [—1,1]. Since our braid is long and thin, this range can be
considered reflective of the braid region and all we need is agreement local to 2’ = 0. Given
such profiles for the flow, we can calculate further quantities for our analysis. In particular,
we will consider the gradients of these profiles for the buoyancy gradient and shear strength,
which can be used to calculate a local "braid Richardson number’ to be discussed later.

4 Convergence

Without an analytical solution for the non-linear evolution of the KH instability to compare
with, it is necessary to ensure the convergence of solutions when increasing the simulation
grid resolution.

We significantly reduced the numerical load by utilising a stretched non-uniform grid
in the z direction. This is a grid which is finely resolved in the central region, but coarsely
resolved on the boundaries. This method takes advantage of the simple parallel flow near
the z boundaries, which does not need to be as highly resolved as the central region where
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(a) (b) (c)

Figure 7: Results of the convergence test with increasing vertical resolution IV, as noted in
the legend for a simulation with Re = 10% and Ri = 0.20. Panel (a) illustrates the profiles
of grid spacing Az(z). Panel (b) and (c) illustrate the braid angle ¢ and strain v evolution
in time ¢, respectively. Vertical resolution N, given in the legend.

the primary billow grows. To be precise, the grid points are given explicitly by

7T L, 2k—N, -1 3 (2k—N,—-1
=——"" _sinh |[b| ———=—— — [ ———— for k=1,..., N,
2k 10251nh(5)sm {( N, 1 )}4—10( N.—1 >, or 7

(30)

where IV, is the number of vertical grid points and will be referred to as the vertical resolu-
tion. Here, the central grid point is 5 times more resolved than that of the boundary. This
stretched grid has been adapted from code provided by Amir Atoufi.

Generally, the vertical domain is roughly double the length of the horizontal domain, we
expect to have double the number of grid points in the vertical direction N, versus in the
horizontal direction NN, for uniform grids. Note that we are unable to use a stretched grid
in the x direction, and so for N, = 3072 we will default to a uniform grid with N, = 3072,
Az = 0.005. The x resolution is particularly important when the braid tilts, as it will
impact the cross-braid resolution. For the convergence test, we compare a simulation with
this stretched grid to simulations of various uniform spacings, ranging from N, = 512 to
4096 with N, = N, /2; the vertical grid spacing Az over z is compared in fig. 7a. A high
Reynolds number (Re = 10°) is chosen to ensure the limits of our simulation are resolved.
Note that we will identify the simulation by the IV, value.

Figures 7b and 7c illustrate the evolution of braid inclination angle ¢ and strain -~y
over time with increasing resolution. These figures show negligible difference in the early
evolution; clearly the prominent impact of resolution is not on the primary billow growth.
The notable difference occurs at late time when there are discontinuous jumps in ¢ and
v. Large jumps or variations in the results are due to the braid diagnostics as described
in section 3.2 becoming unreliable due to notable growth of secondary instabilities. For
the remainder of the report, numerical braid analytics will stop at the onset of secondary
instabilities to exclude this numerical noise but in this plot it serves to illustrate the major
impact of resolution — under-resolved simulations will prematurely instigate secondary
instabilities on the braid [8]. This is illustrated further in fig. 8, which shows snapshots
of the buoyancy field for each resolution at the same time. In the most finely resolved
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Figure 8: Plots of buoyancy b at t = 70 for increasing vertical resolution NV,, as noted in
respective panel titles (* indicates a stretched grid). Results of the convergence test with
increasing vertical resolution N, as noted in the legend for a simulation with Re = 10% and

Ri = 0.20.

case N, = 3072, the secondary instabilities are in early stages of growth and much smaller
than in other cases. In contrast, the least resolved case N, = 512, has large instabilities
on both the braid and the core. The wavelength of a billow is set by the braid thickness
0, which suggests ¢ is limited by the grid resolution, resulting in larger billows at lower
resolution. Clearly, grid resolution is important for these small scale effects, which may in
fact be triggered by grid noise rather than physical effects.

To further investigate the resolution dependent secondary instabilities, it is natural to
consider the convergence of braid-specific quantities. Figure 9 compares the shear profiles
ou' /07" at three time snapshots to illustrate the resolution dependency. In the first panel,
at early time, the braid region is clearly already too thin to be resolved by the N, = 512
simulation as there are only a couple of grid points over [—0.1, 0.1]. In the second panel,
at intermediate time, there is a significant difference with the two lowest resolutions and
the remaining cases. Both have insufficient grid points and as a consequence are unable
to correctly predict the thickness of the braid (the region of large shear change) which is
approximately 0.1; both cases are over-predicting and diffusing the braid. In the third
panel, at late time, the two lowest resolution simulations are excluded from the plot as the
secondary instabilities have already developed at this time. The braid has further thinned
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Figure 9: Profiles of braid-aligned shear 0u’/0z’ against cross-braid coordinate 2z’ at times
t =19, 38, 57.

and only the most resolved N, = 3072 case is still smooth. The braid thickness is a useful
indicator for whether grid spacing is small enough. Predictors for braid thickness will allow
us to say a priori the resolution required to accurately capture the braid and onset of
secondary instabilities.

We may estimate some minimum braid thickness that the braid can be strained to by
considering the limit in which viscosity balances straining, a theoretical limit explored in
Smyth [12]. This balance

ob 1 0%

— == ~ - 1
%92~ Re Pr o2 (31)
is achieved at a buoyancy thickness length scale § ~ (yRe Pr)~'/2. Our inviscid model
in eq. (24) shows that § has an exponential decay with e-folding timescale ~ (d; /dt)~/?
(assuming v = (d~y;/dt)t + 79). Therefore, the timescale for ¢ decay for linearly increasing
strain is approximately the same as for a fixed strain of v = (dvy;/ dt)l/ 2. We can use this

equivalence to improve the estimation for the viscous length scale:

1 1
[ |dn| ? ’

An estimate for strain in fig. 7c gives dv;/dt ~ O(1072). Therefore, fixing Re = 10° and
Pr = 1 we can approximate our viscous length scale as § ~ 1075/2 ~ 0.003 in this simulation.
Recall that this is the steady viscous length scale which we do not expect to reach, and as
such acts as a general suggestion rather than a rigorous length scale which must be resolved.
From fig. 7a, we note that the stretched grid N, = 3072 approximately reaches this length
scale in the centre, although not over the entire braid region. For assurance, it would be
beneficial to run a simulation at resolution which reaches this grid spacing over a larger
central region to ensure that we are sufficiently converged, however, that falls out of the
scope of this report and is discussed as part of future work in section 7. For the remainder
of this report, simulation are run with the stretched grid discussed here with N, = 3072
and N, = 3072.
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Figure 10: Plots of buoyancy normalised by Richardson number b/Ri for Re = 10° at t = 40
over a range of Ri noted in the panel titles.

Figure 11: The evolution of braid angle ¢ for full simulation range. Light to dark colours
represent increasing Re as noted in the legend and line style represent Ri: dash dot is
Ri = 0.05; dot is Ri = 0.10; dash is Ri = 0.15 and solid is Ri = 0.20.

5 The Primary Instability

The behaviour of the primary KH billow forms the background flow upon which the sec-
ondary instabilities form. As such, it is suitable to begin our analysis by characterising
the influence of Reynolds number and Richardson number on primary billow growth; we
present here conclusions which are well understood in the literature.

Figure 10 contrasts simulations of fixed Re = 10% with varying Ri. The difference
is striking; as R¢ increases, the billows are less developed with smaller amplitude and
little to no overturning in the cores. This is seen more quantitatively in figs. 11 and 12
where braid angle ¢ (a proxy for core amplitude) and strain v (a proxy for core rotation
rate) significantly decrease with increasing Ri. As the relative importance of stratification
increases (Ri increases) greater work is required to raise the denser fluid in the billow,
resulting in smaller and weaker cores. Similarly, the growth rate of the billow decreases with
increasing Ri. Recall that in the inviscid limit, the growth rate is zero when R > 0.25.

In contrast, the dependence on Re is less evident. Generally the curves in figs. 11 and 12
collapse on to the same Ri-dependent evolution for the Re range considered, and primary
billow growth can be considered independent of Re except for Re = 103. The difference
between Re = 10% simulations and all other simulations is more prominent at higher Ri.
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Figure 12: The evolution of strain v for full simulation range. Light to dark colours represent
increasing Re as noted in the legend and line style represent Ri: dash dot is Ri = 0.05; dot
is Ri = 0.10; dash is Ri = 0.15 and solid is Ri = 0.20.

(a) (b)

Figure 13: The initial shear perturbation profiles du/0z against z at (a) Ri = 0.05 and (b)
Ri = 0.20 with Re varying from 10 to 10° given by colours light to dark.

That is to say, Re dependence is more sensitive at higher R:. This point can be further
elucidated by considering the respective initial perturbations, which, for c_103_0.20, appear
to be notably different. This suggests that the subsequent difference in billow growth may
be influenced by the initial conditions which, recall, are chosen as the fastest growing mode
of the linear stability analysis.

Figure 13 illustrates the starting condition shear du/0z against z, comparing Re at both
a low and high Ri. Increasing Re at both Ri values acts to decrease the length scale of the
initial perturbation whilst increasing the magnitude of the central peak. In line with the
observations from figs. 11 and 12, there is a greater difference in Re at the high Ri.

To understand the notable difference in the evolution ¢-103_0.20, we calculate the viscous
length scale from eq. (32). Using dvy;/dt ~ O(1072), taken from fig. 12, the viscous length
scale is § ~ O(107!), which is of the same order as the initial perturbation; we are not
in an inviscid regime, and we expect strong Reynold number effects. At lower Ri, the
strain growth rate is larger and therefore decreases the viscous length scale and lessens the
influence of Re on primary billow growth. Since we wish to explore the inviscid limit using
large Re, we shall exclude Re = 103 simulations from further analysis.
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6 The Secondary Instabilities

Having established the overall growth and behaviour of the primary instability, we are
primed to consider the growth of secondary instabilities. Figure 14 presents all simulations
at a time when a clear secondary instability is evident. Within this, we identify three
notable behaviours: shear instabilities on the braid, our goal behaviour (c.105.0.20); shear
instabilities within the core (c_10°_0.10); and the core impeding upon the braid (c_10.0.05).

Although these are not distinct behaviours, for the purpose of identifying the onset of
shear instabilities on the braid, we classify simulations as either ‘braid unstable’ (shear in-
stability in the central braid region) or ‘core unstable’ (all other instabilities, including shear
instabilities in the core region), except for ¢.10°_0.15, which we shall consider ‘marginally
unstable’ due to the simultaneous braid and core instabilities. This classification is sys-
tematically laid out in table 1. While high Reynolds and high Richardson is generally
favourable for the secondary shear instability, this trend alone is insufficient to make a clear
distinction; there is evidently more subtlety to the classification, which we shall explore in
the rest of this section.

Table 1 also notes a time of instability onset. This time is the ¢ at which the secondary
instability can be seen in buoyancy field plots such as the ones in fig. 14, as such it should
only be considered an estimate. A more robust metric is required to make this measurement
more precise. One such metric could be to consider the power spectrum of kinetic energy
of the braid to identify the point at which small wavelengths begin to grow.

Ri/Re 10* 10° 109
0.05 Core unstable Core unstable Core unstable
at t =49 at t = 46 at t =45

0.10 Core unstable Core unstable Braid unstable
at t = 61 at t =55 at t =45

0.15 | Core unstable | Marginally unstable | Braid unstable
at t =173 at t =65 at t =49

0.20 Core unstable Braid unstable Braid unstable

at t = 112 at t = 87 at t = 68

Table 1: Type and time of instability onset
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Figure 14: Snapshots of the simulations after the onset of secondary instability over parameter range Re =
104, 10°, 10 and Ri = 0.05, 0.10, 0.15, 0.20.
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Figure 15: The evolution of braid Richardson number Ri’ in time ¢t. Re from 10* to 10°, as
noted in the legend. R: is given by respective panel titles as well as line style: Ri = 0.05
dash dot; 0.10 dot; 0.15 dash; and 0.20 solid. The end points are marked with symbols
noted in the legend, representing the type of secondary instability.

6.1 Braid Richardson, R’
We define the braid Richardson number to be
ov' o7

Ri' = —1
(O [02")

(33)

a local measurement of stratification averaged along the braid. Note that while Miles-
Howard theorem does not rigorously apply in this stratified shear flow due to the additional
straining and accelerating background flow, it is still common in the literature to consider
this quantity as a general indicator of stability. We track the transient evolution of R#’ in
fig. 15 and mark the secondary instability as classified in table 1.

Although this analysis focuses on the braid, in the early stages of the flow the braid is not
dynamically distinct from the primary billow. Consequently, Ri’ is effectively independent
of Re for t < 25, reflecting the fact that the growth of the primary billow depends only on
Ri. Initially, straining increases the stratification and stabilises the flow, directly raising
Ri’. Once shear begins to intensify, Ri’ rapidly decreases and differences in Re become
apparent.

While Ri’ is informative for understanding the physical mechanisms driving the flow,
it is insufficient to distinguish between braid-unstable and core-unstable flow. Ri’ remains
below 0.25 throughout, and there is no other critical value which signals the onset of braid
instability; since strain stabilises the braid, Ri’ < 0.25 is a necessary but not sufficient
condition of instability. Shear intensification becomes the dominant mechanism as Ri’ drops
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to low values (Ri’ < 0.05) corresponding to a weakly stratified flow. The weakly stratified
nature of the braid has been noted in literature [3], and an analogy has been drawn between
the stability of the braid and that of a strip of vorticity [4]. It has been shown that the
strain-to-vorticity ratio v/w is a useful metric for the instability of a vorticity strip, and
by analogy, the braid. In our reduced model, vorticity is approximately given by shear
S = 0u’'/97'; we introduce the notation S for simplicity.

6.2 Strain to shear, /S

Figure 16 presents the evolution of /S for all simulations. Much like the Ri’ evolution,
all simulations exhibit an initially Re-independent growth corresponding to primary billow
growth. To explore further the Re-dependence at later times, when shear dominates, we
compare simulation v/S to the prediction from our inviscid model. The inviscid model
requires an estimate of the primary billow growth in terms of ¢ and v. We use a linear fit
for both quantities, dependent only on Ri, as shown in fig. 17.

Figure 16 shows impressive agreement between the model and the simulation outputs at
Re = 10%. As expected, the inviscid model has increasing accuracy with increasing Re with
Re = 10* deviating from the inviscid regime at an earlier time; the baroclinic acceleration is
impeded by viscous effects. Our inviscid model effectively captures the initial stabilisation
due to straining, and the eventual destabilisation as shear acceleration dominates. These two
mechanisms —straining of the buoyancy field and baroclincially-driven shear acceleration—
govern the braid evolution. The time at which the relative dominance of these mechanisms
changes is surprisingly only weakly dependent on Ri, and is also predicted by the inviscid
model. The model also accurately predicts the timescale at which /S becomes small, where
‘small’ is approximately less than 0.01.

All braid instabilities in fig. 16 occur at a small v/S, which suggests that v/S =~ 0.01
could be a critical value for braid instability. Other studies have suggested comparably
values; Staquet [16] proposes v/S = 0.02, whereas Smyth [12] proposes v/S =~ 0.025—0.029.
However, low 7/S still is not sufficient to uniquely identify braid instabilities. We note, for
example, with Ri = 0.10 that both the Re = 10° and 10° cases reach comparably small
~/S but only the latter triggers braid instabilities. Figure 16 suggests that timing plays
a role in the prevalence of braid instabilities, as braid instability occurs earlier than other
instabilities. In particular, the evolution of ¢ in fig. 17 highlights that braid instabilities
occur exclusively before the primary billow reaches a maximum amplitude.

To clarify this point, fig. 18 compares primary billow growth to braid instability by
plotting ¢/dmas against v/S; the maximum braid angle ¢p,q, to primary billow saturation.
This allows us to distinguish secondary shear instabilities on the braid from other secondary
instabilities. Braid instabilities occur if a sufficiently small /S is reached strictly before
the saturation of the primary billow. In fact, if the primary billow saturates and reaches
the maximum angle (¢/@mar = 1), secondary core instabilities invariably develop. Coinci-
dentally, the marginally-unstable case c¢_10°_0.15 simultaneously reaches its maximum angle
and low /S, explaining the simultaneous occurrence of braid and core instabilities.

The development of secondary instabilities is governed by a race between primary billow
growth and baroclinic shear acceleration. In particular, the relative timescales of these
mechanisms determine which secondary instability is triggered; if they are comparable,
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Figure 16: The evolution of v/S in time ¢. Re from 10* to 105, as noted in the legend.
Ri is given by respective panel titles as well as line style Ri = 0.05 dash dot, 0.10 dot,
0.15 dash and 0.20 solid. The end points are marked with symbols noted in the legend,
representing the type of secondary instability. The red dashed line illustrates the inviscid
model prediction.

(b)

Figure 17: The evolution of (a) ¢ and (b) + in time ¢. Re from 10* to 10°, as noted in the
legend. Ri is given by line style Ri = 0.05 dash dot, 0.10 dot, 0.15 dash and 0.20 solid. The
end points are marked with symbols noted in the legend, representing the type of secondary
instability. The red dashed lines represent the linear approximation taken for use in the
inviscid model.
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marginal behaviour can arise. The timescale for primary billow saturation depends only
on Ri, whereas the timescale for the braid instability shortens with increasing Re. The
minimum timescale on which braid instabilities can emerge can be predicted using the
inviscid model. If this timescale is shorter than that of billow saturation, braid instabilities
are expected to dominate in the inviscid limit.

Figure 18: Braid angle ¢/¢max against 7/S. Re from 103 to 10° is represented by colour
varying light to dark. Ri is given by line style Ri = 0.05 dash dot, 0.10 dot, 0.15 dash and
0.20 solid. The end points are marked with symbols representing core unstable (red cross),
braid unstable (green circle) and both braid and core unstable (yellow square).

7 Discussion

In this report, we have explored the onset of secondary shear instabilities on the braids of
Kelvin-Helmholtz (KH) billows over an extended range of Richardson and Reynolds number
to investigate a parameter regime which is more reflective of real-world ocean or estuarine
conditions than previous studies. We achieved this through 2D direct numerical simulations
in Oceananigans using high resolutions, which allow us to approach the inviscid limit in a
way that has been previously inaccessible in the literature.

We differentiated between secondary shear instabilities that develop along the braid, and
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other secondary instabilities that arise within the core of the KH billow. To investigate the
mechanisms behind shear instabilities on the braid, we developed both numerical methods
and an inviscid analytical model to capture the transient evolution of the braid. The
stability of the braid is governed by a competition between the stabilising influence of
strain and the destabilising influence of baroclinic torque, accelerating the shear flow. This
balance is encapsulated in the ratio of strain to shear 7/S. The inviscid model captures
the timescale at which /S becomes sufficiently small to permit the onset of braid shear
instability. Crucially, v/S must decrease sufficiently before the saturation of the primary
billow; beyond this point, core instabilities emerge. In fact, 3D instabilities are expected to
dominate. Primary billow growth depends only on Richardson number, with more strongly
stratified flows growing more slowly, reaching smaller amplitude. Marginal behaviour may
occur if the timescales of braid instability and primary growth are comparable.

One particular implication of this report is the increased dependence on Reynolds num-
ber at high Richardson number. We are able to reach high Reynolds numbers (Re = 10°) in
order to attain an inviscid limit, but for lower values we observe notable differences. Thus,
accurate depictions reflective of real-world parameters, require high Reynolds number sim-
ulations; a Re = 10% flow cannot be accurately approximated using Re = 10* simulations to
reduce numerical load. This is numerically challenging and, in particular, remains beyond
current realistic capabilities for 3D simulations.

These high Reynolds number flows also require more finely resolved grids. Under-
resolved simulations can prematurely trigger secondary instabilities as the grid struggles
to resolve the rapidly thinning braid. To reach higher resolutions, we employed a stretched
grid which prioritised resolution over the central billow region to minimise the numerical
load. At our chosen resolution, we believe that the simulation effectively captures the pri-
mary and secondary instability growth, but further higher-resolution simulations will be
required to verify the results presented here.

The braid analytics rely on a visual assessment of when secondary instabilities have
developed and where they are located. This method is not necessarily quantifiable, and
as such an immediate next step will be to develop simple metrics to signify the onset of
secondary instabilities, as well as the saturation of the primary billow growth. One such
suitable metric for the onset of secondary instabilities could be the identification of peaks
in the power spectrum of the braid field. Similarly, primary billow saturation could be
represented by a maximum kinetic energy of the primary billow.

We are also interested in extending the Prandtl number to Pr = O(10%73). Increas-
ing the Prandtl number would decrease the buoyancy length scale, and therefore also the
viscous length scale, as we showed in eq. (32). This would require increasing the resolu-
tion of simulations, rendering the high-Re, high-Pr regime difficult to resolve numerically.
However, in this regime, we still expect the inviscid model to apply, and therefore for the
conclusions of this report to remain applicable. Higher Prandtl numbers lead to distinct
buoyancy and shear length scales, with the buoyancy layer becoming much thinner than the
shear layer. As a result, increasing Prandtl number can promote the conditions required
to instead induce a Holmboe instability [13]. It remains unclear whether this mechanism
could be triggered on the braid of a KH billow.

Further considerations may include exploring the influence of viscosity as the braid thins.
We noted that lower Reynolds number flows lead to an earlier deviation from the inviscid
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model prediction, likely due to the straining of the braid reaching viscous length scales.
Can we predict and measure accurately the time and length scales at which viscous effects
contribute?
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Optimal Heat Transport in Steady Rayleigh-Bénard
Convection With No-slip Boundaries

Theo Lewy
August 19, 2025

1 Introduction

Thermal convection drives fluid motion and transports energy across a range of natural and industrial
contexts. The most well-studied model to capture this effect is no doubt Rayleigh-Bénard convection,
where a fluid layer is heated along a lower plate and cooled along an upper plate. The heat can then
drive flow due to buoyancy forces, and the resultant convection amplifies the heat transport which
would otherwise be due to conduction alone. The amplification factor of heat flux is the Nusselt
number Nu, corresponding to the ratio of heat flux due to both convection and conduction to the
heat flux due to just conduction.

As originally found by Rayleigh, the motionless conductive state becomes unstable when the
dimensionless temperature difference, now named the Rayleigh number Ra, is above a critical value
[8], at which point a convection roll is produced supercritically. These states are steady, can support
different numbers of rolls horizontally and vertically in 2D and 3D, and become unstable at large
enough Ra. For sufficently large Ra, instabilities cause the system to transition to fully developed
turbulence.

Quantifying how Nu scales for turbulence at asymptotically large Ra is of particular interest,
and while a rigorous upper bound of Nu < O(Ra'/?) has been proven for all states [5], it is not
clear whether turbulence can attain this bound. There are 2 scalings commonly discussed: the
‘classical’ regime Nu ~ Ra'/? where laminar thermal boundary layers restrict heat transport, and
the ‘ultimate’ regime Nu ~ Ra'/? with turbulent boundary layers, and the upper bound is attained.
The Ra currently accessible in experiments and in numerics is not sufficiently large to conclusively
prove either regime due to the stiffness of the system. In contrast, coherent convection rolls can
be studied numerically and theoretically at larger Ra, allowing the asymptotic heat transport to be
investigated with comparative ease.

For no-slip boundary conditions with fixed Ra (Ra > 1) and Prandtl number Pr, the heat flux of
rolls has two maxima as the aspect ratio I" varies [10—12]. These are the global optimum and the local
optimum, which globally and locally maximise Nu, respectively. Both solutions are associated with
an asymptotic Nu and I" dependency on Ra. Focusing on global optima, two different asymptotic
regimes have been suggested that are in opposition. Scaling arguments in [4] suggest a regime with
I' ~ Ra~%° and Nu ~ Ra'’® in Taylor-Couette flow, which is equivalent in the narrow gap limit to
Rayleigh-Bénard with Pr = 1. In contrast to this, global optimals computed numerically at Pr = 1
instead suggest I' ~ Ra~'/3, while agreeing with the Nu scaling [12]. Neither result is clearly
asymptotic, and so we turn to matched asymptotics to help identify the asymptotic scalings. This
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involves splitting the system into smaller asymptotic regions, identifying the asymptotically valid
equations in each region, and matching fields between them. The limiting parameter drops out of
the resulting set of reduced equations, allowing the asymptotic structure to be computed.

Matched asymptotics were successful in the stress-free case, where the roll structure and Nu can
be computed without needing to converge solutions at high Ra, where boundary layers are narrow
and hence high resolution is required [3]. There, the asymptotic equations were simple enough to
be solved numerically, giving the Pr independent result Nu = ¢(I')Ra'/? for rolls with ' = O(1),
which is also verified numerically [13]. Even when the asymptotic equations are not numerically
simple to solve, scalings are still obtainable using matched asymptotics, as was the case for the
no-slip local optimal (Wen, Takla, Goluskin and Chini, unpublished at the time of writing).

Mean-zero heating and cooling, where sources and sinks of heat are internal rather than at the
boundaries [1, 6, 7], is another system that supports convection rolls. This setup can achieve ultimate
turbulence Nu ~ Ra'/? [1, 6] as the heat flux is not limited by laminar boundary layers. The Nu
upper bound however is higher than in the Rayleigh-Bénard system, with Nu < O(Ra) here, with
the bound attained for a stress-free convection roll state [7]. Whether the bound is attained in the
no-slip case is not known.

In this report we begin by describing the Rayleigh-Bénard system in section 2. We then use
matched asymptotics on a convection roll in section 3 to split the domain into multiple regions, and
identify the asymptotic scalings and equations valid in each region in the limit Ra — oo. To validate
our suggested scalings we require converged rolls at large Ra, and so in section 4 we describe our
implementation of the Newton-GMRES algorithm. While the extreme Rayleigh-Bénard rolls were
not converged over the summer that this report covers, we verified the code worked by converging
rolls in the no-slip mean-zero heating and cooling system. This system is discussed in section 5, and
we lastly conclude in section 6.

2 Formulation

We consider the steady 2D Rayleigh-Bénard system with wall-parallel direction ¥ and wall-normal
direction Z. The equations governing the streamfunction y, vorticity w and temperature T are

Pr 12
AW w — O d,w = (R—) VZw + 0,T, (1)
a
VY = —w, (2
W0, T — Oy d,T = (PrRa)” 7>V, (3)

with V2 := 02 + 62, and velocity u = uf + wf = d,y% — d,y%. These equations are non-
dimensionalised using the domain height %, the imposed temperature difference A, and the free-fall
velocity y/gahA, where « is the coefficient of thermal diffusivity, and g is the acceleration due to
gravity. Convection rolls are computed in a vertically bounded and horizontally periodic domain of
size [0,T°] x [0, 1], where I" then corresponds to the aspect-ratio. The non-dimensional parameters
of the system are the Prandtl number Pr = v/« and the Rayleigh number Ra = garh?A/kv, where
is the thermal diffusivity and v is the kinematic viscosity. This system is solved subject to no slip
and isothermal boundary conditions on the top and bottom boundary

ll/lz:(),l =0, az‘/’lz:&l =0, T|z=0 =1, T|z=1 =0. 4)
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Figure 1: Temperature field of an optimal convection roll at Ra = 1.8 x 10'2, Pr = 0.1, with
I'* = 0.0377. This roll is narrow, but has been plotted in rescaled coordinates to show its structure
more clearly. The inset zooms in further on the separation zone structure.

These equations support convection roll structures that have a centro-rotational symmetry € and a
reflectional symmetry R with

Q(lﬁ’w’T)(x’Z) = (‘J/’w’ —T)(F/Z—x,l _Z)7 (5)
'R((//’ (U’T)(x7 Z) = (—l//,—a),T)(F—X, Z)‘ (6)

The latter symmetry implies
Yle=or/2 =0 wlx=0,rj2=0 0xT|x=0,r/2 = 0. @)

We show an example convection roll in fig. 1, where the symmetries of the thermal field can be seen.
An important conserved quantity of the system is the Nusselt number, Nu, which quantifies the total
heat transport of the system relative to the heat transport due to conduction alone. This is given by

Nu =1+ (PrRa)""*(Tw) = 1 — (PrRa)"> (To¢) (8)

where (-) denotes a volume average. A useful equivalent form is

I
Nu == / —0,T — (PrRa)"*T o ydx 9)
0

which can be evaluated at any z € [0, 1] to give the same value of Nu. This z-independence can be
seen by integrating eq. (3) with respect to x, yielding that the derivative of eq. (9) with respect to z
vanishes. Equivalence of the two expressions then follows by averaging eq. (9) in the z direction.
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Figure 2: The asymptotic structure of the global optimal convection roll, showing the bottom half of
aroll with anticlockwise flow. Right: The structure of the outer boundary layer shown in coordinates
(X,Z) = (Ra*x,Ra*z).

3 Asymptotics

We now aim to identify the asymptotic structure of the global optimal rolls in the asymptotic limit
of Ra — co. Previous work in [4] identified a regime in which the aspect ratio I' ~ Ra~%/® and the
heat flux Nu ~ Ra'/3, and described its structure. We believe that this regime was not asymptotic,
with a different state achieved at Ra larger than was considered there. To instead verify the aspect
ratio scaling found numerically in [12] of I' ~ Ra~!/3, we use matched asymptotics. Both regimes
find Nu ~ Ra'/.

The regime of [4] finds a core region, an outer boundary layer, an inner boundary layer, and a
plume confined within the outer boundary layer. We, in addition, identify a separation region, and
a separation boundary that sits between the separation region and the outer boundary layer bulk,
and we show this proposed asymptotic structure in fig. 2. Motivated by the conflicting aspect ratio
scalings [4, 12], we write I' = Ra~SL with L = O(Ra") and s > 0 is unknown. The scaling analysis
of [4] proposed that s = 2/9, while in contrast s = 1/5 is suggested by the numerical work of [12].
We do not assume any aspect ratio scaling a priori.
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3.1 The core

In the core we have that x ~ I" and z ~ 1, and we assume that to leading order all fields are
independent of z. Hence we use an ansatz of

1
v =y2X)+yl(X,2) w=0d(X)+wi(X,2) T= 5+ T2(X) + T} (X, 2), (10)
where X = Ra’x, 2 > ¢, 0 > w! and T? > T!. On lengthscales with X,z = O(1), we scale
the vorticity advection with horizontal vorticity diffusion and buoyancy in (1) and scale thermal

advection with horizontal thermal diffusion in (3). We introduce the unknown y with ¢ ~ Ra?,
and by considering the dominant balance we obtain the scalings

Ve = Ra"JO(X) + Ra* V2L (X,2), we=Ra®>*&%X) + Ra>* 23 (X,z), (1)

T, = L+ RO 1 RaTITLX. ) (12
with all tilded fields O(1). Under these rescalings, (1)-(3) become
0:0% (0x % + Ra* 7okl ) - (0xl + R~ Paxit) 0,01 =
o2 (e ) (0 e ) (T2 80T

(0% + Ra™282) (92 + R "125L) = = (@) + Ra 1201, (14)

0.0 (aXTB + RaS—V—I/ZaXTg) - (8X(/78 + Ras—y—l/zaxlﬁ;) 0.7, =
pr12 (a§ + Ra‘z“'(‘)g) (TO + Ras—7—1/2fj) . (15)

Asymptotically, we assume s > 0 and s —y — 1/2 < 0 and so the governing equations in the core are

0L ox@° — ox§la.@) = Pr'i2aa’ + oxT?, (16)
Ox° = -, (17)
O LaxT? — axy 20, T! = Pro1292T0. (18)

These equations are solved subject to the boundary conditions

Ullx=00/2=0 @.lx=0r2=0 0xT'|x=0./2=0, (19)

for i = 0, 1. The fact that we have treated the leading order fields in this region as z independent
sets our asymptotics apart from those of [4], where this was not the case. There, the same dominant
balance enforces that . ~ Ra*Y2 w, ~ Ra* Y2 and T, — % ~ Ra*~!, while our scalings are
Ve ~ Ra”, we ~ Ra**Y and T, — % ~ Ra**7~12 where v is an extra degree of freedom to be

solved for. The scalings of [4] are then recovered if one simply sets y = s — 1/2.
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3.2 Bulk of outer boundary layer

In the bulk of the outer boundary we have that x ~ I"and z ~ I, and so
1
Y =vor(X,Z), w=we(X,2), T= §+Tob(X,Z), (20)

with Z = Ra®z. Matching with the core suggests that all variables have the same leading order
scaling as in the core, and hence

- ) 1 . -
Yob = Ra"Uop(X,Z), wop = RaA*V &op(X,Z), Top = o Ra* Y 12T,,(X,Z).  (21)

These rescalings result in exact governing equations of

Ra"' 2 (320 0b0x@ob — OxWob0z@ob) = Pr'/? (3;2( + (‘)%) @ob + OxTob, (22)
(6}2( + a%) (ﬁob = —Wop, (23)
Ra”*" 2 (02 0pOxTop — Oxop02Top) = Pr='/? (8)2( + 8%) Top. 24)

In the bulk of the outer layer, provided y + 1/2 > 0, we therefore asymptotically obtain

aZ‘ZobaX(Dob - 8X1]}0b82a~)0b = O, (25)
(8;2( + 8%) Yob = ~@ob, (26)
02U ob0xTob — OxWordzTon = 0. (27)

meaning vorticity and temperature are advected around the layer. This layer borders the core, the
plume, the inner boundary, and the separation boundary. We now briefly introduce the separation
boundary, so that we can concretely write down the boundary conditions that are valid for the bulk
of the outer boundary layer.

Asymptotically, this separation zone boundary sits within the bulk of the outer boundary, at
Z = C(X), where C is unknown but invertible. The curve intersects the bottom boundary at X = X
(i.e., C(Xp) = 0) and the right boundary at Z = Z; (i.e., C~'(Zy) = L/2). This curved layer will
connect the inner boundary layer to the plume of the outer boundary. The boundary conditions in
the bulk of the outer boundary are therefore

Yoblx=0 =0, Yoblz=0.x<x, =0, Woblz=c(x) =0,
Yoblx=0/2.2>20 =0,  Woblzoeo = Yeclz0- (28)
3.3 Inner boundary layer

The inner boundary layer sits within the outer boundary layer, with X ~ 1 and Z ~ &, where ¢ is
unknown, and so

'ﬁ:ll/i(XJI)’ w=wi(X,77), T=T1(XJI)’ (29)
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with 7 := Z/e. We scale advection with vertical diffusion for both vorticity and temperature, and
motivated by the fixed thermal boundary condition, consider O (1) temperatures. This yields

Ui = Ra™ e\ (X,n), w; = Ra®V2s730;(X,n), T =Ti(X,n). (30)

Substituting this into (1)-(3) gives

8,71/7[5)((1),' — axlﬁiancf)i = Pr1/2 (828)2( + 872]) w; + 85R01_3saxfi, (31)
(6203 + 02) i = -, (32)
OniidxT; - Ox 0, T; = Pr'V2 (203 + 93 ) T. (33)

Assuming £ < 1 and e’ Ra'~3% < 1, these equations asymptotically become

anlziax(f)i - axl;ia,]d)i = Prl/za,%(f)i, (34)
O = Gy, (35)
OyioxT; — Ox;0,T; = Pr='?0; T, (36)

which decouples the vorticity from the temperature field, with eq. (34) being the Prandtl boundary
layer equation. We now obtain € by matching ¢ between the inner boundary layer and the outer
boundary bulk. We have lim,, e ¢; = lim, e Ra™"2e 1 (X, 5) ~ limz_o Ra*¥op(X,Z) =
limz_,0 Yo, and as is the case in a Prandtl boundary layer we assume /; (X, ) ~ and 5 (X, Z) ~
Z. This yields

Ra” ~ Ra™'?¢72. (37

In addition, we consider the Nusselt number Nu from (9). As Nu is independent of z, it must scale
the same when evaluated in the core and at the lower boundary. In the core Nu ~ Ra**?7, while at
the boundary we have Nu ~ Ra’s~!, provided the heat transport at z = 0 is dominated by the inner
boundary layer. Together these yield Ra” ~ Ra~3%/2¢=1/2. This result, along with (37), gives the
key scaling

Nu ~ Ra/ 3,

as well as :
s—1/3 = D¢+ —

s Y s 6
It is worth mentioning that these scales are derived using only knowledge of the core, the bulk of the
outer boundary, and the inner boundary layer. The aspect ratio scaling is also not required to derive

this. The boundary conditions used with (34)-(36) are

€ =Ra

'ﬁi|1]:0 =0, 61]'75i|7120 =0, 7':i|1]:O =1, 7':i|77—>00 = 1/2’ (38)

lpiln—mo ~ Yoblz—0+ will}—)oo ~ Wopl|z—0+ (39)

where the final two boundary conditions correspond to exact asymptotic expressions in the limits
n — oo and Z — 0 rather than when Ra — oo.
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3.4 The boundary of the separation region

There is a thin boundary layer that surrounds the separation region, and connects the inner boundary
layer to the plume of the outer boundary. Asymptotically, this boundary layer sits within the bulk of
the outer boundary, and follows the line Z = C(X), where C is unknown and invertible. The curve
intersects the bottom boundary at X = Xy (i.e., C(Xp) = 0) and the right boundary at Z = Zj (i.e.,
C~'(Zo) = L/2). To account for the curvature in this region we introduce 2D Frenet orthonormal
coordinates (s,n), with arclength s and perpendicular distance n. These coordinates correspond
to following the curve Z = C(X) for an arclength of s to reach an ‘anchor point’ X, (s), and then
traversing a distance n perpendicular to the curve. We use these coordinates as the separation
boundary narrows as Ra — oo, and so the lengthscale on which n varies is asymptotically smaller
than that of 5. We first precisely define our new coordinates. The arclength s is defined by

Xa
s(Xg) = ‘/X V1+C7(&)32dé

where the prime denotes a derivative. The coordinate s = s(X,) is monotonic, and hence is invertible
with inverse X, = X, (s). We then can convert from (s, n) coordinates to (X, Z) via

(X,Z) = (Xa(s),C(Xa(s)) + nit

with curve-normal vector i = (=C’(X,(s)),1)/4/C’(X4(s))2 + 1. The coordinate scale factors
required to change the basis of the governing equations are then

0X 0X
s =|l—|=0-x«kn), h,=|—|=1
h ‘(9s (I=wm), h ‘(’)n

where k = C”/(1 + C’?)3/? is the curvature. These expressions allow us to write the governing
equations in the new basis, with factors of & appearing with derivatives. To simplify our equations,
we note that k = O(1) and the layer is asymptotically narrow with n < 1, and hence hy; — 1. This
means that locally the new coordinate system is equivalent to using a Cartesian basis aligned with
the curve-tangent and curve-normal (i.e., rotate the basis by 6 = tan~!(C’(X,)), and so, neglecting
curvature, the governing equations are

1/2
P
Ol 05w — Ay Oy = (R—;) ((932 + (9,%) w+Ra*(cosfds +sinho,)T, (40)
Ra* (ag + a,%) = —w, 1)
80T — 830 8,T = (PrRa)~'"? (53 + a,f) T. 42)

This region has s ~ 1 and is asymptotically narrow with n ~ y, where u < 1 is to be determined.
This motivates the use of the coordinate ¢ := n/u to be the appropriate across-layer coordinate in
this region. We scale advection with diffusion across the layer, and set T = O(1), motivated by
matching from the inner boundary layer. Thus,

Wb = Ra™\PuWigp(s,0),  wsp = Ra* P u305,(5,0), Tap = Top(s,0).  (43)
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This rescaling then gives
OcshOsosty = OOz @y = Pr' (1207 + 6F) Dy + P Ra ™ (cos 00, + sin 0.9) Ty, (44)
(#253 + aé%) Usb = ~Dsb» (45)

a{&sbasfsb - as'ﬁsbagffsb = Pr_l/z (/12852 + aé) st- (46)

Asymptotically, assuming x4 < 1 and u*Ra'=3% < 1, we obtain the reduced equations

O sbBs@sp — OO By = Pr'/>07 g, (47)
aglﬁsb = —QWgp, (48)
8{&sb8sst - 8Slpsba{’fsb = Pr_l/zaéfsb- (49)

This region connects to the inner boundary at (X, Z) = (Xp,0), and to the plume at (X, Z) =
(L/2,Zy). Matching the scales of ¢ and w with their scales in the inner layer enforces that
u =¢€ = Ra’ =173 The relevant boundary conditions for (47)-(49) are Ty| ¢ -0 = 1/2, matching
conditions on ¢ and w to their values in the outer boundary as { — oo, and matching conditions on
W, w and T to their values in the separation region as { — —oo.

3.5 Plume

In the plume we have that X ~ ¢ and Z ~ 1, where ¢ is unknown, and so

l//:gl/p()(,Z) Q):wp(X,Z) T=Tp(X’Z)’ (50)

with y = (X — L/2)/6. On lengthscales with y,Z = O(1), we scale vorticity advection with
horizontal vorticity diffusion in (1), counterintuitively assuming that buoyancy does not affect the
plume to leading order. We also assume 7 varies on O(1) as it is connected to the separation
boundary. We therefore get

Wp=Ra 267, (x,2), w,=Ra**630,(x.2), T,=T,(x,2). (51)

where the exponent s is currently unknown. These scalings also imply thermal advection balances
horizontal thermal diffusion in (3). Under these rescalings, we obtain

0200y - 00026, = Pr'? (02 + 6°03) G, + Ra' 60, T, (52)
(02 +6%2) 6 = -Gy, (53)
d20 0, Ty — 8,0 ,07T, = Pro112 (aj + 52(9;) 7. (54)

Provided § < 1, and 6*Ra'—3* < 1, which we will eventually verify, we asymptotically obtain

020, 0yBp — O p02Gp = Pr'?0%0,, (55)
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Oy = —0p, (56)
02,0y T — 0, p02T, = Pro'0%T,. (57)

This region therefore acts like a jet, advecting and diffusing vorticity and heat from the separation
boundary region at Z = Zy. Matching ¢ and w between these two regions then gives § = u =
Ra*~1/3, The boundary conditions used with (55)-(57) are

‘/;pl/\/:O =0, (Z)pl)(:o =0, a)(Tp|X=O =0, Tp|,\(—>—oo = 1/2, (58)

wp |/\(—>—00 ~ '7[’0b|X—>L/2" wp |/\(—>—oo ~ wole—>L/2‘- (59)

The equations that are valid within the plume, separation boundary and the inner boundary all
balance the same quantities, with diffusion across the layer balancing advection. In all cases, the
layer thickness is the same.

Asymptotically, the heat transport within the outer boundary layer occurs through the plume and
hence we should expect that Nu should scale the same in the plume as it did in the core and inner
boundary layer. The scalings we have derived are consistent with this, with the convective term in
eq. (9) also giving Nu ~ Ra'/.

3.6 The separation region

The structure of the separation region is complex, and the asymptotic structure is not clear from the
data currently at our disposal. In fig. 3 we show the vorticity of the separation region, and it appears
to contain a thin boundary layer that splits it in half. It is unclear whether the asymptotic state has
its separation region divided further than this.

Interestingly, the separation region is still evolving at the largest Ra we have access to. In fig. 4
we show the zero streamlines, corresponding to the border of the separation region, for rolls with
1.7 x 10" < Ra < 1.7 x 10'2. We see that the region contains a smaller separation region which is
still evolving with Ra. At the largest Ra considered, an even smaller tertiary separation region can
be seen. The lack of a (simple) clear asymptotic regime here makes it difficult to perform matched
asymptotics.

3.7 Assumption validity

We made a number of assumptions in our analysis when we considered which terms are asymptoti-
cally dominant. These were

e >0,
* v+ 1/2>,
e &Ra'™3s, /,14Ra1_35, 5*Ra'™3 <« 1.

As we derived that the inner boundary layer, separation boundary and plume have the same thickness
scale e = u = 6 = Ra*~'/3, and that y = —2s + 1/6, these assumptions are satisfied so long as
0<s<2/9.
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Figure 3: The vorticity in the separation region at Ra = 1.7 x 10'2, Pr = 0.1. The curved separation
boundary separates the outer boundary from the separation region

3.8 Final scalings

The asymptotics described suggest the scalings in each of the regions follow those shown in table 1.
These scalings are functions of s, which was defined to be the exponent of the aspect ratioI" ~ Ra ™.
While we have not recovered the value of s explicitly, we can verify whether a given s is reasonable
by considering how well the predicted scales in each region are seen in numerically computed rolls.
We look over a decade of Ra, and look for good collapse of a selection of fields in each region to the
scalings predicted. There are two suggestions for s that we check, the s = 1/5 suggested numerically
in [12], and the s = 2/9 from the scaling analysis of [4].

We show the rescaled fields in regions where the scalings are more sensitive to the choice of s in
fig. 5 (i.e., the coefficient of s in table 1 has larger absolute value). The region that is most sensitive
to the value of s is the streamfunction in the core ¢, and we see that the collapse to the scalings
predicted by s = 1/5 is better than that of s = 2/9. This trend is visible across each of the shown
fields, although it is harder to discern for the other ones where the scaling is less sensitive to the
value of s.

While our scalings provide further evidence that s = 1/5, and hence that the aspect ratio is
I' ~ Ra~'73, the rolls are not clearly in an asymptotic regime with all fields collapsing perfectly.
The adjustments seen coincide with the separation region evolving significantly as discussed in
section 3.6. To demonstrate more conclusively that s = 1/5, and that the matched asymptotics
presented here are valid, rolls computed at yet higher Ra are required, so that a clean asymptotic
structure can be identified. We now aim to find global optimal rolls across another decade of Ra.

166



Figure 4: Contours of i = 0 for the Ra shown in fig. 5, marking separation regions. As Ra increases
(shades lighten), a secondary separation region can be seen to grow and change shape. At the largest
Ra, atertiary separation region appears at x/I" ~ 0.4. This shows that this region is still evolving at
Ra =1.8x 10"

Ra®) v w T—% X z
c -2s5+1/6 1/6 s—1/3 -s 0
ob -25+1/6 1/6 s—1/3 -s )

P -s—1/6 —-s+1/2 0 -1/3 -s

i -s—1/6 —-s+1/2 0 -s —1/3
Ra®) W w T—% x’ 7

sb -s—-1/6 -—-s+1/2 0 -s -1/3

Table 1: Scalings in each region as a function of s, for the global optimal with aspectratioI" ~ Ra™*.
The separation boundary (sb) coordinates (x’, z’) correspond to rotating (x, z) so that they are aligned
with the tangent and normal of the layer respectively.
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Figure 5: Rescaled fields i in the core, ¢, and w), in the plume, and ¢; in the inner boundary layer
for Ra =1.7x10'",3.2x 10", 5.6 x 10", 1 x10'%, 1.7 x 10'? (dark to light) and Pr = 0.1. Arrows
denote directions of increasing Ra. Top row uses predicted scalings when s = 1/5 as suggested by
[12], and bottom row when s = 2/9 as in [4].
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4 Converging Solutions

The states converged previously with Ra < 3 x 10'2 (Pr = 0.1) [12] have not yet reached an
asymptotic regime, with the separation zone still evolving with time. To provide further evidence
that the suggested aspect ratio scaling is I' ~ Ra'/>, we now aim to converge rolls at yet larger
Ra. To do this we use the Newton-GMRES algorithm, as well as the open source software Dedalus
[2]. We use a number of techniques to optimise our code to handle the extreme states with large
separation of scales.

We discretise the velocity fields u, v and the temperature field 7 using N, Fourier modes and
N, ultraspherical modes, and construct the state vector X by concatenating the spectral coefficients
of each field. To converge a solution X we use Newton’s method to find a zero of the nonlinear
function F(X), corresponding to the residual of the primitive governing equations (i.e., equation
(2.1) in [12]) and boundary conditions. This residual can be readily accessed in Dedalus. Starting
from an initial guess Xy, we use Newton’s method to produce a vector § X that informs an improved
state Xo + 0X. To do this we set

0~ F(Xo+6X) = F(Xo) + 0F (X0)6X + 0(|6X|?),

where 0F is a Jacobian matrix found using symbolically computed Fréchet derivatives that are
accessible in Dedalus. This Taylor expansion then shows that the perturbation 6 X should be chosen
to satisfy

0F (X0)0X = —F(Xp).

Ideally, one would invert the Jacobian matrix dF to find 6 X, however this is not feasible due to the
size of the matrix (its size scales linearly with N, and N,, both of which are large). Due to this,
we use the iterative GMRES method instead [9], which is used to solve linear algebra problems of
the form Ax = b, with matrix A and vectors x, b. Importantly, the number of GMRES iterations to
converge x can be intractably large in cases where the Jacobian 0 F has large condition number and
is therefore ill-conditioned. This happens when there is a large separation of scales in the final state,
as is the case in the extreme rolls that we seek.

We use a number of techniques to optimise the algorithm. One significant method was precon-
ditioning, which dramatically reduces the number of GMRES iterations needed for convergence. A
preconditioner M should have the property that it is a rough inverse of the Jacobian, with MOF ~ 1,
with I being the identity. If one can be found, then left preconditioning means solving

[MOF] 0X = — [MF(Xo)]

using GMRES, where the matrix MJF is now better conditioned (i.e., it has a lower condition
number) than the original dF. To construct M, we will construct an approximate Jacobian d F which
we invert. We linearise our equations around the best guess Xy to give F, and then we zero terms
to produce the approximate Jacobian dF so that it is sparse enough to invert using LU factorisation,
yielding M = 0F~'. We promote sparsity by 1) zeroing all elements of X, corresponding to Fourier
modes in the £ direction above a certain wavenumber (typically the first O(10) are kept) and 2)
zeroing all elements of AF that are below a certain value.

