
PREFACE

The 2024 Geophysical Fluid Dynamics Summer Program ran from June 17th to August 23
under the direction of Greg Chini (University of New Hampshire) and Bruce Sutherland
(University of Alberta). The theme of the opening lectures, given during the first two
weeks, was Multiscale GFD. One of the principal lecturers was Basile Gallet (Université
Paris-Saclay, CEA, CNRS). Keith Julien from the University of Colorado, Boulder, was
slated to be the other principal lecturer. Tragically, however, he passed away unexpectedly
in April 2024. We are extremely grateful to Edgar Knobloch (University of California,
Berkeley) who, on short notice, agreed to be the other principal lecturer along with Greg
Chini, who gave one of the principal lectures. Edgar opened the lectures with talks on
weakly and strongly nonlinear theory for convection with and without rotation. He went on
to describe fingering and parametric instabilities. Greg then described the application of the
strongly-nonlinear multiscale approach to stably stratified turbulence. Basile gave lectures
on turbulence with and without rotation, going on to discuss two dimensional turbulence
above topography before describing multiscale methods used to model turbulent transport
and near-inertial waves in the ocean. As is now an annual tradition at Walsh Cottage,
Keaton Burns (MIT) delivered a “Dedalus tutorial” for the benefit of the fellows and staff.

The fellows this year were:
Paul Curtis, Yale University
Cy David, University of California Los Angeles
Vincent Laroche, University of California Berkeley
Cécile Le Dizes, Institut de Méchanique des Fluides de Toulouse
Matthew McCormack, University of Edinburgh
Camille Moisset, Université Paris-Saclay, CEA
Ishwari Mulkalwar, University of California San Diego
Nicolaos Petropoulos, University of Cambridge
Lulabel Seitz, Brown University
Adhithiya Sivakumar, University of New Hampshire

Besides the Directors, there were twelve long-term visitors including some new faces. Most
of them supervised the fellows in research spanning the mathematical, numerical, and ex-
perimental and covering topics inspired by physical oceanography, atmospheric science, and
stellar interiors. In addition to the long term visitors, Walsh Cottage welcomed a stream of
short term visitors, many of whom were past GFD Fellows.

Making sure the summer ran smoothly, Janet Fields and Julie Hildebrandt expertly applied
their administrative skills with characteristic kindness and care for fellows and visitors alike.
Anders Jensen lent his unique skills and insights to help three of the fellows set up their
experiments in the GFD laboratory.

This year’s Distinguished Scholar Award was presented to David Goluskin (University of
Victoria) for his academic excellence and dedication to the GFD Program and its fellows.
The 2024 Sears Public Lecture was given by Brad Marston (Brown University) on “Fluid
Earth: Climate Change and Climate Solutions”.

The softball tradition was alive and well during the summer, with the fellows winning
against MBL to Coach Chini’s great excitement! In the closing fellows-versus-staff softball
game, Greg shone by hitting the game-winning RBI.
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GFD 2024 Lecture 1: Weakly Nonlinear Theory for
Convective Instabilities

Edgar Knobloch; notes by Cy David and Paul Curtis

June 17, 2024

1 Introduction to Asymptotic Methods

The equations governing the dynamics of numerous systems in geophysical fluid dynamics
can be written in the form:

Lµu = N[u] (1)

in which Lµ is a locally defined linear differential operator, µ is a parameter, N captures
nonlinear terms, and u is the flow velocity. Asymptotic methods can be used to study the
behaviour of such a system, allowing one to find approximate solutions to the equations of
motions. As we will see, in such an approach, it is necessary to identify and exploit the
presence of a small parameter ϵ in the system, which can be achieved in two ways:

• Explicit small parameter. In this instance, a small parameter will appear di-
rectly in the equations governing the system (e.g., ϵ = µ ≪ 1). Take, for example,
the Rossby number: Ro ≡ U/fL, where f is the local Coriolis acceleration, which
appears in the Navier Stokes equations in a rotating frame after the equations are
non-dimensionalised. In the rapid rotation limit, defined as Ro ≪ 1, one obtains
a dominant balance between the pressure gradient force, and Coriolis acceleration
terms. The resulting ’geostrophic balance’ is a powerful diagnostic when trying to
understand behaviour in Earth’s atmosphere and oceans. Often, this approach can
be applied to study the bulk dynamics of the system, e.g., a description of the interior
of the flow.