Other techniques were also used. The previous algorithm used to converge rolls [12] used
Chebyshev polynomials in the z direction, while we use ultrasphericals. This produces more
sparsity in the Jacobian dF. We also use a matrix-free formulation, in which the matrices 0 F
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and M are never explicitly constructed, rather only their action on a state vector is known. This
removes the need to spend computational time and memory constructing very large matrices making
each iteration of the GMRES loop faster. We additionally split our domain into a small number
of vertically stacked regions. This allows resolution to be concentrated in the boundary layers that
require it. For example, instead of using a grid of N, = 512 collocation points within the full
domain, we can use N, = 256 pointsin z € [§,1 — §] and N, = 128 in z € [0, 6] and [1 — 6, 1] for
some small ¢ that lies roughly at the start of the boundary layers.

The resulting Newton-GMRES algorithm is more efficient than the one used to converge the rolls
at lower Ra [12]. Converging a single state using the old code took 1 month for the most complex
rolls, while we expect that it will take around 3 days using our new code. Importantly, the promoted
sparsity means the new code scales better with increasing resolution (which is required to resolve
thinner layers as Ra increases). In the coming months we hope to have converged the global optimal
rolls across the next decade of Ra.

S Mean-Zero Heating and Cooling

To demonstrate that the produced code works, we apply it to a system with mean-zero heating and
cooling. Such a system has an internal source and sink of heat, and supports convection rolls. The
relevant 2D steady governing equations are

Pr 172
O WO w — O W d,w = ( ) Viw + 0,T, (60)
RaQ
VY = —w, (61)
O 0xT — dyd,T = (PrRag)™"* [V*T +sin(2nz)] (62)

which we solve with insulating and no-slip walls

62T|z:0,1 = wlz:(),l = azlmzzo,l =0.

This differs from the Rayleigh-Bénard case eq. (1)-(3) by containing a mean-zero heating and cooling
term in the heat equation, and it uses a heat-flux control parameter Ra rather than the temperature
control parameter Ra. While in the Rayleigh-Bénard system Ra was set and the Nusselt number
was measured, here both are measured, and they are defined in terms of the dimensionless quantities

RaQ

Ra=R T?), Nu=
a agV(T*) u=—

This formulation is consistent with [7] which uses a different non-dimensionalisation, and a forcing
amplitude which is scaled by V2. There, they show that heat transport in the stress-free case is
bounded by Nu < O(Ra), which is actually attained by convection rolls with O (1) aspect ratios. We
now investigate the impact of using no-slip boundaries instead. We numerically compute convection
rolls using the flexible Newton-GMRES algorithm described in section 4.

In the Rayleigh-Bénard system, at large fixed Ra there exists a local and a global maxima of Nu
as the aspect ratio I" is varied. Here in the internally heated system, only a global optima is seen
(see fig. 6a). This narrow optima is plotted in fig. 6b, and seems to have slow stagnant corners in
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Figure 6: Convection rolls in a mean-zero heated and cooled system. (a) The Nusselt number
dependence on the aspect ratio at Rag = 10° (blue), 10'° (orange) with Pr = 1, (b) the structure
of the optimal roll at Ragp = 10' with T' = 0.6743. Colour denotes temperature while arrows
show velocity fields. Optimal roll (¢) Nu and (d) aspect ratio I'* against Ra is shown. Data points
correspond to 10° < Rag < 10'°.
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the top left and bottom right. We measure Nu, Ra and aspect ratio ['* of the optimal over 4 decades
of Ragp (yielding over 2 decades of Ra), and show compensated plots in fig. 6¢,d which roughly
suggest that Nu ~ Ra’/* and T* ~ Ra~'/3, although more rolls will need to be converged to say this
conclusively.

These scalings suggest that stress-free convection rolls reach greater heat transport (Nu ~ Ra)
than no-slip ones (Nu ~ Ra*/#). The optimal aspect ratios appear to be the same for both Rayleigh-
Bénard and mean-zero heating and cooling, with stress-free rolls having I' = O(1) [3, 7], and
no-slip having I ~ Ra~'/3, as found here. We hope to reach optimal rolls at higher Ra in the coming
months.

6 Discussion

We have identified the structure of the convection rolls that maximise heat flux in no-slip Rayleigh-
Bénard using matched asymptotic analysis. Our results suggest that the optimal aspect ratio scales
like I* ~ Ra'’® in line with the numerics of [12]. The states are still evolving at Ra ~ 10'2
(Pr = 0.1), with a separation zone changing shape and developing more structure, with a secondary
and tertiary nested separation zones identifiable. The extreme stiffness in the equations seen for this
steady coherent structure means that optimal rolls at even larger Ra are required to conclusively
identify the asymptotics.

The rolls discussed here allow the transport of heat via a coherent structure. While heat flux
is often discussed in the context of turbulence, it is not immediately obvious whether turbulence or
coherent structures are better at transporting heat. In the Rayleigh-Bénard system the optimal heat
transport found so far in a coherent structure is Nu ~ Ra'l3 [3, 4, 12, 13], which turbulence either
asymptotically matches (if the Nu ~ Ra'/? “classical’ regime is asymptotic) or beats (if instead
the Nu ~ Ra'/? ‘ultimate’ regime is). Conversely, in internally heated systems, coherent rolls
maximise heat transport, attaining the rigorous upper bound of Nu < O(Ra) [7], while turbulence
only achieves Nu ~ Ra'/?[1, 6]. Whether coherent structures exist in Rayleigh-Bénard that can
similarly attain the heat transport upper bound (which there is Nu < O(Ra'/?) is not known.

Using the Newton-GMRES code we hope to converge rolls both in Rayleigh-Bénard and in the
mean-zero heating and cooling systems. In Rayleigh-Bénard, states across another decade or two
in Ra should prove sufficient for us to confirm the matched asymptotics presented here. In the
mean-zero heating and cooling system, having access to these states would allow us to probe the
asymptotic structure using matched asymptotics. Turbulent states often inherit characteristics of
the unstable coherent structures that are embedded in their chaotic attractor, and so understanding
how these coherent states transport heat may provide us with insight into the turbulence of heated
systems.
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Farid Rajkotia-Zaheer

August 19, 2025

1 Introduction

We study three-dimensional perturbations around generic two-dimensional hyperbolic stag-
nation points in fluid flows undergoing global rotation. Inspired by the work of Caulfield
and Kerswell [5], who laid the groundwork for understanding hyperbolic stagnation points
as a model for braid regions in mixing layers in non-rotating fluid systems, our work here
extends the analysis to the globally rotating setting. Although, the rotating case has seen
recent interest in the literature through the work of Hattori and Hirota [6] and Leblanc and
Cambon [8, 9], currently the rotating and non-rotating case are seemingly disparate. One
of the outcomes of this work is to show that the work in [5], [6], [8] and [9] form special
solutions within a more general theory for hyperbolic stagnation points within a generic
rotating fluid flows.

We make use of a local multi-scale analysis around a globally rotating two-dimensional
hyperbolic stagnation point. We then employ a ray theoretic approach to study energetics
of three-dimensional perturbations around the stagnation point. Dividing the analysis into
a weakly and strongly rotating case, through the weakly rotating case we are able to recover
the equations presented in [6]. Furthermore, taking the distinguished zero rotation limit, we
recover the equations presented in [5] for the non-rotating case. In the strongly rotating case,
we show the existence of an instability i.e unbounded perturbation energy growth. We also
discover other rich dynamics, including transient and bounded growth of the perturbation
energy around the stagnation point.

This work is organized as follows. Section 2 introduces the governing equations and
the mathematical machinery used throughout the work. Section 3 shows the multiscale
analysis in the context of weak rotation and recovers the results of [5] and [6]. Section 4
shows the multiscale analysis for the strongly rotating case and shows the existence of
hyperbolic instabilities within a strongly rotating medium. Section 5 offers conclusions
and avenues for future research followed by appendices with mathematical details regarding
various results used throughout the work.
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2 Mathematical Setup

Consider the incompressible Euler equations with Coriolis force

Ju+u-Vu+ fe, xu+ Vp=0, (2.1a)
V-u=0, (2.1b)

where u = (u,v,w) and e, is the unit vector in the z-direction. Let the base flow to be
a 2D flow restricted to the x,y-plane, U(x,y). Linearizing about U, the perturbations u’
obey,

o' +U-Vu' +u - VU + fe, xu' + Vp' =0, (2.2a)
V-u' =0, (2.2b)

where p’ is the perturbation pressure. We further consider U to be a hyperbolic background
flow defined as

e —y O x
U(z,y)= (v - 0)|y]., (2.3)
0 0 O z
=:A

where € and v are the strain and rotation rates, respectively, with the hyperbolicity as-
sumption |¢| > |y| implicit throughout this work. Figure 1 is an example of the hyperbolic
background flow. The analysis to follow makes use of the quantity,

A= \/e2 — 2, (2.4)

the eigenvalue of the non-zero 2 by 2 sub-matrix of A.

Figure 1: Streamlines of the two-dimensional hyperbolic background flow U with principle
directions of compression and extension in bold arrows. The stagnation point is marked in
the centre. The strain and rotation rates are set to ¢ = 1 and v = 0.3 and hence A =~ 0.95.
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In preparation for the multi-scale and ray theoretic analysis, we assume variations in
the background flow are far slower than variations in the wavelength and amplitudes of the
perturbations. As such, it is natural to take solutions of (2.2) in terms of a WKB ansatz
[2],

[w',p] = [0,5] (X, T) exp (iO(x, 1)), (2.5)

where variations in phase are assumed to be rapid and variations in the amplitude are
assumed slow. As such, we assume that X = dx and T = §t where § <« 1 is a small
parameter. It is then standard to define the wavevector and frequency, respectively,

k = VxO, (2.6a)
w=—0r0, (2.6b)

where Vx denotes the gradient with respect to slow spatial variables, Or denotes the partial
derivative with respect to the slow time variable and k = (k,¢,m), cf. [4, 10, 11] for an
introduction to ray theory in slowly varying media. From (2.6) it is easy to see,

ork + Vxw = 0. (2.7)
The local dispersion relation then has the form,
w(X) = Q (k(X.T),X), (2.8)

with no explicit slow time dependence since U is assumed constant in time. Applying the
chain rule, using (2.7) and re-arranging, the evolution of k is given through the transport
PDE

Y

ork + (P Vxk =-Vx, (2.9)

where the group velocity is defined as ¢, := V. Solving (2.9) via the method of charac-
teristics, defines the ray tracing equations,

d

ﬁX = Cg, (2103)
d

—k =-VxQ. 2.10b
a7 Vx (2.10b)

Note, the system will have Hamiltonian structure in general [4]. We also expand the am-
plitudes in (2.5) in an asymptotic series with respect to the small parameter 4,

ﬁ:flo+5ﬁ1+52fl2+..., (2.11)

and similarly for p.

3 Weak Rotation

We begin by carrying out the multi-scale analysis assuming weak rotation, i.e., f ~ O(9).
Substituting (2.5) into (2.2), the leading order momentum and incompressibility conditions
are

(—w+k-U) g = —ikpy, (3.1a)
k- g = 0. (3.1b)
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Clearly, since f ~ O(6), the Coriolis term does not appear at leading order. The system
is linear and taking kx(3.1a), yields the relation,

w=k-U. (3.2)

which, in turn, forces pp = 0. Notice, (3.2) is the dispersion relation which in this case does
not support an intrinsic frequency, i.e., is non-dispersive. The group velocity ¢, is defined
as

cg=Vk(k-U)=AX. (3.3)

That is, under the assumption of weak rotation, the ray paths coincide with the streamlines
of the hyperbolic background flow as in fig. 1. The ray system (2.10) in this case takes the
from,

d
d
K= ~ATk, (3.4b)

where AT denotes the transpose of A. This follows by negating the spatial derivative of
the dispersion relation 2. To gain equations for the amplitudes along these ray paths we
must move to the next order in §. The momentum equation at this order is

(aT +U- VX) ﬁo = —fez X flg — Zkﬁl — ﬁo : VXU (35)

There is no appearance of 0 since the relation (3.2) will ensure all terms with @y vanish at
this order. Interpreting the PDE to evolve along ray paths and noting that tip- VxU = Ay,

the system of ODEs is
d
ﬁll(] = —Aung — fe, x ug — ikp;. (3.6)

That is, (3.6) governs the evolution of amplitude of perturbations along ray paths. Using the
leadmg order incompressibility condition (3.1b), p; may be eliminated in (3.6) by computing
dT (k - 01p). Expressing p; in terms of the other variables,

R 27 R N

pr=—15 [((y+ f)k+eb)to — ((v + f) £ + k) to], (3.7)
where Gy = (tg, 0o, Wp). Substituting (3.7) into (3.6), the resulting ODE system written
component wise is

%ao = “{1|2 [ (k* — 2 —m?) (et — vdo) + 2kL ((v + f)iio — i)

+2f (2 +m?) 0}, (3.82)
diT@O - ’kl|2 { (¢ — k2 — m?) (yitg — do) + 2k¢ (ito — (v + f)io)

=2 (k2 + m?) iy, (3.8b)
iy ’21{”; [k (ctto — (v + i) +£((y + Fito — <o) . (3.8¢)
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We see that the Coriolis term f acts to increase the background rotation ~ felt by the
system. Furthermore, taking the limit f — 0 recovers the amplitude equations presented
in [5].

It will be useful to measure the strength of disturbances through the energy norm at
leading order,

1.
E .= §\u0]2 (3.9)
Then,
dE o
T =° (95 —ag) - (3.10)

Notice pressure and the Coriolis term do not enter the energy balance as they are inviscid
invariants. We define the growth rate of disturbances as

1dE  2e (0§ — 1)

=S - 11
T Ear ENE (3:-11)

An immediate consequence of this expression is that perturbations can grow at most at the
rate 2¢. This coincides with the non-rotating case as seen in [5].

3.1 Non-rotating case

We begin our analysis by first considering the non-rotating case. As mentioned before, the
equations for this case can be recovered by taking the distinguished limit f — 0. In this
case, (3.8) reduce to

d 1
— g = 7 [(k* — £ — m?) (etip — vo) + 2kL (viig — €to)] , (3.12a)
dT K|

d 1

—— 0 = = [(12 = k* = m?) (yiig — ebo) + 2k{ (etio — vio)] (3.12b)
dT k|

d 2m
— g = —— [k (etig — v o — )] - 12
ar = kp [k (etio — Do) + £ (vilo — €to))] (3.12¢)

These are exactly the amplitude equations studied in [5]. In that work, these equations
were derived by way of a Kelvin plane-wave ansatz. However, as we have shown here, they
may be recovered through a more general multiscale and ray theoretic approach.

To solve (3.12), we use one of the initial conditions from [5] leading to bounded energy
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growth of perturbations. These initial conditions have the form
(e—4A)
2e

() =12 s

m(0) = 152
TAJ/Q(O) — _\/(6 — A)(]' - 52)7

k(0) = — B,

2e
iu(0) = o X DO=5),
wo(0) = —p

(3.13a)

(3.13b)
(3.13¢)
(3.13d)

(3.13e)

(3.13f)

Here 0 < B8 < 1 is a parameter that measures the relative distance of these set of intial
conditions to those that show optimal growth rate in the non-rotating case. We show plots
of the solutions of (3.8) in fig. 2 with 8 = 0.01. Comparison to the weakly rotating case
also initialized from (3.13) is made in fig. 3. Integrating (3.12) initialized from (3.13), we

recreate part of figure 2 in [5].

10° ‘ 100
— ]
Ll
]
k|
10° 73
6000 f
4000 |
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2000 |
0
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10 15 20
T

Figure 2: Solution to the amplitude equations in the non-rotating case (3.12) with initial
data as in (3.13) and 5 = 0.01. Top left: Evolution of wavevector components. Top
right: Evolution of first order velocity field components. These are identical to fig. 3 as
the wavevector components are agnostic to the presence of global rotation. Bottom left:
Perturbation energy evolution compared with perturbation energy in the third component

wo. Bottom right: Perturbation growth rate.
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The perturbation growth rate attains its maximal value of 2¢ momentarily before de-
caying to zero in the long time limit. For more details on the dynamics and instabilities in
the non-rotating case see [5].

3.2 Solutions of the weakly rotating system

We now integrate the amplitudes ODEs in the weakly rotating case (3.6) and compare them
to the non-rotating case. We initialize the system with (3.13) as well.

- 2

:
— |kl -

20 ‘0 5 10 15 20

Figure 3: Solution to the amplitude equations (3.8) with initial data as in (3.13) and
B = 0.01. The strain, rotation and Coriolis parameter are set toe =1, v = 0.6, f = 0.5 and
A = 0.8. Top left: Evolution of wavevector components. Top right: Evolution of first
order velocity field components. Bottom left: Perturbation energy evolution compared
with perturbation energy in the third component wy. Bottom right: Perturbation growth
rate. The optimal growth rate is 2¢.

For the chosen parameter values in fig. 3 and initial data (3.13), the evolution of the
wavevector components is exponential in time. The evolution of the velocity components,
energy F/ and energy growth rate o are initially oscillatory before settling down. From the
energy plot, we see the energy settles to a non-zero value contained entirely in the third
component wg as T — oo. Correspondingly, the growth rate goes to zero as T — oo.
Comparing the non-rotating case as in fig. 2 to the weakly rotating case in fig. 3, the
presence of the Coriolis term induces initial oscillations in the energy of perturbations. As
long as the hyperbolicity assumption is observed, the long term behaviour from the same
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initial data lead to bounded energy as seen in the bottom left hand plot in fig. 3.

By using multiscale and ray theory tools to understand the dynamics of perturbations
around hyperbolic stagnation points in fluid flows undergoing global rotation, we have
united the seemingly disparate work presented in [5] and [6] and by extension [8, 9]. Upon
performing a formal multiscale expansion of the governing equations and assuming that the
rotation is of the order d, the resulting amplitude PDE (3.5) can be solved via the method
of characteristics. We show that these equations (3.8) are the same ones considered by
the authors in [6]. By then taking the limit of vanishing Coriolis parameter, we recovered
exactly the amplitude equations considered by the authors of [5]. A similar procedure was
also performed by the authors of [6], however, their analysis was agnostic, as our multi-scale
analysis shows, to the fact that this limit is valid only when f ~ O(9). As such we must
consider the case of strong rotation separately.

4 Strong Rotation

We now construct a new class of solutions by considering strong rotation, i.e., f ~ O(1).
Carrying out the multiscale expansion, the equations at leading orde,r i.e., O(1) are

(—w+k'U)fl0—ierXflo—Fkﬁo:O, (41&)
k- fip = 0. (4.1b)

As opposed to the weakly rotating case, now f explicitly appears in the leading order
momentum equation. We must first derive an expression for the dispersion relation, which
now due to the presence of rotation, will yield a non-zero intrinsic frequency. Since the
rotation does not act on the third component, py can be expressed as

1
Po = —3 (~w + k- U) (kilg + ¢i) (4.2)

where leading order incompressibility (4.1b) has been used to eliminate wgy. Substituting
back in (4.1) and expressing the linear system in terms of 4 and 7y only,

(~w+k-U) (1+5)  (-w+k-U) L +if [UO] . sy
(~w+k-U) KL iy (—w+k-U)(1+%) o) '
The system will have non-trivial solutions if and only if the determinant of the matrix
vanishes. Implementing this condition, the dispersion relation is
w:k-Uj:J‘cl: . (4.4)
~—

=iWrot

| ——
=Q(k(X,T);X,T)

The familiar reader will recognize these as the dispersion relation for inertial waves. Fur-
thermore, wyot is the intrinsic frequency and k - U is the Doppler shift. Recalling that
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U = AX, the group velocity ¢, = Vi1 is

eX —vY f —mk
0 K k2 12

vV
='Crot

We denote c.ot as the intrinsic group velocity. With this in mind, the advection of the
wavevector obeys (2.9), with Q as in (4.4). The ray tracing equations can then be derived
via the method of characteristics. The characteristic curves are governed by the following
system of coupled ODEs

dx f

Tp =eX Y e (—mk), (4.62)
% =X — eV i (-md), (4.6b)
% = i|kf|3 (k2 +0%), (4.6¢)
% = ATk (4.6d)

As opposed to the weakly rotating case, the presence of strong rotation modifies the ray
paths. Namely, this skews them from the streamlines of the hyperbolic background flow.
Moreover, strong rotation induces evolution of the Z component in (4.6¢) making the ray
paths three dimensional. In the non-rotating case, since f does not appear, Z would be
invariant in time and hence the ray paths would remain inherently two dimensional and
agree with the streamlines of the background flow. As a convention for the rest of this work,
we choose the sign of the rotation to be positive, i.e., f > 0. Integrating the set of ODEs
we may plot the ray paths. The ray paths governed by (4.6) are plotted in fig. 4.
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Figure 4: Ray paths governed by (4.6a), (4.6b) (4.6¢) plotted from a 12 x 12 array of initial
positions in the X, Y-plane in the square [—2, 2] x [-2, 2] with z = 0, with initial wavevector
k(0) = (1,1,2) and rotation f = 2. The underlying background field has the hyperbolic
stagnation point at the origin.

As seen in fig. 4, in the presence of strong rotation the ray paths for these selected initial
positions have rapid growth in the Z-direction before tending to a constant value. This can
be explained by the ray path equation for Z (4.6¢). The asymptote can be computed
straightforwardly by integrating

T 1.2 2
lim [Z(r) - 2(0)] = lim f [ ©tE

7500 =00 [ k|3

dr. (4.7)

Upon substituting the relevant expressions for the solutions of k, ¢ and m, the integral can
be evaluated. Unfortunately, the resulting integrand cannot be evaluated in closed form,
it will require expressions in terms of hypergeometric functions. Nonetheless, evaluating
numerically and comparing to the ODE integration using the same initial data as in fig. 4,

ODE integration : 0.966582,
Numerical evaluation of (4.7):0.966680,

the asymptote can be approximated with high confidence.

4.1 Energy and wave action

We continue with the multiscale analysis by moving to the next order, i.e., O(§) to derive
an amplitude or energy equation along ray paths. Equating terms in powers of §, the
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momentum and incompressibility equations at this order are

1<_]‘:‘1> u; + fe, xy +ikp; = —(0r +U- Vx) g

— Vxpo — (G - Vx) U

(4.8a)

ik 0y = — Vx - . (4.8b)

Since the dispersion relation yields a non-zero intrinsic frequency due to strong rotation,
there is an appearance of iy on the left hand sides. In order to gain an energy equation,
we make use of the Fredholm alternative to derive a solvability condition on (4.8a). From
our multiscale analysis, the leading order operator in (4.1) written as a block matrix is

c Bg] - [(—w+k'E) —ife;x 15] [;ﬂ _ [g] | wo)

It is straightforward to establish that the operator is Hermitian. As such, applying the
Fredholm alternative, the solvability condition is equivalent to enforcing the orthogonality
of [, py] with the right hand side of (4.8), where [Gg, pj] is a member of the kernel of the
adjoint of L,

|:l}g:| . |:— <8T+U-VX)UO_VAXPO—(U()-VX)U] —0. (4.10)
Do —-Vx -1
The resulting equation is,
1 " L . N
5 @r+U-Vx) [G0/* + Vx - (Botig) = —tig (VxU) o (4.11)
Expressing background velocity field as U = ¢4 — Cyot, (4.11) can be re-expressed
1 12
5 (8’1‘ + Cg - VX)‘UO’
(4.12)

. . . 1 . .
= —0) (VxU) g — Vx - (ottg) + 3 (Vx - (Crot0]?) — [T10]*Vx  Crot)

The eq. (4.12) is the solvability condition, which may be interpreted as the evolution of
perturbation energy along ray paths. Expressing (4.12) in terms of E as defined in (3.9), it
is also possible to eliminate the divergence term Vx - potig since it can be shown that

Vx - polg = Vx - Crot E. (4.13)
With this in mind, (4.12) simplifies to
(8T + Cq - Vx) E= —flo . (ﬁo . VxU) —F (VX . Crot) . (4.14)

It is well known, the quantity that is conserved in general along ray paths is the wave action,
cf. [4, 10, 11]. Let A denote the wave action, which is defined as

(4.15)
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Since the quantity is invariant in general, it satisfies the conservation law
orA+Vx - Ac, = 0. (4.16)

For a proof of this fact within the current context see section A. To use this result to compute
an amplitude along rays, we can re-write (4.16) to gain an expression for A evolving along
rays,

(Or + Cg - Vx)A=-A(Vx - Cg) . (4.17)

Therefore, the left hand side is the rate of change of A along a ray, and we reduce to an
ODE with a solution of the form

T
A = Agexp (—/ Vx - ¢4 dT) , (4.18)
0

where Ay is the initial wave amplitude. The initial value of the wave action can be deduced
via the polarization relations and can thereby be expressed in terms of the initial value
of the wavevector components, see section A for details. Equation (4.18) encapsulates the
dynamics of wave action and a bundle of ray paths. In particular, if the divergence of the
group velocity is negative, i.e., ray paths converge, (4.18) implies A increases. Conversely,
if the divergence of the group velocity is positive, i.e., ray paths diverge, (4.18) implies A
decreases. To quantify this behaviour we must compute the divergence of the group velocity
along ray paths. The seeming difficulty is that the current ray tracing equations (4.6) do not
capture the evolution of Vxk along rays. As such, we must extend the ray tracing system
to include equations for how spatial derivatives of the wavevector components evolve. A
general procedure by which the ray system can be extended in this manner is outlined in

[4].

4.2 Extended ray system

The ray system (4.6) consists of six equations. We must add equations for Vxk and Vx/.
There is no need to add equations for spatial derivatives of m since m is invariant along
rays. Furthermore, since the system is invariant in Z, the gradient is restricted to X and
Y only. Another simplification can be made by noting, Vx x k = 0, as such dyvk = 0x/.
Therefore, we will need three new equations to extend the ray system in the variables

d d d

ﬁ(kX)a diT(gY% @(ky),

where subscripts denote the partial derivative with respect to the spatial coordinate X
or Y. The procedure for extending the ray system to capture amplitude information is
described in general in [4], for the details of the calculation applied to the present case
see section B. Upon performing the calculation, the extended ray system written explicitly
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component-wise is

dXx f
XAy + - +
ar = X T E g ), e
dy f
= NX —eY + L (= +
T =X Y A5 (=ml), (4.19b)
dz f
iz _ :EW (k2 N 62) ’ (4.19¢)
dk
L, (4.19d)
% kel (4.19¢)
d
% o (4.19f)
dk
dT)’( = —2(ckx +~ky)
fm
+ gf [+ €4 m) B + (8 =20+ m?) k) — 6(ROkvRx],  (4.19g)
ae
T; =2 (ely + vky)
fm
s (8 =204 %) G (2204 8 ) b — 6ROy ey (2190
dk
. illCZI); [(=2K> + 02 +m?) by kx + (K = 20° +m®) ky by — 3k€ (k5 + kxty)] .
(4.19i)

This constitutes a closed system of nine ODEs in the variables X, Y, Z, k, £, m and kx, {y, ky.
Notice, the evolution of k in this strongly rotating regime is still only determined by the
background flow. As such, the solutions from the previous sections and [5] remain valid.
With the addition of the three new equations (4.19g)-(4.19i) for the spatial derivatives in
the X and Y directions, we may evaluate the divergence of the group velocity as in (4.18)
explicitly. As such, the wave action along ray paths will be given in terms of the new
variables kx,fy and ky as well as the evolution of k. For the sake of clarity in what is to
follow, we fix the sign of the Coriolis term to be positive. Then, the ODE for A along ray
paths takes the form
dA fm

a7~ A ((—2k% + 2 + m?) kx + (k> — 262 +m?) by — 6 (k) ky ) . (4.20)

=—Vx-c4

Hence, (4.20) is an auxiliary equation used to determine wave action and thereby energy
along ray paths governed by (4.19).
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4.3 Strongly rotating hyperbolic instabilities

We now embark on solving the extended ray system (4.19)-(4.20) and finding special initial
conditions that yield various outcomes for the energy of the perturbation velocity. We find
initial conditions that support transient, bounded and unbounded growth. The unbounded
growth case shows the existence of hyperbolic instabilities within a strongly rotating fluid
medium.

To design a set of initial conditions that captures the various possible behaviours, it will
be important to analyse the interplay between the divergence of the group velocity ¢, and
the evolution of A and by extension E. The idea is to pick initial conditions that maximize
the growth rate of A and by extension the energy E via the relation (4.15). For any non-
zero growth rate in A we require non-zero initial conditions for the spatial derivatives of
the wavevector components kx,fy and ky. Since the wave action is the primary emergent
quantity that encodes information about the evolution along rays of energy and amplitude,
by (4.18) we are primarily concerned with our derived expression for the divergence of the
group velocity

Vx ¢y = i’;; (26 — €2 —m?) kx + (202 — k% — m?) by + 6 (k) ky ) . (4.21)
The sign of the divergence of ¢, controls the growth or decay of A and in turn the energy.
For example, a negative divergence implies ray paths are converging thereby increasing the
wave action and energy. On the other hand, a positive divergence implies ray paths are
moving apart causing wave action and energy to decrease at a commensurate rate.

4.3.1 Initial condition for the extended ray system

We now derive initial conditions that will lead to bounded and unbounded energy growth
of the perturbation velocity field. Since there are many possibilities through which we
may initialize the extended system (4.19), we look into studying the particular case when
the components of the wavevector k decrease exponentially in time. This will drive the
horizontal evolution of Vxk and therefore on the growth rate of energy and the sign of
Vx - ¢4, thereby also controlling the curvature of a ray bundle. From (4.14) and the energy
polarization relations, see section A, the growth rate (3.11) can be expressed as

k2_£2
o= () e

(4.22)

2 42
=a<k|k|f> —ﬁ;((ka—ﬁz—mQ) kx + (202 —k* —m?) by + 6 (k) ky) .
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Choosing initial conditions for k such that k and ¢ decay. The ODEs for the spatial deriva-
tives of the wavevector components (4.19g), (4.19h), (4.19i) reduce to, respectively,

dkx f

T = —2(ckx + vky) + 2 [k’g( + k??/] ) (4.23a)
dey f

o7 = ety +aky) + =5 (65 + k3], (4.23b)
dky f

d7T = ’Y(k’X — fy) + me [k‘y(k‘x + fy)] . (4.230)

We refer to (4.23) as the asymptotic curvature equations as they encode information about
the curvature of a ray bundle in the long time limit. Furthermore, in this limit, (4.22) takes
on the asymptotic value

f
Since the curvature ODEs have been reduced to (4.23) they constitute a self-contained non-

linear system in the variables kx, ¢y and ky. Computing the non-trivial fixed points of the
system yields

2 2

kx = mT (iA + Aé_) : (4.25)
2 2

by = m? <iA - Ag) : (4.25b)
v Am?

by =F (4.25¢)

Substituting the expressions in (4.25a) and (4.25b) into (4.24), we obtain
oo = £2A, (4.26)

where 0, denotes the asymptotic value of o. Note, this will hold for any choice of initial
position, non-zero initial curvature and initial conditions for the wavevector leading to
exponential decay. Connecting this to the ray paths, computing the asymptotic value of
the divergence of the group velocity, we obtain

Vx ¢y — —% (kx +10y) = F2A, T — oc. (4.27)

z
Therefore, picking any non-zero initial conditions for kx,fy and ky will inevitably lead
to solutions attracted towards the stable fixed point of the asymptotic curvature system

(4.25),
2 A2 2 A2 A 2
kx = oA+ = ) by="0(-a-= ) by = 1= (4.28)
€ f € ef

This will lead to the asymptotic growth rate of oo, = —2A, which is complementary to the
asymptotic value of Vx - ¢, = 2A, i.e., ray paths diverge reducing wave action and thereby
energy.
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Conversely, this analysis also suggests that there exists a set of initial conditions for the
extended ray system (4.19) such that oo, = 2A, which simultaneously yields Vx-c, = —2A,
i.e., ray paths converge. To see such asymptotic behaviour of the perturbation energy, the
initial conditions for kx,fy and ky in (4.19) must lie on the unstable fixed point of the
asymptotic system (4.23), i.e.,

kX(O):n;Q<A+A€2>, 0y (0) = 2<A—A2>, by (0) = ~ 227 (499

4.3.2 Transient energy growth

Transient amplification of wave action and energy correspond to initial conditions that make
(4.21) initially negative. The following initial conditions display such behaviour

k(@):‘/m, z(O)ZAfk(O), m(O):%. (4.30)

m2 2 m2 2 m?
o (0) = <—A + Ag) 0y (0) = f<—A - Ag) ke (0) = V?f L@

The initial condition (4.30) are taken from [5] and cause exponential decrease of wavevector

components. Initializing (4.19) with these initial conditions and integrating, the solutions
for various quantities are plotted in fig. 5.
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Figure 5: Solution of the extended ray system (4.19) initialized with wavevector initial
conditions (4.30), spatial derivative of the wavevector initial condition (4.31) and spatial
initial condition X(0) = [1,1,0]. The strain and rotation parameters are ¢ = 1, v = 0.6,
A =0.8and f = 1. Top left: wavevector evolution, exponentially decaying. Top right:
evolution of spatial derivatives of k. Initialized from the stable fixed point of (4.23). Middle
left: evolution of energy. Normalized at initial value. Middle right: energy stored in
velocity components. Bottom left: evolution of the energy growth rate. Bottom right:
evolution of the divergence of group velocity.

Due to (4.30), k decreases exponentially in time. Initializing kx,fy,ky with (4.31),
makes the divergence of the group velocity, for these chosen parameter values, slightly neg-
ative momentarily as seen in the bottom right plot in fig. 5. Since this implies a convergence
of a bundle of rays, F increases initially while ¢ remains positive as can be see in the middle
left and bottom left panels, respectively. When Vx - ¢, > 0, o begins to decrease thereby
inducing a transient in £. In the limit, £ — 0 and ¢ — —2A and Vx - ¢, — 2A, in
agreement with our analysis.
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4.3.3 Bounded energy growth

In a similar fashion, we may derive initial conditions for (4.19) leading to bounded growth
of energy as T increases. Recall, for our current analysis to be valid, the wavevector k
must be initialized in the stable eigen-direction of the system %k = —ATk. The initial
condition for m that maximized the long time growth rate of kinetic energy was arbitrarily
close to unity. To see bounded asymptotic growth of perturbation energy the following
initial conditions on k are considered,

k) = | 22O 0 = 2=k0), m(0)=1- 107, (4.32)
1+ (25) 7
m2 2 m2 2 m2

where n is a non-negative integer. As opposed to (4.31), (4.33) is the unstable fixed point
of the asymptotic curvature equations (4.23). By initializing kx, ¢y and ky at this point,
we expect to see, at least for some period in time, positive growth rate o = 2A, which is
complementary to a convergence of ray paths quantified by Vx - ¢, = —2A. Solving (4.19)
with these initial conditions, the solutions are presented in fig. 6.
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Figure 6: Solution of the extended ray system (4.19) initialized with data (4.32) with
n = 6 and (4.33) and spatial initial condition X(0) = [1,1,0]. The strain and rotation
parameters are as in fig. 5. Top left: wavevector evolution, exponentially decaying. Top
right: evolution of spatial derivatives of k. Initialized from the stable fixed point of (4.23).
Middle left: evolution of energy. Normalized at initial value. Middle right: energy
stored in velocity components. The 09 component agrees with the 7y component for all
time in this case. Bottom left: evolution of the energy growth rate. Bottom right:
evolution of the divergence of group velocity.

Having initialized Vxk with (4.32), the solutions in the top right panel remain at this
point for a significant period. As our calculations show, during this time, the divergence
is negative Vx - ¢, = —2A < 0. As ray paths converge, the growth rate remains positive
o = 2A > 0, commensurate with exponential increase of the perturbation energy as seen in
the middle left panel for g(—g)). However, since the wavevector component m was initialized
close to the maximizing va&ue leading to maximal growth rate, the instability of the fixed
point of (4.23) causes the components of Vxk to move towards the neutral fixed point at 0.
This change induces 0 — 0 and Vx - ¢4 — 0 as T" — oo. Finally, in this limit £ approaches

a non-zero finite value, thereby showing bounded growth of perturbation energy.
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4.3.4 Instability: unbounded energy growth

To see unbounded growth of perturbation energy as T — oo, it is natural to consider the
limit of the initial conditions (4.32) and (4.35). Namely, £,/ — 0 and m — 1 as n — oc.
Therefore, the initial conditions for the system (4.19) leading to unbounded growth of
perturbation energy are

KO)=0, £(0)=0, m(0)=1, (4.34)
2 2
x (0) = }(A+A5>, £y (0) :}(A—i), iy (0) :—Z?. (4.35)

The solution of the extended ray system initialized with these conditions are presented in
fig. 7.
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Figure 7: Solution of the extended ray system (4.19) initialized with data (4.34) and (4.35)
and spatial initial condition X(0) = [1,1,0]. The strain and rotation parameters are as

in fig. 5. Top left: wavevector evolution, exponentially decaying. Top right: evolution
of spatial derivatives of k. Initialized from the stable fixed point of (4.23). Middle left:
evolution of energy. Normalized at initial value. Middle right: energy stored in velocity
components. Bottom left: evolution of the energy growth rate. Bottom right: evolution
of the divergence of group velocity.
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Since the wavevector has been initialized with the streamwise and spanwise components
initially zero, they remain zero for all time. Initializing Vxk at the unstable equilibrium of
(4.23), the components also remain constant at the values in (4.35) (dictated by the chosen
parameter values as in fig. 5) for all time. Through our calculations for o and the divergence
of ray paths, these initial conditions will yield 0 = 2A and Vx - ¢4, = —2A for all time.
This is confirmed by the bottom two panels in fig. 7. The constant growth rate implies
unbounded exponential growth of perturbation energy as confirmed in the middle panels.
These solutions show the existence of a hyperbolic instability within a rapidly rotating fluid
system. We should mention, however, that these solutions were derived from a special class
of initial conditions that are horizontally invariant, i.e., k = £ = 0 for all time as such they
feel no rotation. This then implies that unstable modes in the non-rotating case would be
stabilized in the presence of rotation.

5 Conclusion

In this work, we have studied the dynamics of perturbations around globally rotating hyper-
bolic stagnation points in fluid flows. By employing a local analysis around such stagnation
points we used a multiscale and ray-tracing methods to study the evolution of energetic
quantities transported by the fluid flow. Dividing the analysis into two distinct parts, a
weakly and strongly rotating case lead to an assortment of findings. In the weakly rotating
case, where the Coriolis parameter was assumed f ~ O(9), we recovered part of the work
in [6], who were also studying instabilities around hyperbolic stagnation points in globally
rotating systems. Furthermore, by taking the distinguished limit f — 0, we were also able
to recover the work of [5], which was the first analysis of generic hyperbolic stagnation
points in fluid flows in a non-rotating system. By employing a multiscale approach we have
shown the work in [5] and [6] form special solutions of a broader framework of hyperbolic
stagnation points within rotating systems.

This work also considers the case of strong rotation, i.e., f ~ O(1). Performing the
multiscale analysis under this assumption made the subsequent task of solving the ampli-
tude/energy PDEs considerably more difficult. Once again using the ray theoretic frame-
work, we used the techniques described in [4], to extend the ray system to include spatial
variations of the wavevector k to encode information along ray paths about the energy of
perturbations through the quantity known as the wave action [3, 4, 10, 11]. We then per-
formed a careful analysis to derive initial conditions for the ray system that lead to various
dynamics of the perturbation energy along ray paths. We showed the existence of initial
conditions leading to transient and bounded growth. Finally, we were also able to show
the existence of unbounded growth of energy thereby showing the existence of a strongly
rotating hyperbolic instability within a strongly rotating fluid.

The avenues for future work remain rich. In the weakly rotating case, the details of the
formalism by which the works presented in [5], [6], [9] are related as being special solutions
of a general theory for hyperbolic stagnation points under rotation will be worked out
completely. This would unify the existing literature on hyperbolic stagnation points in fluid
flows under a general theory. In the strongly rotating case, a comprehensive parameter study
and analysis of initial conditions should also be carried out to further explore the possible
dynamics of energetics around the stagnation points. In this regard, understanding the sign
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of the Coriolis parameter f and its applications to situations of geophysical interest would
also be an interesting avenue to pursue. Finally, to further generalize the analysis presented
here to problem of physical interest would be to add stratification.
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Appendix

These appendices provide the details of various calculations used throughout this work.

A Conservation of Wave Action

We show wave action A is conserved. To this end, we make use of the polarization relations.
These are derived using the leading order equations. We choose to express all variables in
terms of the third leading order velocity field component wg. Consider (4.3), multiplying
the first equation with £ and the second by ¢ and adding them

Lnk| (]Cﬁ() + E@o) =1 (k"f)o — eﬁo) . (Al)

Notice, this relates the third component leading order velocity to the third component of

vorticity,
—[klo = iC, (A.2)

by using the leading order incompressibility condition on the left hand side. To gain ex-
pressions for the other two components in terms of wg, we have the following two relations,

i|k|w0 = kﬁo — E@o, (A.3a)
—mawg = kg + L0g. (A.3b)

Multiplying, the first equation by k& and the second by ¢ and adding,

- iklk—tm
Vo = WWO. (A4)
Similarly, multiplying the first relation by —¢ and the second by k and adding,
. — (i|k[€ + km)
0 — k2——|—£2w0. (A5)
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Finally, the pressure can be inferred from (4.2),

po = . (A.6)
m

The first order polarization relations are therefore,

. —(i|k|€+k:m) .

ug = WMO, (A?a)

ik k—tm

d =" o, (A.7h)

R I

fo = 1. (A7)
K|

We make implicit use of these relations to show wave action is conserved. Consider the
following calculation.

k E
orA+ Vx - Cg.A = ]‘c ’ (8TE + Vx - CgE) + f7m (6T|k| + (O Vx|k|) ,

m

N, E [ k
= m (=0 - (4 - VxU)) + Fm K] (k-VvxU) |,
K (. . w
= (10 (30 Vx0) 4 Yk (6 Vx0)).
K[ (- o ldo|
=~ fm g VxUtto + 15 — k'VxUk |,
K[ (oTaq o 10l 7 A8
=~ (004001 T K AK ) (A-8)
k . . wo?
— _j’fnL <5|u0|2 — e|do|? + IJQ —i‘ﬁ (ek? — 562)> ,
K[ PR ) R+ N k2 — 02 liol?
" fm (k2 + 2)2 K2) 0 )
K| ((C-F+E -2\
= T 2 2 5|w0| )
fm (k2 4 02)
=0.

For ease of calculation to our specific case, we have used the definition U = Ax midway
through. However, keep in mind the following computation will work for a general time
independent 2D background flow U. For a general proof and discussion of the conservation
of wave action in Hamiltonian systems see [1, 3, 7].

B Derivation of the Extended Ray System

We present the details of the derivation of (4.19). Recall, the dispersion relation, Q(k(X,T"); X, T)
and let ¢, and ¢, to be the z and y components of the group velocity c,, respectively. It
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will be useful to write out the chain-rule for the spatial derivatives with respect to X and
Y,

o _ o o oo 51
X ~ 9X|. ' 9X 0k ' oxor o
0 0 ok 0 ol o
oy ~av|, Tavar Tavar (B-1b)
The transport PDE for £ is,
ork + Cq - Vxk = —-0x. (B.Q)

Taking the X derivative of both sides, re-arranging and exploiting the chain rule to evaluate,

or (Oxk) + ¢y - Vx (Oxk)
= —0x (0xQ) — ((9xcz) (Oxk) + (9xcy) (Ovk))

829 Ok 829 86_

= 8XQ * aigk; g)k( * aigf aa)? - [aiigk * 52858“ * ?)22 8)(4 (Oxk) B3)
- [aa)zgz * g/jgeaxk * %Z?M} (Ork)
=% -2 aci);ak (Oxk) + aiae (Ovk )} gzjae (Bx6)(Oxk)]
-5 sk + 55 v

The penultimate equality follows by recalling that ¢, = 02 and ¢, = 9,€) and applying the
chain rule. The last line follows be re-arranging and recalling the curl free condition, i.e.,
Oxt = Oy k. Hence, the ODE along ray paths for Oxk is

d L 920 920 , 90

4 (oxk) = - %2 - [ KALNPNSNRCALE (Wﬂ)] I8 ((oxt)(oxk)
o520 o520
- |G x4 55 vy

(B.4)
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The equation for dy ¢ can be obtained identically,

0?Q 9?Q 829

d _ 2
4 00 =~ 80— 2| 0 (0v0) + L Ovi)| = 20 (O k) @y )
(B.5)
520 20
- |5 @vor+ 55 v
To gain the equation for dy k, we take the derivative with respect to Y of (B.2),
or (ayk) +c-Vx (8yk')
= —0y (0xQ) — ((Oves) (Oxk) + (Oycy) (Ovk))
9%Q) 9%Q 9%Q 9%Q) 0%Q
[8XYQ T axarYh T axaeayé] - [ayak TR vkt akaeayé] (Oxk)
920 9%Q 9%
[ame TR T 8Y4 (Ovk)
9%Q 9%Q 9%Q 9%Q 9%Q)
2 6|0 9T Lo, 00
= Oy {8X8k * ame] (VE) = yardxk =~ axar? !t — gz v koxk
20 20, 60
B.6
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Therefore, the extended equations in the ray tracing system will be comprised of

d o 92 920
JpOxk) = ~0k0 — 2| FL Ok + e (O
62 82 82
ak8€ (axe)(axk) [814:2 <8xk) (%2 (8yk') ] (B.7a)
d 920 929
ap (0 = -0~ Q[ayag (O + Gvor (ayk>]

a?sz %0 920
2 Sk OvDOv0) — | S5 e+ G o (B.7b)
820 8%
2 J—
a7 Orh) = -0 [axak " ayae} (Ov)
9*Q 9%Q
~ avar OXF) ~ 5xa0 (0
9*Q 9%Q
920 , 9%
= arap k)" = S Oy (Ovk). (B.7¢)

Turning to our specific case, some immediate simplifications can be made taking the
dispersion relation 2 as in (4.4), since the background U = AX is linear in X and Y, the
second space derivatives on {2 vanish. Computing out the other derivatives,

T I R .
oxXok O avor - © avok " axor ‘
20 fm 2 PR Im s s 20 3f
Z 9 Ze S —9 Yss
g2~ Tkp A EEm) G = s 22040 o = gl (B9)

Substituting this into (B.7a), (B.7b), (B.7¢) and making the necessary simplifications yields
(4.19).
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Weakly Nonlinear Hamiltonian Dynamics of an Isolated
Vortex
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1 Introduction

Coherent vortical structures are a common feature of two-dimensional and quasi-two-dimensional
turbulent flows. In many geophysical systems, such as the atmosphere and oceans, strong
rotation and stratification constrain the motion to nearly horizontal planes, allowing long-
lived eddies to form and persist. Well-known examples include Jupiter’s Great Red Spot [15],
which has remained stable for centuries, as well as mesoscale vortices observed in the ocean
that can survive up to a few years while transporting heat and nutrients [6, 10, 16]. Lab-
oratory experiments and numerical simulations of two-dimensional turbulence have shown
that these coherent vortices can spontaneously form from initially random flow fields [12, 4]
or after breakup of larger vortices [5]. Such structures play a crucial role in organizing the
flow and influencing large-scale transport properties [13]. Idealized models, from the two-
dimensional incompressible Euler equations to layered shallow-water formulations, provide
a useful framework for studying their dynamics.

In this report, we focus on the simplest case of vorticity distributions which are barotropic
and piecewise-constant. Those distributions were introduced by [17] in the context of con-
tour dynamics as a way to numerically simulate sharp vorticity gradients [7]. More precisely,
we revisit the set-up of [8] where a compact axisymmetric base state with inner vorticity
g = 1 for r < 1 and outer vorticity g, for 1 < r < b is perturbed, leading to deformation of
the contours separating the different vorticity regions (Figure 1). [8] performed the linearly
stability of this set-up and computed that the bifurcation was subcritical (destabilizing non-
linearity). [11] studied the stability of the base-state from energetics arguments similar to
Arnold’s stability criterion, recovering the same results as the linear stability analysis. Fi-
nally, Georges I. Bell proposed in his 1990 GFD report [1] a reduced Hamiltonian model for
the nonlinear dynamics of the vortex, by numerically fitting coefficients to match outputs
from a contour dynamics code. Indeed, in the absence of viscosity, the system inherits the
Hamiltonian properties of the Euler equations [14, 3] and can be described within the non-
canonical Hamiltonian formalism. Morrison and Flier] (private communication) derived the
Hamiltonians and Poisson brackets associated to different parametrizations of the contours.
We heavily build on their work (referred as M&F in the following) in this report.

In Section 2, we use the formalism developed by M&F to derive different low order
Hamiltonian approximations of increasing complexity, approximating the full dynamics and
derived directly from the equations of motion. We show in Section 3 that it allows to recover
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Figure 1: Barotropic piecewise-constant distribution of vorticity with two contours. The
dotted curves are the contours of the base state (axisymmetric configuration with dimension-
less radii 1 and b) and the solid curves correspond to the deformed contours parametrized
by r;(0,t). The dimensionless vorticity ¢ is shown in each region.

the stability analysis of [8] and to obtain the amplitude equation close to the bifurcation. In
Section 4, we study the steadily rotating solutions, called V-states, of the truncated models,
giving possible approximation of the V-states of the full system.

2 From the Full Dynamics to Truncated Hamiltonian Models

2.1 Contour dynamics

The evolution of piecewise-constant barotropic vorticity distributions can be understood
from the dynamics of their contours. In barotropic Euler equations without background
strain, the velocity u(x) at any point @ can be computed from the positions of the contours
C; using the Biot-Savart law [17]. It reads

u(x) = 2;72 log |z — '| dé(x") (1)

with d€(2’) the infinitesimal tangential vector and (A;); the vorticity jumps (A; =1 — g
and As = ). Then, by material conservation of the vorticity in the barotropic Euler
equations, the contours are simply advected by the flow using

© @), 2
Equations (1) and (2) can be used to numerically solve the evolution of the contours by
discretizing them into polygonal shapes. In this report, we used a homemade contour
dynamics code following the procedure described in [18] and monitoring the conservation
of area and angular momentum to assess the validity of the simulation. In the following,
we refer to these simulations as the DNS.
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2.2 Full Hamiltonian formulation

In this section, we present the Hamiltonian formulation of the contour dynamics prob-
lem. Following M&F, we parameterize the position of the perturbed contours C; in polar
coordinates (assuming that no folding has occurred). More precisely, we define

&i(0,t) =ri(6,6)% = b +ni(6,1) (3)

where 7;(6,t = 0) has zero average which respect to §. From the conservation of the area
[ 2€(0) df enclosed by C;, 1;(6,t) remains zero-average at all times, which is a strong
advantage compared to the parametrization used in [11]. With our nondimensionalization
(see Figure 1), we have by = 1 and by = b%. Then, M&F showed that the dynamics of the
Fourier modes 7; ,,(t) = (27) ™1 [ 1;(0,t)e~"™? d§ was given by

dnim  2im OH @
de¢ a ﬂ'Ai 87];7% ’

with H the Hamiltonian related to the position of the contours by

1 2 £(6) 27 £;(0")
H = —SAZA]-/ de/ dg/ de// d¢' G(p(&,¢,0 - 0")). (5)
0 0 0 0

using Einstein’s summation convention for indices ¢ and j. The Green function G appearing
in the integrals is associated with the inversion of the vorticity /streamfunction relationship
in the barotropic Euler equations, and p(&, &', 0 —6') is the distance between /&[cos 6, sin 6]
and v/&[cos@’,sin@']T. Both read

G(p) = (2m) logp,

PE€,8) = \JE+€ — 2 /EE cos .

(6)

Equations (4-6) express the full dynamics of the contours, as long as no folding occurs
(n:(0,t) has to remain single-valued) and provided that the origin remains inside the inner
contour.

2.3 Taylor expansion of the Hamiltonian

This subsection is more technical. Readers who are only interested in the general picture
and applications can skip to Section 2.4 and return later to find the explicit coefficients of
the truncated models.

We are interested in the dynamics of contours that are weakly perturbed compared
to the circular configuration &;(f) = b;. As such, we assume |n;(0,¢)] < b; and perform
a Taylor expansion of the Hamiltonian H in increasing powers of the perturbations (7;);.
Following M&F, we expand the integrals as

2m b;+n;(0) N 1 9™ 2 b; "
[Tao [ aerenn =3 g [T [T asnorsicom) +o ()
g
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where f is any smooth function of £, 6 and possibly other parameters p. Then, discarding
the logarithmic singularity, the Hamiltonian can be formally expanded as H = szo 0PH,
where the variation at order p is given according to the Fourier coefficients (7;,,) by

s 1 oPI
OPH = _ZAiAj Z Py Z (Mier = Misken) (M1~ Mg W(ﬁﬁ-- “++Lr[bi, bj)

rin=p " ki, kn€Z
T',T’LZO El:"' 767‘62
k1++€7‘:0

(3)
where summation over indices (7, j) is implicit and the function I(M|A, B) is related to the
Green function by

A B 2m
1(M|A, B) = /0 a¢ /0 ag /0 46 cos(M)G (pl&, €. 6)) - (9)

Using symmetries I(M|A, B) = I(—M|A, B) = I(M|B, A), we can recover the expressions
of the first variations of the Hamiltonian. The constant term 6°H corresponding to the
base state can be computed, and the linear term §'H vanishes showing that the reference
configuration is indeed an equilibrium point. Both read
T

OH = ———— [ +2A + A%?* + 4Ab% log b d §'H=0. 10
8(1+A>2[+ + + ogh] an (10)
where A = Ay/A; is the ratio of the vorticity jumps. For the isolated vortex specifically,
we have A = —1/b% and 6°H = —5(1+ A —2logb)/(1+ A)? which tends to the finite value
7/8 as the outer shell disappears (b — 11). Computing the quadratic component of the
Hamiltonian (which controls the linear dynamics) gives

52H = _g Z f’i,mAzJ 773m - Z Hmm) (11)

m=1
with the real and symmetric matrices A™ given by

1 (1-L)+A .
A ( i ) , 12
airar e A h)ea -

We recover the results from M&F, with a prefactor (1 4+ A)~2 due to our different non-
dimensionalization. Equations (4), (11) and (12) show that Fourier modes are decoupled in
the linear dynamics, which was observed by [8] and is a consequence of the axial symmetry
SO3 of the problem. The next variations of the Hamiltonian are given by

931 03I
53H — _fA A Z |: Ni,mMin"i,—n— maA?’ (O|b1,b ) + NimMNi,—n—mTljn aAgaB (n|blab )
m,nez
(13)
at third order (triadic interactions) and we have a fourth order (quartet interactions) that
o'
54H——*AA Z |: i Mi,mMi 7, —n—m— €8A4 O‘bmb )
n,m,cZ
1 o1

+§ni,mni,ﬁni,—n—m—€nj,nm(n‘biv b]) (14)

1 0*I
+Z Ui,nni,mﬂj,enj,—n—m—zm(n + m|b;, b;)
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where summation over indices ¢ and j is implied. Variations of the Hamiltonian at order 3
and 4 are much more cumbersome than the previous ones, and providing explicit interaction
coefficients for each triad results from a lengthy enumeration of the different permutations
appearing in the summation. To simplify the computation, one can focus on a subset of
triadic and quartet interactions between different harmonics of a given mode m > 0. The
different components write

Hmm2m) = —*CZ(;Z 2] (05 2 + €.C.) (15)

H m 2m,3m) = *CZZ B (1t 3+ €-C.) (16)
H{mmmmm) = §Dfﬁgm R, " m e mem 5 (17)
Hommmam) = Dz(jQIZZ ) 2 m Mheme,2m 5 (18)
Hmm,m,3m) = —g SIS (1 T T T3+ €C.) (19)

where the tensors C™:2m)  ¢(m2m3m) - py(mmmm) - py@mmm,2m) apnq pimmm3m) gre
functions of b and A, or b alone for an isolated vortex. An explicit computation of the
tensors can be performed and gives

C(m,m,Qm) = — 8 4b™ 8b2m 4p2+m 2 5 20
ATa7\ 0 gim| 0 —(f+8) 2
1 -1 __4 |__4 A
cimamim An R Ay (21)
(1 + A) —Ipm  apgmF? | pemre 2b4 + 4b2>
16 16b6™
Lo el 0 b
pemmmn = ol R e TV CAEDIY (22)
—m m 5
(1+A) o . o
0 0 0 Ay 2om)AT
4b6 1664
2—m (QQITVL)A UijﬁA +2
Lom)A _3mA 12)A
pemmman = 1 E24b2n%A e 3 OA gfgéjrnfzz (23)
—m m )
(1+A)2 — 0 S, ERCTERIEY
mA _(m4+1)A | (m+2)A A i (2-m)A?
{pm+2 4p2m+4 Spmi4 e
1 (2—m)A (2—3m)A mA
12 166™ 48bp3m ]p2m+2
1 0 _mA__ 0 _ (m+2)A
(mm,m,3m) S22 TAES . (24)
(Bm+2)A A2
0 =T 0 o T 125t

In Equations (20-24), the indexing conventions for the rank 3 and rank 4 tensors are

D111 Diana

Cri2 Cia2 and D_ Da111 Daor1
Co1z Caa Di121 D121

Da121 Dagai

Di112 Di212
Do112 D212
D1122 Di222
D222 Dazoo

Cii1 Cia1
C p—
< Co11 O
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Finally, the tensors above were given in sparse form, to reduce the redundancy of the
coefficients while ensuring that the energy is real-valued. To simplify computations in
most applications, it is helpful to use their symmetrized counterparts in accordance with
the symmetries of Equations (15-19) with respect to permutations of the indices. The
symmetrization rules are given by

m,m,zm 1
cim — 5 (Ciji + Ciir)

1
DEﬁzm’m’m) = 7 Dijue + Djine + Dijex + Dijier)

m,m,m,3 1
ngkg ™ 5 (Dijke + Djike + Dikje + Dijie + Djkie + Drije)

where the tensor subscripts have been dropped on the RHS for brevity.

2.4 Some truncated Hamiltonian models

An important advantage of the Hamiltonian formulation is that it allows us to come up
with truncated models that preserve the Hamiltonian structure of the full dynamics. In
general, one can choose to keep some terms of the Taylor expansion shown above, either
arbitrarily or based on a specified hierarchy of amplitudes for the Fourier modes. If this
hierarchy is motivated by physical arguments or observations, one can expect the resulting
truncated model to provide a good approximation of the full dynamics. For instance, if one
assumes infinitesimal Fourier coefficients, the linear dynamics of all modes are given by the
truncated Hamiltonian

Hin =Y Hipnmy - (25)

m>1

On the other hand, if one is interested in the weakly nonlinear (WNL) dynamics of a mode
m > 2 and assumes that all other modes are initially set to zero, only subharmonic modes
km (k € Z*) can be excited. If we assume a hierarchy of the form n,, = O(g), 05, = O(?),
N3m = O(e%), and so on, we can come up with an approximation of order O(g*) of the
Hamiltonian. It reads

Hwnr = H(m,m) + H(Qm,Zm) + H(m,m,Qm) + H(m,m,m,m) : (26)
————
linear dynamics triad interactions quartet interactions

and we have H = Hwnr +O(£%). An extension to the next order, including the interactions
with the mode 3m gives

Hwnr+ = Hwnr + H(3m,3m) + H(m,Zm,Sm) + H(2m,m,m,2m) + H(m,m,m,?)m)a (27)
——

linear dynamics  triad interactions quartet interactions

and compares to the full Hamiltonian as H = Hwnps + O(e®). The evolution of the
system under the truncated Hamiltonians can be solved numerically. Figure 2 shows the
evolution of the amplitudes of the Fourier coefficients n,,, and 7,,,, for an isolated vortex
with b = 2.05, when solving the full dynamics with the DNS (Equations 1-2) or using the
truncated Hamiltonians (26) and (27). It shows that both WNL and WNL+ capture well
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the nonlinear evolution of the modes m = 2 and 2m = 4, with relative errors less than 1% in
the amplitude of the oscillations. However, the oscillations of the mode 2m become out of
phase after a few turnover times in the WNL model, while they remain in good agreement
with the DNS for the WNL+ model. Thus, we expect the truncated models to provide
increased accuracy with the number of included terms.

Figure 2: Comparison of Fourier coefficients amplitudes between the DNS and the truncated
Hamiltonians Hwnr, (left) and Hwnr+ (right). Solid lines show the DNS results while
dashed and dotted lines correspond to the WNL+ and WNL evolution, respectively. Blue
curves correspond to the outer contour 79 and orange curves to the inner contour 7;. The

turnover time of the inner vorticity patch is 47rwi;1.

3 Linear Bifurcation and Weakly Nonlinear Analysis of an
Isolated Vortex

In this section, we use the hierarchy of truncated Hamiltonians derived above to recover
the linear stability analysis of [8] and characterize the type of bifurcations for low modes
m. The derived amplitude equation can be used to predict the position of the separatrix
between bounded evolution and vortex splitting, and to find nonlinear solutions close to the
bifurcation.

3.1 Linear stability analysis

The linear dynamics is given by the second variation of the Hamiltonian, derived in Sec-
tion (2.3). It reads

O H = 3 Honmy = =5 3 i A tim = =5 S5 AT oy (28)

m>1 m>1 m>1

using Einstein’s summation convention on indices 4, j. From Equation (4), the linear evo-
lution of the Fourier coefficients is given by

e Ym0 (L’lA(m)) 0. (29)

dn
L. —m — _im AM) .
Vm, m N, T

dt
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with L = diag(Aj, Ag) the 2 x 2 diagonal matrix of vorticity jumps. As mentioned in
Section 2.3, the Fourier modes are decoupled in the linearized problem, making it a suitable
set of normal modes. The linear evolution can then be solved by computing the eigen-
mode/eigenvalue pairs of the tensors L~ 'A"™) Indeed, if we focus on a given normal
mode m > 1 and write n,,(t) = ety we obtain the generalized eigenvalue problem
A .y = QL L - uy whose solutions are given by the dispersion relation

1 1 1 b2
— _ -7 m-+1 _ _ pm—1 2 _
QL = 1 (1 m) + T 1\/(b (m—1)—1b (m+1)) 4 (30)

where we specified that A = —1/b? for an isolated vortex. Thus, the isolated vortex is
linearly stable to a perturbation of the mode m provided the radicand is positive. In this
case, the infinitesimal perturbation rotates freely at rates {24 without attenuation. On the
other hand, if the radicand is negative, Q4 (resp. €2_) corresponds to an exponentially
growing (resp. decaying) perturbation, rotating with rate . = i ( — %) The dispersion
relation is shown in Figure 3 and recovers the results of [8] (see their Figure 3). [8] also
computed analytically for each of the first few modes the critical values b. of the outer
radius below which the isolated vortex becomes linearly unstable for this mode. We recover
the same values of b, = 2 for m = 2, b, = V1+ 2 for m = 3 and b, = %(2—1—101/3)
for m = 4. At the critical value b., the generalized eigenvalue problem is degenerate and
admits a unique solution (up to a multiplication of the eigenvector by a complex constant)
given by

AM e, =QO.L-e. at b=b, (31)

where e., 2. and b, are implicit functions of the mode m considered.

3.2 Weakly nonlinear analysis at a bifurcation

When the outer radius b is smaller than the critical value b. associated with a given mode
m > 2, the isolated vortex is linearly unstable to a perturbation of this mode. Using
matching of the streamfunction across the boundaries of the isolated vortex, [8] showed that
the bifurcation was subcritical in the sense that the nonlinearity is destabilizing. This is also
what we observe in numerical simulations. In this section, we adapt the weakly nonlinear
analysis performed by M&F in order to compute the influence of the nonlinearities close to
the bifurcation.

Let us consider a given mode m > 2 undergoing a bifurcation at outer radius b, (linearly
unstable if b < b.). Close to the bifurcation, we denote by ¢ = b — b, < 1 the distance to
the bifurcation (signed). The prediction from the linearized dynamics gives the following
evolution along the eigenspaces

Ml (t) = e M@=y, (0) (32)

)

where the LHS corresponds to the evolution of the perturbation in the frame rotating at
rate .. From a Taylor expansion of the dispersion relation in the vicinity of b., one can
compute

1
m(Qy — Q) ~ =+ for €¢—0 (33)
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Figure 3: Dispersion relation for the linear dynamics of a perturbation n,, = e,

Left: Growth rate 0 = mIm(Q2) of the perturbation. Right: Rotation rate Re(2) of the
perturbation. The left plot recovers the results presented in Figure 3 of [8] up to a factor 2
due to different nondimensionalization (we set the inner vorticity to ¢ = 1 instead of setting
the azimuthal velocity v(r = 1) = 1).

with Q. = i (1 — %) Thus, if b < b, (i.e., € < 0), the perturbation is purely growing (or
decaying) when viewed in the frame rotating at rate ., with small growth-rate o oc £|e|'/2.
On the other hand, if b > b, (i.e., € > 0), the perturbation rotates slowly with frequency
m(Qe — Q) o< /2 with respect to the frame rotating at Q.. In both cases, the solution
observed in the frame rotating at rate Q. evolves according to a slow timescale 7 = |e|*/?t.
If we assume that in the vicinity of the bifurcation, the weakly nonlinear dynamics is
dominated by 1,, and 7,,, only, with the scalings n,, = O(|g|'/?) and n,,, = O(J¢|), we
can approximate the truncated Hamiltonian up to order O(|¢|?) as

H = — = [Ag(0)15 im.j + Bij (0) 03 iM2m.] 50

[Cik(B) (Mm,ihm i1 g + €-C-) + Dijie (D) i, M 1

NI N O

where the tensors (A4;;) = A" and (B;;) = A®™ correspond to the linear dynamics of
the modes m and 2m respectively, and the tensors (Cj;i) and (Djjke) encode the triad
(m,m) <> 2m and the quartet (m,m) < (m,m) interactions, respectively. We enforce
C and D to verify the symmetries Cjj;, = Cji and Djjre = Djike = Dyeijz, respectively,
using the symmetrization rules of Section 2.3, which does not modify the Hamiltonian, but
alleviate the computations. Using the relation b = b, + €, we perform a Taylor expansion
of the tensors in the vicinity of the bifurcation as

(Aij, Bij, Cijk> Dijre) (b) = (A5, Bfj, Csipy Diipe) + (A, Bij, Cijny Dijre) + O(7) . (35)
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Finally, we take the following expansions for the perturbations
n,,(t) = |€|1/267imﬂctn(t,7) h n(t,7) = 77(0)< )+ |5’1/2 (t )+
4 wi
Mo (1) = |ele™ ™ u(t, 7) p(t,m) = pOt,7) + |2V, ) + -

corresponding to the aforementioned scalings in the reference frame rotating at rate Q..
Then, the Hamiltonian equations read

(36)

1
%sz(atnj + |5|1/287'77j) + (Afj - QCLU)U 514,]77] 2|€| ( ZJkn] Mk + ngkﬂ]g UkW)

1
%sz(@tﬂj +1e[20r 1) + (BS — QeLij)j = —Cpimym -

(37)
Moreover, we denote by e = (e;) the real normalized eigenvector in Equation (31) (defined

uniquely up to a sign), and define e- =z x e = (e;°) its counter-clockwise rotation by /2
such that (e, eL) is a direct orthonormal basis of C2. Then, the evolution equation for n at

order O(1) writes

1 Cc
— Ly, + (A5 = QeLij)ny” = 0. (38)
We decompose 0 (¢, 7) = ag(t,7)e + Bo(t,7)et and project Equation (38) on the vectors
(e,et). Using the properties (A7} — QcLijlej = ei(Af; — QcLij) = 0 and e;Lije; = 0, we
obtain

im (eszeJ ) Oefo =

e o (39)
p <€i Lijej) Orvg + p ( Lije; ) OBo + [ (47 —Q Lzy) Bo(t, ) =0.

Since L is invertible and e;L;je; = 0, we necessary have ef-Lijej = eiLijejL = 0. Similarly,
A€ — Q.L is nonzero so ef-(Afj — QCLij)ej- = 0. From these observations, we can deduce
step by step that 8,6y = 0, then &, = 0 and finally Sy = 0. Denoting A(7) = ag(7), we
can finally conclude that Equation (38) implies that

n" = A(r)e. (40)
At order O(|g|'/?), the evolution equation for 1 writes
1 1 1
L0 + (A5~ QL) =~ (0, AL (41)
Projecting again on the basis (e, e') and performing the same manipulations as the previous

order, we can show that (1) only varies on the slow timescale T as

_ol7 . o
n(r) = ax(re+ - (a A) £ with f= Lt ol (49
65‘ <AZC] - QCLi]) ej-

The next order equation for n gives
1 1
—Lyy0m,” + (A5 = QeLij)n” = = —Lijor() = sgn(e) Ay

(43)
c 0)* 0)x (0) (0
- 2( ijknj( " )+ DUMU§ ) 771(c )775 ))
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where sgn(e) = sgn(b—b) depends on the position relative to the bifurcation. To solve this
equation and obtain the ODE for A(7), we need to solve for the evolution of u( (¢, 7). It
writes 1
0 0 T
TZ,mLUamg. ) (B — QL") = — A2 (1) Ciniesen (44)

Since B¢ — Q.L is non-singular, we can solve for g such that

(Bfj = QcLij)g; = —Ciejer ¢  g=—(B°= QL) lec-(ec-C9)] . (45)
Moreover, L~ B — Q.I being non-singular with two different eigenvalues, we can compute
its spectral decomposition L' B¢ — Q. = PAP~! where P is invertible and A is a real
diagonal non-singular matrix. Then, equation (44) writes

@(u@%—ﬂ%ﬂg):—anPAP—lQNU—A%Tm) (46)
and can be solved as
pO(t,7) = A%(1)g + Pexp (—2imAt) P71 - (7). (47)

Thus, the mode 2m evolves at dominant order as the superposition of two freely rotating
components, corresponding to the linearized dynamics of the mode 2m, and of a component
locked to the mode m by nonlinearities, which evolves only on the slow timescale. If we
define Vi, (1) = Pen[P~! - v(7)]n (no summation on n), we can rewrite Equation (47) in
indicial notation as

w8, 7) = A2(r) gy, + e Bty (1) | (48)

(summation on n) where the two eigenvalues A, are nonzero. Finally, we can inject Equa-
tions (40, 42, 48) into Equation (43) for n(® to obtain
L PNCIN (AS: — QuLis)n® = — i(@ ar)Lie; + 1 (32 fl) Liifi — sgn(e) A Ale;
i i t1; ij clij)l; " = i OO g\ O ijJj g ij€j
— 24| A2 (C’fjkejgk + ijkgejekeg)
— 26_2im)\"t./~t*(T)’}/kn(T)CiCjkej )
(49)
Projecting the equation of e. and observing that the periodic forcing is non-resonant (\,, #
0), we obtain the solvability condition

1 ~ s o
poe (eiLijfj) 637./4 = sgn(e) (eiA;-jej) A+ 2./4\.,4|2 (ijkeiejgk + ijkeeiejekeg) ) (50)

The linearized dynamics of the above equation must be compatible with the linear evolu-
tion given by equation (32). This condition provides a quick way of computing the linear
coefficient and gives

m2 (e-A’.-e-) 2

A 14345%9 1 . 9 1 m*—1

w2 N D (0 — Q) = 0. 51
“ eiLij fj € (im (€ ) 4b7 ( ~ 5D
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On the other hand, the nonlinear coeflicient is given by

9 C’fjkeiejgk + ijkgeiejekeg

Ny = 2m
" eiLij f;

(52)

We can express equation (50) in terms of the original timescale ¢ by introducing A(t) =
le|Y2A(|e|V/?t) as

DA = —(b—b)amA+ N AlA)? (53)
(recall that € = b — b.) and the evolution of the Fourier mode n),,, can be approximated as
) 1
et (1) = Alt)eg + —— (OLAF + lelar(e] e +0 (1e*2) . (54)
——
O(|5\1/2) O(le])

Note that we have —(b — b.)ay, = o2 if b < b, (linearly unstable) and —(b — b.)o,, =
—m?(Qs — Q)% if b > b, (linearly stable). The evolution for a; remains unknown (even
though it could probably be solved by going to next order, we leave that pleasure to a
motivated reader...) but we will not need it in the following.

3.3 Classification of the bifurcation

An anology with the motion of a particle:

Equation (53) is a one-dimensional steady complex Ginzburg-Landau equation (with time
t playing the role of spatial variable). It thus resembles a Stuart-Landau equation but is
second order in time. If we decompose A(t) = z(t) + iy(t) into real and imaginary parts,
we can split Equation (53) into a system of two real equations

y(t) = *(b - bc)amy + NmRzya (55)

{fé(t) = —(b—bo)amz + NpR?x,
where we denoted R(t) = |A(t)| = \/22(t) + y?(t) the modulus of the complex amplitude.
This system corresponds to the dynamics of a particle with Cartesian coordinates x(t) =
z(t)X + y(t)§ in a central force F = F(R)T, where ¥ = x/R the unitary radial vector. The
force is given by F(R) = —(b — be)am R + N, R? and derives from the radial potential

1 1
V(R) =5 (b~ be)am R? — ZN’”R4‘ (56)
Equation (55) can thus be recast in the familiar vector form as x(t) = —V V.

Subcritical or supercritical ?

Since the coefficient a,, is positive (Equation 51), a sketch of the potential V(R) is repre-
sented in Figure 4 on each side of the bifurcation. In the linearly unstable regime (b < b.),
the linear dynamics is responsible for the growth of the amplitude of the perturbation. The
bifurcation is subcritical or supercritical depending on the sign of the nonlinear coefficient
Ni. If Ny, is negative, the nonlinearity is stabilizing and the amplitude can have nonlin-
ear oscillations with range set by the two turning points of the potential V(R). If N, is
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Figure 4: Radial potential V' (R) appearing in the weakly-nonlinear evolution of the ampli-
tude of the perturbation. The dashed line corresponds to the linear dynamics, unstable if
b < b, (left) and stable if b > b. (right). Depending on the sign of the nonlinear coefficient
N.., the bifurcation is sub- or supercritical. The local extrema, when it exists is reached at

the amplitude Rco = \/|b — be|am /No.
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m be Om, Ny
2 2 1/16 1.95 x 1072
3 V1+v2  V10v2-14 237x 107!
4 1(2+10Y3) 1.11 1.06
5 1.30 2.43 3.12

Table 1: Critical radii and coefficients appearing in the weakly nonlinear amplitude equa-
tion (53) for the first few modes m > 2. Exact results can be obtained up to mode m = 4,
but numerical approximations are given when the exact expression is cumbersome.

positive, the nonlinearity is destabilizing and the growth of an initially small amplitude is
super-exponential. In practice, the nonlinear coefficient N, can be computed numerically
from Equation (52), using the intermediate vectors f and g given by equations (42.b) and
(45), respectively. Table 1 gives the approximate values of the nonlinear coefficient A, for
the modes m = 2 to m = 5 and shows that they are all positive, indicating subcritical
bifurcations where the nonlinearity is destabilizing. We checked numerically that N, > 0
up to m = 50, with increasing values of N,,, so we assume that the bifurcation is subcritical
for all values of m > 2.

Hamiltonian associated with the particle’s analogy:

In this paragraph, we derive a simple Hamiltonian which encodes the dynamics at the
bifurcation for the mode m > 2. Let us first start in the frame of reference rotating
at rate Q.. The evolution equation for A(t) = €™ty (t) - e. + O(|e|) writes Iy A =
—V'(JA|) x A/|A| with the potential introduced in Equation (56). Separating A = z + iy
into real and imaginary parts, we recover the two-dimensional motion of a particle in a radial
potential as described in a previous paragraph. The corresponding Hamiltonian H), ;o is
given according to the canonical variables (z, p) by

1
Hysor (2, p) = 50 + V(Ja]). (57)
Then, the dynamics in the non-rotating frame of reference can be obtained by back-rotating
at rate m§,.. This corresponds to the change of variables X + iV = e~™%t(z + 4y), or
equivalently X = cos(mQ.t)x — sin(mf.t)z x x in vector notation. In the non-rotating
frame, the Hamiltonian of the particle writes

H,(X,P) = %PQ +mQ.(PxY — Py X) + %(b —b)amX? — %N’”X4 (58)
where we replaced the potential V' by its full expression. The gyroscopic term PxY — Py X
can be written in vector notation as z- (P x X ). The flow of the canonical variables (X, P)
under the Hamiltonian H,, displays the same linear and weakly nonlinear dynamics as n,,,
close to the bifurcation. The variables X = [X,Y]? and P = [Py, Py]? are related to n,),
by X +iY =m,, - e. and Px +iPy = [n,, — imQn,,] - €c.
Furthermore, the change of variables X = (mQ./vNn)X, P = (mQ.)?/vNm)P,
together with a rescaling of time £ = (m£.)t, shows that the pair of canonical variables
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Figure 5: Evolution of a perturbed vortex with b = 2.02 according to the DNS. The initial
condition is 1,(0) = 0.125e, with other modes set to zero. The dashed circles correspond
to the reference axisymmetric base state.

(X, P) evolves according to the Hamiltonian flow given by

s e = 1. L L~ 1 - 1
0,(X,P) = P*+ (Px¥ = Py X) + X’ — X, (59)

with bifurcation parameter p = (b — b.)/(m€.)?. This Hamiltonian corresponds to the
motion of a particle with charge and mass unity in a uniform magnetic field B = 2z and

radial electric potential %(,u — 1)5(2 — %XZL.

3.4 Finite-amplitude threshold for destabilization close to the bifurcation

In the linearly stable region b > b, infinitesimal perturbations of the mode m are expected
to rotate without growth nor decay. However, we observe numerically that small finite-
size perturbations rotate with oscillating amplitude (Figure 2 and Figure 5) and that large
enough perturbations grow monotonically until the vortex splits (Figure 6). The critical
amplitude separating these two regimes appears to depend both on the value of b and on
the ”shape” of the perturbation, given by the normalized initial condition n,,/|n,,|. In this
section, we provide a prediction for the critical amplitude close to the bifurcation (b = b.+¢
with 0 < e < 1).

From the amplitude equation derived using weakly nonlinear analysis, we know that
the amplitude of a small perturbation evolves nonlinearly according to the potential given
in Equation (56). Since we have computed that the nonlinear coefficient N, is positive
for the first few modes, a critical amplitude R.o = \/ (b — be)tm /N exists for b > b,
above which the potential becomes repulsive (Figure 4), leading to unbounded growth of
the amplitude. However, this critical amplitude R largely overestimates the amplitude
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Figure 6: Idem as Figure 5, with initial condition 1,(0) = 0.15e.. The last two snapshots
are zoomed out to show the splitting into a pair of traveling dipoles.

threshold at which initial conditions lead to unbounded growth. In particular, when the
initial condition is in the eigenspace of the linearized dynamics, R.o appears to provide
the correct scaling in +/b — b, but overestimates the observed threshold by a factor close
to 2. To explain this discrepancy, one need to introduce the effect of nonzero angular
momentum permitted by the two-dimensional motion. If the latter can be safely neglected
for infinitesimal perturbations, it significantly modifies the effective potential of the radial
motion for finite-sized initial perturbations.

Indeed, if we decompose A(t) = R(t)e’®® in polar form, we can rewrite Equation (53)
into a pair of real ODE. It writes

_ 2 _(p_ 3
{ R — R(9,0) (b — be)amR + Ny R (60)

Ratt@ + Q(BtR) (6t®) =0.

We recover the dynamics of the analogous particle in polar coordinates. Furthermore, by
multiplying equation (60.b) by R or by constructing on the analogy with the particle’s
motion, we find that Cy = R?0,0 is conserved during the evolution. This quantity is the
angular momentum of the analogous particle, and we will call it the areal velocity in the
following to prevent any confusion with the angular momentum of the vorticity distribution.
From the conservation of Cy, the dynamics can be reduced to a one-dimensional radial

evolution in an effective potential as 0y R = —V(R), with effective potential given by
ey 1 2 1 4
‘/eﬂf(R, C()) = TRQ + §(b — bc)OémR - ZNmR 5 (61)

Figure 7 shows the effective potential for different values of the areal constant Cy. It
shows that the energy barrier to overcome for unbounded evolution decreases as |Cy| grows
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Figure 7: Radial effective potential (Equation 61) for different values of the areal constant
Cy. When (Y is large enough, the local maxima of Vg disappears and any initial amplitude
leads to unbounded growth.

and even vanishes for values large enough. Knowing whether a given initial condition will
lead to a bounded evolution of the perturbation is thus analogous to the Kepler problem
in the context of gravitational orbits. We recover that a given initial condition will lead to
unbounded growth if Veg(-; Cp) is monotonically decreasing or if the (conserved) effective
total energy %(atR)Q—F‘/eff(R; Cy) of the analogous particle is larger than the local maximum
of ‘/eﬁ‘.

The existence condition and value of the local maximum of the effective potential for a
given value of Cy can be computed using Cardan’s formula. We find that the local maximum
exists only for |Cy| < C., where the critical areal constant C, is given by

C. = /\?m <O‘7”(b3_b6)>3/2 . (62)

For |Cy| > C,, the effective potential Vog(-;Cp) is monotonically decreasing and the initial
perturbation will grow unbounded. For |Cy| < C., the effective potential admits a local
maximum whose value is

2 b—bc 2
Vatro(Co) = O‘mELN)

. 1 1 2
with X (Cp) = 3 1+ 2cos 3 arecos 1-— 2@ ,

and the perturbation will remain bounded only if the effective total energy F.g of the
particle verifies Eeg < Ve c.

To compute E.g and Cp, we express the initial conditions Alyp and 0;A|p in terms of
the initial perturbation n,,, = 7,,(0). Using the decomposition A(t) = R(t)e’®® and

X(4-3X),
(63)
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assuming 1),,,,(0) = 0, the initial conditions for the amplitude equation can be computed
at dominant order as

(Ro = My - €l

Ry = MmN - €c| X Im

€c- (LilA(m)) Mmoo — Qc(ec - nm,O)
€c Mm,o
€c- (LilA(M)) : nm,O - QC(ec : nm,O)]

€c Mm,o

@o:—mee

In particular, if the initial perturbation is aligned with an eigenmode as 1,,(0) = /2 ne.,
the initial conditions for the amplitude equation reduce to

Ro = /?|ne - e ~ /2 , R =0,
{ 0 Ine+ | In| 0 (65)

Op = —m (Ve — Q) ~ Fal/21/2,

such that the areal constant verifies C3 = a,e?|n|*. The initial radial position and velocity
are Ry = £'/2|n| and 9;R|o = 0, respectively. We can thus deduce the value of the effective
total energy

1
Eet = am (b — be)|n|* — ENmW4 ; (66)

which must be compared with the local maxima of the effective potential (using Cg =
am (b — b.)32|n|*), when it exists. We can first show that there is no local maxima in the
effective potential if [n]* > 20, /V2TNp, ie., [0, 0] > Re,1. The critical amplitude R is

given by
200y, 2
Rei=4/—(0b—-0b.) =1/ —R.0- 67
! \/\/27/\@%( ) \/\/27 0 (67)

where R.o = \/ am (b — be) /Ny, is the position of the local maxima of V(R). Furthermore,
even when |n,, o| < Rc1, the dynamics can be unbounded if Feg > Vefr. This condition
can be recasted as

(X, (4—3X,) —4p >0 (68)

with 1 = (|, 0l/Re0)? < 2/V27 and X, = % {1+ 2cos [% arccos (1 — 2L p?)] }. It can be
solved numerically and finally gives Eeg > Ve e iff |1, 9| > Re2, where

Reo =~ 0.5858 X Ry . (69)

Figure 8 shows whether a given initial condition aligned with the eigenmode e (which
depends on b) for m = 2 will oscillate nonlinearly or destabilize into a pair of traveling
dipoles. It shows that the critical amplitude above which the vortex destabilizes scales
as (b — b.)'/? in the linearly stable region, close to the bifurcation b. = 2. If the naive
prediction R.o gives an upper bound for the critical amplitude, it overestimates it by a
factor of almost 2. The refined predictions R.; and R.2 in the case where the initial
condition is aligned with the eigenmode e, provide much better estimates of the critical
amplitude. Close to the bifurcation, for |b—b.| < 1072, we observe oscillating perturbations
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Figure 8: Classification of the evolution of finite-amplitude perturbations initially aligned
with the eigenmode ey for m = 2. Blue dots (filled and empty) show initial conditions
leading to bounded oscillations and orange squares show initial conditions which destabilize
into a pair of propagating dipoles. The three empty blue dots correspond to simulations
where the DNS remain bounded but the truncated Hamiltonians Hwni, and Hwnr lead
to folding. The dotted, dashed and solid lines correspond to the quantities R. o (position
of the potential maximum), R.; (disappearance of the local maximum in Veg) and R
(effective energy Eeg larger that the local maximum of Veg), respectively. The latter is the
prediction for the critical amplitude.

in the DNS slightly above the predicted threshold for destabilization (blue empty circles
in Figure 8). However, numerical simulations of the reduced models with Hamiltonians
Hwn1 and Hwnp+ show destabilizing dynamics, in agreement with the weakly nonlinear
prediction. All other performed DNS simulations agree with the truncated models. This
discrepancy close to the bifurcation could be due to numerical errors on the conservation of
area. Small variations of the area correspond to small modifications of the effective value
of b, which have the highest impact on the dynamics closest to the bifurcation.

3.5 Some finite-amplitude solutions in the linearly stable regime

In this section, we present three families of finite-amplitude solutions of Equation (53) in
the linearly stable regime. They take the form of cnoidal waves, solitons and purely rotating
motion, respectively. Recalling that the radial dynamics is given by

2

C
OuR = ng — (b — b)) R+ N R, (70)
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Figure 9: Some exact cnoidal solutions A(t) = R(t)e’®® of Equation (53). The turning
points are represented together with the potential on the right.

we perform the change of variables R = \/ﬁRc,OR and t = ty/am,(b—b.), with R.o =
V/@m (b —be) /Ny The evolution equation becomes

2

@J?—;3—3+2R1 (71)
with h? = C3/ (2R% gam (b — b.)). Equation (71) corresponds to the one-dimensional steady
complex Ginzburg-Landau equation (where £ plays the role of the spatial variable) and
admits periodic cnoidal and ”dark solitons” solutions [2]. In particular, a family of periodic
nonlinear solutions can be computed exactly in the case of A = 0 (a purely radial motion
of the particle with Cy = 0). Denoting sn(z|m) the elliptic sine with parameter 0 < m <1,

we can check that 3
- - . - R2
R(t) = Rosn | t\/1 — R? 0 72

is a finite-amplitude solution of Equation (71) with i = 0 for any |Ro| < 1/v/2. With the
original variables, it corresponds to a solution A(t) = R(t)e’®° with

R2

for any amplitude Ry < R.o. For small amplitude Ry < R.o, we recover the linear
dynamics R(t) = Rgsin(t\/ (b — b.)). Those solutions are represented on Figure 9.

Solitons solutions with rotation (Cy # 0) can also be found. For any 1/v/3 < Ry <1 /N2,
we can define a2 = SR% — 1 and check that

(D) = [Rg - m‘l‘j(at)] v (74)
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Figure 10: Some exact dark soliton solutions A(t) = R(t)e'®®") of Equation (53). The
evolution of the magnitude R(t) is shown on the left and the corresponding effective potential
in given on the right, together with the maximal amplitude and turning point.

is an exact solution of Equation (71) with 22 = R3(1 — 2R?). Going back to the original
variables, we obtain that for any initial amplitude Ry such that \/2/3R.o < Ry < R, the
dark soliton given by A(t) = R(t)e’®® is a solution of Equation (53) with

1/2
3R§ — 2R2,,

cosh? (t\//\/'m(?)R% - 2Rz?0)/2) (75)
: 2 2 R3
O(t) = i\/Nm(RQO ~ R)/2 X Tt
In the analogy with the motion of a particle, it corresponds to a particle starting at the local
maxima of the effective potential at ¢t = —oo, falling towards the local minima, reaching
its turning point at ¢ = 0 and going back to its initial position at ¢ = +o0o. The radial
components of the solutions are represented in Figure 10.

Finally, Equation (53) even admits solutions with constant amplitude Ry of the form

A(t) = Ry exp (iz’m JNom (R2,) — Rg)) (76)

for any Ry < R.o. Those solutions with constant amplitude correspond to vortex states

R(t) = | R

rotating at uniform rate w = Q. + \/Nm(Rao — R%)/m2. Those solutions called V-states

correspond to circular orbits in the analogy with the Kepler problem. Thus, the weakly
nonlinear analysis predicts the existence of V-states with any amplitude Ry < R.o =
O((b — b.)'/?) close to the bifurcation.

4 V-states of the Truncated Hamiltonians Hwni, and Hwnr+

At the end of Section 3.5, we derived some V-state solutions from the amplitude Equa-
tion (53). This equation being only valid close to the bifurcation, we explore in this section
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the V-states of the truncated model Hwnr, possibly far from the bifurcation. We recall
that the Hamiltonian Hwnyi, reads

Hwnr, = H(m,m) + H(Zm,Qm) + H(m,m,2m) + H(m,m,m,m)
™

2

(0 m Aigtjam + 05 amBighjzm + Cijr (0 m e 2m + c-C.) (77)
+ Dijkén;mn;mnk,mn&m)

where the tensors A, B, C and D are short for A™, AC™)  ¢lmm2m) qnq plmmmm)
respectively,and are defined in Equations (12), (20) and (22) together with their sym-
metrization rules. We look for V-state solutions rotating at rate w € R. They write
N (t) = (n;e”™1) ;21 5 and 0,,, (t) = (uje~2™“");_; 5. The evolution equation (4) reduces
to

{WLz'jnj = Ay + 2C;5m; e + 2Dijren; mene for i=1.2. (78)

wLijpy = Bijpg + Cjrinni

This system involving only real coefficients, we restrict our search to real solutions, corre-
sponding to aligned deformation between the contours (in phase or in phase opposition),
and ignore the complex conjugation in the following. Provided that w is not an eigenvalue
of L™'B, the second equation can be inverted using the resolvent R(w) = (B — wL)™!,
giving ur = —Rpe(w)Crmennm- Injecting into Equation (78.a) leads to the following pair
of nonlinear equations

(Aij — wLij — 2Ry (w) Crne CijitinMm + 2Dijemine) n; = 0 for i=1,2. (79)

This pair of equations is similar to an eigenproblem, except that the matrix depends non-
linearly on the unknown eigenvalue w and eigenvector [n1,72]7. If one considers w as a fixed
parameter, the problem admits a trivial solution 177 = n2 = 0, which we are not interested
in. This complicates any numerical search. Instead, we choose to keep w unknown and
add an equation by imposing a given excess angular momentum L for the solution. This
condition writes

T
L=-35 (miLign; + piLijpg) (80)

and forbids any trivial solution of the system (79)+(80) for nonzero L. This system is solved
using Newton’s method and numerical continuation on the values of the excess angular
momentum L, starting from low values of L and eigenmodes of the linearized dynamics.
We obtain a continuous family of V-states, with rotation rates w spanning the range between
the two linear predictions Q4.

Figure 11 shows the rotation rate w of the V-states for b = 2.005 as a function of the
norm |n,,| of the mode m = 2. We observe that a V-state of Hwnr, can indeed be found
for any rotation rate between the linear predictions and that the V-states of the weakly
nonlinear analysis (Equation 76 and dashed line in Figure 11) agree reasonably well with
the true V-states of Hywnr,. In particular, the critical amplitude R.p at which the dashed
line turns over provides a very good estimate of the maximal amplitude of V-states of
Hywni. However, the weakly nonlinear analysis predicted symmetric solutions on each side
of Q. = (24 4+ Q_)/2, but this symmetry is slightly broken in the V-states of Hywnr,.
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Figure 11: V-states diagram (left) showing the continuous family of V-states of Hwnr, (blue
solid curve) for b = 2.005 and m = 2. The rotation rate w is plotted against the norm of the
Fourier components of the mode m = 2. The black dashed curve is the prediction (76) from
the amplitude equation close to the bifurcation. The two dotted lines show the rotation
rates associated with infinitesimal perturbations (Equation 30). The insets on the right
show two V-states of Hwn,-

Figure 12: Idem as Figure 11 for b = 3 and m = 2. The dashed portions corresponds to
nonphysical self-intersecting contours.
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Figure 13: Comparison of two V-states of Hwnr and Hwnp+ for b = 3 and m = 2, both
rotating at rate w = 0.038.

At larger values of b, this asymmetry grows stronger as shown in Figure 12 displaying the
V-states of Hwnr, obtained for b = 3 and m = 2. In particular, V-states rotating at a rate
close to Q2_ correspond to very large deformations for which the truncation Hwnr, cannot
provide a good approximation of the full Hamiltonian (5) anymore. For instance, V-states
of Hwnr, can correspond to self-intersecting contours (dashed curve in Figure 12) when |n,,, |
is too large, which is nonphysical and should be prevented by the full Hamiltonian.

One can consider higher-order terms by numerically solving for the V-states of HwnNL+ -
Looking for solutions of the form n,,(t) = (n;e”"“%);, Ny, (t) = (uje” 2™, and 0, (t) =
(Aje3met) . the V-state equations can be written as

wLijn; = Ainj + ZC’z‘ij;/ﬁk + 2Dijk€77;77k:77£ + éijk/ﬁ;)\k + Dﬁkm}fnkm + 3Di]~km;f17;;)\g ,
wLijpt; = Bijpi + Ciranine + Ciaen Me + Dijrenmibe
wLijA; = BijAj + Ciramjpr + Djreiningne

where the eight tensors A, B, B, C, C, D, D and D are short for the symmetrized versions
of 14(771)7 14(2771)7 14(3771)7 (jv(m,m,Qm)7 (:r(m,QTrL,Sm)7 D(m,m,m,m)7 p@mmm2m) o9 D(m,m,m,?)m),
respectively. All of them are defined in Equations (12) and (20)-(24). Again, restricting our
search to real solutions and assuming one can invert (B;; —wL;j);; and (Bij — wklj)ij, the
previous system can be reduced to a pair of two equations by solving for A(w,n, ) in the
third equation, injecting the results in the second equation and solving for p(w,n).

The resulting equation for 1 is lengthy and does not provide much insight, but can be
used to numerically solve for V-states of Hywnp+. We find that the curve of w as a function
of |n,,| for m = 2 (not shown) is only slightly modified compared to Hywnr,+. However, for
a given value of w, the resulting V-states appear to be less dog-boned shaped and less often
self-intersecting, due to the addition of the mode 73, (Figure 13).
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5 Conclusion and Perspectives

We have shown that the dynamics of a close-to-axisymmetric isolated vortex with piecewise
constant vorticity distribution could be well approximated by low-order Hamiltonian sys-
tems obtained through Taylor expansion of the original Hamiltonian. A comparison of two
degrees of truncation, namely Hwni, and Hwnr+, suggests that adding more modes and
nonlinear interaction terms can improve the quality of the approximation. From Hwnr,, we
derived an amplitude equation at the onset of instability by extending the work of M&F to
be valid on each side of the bifurcation. We showed that the bifurcations of the first few
modes were subcritical and analogous to the bifurcation of a charged particle in a radial
potential superimposed to a uniform perpendicular magnetic field. Those results consoli-
date the findings of [8] with an Hamiltonian approach. From an analogy with the Kepler
problem, we provided a prediction for the separatrix between initial conditions leading to
bounded oscillations and those leading to unbounded growth, which was in good agreement
with the numerical observations close to the bifurcation. Finally, we showed numerically
that the truncated Hamiltonian Hwni, and Hwnps admit V-states with any rotation rate
within the rotation rates of infinitesimal perturbations. Those V-states have good chances
to be relevant approximations to true V-states of the full dynamics.

This latter point remains to be verified using a solver for the V-states of the full dynam-
ics, such as the synthetic annealing method of [9], and this is the subject of future work.
Furthermore, the linear stability of the V-states of the truncated Hamiltonians Hywnr, and
Hwni+ (with respect to the dynamics of the truncated system) needs to be studied. This
could open a way of estimating the linear stability of close-to-circular V-states of the full
dynamics.

Finally, it might be interesting to extend the truncated models to interactions with
modes outside the sets of subharmonics of a given mode m. From Equation (13), computing
all triads of the form (m,k) < (m + k) is reduced to an enumeration process. Then, the
Hamiltonian §2H + §H truncated to a given mode kpax could provide a fun set-up for
numerical simulations of wave turbulence.
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Tilted Rossby Waves or Turbulent Potential Vorticity Mixing:
What Determines the Equatorial Jet Direction on Jupiter?

Heng Quan
August 19, 2025

1 Introduction

The atmospheric circulation on Jupiter features a zonally banded pattern of latitudinally
alternating prograde and retrograde zonal jets. Several observational datasets [11, 19, 18]
have revealed that there is a single wide and strong prograde equatorial jet in the tropics,
whereas there are multiple narrower and weaker jets in the mid-latitudes (Figure 1). The
prograde equatorial jet has been the subject of considerable research and will be the focus
of this report.

The prograde equatorial jet is not physically intuitive at first glance. For an idealized
freely evolving atmosphere, conservation of angular momentum suggests that the zonal mean
zonal wind should increase poleward in the tropics, resulting in a minimum zonal velocity
near the equator [7]. Because a maximum zonal velocity near the equator is observed
instead, the prograde equatorial jet on Jupiter must have a source of angular momentum
that drives a net transport of eastward momentum towards the equator.

Two theories are predominantly invoked to explain the emergence of the prograde equa-
torial jet on Jupiter. The first theory invokes eddy momentum transport towards the equa-
tor induced by tilted Rossby waves, including both vertical and transport in the ~ 3000
km-thick convective zone [3] or horizontal transport only in the ~ 50 km-thick outermost
weather layer [17, 13, 22]. The second theory invokes the turbulent potential vorticity (PV)
mixing process, where the sign of the meridional gradient of the planetary PV (i.e., the beta
effect) determines the direction of momentum transport [23]. These two theories have been
studied separately in previous work, but to our best knowledge have not been systematically
studied together. As we will show later, tilted Rossby waves and turbulent PV mixing can
cause opposite equatorial jet directions in certain cases.

In the present work, we study the simultaneous effects of these two theories by im-
plementing simulations of stochastically forced two-dimensional turbulence in a rotating
shallow-water model on the sphere. Using these simulations, we aim to

1. Identify the mechanism dominating momentum transport in different dynamical regimes;

2. Explain the formation of Jupiter’s prograde equatorial jet in light of both theories.

This report is organized as follows. In Section 2, we describe the model we use and its
numerical setup. In section 3, we introduce the tilted Rossby wave theory and the turbulent
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Figure 1: The latitudinal profiles of zonal mean zonal velocity on the outer surface of Jupiter
from different observational datasets. This figure is from [18].

PV mixing theory. In Section 4, we show our simulation results, starting from the simplest
case and gradually adjusting the model to be more complex and realistic. In Section 5, we
summarize our conclusions.

2 Methods

Figure 2 shows a schematic of Jupiter’s cross section. The innermost layer is primarily
composed of metallic hydrogen, which is extremely conductive and generates a strong elec-
tromagnetic field. This electromagnetic field efficiently dissipates the kinetic energy through
Ohmic dissipation [9, 5], so we consider the gas inside the Ohmic dissipation layer to be
stagnant. The middle layer is the convective layer with deep jets, and the outermost layer
is the weather layer where the zonal jets are directly observed. On Jupiter-like fast-rotating
planets, the atmospheric motions spontaneously organize into Taylor columns parallel to
the rotation axis [21]. These Taylor columns extend through the convective layer to the
weather layer, and horizontal motions are largely invariant along the Taylor columns.
There are two primary ways to model the jets on Jupiter. The first is to use a deep
model for the entire depth of the Taylor columns [3, 14, 23], which can explicitly resolve the
convective forcing and the topographic beta effect. The second is to use a shallow model
for the weather layer [4, 16, 17, 13, 22]. This report employs the shallow model. We start
from the simplest setup: a single-layer spherical shallow-water model of the weather layer.
In future work, we will incorporate the topographic beta effect into the shallow model.
We employ the following governing equations of the spherical shallow-water model

T (u-V)u+ fi x u =~V — kpyper Vu — kgjeu + F, (1)
Oy
5t gHV -u+V - (pu) = —kpaqip. (2)
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Figure 2: Left: Schematic showing the internal structure of Jupiter. Right: The idealized
latitudinal profile of the nondimensional frictional damping coefficient (details in text).