• Intrinsic small parameter. In this case, the small parameter ϵ may correspond to
the difference between the system parameter µ (which may be large) and its critical
value µc, beyond which some instability or flow transition occurs. This approach
is often taken in the development of weakly nonlinear theory and the derivation of
envelope (i.e., amplitude) equations.

In both cases, the hope is that the asymptotic solution valid in the limit of small pa-
rameter also holds when the parameter is small but finite.
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1.1 Asymptotic expansions

Consider a simple problem f(x, ϵ) = 0 from which we would like to find the solution x = x(ϵ),
where ϵ≪ 1. The principal step for asymptotic analysis is to expand x in powers of ϵ:

x(ϵ) = x0 + ϵx1 + ϵ2x2 + ...

such that

∣x(ϵ) −
N

∑
n=0

ϵnxn∣ = O(ϵN+1) for N = 0,1,2, ...

Note that this expansion is not necessarily convergent for finite values of the small parameter
ϵ, but the error is always of the next order in ϵ. This is in contrast to a convergent expansion
for x defined as:

∣x(ϵ) −
N

∑
n=0

ϵnxn∣ → 0 as N →∞

with ϵ a small, fixed number. Put simply, if we included arbitrarily more terms in the
above expansion, the series solution would approach the correct solution arbitrarily closely.
Conversely, an asymptotic expansion is defined through:

∣x(ϵ) −
N

∑
n=0

ϵnxn∣ → 0

as ϵ → 0, but critically for a fixed number N of terms in the expansion. Hence, for a finite
number of terms in the series, we would expect to converge to the solution asymptotically
as ϵ → 0. Although these expansions typically diverge for finite ϵ, they become better and
better as ϵ→ 0.

2 Rayleigh-Bénard Convection

We start our discussion of asymptotics by considering the case of Rayleigh-Bénard convec-
tion, a classic example of a forced dissipative system. We consider a fluid layer between two
rigid boundaries (in the plane normal to the vertical; see Fig. 1) which is subject to a fixed
vertical temperature gradient; i.e., it is heated from below, and cooled from above [3]. Here
gravity is such that g = −gẑ. In this lecture, we will use asymptotic methods to determine
the behaviour of the system as the temperature gradient is increased.

2.1 System equations

We first write the equations of motion for the system in the Boussinesq approximation:

∂u

∂t
+u ⋅ ∇u = − 1

ρ0
∇P + gα(T − T0)ẑ + ν∇2u (2)

∂T

∂t
+ (u ⋅ ∇)T = κ∇2T (3)

∇ ⋅u = 0 (4)
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Equation (2) is the momentum equation; equation (3) is the heat equation with (isotropic)
thermal diffusivity; equation (4) states that the flow is incompressible at leading order in
h/hρ where h is the layer thickness and hρ the density scale height. Here ρ0 is a reference
density; g is the acceleration due to gravity, and appears in the vertical buoyancy term in the
momentum equation (2); ν is the kinematic viscosity and κ defines the thermal diffusivity.

We first consider the case of two-dimensional convection in the (x, z) plane. Here, we
can define a streamfunction of the flow: (u,w) ≡ (−∂zψ,∂xψ). Taking ∇ × (equation 2) to
eliminate the pressure gradient term we obtain:

∂t∇2ψ + J(ψ,∇2ψ) = gα∂xT + ν∇4ψ (5)

∂tT + J(ψ,T ) = κ∇2T, (6)

where J defines the Jacobian on two scalar functions: J(f, g) ≡ ∂xf∂zg − ∂zf∂xg. There
are two equations for the two fields: ψ(x, z, t), T (x, z, t), and thus we have a closed system
which is solvable once suitable boundary conditions are specified. We consider impenetrable,
stress-free top and bottom boundaries with fixed temperature:

w = ∂xψ = 0 at z = 0, h (7a)

∂zu = −∂2zψ = 0 at z = 0, h (7b)

T (z = 0) = T1, T (z = h) = T0, (T1 > T0). (7c)

For simplicity, we suppose there is no mean horizontal flow, which implies that

0 = ∫
h

0
udz = −∫

h

0
∂zψdz = ψ(z = 0) − ψ(z = h). (8)

T0

T1(z = 0)

(z = h)

Ra < Rac Ra > Rac

Figure 1: Schematic diagram of the Rayleigh-Bénard system. The two bounding plates are
indicated by solid horizontal black lines labeled z = 0, h. The oblique black line labeled
Ra < Rac corresponds to the solution of thermal conduction. Once Ra > Rac, as indicated
by the red dashed line, thermal convection will occur in the fluid layer, as denoted by the
blue ‘whirls’ on the right hand side of the figure. All parameters shown in the figure are
equivalent to those described in the text.
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Thus, we may set ψ = 0 at z = 0, h without loss of generality. Additionally, we note that (5)
and (7) imply that

∇4ψ = 0 at z = 0, h, (9)

and
∇2ψ = 0 at z = 0, h. (10)

We now non-dimensionalise the system using the thermal diffusivity, κ, introducing
nondimensional quantities (.̂..): time t = (h2/κ)t̂, velocity u = (κ/h)û, and (x, z) = h(x̂, ẑ);
finally we non-dimensionalise temperature by the (fixed) absolute temperature difference
in the vertical: T = (T1 − T0)T̂ . Here, time has been nondimensionalised by the timescale
for thermal diffusion, and velocity by the “thermal diffusion velocity”. Inserting these into
equations (5)-(6).

∂t∇̂2ψ̂ + Ĵ(ψ̂, ∇̂2ψ̂) = (gα∆Th
3

κν
)(ν
κ
)∂T̂
∂x̂
+ (ν

κ
)∇̂4ψ̂ (11)

∂t̂T̂ + Ĵ(ψ̂, T̂ ) = ∇̂
2T̂ (12)

from which we readily read off the Rayleigh number:

Ra = gα∆Th
3

κν
(13)

which is a measure of the strength of buoyancy in the fluid compared to the diffusive terms;
and the Prandtl number:

σ = ν
κ

(14)

which is a measure of the relative effect of momentum to thermal diffusion. In this problem
we will take it to be of order unity. Dropping hats, equations (11)-(12) read:

∂t∇2ψ + J(ψ,∇2ψ) = σRa∂xT + σ∇4ψ (15)

∂tT + J(ψ,T ) = ∇2T. (16)

2.2 Linear theory

An interesting physical problem to solve with the current set up is that of the transition from
a state of (thermal) conduction to that of convection. Linear theory allows us to compute the
critical Rayleigh number associated with this transition. Physically, increasing Ra through
the threshold value could correspond to an increase in T1 while keeping h and T0 fixed, as
indicated in Fig. 1. We linearize the governing equations by expanding the streamfunction
and temperature fields in terms of a small parameter ϵ≪ 1:

ψ(x, z, t) = ϵψ1(x, z, t) + ϵ2ψ2(x, z, t) + ...

T (x, z, t) = T0(z) + ϵθ1(x, z, t) + ...

where the leading order problem is that of pure thermal conduction: T0 = 1 − z and ψ0 = 0.
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Figure 2: Neutral curves for vertical wavenumbers l = π,2π,3π. The minimum, Rac = 27π4/4
at kc = π/

√
2, is indicated with a red point.

It is clear from this expansion that the Jacobian terms in (15) will generate O(ϵ2) terms.
Hence, to order O(ϵ) we obtain:

1

σ
∂t∇2ψ1 = Ra∂xθ1 +∇4ψ1 (17)

∂tθ1 + ∂xψ1∂zT0 = ∇2θ1. (18)

In the second equation, ∂zT0 = −1. We thus have a system of partial differential equa-
tions with constant coefficients, and we may consider simple wave-like solutions: (ψ, θ) ∼
esteikx sin lz, in which (k, l) are the horizontal and vertical wavenumber, respectively, and
s is the growth rate. Our boundary conditions are stress-free and fixed temperature, which
require that l = nπ, n ∈ Z+. With this, we obtain the following dispersion relation:

1

σ
s2 + s(k2 + l2) − Rak2

k2 + l2
+ (k2 + l2)2 = 0. (19)

By definition, the condition for exponential growth of solutions (in time) is s > 0; when
s = 0 equation (19) becomes:

Rak2

k2 + l2
= (k2 + l2)2 → Ra = (k

2 + l2)3

k2
. (20)

The neutral curves given by (20) for l = π,2π,3π, ... are plotted in Figure 2. Minimizing Ra
over the possible wavenumbers k ∈ R, l = π,2π,3π, ... yields the critical Rayleigh number
and corresponding mode:

Rac =
27π4

4
, kc =

π√
2
, lc = π, (21)

which is plotted as a red point in Figure 2.
At Ra = Rac, there is a bifurcation of the system; i.e., a qualitative difference in the

dynamics (conduction vs. convection) is observed.
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Figure 3: The neutral stability curve is parabolic near k = kc, Ra = Rac, such that Ra−Rac =
O(ϵ2) for k − kc = O(ϵ).