All terms on the left-hand sides of equations 1 and 2 have their standard meanings. The
two-dimensional (2-D) velocity field on a spherical shell is denoted by u = (u,v), and the
Coriolis parameter is given by f = 2Qsin#, where € is the planetary rotation rate and 6
denotes the latitude. The symbol ¢ represents the geopotential anomaly. As sketched in
Figure 3, we have

gh =gH + gn = gH + ¢, (3)

where H is the average depth of the weather layer.

On the right-hand side of equations 1 and 2, F is a stochastic forcing term parameterizing
the small-scale energy injection from convection and baroclinic eddies, —kgjcu is a frictional
damping term (meant to capture the effect of the Ohmic dissipation layer, which acts as a
bottom drag on the Taylor columns), —k;,q¢ is a radiative damping term (meant to capture
the effect of radiative cooling of the upper weather layer), and —k‘hyperV4u is a hyper-
viscosity term to ensure numerical stability and achieve high-Reynolds-number behavior at
large scales.

The stochastic forcing term F we use is similar to previous work [16, 13]. The energy
is injected into a single spherical harmonic meridional wavenumber [ = 64 and across all
zonal wave numbers —64 < m < 64, with a constant energy injection rate €. The forcing F
at two adjacent time steps is not correlated.

The radiative damping coefficient k.,q and the hyper-viscosity coefficient kyyper are glob-
ally uniform. The frictional damping coefficient kg is tropically suppressed, as shown in
Figure 2. This reflects the fact that atmospheric Taylor columns are not connected to the
Ohmic dissipation layer outside the tangent cylinder, implying a much weaker frictional
damping in the tropics (approximately || < 15° for Jupiter). Overall, the governing equa-
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weather
layer

Figure 3: Schematic of the spherical shallow-water model for the weather layer of Jupiter,
showing a top surface slightly perturbed from the perfect sphere. This figure is not to scale.

tions 1 and 2 are fairly standard in studies of shallow models [17, 13, 22]. However, our
setup is unique in that we explicitly suppress the frictional damping in the tropics and
systematically explore the separate and combined effects of both frictional and radiative
damping.

To nondimensionalize the shallow-water equations, we use the planetary radius R as the
length scale and T' = 1/(2€2) as the timescale. The nondimensional shallow-water equations
are

ou’

W + (u/ . v/)u/ + f/f X u’ = —V/SO/ - l/v/411/ - Tfricu/ + F/(E)‘ (4)
a /
a*ff AV V() = g 5)

Note that the nondimensional Coriolis parameter f = sinf. Variables with prime are
nondimensional, and below we drop the prime for simplicity. The dimensional coefficients
Efric, krads Fnyper become nondimensional coefficients rfric, 7rad, Thyper- We use the following
Jupiter-relevant values as the default nondimensional numbers to be consistent with [22],
and perturb them to explore a wide parameter space.

e Hyper-viscosity coefficient ryyper = 2 X 1071
e Radiative damping coefficient r.,q = 2 X 1073;

e Frictional damping coefficient rgic = 1 x 1075 for |f] < 15°, and rgic = 1 x 107# for
|6] > 15° (the global mean rg; is similar to [22] who used uniform frictional damping);

e Energy injection rate e = 1 x 10710;
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o N\ = % = 0.025, where the (polar) deformation radius Lg = %.

We numerically integrate the nondimensional shallow-water equations 4 and 5 using
Dedalus [2], which can solve initial-value partial differential equations using a pseudospectral
method in terms of spherical harmonic basis functions. We use a T255 triangular truncation
with a 3/2 dealiasing factor, such that nonlinear terms are evaluated on a grid with 768
grid points in the zonal direction and 384 grid points in the meridional direction. We run
each simulation until the zonal mean zonal velocity reaches a statistically stationary state
where the energy injection is balanced by dissipation, and present nondimensional results
based on long-time averages over this steady state.

3 Theories

3.1 The formation of jets

In 2-D turbulence, small-scale eddies tend to spontaneously organize into large-scale struc-
tures through a process known as the inverse energy cascade, during which the energy
injected at small scales inversely cascades towards larger scales [8, 1, 20]. The inverse en-
ergy cascade starts to be influenced by the spatial anisotropy due to the beta effect at the
beta scale Lg o< (eﬁ*3)1/5, where zonal jets start to form. Beyond that, the energy con-
tinues cascading to larger scales and the zonal jets grow wider until reaching the Rhines
scale Lr o< v/U/B (U is a characteristic velocity) [12], where the inverse energy cascade is
arrested by dissipation. Thus, the Rhines scale is the characteristic width of jets in steady
state.

The direction of a jet can be explained by the zonal mean momentum budget. By
calculating the zonal average of equation 1, we have

ou

ot v+ [0 — Kfricll — khyperv4ﬂ + Fy, (6)

where @ is the zonal mean zonal velocity, v is the meridional velocity, ( = 7 - (V x u)
is the relative vorticity, and Fy is the zonal mean zonal component of the forcing F. Using
the eddy-mean decomposition, we obtain

% = V' + ¢+ f0 — kpricti — knyper Vi + Fy. (7)

For the equatorial jet, v ~ 0, f =~ 0, and E ~ 0. The dominant active term in equation
7 is the zonal mean eddy meridional vorticity flux v/¢’, whereas the damping terms are
passive terms in that they eventually stop the zonal flow from growing but do not drive a
zonal flow themselves. For an incompressible 2-D flow, i.e., V - u = 0, the v/¢’ term can be
rewritten as

VT = — i (8)

The latter term is more familiar, representing the meridional convergence of eddy-
induced momentum flux.
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Figure 4: Schematic showing how tilted equatorial Rossby waves affect the equatorial jet
direction (details in text).

The equatorial jet direction is largely determined by the sign of v/¢’ in the early jet
growth stage. There are two relevant theories: One argues that v/(’ is determined by tilted
equatorially trapped Rossby waves, the other argues that v/(’ is controlled by a turbulent
potential vorticity mixing process. Below we introduce each theory separately.

3.2 Tilted Rossby waves

The spatial structure of linear waves on an equatorial beta plane in a freely evolving shallow-
water system can be analytically obtained following the standard approaches described in
[10, 6]. With a globally-uniform radiative damping or frictional damping, analytical wave
solutions featuring tilted equiphase lines and decaying amplitudes can still be obtained
[13, 22]. However, here we focus on the physical picture rather than on the mathematics.

The nondimensional shallow-water equations 4 and 5 can be combined into one sin-
gle global quasi-geostrophic potential vorticity (QGPV) equation if we assume the Rossby
number Ro = U/(20L) < 1 (L represents the characteristic horizontal length scale of the
flow), the surface height perturbation n < H and |0f/00| < [0u/00|,|0v/00| [15]. The
nondimensional QGPV equation reads

g C—%SiHQQ +u-V C—%Silﬂ@ +,B’U:FC_TfricC_VV4C+Trad%Sin297 (9)
ot )\d Ad )\d

where 1) is the quasi-geostrophic streamfunction satisfying ¢ = V2 and u = # x V).
The nondimensional beta is § = cos§, and the forcing term is given by Fr =7 - (V x F).

The QGPV equation 9 shows that both the radiative damping and the frictional damp-
ing are tropically suppressed: the former is proportional to sin? 6, and the latter has the
imposed staircase profile (Figure 2). The tropically suppressed damping induces a poleward
energy transport in the tropics, hence a poleward group velocity cg of equatorial Rossby
waves [13]. As sketched in Figure 4, the poleward group velocity manifests itself as the west-
ward tilt of the equiphase lines with increasing absolute value of latitude for Rossby waves,
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for linear shallow-water simulations with radiative damping only and different energy in-
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Figure 6: (a) The nondimensional equatorial zonal mean meridional vorticity fluxes, (v()eq,
for linear shallow-water simulations with frictional damping only and different energy in-
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Figure 7: Schematic showing how the potential vorticity mixing process affects the equato-
rial jet direction (details in text).

resulting in a transport of eastward momentum towards the equator in both hemispheres.
Therefore, tilted equatorial Rossby waves in rapidly rotating, Jovian-like planets tend to in-
duce a positive momentum acceleration and a prograde equatorial jet with radiative and/or
frictional damping.

To verify the sketch in Figure 4, we numerically integrate the following linear shallow-
water equations to a steady state:

ou

5 + ffxu=—-Vp - vV - ryeu + Fe). (10)
0
87(’750 + A2V u = —rpaqg. (11)

The linear shallow-water equations sustain the equatorial waves in linearized analytical
theories [13, 22], and these waves determine the equatorial jet direction in the early growth
stage when the nonlinear terms are small. Both radiative damping (Figure 5) and frictional
damping (Figure 6) alone result in a positive equatorial v¢ in linear shallow-water simula-
tions, confirming the positive momentum acceleration expected from Figure 4. Therefore,
we expect a prograde equatorial jet in nonlinear shallow-water simulations due to tilted
equatorial Rossby waves.

3.3 Potential vorticity mixing

The potential vorticity (PV) is a materially conserved variable for a freely evolving shallow-

water system
D (¢+f
— [(—] =0. 12
Dt( h ) (12)

We consider incompressible (i.e., constant h) turbulent flows on an equatorial beta plane,
where the background planetary vorticity is f = Sy. The eddies seek to homogenize the
potential vorticity across the equator, but cannot do so perfectly because of forcing and
damping. As sketched in Figure 7, this homogenization of PV causes the absolute vorticity
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¢ 4+ f to be more well-mixed than f. As a result, there is a switch of the sign of { across
the equator, which requires a minimum zonal velocity on the equator. In our shallow-water
simulations the flow is compressible, so the potential vorticity H(¢ + f)/h is homogenized
instead of the absolute vorticity ¢ + f. This difference, however, does not qualitatively
affect the sketch in Figure 7 as we will show later. Therefore, we expect that the turbulent
potential vorticity mixing process tends to induce a negative momentum acceleration and
a retrograde equatorial jet.

4 Results

As discussed above, the tilted Rossby waves tend to cause a prograde equatorial jet, while
the turbulent PV mixing process tends to cause a retrograde equatorial jet in the single-
layer shallow-water model with tropically suppressed damping. We now study which process
dominates in different cases.

4.1 Case I: radiative damping only

We first consider the case with radiative damping only and zero frictional damping. Figure
8(a)(b) shows the magnitude and meridional structures of the equatorial zonal jet in the
steady state of shallow-water simulations with different energy injection rates. Consistent
with previous studies [17, 13, 22], all of our simulations result in a prograde equatorial jet,
which becomes stronger and wider for a larger energy injection rate (The characteristic jet
width Lr o /U/B). This is consistent with the effect of tilted equatorial Rossby waves
(Figure 4 and 5). In contrast, a prograde equatorial jet means a larger meridional PV
gradient than the planetary PV gradient (see Figure 8(c)), which is contradictory to the
effect of mixing turbulent potential vorticity (Figure 7). Therefore, the positive momentum
acceleration and the associated prograde equatorial jet appear to be due to tilted equatorial
Rossby waves in this case.

4.2 Case II: frictional damping only

Next, we consider the case with frictional damping only and zero radiative damping. Figure
9(a)(b) shows the magnitude and meridional structures of the equatorial zonal jet in the
steady state of shallow-water simulations with different energy injection rates. Only the
simulation with the weakest energy injection results in a prograde equatorial jet, while other
simulations result in retrograde equatorial jets. A retrograde jet means a smaller meridional
PV gradient than the planetary PV gradient (see Figure 9(c)), which is consistent with the
effect of turbulent potential vorticity mixing (Figure 7). By contrast, a retrograde jet is
contradictory to the effect of tilted equatorial Rossby waves (Figure 4 and 6). While previous
studies predicted that the tropically suppressed frictional damping (Figure 2) would result
in a prograde equatorial jet dominated by tilted Rossby waves [13, 22], our results indicate
that the effect of PV mixing is stronger, resulting in a negative momentum acceleration and
an associated retrograte equatorial jet in this case.

It seems that the prograde equatorial jet under the weakest energy injection in Figure
9(a)(b) is due to positive momentum acceleration from tilted Rossby waves. However, we
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Figure 8: (a) The nondimensional equatorial zonal mean zonal velocity for simulations with
radiative damping only and different energy injection rates. (b) The meridional profiles of
zonal mean zonal velocity normalized by their equatorial values for the same simulations.
(c) The meridional profiles of nondimensional zonal mean potential vorticity for the same
simulations (solid) and the nondimensional planetary vorticity (dashed). A darker color
represents a larger energy injection rate.
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Figure 9: (a) The nondimensional equatorial zonal mean zonal velocity for simulations with
frictional damping only and different energy injection rates. (b) The meridional profiles of
zonal mean zonal velocity normalized by their equatorial values for the same simulations.
(¢) The meridional profiles of nondimensional zonal mean potential vorticity for the same
simulations (solid) and the nondimensional planetary vorticity (dashed). A darker color
represents a larger energy injection rate.
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Figure 10: Same as Figure 9 but with the stochastic energy injection only in the tropics,
ie., 0] < 15°.

argue that it is instead due to insufficient PV mixing. The zonal mean zonal velocity is
close to zero at |6| = 15° under the influence of frictional damping, and the jet mixes PV in
the tropics (]0] < 15°). The width of the jet Lr o \/U/S is positively correlated with the
characteristic velocity and the energy injection rate. A single retrograde jet emerges under
strong energy injection, which mixes PV in the entire tropics (|f| < 15°). However, there
are multiple narrower jets in the tropics (|@| < 15°) under weak energy injection, so that
PV is mixed around each retrograde jet. With the energy injection rate of € = 10712, there
is one prograde equatorial jet surrounded by two retrograde jets in the tropics (|0] < 15°)
(Figure 9(b)), and PV is partially mixed by the two retrograde jets to the north and south
of the equator.

We conduct another group of simulations to distinguish between the prograde equatorial
jet resulting from insufficient PV mixing and that resulting from tilted Rossby waves. We
repeat the simulations in Figure 9, but with the stochastic energy injection only in the
tropics (|0] < 15°). By doing so, we have a tropically amplified energy injection in addition
to the tropically suppressed frictional damping, which enhances the energy transport and
momentum transport of tilted Rossby waves (Figure 4). As a result, the jet direction in
Figure 10 is dominated by tilted Rossby waves. Under strong energy injection, the positive
momentum acceleration from tilted Rossby waves causes a single prograde equatorial jet
in the tropics (|f| < 15°) (Figure 10(a)(b)) and a larger meridional PV gradient than the
planetary PV gradient (Figure 10(c)). Under weak energy injection, there are multiple jets
in the tropics (|f| < 15°) and PV is partially mixed. Figure 10(b) indicates that the jet
closest to |#| = 15° in the tropics (|6] < 15°) is always prograde (for any number of jets) due
to the positive momentum acceleration from tilted Rossby waves around |0 = 15°. These
prograde jets near |#| = 15° are oppositely directed compared to the profile of mean zonal
velocity for the weakest energy injection in Figure 9(b). This contrast further demonstrates
that the prograde equatorial jet under the weakest energy injection in Figure 9(b) is due to
insufficient PV mixing instead of tilted Rossby waves.

To summarize, the turbulent PV mixing process determines the equatorial jet direction
in simulations with tropically suppressed frictional damping. A single retrograde jet emerges
under strong energy injection, while multiple narrower jets emerge under weak energy in-
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Figure 11: (a) The meridional profiles of nondimensional zonal mean zonal velocity for
simulations with both damping terms and different Rossby deformation radii. (b) The
meridional profiles of nondimensional zonal mean potential vorticity for the same simula-
tions (solid) and the nondimensional planetary vorticity (dashed). These simulations have
a modest nondimensional energy injection rate of ¢ = 10719,

jection. In the latter case the equatorial jet may be retrograde or prograde, depending on
whether PV mixing occurs across the equator.

4.3 Case III: both damping terms

Finally, we consider the more realistic case with both radiative damping and frictional
damping. Based on the case studies presented above, we expect that the equatorial jet
direction depends on the relative importance of the two damping terms. If the radiative
damping dominates, we expect a prograde equatorial jet controlled by tilted Rossby waves;
if the frictional damping dominates, we expect a retrograde equatorial jet controlled by
turbulent PV mixing, as long as there is enough energy injection to yield a single jet in the
tropics (]0] < 15°).

We conduct shallow-water simulations with both damping terms and varying Rossby
deformation radius under a fixed energy injection rate of ¢ = 10719, A larger deformation
radius means that the flow is more incompressible and that the radiative damping is less im-
portant. Consider the Ay — oo limit of the shallow-water equations 4 and 5: In this case the
shallow-water model becomes the incompressible barotropic model with a constant surface
height, so the system does not feel the radiative damping. Figure 11 shows the mean flows
and PV profiles in the steady state for simulations with different A4y. The results are con-
sistent with our expectations. With a small deformation radius (red curves), the radiative
damping dominates, resulting in a prograde equatorial jet controlled by tilted Rossby waves
(Figure 11(a)) and a larger meridional PV gradient than the planetary PV gradient (Figure
11(b)). With a large deformation radius (blue curves), the frictional damping dominates,
resulting in a retrograde equatorial jet controlled by turbulent PV mixing (Figure 11(a))
and a smaller meridional PV gradient than the planetary PV gradient (Figure 11(b)).

The nondimensional numbers of the L;/R = 0.025 simulation in Figure 11(a) are similar
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to the corresponding Jovian-like values [22], and that simulation qualitatively reproduces
the prograde equatorial jet on Jupiter. Therefore, we propose a possible explanation for the
prograde equatorial jet on Jupiter within the single-layer shallow-water model framework:
The effect of tilted Rossby waves dominates over the effect of turbulent PV mixing due to
strong radiative damping, resulting in a positive momentum acceleration and a prograde
equatorial jet.

5 Conclusions

In this study, we use a single-layer shallow-water model to study the prograde equatorial
jet on Jupiter. We note that the same approach could also be applied to other planets. We
introduce two alternative theories that make predictions about the equatorial jet direction.
The momentum transport from tilted Rossby waves causes a prograde equatorial jet when
we have a tropically suppressed damping, while the momentum transport from turbulent
PV mixing causes a retrograde equatorial jet when we have a positive planetary beta (and
the energy injection is strong enough that there is only one tropical jet). We study which
mechanism dominates in different cases, and explain the prograde equatorial jet on Jupiter
considering both theories. Our findings are:

1. If the radiative damping is the dominant damping, the momentum transport from
tilted Rossby waves is likely the dominant process, causing a prograde equatorial jet.

2. If the frictional damping is the dominant damping, the momentum transport from
turbulent PV mixing is the dominant process. A single retrograde jet emerges in the
tropics (i.e., outside the tangent cylinder) under strong energy injection, while multiple
narrower jets emerge under weak energy injection. In the latter case the equatorial
jet may be retrograde or prograde, depending on whether PV mixing occurs across
the equator.

3. In Jupiter’s weather layer, the radiative damping is thought to be the dominant damp-
ing [17, 22], so the momentum transport from tilted Rossby waves may dominate over
the momentum transport from turbulent PV mixing, resulting in a prograde equatorial
jet.

Many important questions remain open. We plan to study the fundamental physical
difference between radiative damping and frictional damping to explain why the effect of
tilted Rossby waves dominates under radiative damping, while turbulent PV mixing dom-
inates under frictional damping. We also plan to incorporate the topographic beta effect
relevant to deep planetary atmospheres [23] into the shallow-water model and explore how
it affects the equatorial jet direction.
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Pattern Transitions in Faraday Waves: From Hexagons to
Beaded Stripes

Kyle McKee

August 20, 2025

1 Introduction

1.1 Faraday waves

When a container of liquid is shaken harmonically in the vertical direction, the effect on
the governing equations is to modulate gravity so that g is replaced by g(t) = g+ Asin (2t)
in the moving frame of the container for some forcing frequency €2 and amplitude A. For
small shaking amplitudes, the base state comprising a flat fluid-air interface is stable. How-
ever, when the acceleration is raised beyond a frequency-dependent threshold, the surface
becomes unstable to Faraday waves. This instability was discovered by [5] and has been
the focus of many theoretical and experimental studies to this day [9, 2, 10, 3]. The linear
stability of a vertically shaken container of (inviscid) fluid was first analyzed mathemati-
cally by [1], who showed that the amplitude of a surface disturbance corresponding to a
container eigenmode evolves according to a Mathieu equation, such that the stability is
characterized by the so-called Mathieu tongue diagram (see [1, Fig. 2]). Depending on the
values of two known functions of the system parameters, p(g, A4, --) and ¢(g, A,---), the
Mathieu tongue diagram indicates whether the point (p, q) is stable (exterior to a tongue)
or unstable (inside a tongue). The stability tongues were computed in the case of a real
viscous fluid later by [8].

In settings where the flat base state is linearly unstable, the wave amplitude initially
undergoes exponential growth, until nonlinearities cause waves to saturate at finite am-
plitude. The nature of these nonlinearities dictate which spatial patterns emerge in the
finite amplitude waves. An active area of research seeks to understand the emergent wave
patterns, and the transitions between different patterned states [14, 2, 4, 13].

1.2 Hexagonal patterns

The first fully nonlinear numerical simulations of Faraday waves were presented by [11],
which opened the door for detailed numerical studies of why patterns emerge and how
patterns dynamically switch either periodically, quasiperiodically, or chaotically. One study
that built off of this new numerical capability was that of [12], wherein hexagonal Faraday
wave patterns were studied numerically. Hexagonal patterns had been previously observed
experimentally [7], which served to motivate this study.
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Figure 1: Dynamics observed in [12]. In the top left panel, the red line traces one of the wave
vector amplitudes when the system is initialized in the hexagon state. As time progresses,
the hexagon state destabilizes in favour of the beaded stripe and quasihexagons.

Figure 2: Amplitude of Fourier modes seen in the dynamics of [12]. Beginning in the
hexagon state at time t1, the Fourier representation of the wavefield has components mainly
on the hexagonal lattice. At a later time, to, the state has wave components with both on-
lattice vectors and the off-lattice vector k4. Quasi-hexagons and asymmetric beaded stripe
patterns also contain the same off-lattice vector, k4.
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In their work, [12] considered the evolution of Faraday waves on a doubly periodic
domain with a rectangular basis cell. The aspect ratio of the rectangle was chosen to be
1/4/3 to ensure that the hexagonal basis vectors were all contained within the working basis.
Because the dynamics were solved numerically on a rectangular grid, off-lattice wave vectors
are also included in the simulation. The hexagonal lattice wave vectors (ki, k2, and k3) are
free to interact with these additional wave vectors, which gives rise to the dynamic pattern
switching observed by [12] which are outlined in Fig. 1. In fact, when the amplitudes were
initialized in numerical simulations such that the waves began in the hexagonal state (up
to some inevitable small perturbation), the state destabilized into a new state involving an
off-lattice vector, which we have labeled k4. The transition in the Fourier contributions of
the wave patterns can be seen in Fig. 2. Therein, the amplitude of the off-lattice wave
vector is seen to grow during the transition and the system tends toward the non-hexagonal
stationary state denoted beaded stripes. Later, so-called quasi-hexagons and asymmetric
beaded stripes were observed. A key feature of these non-hexagonal states that we will
exploit in our analysis, in seeking a minimal model for explaining these transitions, is that
the off-lattice vector k4 has the largest off-lattice amplitude in all of these observed states.
We will thus derive equations that describe the interactions of the hexagonal lattice vectors
with k4. By neglecting other wave vectors in our model, we are implicitly assuming that
the the observed dynamical states from [12] are robust enough that they exist even in the
absence of the neglected off-lattice modes. The validity of this assumption shall be assessed
a posteriorsi.

We proceed by deriving the most general model describing interactions between hexag-
onal wave vectors and the dominant off-lattice vector, k4, while ignoring the effects of all
other wave vectors. We then study the steady states (fixed points) of our model, the stabil-
ity of these steady states, and the dynamics of transitions between these states. Lastly, we
use our model to qualitatively rationalize the dynamics observed in [12] and describe future
directions still to be explored.

2 Problem Formulation and Amplitude Equations

We now proceed by deriving a set of equations describing the interaction between lattice
vectors. The key hexagonal lattice vectors (k1, k2, and k3) along with the most important
off-lattice vector k4, which we shall include in our model, are depicted in Fig. 3.

Put mathematically, we seek evolution equations for amplitudes of plane waves, {z1, z2, 23, 24},
with corresponding wave vectors {k1, ko, k3, k4}. These general evolution equations shall be
derived in an abstract fashion, with generic coefficients that should be fixed by the physics
being described (i.e., parameters of the Faraday wave system). We note that the amplitude
equations involving only the on-lattice vectors have already been derived by [6], and we
shall see these equations emerge as a special limit of our general equations when we set
Z4 = 0.

Our wave ansatz is given by,

4
fla,y,t) =) a(t)e*® + e, (1)
j=1
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Figure 3: Wave vectors included in our model.

where c.c. denotes complex conjugation, and k; are three fundamental hexagonal lattice
basis vectors along with the off-lattice vector: ky = (1,/3), k2 = (—1,v/3), k3 = (0, —2v/3)
and k4 = (1,0).

2.1 Deriving the amplitude equations

In order to derive the evolution equations Z;(t) = fr(z1, - ,24), we need to deduce all
compatible forms of the right side functions, fi. This is done by matching the possible
spatial forms of the waves, and truncating at cubic order. We shall demonstrate this process
for the case of z; and then we suppress the details for the other three terms. The essential
idea is that Z, ~ 22, is only possible if k, = k; + k. It is worth noting that z, ~ 2z, is
possible if k, = —k; — k;,,. Hence the possibility of having conjugate terms means an even
larger dictionary of compatible terms.
Considering the evolution of 21, we require,

(1,1) = a(0,—-2) + 5(1,0) +v(—=1,1) + (1, 1), (2)

where {«, 3,7,0} € Z are the amplitude exponents. In general, the equations become,

1=B-7+0=|y=8+0—1] (3)
B—2+20
l=-2a+y+d=-"2a+B+2—-1= =" (4)

21.1 6=0

The terms corresponding to § = 0 satisfy,

=57 ~[G=51] ®

l=-2a+y=>|a=——/| (6)
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B=-2|a=-2|v=-3 22232

=0 |a=-1|~v=-1| Z3Z
68=2 a=0 | vy=1 2329

B=4 | a=1 =3 | 2j2323

Table 1: 2; terms

from which it follows that § is necessarily even to ensure that « is an integer. Note that
when 6 = 0, we find that &« = v = —1 corresponding to the term zzz3. When 8 = 2, we
find and v = 1 and o = 0. These and higher order terms are given in Table 1. Terms in
blue are both new relative to the equations of [6] and also of at most cubic order (i.e., these
terms shall augment those of Hoyle in our model).

2.1.2 §=1

The terms corresponding to § = 1 satisty,

y=p (7)
B
a = 97 (8)

which implies that § must be even. We will only retain cubic terms. When 8 = 0, we
find v = a = 0 corresponding to the trivial term z; which we note can have a collection
of coefficients that are given in our final equation below. When 8 = 2, we find a = 1 and
immediately see that the corresponding term will be at least of quartic order O(z*). The
last case to check is 8 = —2. In this case, « = —1 and again we are left with only terms
of an order that is higher than cubic. Hence, there are no terms for 6 = 1 other than the
trivial ones we’ve already written down (i.e., none involving z4).

2.1.3 6=-1

The terms corresponding to § = —1 satisfy,

v =8-2] (9)
8 —4

= — 10
a=t22 (10)
(11)
Clearly, we require again that 3 is even. The only cases we need to check are g = —2,0, 2.

B8 =-2givesa= -3, 8 =0gives a = —2 and § = —2, whereas [ = 2 yields a = —1 and
v = 0. All of the mentioned combinations are at least of quartic powers.
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214 6=2

The terms corresponding to § = 2 satisfy,

(12)

az?, (13)

which yields the possible combinations: f = 0,aa =1,y =1, 8 = 2,a = 2,7 = 3,8 =
—2,a = 0,7 = —1, all of which are of higher order than cubic in z.

2.1.5 6=-2

This is the last case to check since, to cubic order we can’t have § = —3 or 6 = —3. For

6 = —2, the equations read,
v=p8-3 (14)

5—6

= — 15
a=t22] (15)
(16)

and clearly there are no possible cubic combinations (only need to check § = 0, in which
case « = —3 and v = —3).

A similar analysis yields all possible equations governing the time-evolution of {z1, 29, 23, 24 }.
The final resulting equations are given as follows,

2= (u—blz1]® — e (|22® + |23]%) — Blzal?) 21 + az273 + V2120

zo = (u—blzo|* — c(|a1]* + |23|°) — Blzul®) 22 + a3z + 77221
Z3 = <u —blzg? —c(|z1)? + |22?) |Z4\2> z3 + az1z2
2= ([‘ ) (|Zl‘2 + ‘Z2|2) h|zs|® — m|24\2) 24 + (212224,

where the terms in blue are those that augment the pure hexagon equation of [6]. This set
of equations represents our general model of on-lattice wave vector interactions with ky.

3 Steady States of the Governing Equations

Clearly, a subset of the steady states of our system are those found by Hoyle [6], wherein
z4 = 0. For example, the hexagon state still exists, and it is described by z4 = 0 and

a+ /a2 +4u(b + 2c)
2(b+2c)

21 =29 =23=T (17)

Another state wherein z4 = 0 are the rolls that have z; = 29 = 0 and 23 = \/u/b
However, the stability analysis of theses states as presented in [6], need not carry over
to our new equations, since perturbations may now also involve z4. Hence, a new stability
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Figure 4: Evolution of the amplitudes of each wave vector in the work of [12]. The circles
depict amplitudes in the mixed bead state.

analysis must be carried out to assess the stability of these states in our equations. In fact,
if our model is to capture the dynamics observed by [12], we expect that the hexagon state
shall go unstable precicely to the growth of zy4.

A new state, which we call the pure beaded stripe involves z4 and is given by z1 = 29 = 0,
z3 = \/p/b, and z4 = /(i — hu/b)/m. While this state is convenient to write down
analytically, it does not quite correspond to the mixed bead state observed by [12] in Fig.
4, which also has non-zero amplitudes of z; and zo. As we will show later in our bifurcation
analysis, a mixed bead state with z; = z9 # 0 indeed exists and arises out of a bifurcation
of the pure beaded stripe; while we do not have a simple analytical expression for the mixed
state, it is straightforward to track via Newton iteration after understanding how it arises
from a pitchfork bifurcation.

In what follows, we will start with a set of parameters where the basic state when z4 = 0
is well characterized by the analysis of Hoyle. In particular, we start in the regime of the
Hoyle diagram given by the value of y depicted in Fig. 5, where hexagons and rolls coexist.
We then examine the effect of increasing fi on stability and existence of steady states. A
natural limit of the system is ;i — —oo, which approximates the condition z4 = 0. Note that
we have chosen parameters such that the hexagons begin stable when ji — —oo. As i is
increased, the influence of z4 on dynamics becomes more pronounced. In ongoing work, we
are investigating the role of + in influencing the dynamics. However, in the present report
~ has been set to a constant while only [ is varied. In focusing on this single parameter,
we are able to construct a bifurcation diagram of the emergent states.

4 Eigenvalues, Linear Stability, and Bifurcations

Beginning with one of our steady solutions to the governing equations, such as the hexagons
or pure beaded stripes, we can assess the linear stability of this state by examining the corre-
sponding eigenvalues and eigenvectors of its Jacobian. When the real part of the eigenvalues
change sign, there the stability of the state changes. Moreover, when an eigenvalue crosses
zero as some parameter (e.g., i) is varied, there is necessarily a pitchfork bifurcation there
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(as long as certain conditions on the Hessian hold). In one direction of adjustment of the
bifurcation parameter, new states are born out of this bifurcation. The main branch state
also swaps stability at this point.

Thus, by examining the eigenvalues of a steady state, we can both: (1) assess its stability
and (2) predict the emergence of new states, which might be stable or unstable. The new
states can be found and tracked numerically using a Newton method. This numerical pro-
cedure is aided by the fact that we know that these states emerge along the zero eigenvalue
eigen-directions of the system at the bifurcation point.

We proceed by assessing the hexagon stability, and show that, indeed, for sufficiently
large fi, the hexagon base state destabilizes to the growth of the amplitude z4. We then
present results of simulations of our model equations that show, for different values of fi,
what the hexagon destabilizes into. We then move on to examine the stability of the pure
bead state. By tracking the eigenvalue crossings of this state, we are then able to construct
a bifurcation diagram of the steady states of our model as [ is varied (see Fig. 7).

4.1 Stability and dynamics of the hexagon state

The stability of the hexagon base state is found by perturbing the base state, z1 = 2o =
z3 = 1; z4 = 0, with arbitrary complex perturbations dz1,22,z3 and dz4 = x4 +iys. In
our chosen parameter regime we know the hexagons are stable from the stability analysis
of Hoyle. The new mode decouples from the others leading to the following Jacobian,

Jhex,Hoyle 0 0
J = 0 f+ (¢ —2g—h)r? 0 , (18)
0 0 fi+ (—¢ —2g — h)r?

where Jyex Hoyle corresponds to the 6-by-6 Jacobian of the Hoyle analysis which is inde-
pendent of fi. Hence the hexagon state becomes unstable if either i > (¢ —2g — h)7? or
fi > (—C —2g — h)r?. Hence, it is clear that through sufficient increase of fi, it is always
possible to destabilize the hexagon to the growth of z4. We now discuss the dynamics
corresponding to numerical simulations starting in the hexagon state, subject to small
perturbations. Depending on the value of ji, the system can have qualitatively different
dynamics. We then construct a bifurcation diagram of the system with varying &, which
puts these dynamics into context.

4.2 Dynamics leaving the hexagon state

For three values of fi, our model equations are evolved from the hexagon base state, subject
to a random small perturbation. The resulting trajectories (in amplitude coordinates) are
plotted in the right panel of Fig. 6. In all cases the hexagon state is unstable and tends
toward the pure beaded stripe state. Depending on the value of [i, the eigenvalues of the
pure beaded stripe state may be all negative (stable), or some may be positive such that
there exists at least one unstable direction (saddle point). In the latter case, a trajectory
that leaves the hexagon toward the pure beaded stripe later leaves the pure state either
back to the hexagon or into a new orbit. It is thus observed that the dynamics are affected
by fi in two important ways. First, its value can change the stability of a state. Second, it
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Figure 5: Basic Hoyle state that we begin with. The parameters in the plot are defined by
o = —a?/(4(b+2¢)), Bo = a®b/(b—c)?, and vy = a?(2b+c¢)/(b—c)?. The roll state and the
stable (in the absence of z4) hexagononal state are depicted in the middle and right panels,
respectively.

Figure 6: The right panel depicts the dynamics stemming from perturbing the hexagon
state, at various values of i € {0.2,0.4,0.99}. The amplitudes of z, 29,24 are denoted
r1,79,74. When g = 0.99, the pure mixed bead state is stable and perturbations from the
hexagon settle into the pure beaded striped and remain there. As ji is decreased to 0.4, one
eigenvalue of the pure beaded stripe crosses zero and destabilizes. Thus, perturbations from
the hexagon approach the pure beaded stripe along a stable direction and then exit along
the unstable direction back to the hexagon in a heteroclinic orbit. When f is decreased
further to 0.2, another eigenvalue crossing gives rise to a new mixed bead state that qual-
itatively changes the dynamics. A new periodic trajectory emerges. The left panel shows
the variation of three eigenvalues of the pure beaded stripe state’s Jacobian.
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can lead to the emergence of new states, such as the mixed bead, which only exists in the
lowest value of i plotted.

4.3 Bifurcations of the pure beaded stripes

FEigenvalues of the three least stable eigenvectors of the Jacobian of the pure beaded stripe
state are plotted in the left panel of Fig. 6. Recalling that the eigenvalue zero-crossing
corresponds to a pitchfork bifurcation, we can use the location of the zero-crossing as a
starting point for a Newton iteration scheme for finding and following the connected branch
of steady states that begin at this bifurcation point. For example, following the branch near
the eigenvalue crossing near i ~ 0.6 yields the unstable branch of steady solutions labeled
“Im” in Fig. 7. Eigenvalues and eigenvectors along newly found branches can be computed
in MATLAB and the stability of such states may thus be assessed. Eigenvalue crossings
events can also be monitored, which may yield new steady states. In what follows, we briefly
describe how a complete bifurcation diagram was constructed, which is then presented in
Fig. 7.

4.4 A complete bifurcation diagram

Repeating this analysis, we can track each new steady state (arising from bifurcations at
eigenvalue zero-crossings) using Newton iteration and also compute its eigenvectors and
eigenvalues along the way. When there is an eigenvalue zero-crossing event, we then track
the new emergent state and repeat this process. Repeating this gives a full bifurcation
diagram of states at a given value of ji. In Fig. 7, we plot the bifurcation diagram for the
system, only plotting the value of |z4| in each state for clarity. The stability of each state is
indicated in the plot by numeric labels indicating the number of unstable eigen-directions;
for example, (0) indicates that there are no unstable directions and hence that the state is
stable.

5 Comparing Dynamics to [12]

By setting the value of ji such that our hexagon state and mixed bead amplitudes matched
those found in [12], we find the dynamics illustrated in Fig. 8, when the system is initialized
in the hexagon state. Qualitative agreement is found between our dynamics and the results
of [12]. In particular, the hexagon state is found to destabilize into the mixed bead state and
remain there for a considerable amount of time. Eventually the mixed bead state destabilizes
in both our model and the numerical simulations of [12]. In our model, the mixed bead
destabilizes into a state where |z1| = |22| oscillates out of phase with |z4|, accompanied by
small oscillations of |z1|. The numerical simulation of [12] also displays this behaviour. The
only qualitatively distinct feature of [12] not captured yet by our simple model is the fact
that the condition |z1| = |z2| is not exactly satisfied. A small out-of-phase oscillation of
these amplitudes exists (cyan and magenta curves) in their simulations. In ongoing work, we
are investigating how to capture this symmetry-breaking feature of the dynamics. A hopeful
direction is to consider the variation of more parameters than just fi; under some parameter
choices, it may be possible to see that an eigenvector of the mixed beaded stripe, possessing
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Figure 7: The right panel shows a bifurcation diagram showing the value of |z4| in various
steady states of the governing equations as the parameter [ is varied. By noting the nature
of the pitchfork occuring at each branching point, we are able to label the number of unstable
directions associated with each steady state (i.e., (0) indicates stability). The labels “Im”
and “Im2” refer to the fact that these states exist as purely imaginary perturbations to
the real bast states labeled mixed bead and pure bead. The “Im” and “Im2” states are
seemingly unimportant in the dynamics of [12]. When i — —oo, the present states are
the stable hexagon and the unstable rolls. Since we only plot |z4], both of these states
correspond to horizontal lines with |z4] = 0. New states emerge as bifurcations from this
branch as [ is increased from —oo.
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Figure 8: Comparison of simulation of our model equations when i is chosen such that the
hexagon and mixed bead steady states have amplitudes that approximately match those
observed by [12].

equal and opposite components of z; and z3, becomes unstable. If such a configuration can
be found, then the mixed bead should destabilize into a state with |z1| # |z2| as desired.

6 Conclusion and Future Directions

Our model equations, which only retain interactions between the hexagonal lattice and a
single off-lattice wave vector, were able to capture key steady states and dynamical transi-
tions observed in the numerical work of [12]. The model also reveals a host of interesting
dynamical states and transitions beyond those observed by [12]. It should be possible to
observe such states for different values of the Faraday wave simulation parameters. While
the model is qualitatively capable of capturing the stability characteristics and transitions
seen in [12], one key feature of the dynamics remains to be captured. Particularly, [12]
observe a symmetry breaking between the z; and z9 states that has yet to be seen in our
model.

In ongoing work, we are investigating how the coupling constant v may be varied, in
addition to f, in order to attain the symmetry breaking between the z; and 25 amplitudes
that was seen in the numerical simulations of [12]. By examining eigenvectors of the mixed
bead state, as a function of system parameters (e.g., v), we suspect it should be possible
to force the eigenvalue of an eigenvector with dz; = —dz2 to become unstable. If growth
occurs along this direction, then the mixed bead should destabilize with |z1| # |z2].

The analysis presented in this report should be applicable whenever a system with
hexagonal symmetry is able to interact with an off-lattice wave vector. Such situations
might arise in Faraday waves with certain bottom topographies or in certain condensed
matter systems. It is also worth noting that any system with hexagonal symmetry that is
being studied numerically on a rectangular lattice might be susceptible to dynamics of the
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type described here.
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Upslope and Downslope Flow Along Ocean Bottom
Boundaries
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Abstract

Vertical circulation is a major redistributor of dissolved gases and heat. As the ocean
absorbs 80% of Earth’s excess heat, understanding key physical processes of this circulation
is vitally important. In the 1960s Walter Munk’s Abyssal Recipes proposed a theory of global
circulation whereby, cold dense water from the poles is rises through the ocean’s stratified
layers to the surface. Thereafter, theoretical results have put forward that abyssal upwelling
occurs mostly along sloping seafloors (Ferrari et al., 2016; Lavergne et al., 2016), largely
supported observational studies (Wynne-Cattanach et al., 2024). Recently, Capé et al.
(2024) presented results from a regional ocean model and analytical solutions to Boussinesq
approximations which show downslope flow when rough topography—or a proxy of this—is
introduced. We investigate a similar additions to a hydrostatic Boussinesq approximation
and a non-hydrostatic model using Oceananigans. In both, we see an initial downslope flow
but, ultimately steady states of upslope flow. We suggest through increased mixing rates at
the boundary, the switch between downslope to upslope is prolonged. In a complex model,
we might expect that rough topography would result in the system never fully reaching an
equilibrated state, ergo displaying a steady downslope flow as seen in Capé et al. (2024).

1 Introduction

Vertical circulation is an important factor in understanding global heat transport—the
ocean absorbs around 80% of Earth’s excess heat, this is circulated from the surface to
the Abyssal ocean over many years. Conversely, at high latitudes we have cold dense wa-
ter forming and sinking to the bottom, to close the abyssal overturning circulation dense
polar water must eventually return to the ocean surface, by doing so this water is get-
ting lighter and undergoing a positive watermass transformation through turbulent mixing
(Ganachaud and Wunsch, 2000; Lavergne et al., 2016; Munk, 1966). The majority of this
vertical movement occurs along sloped sea floor boundaries, where both theory and obser-
vations have shown that water moves up along ocean bottom boundaries such as ridges and
seamounts (Garrett et al., 1993; Holmes and McDougall, 2020; Montgomery et al., 2000;
Wynne-Cattanach et al., 2024). Yet, recent studies using regional ocean models have shown
prevalent downslope flow contradictory to this theory (Cap6 et al., 2024). Our project con-
siders simple theory of flow along these ocean bottom boundaries, with additions that more
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closely mimic the more complex case presented in regional ocean models in (Capé et al.,
2024).

Munk’s Abyssal Recipes (1966) was one of the first attempts to connect limited ob-
servations to a global theoretical framework. By combining simple scaling arguments with
sparse deep-ocean data, Munk estimated the vertical diffusivity required to maintain the
large-scale overturning circulation and inferred a global upwelling rate of roughly one cen-
timetre per day. This framework established the idea that diapycnal mixing along rough
topography and boundary slopes could close the abyssal circulation.

Seafloor observations of flow and mixing coefficients are complicated to obtain and
often expensive, leading to sparse measurements. Even so, the measurements we have sup-
ported theoretical theory that upwelling along sloped bottom boundaries is prevalent (Kunze
et al., 2012; Montgomery et al., 2000; Wynne-Cattanach et al., 2024). However, there are
still observational studies which show downwelling, Simpson and McCandliss (2013) show
downwelling off a continental shelf (< 1000m depth) using current doppler profiles, and
Xie et al. (2023) show trapped waves over a western Pacific seamount lose energy due to
near-inertial waves, resulting in damping and downslope flow.

Recently, Wynne-Cattanach et al. (2024), conducted an extensive oceanographic field
campaign which dropped artificial dye along a sloped sea floor of a submarine canyon.
They movement of the dye is tracked by measuring the concentration after 3 months. They
found the dye moved from denser to lighter water, decreasing it’s concentration indicating
a positive watermass transformation. They also found the rate at which upwelling was
occurring was 10,000 times larger than that calculated by Munk (1966).

Building on these findings, subsequent studies have explored how turbulent mixing and
rough topography might underpin such intensified upwelling (Kunze et al., 2012). Kunze
et al. (2012) investigate the effect of turbulent mixing on sloping boundaries, they considered
microstructure data from two canyons, finding they had relatively thick well stratified and
turbulent boundary layers. The thickness of this well-mixed bottom boundary layer was an
order of magnitude thinner than the stratified turbulent layer (Kunze et al., 2012). They
determined mixing rates should not be reduced along deep-sea sloping boundaries, and if
their calculations were extrapolated globally upwelling along canyon slopes may contribute
2-3 times as much diapycnal transport to the world ocean as interior mixing. They also
argue that sloping topography affect processes in a fundamentally 2D or 3D manner, and
they cannot be accurately described by 1D models.

Another observational study, lead by Montgomery et al. (2000), measured a tracer
release in the Brazil basin, the aim was to measure mixing rates along rough topography.
Montgomery et al. found diapycnal mixing increases as density surfaces approach the
bottom, from measurements they approximated as 2 — 4cm?s™ !, 500m above the sea floor
of Mid-Atlantic Ridge and around 10 cm? s~! close to the bottom. From the same campaign
Polzin et al. (1997) investigated spatial variability of mixing rates in the Brazil Basin,
finding the over smooth surfaces in the west diapycnal mixing (diffusivity of 0.001 cm?s~1)
was reduced compared to rougher bathymetry in the east over the Mid-Atlantic Ridge
(diffusivity of 0.5cm?s71).

Unlike previous theory, “Abyssal Slope Currents” by Capé et al. (2024) show consis-
tent downslope flow. The predominately explain this through the concept of topostrophic
currents, where flow along deep-ocean slopes follow the seafloor bathymetry. Using real-
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istic simulations of the western Mediterranean, the authors find these flows drive a weak
downslope motion, shaping the abyssal buoyancy balance and mixing. They propose a novel
one-dimensional model combining topostrophy, bottom drag, and eddy buoyancy transport
to explain the observed structure, revising earlier slope-boundary theories by Garrett (1990).

In our study, we make simple additions to further understand the underlying phenomena
of the problem. We make two basic additions a simple hydrostatic Boussinesq approxima-
tion, the first was originally presented by Garrett (1990) which adds a constant geostrophic
interior flow. By doing so we find through slow diffusion of momentum from the boundary
to the interior, no steady state solution can be found. To find analytical solutions to this
problem we add a buoyancy dampening term, thereby limiting this slow diffusion and allow-
ing the system to reach equilibrium. Our analysis reveals the steady state solution results
in upslope flow, and a positive watermass transformation as denser water is converted to
lighter water, even if initial states show the converse.

Both of these hydrostatic systems use constant eddy diffusivity and viscosity, yet, it has
been shown the mixing rates increase at the seafloor. To investigate the effect of increased
mixing at the boundary we use a Richardson number diffusivity constants, first proposed
by MacCready and Rhines (1991b) and later used by Benthuysen and Thomas (2012).

Using Oceananigans, we also investigate a 2D non-hydrostatic system with strong
geostrophic along-slope flow, motivated in part by evidence that 2D frameworks can better
capture dynamics over sloping topography (Kunze et al., 2012). Our analysis finds that an
initial downslope flow—whereby, light water sinks below dense water—triggers convective
instabilities such that negative stratification quickly disappears. Whereas, in the hydro-
static case, we see for the initial downslope flow there is negative stratification. We propose
rather than a steady downslope flow, by way of changing seafloor and rough topography a
steady state is never achieved prolonging the downslope flow as seen in Capé et al. (2024).

2 Hydrostatic Boussinesq Approximation

The simplest case of flow over a tilted bottom boundary was first presented by Weatherly
and Martin (1978) under the Boussinesq and hydrostatic approximations. The momentum
and buoyancy equations are

ou d%u

E—f’l)_be_FVW, (1)

ov 0%

E*‘fUZV@a (2)
ob 9 9%b

Here, coordinates are rotated where u is cross-slope (at angle §) and v is along-slope
(into/out of the page). We assume small 6.

In equation (1), b6 is the buoyancy term arising from the slope; vd%u/0z% and

v 9?v/072% in equation (1)-(2) represent vertical eddy viscosity; and x 3%b/022 in Eq. (3) is
vertical eddy diffusion of buoyancy.
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We apply no slip and no flux boundary conditions such that u = v = 0 at z = 0, and
db/dz+ N?> =0 at z =0, and u,b — 0 as z — oo.

Figure 1: Diagram tilted bottom boundary problem. Blue indicates isopycnals, which tilt
at the surface, red is the resulting cross-slope flow, and green is a background along slope
flow, which will be further explored in section 2.2. The coordinates are rotated such cross
slope flow is in the x direction and z values is normal to slope.

To find numerical solutions to this problem we use code developed by Henry Peterson
for Rapid Spinup and Spindown of Flow along Slopes (Peterson and Callies, 2022). Figure 2
shows the solution quickly equilibrates and results in a upslope flow in the boundary, and a
positive watermass transformation as denser water crosses isopycnals and becomes lighter.