3 Multiscale Description of Weakly Nonlinear Convection

Through linear stability analysis, we found a single most unstable mode k = kc corresponding
to a critical value of the Rayleigh number, Ra = Rac. When the Rayleigh number exceeds
this value slightly (Ra > Rac), there is instead a band of unstable modes {eikx}. Figure 3
shows that the neutral stability curve is parabolic near its minimum such that these modes
have wavenumbers with ∣k − kc∣ = O(ϵ) if Ra −Rac = O(ϵ2) and 0 < ϵ≪ 1.

Thus, the solution, which has the form ei∆kxeikcx, ∆k = O(ϵ), is the linear mode with
spatial modulation of the amplitude over O(1/ϵ) scales. Further, we observe from the linear
dispersion relation (19) that when the growth rate s is small

s ≈ σ

1 + σ
[ Rak2

(k2 + l2)2
− k2 − l2] = σ

1 + σ
k2

(k2 + l2)2
(Ra −Rac) = O(ϵ2), (22)

where (20) is used in the second equality to introduce Rac. Hence, the amplitude grows
slowly over an O(1/ϵ2) timescale. The aim of the following subsection is to derive a model
for the slow spatial and temporal behavior of this amplitude.

We begin with the fully nonlinear vorticity and temperature equations:

1

σ
[∂t∇2ψ + J(ψ,∇2ψ)] = Ra∂xθ +∇4ψ, (23)

(∂t −∇2)θ = ∂xψ − J(ψ, θ), (24)

on D = {(x, z)∣x ∈ R,0 ≤ z ≤ 1} with stress-free and fixed-temperature boundary conditions:

ψ = 0 and θ = 0 on ∂D. (25)

Taking (∂t −∇2)(Eqn. 23)+Ra∂x(Eqn. 24) yields an equation for ψ with θ eliminated from
all linear terms:

Lψ = N(ψ, θ), (26)
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where

L = (∂t −∇2)( 1
σ
∂t −∇2)∇2 −Ra∂2x, (27)

and

N(ψ, θ) = −Ra∂xJ(ψ, θ) −
1

σ
(∂t −∇2)J(ψ,∇2ψ). (28)

3.1 Multiscale asymptotic approach

The existence of fast and slow scales motivates a multiscale asymptotic approach. We
introduce a slow time variable τ = ϵ2t and slow spatial variableX = ϵx, such that the solution
shows O(1) growth and spatial modulation when τ = O(1) and X = O(1), respectively. The
fields are transformed as ψ → ψ(x,X, z, τ), θ → θ(x,X, z, τ), and the derivative operators
as ∂t → ∂t + ϵ2∂τ , ∂x → ∂x + ϵ∂X .

After making these transformations, we will use the asymptotic expansions

ψ(x,X, z, τ) = ϵψ1(x,X, z, τ) + ϵ2ψ2(x,X, z, τ) +O(ϵ3), (29a)

θ(x,X, z, τ) = ϵθ1(x,X, z, τ) + ϵ2θ2(x,X, z, τ) +O(ϵ3), (29b)

Ra = Rac + ϵR1 + ϵ2R2 +O(ϵ3), (29c)

in Eq. (26) together with Eq. (24). Each equation is treated with following general proce-
dure:

1. Divide Eq. (26) by ϵ and take the limit ϵ→ 0.

2. Group linear terms of the resulting equation. If the system is inhomogeneous, deter-
mine the “solvability condition” on the forcing term and solve the resulting equation.