2.1 Steady state solution

For v and k constant, independent of z then there is a steady solution to the governing
Equ. 1-3, for /st = 0 we have the following;

9%u
—f'U:be—Fl/@, (4)
9%v
Ju= V@v (5)
0%b
2

With the same boundary conditions as above; u = v = 0 at z = 0, and db/dz + N? = 0 at
z=0,and u,b - 0 as z — oo.

For a solution of the form (u,v,b) = (ug, vy, bo)e, we can solve for equations 4-6;

52 —f/v 0/v o 0
flv 5 0 (20 =10
N20/k 0 52 bo 0
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Figure 2: Numerical solutions to equations (1)—(3) for values f = v = k = 1 x 1074,
6 = 0.022 and N? = 1x107°. Depth indicated as meters above bottom boundary. Solutions
found using code produced for (Peterson and Callies, 2022).
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Setting the determinant to zero we can solve for §,

2 N22
56—52<f+ 9):0.

V2 V2K

To solve let A = §2, this gives the following cubic function,

A[Atiz(HNJfo:ﬂ 0.

Where N?0/r2 is the slope burger number and ¥/« is the prandtl number. This gives a
non-trivial real solution for § as
f2
=1+
which is a modified Ekman boundary layer depth, accounting for the boundary slope # and
stratification N?2.
Steady state solutions Can be seen in figure 2, where f = v =x =1 x 1074, § = 0.022
and N2 =1 x 107°.
In the absence of interior geostrophic flows, a steady state solution is achieved with an
upslope flow driven by diffusion of buoyancy into the boundary layer;
ob
uN?0 = k—
0z
Figure 3 shows flow u leaving the upslope end of the box, less dense than when it enters,
and so must have lost mass by diffusion while in transit.

Figure 3: Steady upslope flow and positive watermass transformation requires a diffusive
flux through the top of a control volume (Garrett et al., 1993)

We see that without time dependence the steady state solution is driven by buoyancy

diffusion resulting in up slope flow and a positive watermass transformation and denser
water becomes lighter.
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2.2 Time dependence

First introduced by Garrett (1990), a time-dependent system whereby a constant along-
slope interior geostrophic flow V' is added to equations (1)—(3).

ou 9% u
ov 0% v

o e ®)
ob 9%b

Equation 7 contains the added along-slope geostrophic flow V', it can be thought of as
an along slope pressure gradient. Initially, an Ekman layer forms on an inertial timescale
t ~ f~1, here acceleration terms and only briefly significant and after ¢t >> f~!, along-slope
flow becomes close to geostrophic. Through this addition we impose another boundary
condition v — V as z — oco. 7 shows how this problem has no steady solutions. The
implication of this is that there is slow diffusion within the interior along slope flow and
buoyancy perturbations, which doesn’t equilibrate. Whereas, a near steady state solution
is achieved for the cross slope transport.

Using a background along-slope geostrophic flow of around lems™ we obtain the so-
lutions in Figure 4. Figure 4 top right panel indicates that for a strong interior flow, we
have an initial downslope flow with negative watermass transformation. Though, our re-
sults shows this downslope flow only occurs when there is negative stratification, giving a
unrealistic initial flow. Unlike the along-slope flow, cross-slope flow equilibrates fast and
reaches a quasi-steady state of upslope flow. Conversely, the along-slope flow doesn’t reach
an equilibrated state as slow diffusion of momentum from the boundary layer to the interior
occurs.

MacCready and Rhines calculated the time it takes for this fast adjustment of the
cross-slope flow to the interior, denominated the shutdown time 7.

We firstly consider the buoyancy budget equation of Equation 7, setting the vertical
diffusion term to zero as in a steady state no momentum is transferred between interior and
boundary layer.

1

% +uN?0 =0,
= fu=vrv,,,
—fv =vu,, + b0,
where u, v and b are perturbations from the mean. Set U = u + iv, with boundary
conditions of no slip and geostrophic interior. Using these values and subbing into the x
and y momentum equations gives the following;

fU = —ivU,, —ibb.
Solving, U gives the general solution, for §y = /2v/,

U(z) = Uy + Ae~(1+92/%,
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Figure 4: Numerical solutions to equations (7)—(8) for values f = v = k = 1 x 1074,
6 =0.022 and N2 =1x 1075, and V ~ 1cms™!. Depth indicated as meters above bottom
boundary. Solutions found using code produced for (Peterson and Callies, 2022).

The particular solution U, = b/ = Applying boundary gives U(0) = 0 implies A = —i0b/y.
This gives a solution of the form:

U(Z) - 1 _ e—(l-i-i)z/(;o .
Therefore v = R(U) and v = S(U).

Next, determine transport 9M/a¢, integrate with respect to time M = fOH udz.

oM H Hp, 0 2
e ; ur dz /0 7 e sm( (50> dz
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For H >> §y, as the boundary is well mixed b, = const.

oM o0 s o (2
ﬁ = . 76 Sln<0> dz
s

20t

This analytical form shows the cross-slope transport responds almost instantly to changes
in buoyancy at the boundary—laying the foundation for defining the longer adjustment
(shut-down) timescale.

After the initial Ekman layer is formed when ¢ > f~!, buoyancy perturbations grow and
act against the Ekman flux. Slow diffusion then weakens the cross-slope transport, driving
it toward a quasi-steady state. The time taken for this decay is the shut-down timescale
AT.

We can determine a scaling for the shutdown time Ar. First, integrate 0;b + N20u =
k0,.b over Ekman boundary layer depth from before, as

Transport in Ekman boundary layer is given as

0
U~—=V.
2

Combining the two relations results in

0Ab 0
— ~ N?0_V,
AT 2
Ab
N29V’
where the Ekman boundary layer reaches equilibrium when forces balance,

AT

AbO ~ fV.
This gives equilibration time

Ab fv/ie 1 f? o1

A ~ ~ ~ — .
TNy T N2V T FN2 7S

2.2.1 Non-dimensional 1D model

Thus far we have used dimensional models, although, code used to produce Figures 2
and 4-8 have used a non-dimensional model which we then converted back to dimensional
coordinates.

To investigate how different parameters From equation 1, we take 0P/oz = fV Peterson
and Callies (2022). Then the coefficients of dimensionless parameters will be in terms of
the dimensionless parameter V; the background geostrophic flow.
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t=1T, z=236, uw=aVy, v=10oVy, b=>0B.

1 VoN? tan 0
T=2>, §=,/% pB=20"1H07 (10)
f f f
First, we nondimensionalise equation (16).
ou 0 ou
=— btanf + — | v—
e — fv=—fV +btan +8 < (9,2)
Substituting in terms given in equations 20, along with nondimensional parameters
Vo O % 10 [V, Ou
— Vo = —— + Btan b+ - — [ —v—
T or V0= Ty TBanbb (5 az>
The term Yo/T = fVj, and Vo/s2 = Vof/v. Making these substitutions gives
o . N2V tan29~ 82~
Vof 57 = IVob = —fV + ————b+ Yoy

Divide by fVo,

o oV N2tan29l~)+ 0%
A T f2 9z

ot ve - 0%

- 7s FER (11)

Hence, v = ‘Jf—g.

Next, we nondimensionalise the along slope momentum equation

W= 9 (0
ot 1T 9 \Yoaz )

Making similar substitutions as in the cross-slope momentum equation
Vb ov
= Vou = V
Toi fYou = fVog-
Divide by fVp, where V/T = fVj,
Ov %o
= 13
of T 0z (13)

Next we consider the buoyancy tendency term:

b 9 0 5 Ob
a—l—uN tanf = 5, [n <N +az>},
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From these nondimensional parameters, the total stratification was given as:

OB  fdcot®  Ob
9: vV o (14)

Where the nondimensional background stratification N2 is then

~ fécot
N? =

Peterson and Callies also give values 74 = 1/S and 7¢ = 1/VEk = H/§. Then we can
expand the numerator as such, with the approximation of tan§ ~ 6.

 HNO V
_ VTaNH
g VO

— NV

 JTAH

Will also need an expression for x to run the 1d non-dimensional case.

208 J NH

Nondimensionalise buoyancy budget, where k is a function of z, and x = kgk. The

original is given as:
ob 9 0 5 Ob
a—l—uN tanf = £ |:/€ (N +8z>}

From the nondimensional parameter B and T" we can transform u’s coefficients as:

B
uN?tanf = Tﬁ

Then subbing in the other nondimensional terms:

T T "5 a2 2 9z \"az

Bdb B_ N’k B/i()a(al;)

Divide both sides by B/T gives the following:

% o rl 0| (N b
ot 62 0z B 0z
Then, choose kg = 9%/T, and:
N2%§ _ focotd
BV

Gives the final solution as

a0 | (focotd b
ot Tz "\ T v "oz
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As in Peterson (2022), we have the background stratification as fdcot/y.
For kg = 9*/T = v, therefore k = VF.

For x = const, we have the following buoyancy budget.

oo
of " Moz

We still need expressions which help set constants. The prandtl number p = v0/xo, 79 = H/5,
74 = I?/N262. Then to determine the dimensional units we may pick H and f.
Therefore, the non-dimensional parameters can be found from the following relation.
N L

+ o (15)

Where, now % can be chosen Where the RHS is a physical scaling. We choose f and v,
and use the scaling from the nondimensional construction seen previously;

o= (16)
p== (17)
= ,/Nf; (18)
v 10 (19)

Where 6 = /¥/f and we assume 7y = 1.

2.3 A steady solution with damping

To find a steady solution we require small damping of the buoyancy perturbation such that
it only affects the interior and resulting in the interior not continuously diffusing.

Let’s consider the problem with the damping of buoyancy perturbations to achieve a
steady state. For simplicity, we will approximate k¥ and & are constant,

—0,u = v+ Sb, (20)
—0,,v = —u, (21)
—10yb = —u — b, (22)

(23)

where 1 = Pr—! and € is the weak damping in f units. Assuming exponential solutions of
the form (u,v,b) = (ug, vo, by)e™?, we get the system,

52 1 S Ug 0
—1 62 0 vw | =10
—1 0 pé®—e bo 0
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Figure 5: Numerical solutions to equations (7)—(8) for values f = v = k = 1 x 1074,
6 =0.022 and N2 =1 x107°, and V ~ lcms™!. Depth indicated as meters above bottom
boundary, maximum height of simulation z = 100m, figure shows the first 50m

We can determine § by setting the determinant of the matrix to zero,
S6% + (uo* —e)(3*+1) =0
which is a sixth-order algebraic equation for m,
18 — €5t + (u+ S)8* —e=0.

Solutions for 62 in the limit of small € are,

+5\? S 1
6% = [ i (“) 6, ————¢
( I 2u(p +5) p+S

The six roots to order € are,

144 (u+S\* , 52 c
1234 =+ i Ry P — S16 ==+ .
b \/§< M ) Vol + 52 ) o p+S
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We can now impose the boundary conditions. Where z — oo requires all roots with
positive real parts are dropped. The three other boundary conditions at z = 0 are:

u=0, b,=-1, v=-V,

which needs to be satisfied using u(z) = A1e"™% 4+ Age™?2* + Aze™3% and thus,

u= A1+ Ay + A3 =0, (24)
L | S VL T SO - B YU (25)
_u(S%—e ! pés — € 2 po3 — € ST

A Ay Ag
S ks el S V4 26
v 5%4-5%-!-5?2’ (26)

Figure 6: Numerical solutions to equations (20)—(23) for values f = v = kK = 1 x 1074,

0 = 0.022 and N> =1x107° V ~ lcms™ !, and € = le3. Depth indicated as meters
above bottom boundary.

Figure 6 shows numerical solutions to equations (20)-(23) and steady state solution as
the red dashed line. As in figure 5, initial solutions show downslope flow, which quickly
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Figure 7: Solutions to equations (7)-(9) with Richardson dependent x and v. Values of:
f=v=r=1x10"%6=0.022and N2=1x10"% V ~ lcms !, and € = le~3. Depth
indicated as meters above bottom boundary.

becomes upslope flow. Corresponding to the downslope flow we negative stratification and
negative watermass transport.

3 Added Richardson Diffusivity

In previous solutions of the tilted bottom boundary, fixed values of diffusivity and viscosity
were used, here we introduce a Richardson dependent diffusivity. This scheme was first
introduced by MacCready and Rhines (1991b) and later Benthuysen and Thomas (2012).
This model is of intermediate complexity with a Richards value (Ri) approximated as;

2 271

. —g0p | (0u ov
Ri=z —=— | =— — 27
: po Oz [(&z) * (82) ] (27)
Where, diffusivities are large (100 cm?/s) when Ri is below 0.2, and small 1cm? /s when Ri

is greater than 0.3.

The aim of adding this to Peterson and Callies (2022) model is to account for the
enhanced mixing along the boundary layer as observed in previous studies (Kunze et al.,

2012; Waterhouse et al., 2014). By making it Ri dependent, we set a weak diffusivities in
the interior and vice-versa for the boundary layer.
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Figure 8: Same as figure 7, run for 4 hours. Solutions to equations (7)—(9) with Richardson
dependent k and v. Values of: f =v =r =1x 1074, § = 0.022 and N? = 1 x 1072,
V ~lcms™ ! and € = le™3. Depth indicated as meters above bottom boundary.

From a short numerical run, we observe downslope flow; however, unlike in Figures 5
and 6, the mixed layer exhibits positive stratification and watermass transformation, with
a brief region of negative watermass transformation just above the boundary layer.

From figure 8 we see that after 30 minutes flow in the boundary layer becomes positive.
This is notably quicker transition than in seen in figure 6.

4 Nonhydrostatic Case

To understand which representation mixing is more sensible we consider a nonhydrostatic
2D model using oceananigans, a numerical ocean model. We expect the initial negative
stratification seen in the hydrostatic model (figure 5) to develop into turbulence.

The equations governing the conservation of momentum in a rotating fluid, including
buoyancy via the Boussinesq approximation and including the averaged effects of surface
gravity waves at the top of the domain via the Craik—Leibovich approximation are

O = —(v-V)o—(V-V)o—(0-V)V—(f = V x u®) xv-Vp+b§—V -7+9u’+F,, (28)

where b g is the buoyancy, T is the kinematic stress tensor, F;, denotes an internal forc-
ing of the velocity field v, p is the kinematic pressure, w° is the horizontal, two-dimensional
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Stokes drift velocity field associated with surface gravity waves, and f is the Coriolis pa-
rameter, or the background vorticity associated with the specified rate of rotation of the
frame of reference.

As we're considering the Abyssal ocean there are some terms which can be considered
negligible, firstly the effective background rotation rate due to surface waves, — (V x u® ) X
v, — (V x u® ) X v a source of momentum due to forcing or damping of surface waves, and
F, an arbitrary internal source of momentum. This leaves

Ov=—(v-Vjo—(V-V)o - (v- V)V -Vp+bG -V -7+ F, (29)

Where, (V- V)v is momentum advection, (V- V)wv advection of resolved momentum by the
background velocity field, and (v - V)V advection of background momentum by resolved
velocity. We also have the Coriols force f x v, kinematic pressure gradient Vp, buoyant
acceleration b, and gravity g. The terms on the right-hand side are:

dv=—-(v-Vo—(V-Viv—(v-V)V-Vp+bg—V -7+F,, (30)

With constant isotropic diffusivity for turbulence closure V - 7. In this case the kinematic
stress tensor is defined as
TZ:.] =V Z ?
i’j

where v is a constant viscosity and o;; = %(”i,j + Ujﬂ') is the strain-rate tensor. The
divergence of 7 is then
V.-1=—-vVw.

Similar to the hydrostatic case, the confidantes tilted by angle 6, doing so we can
compare our results to previous figures. Figure 8 shows solutions to the non-hydrostatic
case is turbulent, which was expected for the downwelling favourable case. Yet, unlike with
the Richardson dependent diffusivity model, watermass transport is negative in the early
boundary layers, this can be seen more clearly in Figure 9.

5 Discussion

This report aims to investigate what key physical processes which could drive mean down-
welling along tilted seafloors. There remains debate about whether this is primarily up-
welling or downwelling; while many observational studies have shown mainly upwelling
(Montgomery et al., 2000; Polzin et al., 1997; Wynne-Cattanach et al., 2024), there are still
theoretical and observational results which show downwelling (Capé et al., 2024; Xie et al.,
2023). Along with observational studies, our understanding of global ocean circulation sug-
gests this is the case, as dense water from the poles eventually rises to the sea surface,
becoming lighter in the process.

Our initial results use a Boussinesq hydrostatic approximation of a smooth tilted bound-
ary. We find that by including along-slope geostrophic flow and enhancing mixing in the
boundary layer, the time it takes for the cross-slope flow to reach a steady (or quasi-steady)
state is increased.
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Figure 9: Numerical solutions using Oceananigans non-hydrostatic model, f = v = k =
1x107%, 6 =0.022 and N2 =1x107°, V =~ lcms™ !, and € = le~3. Depth indicated as
meters above bottom boundary.

Firstly, by adding a constant geostrophic flow as in MacCready and Rhines (1991a),
Figure 5 indicates after 8 hours (Figure 5), the cross-slope flow numerical solution returns to
upslope. We have found this to be the case for multiple different parameters. A consistent
feature of the downwelling is that it coincides with negative stratification and negative water-
mass transformation. As lighter water sinks beneath denser water, negative stratification
develops. However, in a real scenario, this would trigger a convective instability, as heat
would quickly diffuse upward and deepen the boundary layer.

To better understand the steady state solutions of this system, we added a buoyancy
damping term such that analytical solutions could be determined. By doing so, we hinder
the slow diffusion of along-slope momentum from the boundary into the interior. Our re-
sults show it takes around 5 days for the along-slope flow to reach the equilibrated solution,
whereas by day 3, the cross-slope flow has reached its steady state. We see slight differ-
ences between the numerical solutions in Figures 5 and 6: the solution at hour 8 becomes
downslope rather than upslope when the damping term is added. Although this change is
small and the water-mass transport in both cases remains positive, with dense water still
becoming lighter.
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Figure 10: Numerical solutions using Oceananigans non-hydrostatic model, f = v = k =
1x107%, 0 =0.022 and N2 =1x 1072, V ~ 1lcms™!, and € = 1le™3, panels indicated the
time mean over either day 0 or day 40. Depth indicated as meters above bottom boundary.

From observations, we know mixing increases along bottom boundaries, to account
for this a Richardson dependent diffusivity was incorporated to the hydrostatic Boussinesq
equations for eddy diffusivity k, and viscosity v. By doing so downslope flow in the bound-
ary layer corresponds to positive stratification—increased viscosity allows for mixing of the
boundary layer with the interior. As lighter water was pushed under heavier water con-
vective instabilities diffuse momentum upwards and create a thickening mixed layer. Not
only this, but within the mixed layer we see a positive watermass transportation, showing
that as downslope flow remains, the mixed layer continues to thicken resulting an increase
of buoyancy in the bottom layer and hence lighter water doesn’t become any denser.

Although, figure 7 shows a significantly shorter downslope flow than figures 5 and 6.
This was not expected and previous results (MacCready and Rhines, 1991b), show a longer
downslope flow than our numerical results. Further simulations should be run with different
parameters.

Next, we used Oceananigans to investigate how a non-hydrostatic system would respond
to down slope flow, figure 8 indicates that as lighter water is pushed beneath denser water
convective instabilities are triggered. Although, unlike the Richardson dependent system,
we see negative watermass transformation in the mixed layer, which was not expected.
Further research is needed to understand why this is.

6 Conclusion

The motivation of this work was to investigate simple models and understand mechanisms
may produce consistent downslope flow. As it stands, while Capé et al. (2024) presents a
possible framework, discussion as to how best emulate these complex phenomena will most
likely continue.
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We’ve presented known hydrostatic approximations of abyssal sloping boundaries, in
mind of delivering a constant and feasible downslope flow (Figure 2 and Figure 6). Yet,
our results show that any downslope flow is transitionary, and has negative stratification.
When adding buoyancy damping to produce a steady state solution, we find the cross-slope
flow always equilibrates to an upwelling case.

Following MacCready and Rhines (1991b), the addition of a Richardson dependent
diffusivities mean that the downwelling of light under dense water in the bottom Ekman
layer will generate a growing mixed layer as buoyancy of the bottom boundary is increased—
yielding downslope flow with a positive stratification and watermass transformation.

These results leads to our general conclusion that through changing topography the
cross-slope flow never reaches an equilibrium, protracting the downslope flow while still
maintaining a positive watermass transformation.

Data availability

Code used to produce the hydrostatic models was developed by Peterson and Callies (2022),
and is hosted at https://github.com/hgpeterson/PGModels1Dand2D/tree/main/non_
pg_models. Code used to run Oceananigans model can be found at https://github.com
/Isabela-conde/tilted-boundary-layer.
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The Interaction of a Gravity Wave with an Unstable
Horizontal Shear at Low Froude Number

Marion Cocusse

August 20, 2025

1 Introduction

The stability of stratified shear flows is of major importance for the transport of energy
from large scales to dissipative scales in the ocean and atmosphere. Numerous studies have
focused on the stability of a vertical shear in a stratified flow [1]. A necessary condition
on the Richardson number for the triggering of the shear instability for a vertical flow with
an inflection point (Richardson number smaller than 1/4) was established [17], [12]. The-
oretical, experimental and numerical studies have since contributed to our knowledge of
this flow. By contrast, the stability of its horizontal counterpart still remains relatively less
understood, and seems to be almost always unstable. Recent studies at sufficiently high
Reynolds number have focused on different horizontal shear profiles and flow set-ups. [§]
have studied the stability of a horizontal linear velocity profile for a confined flow, and a
number of articles have looked at a hyperbolic tangent profile ([2], [7] or [14]). Several
studies have also investigated a sinusoidal velocity profile, also known as the horizontal
Kolmogorov flow. In particular, [9] and [6] explored its behavior in astrophysical contexts,
while [10] examined two distinct routes through which this flow transitions to turbulence. In
the present work, we focus on this flow, namely a horizontal flow with a sinusoidal velocity
profile.

Continuing the work of Garaud et al. [10], the goal of this report will be to
investigate the stability and the transition to turbulence of a horizontal Kolmogorov
flow. Gravity waves also play a crucial role in turbulence and mixing in the ocean [16].
These flows will inevitably interact with shear present in the fluid, impacting both wave
breaking and the stability of the shear [13]. We will therefore also study a case of a
Kolmogorov flow interacting with a gravity wave.

We will start by presenting in section 2 a linear stability analysis similar to the ones pre-
sented in [6] and [10], for a sinusoidal velocity profile as our horizontal shear. We focus on the
particular case of low Froude number, and show that the dominant mode of the primary
instability (k, = 0) and the vertical modes (k, /& 0) grow at almost the same rate. An
asymptotic analysis to explain this result is performed in section 3, and the scalings for the
expansions are checked by comparing them to the full linear stability analysis. Section 4
presents Direct Numerical Simulations (DNS) of the full non-linear evolution of the Kol-
mogorov flow, we particularly study the primary instability. Two saturation mechanisms
are presented depending on the Reynolds number, a viscous saturation in shallow layers
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for relatively low Reynolds number and the formation of secondary Kelvin Helmholtz (KH)
instabilities at higher Reynolds number. We then move on to a different flow in section 5,
to study a slightly less idealized set up. We add a gravity wave propagating at an angle
with the horizontal to the horizontal shear and investigate how this affects the primary
instability and the saturation mechanisms. We highlight how adding this wave enhances
the buoyancy and viscous dissipations of the flow, impacting its mixing properties. Finally,
we summarize our results and outline a few unanswered questions that remain after this
work in section 6.

2 Linear Stability Analysis at Low Froude Number

2.1 Governing equations

We consider a generic vertically invariant, horizontal plane-parallel background flow in a
Cartesian coordinate system where e, points in the streamwise direction, and e, points in
the upward vertical direction:

ﬁ*(y*) = U*U(k*y*)exa (1)

where the star subscript denotes the dimensional quantities. U, and k' are the amplitude
and characteristic length for the flow, respectivly, and are used as the unit velocity and
length. The corresponding dimensionless background flow is:

u(y) = U(y)es. (2)

The total velocity field u = T+ u’ evolves according to the dimensionless Navier-Stokes
equations under the Boussinesq approximation:

ou b i

_ — — - 2
BN +u.Vu Vp + 7,26 + Rev u, (3a)
ob 1,
a+u~Vb+w—ﬁV b, (3b)
V-u=0, (3c)

with u = (u,v,w) and b and p are the dimensionless buoyancy and pressure perturbations
away from a state of hydrostatic equilibrium, stratified with a constant buoyancy gradient.
The unit buoyancy and pressure used are N2 /k, and p,U2, respectively, where N, is the
constant buoyancy frequency of the fluid and p, the mean density of the fluid. The dimen-
sionless parameters introduced are the Reynolds number Re, the Péclet number Pe, and
the Froude number F'r:

* * *k*
v v = U
’ TN

(4)

where v, and K, are, respectively, the kinematic viscosity and buoyancy diffusivity of the fluid.
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2.2 Linear stability analysis

We perform a linear stability analysis of the flow described by equation 2. A similar analysis
is presented in [6], the main differences with this study being that we use a different non-
dimensionalisation of the equations and a more general base flow. Assuming that |u’| < |ul,
the linearized perturbation equations are:

%Qz, + v’dz?(j’) + U(y)gi = _?91; * év%/, o
aaj/ + U(y)gi = —ZZ + év%’, (5b)
ST G =5+ o+ v >
%l;l + U(y)gil +w = PL€V2b', (5d)

V-u =0, (5¢)

where p’ and ' are the pressure and buoyancy perturbations corresponding to the velocity
perturbation u’. Note that the viscous term can be neglected for the base flow ﬁ, while it
must be kept for the perturbations u’, on the grounds that perturbations might have much
smaller scales than the background flow and could be impacted by viscosity.

Exploiting the fact that the coefficients of this set of differential equations are independent
of z, z and ¢, we use the following normal mode decomposition for ¢’ € {u/, v/, /', p/, b'}:

q/ — q(y)eikx$+ikzz+at’ (6)

where k, is the streamwise wavenumber, k, the vertical wavenumber and o the complex
growth rate. The flow is considered linearly unstable whenever the real part of the growth
rate A = R(o) is greater than zero. Substituting this ansatz in equations (5), we get:

N A
o dp 1 (2, ).
kU= L4 — (2 k2 _p2)y, b
ov+1 v dy " Re (dy2 z Z) (7b)
b1 )
ow + Zk’z = —Zk’zp + Fi’l”Q + E <dy2 - k’i - k‘g) w, (70)
e 1 d? 5 5\ 2
oo do
zkxu+@+zkzw20. (Te)

Garaud et al. [10] studied this eigenproblem for the particular base flow U(y) = sin(y).
Figure 1 (extracted from their work) shows the growth rate A = R(o) as a function of k,
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and k, for two different parameter sets: Re = Pe = 10000, F'r = 0.1, and Re = Pe = 10000,
Fr=0.01.

- (@) Re =10000,Pe = 10000, Fr = 0.1 (b) Re = 10000, Pe = 10000, Fr = 0.01
] : : , , : 0.3 ; ; ; - ;
—f, =0
—_—, =2
0.25 k. — 4|1 0.25
—k. =6
—f, = 8
02t | 0.2}
~< 015} 1 <015f
01} ] 01
0.05 . 005 /
0 : : : ! 0/ : : : :
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
k., ks

Figure 1: Real part of the growth rate A = R (o) as a function of k, for different values of k..
The base flow used here is U(y) = sin(y), and the parameters are Re = Pe = 10000 and F'r =
0.1 for panel (a) and Fr = 0.01 for panel (b). Extracted from [10].

For both cases, the fastest growing linear mode (i.e., the mode with the largest A over all
ky and k,) is the vertically invariant mode k, = 0. This 2D mode is unaware of the
stratification and is therefore not impacted by the Froude number: it remains the same in
figures la and 1b. Three-dimensional modes are also excited for both parameters, and seem to
become more unstable with stronger stratification. Indeed, the modes k, = 2, 4, 6 and 8 have
a larger growth rate at F'r = 0.01 than at F'r = 0.1. For F'r = 0.01 (figure 1b), the k, # 0
modes grow at almost the same rate as the k, = 0 mode, which is rather surprising given that
one would normally expect that increasing the stratification would impede the instability. To
better understand why that is the case, we perform an asymptotic analysis of the linear
equations in the limit of F'r — 0 in the next section.

3 Asymptotic Analysis for Low Froude Number limit

3.1 Asymptotic model

We now focus on the low Froude number limit, for which the 3D modes grow almost as fast
as the 2D modes. To simplify the analysis, we consider equations 7 in their inviscid and non-
diffusive limits (i.e., Re, Pe — 00):

dU —
ciit 8% ik, T = —ikp, (8a)
dy
o0 + ik U = —ZZ, (8h)
= D
ow + ik Ul = —ik,p + T2 (8¢)
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ob+ ik, Ub + 1w = 0, (8d)
i
kg + CTZ + ik = 0, (8e)

where @, 0, w, p and b correspond to the normal modes,and are only a function of the y space
variable.

At low Froude number, the F%Q term should dominate the vertical velocity equation.
Paradoxically, we see in figure 1 that the effect of stratification seems to decrease as the
Froude number decreases. This strongly suggests that the buoyancy field should scale as
Fr?. Assuming that the base flow U(y), the wavenumbers k, and k. and the growth rate o
are all of order 1 (which is confirmed by the linear stability analysis above), the scalings for
the other variables can be deduced by balancing each other. From the buoyancy equation, we
get that the vertical velocity must balance the buoyancy, so w = O(Fr?) as well. Going back
to the vertical velocity equation, the pressure must balance b/Fr? so p = O(1). Finally, the
horizontal velocity equations impose that u,v = O(1). The expansions for the asymptotic
analysis are therefore:

u Uo U9 Uy
0 ﬁo ’02 V4
Wl =0 |+Fr? || +Frt| g +.. (9)
b 0 by by
P Po P2 Pa

To match these expressions, the growth rate o must also be expanded: o = o9+ Fr2o +....

At order O(1), the set of equations (8) reduces to:

dU —
ooty + @0@ + ik, Uty = —ikspo, (10&)
oo0o + ika@O = @ (10b)
dy’
0 = —ik.po + ba, (10c)
0'062 + ’lkaZ;Q + wq =0, (10d)
di
ikytio + diyo =0, (10e)

where we have kept the O(Fr?) buoyancy equation since it is identically 0 at O(1). Before
going any further with this system, a few things can be pointed out. Firstly, no choice
has been made for the exact base flow at this stage, this analysis should apply to any
horizontal plane-parallel shear flows in the shape u = U(y)e, (linear, sinusoidal, hy-
perbolic tangent...). The counterintuitive observation that modes can continue to grow
rapidly at small Froude number is explained by the fact that these vertical motions are slow

(w = O(Fr?)), allowing them to ”beat” the strong stratification.

We see from this analysis that the horizontal velocity equations and the continuity equation
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(equations 10a,b and e) are decoupled from the vertical velocity and the buoyancy, and are
the same equations one would obtain for purely 2D perturbations (i.e., k, = 0 mode). They
can be solved independently of the other two, and will provide the horizontal velocities and
pressure fields ug, vg and pg, as well as the Oth order growth rate og. While the horizontal
structure and growth rate of the mode is therefore equivalent to that of the k., = 0 mode, these
modes have non-trivial vertical structure proportional to e**z%. The buoyancy field by is given
by the hydrostatic equilibrium with the pressure in equation (10c). The vertical velocity wo is
finally obtained thanks to the buoyancy field by with the buoyancy equation (10d).

Finally, we note that unlike the model presented in [7], this model does not select
any k, mode. In the inviscid limit, we therefore see that all modes with k, > 0 are
potentially excited by the horizontal shear instability. In the viscous case, however, we see
that the viscous damping rate in the horizontal perturbation equation scales as k,2/Re. For
sufficiently large k., therefore, this term can no longer be neglected compared with A, and will
ultimately cause the modes to decay instead.

3.2 Linear stability analysis of the asymptotic model

To check the validity of the expansions 9, this asymptotic analysis can be compared to the
full linear stability analysis carried out in [10] and summarized in section 2.2. In particular,
we are interested in comparing the eigenmode structure obtained with the asymptotically
reduced equations to that of the full linear equations. To compute the eigenmodes in both

cases, we look for periodic solutions for ¢* € {u"o, v g, w2, p"o, bAQ}, with the same y periodicity as

Uly):
N .
Q)= > aque™. (11)
n=—N

The k, wavenumber is by construct 1, we therefore omit it from this decomposition. To
obtain the eigenmodes in the reduced problem, we substitute this ansatz into equations
(10), which leads to an eigenproblem with eigenvectors {¢,} and eigenvalues o. To com-
pute the eigenmodes in the full linear problem, we follow the steps detailed in [10] (see their
Appendix B).

To match the study in [10], a domain size of 47 x 27 x 27 is chosen. This in turn
fixes the wavenumbers of the fastest growing mode that can fit in this domain: &k, = 0.5.
The different fields (v,v,w,b and p) are then reconstructed with the eigenmodes and the
ansatzes (6) and (11).

The scaling for the vertical velocity @ = O(Fr?) can be checked computing lbg;”
ik,p/™ where b/ and p/ denote the buoyancy and pressure fields reconstructed for the

full problem of section 2.2. Equation 8c shows that I’F—:l; — ik, pT" scales as the vertical

velocity, so we expect ’;f—ﬁ — ik,pl o = O(Fr?). Figure 2 shows this quantity for two
different Froude numbers and confirms the expected scaling for the vertical velocity as, for
both cases, the quantity plotted is of order Fr2.
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The expansion for the buoyancy can also be checked by comparing the linear stability
analysis of the full equations of section 2.2 with the linear stability analysis of the asymptotic
model. The quantity Fr2b5™™ — b/ (where b5*”™ is the buoyancy field obtained after the
asymptotic analysis) should scale as Fr#. Indeed, we should have bfull — Fr2by + Frib, +
o(Fr*), so:

Fr2og™¥™ — bl = pr2hy — Fr2by — Friby + o(Frt) (12)
= —Friby + o(Frt) = O(FrY).

Figure 3 shows this quantity for two different Froude numbers. It confirms the
expansion for the buoyancy as it does scale as Fr?.
Fr=0.1 Fr=0.01 5107

6 0.01
4
>
2
-0.01
0 5 10

T T

o

(a) (b)

Figure 2: The quantity b/ /Fr? — ik, p/"! reconstructed from the linear stability analysis
of the full problem for wavenumbers k, = 0.5 and &k, = 1 is plotted for two different Froude
numbers: Fr = 0.1 for panel (a) and Fr = 0.01 for panel (b), and for the parameters
Re = Pe = 10000.
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Figure 3: The quantity Fr reconstructed from the linear stability analysis of
the asymptotic model and of the full equations for wavenumbers k, = 0.5 and k, = 1 is
plotted for two different Froude numbers: Fr = 0.1 for panel (a) and Fr = 0.01 for panel
(b), for the parameters Re = Pe = 10000.

In order to compute a correction to the eigenvalue o9, a second order correction to this
asymptotic analysis can be written:

R o dU o

oolle + ootlip + vgd—y + ik Utio = —ikypo, (13a)

X ~ o e dp2
oolo + oatig + 1k, Uty = d_y’ (13b)
ooty + ik, Uty = —ikspo + ba, (13c)
0'084 + 0'2132 + ’LkaIAM + wyq = 0, (13d)

di

ikytin + 2 4 ikt = 0. (13¢)

dy

This system is coupled to the lower order one through g, g, 09, po, W2 and bs. Similarly
to the lower order problem, the horizontal velocity and continuity equations are decoupled
from the vertical and buoyancy equations. Knowing 2,00 and po as well as the lower
order solutions, by and w4 can be computed through the vertical velocity and buoyancy
equations. This system is however more difficult to solve as it is not quite an eigenproblem.
The eigenvalue at this order oo is multiplied by the eigenvectors at lower order and the
eigenvalue at the lower order is multiplied by the eigenvectors at this order. Solving this
problem is left to future work.
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4 Direct Numerical Simulations of the Horizontal Shear In-
stability at Very Small Froude Number

4.1 Initial conditions

Naturally, this linear stability approach only investigates the linear behavior of the system.
To study the complete non-linear dynamics of this system, we turn to direct numerical sim-
ulations. The pseudo-spectral code PADDI [18] is used to perform DNS. This code solves
the dimensionless incompressible Navier-Stokes equations under the Boussinesq approxi-
mation (equations (3)). The dimensions of the computational domain are 47 x 2w x /2,
the resolution is 1536 x 768 x 192 equivalent meshpoints, and we impose triply periodic
boundary conditions. We focus on the specific case of an initial sinusoidal velocity field, the
initial conditions are therefore:

u(z,y, z,0) = sin(y)e; + ny(z,y, 2)e,, b(z,y,2,0) =0, (14)

where n,, represents white noise on the grid scale. The background velocity field U(y) and
the background linear stratification b(z) are represented in figure 4.

For this section, we will focus on a single value of the stratification parameter F'r = 0.1,
and look at two Reynolds and Péclet numbers: Re = Pe = 5000 and Re = Pe = 10000.

(a) (b)

Figure 4: Initial conditions for (a) the streamwise velocity field and (b) the linear stratifi-
cation b(z) = z.

4.2 Typical behavior

Figures 5 and 6 show snapshots of the simulations for the parameters Re = P e = 5000
and Re = P e = 10000, respectively. More precisely, they show the u velocity field (left
panels) and w velocity fields (right panels) on the x — y plane at z = 0 (top, larger panels)
and on the x — z plane at y = 0 (bottom, smaller panels), at three different times. The
snapshots were selected to capture the moment the primary instability becomes visible (at
t = 40), and how it evolves in time (at ¢ = 50). The last snapshot (at t = 62) is selected
to highlight the different saturation behavior depending on the Reynolds number. The primary
instability appears as a meander of the mean flow in the horizontal plane for both Reynolds
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numbers (top left panels, ¢ = 40). A vertical velocity field forms and intensifies as vertical
modes of the primary instability develop (right panels). The vertical scales become smaller
and smaller as time evolves, forming shallow laminar layers. The saturation mechanism
for these scales appears to be different depending on the Reynolds number. For the lower
Reynolds number investigated here (Re = 5000), viscous saturation occurs between the
shallow laminar layers while at the higher Reynolds number (Re = 10000), secondary Kelvin
Helmholtz (KH) instabilities start to form (see bottom right panel of figure 6). During this
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Figure 5: Snapshots at different times of the x velocity u for the panels on the left and the
vertical velocity w for the panels on the right. Each panel shows two slices through the
computational domain: a horizontal zy slice at z = 0 for the top panels and a vertical zz
slice at y = 0 for the bottom panels, for the simulation with parameters Re = Pe = 5000
and Fr =0.1.
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Figure 6: Snapshots at different times of the x velocity u for the panels on the left and the
vertical velocity w for the panels on the right. Each panel shows two slices through the
computational domain: a horizontal zy slice at z = 0 for the top panels and a vertical xz
slice at y = 0 for the bottom panels, for the simulation with parameters Re = Pe = 10000
and Fr =0.1.
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4.3 Stability of horizontal shear

— Urms
—Urms - | £
Wrms FrZ Wrms
1

brms — 2 brms
;

0 20 40 60 80 0 20 40 60 80
(a) (b)

Figure 7: (a) Root mean squares of the components of the velocity vector and the buoyancy
field as a function of time for the parameters Re = Pe = 5000 and Fr = 0.1. The black
dashed line shows an exponential with growth rate A = 0.26, corresponding to the growth
rate predicted by the linear stability analysis. (b) Same as (a) with wy,s and by.,s rescaled
with F'r2.

To further study the primary instability of this flow, we look at figure 7a showing the root
mean square (rms) of the components of the velocity vector and of the buoyancy field:
Upms = <u2>1/2, Urms = <v2>1/2, Wrims = <w?>1/? and brms = <b2>1/2, where <.>
denotes the volume average. The mode k, = 0 that grows during the exponentially growing
section of vyns (between t ~ 20 and t =~ 50), grows at the rate predicted by the linear
stability analysis (see dashed black line in figure 7a). The plots for wym,s and byps show
that modes with a vertical structure (k, # 0) also grow. Their growth rate is very close
to the one of the k, = 0 mode, in accordance with the linear stability analysis. Figure 7b
shows the same root mean squares as figure 7a, except that w;m,s and b.,s are rescaled
by Fr2. With this rescaling, they have roughly the same amplitude as the v,,s curve, in
agreement with the scalings of the asymptotic analysis.

Once the instability reaches non-linear saturation (after ¢ ~ 50, or when ums ~ Vrms),
figure 7b shows that the Fr? rescaling for wyy,s and by, still seems to have roughly the
same amplitude as the v,,s curve. This is reminiscent of the so-called Lilly regime [15], a
non-linear quasi-2D turbulent regime weakly coupled in the vertical direction, and where
w ~ b ~ Fr?u, (where uy, is the horizontal velocity vector). Another specificity of the
Lilly model is that its horizontal divergence is 0 at first order: Vj, - up = 0. This was also
an assumption of the asymptotic model presented in section 3. To check whether the flow
at saturation is indeed in the Lilly regime, we compute the divergence of up on a hori-
zontal slice of the DNS. Figure 8 shows the horizontal divergence computed on the slice
z = 0 at two different times, one during the exponential growth of the primary instability
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t = 40 (figure 8a) and one after the non-linear saturation is reached, at ¢ = 60 (figure 8b).
At t = 40, the horizontal divergence on the slice is of order Fr?, in agreement with the
prediction from the asymptotic analysis. However, in the saturated regime, the horizontal
divergence is much greater than F'r? and is therefore not 0 at first o rder. The Lilly regime is
not appropriate to describe this DNS as it does not support small vertical scales (this model
only captures vertical scales much greater than Fr?). The asymptotic analysis showed that
the primary instability generates modes with vertical structures with no constraint on their
vertical scale k1, they can therefore be too small to be encompassed by the Lilly regime,
which requires k. to be of order 1. These small vertical structures can be seen in the vertical
snapshots at t = 50 and ¢t = 62 of figures 5 and 6.

More recent studies have proposed 2D stratified t urbulence models t hat support small
vertical scales, namely a study by Brethouwer et al. [3] that allows for a large horizontal
scale I, and a small vertical scale [, that scale with the Froude number: [, ~ Frl; (the
continuity equation then imposes that u, ~ Fruy). The DNS with parameters Re = 5000
and F'r = 0.1 has the characteristics of this regime. However, the DNS for Re = 10000
and F'r = (0.1 also exhibits small horizontal scales with the apparition of secondary Kelvin-
Helmbholtz instabilities (figure 6, bottom right p anel). A study by Chini et al. [5] developed
a more general framework that encompasses the regime described in [3], but that can also
support small horizontal scales and specifically KH instabilities, as seen in the simulation
for Re = 10000.

We have therefore established a pathway to turbulence from a (vertically
invariant) horizontal sinusoidal velocity profile. The primary instability arising from this
flow creates many vertical scales, including small ones (compared to the horizontal scale).
Depending on the Reynolds number, the saturation process is different. For relatively
low Reynolds number (around Re = 5000), viscous dissipation dominates the process,
while for higher Reynolds number (around Re = 10000), KH billows form, creating small
horizontal scales. Future work will establish whether the same pathways exist at low P
éclet number. Fur-thermore, it will be important to establish the exact value of the
critical Reynolds number separating the two possible saturation mechanisms.
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Figure 8: Horizontal divergence on the slice z = 0 at time (a) ¢ = 40 and (b) t = 60, for the
parameters F'r = 0.1 and Re = 5000.

5 Direct Numerical Simulations of the Horizontal Shear and
a Gravity Wave

The simple horizontal shear flow studied above is a very idealized model, far from any real
life flow. Indeed, naturally occurring shear flows interact with their surroundings, including
topography, boundaries with other fluids, or other flows within the same fluid. This section
will focus on one such case: the interaction of a horizontal shear with a gravity wave. We
will investigate the impact of adding the wave on the primary instability and on the tran-
sition to turbulence.

5.1 Initial conditions

We choose to add a gravity wave invariant in the = direction but propagating in the y — 2
plane, with wavenumbers k, and k. respectively, and with a v and w velocity component.
The amplitude of the v velocity component is chosen to be A, and the amplitudes of the
w velocity component and the buoyancy field follow through the polarization relation. The
initial conditions are given by:

u(z,y, z,t = 0) = sin(y) + nw(z, y, 2), (15a)
v(z,y,2,t =0) = Acos(kyy + k. 2) (15b)
k
w(z,y,z,t=0)= —k—yA cos(kyy + k.z), (15¢)
ky . .
b(z,y,z,t=0)= p wAsm(kyy +k.2), (15d)
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where the wave frequency w is given by the dispersion relation:

1 ky
YT 2 k) (19
White noise on the grid scale n,, is once again added to the u velocity field. The parameters
used in this section are: Re = Pe = 5000 and F'r = 0.1, and the wavenumbers for the wave
are ky, = 2 and k, = 8. We will vary the amplitude of the v component of the wave A to
investigate the impact of the wave. These initial conditions are plotted in figure 9, for the
wave amplitude A = 0.5.

The horizontal shear flow u imposed at time ¢ = 0 is identical to the one used in sections
2-4 of this work. However, it is now modulated by the gravity wave. Before any instability
develops, it now has a time dependency and a vertical structure. This new base flow can
be computed analytically in the inviscid limit, and the z velocity field becomes:

A A
u(y, z,t) = sin (y + o sin(kyy + k.z — wt) — 5 sin(kyy + kzz)) . (17)

This base flow being much more complex than in the case without the gravity
wave, no linear stability analysis is performed here.

Figure 9: Velocity and buoyancy initial conditions for the DNS with a horizontal shear and
a gravity wave with an amplitude A = 0.5 for the v component.

Figure 10 shows the typical evolution of the flow for a wave amplitude A = 0.5. The first
snapshots shown (¢ = 2) can be compared to the initial conditions (see figure 9) and show

293



, t=2
08
0.6
0.4
02
o
02
04

4 6 8 10 12
X

1
08
06
04
02
0
02
0.4

4 6 8 10 12
x

06
04
02
0
0.2

4 6 8 10 12
X

Figure 10: Snapshots at different times of the = velocity u on the left panel and the vertical
velocity w on the right. Each panel shows two slices through the computational domain: a
horizontal xy slice at z = 0 for the top panels and a vertical zz slice at y = 0 for the bottom
panels, for the simulation with parameters Re = Pe = 5000, F'r = 0.1 and A = 0.5.
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the modulation of the shear and the oscillation of the wave. The next snapshots (at t = 40)
are chosen to show the meandering of the shear and the appearance of the first vertical
scales as the primary instability develops. The behavior looks very similar to the one seen
in the case without the wave (figures5,6 ). T he final sn apshots re presented (at ¢ = 50)
correspond to the saturation regime. Crucially, we see that the magnitude of the vertical
velocity for this simulation (approximately equal to 0.2) is similar to the case with no wave
at Re = 10000, even if the Reynolds number is set to Re = 5000 here. In what follows, we
now study the impact of the wave both on the initial development of the instability and on
its saturation.

5.2 Impact on the primary instability

The shear in the x direction is impacted by the presence of the wave, which will also impact
the primary instability of this flow. T he b ase fl ow now has three velocity components, so
the vyms and wyy,s cannot be directly linked to the growth of the perturbation, as was done
for the shear only case. To extract the growth of the perturbation from the total flow, we
can exploit the fact that the base flow is entirely z-independent (neither the shear nor the
wave have an = dependency). In spectral space, this is equivalent to saying that the base
energy contained in the k, = 0 mode is associated to the base flow, while energy contained in
any mode with &, # 0 is necessarily associated to the perturbations.

The spectral power in the mode (kz, ky) can be defined as (in this section, hats denote
Fourier transforms):

E(kxa kya Z, t) = @(kxa kyy Z, t)@*(kwy kya 2 t), (18)

where 0(ky, ky, z,t) is the horizontal Fourier transform of the y velocity component, and
0*(ky, ky, 2,t) is its complex conjugate. The vertically averaged spectral power of the flow
perturbation in the y direction is obtained by summing over all the k, modes and over all
the k; # 0 modes, and then by performing a vertical average:

B(l) = Ll/z " Bk, by, 2, 1)dz. (19)

ky ka0

By computing this field, we aim at creating a quantity equivalent to v,2,,, in terms of

growth rate of the primary instability. Figure 1la shows the time evolution of this
quantity, for different amplitudes A of the wave. An exponential growth regime can be
identified, from which a growth rate can be extracted. This growth rate corresponds to
twice the growth rate of the primary instability, so figure 11b shows half of the growth
rate extracted from figure 11a as a function of the wave amplitude A. The case A = 0
corresponds to the case with the shear only studied in the previous section. Adding the
gravity wave does not seem to have a drastic impact on the growth rate of the primary
instability. For the amplitudes studied, the maximum increase of the growth rate is for
the wave amplitude A = 0.75 and is about 15% greater than the case with only the shear.
Its impact is not monotonic either, going from wave amplitude A = 0.25 to A = 0.75, the
growth rate increases as a function of the amplitude, while going from A = 0.75 to A =1,
it decreases.
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Figure 11: (a) Logarithm of the evolution of the horizontally averaged kinetic energy in the y
direction associated with the perturbation for different wave amplitudes, for the parameters
Re = Pe = 5000 and F'r = 0.1. (b) Growth rate extracted from (a) for the different wave
amplitudes.

5.3 Impact on the transition to turbulence

The study of the mixing properties of turbulent stratified flows has lately gained a lot of
traction. A recent review [4] highlights the importance and implications of measuring the
mixing efficiency. Here, we will focus on the two main components of the mixing efficiency,
the viscous dissipation and the buoyancy dissipation. The viscous dissipation represents the
irreversible dissipation of kinetic energy through viscosity, while the buoyancy dissipation
represents the irreversible conversion of available potential energy due to mixing across
isopycnals. The mixing properties strongly depend on the initial conditions and on the
instabilities arising from them. Although the instability mechanism seems similar with and
without the gravity wave, the viscous and buoyancy dissipations are strongly impacted by
the presence of the wave.

5.3.1 Viscous dissipation

The viscous dissipation is defined as:

2

where < . > denotes the volume average.

Figure 12a shows the evolution of the viscous dissipation for different wave amplitudes,
going from A = 0 (no wave) to A = 1 (the amplitude of the v component of the wave
is equal to the amplitude of the velocity of the horizontal shear). For the case without a
wave, there is very little viscous dissipation until around ¢ ~ 40, as the flow is still quite
laminar (see snapshots in figure 5, top panels). As the flow becomes turbulent, a peak
in viscous dissipation quickly appears and then fades slowly. For the cases with a wave,
there is more viscous dissipation initially, and it increases with the wave amplitude. The
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oscillations that can be seen until around ¢ = 35 — 40 are due to the wave oscillating and
modulating the shear. The dissipation peak occurs earlier, is shorter and more intense as
the wave amplitude increases. By adding the wave, we add kinetic and potential energy to
the system, which means that there is more energy to be dissipated. This might explain
the more intense peak in energy dissipation seen when we increase the wave amplitude.
Figure 12b shows the same viscous dissipation rescaled by the total initial energy (kinetic
and potential) of the system FEjy, defined as:

RS T S S BT
Eo—Q(U + 07 + w4+ —5b7). P (21)74

With this rescaling, the maximum instantaneous dissipation is the same for all wave am-
plitudes. It, however, does not explain the earlier onset of the peak or the fact that it
fades faster as the wave amplitude is increased.

0 20 40 60 80 100 0 20 40 60 80 100

(a) (b)

Figure 12: (a) Evolution of the viscous dissipation for different wave a mplitudes, for the
parameters Re = Pe = 5000, Fr = 0.1. (b) Evolution of the same viscous dissipation
rescaled with the total initial energy of the system.

For more insight into the viscous dissipation, we can rewrite it in terms of enstrophy
|w|?, where w = V x u is the vorticity and |w|?> = |V x u|? = |Vu|?. The enstrophy can be
decomposed into the vertical (Jw,|?) and a horizontal (|wp|?) enstrophy, where w, and wy, are
the vertical and horizontal components of the vorticity.

Figure 13a shows the evolution of the horizontal, vertical and total enstrophy for a wave
amplitude of A = 0.5. The horizontal enstrophy clearly dominates the total enstrophy, so
the viscous dissipation can be rewritten as:

1 1
€= 4o <IVu| 7o < |l
1 2 2
Re ‘wh"i"wz‘ ( )
1
Nﬁ<‘¢dh’2>.
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Garaud et al. [11] have shown that horizontal enstrophy is strong in the shallow layer-like
laminar regions that can be seen on the vertical snapshots with and without the wave (figures
5, 6, 10). These layers have strong vertical shear that dominate the viscous dissipation.
Adding the wave enhances the motion of the k, # 0 modes of the primary instability,
intensifying these layers.
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Figure 13: (a) Evolution of the horizontal, vertical and total enstrophy for a wave amplitude
of A= 0.5 and the parameters Re = Pe = 5000 and F'r = 0.1. (b) Evolution of the vertical
enstrophy for different wave amplitudes and for the parameters Re = Pe = 5000 and
Fr=0.1.

5.3.2 Buoyancy dissipation
The buoyancy dissipation is defined as:

1

2
R — . 2
T3 Pe < |Vb|]* > (23)

X
Similarly to the viscous dissipation, figure 14a shows that the buoyancy dissipation for the
case without the wave peaks after the onset of the instability (around ¢ ~ 60). It then
remains high over about 20 time units (from ¢t = 60 to t = 80 approximately) before fad-
ing. When the wave amplitude is increased, the peak occurs earlier and becomes narrower.
However, unlike the viscous dissipation case, the increased initial total energy due to the
wave does not fully explain the more intense peak in buoyancy dissipation. Figure 14b
shows the buoyancy dissipation rescaled with Ej, the peaks are closer to each other but the
maximum dissipation reached is still higher for the higher wave amplitudes, particularly for
the amplitudes A = 0.75 and A = 1.
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Figure 14: (a) Evolution of the buoyancy dissipation for different wave amplitudes, for the
parameters Re = Pe = 5000, Fr = 0.1. (b) Evolution of the buoyancy dissipation rescaled
with the total initial energy of the system.

The buoyancy dissipation cannot be explained by the shallow laminar layers discussed
previously, as horizontal flows do not cause buoyancy transport. The added microscopic
diffusion at the interfaces between the shallow layers at different temperatures are probably
not enough to explain the increase in buoyancy dissipation either. Instead, we can turn to
the vertical enstrophy, shown in figure 13b for different wave amplitudes. For the two highest
wave amplitudes tested (A = 0.75 and A = 1), a peak in vertical enstrophy appears around
t = 40, or more specifically, it appears around the time the buoyancy dissipation is at its
maximum. Garaud et al. [11] have shown that the vertical enstrophy w? is a good diagnosis
for the turbulent patches in the flow. Here, the snapshots for the highest wave amplitudes
seen in figure 15b show small scale secondary Kelvin Helmotlz instabilities that correspond
to turbulent patches. To attribute these KH instabilities to the high buoyancy dissipation,
we look at spatial joint probability distribution functions (pdf) of the vertical enstrophy and
of the buoyancy dissipation, at a fixed time. Figure 16 shows pdfs with the logarithm of the
vertical enstrophy on the x axis and the logarithm of the buoyancy dissipation on the y axis.
Figure 16a shows these pdfs for the simulation with wave amplitudes A = 0.25 (top panel)
and A = 1 (bottom panel) at an time close to their respective buoyancy dissipation maxima.
These wave amplitudes were chosen because of the different characteristics they exhibit: the
case for A = 0.25 barely has any secondary KH instabilities (see figure 15a), while we see
many of them around the peak in buoyancy dissipation for the case A = 1 (see figure 15b).
To better capture the difference between these two cases, figure 16b shows the difference
between the two pdfs (case A = 1 minus case A = 0.25). It shows that the positive region
(yellow patch) where there is a lot of buoyancy dissipation for the case A = 1 is obtained
for higher vertical enstrophy than the negative region (dark blue patch), that corresponds
to the region where more of the buoyancy dissipation occurs for the case A = 0.25. We
have previously attributed a high vertical enstrophy to secondary KH instabilities thanks to
[11], and we have now attributed regions of high vertical enstrophy to enhanced buoyancy
dissipation, we can therefore attribute the enhanced buoyancy dissipation to the secondary
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KH instabilities.

Figure 15: Snapshots of the vertical velocity w for (a) A = 0.25 at time ¢t = 62 and (b)
A =1 at time t = 41 . Each panel shows two slices through the computational domain: an
xy slice at z = 0 for the top panels and an zz slice at y = 0 for the bottom panels, for the

simulations with parameters Re = Pe = 5000 and F'r = 0.1.
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Figure 16: (a) Joint pdf of the vertical enstrophy (z axis) and the buoyancy dissipation (y
axis) for a wave amplitude A = 0.25 for the top panel and A = 1 for the bottom panel at a
time close to their respective maximum instantaneous buoyancy dissipation. (b) Difference
between these two pdfs (A =1— A = 0.25).
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6 Conclusion and Future Works

The stability of a horizontal Kolmogorov flow at low Froude number has been investigated,
continuing the work of Garaud et al. [10]. In particular, an asymptotic analysis in the limit of
low Froude number is carried out to explain the generation of small vertical scales from the
primary instability. The horizontal equations are the same as the 2D horizontal shear
equations, decoupled from the vertical. The mode structure is therefore the 2D mode in the
horizontal, and a vertical structure given by e**2*, with no constraint on k,. The lack of
constraint on k, explains why many k, # 0 can grow. At lowest order, the growth rate for the
vertical modes is therefore the same as that of the unstratified flow. The saturation
mechanism differs depending on the Reynolds number: for lower Reynolds number (around
Re = 5000), viscosity limits the size of the vertical scales, while at higher Reynolds number
(around Re = 10000), secondary Kelvin-Helmholtz instabilities appear between the shallow
layers.

To study a slightly less idealized problem, a gravity wave propagating in the y and
z directions was then added to the horizontal shear. The stability of this new system
was investigated and it was shown that the primary instability is not drastically affected
by the addition of the wave. However, adding the wave and increasing its amplitude
promotes the development of secondary KH instabilities. It also has a significant impact
on the viscous and buoyancy dissipations. These dissipation events become shorter and
more intense as the wave amplitude is increased. We have established a direct link
between the presence of secondary KH instabilities and the significant enhancement of
buoyancy dissipation. However, a criterion for the apparition of the secondary KH
instabilities is still lacking. The well established criterion on the Richardson number for
the vertical shear instability Ri < 1/4 ([17], [12]) does not capture the apparition of the
instability in this case. Indeed, we have identified zones in the domain where the
Richardson number is negative but no KH instabilities appear. These low Richardson
zones might be too transient or local to trigger the instability.

The effect of other parameters also remains to be investigated. Preliminary results
show that the Froude and Reynolds numbers have an impact on the apparition of KH
instabilities and on dissipations. Figure 17 shows the buoyancy dissipation for two
different Froude numbers (figure 17a) and for two different Reynolds number (figure 17b).
Increasing either of these parameters also seems to increase the intensity of the peak of
buoyancy dissipation, although with different dynamics. The direction of propagation of
the wave should also be investigated, as the choice made here (k, = 2, k, = 8) could
have impacted the general behavior described.
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Figure 17: (a) Evolution of the buoyancy dissipation for two different Froude numbers
Fr =0.1 and Fr = 0.2, and for the parameters Re = 5000 and a wave amplitude of = 0.5.
(b) Evolution of the buoyancy dissipation for two different Reynolds number Re = 5000,
and Re = 10000, and for F'r = 0.1 and a wave amplitude of A = 0.5.
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Towards a Stability Analysis of Two Interacting Gravity
Currents in a Rotating Environment.

Edoardo Bellincioni

August 20, 2025

To the reader

On top of providing a summary of the research project conducted during the 2025 GFD
Program, the intent of this report is to help a student who, like the author at the beginning
of the project, is not familiar with the physics of gravity currents and rotating flows, as well
as with the mathematical tricks and techniques for cylindrical coordinates and linear stability
analysis. To the expert applied mathematician, I apologise for the possible pedantry. To the
expert experimentalist, I remark that the main aim of this project was the analytical model
and the instabilities, and experiments were only conducted in the last week of the project.

1 Introduction

In the context of the interaction between multiple fluids in a rotating environment, one
of the classical, simple, yet powerful models is the one proposed by Normann Phillips in
1951 [7], which was later referred to as the“two-layer model”. There, a system of two
vertically stacked fluids is considered, with the bottom and lid being rigid. The fluids
have two different densities, the top one being lightest. The system is rotating at a fixed
angular velocity. Quasi-geostrophy is assumed, and the model allows study of the (interface)
perturbations around a stable flow configuration. Due to its simplicity, this model proved
extremely powerful in modelling a variety of geophysical flows, both in the atmosphere
and in the hydrosphere. In different formulations, the constraints on the bottom and top
boundaries are released, allowing for complex interactions with the bottom topography and
the presence of free-surface effects (see Vallis [9]).

The versatility of Phillips’ model is further corroborated by its application to geophysical
systems which are, at first glance, only loosely connected with the original setup. An
example is the work of Griffiths and Linden [5], where the authors study the stability of an
isolated eddy in a rotating environment, and qualitatively (sic) compare their results with
the prediction of a later version of the Phillips model [8].

There are, however, many situations in which a two-layer model is not sufficient to
capture the complexity of the system. An example is the Antarctic Circumpolar Current
(ACC), which is composed of multiple layers of waters with different salinity /temperature/
density, stacked on top of each other, see figure 1. The modelisation of systems of this kind
brought the development of a three-layer model, first proposed by Davey [3]. Literature in
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Figure 1: Schematic of a meridional cross-section of the Antarctic Circumpolar Current
(North left, South right), showing the different layers of water masses with different den-
sities. The continental mass is sketched on the right in brown. From WHOI - Dive and
Discover.

this field is not as abundant as for the two-layer configuration, but a number of contributions
studied the setup in different configurations: stratified; with sloping bottom; with varying
thickness of the layers; with a linear stability analysis; providing a (predictive) model. The
most recent work is that of Lobo et al. [6], which also provides a good overview of the
existing literature on the topic.

Another important set of physical situations in which multiple fluids interact is that
of river currents (floating) on top of an ocean. An example is the Western Maine Coastal
Current (WMCC), where multiple sources of fresh water (from rivers and freshwater bays)
flow into the Atlantic Ocean, and, under the effect of the Coriolis force, are deflected to the
right, thus forming buoyant currents flowing southwards along the coast of Maine. Churchill
et al. [2] report measurements of velocity and CTD (Conductivity, Temperature and Depth)
in transects off the coast of Maine, showing the presence of multiple layers of water masses
with different densities and velocities, see figure 2.

As for multiple stacked fluids (as the ACC), a qualitative understanding of the funda-
mental dynamics of this system can be obtained by studying the simplified case of a single
current on top of a large rotating reservoir. This behaviour, that of a single floating cur-
rent, has been extensively investigated, in different configurations, for example by Griffiths
et al. [4] and Griffiths and Linden [5]. The first considered a current with two free lateral
interfaces, while the second considered the current wall-bounded at y = 0 (experiments
were conducted in a rotating table with the current being bound by the axis of the table).
Both of these works elaborate on the baroclinic instabilities in the system.

More recently, Cenedese et al. [1] studied the interactions between two floating currents
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Figure 2: Two zonal transects off the coast of Maine measuring geostrophic velocity (top)
and salinity (bottom). Especially in the top right figure, two southwards currents can be
clearly identified by the peaking negative values in the contours. (Adapted from figure 6 of
Churchill et al. [2])

on top of a rotating reservoir, in a laboratory setting. By means of an analytical model and
laboratory experiments, the authors investigated the geostrophic adjustment of two floating
currents on top of a denser fluid. They nondimensionalised their findings with the Rossby
radius of deformation (ratio between a typical velocity scale and the Coriolis parameter)
and Burger number (ratio between the Rossby radius and an intrinsic lengthscale of the
system). The authors report that their laboratory experiments indicate that the solutions
found with the analytical model are unstable, but for a sufficiently long average in time,
the experimental results should align with the model prediction.

The focus of the aforementioned work was on reproducing in a laboratory setting a
system that would be similar, at least qualitatively, to the WMCC. The authors, hence,
expressed the equations of motion in a cartesian coordinate system, which is the most
suited when working with an idealised straight coastline. This choice, however, makes the
analytical treatment of the instabilities that occur at the fronts more cumbersome, if not
impossible. Hence, it is the focus of this work to express the equations in a cylindrical
coordinate system, and work towards the linear stability of the fronts.

This report is structured as follows. In section 2 we propose a model for the cross-
sectional profiles of the currents in steady state. In section 3 we report on the experimental
results. In section 4, we sketch an analysis of the linear stability of the one-current problem.
Lastly, in section 5, we draw conclusions from this work and elaborate on the outlook for
future, further developments.
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2 Cross-sectional Depth Profile in Steady State

In this section we will derive an expression for the velocity and interfacial depth cross-
sectional profiles of two fluids rotating gravity currents in steady state. Panel 3a shows
our system’s configuration at ¢ = 0: two concentric regions with rectangular cross section
contain two lighter fluids, above a denser fluid, under a rigid lid, rotating in solid body
rotation with the fluid beneath it. The densities of the fluids are p; (¢ € 1,2,3) with
p1 < p2 < p3. The initial cross section of the light fluids is [0, L;] x [0, H;]. Being more
buoyant than the environment, the two fluids spread radially when the radial constraints
are released (panel 3b), until the Coriolis effect balances the gravitational spreading, and
the fluids adjust to a depth h; = h;(r) and a radial extent of r = Iy and r = I3.

The derivation of the equations of motion will be done under the shallow water approx-
imation of the Navier-Stokes equations (SWE), in a rotating, cylindrical-coordinates frame
of reference (#,0,2). We refer the reader to specialised textbooks (e.g., Vallis [9]) for a
detailed derivation of the SWE, but we briefly summarise hereafter the main assumptions:

e the typical horizontal lengthscales are much larger than the vertical ones, Ly > Lyer

e consequently, the typical horizontal velocity scales are much larger than the vertical
ones, Uhor > Uver

e the equations are depth integrated, hence

— there is no Z (vertical) dependency in the flow

— there is no vertical velocity u, (in agreement with upey = Uyer)
e the radial gradients of the interfaces are small, 0,h; < 1
As we — for now — intend to model the adjusted, steady, stable state, we assume
e 1o time evolution, d;- =0
e 1o azimuthal dependency (no azimuthal structures), dyp- = 0
e no radial motions, u, =0

Under these conditions, the shallow water equations read

\Y%
Btu+(u-V)u+f><u:f—p, (1)

P
where u is the flow velocity, f is the Coriolis parameter, and the pressure term on the RHS
is the effect of buoyancy (i.e., gravity), which is yet to be determined (with p a reference
density). To understand how the pressure term in the SWE looks when the two floating
currents are considered, we shall start by taking as a reference pressure the pressure at a

307



(a) Initial state (b) Adjusted state

Figure 3: Radial adjustment of two floating currents in a rotating environment. The fluids
are initially kept in rectangular cross sections (left panel), and, after the radial constrains
are released, they adjust until they reach an equilibrium profile (right panel). The top is
considered a rigid lid. Hy indicates the depth of a reference pressure in the fluid. p; are
the densities of the fluids. H; are the initial depths, h;(r) the adjusted depths. L; are the
initial radial extents, and [; the adjusted radial extents. In the right panel, four regions are
identified, marked I to IV: I and II are in the first fluid, III and IV in the second fluid.

depth Hy, as in figure 3. Hence, the pressure will read !

gmz+c z€|0,h]
P =4 gpez+ca z€ [h1,h1+ ho] (2)
gp3z+c3  z € [hy + ha, +00]

with “z € [...]” we intend “for all the points (r,0, z) such that z € [...]”, and ¢; are three
constants.
We then impose the pressure at z = Hy as Py

p=FPy=gp3Ho+c3 = c3=Fy— p3gHp , (3)

Then, we apply continuity of pressure at the interface between fluid 2 and 3

gp2(h1 + ho) + c2 = gps(h1 + ha) + c3 (4)
ca = g(h1 + ha)(p3 — p2) +c3 = (5)
= g(h1 + h2)(p3 — p2) + Po — p3gH . (6)

We do similarly at the 1-3 interface

gpih1 +c1 = gpshi + c3 = (7)
= gpzh1 + Py — p3gHy (8)
c1 = glhi(ps — p1) — psHol + P . 9)

!Note that throughout this derivation we define the heights h; as the thicknesses of the layers, and not
as the depth of the interfaces. The depths of the interfaces can trivially be obtained summing the h; of the
layers.

308



Thus, we can write the pressure everywhere

g[pl(z — h1) + pz(—hg) + p3(h1 + ho — Ho)] +P z€ [0, hl]
p =1 glp2(z — (h1 + h2)) + p3(h1 + ha — Ho)] + Po z € [h1, h1 + ho] (10)
glps(z — Hy)] + Py z € [h1 + ha, +o0]

We then calculate the gradient of the pressure, Vp

glp1(2 = Vh1) + p2(=Vha) + psV(h1 + ha)] z € [0, hq]
Vp = g[pg(é - V(hl + hg)) + p3V(h1 + hQ)] S [hl, h1 + hg] (11)
gpsz z € [h1 + ha, +o0]

If we consider as the reference density the density of the bottom fluid p3, we can re-arrange

equation 11 in term of the reduced gravity g, = g%. We also neglect the 2 direction of
the pressure gradient, because it will not drive motions in the horizontal (V = V)

v 91Vhi+ g5Vhy 2 €0, h]
~P_ 95V (hi+ha) 2 € [hi,hy + ho] (12)
P3

0 z € [h1 + hg, +00]

Finally, the momentum equations will read

—91Vh1 — g5 Vhy 2z €[0,h]
du+t (u-Vjut+fxu=q-¢V(hi+hs)  2€[h,h+ ho (13)
0 z € [h1 + ha, +00]

2.1 Continuity equation

The continuity equation is trivially the continuity equation in shallow water approximation,
defined in each of the two layers

Oth; +V - (hju;) =0 forie1,2. (14)

2.2 Conservation of potential vorticity

For later calculations, we will use the conservation of (Rossby) potential vorticity (PV).
It is instructive to prove that our flow conserves PV. For simplicity, we here (only here)
assume WLOG that ¢g] = g5 = 1. We call the flow’s intrinsic vorticity £ = V x u. We start
by stating this equality

(qu)xuzﬁxu:(u-V)u—%V(UQ), (15)

which allows us to re-write the momentum equation

ou+ (u-Viu+fxu=-V(h +h) (16)
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as

6tu+(£+f)><u——V<h1+h1+u22> . (17)
We take the curl of this equation, to obtain
HE+V x[(§+1f) xul=0, (18)
as the curl of a gradient is zero.
We then apply the following nabla identity
Vx(AxB)=AV-B+(B-V)A+BV-A—-(A-V)B (19)

to the second term of equation 18, to obtain

Vx[(§+f) xu]=(E+)(V-u)+ (u V)(E+f) + uVLFT) - (E+H-Vu, (20)

where: the last term is zero as the V operator acts on the (r,0) plane, while both & and
f are oriented along Z; and the second to last term is zero as u is only in the (r,6) plane,
while V(& + f) is only along 2.

Equation 20 allows us to re-write equation 18 as

H(E+T)+ (u-V)(E+1)=—(§+)(V-u). (21)
We recognise the advective derivative in the terms on the LHS, so
Dy(§+1) =—(§+1)(V-u). (22)

We now expand and rewrite the continuity equation

Othi +V - (hju) =0 (23)
to
O¢h; +u - Vhi+hi(V-u) =0 (24)
Vou- A-u Vi (25)
h
hence
D:ih
O:th —u-Vh
Dy(€ +f) :+(£+f)tT . (26)
Multiplying by 1/h, we get
1 1
ZDUE+£) = 5 (€+ HDih, (27)
which leads to ¢
D, (ﬁ) —o, (28)

which is the conservation of potential vorticity in the shallow water approximation. We will
apply this conservation law by saying that the initial PV £/H equals to the PV at time ¢.
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2.3 Regions I and IV

To find the steady-state, cross-sectional profiles of the interfaces, we can divide the domain
in four parts, I to IV, as in figure 3b. The first fluid is in region I (r € [0,/;]) and II
(r € [l1,l2]), while the second fluid is in region III (r € [l1,l2]) and IV (r € [l2,l3]). We
start with the simplest regions, where there is no overlap between the two fluids, so regions
I and IV. We note that, in these regions, the governing equations are the same as for the
case with a single current.

The two governing equations are conservation of momentum and conservation of po-
tential vorticity. Continuity is identically satisfied for our flows. The centripetal term
arising from the rotating frame of reference requires particular attention, which we address
in Appendix A. In the following derivations we will neglect this term.

In regions I and IV, under the assumption of steady state, the governing equations 13
read:

mom: (u-V)u+fxu=—¢Vh (29)
g
PV: o =" (30)

Where we wrote only the Z component of the PV equation. We note that in these regions
(I and IV), there will be no coupling term in the equation for fluid 1 coming from fluid 2,
and vice versa.

We will address each term individually. First, let us write out the advective term in
cylindrical coordinates under our assumptions

(u- V)u= (— ﬂ“”‘") , (31)

r r

where the 7 term of the directional derivative is the centripetal term, which, as we said, we
neglect (see Appendix A). For the Coriolis term, we have

= f(—ug? + u,0) . (32)

S D

7?.
fxu=10

Ur Up

O kW

Hence, in the # direction the momentum equation reads

fug = g'o:h . (33)
The expression for vorticity is

€= 0, (ru) . (34)
We now write out the PV conservation

19, (ru
}f[_f+rh( 9)’ (35)
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which can be expanded to

h
Oy (rug) = fr <H - 1> (36)
ug h
- T = ——1 )
. + Orug = f <H > (37)
and using equation 33, and multiplying by 72, we get
g oh ¢ o h
= =0:h = ——1 38
P Son=f (1) (39)
which can be rewritten as a Bessel equation
2
r202h + 1O h — 7“2];/ (Z - 1) =0, (39)
with general solution
h(r) = H 4 ¢;Io(Ar) + cx Ko(Ar) (40)

where Iy and Ky are the zeroth-order modified Bessel function of the first and second kind,

respectively, A = L — L (with Lg, the Rossby radius of deformation), and ¢; and ¢y,

g’H - LRO
are two constants to be determined by boundary conditions.

2.4 Regions II and III

In regions II and III, the two height profiles will influence each other, and the general
solution will be a combination of the two individual solutions.
Following a similar derivation as for regions I and IV, we can write the governing equa-
tions ) )
ur = QTIh/H + 2 hiyy

ugg I hir _
Htug=f7r )

/ (41)
urp = 972 (hir + hin)
%‘Fuhl:f(%_l)
whose general solutions are
hﬂ(’l“) = H; + 61[0()\2’/“) + CQK()()\QT) + 0310()\37“) + C4K0()\3’I") (42)
hHI(’l") =Hy+ry (61]0()\27‘) + CQK()()\QT’)) + 73 (0310()\31") + C4K0()\3’l°)) . (43)

Heuristically, the presence of Ay and A3 can be interpreted as the effect of the interaction
between the two fluids, and the factors ro and r3 as a rotation in the plane of the solutions.
The parameters Ao and A3 are determined by the two positive solutions of a quartic equation
2 Hod 'H 4
)\4_f/( 292—’_/91 /1))\2+ - f/ . :0’ (44)
95H1Ha (g7 — 95) 95H1Hz(g1 — 95)

and r9 and r3 can be obtained from

Hy H2(91 - 92) 2
=" — == "7 A\, 45
72,3 H, fg 2,3 ( )

These expressions were obtained with the aid of a symbolic calculus software (Maple).
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2.5 Boundary conditions

We then have the functions for the fluids’ profiles in the four regions,

hI(T) Hy + 01[0()\17‘) + CQK()()\N’) (

hII(T) H, + C3I()(>\27’) + C4K0()\27’) + 0510()\37’) + CGKO()\ST) (

hi(r) = Ha + 72 (e3lo(Aar) + caKo(A2r)) + 3 (cslo(Asr) + c6Ko(Asr)) (48
(r) (

Hy + 0710(/\47“) + CgKo()uﬂ’)

h[\/ r

We have 8 unknown constants (ci, 2, ¢3, ¢4, ¢35, 6, €7, ¢g) and 3 unknown interface position
(l1,12,13), hence we seek for 11 boundary conditions. Ten of which are

1. finite velocity at r =0

2. continuity of the velocity in the first fluid at r = Iy, u(l1) = ur(ly)

3. continuity of the height in the first fluid at r = I3, h1(l1) = hi(l1)

4. vanishing of the first fluid profile at r = I, h1r(l2) = 0,

5. vanishing of the second fluid profile at r = Iy, hir1(l1) = 0,

6. continuity of the velocity in the second fluid at r = la, ur(l2) = urv(le2)
7. continuity of the height in the second fluid at r = la, hi(l2) = hrv(l2)

8. vanishing of the second fluid profile at r = I3, hry(l3) =0

9. conservation of volume of the first fluid, foll rhi(r)dr + fllf rhy(r)dr = @,

. . l l L2-12H

10. conservation of volume of the second fluid, [, * rhmi(r)dr+ [,* rhiy(r)dr = Lp=L7)Hz 21) 2
To obtain the eleventh, we need to consider a characteristic solution that follows the flow
during the initial radial adjustment. The details of this derivations are proposed in Ap-
pendix [B] In short, for an element of fluid that starts at radial position Ry and, after
adjustment, reaches position R, the adjusted azimuthal velocity reads

R? — R?

U=I—x

(50)

We choose to apply it to a point of which we know the initial and adjusted position,
namely at the most bottom-left point of the second fluid, which starts at radius r = L; and
zero velocity, and hence gets adjusted at radius r = [ at a velocity

- L

urr(ly) = f ST

(51)

which constitutes our eleventh boundary condition.
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2.6 Relevant nondimensional numbers

For the adjusted state to be steady, the system needs to be characterised by the balance
between the radial spreading effect of buoyancy and the azimuthal turning effect of rotation.
We thus set the typical time scale to T' = 1/f, and the length scale to the Rossby radius
of deformation for the inner fluid (we could equivalently have chosen the second fluid)
Lro = +/g{H1/f, hence the velocity scale is simply U; = /¢ H1. We note that this choice
corresponds to fixing the Rossby and Froude numbers for the first fluid to

Roj=Y% =1 and Fr;=-Y_=1

Fn Vi Hi

Hence, the nondimensionalised equations read

~Vhi— 4Vhy 2 €0, h]

Ju+(u-Vju+2zxu= g
—ﬁV(hl + hg) z € [hl, hy + hg]

(52)

There is another nondimensional number that plays a more central role in the focus of
this work, and it is the Burger number 2. We define the Burger number as the ratio between
the Rossby radius of deformation and a typical horizontal lengthscale

LRoi g/'Hi
By, = Rt — VAL 53
‘ Lhor,i sz ( )

which is defined for each fluid, and in general the two Burger numbers will be different. If
we now consider that the typical horizontal lengthscale for the adjusted state is the Rossby
radius of deformation (balance between buoyancy and Coriolis), and that the intrinsic hor-
izontal lengthscale is the initial radius of the fluids, before adjustment, it is easy to see that
the Burger number measures how much the fluid has radially spread compared to its initial
width.

The reader might have been puzzled by our choice of working in cylindrical coordinates,
as the equations of motions of the two fluids could have been derived in cartesian coordinates,
as was done by Cenedese et al. [1], which relieves the calculations of the Bessel functions.
However, and this is clearly explained by Cenedese et al. [1], the cartesian approximation is
only valid for small Burger numbers, i.e., when the fluid does not spread much compared to
its initial width, as for higher Bu the “radial nature” of the horizontal spreading becomes
relevant. Figure 4 shows two examples of adjusted states, one for low Bu and one for
high Bu, plotting the results of our current model in cylindrical coordinates and that of
Cenedese et al. [1] in cartesian coordinates. From these two examples, it is evident that
the inaccuracy of the cartesian model increases with increasing Bu.

2The Burger number is named after Alewyn P. Burger, not Jan M. Burgers who gave name to the
equation.
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Figure 4: Comparison between a low-Bu (panel a) radial adjustment and a high-Bu one
(panel b), visualised through the cross-secion of the two fluids. The transparent rectangles
indicate the initial boundaries of the two fluids, while the solid lines indicate the adjusted
states. The blue lines are the results of the cylindrical model proposed in this work, while
the red lines are the results of the cartesian model proposed by Cenedese et al. [1].
titles have the values of the Burger numbers (Bu;) for the two fluids. The legend reports:
the reduced gravities g/; the initial width L, same for both fluids; the initial thicknesses H;;

the Coriolis parameter f; the adjusted distances [;.
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Figure 5: Schematic of the experimental setup. A rotating tank is filled with sea water
(shown in cyan) and two concentric cylinders are suspended in the centre of it. The inner
cylinder is filled with fresh water (in red) and the outer one with a 50-50 volume mixture
of fresh water and sea water (in green). Once the system has reached solid body rotation,
the cylinders are lifted, thus releasing the buoyant fluids which generate the two currents.
Two LED lights (blue and green) are expanded in a vertical sheet which illuminates a
cross-section of the tank. T'wo cameras fitted with colour filters record the evolution of the
currents. A third camera is mounted above the tank to record the free surface deformation.
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3 Laboratory Experiments

3.1 Experimental setup

All the experiments were conducted in a plexiglass cylindrical tank with diameter of one
meter. The tank was initially filled with sea water (density ps; = 1021.15kgm™3) to a level
of 25cm from the bottom, for a total volume of approximately 118 L. Two bottom-less,
concentric hollow cylinders were suspended with pulleys in the centre of the tank. The
smaller hollow cylinder had a radius of 6 cm, while the larger had a radius of 12cm. Two
peristaltic pumps, supplied by two plastic containers, were secured to the rotating table
and used to fill the inner cylinders. The tubes coming out of the two pumps were connected
to a long bar, which allowed them to be removed after the filling was concluded. The
end of each tube was covered by a small sponge, to avoid a monodirectional momentum
input by the pumped water. The fluid for the inner cylinder was fresh water (density ps =
998.48 kgm—3), dyed with fluorescein (with a concentration® of 0.5 ppm), while the fluid
for the region between the two cylinders was a 50-50 volume mixture of fresh water and
sea water and dyed with Rhodamine-B (also 0.5 ppm). The tank (and the pulley system)
was mounted on a rotating table, set to a rotating speed of 0.5Hz (Coriolis parameter
f = 2Q =1Hz). The temperature of the water in the tank as well as in the lab was
monitored with a digital thermometer to ensure that no convective motion was present due
to possible temperature differences between the water and the environment (the typical
difference was fluctuating about +0.5°C).

In order to capture the time evolution of the two fronts, a fluorescence-based illumination
setup was arranged in the tank. Blue (445nm) and green (520 nm) LED lights were focused
on a plane by means of optical fibers, and oriented vertically, and radially towards the center
of the tank, as shown in figure 5. The colours of the LEDs were chosen to excite the two
dyes in the fluids. Two BASLER a2A4508-20umPRO cameras (18 Mpx, 1” sensor, pixel size
2.51um), with Nikkor AF f/2.8 28 mm lenses, were mounted side by side perpendicularly to
the illuminating plane, and controlled by a computer. The cameras were fitted with colour
filters so that each would isolate one of the two excited dyes. The cameras are spatially
calibrated for images to be meaningfully overlapped, but were not synchronised in time:
the acquisition rate was set to 5 fps, but a bottleneck in the data transfer rate between the
cameras and the computer meant that the time interval between frames is inconsistent and
the cameras quickly went out of sync. Additionally, by default, the Basler software (pylon)
does not save the timestamp of the frames, not in the filename, nor in the EXIF data.

A third camera (Vision Systems Technology VA-8MC-C16-A0, 8 Mpx, 4/3” sensor, pixel
size 5.5 pm) was mounted vertically above the tank, thus visualising the fluids’ free surface,
with an acquisition rate of 1 frame per second. It should be pointed out here that the
illumination setup was not optimised for this camera, as the lighted plane was perpendicular
to the camera’s field of view. The densities were measured with a DMA5500 Anton-Paar
densitometer at a set temperature of 20°C.

3The solution was created adding 0.5g of dye to 500 mL of water, and then 0.5 mL of such solution was
added to 1L of water.
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3.2 Experimental observations and quantitative results

The experiments were conducted by starting up the rotating table at a fixed angular velocity,
with the full circular tank, and the inner cylinders lowered, but empty. Solid body rotation
was checked depositing small speckles of dust (or the like) on the surface of the water, and
once the speckles’ angular velocities were the same as that of the tank’s, the peristaltic
pumps were activated to fill up the inner cylinders. The thickness of both layers was set to
8 cm, but could be easily varied in different repetitions of the experiment. Once the filling
was concluded, the bar holding the tubes was removed. Then, the experiment was initiated
by lifting the hollow cylinders. When lifting the cylinders, care was taken to not introduce
any unnecessary disturbances in the water.

Figure 6 reports four views of the surface of the fluids, as seen by the top camera. The
best contrast was obtained by converting the RGB image to HSV, and selecting only the
saturation channel. In the first frame, figure 6a, the two fluids are still separated by the two
cylinders, and in the frame it is possible to see the strings that are holding the cylinders
in place. After lifting the cylinders, the two adjusting fluids undergo radial oscillations,
with waves that perturb the free surface. Figure 6b, shows an example of a radial peak
in the oscillations of the fluids. Due to the camera being black and white, the interfaces
of the fluids are not clear in this frame. The origin of the waves that perturb the surface
are multiple. First and foremost, there are the gravity waves induced by the response of
the bottom fluid to the newly set top surface conditions. Secondly, as the two top fluids
are lighter than the bottom one, their free surface initially sits higher than the surrounding
(they “float” on top of the bottom fluid), and surface waves are generated by the vertical
displacement of the mass of the two fluids that was initially resting above the free surface.
Lastly, the lifting of the cylinders is unavoidably a source of perturbations: if done too
slowly, the fluids can start leaking out from the bottom of the cylinders, while the top fluid
is still contained within; if done too quickly, the shear-induced vertical motion of the fluids
can significantly alter the subsequent adjustment. Figure 6¢ shows a frame of the adjusted
state. The two fluids are distinguishable by the different intensities (brighter for the lighter
inner fluid, darker for the outer denser one), and this state is approximately maintained
for 30s. After this time, at approximately 80s from the beginning of the experiment, the
central vortex of the inner fluid starts migrating away from the centre, as shown in figure 6d.
This migration is probably due to some initial small asymmetry, that grows in time until
reaches to an unstable state. We cannot comment on the reproducibility of the migration
due to the small number of repetitions of the experiments. It should be noted that, for
many reasons (camera’s shutter speed and frame rate, lighting setup), these images do not
clearly show any azimuthal structure, which were nonetheless observed in the experiments.

Figure 7 shows two frames from the side cameras: one with the cylinders in place, and
one representing the adjusted state. We note that the fluids continue to oscillate radially
until the end of the experiment (which is considered as when diffusion and mixing smear
out the sharp gradients at the interfaces), albeit with decreasing amplitude. When looking
at figure 7b, one can comment that the outer interface of the second fluid is well captured
by our model, as well as the bottom interface of the first fluid, but the interface between
the two fluids is not well represented. Given the single repetition of this experiment, we are
unsure on the source of this discrepancy. Additionally, due to the synchronisation problem
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(a) Initial state (b) Radial oscillations

(c) Adjusted state (d) Migration of central vortex

Figure 6: Four frames from the top camera, showing the evolution of the free surface during
one experiment. The timestamps are: (a) 0s, (b) 23s, (c) 48s, (d) 91s. The images have
been contrast-enhanced for better visualisation.
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between the two cameras, the two overlapping images might not represent the same physical
instant. Nonetheless, our model captures the overall depth of the two fluids better than
the cartesian model of Cenedese et al. [1], which could be expected, given the relatively
high Burger numbers of the two fluids (Bu; = Bug = 1.57, for reference, Cenedese et al. [1]
always considered Bu < 0.6).

(@) (b)

Figure 7: Side view of the initial (panel a) and adjusted (panel b) states of the two fluids,
in false colors as seen from the side cameras. Overlapped on the experimental images are:
as transparent red and blue lines, the initial profiles of the fluids; as solid lines, the profiles
obtained from our model (see section 2), marked as “Cylindrical”, in blue, and from the
cartesian model of Cenedese et al. [1], marked as “Cartesian”, in red. In the left plot, the
shadows of the cylinders are visible on the bottom.

A last comment on the experimental results is to be done on the role of diffusion and
mixing, which we have neglected in our calculations, but are unavoidably present in the
experiments. For example, using the sponge at the end of the filling tubes, we reduced the
mixing induced by the pump, but did not eliminate it. Additionally, the filling process takes
approximately 5-10 minutes, in which the fluids have time to diffuse into each other, at the
open bottom of the hollow cylinders. Moreover, the vertical shear induced by the lifting of
the cylinders is a source of mixing. Lastly, as the fluids spread and become thinner, the
smearing of the interfaces due to mixing and diffusion makes the thickness of the interfaces
themselves closer to the total thickness of the fluids.

4 Linear Stability Analysis for One Current

Having developed our analytical model in cylindrical coordinates, we can now proceed to
study the linear stability of the adjusted state. For simplicity, we will consider only the
case of a single current. The case of two currents can be treated in a similar way, but the
algebra becomes quickly cumbersome. The case of a single current is sketched in figure 8.
For reference, this configuration is the same as the one described in Griffiths and Linden

[5]-
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Figure 8: Radial adjustment of a single, floating current in a rotating environment. The fluid
is initially kept in a rectangular cross section (left panel), and, after the radial constraint
is released, it adjusts until it reaches an equilibrium profile (right panel). Hj indicates a
reference pressure in the fluid.

We start from the the equations of motion, here expressed with the physical units set to 1

mom : diu+ (u-V)ju+ 2 xu=-Vh

54
cty : Oth+ V - (hu) =0 (54)

We perturb each of the fields with a wave-like perturbation
(v, u, h) = (0,3, h) + (9, ) exp [i(k6 — wt)] (55)

As for the steady state, we neglect the centripetal term, hence the terms of equations 54
read (the steady state terms are not indicated):

e O (v,u) = —iw(v,a)
e (u-V)(v,u)= |2 TU+%87“U_ ;Z 7/1)81””_’_%89”"’_% =
20 NAS
centripetal
_ term
= (%iko,90,u + £au + 12)
e Zxu=(—u,+v) = (-u,0)
o1 (0.%) ) - (3121
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e V:(hu)=V- [(ﬁ + ﬁexp) ((0,a) + (v,u) exp)] =10,(rhd) + Lha + £hq
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Which result in the following equations

" A
) <Zra — iw) +a(-1)+0-h=0 (56)
é;@(1+u+ara)+a(”“a—m>+i/k=0 (57)

T T T
ho - _ k- . [k
cty : <T + 1, +8Th) +a%h+h <Zr12—zw> =0 (58)
Which can be written in matrix form as
) kg — dw -1 O b
Ala) =] 0+%+00) %a-iw % a| =0 (59)
h Liho,+0,h) % Za—iw) \h

Noting the shape of the diagonal terms, we can multiply the matrix by —¢ to obatin a
classical form of the eigenvalue problem Av = wv (note that we are rotating the eigenvalues
by 90 degrees in the complex plane)

ku : _Zar

3 k{ . ) )
—i(l+3+0a) 47 | [a]=w]a (60)
—i (% + ho, + &Jz) kpo k] \h h

And look for the eigenvalues of this matrix. Unfortunately, at the current state, we are
unable to provide further results on the linear stability analysis.

5 Conclusions and Outlook

In this project we addressed the problem of two floating currents on top of a denser fluid
in a rotating environment. We set forth an analytical model, expressed in cylindrical co-
ordinates, based on the shallow-water approximation of the Navier—Stokes equations, that
allowed us to predict the steady-state, cross-sectional profiles of the currents as a function of
the physical parameters. In the development of such model, we dedicated particular care to
the role of the centripetal term in the radial momentum equation. Neglecting such term, the
solutions for the cross-sectional interfaces profiles are combinations of zeroth-order modified
Bessel functions of the first and second kind, scaled horizontally.

We run laboratory experiments in a 1m-diameter rotating tank, filled with sea wa-
ter, where two light fluids were initially contained in two axisymmetric cylindrical regions,
bounded by hollow bottom-less cylinders. The inner-most fluid was filled with fresh wa-
ter, while the one in the annular region had a density that was the average of sea and
freshwater. Experiments were initiated lifting the radial bounds, thus allowing the fluids
to spread, until buoyancy effects were balanced by rotational ones. Our analytical model
captures well the overall depth of the two fluids, but, at least in the experiment analysed
here, fails to properly represent the interface between the two lighter fluids. Nonetheless,
our cylindrical-coordinates formulation is more suited to model currents with high Burger
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number, than the cartesian one of Cenedese et al. [1], which represents better currents
along straight coasts.

Having expressed the governing equations in cylindrical coordinates, we could investigate
the linear stability of our system. In this work, we present the linearised system in the
classical form of the eigenvalue problem, but we leave the rest of the investigation for future
work. We note, however, that the same care that was dedicated to the centripetal term
in the steady state should be applied to the linearised equations, as the flow without the
centripetal term in principle does not conserve potential vorticity, and the corresponding
equation is one of the governing equations of the problem.

In fact, for this work to be “concluded” — as if one could ever say that of a research
project — the results of the linear stability analysis of one current need to be integrated with
the (numerical) solutions, and the linearised equations for two currents need to be derived
and analysed. Additionally, the outcome of such stability studies needs to be compared with
laboratory experiments or numerical simulations with the added complexity that shorter
wavelength perturbations are the ones that are most efficiently damped by diffusion and
shear, hence the analytical and experimental spectra of unstable frequencies might be shifted
due to the absence of any damping in the equations.

With the full linear stability analysis, the results of this work could be connected with
natural occurrences of multiple currents interacting at the surface of a large reservoir, like
the Western Maine Coastal Current, or with the dynamics of multiple isolated eddies, whose
steady state already have been studied extensively and are reported in literature.
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A The Centripetal Term

This appendix elaborates on the importance of the centripetal term in the radial momentum
equation. We here consider a single current, in steady state. A similar reasoning applies to
the case of two currents. The derivation is similar to the one presented in section 2.3, but
the centripetal term is maintained, hence, in the 7 direction we have

2
—% —ug=—d,h . (61)

The first term of the LHS corresponds to the centripetal term, and hereafter quantify the
error introduced when neglecting the centripetal term.

With the centripetal term, it is more clear (and therefore instructive) to derive the
solution for the velocity profile, instead of the height profile. This is due to the fact that
for equation 61, the relation between h and w is no longer that of a first derivative (in other
words, u x I} =5 h x Iy). We will start from the radial momentum equation and the
conservation of PV.

uj _
- + fug = ¢g'0rh . (62)
St Oug=f(1+4)
which, after few algebraic manipulations, can be written as
r20%ug + rOug —ug [ 1+ I r?) = i7“u3 (63)
" gH gH ’

which is not a Bessel equation anymore, due to the term on the RHS, and does not have a
simple analytic solution (if it has one), but can be integrated numerically.
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Figure 9: Comparison between the velocity profiles of a single current with (orange line)
and without (blue line) the centripetal term. The green line indicates the height profile of
the current, calculated with the centripetal term.

If we draw the two solutions numerically integrated, for typical parameter values, we
get the profiles shown in figure 9, where the boundary conditions for the solution with the
centripetal term were forced to match the value and first derivative of the analytic solution
without the centripetal term.

If we now plot the normalized difference between the two solutions for the velocity we
note (in figure 10) that the difference is at most 15%, where the radius is the biggest.

B Derivation of the Characteristic Solution

This appendix presents the calculation performed to derive the eleventh boundary condition.
We here consider a single current, in steady state. If we write out the continuity, momentum
and potential vorticity conservation equations, we have

h h
O + undyh + %agh + hytr + ~Oyug + % = 0, (64)
Uug u3
Oty + Uy Oputy + 783% + O,.h — P fug = 0, (65)
1 "
Byttg + wy Oy + %agug +~Osh + Ut o\ fu, = 0, (66)
w Jpuy — Op(rug) h
W G —Olrug) oy R 67
f rf ho (67)

Now consider the initial radial relaxation that is axisymmetric and look for a character-
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Figure 10: Normalised difference between the two solutions for the velocity, with and with-
out the centripetal term. The difference is normalised with respect to the solution with the
centripetal term.

istic solution R = u,(t, R). Let us define

H(t) = h(t, R()), (68)
V() = wu(t,R(t)), (69)
U(t) = wup(t,R(t)). (70)
Then, differentiating with respect to t using R = u, = V and simplifying we get
. . HU
H = VaRH - ath + R@rh = —H@rur\r:}g — ? (71)
. . U?
V =VORrV = dur + ROyu, = —0ph|,—p+ T + fU (72)
) ) U
U=VOrU = 0wup+ ROrugy = V <f — R) (73)
U h
—— — Oyugly=p = 1——. 4
ol = f(1- ) (74)
Now the U equation can easily be solved to get
R’ - R?
U=—-2 (75)

2R’
where Ry = R(t = 0) and the initial condition U(t = 0) = 0 has been used.
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Dynamics of Gravity Currents Over Stepped Slopes

Andrés Posada-Bedoya

August 20, 2025

1 Introduction

Gravity currents are buoyancy-driven flows in which density differences drive the motion
mainly in the horizontal direction. They can be found in a wide variety of geophysical
settings, generated both naturally and by human activities. Examples of gravity currents
are sea breeze fronts, oceanic overflows, avalanches, sand storms, oil spillages and pollutant
discharge in water bodies [27]. Due to their importance in a range of engineered and natural
situations, laboratory experiments and numerical simulations have been extensively used to
investigate gravity currents travelling along a flat, horizontal surface [25, 26, 3] or flowing
over a sloping bottom [9, 18].

Motivated by the presence of complex topography in the natural and built environment,
attention has been paid recently to topographic features and how they affect the propagation
of dense bottom gravity currents. Several recent studies have investigated the impact of
bottom-mounted roughness elements of different geometries and in different arrangements
on gravity currents over a horizontal [8, 30, 19] and sloping [24] bottom. Some studies have
considered continuous roughness like sinusoidal [22] or parabolic [21] bottom. However,
one particular configuration that has received little attention [12, 28] is the stepped-like
topography with abrupt changes in water depth, which is the focus of the present work.

At field scales, this configuration is of relevance to turbidity currents over stepped-
like bathymetric features, such as cyclic steps and crescent-shaped bedforms, in submarine
canyons [14, 10]. The flow conditions required to form these upstream-migrating bed forms
remain debated because the interactions between turbidity currents and active bed forms
are difficult to measure directly. Recent field observations have revealed energetic turbidity
currents driving sediment transport and resuspension in these environments, potentially
able to maintain and drive the migration of the bedforms [14]. These interactions gen-
erate complex current—sediment dynamics that remain poorly understood [4]. A question
motivated by these field observations [14] is: how does stepped topography influence the
dynamics of gravity currents?

The study of gravity currents over stepped topography is also relevant from a numerical
modelling perspective. Ocean models frequently represent topography as a “staircase” when
using z-level (height-based) vertical grids. Sensitivity studies comparing terrain-following
and z-level coordinates have shown that z-level models often predict deeper and slower
gravity currents under equivalent conditions [1, 11]. Reconciling the two approaches, so
that models consistently reproduce gravity current height, speed, and density across diverse
terrains, remains an open challenge. Improved understanding of gravity current behaviour
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over stepped topography could therefore enhance predictions of mixing rates and intrusion
depths in regions characterized by both stepped and smooth slopes.