3. To proceed to the next order in ϵ, divide the terms that remain in the full equation
by ϵ and return to Step 1.

Step 2 requires the following mathematical machinery from the study of inhomogeneous
linear bounary value problems:

Definition 1 (Adjoint) Let A and B be vector spaces with inner products ⟨⋅, ⋅⟩ and ⟪⋅, ⋅⟫,
respectively. Given a linear differential operator L ∶ A → B, its adjoint L† ∶ B → A, is the
unique linear operator for which

⟪La, b⟫ = ⟨a,L†b⟩ ∀ a ∈ A, b ∈ B. (30)

Example 1 Consider a linear operator L0 = ∇6 −Rac∂2x that maps between spaces A,B of
differentiable, square-integrable, real-valued functions with inner product

⟨a, ã⟩ = ∫
1

0
∫

π/kc
−π/kc

a(x, z)ã(x, z)dxdz, (31)

defined on the domain D = {(x, z)∣ − π/kc ≤ x ≤ π/kc,0 ≤ z ≤ 1}. Suppose that all a ∈ A,
b ∈ B are 2π/kc-periodic in x and obey the following boundary conditions in z:

a = b = 0 at z = 0,1, (32a)
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∇2a = ∇2b = 0 at z = 0,1, (32b)

∇4a = ∇4b = 0 at z = 0,1. (32c)

Given these boundary conditions, we can show that L0 is self-adjoint, that is

L0 = L†
0⇔ ⟨L0a, b⟩ = ⟨a,L0b⟩ ∀ a ∈ A, b ∈ B. (33)

Beginning with the left hand side,

⟨L0a, b⟩ = ∬
D
(b∇6a −Racb∂2xa)dxdz. (34)

Using the chain rule in reverse, we may write

b∇6a = ∇ ⋅S(a, b) + a∇6b, (35)

where

S(a, b) = ∇(∇4a)b − (∇4a)∇b +∇(∇2a)∇2b −∇2a∇(∇2b) + (∇a)∇4b − a∇(∇4b) (36)

and similarly
b∂2xa = ∂x(b∂xa − a∂xb) + a∂2xb. (37)

Substituting the identities above into (34) and using the divergence theorem yields

⟨L0a, b⟩ = (b∂xa − a∂xb + ex ⋅S)∣
x=π/kc

x=−π/kc
+ (ez ⋅S)∣

z=1

z=0
+∬

D
(a∇6b −Raca∂2xb)dxdz. (38)

The first term above vanishes given the periodicity of a, b in x. The second term vanishes
using the boundary conditions in z. Thus,

⟨L0a, b⟩ = ∬
D
(a∇6b −Raca∂2xb)dxdz

= ⟨a,L0b⟩. (39)

Theorem 1 (Fredholm Alternative Theorem) Given the inhomogeneous linear sys-
tem La = f , the necessary condition for the existence of a solution a is that

⟨b, f⟩ = 0 ∀ b s.t. L†b = 0 (40)

(where a and b obey the same boundary conditions that guarantee ⟪L†b, a⟫ = ⟨b,La⟩). This
statement is a “solvability condition” on f . Note that if b = 0 is the only solution to the
adjoint problem L†b = 0, then the solvability condition is satisfied for any f .

Proof: Using La = f , the definition of the adjoint L†, and the requirement that L†b = 0,

⟨b, f⟩ = ⟨b,La⟩
= ⟪L†b, a⟫
= ⟪0, a⟫
= 0.
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Remark: If the dimension of the nullspace of L† is n > 1, then L†b = 0 has n > 1 linearly
independent solutions. In this case there are n > 1 solvability conditions.

Our final preparatory step before expanding the full equations is to transform and
expand the linear operator L and collect powers of ϵ, which shall enable notational brevity
in the subsequent steps:

L = L0 + ϵL1 + ϵ2L2 +O(ϵ3), (41)

where
L0 = ∇6 −Rac∂2x, (42a)

L1 = 2(3∇4 −Rac)∂x∂X −R1∂
2
x, (42b)

L2 = −R2∂
2
x − 2R1∂x∂X −Rac∂2X − (1 +

1

σ
)∂τ∇4 + 3∇4∂2X + 3∇2 (2∂x∂X)2 . (42c)

We now substitute the asymptotic expansions (29) into (26) together with (24) and
follow the steps outlined above.