The present study employs lock-exchange laboratory experiments to investigate the
dynamics of gravity currents in the presence of stepped topography. Comparisons are made
between flows over uniform slopes and stepped topographies to quantify how step size
influences front velocity, dilution, and ambient fluid entrainment.

The paper is structured as follows. Section 2 describes the experimental setup and
measurement techniques. Section 3 presents qualitative and quantitative analyses of the
flow evolution, including the effects of topography on current speed and bulk entrainment.
A parameterization for entrainment over stepped topography is introduced in Section 3.3.
A synthesis of the effects of the stepped topography on the gravity currents is discussed
along with a shallow-water model incorporating the effects of discrete steps.

2 Materials and Methods

2.1 Experimental setup

The experiments were conducted in a glass-walled rectangular tank measuring 1.2 m in
length, 0.3 m in width, and 0.5 m in height. Dense gravity currents were generated through
the classic partial lock-exchange setup [26]. The dense (lock) fluid was initially separated
from the ambient fluid by a Perspex gate positioned 20 cm from the left wall (Figure 1).
The gate was actuated by a pneumatic piston system to ensure repeatable and consistent
releases. Two small holes located at the water surface level allowed the water levels on both
sides of the gate to equilibrate during filling.

Fresh water, previously settled at room temperature in a stirring tank, was used as the
ambient fluid. The total water depth H = 0.46 m was kept constant across all experiments.
Both compartments were filled to the same free-surface level. The dense fluid was prepared
by diluting a pre-mixed brine solution (Kosher salt in water) to achieve the desired density.
The fluid density was measured with an Anton Paar DM A5000 densimeter, with an accuracy
of £0.004 kg m~3. The dense fluid was dyed with black printing ink, chosen for optimal
contrast in monochromatic imaging. To minimize mixing, the dense solution was gently
pumped at the bottom of the lock compartment through a pipe fitted with a sponge diffuser,
producing an initial interface thickness of less than 1 mm.

The variable topography was constructed from PVC slabs matching the tank width and
tightly fitted against the sidewalls to minimize leakage. The slabs could be slid relative to
one another to form stepped configurations of various geometries. For each configuration,
the slabs were screwed to an aluminum frame to fix them in place for each experiment. The
uppermost slab remained fixed throughout all tests and supported both the lock region and
a 20 cm-long horizontal section downstream of it. The current first propagated along this
flat section before descending the sloping or stepped topography. For the reference case,
a uniform slope was constructed using a single Perspex sheet connecting the edge of the
uppermost fixed slab to the tank bottom at a 2:1 (horizontal:vertical) inclination.
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Exp. D (om) D/H po(kgm®) ¢ (ms 2 an (om)

1-6 4 0250 11480 1452 0/2/4/6/8/10
7-12 6 0375 10444 0430  0/2/4/6/8/10
13-18 8 0500  1019.2 0.181  0/2/4/6/8/10
1924 10 0.625  1009.0 0.093  0/2/4/6/8/10
2530 12 0.750  1005.2 0.054  0/2/4/6/8/10

Table 1: Experimental parameters. The measured density across all the experiments was
always within 0.2% of the reported here.

mensional, spanwise-averaged, two-dimensional density field, derived from the dye concen-
tration c(x, z) as

sy = 2 p@2) = o 5
€0 PO — Pa
where ¢y is the dye concentration of the lock fluid, pg and p, are the densities of the lock

and ambient fluids, respectively, and p(z, z) is the dimensional density field.

2.3 Parameter space

Six bottom topographies were investigated: five stepped geometries and one uniform 2:1
sloping case used as a reference. In the stepped configurations, the individual step height
(an) varied from 2 cm to 10 cm, arranged such that the overall mean slope of the topography
was approximately 2:1. The cases are denoted ag-as, where ag corresponds to the uniform
slope and a3 to the largest step height.

For each topography, five experiments were conducted with varying dense-fluid density
(po) and initial lock height (D/H), resulting in a total of 30 experiments. Several runs were
repeated to verify the repeatability and robustness of the setup.

To isolate the influence of topography on the gravity current dynamics, a constant initial
Reynolds number was targeted across all experiments. The Reynolds number was defined

as
U B32,02
Rey = f; 0 %0 % , (4)

14

where v is the kinematic viscosity, ho is the current height, gy = Ap/p, is the reduced
gravity. The subscript 0 refers to quantities measured along the initial flat section in front
of the gate, before the current interacts with the slope.

Maintaining a constant Reg required simultaneous variation of py and D. From equa-
tion 4, it follows that g{, (and thus pg) must decrease approximately with the cube of the
current height to preserve dynamic similarity. To explore a broad range of initial conditions,
D was varied between 0.25H and 0.75Hy, where Hy = 0.16 m is the water depth above the
lock region. The densest current had a density of 1145 kg m™3, while the lightest current
was adjusted to yield a measurable density difference of approximately 5 kg m~—3. Table 1
summarizes the parameters of all the experiments.
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2.4 Gravity current properties
2.4.1 Front position and speed

The instantaneous front position of the gravity current, xy, was defined as the foremost
point of the current nose. In the experiments, 2y was determined by tracking the evolution
of the non-dimensional iso-density contour at p* = 0.02, following the procedure of previous
studies [23, 16, 31]. The temporal evolution of z ¢(t) was used to compute the instantaneous
front velocity, Uy = dxy/dt.

2.4.2 Nondimensional parameters

The flow dynamics were characterized using three nondimensional parameters: the Froude
number (Fr), the Reynolds number (Re), and the normalized step height (a,/(D/2)). Bulk
values of F'r and Re were estimated separately for the flat region ahead of the lock (subscript
0) and for the sloping region (subscript s):

Fr=——"—F¢ 5

" v g'hcosf 5)
Urh

Re = % (6)

where h is the current height, Uy is the front speed, ¢’ = gAp/p, is the reduced gravity, 6
is the bottom slope and v is the kinematic viscosity.

2.4.3 Bulk entrainment

As the dense current advances, it entrains ambient fluid, increasing its total volume and
height through mixing. Variations in current volume and height are therefore indicative
of instantaneous entrainment dynamics [20, 5]. Two complementary methods were used to
estimate the bulk entrainment coefficient.

The first method provided a single bulk entrainment coefficient for each experiment,
based on the classical definition [9]:

_ 1 Do) _wm
_ﬁf Dt _ﬁf7

(7)

where wg is the entrainment velocity, D/Dt is a material derivative, and (h,) is a bulk
measure of current height obtained from the vertical dispersion of density. Here, () is used
to indicate averaging in the streamwise direction. Because the stepped bottom caused
overhanging regions that made the center of mass an unsuitable measure of height, h, was
computed as the vertical standard deviation of the density field:

fo *(@,2,t) (2 — hy)?dz
fo *(z,2,t)dz

ho(z,t) = (8)

where h,, is the center of mass at each streamwise location,

fo “(x,z,t)zdz
fo xztdz'

hu(z,t) =
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The characteristic current height was defined as h = 3 (h,), corresponding to the vertical
extent delimited by the p* = 0.02 contour approximately.

The entrainment analysis was performed within a control volume moving with the cur-
rent, ensuring that both the nose and head were always included, following the approach of
Zhou et al. [30]. The quantities h, and h, were averaged in this moving reference frame.
The bulk entrainment coefficient was evaluated between x; = 0.35 m and zy = 0.8 m
along the variable-bottom region, sufficiently far downstream to capture fully developed
flow conditions.

To examine the temporal evolution of entrainment, the second method followed the
approach of [23, 16, 31|, based on the rate of change of the current volume:

V(t) =B a(z, z,t)dA, (10)
Qy
where B is the width of the tank, dA = dxdz is the pixel area, Qy denotes the control
volume in the moving frame of reference. The indicator function « identifies the current
region as:

a=1, p* > 0.02
{a =0, p* < 0.02. (11)

The entrainment flow rate was then computed as the temporal derivative of the current
volume:

v Vi—Via
t = — = ——
QU =G =T 7,

where i denotes the time index. The instantaneous entrainment velocity is then computed
by dividing the flow rate by the entrainment area Agp = z;B:

Q) _ Q)

(12)

wg(t) = = . 13
e(t) Ap(t)  z¢(t)B (13)
Finally, the time-dependent entrainment coefficient was calculated as
’LUE(LL)
E(t) = . (14)
Uy (1)

A second bulk entrainment coefficient was obtained by time-averaging F(t) between the
same two streamwise locations used in Method 1, ensuring direct comparability between
the two estimates.

3 Results

3.1 Overview of the flow dynamics

After the gate was removed, the dense current propagated along the initial flat section,
rapidly reaching the slumping regime of constant front velocity that follows the initial
acceleration phase [15]. The flow development in this region established the properties of
the current prior to its propagation over the variable-bottom section. The initial evolution,
front velocity Uy, and gravity current height hg were consistent across experiments with
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Figure 4: Snapshots of the nondimensional density field p* for experiments with initial
D/H = 0.5 and ¢’ = 0.181 m s~2 over four topographies: (a-c) uniform slope, and steps
of size (d-f) a1 = 2 cm, (g-1) az = 6 cm, and (j-1) a5 = 10 cm. Values lower than 0.01 are
masked. Snapshots correspond to xy ~ 0.35, 0.6 and 0.8 m.

step size (cf. middle column of Fig. 5). In all stepped configurations, the current exhibited
alternating acceleration and deceleration as the front impinged upon the treads and cascaded
down the risers, respectively. This effect was more pronounced for larger steps and shallower
currents (i.e., larger a/(D/2)), as reflected in the increased variability of ¢ and Uy (Fig. 5).
With more steps, this variability diminished, approaching the smoother evolution observed
on the uniform slope.

For the uniform-slope cases, the bulk Froude number remained in the range Fr ~1-2,
increasing slightly between xy = 0.2 m and zy = 0.6 m, and then decreasing downstream
(Fig. 5m). Because of the downstream acceleration, F'rs > Fro. In the stepped cases, F'ry
decreased with the step size due to the decrease in Uy (Fig. 5n-r). The flow often alternated
between subcritical and supercritical regimes in response to the abrupt changes in depth
at each step. Typically, the current decelerated and thickened when passing over a riser
(subcritical), and accelerated and thinned after impinging upon the tread (supercritical).
However, the precise locations of these transitions varied across experiments due to evolving
buoyancy and trajectory differences (for example, sometimes skipping the direct interaction
with a step).
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average downstream, consistent with observations over both flat [23, 31] and rough [17] bot-
toms. The magnitude of instantaneous E agreed with previously reported values [23, 16, 31].
Entrainment magnitude and variability were smallest on the uniform slope and increased
with step size. Nearly periodic entrainment peaks occurred as the current traversed the step
treads, with minima over the risers. This pattern was especially pronounced in the larger-
step configurations, where the number of entrainment peaks corresponded to the number of
steps. For smaller steps, entrainment varied more smoothly, approaching the uniform-slope
behavior. Across all topographies, deeper currents exhibited higher entrainment, a result
discussed further in Section 4.

Overall, entrainment peaked over the treads and reached minima near the risers. The
precise location of each peak varied with D/H and even among steps within the same
run. These differences stem from variations in local buoyancy and current trajectory, which
affect where the current impacts the tread. Upon impingement, the dense fluid entrains
the ambient fluid trapped within the step cavity, generating strong convective mixing that
increases the volume of the current. This locally enhanced mixing compensates for the
concurrent acceleration that would otherwise reduce E. Conversely, right upstream of the
riser, the current tends to accelerate, increasing Uy and lowering E.

3.3 Bulk entrainment model

Both methods for estimating entrainment produced consistent trends of bulk entrainment
with the relative step submergence (Fig. 7a). For a given a/(D/2), deeper currents exhibited
larger entrainment values, a result discussed further in Section 4.

Increasing the step size exerted two opposing effects on entrainment. On one hand, larger
steps reduced front velocity and thus the bulk Froude number Frg (Fig. 7b), which would
normally decrease E. On the other hand, the enhanced turbulence over steps promoted
greater mixing and entrainment. The combined influence is captured in the dependence
of E on the relative submergence a/(D/2) (Fig. 7a). For a/(D/2) < 1, entrainment was
similar to that on the uniform slope (E/Egope ~ 1). For a/(D/2) 2 1, E/Egepe increased
markedly, indicating that when steps protrude above the current depth, turbulence en-
hancement outweighs the speed reduction. Conversely, when steps are fully submerged, the
reduction in flow velocity can offset or exceed the added mixing.

Based on these observations, a modified parameterization for the entrainment coefficient
is proposed to account for the effects of stepped topography:

FE a
=1, Fr—— <05
Eslope D/2 (15)
b + g @ Fr-—2>05
=—-+-Fr—— T—— .D.
Egope 3 3 DJ2’ D/2

4 Discussion

4.1 Synthesis of stepped topography effects

The presence of topographic steps modifies gravity current dynamics in three principal
ways: it reduces the current speed, enhances the turbulent mixing that drives ambient-
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A simple volume comparison underscores the significance of this effect. For the smallest
steps (a1), the total steps cavity volume Vsieps = 0.0018 m? represents roughly 75% and
25% of the initially released volume for the shallowest and deepest currents, respectively.
For the largest steps (as), Vsteps = 0.009 m?, which exceeds the released volume by factors
of 3.75 and 1.25, respectively. Thus, the effective storage volume introduced by the steps
is dynamically significant. Because shallower currents contain less total volume, their mass
balance within the head is more sensitive to losses via detrainment into the step cavities.
This explains why, for equivalent submergence a/(D/2), entrainment is consistently lower
in shallower cases.

The detrainment can thus be viewed as a buoyancy flux divergence between the head
and the underlying steps, with potential implications for the long-term evolution and de-
positional behavior of gravity currents over complex bathymetry. To capture this exchange
process, a modified shallow-water framework is proposed below.

4.2 Shallow water model

A one-dimensional shallow-water model is developed to describe the propagation of gravity
currents over stepped topography. The effect of the steps is represented by a buoyancy
exchange between the downslope current and the fluid retained within the step cavities,
idealized as a secondary “box” whose buoyancy evolves in time. By incorporating this
exchange, the model accounts for both entrainment from the ambient and detrainment into
the step cavities. The governing shallow-water equations [29] for conservation of mass,
buoyancy, and momentum are modified as follows:

oh 0
5 + %(hu) = E(L,Fr)u, (16)
ob 0 bs b
O )= (ﬁ—h) . (17)
Obs bs b
5= (2 7)m (18)
a(uh)—ka <u h+2bhcost9> = bsind C’Dhu . (19)

Here, b = ¢’h is the buoyancy, and the subscript s denotes the fluid retained within the
fictitious “step box” of effective height
ab

L=—r—x0, 20

va? +b? (20)

where a and b are the riser and tread dimensions of the step, respectively. The entrainment

coefficient E(L, F'r) follows the parameterization introduced in Section 3.3, and the coeffi-

cients 5 (exchange rate) and Cp (drag coefficient) are calibration parameters that can be
determined empirically for each configuration.

This formulation explicitly couples entrainment and detrainment processes, enabling

the model to predict the evolution of gravity currents interacting with stepped topography.
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Future work will focus on validating the model and exploring the parameter space of 3, E
and L.

5 Conclusions and Future Work

This study investigated the influence of stepped topographies on gravity current dynamics

using partial lock-exchange laboratory experiments. The effects of step size and initial cur-

rent height on propagation speed, entrainment, and dilution were systematically explored.
Three principal impacts of stepped topography on gravity currents were identified:

e A reduction in current speed with increasing step height.
e Enhanced mixing and entrainment of ambient fluid as step size increases.
e Increased detrainment of buoyancy into the step cavities for larger steps.

These mechanisms collectively shape the evolution and fate of gravity currents over
complex topography. To capture these effects, a simplified one-dimensional shallow-water
model was proposed, incorporating a buoyancy-flux exchange between the current head and
the step cavities. Additionally, a new parameterization of the bulk entrainment coefficient
was introduced to account for the influence of stepped topography.

Future work should focus on experimental and numerical validation of the proposed
shallow-water model and entrainment parameterization, and on exploring their applicability
across a broader range of flow conditions and step geometries.
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Abstract

The classic approach to proving global stability in fluid flows is the energy method
of Reynolds [24] and Orr [21]: if the fluctuation energy E can be shown to always
monotonically decay, it follows that all initial conditions must return to the laminar
state £ = 0. However, the energy method often yields very conservative conditions
for global stability to hold, predicting loss of stability much earlier than observed in
practice. The recent work of Goulart and Chernyshenko [8], Huang et al. [11], and
Fuentes et al. [6] has provided the first approach to prove global stability beyond the
limits of the energy method, employing a numerical sum-of-squares algorithm to identify
Lyapunov functions quartic in the velocity field. Although the sum-of-squares method
is an important milestone in global stability analysis, it is a costly black-box solution
to the problem, and it offers limited insight into how one might prove global stability
more generally.

Inspired by sum-of-squares results, we propose a simpler, quasi-analytical alterna-
tive. We focus here on 2-D plane Couette flow, where the energy method guarantees
stability only for Reynolds numbers Re < 177.2 [21] but numerical evidence suggests
global stability for all Re > 0. For this system, we identify a family of quartic Lyapunov
functions with four total terms and with three free parameters to be chosen according
to the system geometry. We use it to verify global stability for Re = 195.8 at the
box length L = 1.659 (which minimizes Reg), and we explain—mathematically and
physically—how our Lyapunov function is able to control the transient energy growth
that arises when Re > Rep. Our work offers a first step toward a more transparent,
flexible approach to global stability beyond the energy method.

1 Introduction

Given a dynamical system & = f(z) on a manifold M, one says that a stationary state z,
is (asymptotically) stable if there is some neighborhood U C M of x, such that any initial
condition zg € U converges to x, over time. Various mathematical tools exist to investigate
asymptotic stability, depending on what one wants to say about the basin of attraction U.

One limit of this question is local stability: is a given state stable under sufficiently small
perturbations, or equivalently, does there exist any neighborhood U for which asymptotic
stability holds? In many cases, this question can be answered using tools of linear algebra.
The state . is said to be linearly stable (and thus locally stable, for well-behaved systems!)

!'Examples include any dynamical systems in finite dimensions with C' coefficients, and semi-linear
parabolic dynamical systems on Banach spaces with Lipschitz coefficients [10].
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if the local linear approximation dx +— V f(x,) - dz carries eigenvalues of strictly negative
real part. Linear stability analysis can provide important insight into the local behavior
of a dynamical system, both in fluid mechanics [3] and beyond [1]. However, it yields no
information about the global behavior of a fluid flow, and it offers no indication of what
perturbations are ‘sufficiently small’ to be well-approximated by a linearized system. For
instance, 3-D plane Couette flow, Pouiseuille flow, and pipe flow all support sustained
turbulence at sufficiently large Reynolds numbers Re > 1, but the laminar states of all
three are always linearly stable [3].

The opposite limit is global stability, which addresses these concerns: does every initial
condition return to a given state, or equivalently, do we have U = M? Unfortunately, unlike
the case of local stability, there are limited tools available to prove the global stability of a
given system [26]. Until recently, the only approach available (to the authors’ knowledge)
was the energy method of Reynolds [24] and Orr [21], and variants thereof. The energy
method is carried out as follows. Consider the following incompressible Navier—Stokes
equations in a domain Q C RY, d € {2,3}:

W+ (u+U) - Vu+U)=-Vp+vViu, V-u=0, (1)

where U is a fixed base state and v is the dimensionless viscosity of the fluid; we employ
v in place of the Reynolds number Re = 1/v to avoid confusion with the real part Re(z)
of a complex number z. We also suppose that the velocity field u satisfies either no-slip,
no-stress, or periodic boundary conditions? on any boundaries appearing in the domain, to
avoid boundary terms arising in volume integrals.

The (fluctuation) energy of the flow is defined by

1 1
B= gl = [
2 2

and—writing (a,b) = [ ab for the real inner product—its time derivative reads
B = (ug) = (u,~(u+U)- V(u+U) = Vp+v¥2u+ ) = —(u,u- VU) - || Vul?.

Notably, the nonlinear advection and pressure terms vanish in F; physically, these terms
act to move energy about the domain, but not to change its total. Symmetrizing over the
first term above, one can write E in terms of the energy stability operator &:

E = (u,&u), fu=—-T u+vVu,

where T = 3(VU+VU7) is the background stress tensor. So long as VU is bounded, there
exists a (system-dependent) energy Reynolds number Rep such that, for any v > 1/Rep,
the spectrum of £ is strictly negative. Fix Re < Rep and let A\; = maxspec& < 0. Then

E < \|u])? =2\ E,
and Gronwall’s inequality [9] implies global stability. In all, the energy method implies that

Reg > Reg, (2)

2More rigorously, we suppose that € is a compact domain in R*~* x T* for some 0 < k < d, where T* is
the k-dimensional torus.
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where Req is the minimum Reynolds number at which the system loses global stability.

Unfortunately, for many systems, the energy method appears to give a very weak bound
on Reg. In 3-D plane Couette flow, for instance, the energy method yields Rep = 82.6, but
sustained non-laminar solutions have been observed only for Re 2 500 [18]. The situation
for other shear flows is similar [30, 28, 29]; strikingly, in 2-D plane Couette flow, the energy
method yields Rep = 177.2, but numerical investigations have failed to find sustained non-
laminar solutions at any Reynolds number [22, 25, 4].

One might hope to improve upon the energy method by exchanging the energy with a
different Lyapunov function of the flow:

Definition 1.1. A continuous functional V' : L?(;R) — R is a (coercive) Lyapunov
function for the system (1) if it satisfies the following properties:

1. V[0] = 0.

2. If u # 0, then V[u] > 0 and

Viu] = <5‘;[1“],ut> - <‘“g1[1“],—(u+U) V(u+U)—Vp+ VV2u> <0.

3. Given any sequence u; with ||u;|| — oo, we have V]u;] — oc.
4. For any R > 0, there exists an & > 0 such that, if ||u|| > R, then V[u] < —e.

If a Lyapunov function exists for our system at a given Reynolds number, it follows
that the system is globally stable [16]; for instance, the energy method amounts to selecting
V = FE, which is a Lyapunov function whenever Re < Rep.

Until recently, however, the energy was often the only functional for which one could
feasibly prove the conditions of Definition 1.1. The key element that makes the energy
method tractable is that both E[u] and E[u] are quadratic in u, which follows from the fact
that E is conserved by nonlinear advection. Extremizing F and E thus reduces to a linear
eigenproblem, which can be solved numerically (if not analytically) to verify that Efu] > 0
and F [u] < 0 for all u # 0. In particular problems—namely, if specific components of the
energy are individually conserved—one can apply the same analysis to a reweighted energy
to find stronger bounds on Re¢ [13, 7, 27] or to estimate the basin of attraction about the
laminar state [14]. Likewise, in 2-D flows under stress-free boundary conditions, vorticity
gives rise to a distinct family of Euler invariants (such as the enstrophy) that can be used
likewise [12]. Enstrophy and reweighted energy functionals carry similar limitations as the
energy, and we count such approaches as examples of the ‘energy method’ below.

To move beyond the energy method, then, one has to make use of a non-quadratic
functional V']u]. Finding global extrema of a non-quadratic functional of u is not generally
tractable, even numerically, so it is difficult to verify that a given non-quadratic functional
satisfies V[u] < 0. As such, the energy method has generally remained the only feasible
route to proving global stability.

Recently, Goulart and Chernyshenko [8] proposed an approach to identify a non-quadratic
Lyapunov function by employing a finite-dimensional sum-of-squares procedure. In short,

346



they fix a finite set (u;, A;) of real eigenmodes of £, and they decompose

ZG’Z u;(z) + v(z,t).

Writing ¢ = ||v||, they take an ansatz of the form
V[U] :E[u]2+P(a17"'7a‘N7Q)> (3)

where P is a real, cubic polynomial. Indeed, in any system for which E[u] is the only
quadratic Lyapunov function for Re < Reg, it is clear that E[u]? must be the leading term
of any quartic Lyapunov function for Re > Reg, up to scaling. Now, the time derivative of
V is given by

. . oP oP

Viu] = 2Fu|Eu] + —a; + —¢,

] = 2Bl Blul + i +

which generally depends on a; and all (i.e., infinitely many) components of v. Through
extensive analysis, one attempts to find a bound of the form

P(a17“'7aN)v) S Q(alv"'vanq) (4)

for the system under consideration, where @) is a real, quartic polynomial. At this point,
global stability follows if one can solve the finite-dimensional problem

1 2
= Z< E a? —|—q2> + P(ai,...,an,q) >0,
. 1
V[U] < 5( § )\zag +>\N+lq2)< E a? +q2> +Q(a1,...,aN,q) < 07

for u # 0, writing Ay 41 for the largest eigenvalue of £ not contained in {Ag, ..., Ax}.

The problem (5) remains quite difficult—in fact, it has been shown that verifying the
positivity of a generic quartic polynomial in N variables is NP-hard [17]. For relatively
small NV, however, a practical solution is given by sum-of-squares methods. Such algorithms
attempt to find a sum-of-squares decomposition of a given polynomial p(x1, ...,zx), as

()

p($17"') Z pj L1y ey & ))Qa
7=1

and thus verify that the polynomial is non-negative. This restricted problem can be seen
as an example of a semi-definite program, for which a variety of practical, polynomial-time
algorithms exist [23].

The sum-of-squares approach has yielded promising results thus far. It was successfully
applied by Huang et al. [11] to find a Lyapunov function of the form (3) for doubly-periodic
rotating Couette flow, a system where a reweighted energy method already gives a sharp
bound on Req. It was also applied by Fuentes et al. [6] to 2-D plane Couette flow, yielding
the first proof of global stability for any system beyond Repg.

Although these results represent an important milestone in global stability analysis,
there are several obstacles to using the sum-of-squares method as a general-purpose ap-
proach to global stability. The sum-of-squares calculation is expensive, for one, and must
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be repeated in full for each new domain size and candidate Reynolds number. Consequently,
there is currently no way to leverage this approach to verify global stability over a continu-
ous parameter range. Computation time also grows rapidly with the number of degrees of
freedom NN, and the required value of N grows rapidly with the desired bound on Reg—as
such, only mild improvements over the energy method have thus far been possible. Perhaps
most importantly, the sum-of-squares algorithm is largely a black-box approach to the prob-
lem. Although the resulting functional V[u] is certain to be a workable Lyapunov function,
both V[u] and @ generally contain O(N?3) distinct monomial terms, and it is difficult to in-
terpret either object mathematically or physically. Furthermore, additional sum-of-squares
calculations are hidden in the bound (4), so the relation between @ and V[u] is similarly
obfuscated.

We here introduce a quasi-analytical proof of global stability for 2-D Couette flow beyond
the energy Reynolds number. Taking inspiration from the sum-of-squares approach, we
introduce a family of candidate Lyapunov functions of the form

Vu] = E[u]? + 2y E[u] /u ‘w9 + 11 Eu] + 2aRe [/u~111/u . uz} , (6)

denoting by Re[z] the real part of a complex number z; here, uy, u;, and ug are fixed
(complex) energy eigenmodes and 7p, 71, @ € R are parameters to be chosen based on the
box length L and the Reynolds number Re. For instance, at the box length L = 1.659
at which Orr [21] showed Rep = 177.2, we show that (6) is a Lyapunov functional for
Re = 195.8 with

Yo = 0.0456, ~v1 = 0.00606, a = 0.000469, (7)

and where u; are fixed eigenmodes of £. Moreover, we offer a simple physical explanation
for how the four terms of our Lyapunov function conspire to control the transient energy
growth that arises in the system. In short, the added cubic term accounts for the reservoir
of energy in the interaction between the background flow U and the fluctuation u, and
the added quadratic term leverages the linear stability of the system to form a reweighted
energy that monotonically decays under small perturbations.

Although formulated for 2-D Couette flow at moderate Reynolds numbers, the results
presented here offer a first step towards a flexible, analytical route to global stability more
broadly. On one hand, we believe that our results will allow for an improved lower bound on
Reg in 2-D Couette flow for a continuum of geometries, and more generally, that the design
of our Lyapunov function can be adapted to control transient energy growth in more general
systems; for instance, application to 2-D Poiseuille flow requires only minimal changes. On
the other hand, our results should lead to substantial computational improvements in the
sum-of-squares approach to global stability, by greatly reducing the space of candidate
Lyapunov functions and simplifying the polynomial bound (4).

We review the setup of 2-D plane Couette flow in Section 2, and introduce key notation.
In Section 3, we prove a simple lemma restricting the space of candidate Lyapunov functions,
and we show how (6) arises as a natural ansatz for our solution. In Section 4, we prove
an analytical bound of the form (4) for our system, and we use it to prove global stability
beyond Reg. In Section 5, we offer a clear, physical interpretation of how our Lyapunov
function controls transient energy growth. Finally, in Section A, we introduce a simple toy
model to illustrate how quartic Lyapunov functions can outperform the energy method.
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Figure 1: A schematic of 2-D plane Couette flow, reproduced from Fuentes et al. [6] with
permission. The flow is bounded between two parallel walls, moving in opposite directions
with velocity U/2 and thus inducing a background shear profile U = (Uy/h)z. We scale
coordinates such that h =U =1 and Re = 1/v.

2 Preliminaries

We consider the problem of 2-D (plane) Couette flow, illustrated in Fig. 1. We write
coordinates
(z,y) € [-L/2,L/2] x [-1/2,1/2],

with = the (periodic) streamwise direction and y the wall-normal direction. The base flow
is a linear shear profile, U = yz, and the fluctuating flow u evolves according to

W+ (u+U) V(u+U)=-Vp+rvViy, V-u=0, ufy—+1 =0.

Here, we write v = 1/Re for the dimensionless viscosity of the flow; this notation helps
mitigate confusion with the ‘real part’ Re[z] of a complex number z. It is instructive to
write the problem in a streamfunction formulation, with

u =V = (—ty, 1)

for a real function . In 2-D Couette flow, the base flow corresponds to a streamfunction
U = —%yQ, and the fluctuation 1 evolves according to the vorticity equations

Ct + {\Il + wa C} = VVQC, C = V2¢7 ¢|y::|:1 = ¢y|y::|:1 = 0. (8)

We write {a,b} = azby, — ayb, for the Poisson bracket of two fields, and

(a, b, C) = <a7 {b, C}> = <{a7 b}v C) (9)

for the corresponding triple product. As above, (a,b) = [ab denotes the real L? inner
product. We maintain the same notation for complex fields, without taking a complex
conjugate of either argument; the map (-,-) should thus be considered as an indefinite
bilinear form. As indicated, we are interested only in the space of streamfunctions with
no-slip boundary conditions:

H={peH"|Ply—s1 = 0yoly—11 =0},
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which we decompose along Fourier modes as

H = @%k, He={oeH | o(z,y) = (Zg(y)e%rikx/[,}.
k

We further denote the subspaces of positive and negative wavenumber as

He=PHe, H-=PHr

k>0 k<0

sothat H=Ho D H+ D H_.

Energy eigenmodes

In streamfunction notation, the energy associated to a field 1 is defined to be

1 1, _—
B[] = S[Vel* = 5(Ve, V).
Its time derivative along the flow (8) satisfies

El] = (@, &),  E:vp s —thyy — vV,

superseding our previous notation for the energy stability operator. The operator £ admits
a basis of H-orthogonal generalized eigenmodes (¢;, A;), for which

Epi = —\iVZ;.

Such a basis is known as an energy basis of H, and its elements as energy eigenmodes. As
before, there is a critical energy Reynolds number Rep such that, for all Re < Rep, we
have max();) < 0. In general, if \; < 0, we say that an eigenmode is energy stable, and we
otherwise say that it is energy unstable.

Since £ commutes with the orthogonal projections H — Hj, each eigenmode ¢; can be
chosen to be monochromatic in the streamwise direction, i.e., to lie in a particular subspace
Hy.. Next, consider the real-linear map R : ¥ (z,y) — ¢ (—x, —y), which restricts to

R - w(y)e%rik::p/L N WBZWikm/L
on Hy. Since R commutes with £, we can simultaneously ensure that
ei(z,y) = ¢i(—z, —y) (10)

for any eigenmode @; € Hy of £, scaling by i if necessary. When ¢; € Hg, we instead choose
it to be real-valued, allowing it to be odd or even (in y) as necessary.
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Components of the flow

For any scalar field &, we denote the component of our flow field ¢ along £ as

Ce = _<§7 V21/J>,

with time derivative

¢ = (6,0, C) + (6,9, Q) — v(E, V() = (£,4,¢) + (€6, ) + (¥, VE, V). (11)

Choose an H-orthogonal energy eigenbasis (p;, \;) for £, as above. For ¢; € Hp, we nor-

malize as || ;|| = 1/v/2; otherwise, we normalize as ||;| = 1. Then we find
b= T e S amem] 5 oam]
pi€Ho i EH_BH4+ pi€HoDH

writing ¢; = c,,. The energy and its time derivative can then be expressed as follows:

E[y] = Z |Cz"2, EW] = Z 2)\¢|c,'\2.

i €HoODH+ i €HoDH +

3 Restricting the Search for Lyapunov Functions

Recall that the sum-of-squares approach to global stability, introduced by Goulart and
Chernyshenko [8] and carried out by Fuentes et al. [6] for 2-D Couette flow, attempts to
find a cubic polynomial P in N + 1 flow variables (a, ...,an, q) such that the ansatz (3)
yields a Lyapunov function. A primary difficulty is that the space of candidate polynomials
grows with dimension O(N?3), so the resulting sum-of-squares problem is large even for
relatively small V. The problem size is a substantial obstacle for analysis as well; even if
we were to fix a set of N + 1 flow variables, it is not clear a priori which of the possible
quartic polynomials provides a workable ansatz for our Lyapunov function.

Here, we leverage the symmetries of 2-D Couette flow to reduce the problem size. The
ansatz we arrive at will aid the analysis that follows, but—as we discuss in Section 6—such a
reduction may also yield a substantial computational benefit for a sum-of-squares approach
to the problem.

Recall the following classical result:

Lemma 1. Suppose the dynamical system (1) is equivariant® under the continuous, unitary
action of a compact group G on L*(Q;R), and suppose a Lyapunov function V exists in the
sense of Definition 1.1. Then a Lyapunov function Vi exists such that Vyo g = Vi for any
geQqG.

The lemma follows from considering the properties of the averaged functional

Volo] = /G Vig -] du(g).

3A dynamical system & = f(z) on a Hilbert space H is equivariant under the action of a group G if
g-f(x)=f(g-x) forall g € G and all x € H.
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where p is the unique normalized Haar measure on G [5]. It is proved in a finite-dimensional
setting, for instance, in the thesis of Oeri [19], but the infinite-dimensional proof is straight-
forward. In our context, this lemma can be written more explicitly as follows:

Lemma 2. Fiz a complete basis &; € Hy for each k € Z, where {_; = & and where
the k = 0 modes &y; are each chosen to be even or odd. Write ay; = ag.;- If a quartic
Lyapunov function exists for 2-D Couette flow with a given domain length and Reynolds
number, and it is non-degenerate in the sense that

VY] > || VY[[* + rol| V|2

for some r1,r9 > 0 and all ¢ € H, then it can be chosen to have the form

E’ b k —_
VY] = Flp] + E Bij? "agiGm jan i + E Ajjak iag 5,
i?j’k

for appropriate real values ijfql?’n and Afj, and where F[] is either the squared energy

E[)?, the squared enstrophy Z[))? = ||C||*, the product E[)]Z[1)], or the hyper-enstrophy

Za[] = ||IC3||2. Moreover, Afj is bounded, symmetric, and positive definite for each k, and
B?j’;n’_m, Agj, and B?J?g’o are nonzero only when the (real) modes &y ;, &o,i0.5, and &o.i€0, ;€0 k

are even in y, respectively.

Remark. Here and below, we say that a functional F[¢] is a ‘polynomial’ in ¢ if it can be
decomposed as

for some N > 0, where F} is j-multilinear in each of its arguments. We say that F' is
‘quartic’ if it is a polynomial with N = 4.

Proof. There are several claims made by this theorem. First, we claim that the leading
term must be given by E?, Z2, EZ, or Z4. Indeed, it is clear that, to avoid V[z/;] acquiring
fifth-order terms in the time derivative, any quartic term in V[¢)] must be invariant under
nonlinear advection, i.e., it must be an invariant of the Euler equation

GH{v,¢}=0,  (=V.

By considering the Hamiltonian structure of this equation, it can be shown that the only
Euler invariants in our geometry are as follows [20]:

1. The energy E = 3 [ |V¢|2
2. The streamwise momentum P, = [ 1,,.

3. The Casimir invariants Cy = [ f(¢), parameterized by differentiable functions f of
the vorticity ¢ = V2.

Any leading term proportional to P, vanishes along a codimension-1 subspace of solutions,
violating the hypothesis that V[¢] > r1[[V4||* for some 71 > 0. One can similarly rule out
the invariants Cy with f(¢) = ¢ or f(¢) = ¢3, leaving only those claimed in the lemma.
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m 72 73, M4 715, Tl6

Figure 2: The six modes utilized in the simplest Lyapunov functions identified by Fuentes
et al. [6] for 2-D plane Couette flow, counting the L/2-translates of the (1,%) modes. Re-
produced from Fuentes et al. with permission.

Moving on to lower-order terms, we claim that A and B can only couple together modes
that add to zero, that their elements are real, and that A?j and B?j’go can only couple
together modes with appropriate parity. The first follows from considering Lemma 1 in
light of the S action ¢(z,y) — ¢(z —z0,y). The second follows likewise from the Zs action
o(x,y) — ¢(—x, —y), noting that ay; — aj, for £ # 0 under the latter action.

Third, we claim that Afj is bounded, symmetric, and positive definite for any k. Bound-
edness is a requirement for the Lyapunov function itself to be locally bounded. The Her-
mitian property (and thus symmetry, since all values are real) can be guaranteed without
loss of generality. Positive definiteness is required in order that V[¢] > r3||V||? for some
ro > 0. O

To narrow the space of candidate Lyapunov functions further, we proceed by investigat-
ing those found by Fuentes et al. [6]. We will use the notation n; for the energy eigenmodes
appearing in these candidate functionals, and a; = a,, for the corresponding coefficients;
we reserve the notation ¢; and ¢; of the preceding section for the objects appearing in our
final ansatz.

We parameterize energy eigenmodes by pairs (k,n) of horizontal and vertical wavenum-
bers. The simplest Lyapunov functions identified by Fuentes et al. involve six real modes,
depicted in Fig. 2:

e The (0,0) mode 71, which is odd in the wall-normal coordinate y.

e The (0,1) mode 72, which is even in y.

e The (1,1) mode and its L/2-translate, n3 and 74, which are energy unstable.
(1,2)

e The (1,2) mode and its L/2-translate, 5 and 7g, which are energy stable.

In all that follows, we are interested in Reynolds numbers for which only a single mode
(along with its L/2-translate) is energy unstable. As before, we normalize such that ||| =
el = 1/v2 and [[ns]| = [[nall = [[ns]| = lnsll = 1. We decompose the streamfunction as
follows:

6
= apm+ 1,
k=1
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with ay = a,, € R. Following Lemma 2, one can see that any quartic Lyapunov function
depending only on a; and ||7’|| can be written as

V= E? + ag(le + wga% + wga% + BijaCj) + (w4E + w5a% + wga% + AijaCj), (12)

where wy € R are real weights, ¢; = a3 + ia4, co = a5 + iag, and A and B are 2 x 2
Hermitian matrices. To proceed further, we note that, at a minimum, we need one off-
diagonal quadratic term to ensure that V is not positive in the n3 4 directions near zero,
and one cubic term to ensure the same for large arguments. The simplest such ansatz
compatible with (12) is as follows; we write

1 . 1 )
0o = 12, Y1 = ﬁ(nsﬂm)? o = ﬁ(nsﬂnﬁ),

noting that w9 € Ho and @1, s € Hi, and we define

[e%

VIU) = B(E + 2v000 + 1) + Aysicy, A= ( a) , (13)

where ¢; = (@5, %) and where 79,71, € R are free parameters. Of course, this expression
is simply a restatement of the functional (6) in our refined notation. Figure 3 confirms
numerically that the reduced ansatz (13) yields the same improved estimates of Re¢ as the
full sum-of-squares algorithm employed by Fuentes et al. [6], in the six mode case.

4 Proving Lyapunov’s Criteria

Now that we have identified the simple ansatz (13) and confirmed numerically that it yields
a substantial improvement over the energy method, we aim to prove quasi-analytically that
it is truly a Lyapunov function. Our proof will make use of a sum-of-squares procedure on
a single polynomial in the six variables (c;, gi), but we are working at present to replace
this step with an analytic bound. Below, if F' and G are nonlinear functionals with F[0] =
G[0] = 0, we adopt the notation

Fly] = G[Y]

to mean that F'[¢)] — G[¢)] > 0 for all nonzero ¢. This notion reduces to positive-definiteness
when both are quadratic forms.

Let p_1 =7 and ¢_o = 3, and let H, C H be the complex span of ¢1; and pio. We
decompose the streamfunction as follows:

¢(l’,y,t) = 200(t)(100(y) + Z Cn(t)(pn(xay) + ¢O(y7t) + ¢1(xvyvt) + ¢2($a Y, t)’
0<|n|<2

where we have split the tail of 1 into real components
$o € Ho, ¢1 € (H1+H-1) \ Ho, $2 € H\ (Ho +Hi+H-1), (14)

all orthogonal to ¢g + H.. We write
Yo =20000+ > aPu,  Up =00+ 1+ éo

0<|n|<2
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Figure 3: Comparison of improved bounds on Reg for 2-D plane Couette flow with box
length L. The pink curve corresponds to the results reported by Fuentes et al. [6] for
Lyapunov functions involving six energy modes, and the blue corresponds to the same
ansatz but with tighter analytical bounds on V. The red curve corresponds to the restricted
ansatz (13) developed here. We see that the restricted ansatz verifies global stability at
(approximately) the same Reynolds numbers as a fully generic Lyapunov function depending
on the same six modes, indicating that our choice of ansatz is well justified.
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so that 1 = 1, + 1¢p. With this notation, the energy can be written as

2 2
Bl =Y leal + 3 a2,
n=0 n=0

|2, and its derivative satisfies

writing ¢, = %HV@Z)n

2 2 2 2
EWp] = 2Xalenl> + D (Edn, dn) <D 2\alenl® + > 2607, (15)
n=0 n=0 n=0 n=0
with x,, the leading eigenvalues of £ in the subspaces marked out by (14).

Positivity of the Lyapunov Function

Positivity of the Lyapunov function (13) can be guaranteed by enforcing only a simple
condition on 7y, 71, and «. Indeed, we see that V[¢)] can only be positive for ¢ o ¢q if

cg + 2v9co0+ 71 >0

for all ¢y € R, or equivalently, if y; > ’yg. In this case, we find

VIl > (1 = B)E + Ayties = (1 = 8) (G + D aF) + @y (71 ~% o« ) (Cl> ,

G 71— 7(2) C2
which is necessarily positive if
n =1 > lal. (16)

Note that the requirements on the asymptotic behavior of V' in Definition 1.1 are satisfied
automatically, because V is a polynomial in .

Negativity of the Derivative

We differentiate the ansatz (13) as follows,

VY] = E (2E + 2y0c0 +m) + 290 Eéo + 2 Re Agjeic.
Expanding and employing (15), we find

VY] < 2(Xoleol® + K507 (2E + 270co + 1) + E(4fer]? + 4Xz]ea|? + 270(0, ¥, ()
+ dyoco(Aler |2 + Aaleal?) 4+ 20 oco E + 2 Re A;E (@5, 1, C) (17)
+ 7121 [e1? + 2Xzle2|?) + 2Re AgEi(Ajes + (y0: Vo5, Vb)).

With the exception of the first term (which we return to shortly), this expression is orga-
nized line-by-line into quartic, cubic, and quadratic components, respectively. In order to
demonstrate that V' is a Lyapunov functional for our system, we need to show that V[i)] > 0

and V[w] < 0 for all non-zero v; requirements on the asymptotic behavior of V' and V are
then automatic, since both are polynomial in .
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We decompose V into several components:
V=Vot+Vy+ Ve,
Va = 2(olcol® + K563 (2E + 2700 + 1) + E(4A1|er|* + 4hafeal? + 290 (90, Ya; V1))

+ dyoco(Ailer? + Aaleal?) + 290 0co E + 2 Re A6 (05, ay Vba)
+ ’)/1(2/\1’61’2 + 2)\2‘62’2) + 2Re Aija(AjCj + <y8ng0j, Vi/]a>),

Vi = 290 E {0, Uy, V2p) + 2 Re Ay (0, ¥y, V) + 2Re AiiE (y0: Vo, Vi), (19)

ch = Q’YOE(<§00a ¢a7 V2¢b> + <S007 wba v2¢a>)
+ 2 Re A’L]E(<@ja wav v2¢b> + <§0]; Q,Z)b, v2¢a>)'
The first of these expressions is already a quartic polynomial in the six variables (cj, qx);

we turn now to the problem of bounding V;, and V, by similar expressions, so we can ensure
that V < 0 using a sum-of-squares optimization in CS.

(20)

Bounding Tail Terms

Here, we bound the terms appearing in (19). First, note that the triple product (9) satisfies
{a,b,V?c) + (a,c, V?b) = —(Va,b,Ve) — (Va,c, Vb) = (Vb-Q, - Vc)

for any scalar fields a, b, and ¢, where

@ (an ey "nll)
In particular, we find
[{a,b, V2¢) + {a, ¢, V2b)| < [|Qallop I VBII[Vell, (21)
where ||Vb|| = ((Vb, Vb))'/? denotes the H' norm and

|Qallop = max||Qa(z, 9)llop.2x2

)

denotes the operator norm of @, on H'. With this in mind, we write

(0, U, V2) = (V14 - Quy - Vo1,4) + (Vo1 - Qpg - Vo 1),

where ¢; ;- denotes the component of ¢; with positive streamwise wavenumber. Of course,

we can write g explicitly as
~ cos(2my) +1

wo(y) = W7
so we find
27 cos(2my)
Qo = VI <cos(27ry) > ’
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Applying (21) yields the bound

{00, U, V)| < 20 L7V2(¢2 + 3),

noting that ¢? = |V, 1| = || V|| for i = 1,2.
Alternatively, one can improve this bound slightly as follows. Explicitly writing

(Véjs - Qoo - Vja) = 2mijkL™"*{cos(2my) (65, 0y b — 0j.+0ys+))s

we can maximize this expression over ‘H; by solving the appropriate Euler-Lagrange equa-
tions:

2mijkL "2 (cos(2my)dydj 4 + Oylcos(2my) 1)) = o ((jk)? — 0;) b+
For L = m/2, for instance, this yields the bound
(o, 9, V240)| < 2.774g] + 4.8783,

which compares favorably to the bound |(po, s, V21p)| < 4.878(¢3 + ¢3) we would have
found from (21).
To bound the next term in (19), we note that

(0,06, V1) = (Vo - Qu, - V1) + (Vo - Qu, - V1) +2(Va - Qp, - Vo 1),

removing terms for which the streamwise wavenumbers of the integrands do not sum to
zero. Using (21) once again yields

|2 Re Aiji{p;, o, V20)| < 20a(lerl|Qps llop + le2ll|Qpy llop) (V2a0a1 + a1d2 + 243),
noting that |[Vey||? = 2¢3. Applying Young’s inequality, we recover
12 ReAi;ci (@), Yo, V2¢b>‘

2 2

€1 c1 €2 C2

<2al (| 5+ lal” 1Qpsllop + | = + leal® 1Qer llop ) (V2q0q1 + q102 + 243),
2 2e1 2 2e9

for any €1,e9 > 0.
Finally, we can bound the final term of (19) as follows:

|2Re AT (y0: Vi, Vi) | < 2[(Aijciy0. Ve, Vo )|
< 2q1 | AijCiy0: Vil

1 o
< ehai + A Ake(y0: V9, Y0V BR)Cicy
0
al ~ ~ S
< eolalgt + LDAijAkZ<y8wVS0j7 YO0 Vor)Cicy,

writing A = A/|a| and gy = €0/l This change of variables ensures that |«| appears
only linearly in our Lyapunov function for each fixed ey > 0, which allows |«| to be an
optimization parameter in the sum-of-squares procedure we will use.
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Bounding Mixed Terms
We now bound the terms appearing in (20). The first of these is found as
‘(@07 ¢a7 v2¢b> + <§005 Q;Dba v2¢a>’ == |<v¢a . QSOO ' v¢1>|

= [2Re((c1VPT + 2VE2) - Qpp - V1,4)|
< 2/[(e1 VL + 2V Ea) - Quollgn

1 — S
< g<Q4po -Vj, Qp - VORITiCr + €347 -
For the second term, we first calculate

(Vg - Qo - Viby) = c(V ek - Qo - Voo, ) + c(VPE - Qo - Vo) + 2c0(Vpo - Qp; - Vr1,-).
Then we find
12 Re A€ ({9, Ya, Vb)) + (05,1, VZ1a))| < 2|43 (Viba - Qp, - V)]
< 2lallerllex] (|Qps - Verllga + 1Qp, - VEEIIV240) + 4lal|erllcol|Qyp, - Virolla
+ 2|l |ealler | (1|Qpy - Veorllaz + 1Qu - VERIIV2q0) + 4lallealcol|Qy, - Veollgy
< 2laller*(1Qys - Veprllgz + 1Qy, - VETIV240)
+ 2] lea*(|Quy - Vepallgz + 1Qy, - VEallv240)
+ 2laller]le2| [(1Qp, - Vorll + [1Qps, - Vi) g2

+ (1Qp, - V&I + 1 Qp, - V&) V240)]
+ 4laller|[eol[| @y, - Vollqr + 4lalleallcol|Qy, - Vioollqr,

which we pair with the estimates
1 €5 1 €6
le1lfeol < 275\01\2 + 5|Co|2, |c2l[co| < 2T:6|02|2 + 5|00|27

1 €4
lc1]|ea] < 274|01|2 + 5|02|2,

to complete our program.