At O(ϵ):

L0ψ1 = 0, (43a)

∇2θ1 = −∂xψ1. (43b)

We make the ansatz

ψ1(x,X, z, τ) = A1(X,τ)eikx sin lz +A∗1(X,τ)e−ikx sin lz, (44a)

θ1(x,X, z, τ) = B1(X,τ)eikx sin lz +B∗1 (X,τ)e−ikx sin lz. (44b)

Then (43a) yields the same linear dispersion relation (19) found earlier, and we set k = kc =
π/
√
2, lc = π, corresponding to the most unstable linear mode. The temperature equation

(43b) yields the following relationship between A1(X,τ) and B1(X,τ):

B1(X,τ) =
ikc

k2c + l2c
A1(X,τ). (45)

Determining A1(X,τ) requires going to higher order in ϵ.

At O(ϵ2):

L0ψ2 +L1ψ1 = −Rac∂xJ(ψ1, θ1) +
1

σ
∇2J(ψ1,∇2ψ1)

= −Rac∂x(∂xψ1∂zθ1 − ∂xθ1∂zψ1)

+ 1

σ
∇2 (∂xψ1∂z∇2ψ1 − ∂zψ1∂x∇2ψ1) ,

(46a)

−∇2θ2 − 2∂x∂Xθ1 = ∂xψ2 + ∂Xψ1 − J(ψ1, θ1)
= ∂xψ2 + ∂Xψ1 − (∂xψ1∂zθ1 − ∂xθ1∂zψ1).

(46b)
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The equation for the streamfunction (46a) may be rewritten as an inhomogeneous linear
equation for ψ2 forced by nonlinearities in lower order terms:

L0ψ2 = f2(ψ1, θ1), (47)

where

f2(ψ1, θ1) = −L1ψ1 −Rac∂xJ(ψ1, θ1) +
1

σ
∇2J(ψ1,∇2ψ1). (48)

At this point we refer to the Fredholm Alternative Theorem, which states that an
inhomogeneous linear system Lu = f with homogeneous BCs cannot have a unique solution
if the adjoint homogeneous problem, L†v = 0, has a solution other than v = 0. If v ≠ 0 exists,
the original inhomogeneous problem only has solutions only if ⟨v, f⟩ = 0. Since the operator
L0 is self-adjoint (see Example 1), and we know that L0v = 0 has a nontrivial solution ψ1,
the Fredholm Alternative Theorem requires that

⟨v, f2(ψ1, θ1)⟩ = 0, (49)

where v is any eigenfunction of L0.
Before evaluating this inner product, we substitute in the ansatz (44) for ψ1 and θ1

(with k = kc, lc = π) into f2. Since both Jacobians vanish and moreover 3(k2c +π2)2−Rac = 0
the expression for f2 reduces to

f2 = −eikcxk2c sinπzR1A1(X,τ) − e−ikcxk2c sinπzR1A
∗
1(X,τ). (50)

The solvability condition (49) is satisfied automatically for all eigenfunctions of L0 save for
v = e±ikcx sinπz. Both choices yield

R1A1(X,τ) = 0. (51)

Thus, R1 = 0 must hold to permit nontrivial solutions at O(ϵ2) and the streamfunction
equation at O(ϵ2) is simply

L0ψ2 = 0, (52)

which has the same solutions as the O(ϵ) equation (43a). Therefore, we may set ψ2 = 0
without loss of generality.

Next, we substitute the O(ϵ) ansatz (44) into the O(ϵ2) temperature equation (46b),
setting ψ2 = 0:

∇2θ2 = − sinπz [eikcx∂X (A1 + 2ikcB1) + e−ikcx∂X (A∗1 − 2ikcB∗1 )]
− iπkc sin 2πz(A∗1B1 −A1B

∗
1 ). (53)

We can simplify this further using the relationship (45) between B1 and A1 we found at
O(ϵ):

∇2θ2 = (
k2c − π2

k2c + π2
)(∂XA1e

ikcx − ∂XA∗1e−ikcx) sinπz + 2π (
k2c

k2c + π2
) ∣A1∣2 sin 2πz. (54)

This is a linear inhomogeneous problem, and our procedure tells us to look for a solvability
condition that provides a useful constraint on A1. However, since the only solution of the
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adjoint homogeneous problem ∇2v = 0 with the prescribed boundary conditions is v = 0,
the Fredholm Alternative does not constrain the right hand side of (54). We can thus solve
(54) to obtain

θ2 =
π2 − k2c
(π2 + k2c)

2
(∂XA1e

ikcx − ∂XA∗1e−ikcx) sinπz −
1

2π
( k2c
π2 + k2c

) ∣A1∣2 sin 2πz, (55)

but we still have not determined the slow-scale behavior of the amplitude A1(X,τ). To do
so, we must proceed to the next order in ϵ.