Sum of Squares Optimization

The preceding analysis yields the following polynomial bound on V = V[l/}]
VW] < Va(Cj, Qk) + Pb(cja Qk) + Pc(cj7Qk)7
where Va is given by (18), P, collects our bounds on V},,

B aof ~ ~ S
B, =27ywEL 1/2((]% + q%) + 50|Oz’q% + eo‘AijAkMyaxV(pj, yaIV<pk>Cng

€1 |Cl|2 €9 |62|2
+2lal ( {5+ 5 ) 1Qellop + | 5 + 5 ) 1Qeillop | (V20001 + q102 + 243),
2 2e1 2 2e9
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and P. collects our bounds on VC
I = N\ 2
Pe=2yE %<Q‘P° Vi, Qu - VPr)Tjcr + £3¢7
+ 2]l |1 (1Qps - Verrllgz + 1Qy, - V1 [v240)
+2allea*([|Qy, - Vipallgz + | Qp, - VE2lv240)

1 3
#2lal (gl + Sleal) (10 - Vel + Qs - Tial
+ (1Q¢: - V&l + 11Q, - VP311)V240)]

1 2, 85, 12

#alol (gl + o) 10y, - Vol
1 6

+dlal (leaf + Sl ) 12 - Vol
6 2

Though complicated, P, and P, are polynomials in the six variables (c;, g;), and so a sum-
of-squares procedure can ensure that Pt = Va + P, + P. < 0. We carry this out as follows.
First, we fix a box length L and a Reynolds number Re > Rep that we would like to show
corresponds to a globally stable 2-D Couette flow. Second, we fix parameters eg, ..., > 0,
such that P, depends on the remaining parameters |a|,7p,71 € R only linearly?; linear
parameters can be incorporated into the sum-of-squares procedure at minimal cost. We
then carry out a nonlinear optimization over eight parameters:

Maximize r € R over (eo, ...,g6) € R® and (|a|,y0,71) € R® such that
jal >0, V(e ar) > 7B Valej,ar) + Polej ar) + Pe(ej, ar) < —rE?.

If the resulting r is positive, we deduce that V[¢] is a Lyapunov function and thus that
2-D Couette flow is globally stable at the given box length and Reynolds number. For
instance, at the box length L = 1.659 at which Orr [21] found Rep = 177.2, we deduce that
(6) is a Lyapunov functional for Re = 195.8 with parameters given by (7).

5 Interpretation of the Lyapunov Function

The goal of the present section is to identify, mathematically and physically, how the four
terms of (13) conspire to control the transient energy growth that arises for Re > Rep.
There are four distinct terms in our ansatz (13) for V[¢], which enter into the time derivative

4The sign of a can be identified a priori; following Section 5, one sees that o must have the same sign as
the triple product p = (¥, Voo, V1) € R. Without loss of generality, we fix 1 > 0 and thus a > 0.
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V1] as follows:

V = E? 4+ 2ycoE + Aiicici +E

/NN N -

V = (2EF + quartic) + (cubic) 4 (quadratic 4+ v, E)
\“,_./

-~

Vi Vs Va

Recall that the total energy FE[¢)] is unmodified by nonlinear advection, so only linear
terms—diffusion and advection by the background flow—appear in E; these terms are
indicated by the black arrows in (22). In our parameter regime, E (or equivalently, £) has
a single positive eigenvalue along the v direction, and is otherwise negative definite.

There are only two terms in V that can counteract the transient energy growth cor-
responding to this positive eigenvalue, indicated by the blue arrows in (22): the linear
components that arise in differentiating A;;¢;c; and the nonlinear components that arise in
differentiating 2ypcoE. As we proved in the preceding section, so long as these terms can
make both V; and Vs ‘sufficiently’ negative definite, they can also control the (necessar-
ily sign-indefinite) cubic terms of V3, indicated by the red arrows in (22). We discuss the
mechanics of the quadratic and quartic terms in turn below.

Quadratic Terms

The quadratic component of V accounts only for linear contributions of the time derivative.
Consequently, so long as the quadratic form

Q = Ajjcic; + mE (23)
is monotonically decreasing under the linearized Navier—Stokes equations

Ct + {‘Ij, C} = VV2C7

the quadratic component of V will be negative definite.
In this direction, we note that, for any stable linear system, there exists a reweighted en-
ergy functional that always monotonically decreases. The following result is well-known [2]:

Lemma 3. Consider a linear differential equation © = Lx on a Hilbert space H, with the
domain dom(L) dense in H, and suppose it admits a Co-semigroup T(t) : x(0) — z(t). If
the system is exponentially stable, i.e., | T(t)|| < Ce=** for some C,a > 0 and all t > 0,
then there exists a bounded, quadratic Lyapunov function Q).

Proof. Let (-,-) be the inner product on H, and consider the map

Qlz] = /O T (), MT(F)z) dr
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for any bounded, self-adjoint M > 0. The integral in the expression above is well-defined
as a consequence of exponential stability, and it is easy to verify that Q[z] > 0. We find

Olz] = /0 () L, MT (7)) + (T(r)z, MT(7) L) dr

_ /0 T (LT (), MT(F)z) + (T(7)z, MIT (7)) dr

- / Ty, My ar = M
0

for any = € dom(L), so that Q[z] < 0 on #. The result follows. O

In short, the quadratic component of our quartic Lyapunov function can always be
constructed, in principle, and one can interpret this fact as expressing the linear stability of
the system. Moreover, the construction in Lemma 3 is quite flexible, so it is not surprising
that one can form a viable quadratic form Q[v¢] by reweighting only the components of E[t]
along a finite number of energy modes.

Our own quadratic term works as follows. First, we write

H= <\Ijv VQOQ’ vﬁ%

noting that the normalization (10) ensures that u € R. We calculate the quadratic compo-
nent V5 of V' as follows:

. ~ . c1 f 1AL — 20 Ck(/\l + )\2) Cc1 .

Vo = Q[¢] + (tail) = <02> (a(Al o) e+ 204#) <02> + (tail), (24)
where ‘tail’ terms are those that are linear or quadratic in ¢, € H \ H,. Tail terms are
controlled by ensuring that @ [¢] is sufficiently negative definite, so we ignore them here.

Immediately, we see that the trace of @[zp] is negative if and only if A} < —Ag. At the
box length L = 1.659 that minimizes Reg, we have Ay < —Ag for all Re < 402.8, so this
restriction is not a problem at present. So long as this is satisfied and

~AiAg < 2,

which (roughly) verifies that ¢1 and g interact sufficiently strongly (and appears to be
satisfied for all parameters), one can ensure Q[¢] < 0 by selecting

N A2 — A
pod+ (A A2)?

Quartic Terms
The quartic component Vj of V takes the following form:
Vi =2EE + 270E(p0, 9, ()

=2E((1, ¥,¢) — v|[CII* + v0(®0,, ) (25)
= 2E<¢7 v — Y0%o, C> - 2VE||C||2
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v Yoo ¥ — Y000

Figure 4: Introducing a cubic term into V]| allows us to counteract the effect of energy
instability in the quartic term Vj of V[¢/], as in (25).

Already, one can see how our ansatz (13) allows us to counteract the effect of energy
instability in V4. Namely, if vop0 is close to U, the first term of (25) is small, and the
full expression is close to —2vE||¢||*> < 0. We depict this effect in Fig. 4 with 9 = 1/4.
Moreover, we see that the remaining field W — ppg is large only near the edges of the
domain, where the velocity itself is small; consequently, the full integral (¢, ¥ — vyp0, () is
reduced greatly.

Physically, one can understand this effect as follows. Up to a constant, the expression

Eiot[Y] = E[Y] + cy = ElYp] — (¥, v2¢>

represents the total kinetic energy of the fluid, including the background flow ¥. Of course,
advection can move energy between the two terms by tilting the flow toward or away from
the background shear profile, but it cannot modify the total. As such,

Eiot[9)] = —v(¥ + ¢, V')

carries only viscous terms: a negative-definite quadratic term corresponding to viscous
damping, and a linear term corresponding to vorticity generation at the boundary.

By choosing ygcg close to ¥, we offset the increase of fluctuation energy by explicitly
subtracting off the energy removed from the interaction between ¥ and 1. This procedure
introduces positive terms corresponding to viscous generation of vorticity, but not at the
leading order in .

A General Schematic for Quartic Lyapunov Functions

We have now seen how the quadratic and quartic components of our Lyapunov function
are controlled by the physics of the flow: the quadratic component reweights the energy
to leverage the flow’s linear stability, and the quartic component balances transient growth
of the fluctuation energy by incorporating the associated decay of other energy reservoirs.
With these principles in mind, a natural generalization of the functional (6) is

V[u] = B[u]? + 2E[u)(V, u) + Q[u], (26)
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where V is a vector field close to the background flow U, with the same symmetries, and
Q[u] is a Lyapunov function for the linearized Navier—Stokes equations at u = 0. In our
case, U = y# and V = (y9/v/2) sin(y)2, and Q[u] = 1 E[u] + A;;¢;c; is an energy functional
perturbed along the directions of two energy modes u; and us. We note that an alternate
family of admissible functionals @ is constructed in Lemma 3. For flows with non-uniform
internal energy, the cubic term of (26) would have to be modified to account for other
reservoirs of energy.

6 Discussion and Perspectives

We have here proposed an interpretable, quasi-analytical approach to prove the global
stability of 2-D plane Couette flow beyond the energy Reynolds number Rep = 177.2. To
this end, we have introduced a family (13) of candidate Lyapunov functions, quartic in the
velocity field, with four total terms and three free parameters to be chosen dependent on
the Reynolds number and box length. We used such a Lyapunov function to show, for
instance, that 2-D plane Couette flow is stable at Re = 195.8 at the box length L = 1.659
that minimizes Reg. Moreover, we illustrated how the four terms of our Lyapunov function
conspire to control the transient energy growth that arises beyond Reg, and we proposed
a more general schematic for quartic Lyapunov functions in (26).

The present work offers a first step toward a transparent, flexible approach to im-
proving global stability bounds in more general systems. Moreover, we believe that it
should offer a tangible computational benefit for the sum-of-squares approach of Goulart
and Chernyshenko [8]. For one, a costly (and complicated) algorithmic element in the work
of Fuentes et al. [6] was reducing the space of admissible polynomials (the state space) to ac-
count for system symmetries. This translational symmetry was implemented as a four-point
symmetry (sending 73 +— n4 — —n3 — —1)4, in the notation of Section 3) in the YALMIP
SDP solver [15], which pre-processes the polynomial coefficient matrix to ensure that only
symmetric terms arise in the final result. The 180° rotational symmetry of Couette flow
was not implemented, leaving the state space twice as large as necessary. By contrast, as we
saw in Section 3, both symmetries are folded into our revised notation, yielding a smaller,
complex sum-of-squares problem and eliminating the need for pre-processing. Finally, if the
ansatz (26) is generally sufficient, as indicated by our numerical experiments in Fig. 3 and
our physical arguments in Section 5, one can eliminate all but a small number of dimensions
of the state space.

We are currently working on adapting the present results in a few directions. First, we
aim to achieve a fully-analytical proof of global stability for 2-D plane Couette flow beyond
the energy threshold, replacing the remaining sum-of-squares procedure with an analytical
bound on V. Second, we are working on leveraging the insights introduced in the present
work to greatly simplify and improve the numerical sum-of-squares calculation, in line with
our comments above. Finally, we are working on connecting the present stability results
with appropriate continuity results to yield a computer-assisted proof of global stability
over a continuous range of Reynolds numbers and box lengths.
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Figure 5: The bifurcation diagram associated to the toy model (27), with three values of
the parameter R highlighted: Rp = v/2 is the largest value at which the (analogue) energy
method proves global stability, R4 = 4.34 is the largest value at which a quartic Lyapunov
function exists, and Rg = 5.46 is the value at which a nonzero stationary solution appears.
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Appendix

A Toy Model for Quartic Lyapunov Function

We introduce a simple toy model to illustrate how a quartic Lyapunov function can yield
an improved bound on Reg. Consider the following 3-D ODE:

1

:i::—ﬁx—ky—z(x—}—y)
1

=ty ey 27)
1

é:—ﬁz+y+(x+y)2,

where R > 0. Comparing with the shear flow we focus on above, z might represent a k =0
(i.e., streamwise-constant) wave mode, = and y might represent distinct £ = 1 modes, and
R might represent the Reynolds number of the system. Defining the energy accordingly as
E = 1(2? + y* + 2?), we have

. 2
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which remains quadratic in the ‘flow’ variables (z,y, z). Young’s inequality demonstrates
that

. 2 1 €1 +é2 1
E<- 2Py g2 %22, - 2
STRY TN T Ty VTt
for any e1,e2 > 0. Setting e1 = €2 = 1/4/2, one finds
B<(2-v3)E
= R )

so we see that the (analogue) energy method proves global stability for R < Rp = v/2.
On the other hand, one can verify numerically that the following quartic Lyapunov
function yields global stability up to Ry = 4.34 > Rg:
V = E? +0.0252% + 0.53y” + 0.0932° — 0.048zz — 0.057yz — 0.11zy
+ 0.05922 4 0.04222%y + 0.762y° + 0.21y> — 0.192%2
+0.16zyz — 0.44y%z + 0.088z2% + 0.31yz% — 0.262°.
This result can likely be proven with analytic methods, but we do not do so here. By

comparison, the first nonzero stationary solution to (27) appears at Rg = 5.46. We depict
the full bifurcation diagram in Fig. 5.
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Baroclinic Instability as a Driver of Polar Vortices on Giant
Planets

Lin Yao

August 21, 2025

1 Introduction

The polar regions of Jupiter and Saturn exhibit strikingly distinct dynamic features. NASA’s
Juno mission [22] revealed that Jupiter’s poles host stable clusters of cyclones: a central
cyclone encircled by eight circumpolar cyclones in the north and five in the south, forming
persistent polygonal patterns often termed “vortex crystals” [1]. In contrast, observations
from NASA’s Cassini mission [21] show that Saturn features a single, massive vortex at
each pole, with the northern vortex notably enclosed by a hexagonal jet stream [4] (Fig. 1).
This dichotomy poses a fundamental question: what physical mechanisms are responsible
for the formation and persistence of these distinct, highly organized vortex structures?

Figure 1: The distinct polar vortex structures of Jupiter and Saturn. (Left) Jupiter’s
south pole, as observed by the Juno mission [22], displaying a central cyclone surrounded
by five circumpolar cyclones arranged in a stable pentagonal pattern. (Right) Saturn’s
north pole, featuring the prominent hexagonal jet stream enclosing a massive polar vortex.
This composite image from the Cassini mission [21] combines data from ultraviolet to in-
frared wavelengths. Image Credits: (Left) NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher
Hall/Gervasio Robles; (Right) NASA/JPL-Caltech/SSI/Hampton University.

The energy required to drive the atmospheric dynamics on giant planets originates from
two primary sources, as illustrated by Jupiter’s energy budget (Fig. 2). Firstly, the planet
radiates significantly more energy than it receives from the sun, indicating the existence
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of an internal heat flux that can drive convection from the deep interior [19]. The second
source is differential solar heating, where the equator-to-pole temperature gradient drives
large-scale circulation and generates available potential energy that can be released through
baroclinic instability to form eddies and jets [11, 15, 20]. These two energy sources have
similar magnitudes based on observations from the Juno mission.

Figure 2: Schematic of Jupiter’s planetary energy budget. The planet emits about two times
more thermal energy (14.098 # 0.031 W/m?) than what is absorbed from solar radiation
(6.613 + 0.160 W/m?), indicating the presence of an internal heat source [18, 19]. This
budget highlights the two primary drivers of atmospheric dynamics: 1) internal heat flux,
which powers deep moist convection, and 2) differential solar heating, which generates
available potential energy for baroclinic eddies. Image credit: NASA /JunoCam.

To date, it remains unclear whether the polar vortices on Saturn and Jupiter are gen-
erated locally (e.g., [28, 29]) or form at lower latitudes and subsequently migrate to the
poles [9, 17, 26]. The migration hypothesis is supported by findings that vortices can ob-
tain an anticyclonic shielding layer during their journey [9, 14, 17], which could keep them
separated upon reaching the poles [17]. If, however, the vortices are generated locally, it is
an open question whether they are driven by convection or by baroclinic instability. The
local formation mechanism driven by convection has been investigated extensively using
highly idealized configurations, such as shallow water and quasi-geostrophic (QG) systems
[5, 10, 23, 24, 27-29]. In these models, convective processes are usually unresolved. They
are represented by small-scale randomized perturbations in the initial condition or dur-
ing the integration of the model, mimicking convection (e.g., [28, 29]). The subsequent
development of the randomized perturbations is similar to the inverse energy cascade of
two-dimensional (2D) turbulence, where small vortices merge and grow [3, 16]. This growth
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continues until the vortex size is halted by processes related to dissipation, planetary rota-
tion, or the constraints of polar geometry. As summarized by [28], the final fluid pattern
can vary from turbulent chaos, to a disorganized ”vortex soup,” to a single polar vortex
with a surrounding jet, and to stable organized vortex crystals, depending on the specific
model parameters [5, 10, 23, 24, 27-29]. Beyond idealized models, in recent years, full 3D
large eddy simulations have shown that Jupiter-like vortices can be realized in a 3D model
with resolved convection [7, 8].

However, the role of the other major energy source, i.e., differential solar heating and
the resulting baroclinic instability, has yet to be investigated. One may argue that the
baroclinic eddies are fundamental to the energy cycle of planetary atmospheres [12, 25, 30],
yet their potential to organize into the specific, stable configurations seen on Jupiter and
Saturn has not been systematically explored.

This study aims to fill that gap. We investigate whether baroclinic instability, acting
alone, is a sufficient mechanism to generate the diverse range of polar vortex regimes ob-
served on the giant planets. Using an idealized two-layer model (Section 2), we explore
a wide nondimensional parameter space governed by the strength of the baroclinic shear
and atmospheric drag. We first analyze the system’s linear instability (Section 3). Then,
by simulating the nonlinear evolution of baroclinic eddies (Section 4), we seek to deter-
mine whether different regimes, analogous to the vortex crystals of Jupiter and the stable
polygonal jet of Saturn, emerge naturally from these fundamental fluid dynamics.

2 A Two-Layer QG Model for the Polar Atmosphere on Gi-
ant Planets

We employ a two-layer quasi-geostrophic potential vorticity (QGPV) model on a disk co-
ordinate system to simulate the polar atmosphere of a giant planet (Fig. 3). The model is
confined to a circular domain of radius R and consists of two immiscible, constant-density
layers. The buoyant upper layer (layer 1) has a mean thickness of Hj, and the denser lower
layer (layer 2) has a mean thickness of Hs.

2.1 Background state

The model is formulated on a v-plane, which approximates the variation of the Coriolis
parameter, f, near the pole with a parabolic profile:

f=28Q,sin6 = 29, cos (g — 9) = 20, cos (2) ~ fo— %'yrg, (1)
where €, is the planetary rotation rate, ¢ is the latitude, r is the radial distance from
the pole, a is the planetary radius, fo = 2€2, is the Coriolis parameter at the pole, and
v = — frr|r=0 = 2§ /a”® represents the planetary vorticity curvature at the pole.

The background atmospheric flow is modeled as a solid-body rotation in each layer,
described by the background streamfunction W;:

W= 0, (2)
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Figure 3: A schematic of the two-layer QGPV model. The side view (left) shows the
vertical structure with layers of thickness H; and Hs. The symbols ® and ® represent
opposing azimuthal winds, directed inward (into the page) and outward (out of the page),
respectively. The top view (right) shows the disk of radius R with a planetary rotation fo
and a background fluid angular velocity €2;, i = 1, 2.

where the angular velocity €; for each layer i € {1,2} is given by:

Qz’ = (—1)i+12043_iﬂ. (3)
Here, 2 represents the magnitude of the vertical shear, which drives the baroclinic instabil-
ity. The parameter «; is the fractional thickness of layer i:

H;

S 4
Hy + Hy @)

ay

This setup establishes a background potential vorticity (PV), @;, in each layer:

U3 _; — ¥,
LL%OQ'

(—1)'?

= (-1)"4a3_,0
( ) a3—; + L?laz

Qi = V2\If1 + ) 1€ {172}7 (5)

where Lg = \/¢'(H1 + H3)/ fo is the Rossby radius of deformation, with ¢' = g(p2 — p1)/p1-

2.2 Governing equations
The evolution of the PV anomaly, ¢;, in each layer is governed by:

0q;
%+J(Wi+wiaQi+Qi+f) = Fs — (g + Qi) + vV, (6)

where J(A, B) = %(%g—g — %%—f) is the Jacobian operator in polar coordinates. The
terms on the right-hand side represent sources and sinks: Fj is a forcing term related to
solar radiation, —u(g; + Q;) is a linear (Rayleigh) drag that damps the total PV, and vVg;

is a lateral hyperviscosity included for numerical stability.
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The PV anomaly, g;, is related to the streamfunction anomaly, ¢;, through the inversion
equation:
VY3—i — i

2
g = Vi + %o, (7)

To maintain the background state against dissipation, the system is forced by relaxing the
PV field toward the background state, Q);. We define the forcing term as:

Fs = MQ@'- (8)

This specific form of forcing simplifies the governing equation by canceling the drag on
the background state, which is advantageous for linear stability analysis. The governing
equation becomes:

0qi
(7(1 + J(V; + i, g + Qi + f) = —pgi + vV, 9)

2.2.1 Boundary conditions and domain size

The model is solved with the no-penetration boundary condition, where the streamfunction
anomaly at the wall is equal to a constant, which we set to zero:

wi(r = R) = 0. (10)
To ensure mass conservation between the layers, we enforce the global constraint:
/(wl — ) dA =0, (11)
A

where the integral is taken over the entire area A of the disk.

The domain radius R is scaled by the Rhines scale, Lgj, the characteristic length at
which turbulence self-organizes into zonal jets under the influence of the planetary vorticity
gradient. We set the radius as:

Q
R=nLgy = nmv (12)

In our simulations, we set n = 18.6. This value is selected based on trial experiments
and represents a trade-off between two requirements: the domain must be large enough to
contain at least one jet, aiming to isolate interior dynamics from boundary effects, while
remaining computationally tractable. The formulation for Lgy, follows that of [13] and will
be rederived in Section 4.3.

2.3 Nondimensionalization and key parameters

To distill the fundamental dynamics, we nondimensionalize the governing equations. This
procedure reduces the number of free parameters and highlights the key dimensionless
numbers that control the flow regime. We choose the characteristic length to be Lg/v/2,
where Lq denotes the Rossby deformation radius and the factor of /2 is introduced for
convenience in the equal-depth case. We choose the characteristic time scale to be Tyt =
2(yL2)™!, representing the timescale associated with planetary rotation.

Scaling the variables in Eq. (9) with these characteristic scales reveals two primary
nondimensional parameters that govern the system’s physics:
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Nondimensional relaxation (') This parameter is the ratio of the physical relaxation
timescale to the planetary rotation timescale:

L1 pt Relaxation Time

= = . 13
2(vL3)~! Rotation Time (13)

It quantifies the efficiency of both the drag and the restoring force. A large value of !

(corresponding to weak p) implies weak damping, allowing instabilities to grow to large
amplitudes, and weak restoration toward the background state, which permits the induced
jets to partially cancel the background zonal flows and reduce baroclinicity. Conversely, a
small value corresponds to strong damping and strong restoration. The effect of 4! on the
final vortex strength is non-monotonic.

Nondimensional shear (1) This parameter is the ratio of the planetary rotation timescale
to the forcing timescale, which is the inverse of the background baroclinic shear, Q'

2(yLA ) ! Rotation Time

Q= = :
Q- Forcing Time

(14)

Q) measures the strength of the background shear, which provides the kinetic energy for the
growth of vortices and jets via conversion of potential energy. A large value of ) indicates
strong shear that can readily overcome the stabilizing effect of the planetary PV gradient
and the dissipation due to damping, leading to vigorous baroclinic instability and vortex
formation.

Together, 1~
tween forcing () and relaxation (i~!) determines the resulting polar patterns and vortex
intensities. The nondimensional governing equations are:

1 and Q) define the dynamical regime of the model. The competition be-

04; o ad
q (Wi + i, @i+ Qi + f) = —judi + vV, (15a)
~ 29 5 1/13 7 wz
— i 1
Vi + 20, (15b)
U, = (1) az_,Q0i?, (15¢)
. ) . -1 iQ"Q
Qi = (1) a3 O + (L , (15d)
20&1'
. 2fo 1,
=2 Zp2, 1
f=Tm—5 (15¢)

Major variables are listed in Table 1. Henceforth, we omit the circumflex (A) on nondimen-
sional variables in Eq. 15 for notational simplicity, unless stated otherwise.
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Description Defining Equation or Units

Dimensional Variables

T, Radial and azimuthal coordinates m, rad

R Domain radius m

a Planetary radius m

Q, Planetary rotation rate rad s—1

f Coriolis parameter s7!

fo Coriolis parameter at the pole 20,

~y Planetary vorticity gradient at the pole 2Q,/ a®

H; Mean thickness of layer 4 m

v, Background streamfunction in layer ¢ m? s

Wy Perturbation streamfunction in layer ¢ m? s~}

Qi Background PV in layer ¢ s71

Qi Perturbation PV in layer ¢ s~!

Q Background vertical shear magnitude s1

Lg Rossby radius of deformation V9 (H1 + Ha)/ fo

1 Rayleigh drag coefficient (relaxation rate) s1

v Hyperviscosity coefficient m? 7!

V Characteristic barotropic eddy velocity m s

Lgpn Rhines scale m

€ Energy injection/dissipation rate m? s73
Nondimensional Parameters

Q Nondimensional forcing (background shear) 2Q/(vL2)

i Nondimensional relaxation rate 2u/(vL3)

ot Nondimensional relaxation timescale (vL3)/(2u)

a; Fractional thickness of layer i H;/(Hy + Ha)

m Azimuthal (zonal) wavenumber integer

k Radial wavenumber -

c Complex phase speed -

o Growth rate of unstable modes m - Im(c)

Table 1: List of major variables and parameters used in this study. The variables in Eq.
15 are nondimensional; for notational simplicity, the circumflex (-) is omitted from these
variables in later sections.
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3 Linear Stability Analysis

We perform a linear stability analysis to determine the conditions under which the back-
ground flow is subject to baroclinic instability. This analysis reveals whether infinitesimal
perturbations to the background state will grow or decay, with growing modes indicating
an instability that can lead to the formation of coherent vortices.

3.1 Linearized equations and normal modes

We linearize the governing QGPV equation (Eq. 15) around the background state by as-
suming that the perturbation streamfunction 1; and PV anomaly ¢; are small. This process
yields a linearized equation for the PV anomaly (neglecting the numerical viscosity):

0q;
%H(\Pi,qi)ﬂ(wi,@+f)+uqz» = 0. (16)

Expressed in terms of the streamfunction anomaly, this system can be written in matrix
form as:

vi-L L Y 9 [2020 0 vi-L L Y
g )l A T
@rm | ™ o2 g Tap| 0 —2000) | 5L P2oh] |
rQ
+— ™ 0 [ 1] =0.
Do | o | W
L a9
(17)
We seek normal mode solutions to this linear system of the form:
Gi(r,,t) = Re { A (ke o= | (18)

where J,,(kr) is the Bessel function of the first kind of order m, representing the radial
structure. Here, m is the integer zonal (azimuthal) wavenumber, k is the radial wavenumber
determined by the boundary condition J,,(kR) = 0, and ¢ is the complex phase speed. The
real part of ¢ is the wave’s angular propagation speed, while its imaginary part, ¢; = Im(c),
determines the mode’s stability. A mode is unstable if ¢; > 0, and its exponential growth
rate is given by o = mc;.

3.2 The dispersion relation and growth rate

Substituting the normal mode solution into the linearized system (Eq. 17) yields a 2x2
algebraic eigenvalue problem for the perturbation ;:

(B + 500) (¢ = 2000+ £) + 22 41 e Tt Q—igis [%]_O
- 2 1 - 9]
e~ —igt o (k4 555) (c+201Q+i k) — 2L+ 1] [¢2
(19)

For a non-trivial solution, the determinant of this matrix must be zero. This condition
produces the dispersion relation, a polynomial equation for the complex phase speed c.
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For the simplified case of two layers with equal thickness (a3 = ag = 0.5), the dispersion
relation reduces to a quadratic equation for c:

2
(K* + 2k%) & + [2(1<;2 F1) iR 2k:2)] c
m

——
al
N (20)
B (R 2k?) — 0206 — 2%+ 2202+ )| = 0
1-— - — — =0.
b= Lt 2k?) - (- 20+ L 1)
as
The solutions are given by the quadratic formula:
—as £ VA
c= M where A = a3 — 4ajaz = 4 + 402 (k® — 4k%). (21)

2a1

A is a real value for all ;. The growth rate for any unstable mode is calculated numerically
as 0 = m-Im(c). As shown in Fig. 4, for a given set of parameters, instability occurs over a
finite range of zonal wavenumbers m. The planetary PV gradient (7) stabilizes long waves,
creating a longwave cutoff, while the decoupling of the layers at small scales creates the
shortwave cutoff. The presence of drag (1 > 0) consistently reduces the growth rate for all
unstable modes and can completely stabilize the flow if it is sufficiently strong (Fig. 4b).

Figure 4: Linear Growth Rate Analysis. (a) Growth rate o versus azimuthal wavenumber
m for three radial wavenumbers k (2 = 3.5, u = 1 x 1072). Increasing k shifts the band
of unstable modes toward longer wavelengths (smaller m). (b) The stabilizing effect of
damping (€2 = 3.5). The undamped case (1 = 0, blue) exhibits a range of unstable modes,
while a sufficiently large damping coefficient ( = 1 x 102, orange) stabilizes the system,
making the growth rate negative for most m.

3.3 Necessary condition for instability

An instability occurs if at least one mode has a positive growth rate (¢ > 0, which requires
¢; > 0). To simplify the analysis, we first consider the undamped case (1 = 0), where the
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Figure 5: Linear Instability in the nondimensional Parameter Space. (a) The maximum
growth rate o* (color scale shown in log;, with numeric values in natural units near circles)
and the corresponding most unstable wavenumber m,.x across the parameter space of
forcing € and inverse damping p~!'. The dashed gray line shows the boundary calculated
by Eq. 24, above which baroclinic instability occurs. Stronger forcing (larger 2) increases
both the growth rate and the most unstable wavenumber. Damping (u) reduces the growth
rate but has no effect on mpyax. (b-d) Eigenfunctions for the upper-layer PV anomaly of
the most unstable modes for Q© = 0.6 (Mmax = 55), @ = 1.5 (Mmax = 23), and 2 = 3.5
(Mmmax = 9). Red and blue indicate positive and negative anomalies, respectively. The lower
layer (not shown) has a similar structure but is phase-shifted, leading to a vertical tilt.
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coefficients as and ag are real. In this limit, an instability exists only if the discriminant A
is negative. For p = 0, the necessary condition for instability is A < 0, which becomes:

Q*(k® —4k") +1 <0, (22)

Eq. 22 requires that k* cannot be too small (a longwave cutoff for instability) and k* < 4 (a
shortwave cutoff for instability). This condition also defines a critical forcing strength, Q.,
below which the flow is stable for all wavenumbers. The minimum value of 2 that permits
instability is found by maximizing the term (4k* — k%), which yields:

1

1/2
YT k8> =05 (at k' =2). (23)

Q. = mkln <
This is the minimum nondimensional forcing required to generate baroclinic instability in
the frictionless limit.
When damping is included (p > 0), it reduces the growth rate of all modes and can fully
stabilize the flow. The instability condition becomes more complex, requiring Im(\/Z) >
Im(az). This leads to a critical damping value, p., above which all modes are stable:

20414 1.8\ 1/2m
luczmax{[Q (45" — &%) — 1] } (24)

m,k k4 + 2k2

The stability analysis results are summarized in the nondimensional parameter space
spanned by the nondimensional forcing strength (£2) associated with the background vertical
wind shear and the inverse nondimensional relaxation rate (u~!). Figure 5a maps the
maximum growth rate ¢* and the most unstable zonal wavenumber m,,x across this space.

The analysis reveals that the forcing parameter €0 is the primary determinant of the
flow’s characteristics. Stronger forcing (larger 2) leads to both a larger maximum growth
rate and a larger most unstable wavenumber my,,x. The relaxation parameter p primarily
controls the magnitude of the growth rate, with weaker damping (larger p~!) permitting
faster-growing instabilities, but it does not alter the wavenumber of the most unstable mode.

Although larger €2 values select for larger mmpax, this does not imply that stronger shear
favors smaller vortices. This is because the domain radius R in our model is proportional
to Q (Eq. 12), so the physical wavelength of the most unstable mode remains relatively
consistent. The eigenfunctions corresponding to these modes (Fig. 5b-d) illustrate the
spatial structure of the initial perturbations, providing a template for the pattern of vortices
that emerges from the linear phase of the instability.

4 Nonlinear Numerical Simulations

4.1 Model setup

To investigate the nonlinear evolution of the system beyond the predictions of linear theory,
we conduct a series of numerical simulations using the open-source Dedalus framework
[6]. The simulations solve the nondimensional QGPV equations (Eq. 15) within a disk
domain. The equations are discretized using a spectral method, with Fourier modes in
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the azimuthal direction (¢) and Chebyshev polynomials in the radial direction (r). For
the results presented, the numerical grid employs N, = 800 azimuthal modes and N, =
240 radial modes, corresponding to 1200 azimuthal and 360 radial grid points based on a
dealiasing factor of 3/2. We employ a third-order, four-stage Runge-Kutta scheme (RK443)
for time integration, with an adaptive time step At determined by a Courant-Friedrichs-
Lewy (CFL) condition to ensure numerical stability. Small-scale dissipation is handled
by a linear drag (Rayleigh friction, ) and a hyperviscosity term (—vV?g;) that removes
enstrophy at the grid scale. In Dedalus, linear terms are placed on the left-hand side of the
equation and treated implicitly (except for J(¥;,¢;)), whereas nonlinear terms are placed
on the right-hand side and treated explicitly.

We perform a suite of numerical experiments by systematically varying the two key
nondimensional parameters: the relaxation, u~', and the background shear, . The relax-
ation timescale is varied over six orders of magnitude, y~! € [107%,10%], while the shear
is explored for three representative values, 2 € {0.6,1.5,3.5}. We do not explore Q > 3.5,
as the required computational resolution becomes prohibitive; for such strong shear, the
Rossby deformation radius becomes too small relative to the domain size to be adequately
resolved. All simulations were performed on the Svante High Performance Computing clus-
ter at MIT.

4.2 Simulation results

Figure 6: Snapshots of the barotropic PV anomaly, (¢1+¢2)/2, in the early stage of nonlinear
simulations. The parameter space is defined by the nondimensional background shear, 2
(rows), and the nondimensional relaxation time, p~' (columns). Most simulations are
in the linear phase, with structures similar to the eigenmodes in Fig. 5. Red and blue
indicate positive (cyclonic) and negative (anticyclonic) PV, respectively. The x- and y-axes
in each panel represent nondimensional radius (nondimensionalized by Lg/v/2). The red
lines separate three distinct dynamical regimes shown in Fig. 8.

The temporal evolution of the simulations reveals three distinct phases, illustrated with
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snapshots of the barotropic PV anomaly, (¢1 + ¢2)/2, in Figures 6-8. Initially, the system
undergoes an early, linear growth stage (Fig. 6). During this phase, small-amplitude
anomalies develop into wave-like structures whose dominant wavenumber (m) corresponds
to the fastest-growing eigenmode predicted by linear theory (Fig. 5). As the waves amplify,
the system enters an intermediate, nonlinear stage (Fig. 7), where the waves break and roll
up into coherent eddies. These eddies then migrate meridionally due to the 3 effect: cyclonic
(positive) vortices drift poleward, and anticyclonic (negative) vortices drift equatorward.
Finally, the system settles into a statistically steady state (Fig. 8), which organizes into
one of three distinct dynamical regimes: a weakly nonlinear regime, a vortex regime, or a
jet regime.

Figure 7: Same as Fig. 6, but for snapshots in the intermediate stage. This phase is
characterized by baroclinic eddies migrating poleward (except simulations in the lower left),
which homogenizes the background PV gradient.

4.2.1 I: Weakly nonlinear regime

At short relaxation times (1 ~! < 10°), corresponding to strong damping and rapid restora-
tion toward the background state, the system resides in a weakly nonlinear regime. Here,
strong drag dissipates energy so efficiently that the initial baroclinic instabilities are pre-
vented from growing to large amplitudes. The resulting flow (e.g., Fig. 8, Q = 1.5,y =
1071) is characterized by weak, wave-like structures whose patterns closely resemble the
eigenfunctions of the most unstable modes predicted by linear stability analysis (Fig. 5). In
this state, nonlinear effects act to weaken the mean shear and potential vorticity gradients,
thereby halting the linear growth and maintaining a steady balance between energy input
and dissipation. Consequently, meridional mixing is inefficient, and the background PV
gradient is barely modified (Fig. 9a). At the regime boundary (e.g., Q = 1.5, u~! = 10°
and Q = 0.6, u~! = 10! ), nonlinear effects start to take over.
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Figure 8: Snapshots of the barotropic PV anomaly, (¢1 + ¢2)/2, in the statistically steady
stage. Three distinct dynamical regimes emerge: a weakly nonlinear regime at strong
relaxation (small p~!, lower-left), a vortex regime at intermediate relaxation (middle
panels), and a jet regime at weak relaxation (large u~!, right panels).

4.2.2 1II: Vortex regime

At sufficiently strong shear (e.g., Q2 = 3.5) and slow relaxation, the system transitions into
a vortex-dominated regime. In this state, linearly unstable modes grow to finite amplitude,
allowing nonlinear interactions to become significant. The waves break and roll up into a
field of coherent, isolated vortices (Fig. 8, = 3.5, u=! = 1071). These vortices vigor-
ously mix the potential vorticity, flattening the background PV gradient that sustains them
(Fig. 9b). To further examine this regime, we conducted additional experiments varying
p~t from 1 x 107! to 8 x 1071, As shown in Fig. 10, increasing the relaxation time (i.e.,
weakening the damping) promotes vortex merger and drives a gradual transition toward a
jet-dominated state. A distinct central polar vortex and surrounding jet become increas-
ingly prominent as p~! increases, culminating in a fully organized jet-vortex structure for
pwt=1.

4.2.3 III: Jet regime

For cases with long relaxation times (large p~' > 10'), the system transitions into a jet-
dominated regime (Fig. 8). In this state, the extended lifetime of individual vortices allows
inverse energy cascades to develop [3, 16], whereby smaller eddies merge and organize into
a large-scale, zonally symmetric flow. The structure of the final equilibrium, however,
depends strongly on the background shear Q. At low shear (2 = 0.6), the system organizes
into broad circumpolar zonal jets without forming a coherent polar vortex, resulting in
a stable westerly current dominating the barotropic flow. In contrast, for moderate to
strong shear (2 > 1.5), the inverse cascade leads to the emergence of a strong, persistent
cyclonic vortex centered near the pole and surrounded by a prominent jet. Interestingly,
the surrounding jet appears sharper and more coherent at 2 = 1.5 than at {2 = 3.5, where
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Figure 9: Zonally averaged total potential vorticity (PV) profiles for the three distinct
dynamical regimes at one time step in the statistically steady stage. The total barotropic
PV is defined as ((q1 +¢2)/2), — r?/2. The dashed line in each panel shows the background
PV profile, while the solid line shows the zonally averaged total PV from the simulation
at one time step. (a) In the weakly nonlinear regime, the PV profile closely follows
the background state. (b) In the vortex regime, the PV gradient is flattened within
r = 20, a signature of efficient mixing by coherent vortices. (c) In the jet regime, the
profile develops a ”staircase” structure, with well-mixed regions separated by a sharp step
at r ~ 30 corresponding to a zonal jet that acts as mixing barriers. The strong positive PV
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Figure 10: Transition from the vortex regime to the jet regime, shown in terms of snapshots
of the PV field, as the relaxation time p~! increases for a fixed shear of Q = 3.5. At
strong drag (u~! = 0.1, left), the flow is a disorganized field of vortices. As drag weakens
(moving right), vortices merge, and a central polar vortex begins to emerge (u~' = 0.4).
By p~! = 1.0 (right), the system has fully tiansitioned into an organized state dominated
by a strong, central cyclonic vortex encircled by a jet.
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Figure 11: Comparison of simulation results with observations of Jupiter and Saturn
[21, 22]. (Top) A snapshot of a simulation, visualized in terms of PV, in the jet regime
(2 = 3.5,u~ = 10°, right) qualitatively reproduces the multi-vortex structure observed
at Jupiter’s north pole by Juno (left). (Bottom) A simulation at very weak damping
(2 = 1.5,u~1 = 10% right) successfully generates a stable polygonal jet analogous to
Saturn’s hexagonal jet stream observed by Cassini (left).
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enhanced baroclinicity weakens its structure.

During the simulation at Q = 3.5 and p~' = 10°, a set of parameters within Jupiter’s
range, a short-lived pattern reminiscent of Jupiter’s polar “crystal” structure emerges
(Fig. 11). A particularly striking behavior occurs for 2 = 1.5 under very weak damping
(=t € [103,10%]), where the jet surrounding the polar vortex develops a stable polygonal
pattern—appearing as a pentagon or hexagon (Figs. 8 and 11). In these cases, the central
vortex is frequently displaced from the geometric center of the domain. Such polygonal jets
are famously observed at Saturn’s poles [4] and have been reproduced in both laboratory
experiments and numerical models [2]. They are generally attributed to instabilities and
standing Rossby wave patterns that form along sharp PV gradients within the jet. The
mechanisms controlling the number of vertices, maintaining their stability, and producing
off-center vortices remain open questions.

4.3 Energetics of the baroclinic system

To understand the energy balance that sustains the vortices and jets in the nonlinear
regimes, we analyze the system’s energetics. The evolution of the total energy density,
E = a1 |V > + aa| Vi + L;?(11 — 12)?), which is the sum of the kinetic and avail-
able potential energy, is derived by multiplying the QGPV equation (Eq. 9) by —a;1; and
integrating over the domain. In a statistically steady state, the injection of energy from the
background shear must balance the dissipation by drag. The energy evolution equation is
given by:

(O —2u)E =€= Z ;i Uivlg, = 201000 (v g} — vhqh) (25a)
~ 200 0rKe0r (@2 + Q2 — @1 — Q1) (25Db)
~ 2000 K0, (Q2 — Q1) (25¢)
= 4(Q%/L3)r*(V Lgn) (25d)

where K. is the eddy diffusivity and V represents the root-mean-square barotropic eddy
velocity. The energy injection rate, €, which balances the dissipation (2uF) in a statistically
steady state, is derived from the work done by the background flow (U; = 0W;/0r) on the
eddies. The exact expression for this energy conversion is given in Eq. (25a), where the
injection is written in terms of the zonally-averaged radial eddy flux of potential vorticity
(vig;)-

To simplify this expression, we parameterize the eddy PV flux using a mixing-length
argument, assuming the flux is a downgradient diffusion process: @ ~ —Ke0p (@ + Q).
Here, K. is an effective eddy diffusivity. Substituting this into the energy balance yields
Eq. (25b), which relates the energy injection to the gradient of the total mean PV. We
assume that the mean induced PV gradients (g;) are small and largely cancel each other
out compared to the imposed background PV gradient. This allows us to approximate
the expression by retaining only the background PV gradient term, as shown in Eq. (25¢).
Finally, following the scaling theory of [13], the eddy diffusivity is proportional to the
characteristic eddy velocity and the mixing length, which in this case is the Rhines scale,
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Lpp. So, we set K, ~ V Lgp. Substituting the explicit form of the background PV gradient
(Q2 — 1) and this scaling for K. leads to the final expression for the energy injection
rate (Eq. (25d)). This result provides a crucial link between the external parameters of the
system (€2, Ly) and the emergent velocity scale (V') of the resulting turbulence. The physical
pathway for energy is governed by the principles of two-dimensional turbulence. Baroclinic
instability injects energy at a characteristic scale, typically the Rossby deformation radius,
L4. This energy then cascades to larger scales (smaller wavenumbers) via an inverse energy
cascade, leading to the vortex mergers and jet formation observed in our simulations (Fig. 8).
This process continues until the cascade is arrested at a larger scale, the Rhines scale Ly, ~
(V/~4)Y/3, where the eddy turnover time becomes comparable to the period of planetary
Rossby waves. At this scale, the turbulent eddies are sheared apart into zonal jets, and the
energy is ultimately dissipated by the Rayleigh drag [30].

By equating the energy injection rate with the cascade rate at the arrest scale (e ~
V3/Lrp), one can derive scaling laws for the characteristic eddy velocity (V) and the energy
level of the system. This balance yields the following predictions for the characteristic
barotropic velocity and energy injection rate:

Vo~ QBL;?’W*Z (26a)
e~ BLSy (26b)

Therefore, Lry, = Q/(Lgy). We test these theoretical predictions against our suite of numer-
ical simulations using the scaling relations above. Figure 12 plots the numerically-diagnosed,
time-averaged barotropic velocity (V) and energy dissipation rate (€) against their corre-
sponding theoretical scaling laws, averaged over the last several hundred time steps in the
steady stage. In these plots, the size of the circles is proportional to the forcing strength, €2,
while the color represents the drag coefficient, u, with lighter shades for smaller p (weaker
drag) and darker shades for larger p (stronger drag). The data from all simulations collapse
well around the best-fit lines, confirming that the Held-Larichev scaling theory provides a
decent description of the system’s energetics over the y-plane as well, despite the theory is
designed for the mid-latitude S-plane. As expected, a larger forcing/shear (2) consistently
leads to a more turbulent state, characterized by a stronger final eddy velocity and a larger
energy injection rate. Interestingly, the behavior of both V and e with respect to the relax-
ation, p, is non-monotonic. This arises from the dual role of the parameter p: it represents
both energy dissipation (Rayleigh friction) and the restoration of the background state.
Increasing p enhances the drag, which tends to reduce the final eddy velocity. However,
a larger p also restores the background PV gradient more rapidly, preventing the eddies
from generating a strong mean flow that would otherwise weaken the background shear and
suppress baroclinic conversion. Depending on the regime, one of these competing effects
can dominate, leading to the observed non-monotonic relationship between the drag and
the overall energy level of the system.

5 Discussion and Conclusion

In this study, we developed and analyzed a two-layer quasi-geostrophic model on a ~-plane
to investigate whether baroclinic instability can serve as a primary driver for the diverse
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Figure 12: Numerical verification of the scaling theory for the baroclinic system. Left: The
diagnosed barotropic eddy velocity (Vi) from simulations versus the theoretical scaling,
V o~ 93L337_2. Right: The diagnosed energy dissipation rate (€) versus the theoretical
scaling, € ~ Q8L8y~°. The size of the circles represents the forcing strength €2, and the
color indicates the drag coefficient p (lighter for small u, darker for large p). The data
points cluster around the dashed best-fit lines, confirming the validity of the scaling theory.
The legends show the proportionality constant (slope) for a line passing through the origin,
indicating a strong linear relationship between the simulation results and the theoretical
scaling.
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polar vortex structures observed on giant planets.

Our linear stability analysis confirmed that the fundamental properties of baroclinic
instability on a polar y-plane are consistent with the classic theory developed for the mid-
latitude S-plane. We derived the dispersion relation and demonstrated the existence of
both shortwave and longwave cutoffs for instability, with the growth rate and the most
unstable mode being primarily controlled by the background shear, €2. This linear frame-
work provided crucial predictions for the initial scales of eddy formation in our nonlinear
simulations.

The core of our findings comes from the nonlinear simulations performed with the
Dedalus framework. By systematically varying the nondimensional shear (€2) and relax-
ation (u~1), we identified three distinct dynamical regimes:

1. A weakly nonlinear regime at short relaxation times, where the flow is dominated
by small-amplitude wave-like structures resembling the most unstable linear modes.

2. A vortex regime at stronger shear and short relaxation times, characterized by a
field of many coherent vortices actively mixing potential vorticity.

3. A jet regime at long relaxation, where an inverse energy cascade leads to the self-
organization of the flow into large-scale zonal jets and stable, coherent polar vortices.

Interestingly, some of our simulation results seem to resemble the observed fluid patterns
over the polar regions of Jupiter and Saturn. A transient stage in the jet regime at high
shear (Q = 3.5, u~! = 10°) qualitatively reproduces the multi-vortex ” crystal-like” structure
observed by Juno at Jupiter’s pole, although it is not stable in that simulation. Meanwhile,
the jet regime at lower shear and very weak damping (Q = 1.5, u~! = 10%) successfully
generates a stable, polygonal jet stream encircling a central cyclone, providing a strong
analog to Saturn’s famous hexagonal vortex.

Furthermore, our analysis of the system’s energetics showed that the simulations adhere
to the scaling laws predicted by the classic theory of geostrophic turbulence over 8 plane
[13]. The decent collapse of our simulation data with the theoretical predictions for eddy
velocity and energy injection rate validates that the underlying dynamics are governed by
an inverse energy cascade arrested at the Rhines scale.

In conclusion, our results seem to suggest that baroclinic instability is potentially capable
of driving the range of polar dynamics observed on giant planets. The competition between
shear-driven turbulence and dissipation naturally leads to the emergence of distinct, self-
organized states that bear a striking resemblance to both Jupiter’s and Saturn’s poles.

For future work, we plan to relax some of the idealizations in the current model. A key
next step is to explore the effect of unequal layer depths (H; # Hs). This modification
will allow for a more realistic representation of the vertical structure of the atmospheres,
particularly on Jupiter, where a relatively shallow weather layer is thought to exist. Inves-
tigating how differential layer depths modulate the instability and the subsequent nonlinear
evolution will be crucial for refining the mapping between our model parameters and the
specific conditions on each planet.
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