At O(ϵ3):

L0ψ3 +L2ψ1 = −Rac∂x [J(ψ1, θ2) + JX(ψ1, θ1)] −Rac∂XJ(ψ1, θ1)

+ 1

σ
∇2[JX(ψ1,∇2ψ1) + J(ψ1,2∂x∂Xψ1)] +

2

σ
∂x∂XJ(ψ1,∇2ψ1)

(56)

= −Rac∂x (∂xψ1∂zθ2 + ∂Xψ1∂zθ1 − ∂xθ2∂zψ1 − ∂Xθ1∂zψ1)

+ 1

σ
∇2 (∂xψ12∂z∂x∂Xψ1 + ∂Xψ1∂z∇2ψ1 − ∂zψ1∂X∇2ψ1 − ∂zψ12∂

2
x∂Xψ1)

+ 2

σ
∂x∂X (∂xψ1∂z∇2ψ1 − ∂x∇2ψ1∂zψ1) −Rac∂X (∂xψ1∂zθ1 − ∂xθ1∂zψ1) ,

where we have used ψ2 = 0, R1 = 0, and where JX(f, g) = ∂Xf∂zg − ∂zf∂Xg. Rearranging
shows that (56) is an inhomogeneous linear equation for ψ3 forced by nonlinearities in lower
order terms:

L0ψ3 = f3(ψ1, θ1, θ2), (57)

where

f3(ψ1, θ1, θ2) = −L2ψ1 −Rac∂x [J(ψ1, θ2) + JX(ψ1, θ1)] −Rac∂XJ(ψ1, θ1)

+ 1

σ
∇2 [JX(ψ1,∇2ψ1) + J(ψ1,2∂x∂Xψ1)] +

2

σ
∂x∂XJ(ψ1,∇2ψ1). (58)

As before, we refer to the Fredholm Alternative Theorem, which requires that

⟨v, f3(ψ1, θ1, θ2)⟩ = 0, (59)

where v is any eigenfunction v = e±ikcx sinπz of L0.
Before evaluating this inner product, we substitute the solutions from (44), (55) for ψ1,

θ1, θ2 (with k = kc, lc = π) into f3, which yields a “resonant” term (i.e., an eigenfunction of
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L0), its complex conjugate, and “non-resonant” terms:

f3 =eikcx sinπz{ − k2cR2A1 −
k4cRacA

2
1A
∗
1 cos 2πz

k2c + π2
+ (k2c + π2)

2 (1 + σ
σ
)∂τA1

+ [Rac − 3 (k2c + π2) (5k2c + π2)]∂2XA1 + 2ikcR1∂XA1}

(60)

+ e−ikcx sinπz{ − k2cR2A
∗
1 −

k4cRacA1A
∗2
1 cos 2πz

k2c + π2
+ (k2c + π2)

2 (1 + σ
σ
)∂τA∗1

+ [Rac − 3 (k2c + π2) (5k2c + π2)]∂2XA∗1 − 2ikcR1∂XA
∗
1}

− 4πk2c sinπz cosπz (
Rac

k2c + π2
+ 4π2

σ
)(A∗1∂XA1 +A1∂XA

∗
1) .

As before, the solvability condition (59) is satisfied automatically for all eigenfunctions of
L0 save for v = e±ikcx sinπz. In both cases evaluating the inner product in (59) yields

(1 + 1

σ
)∂τA1 =

2R2

9π2
A1 −

π2

4
∣A1∣2A1 + 4∂2XA1, (61)

where we have used Rac = 27π4/4, kc = π/
√
2.

Thus, we have obtained a one-dimensional partial differential equation for the amplitude
A1 from the solvability condition (not from the expanded O(ϵ3) equations themselves, as
one might expect). We may simplify (61) by making the change of variables

A1(X,τ) =
2
√
2

3π2
A(X̂, τ̂), X = 3

√
2X̂, τ = (σ + 1

σ
) 9π

2

2
τ̂ , (62)

yielding
∂τ̂A = R2A − ∣A∣2A + ∂2X̂A. (63)

Recall that Ra = Rac + ϵR1 + ϵ2R2 +O(ϵ3) = Rac + ϵ2R2 +O(ϵ3) since we found that R1 = 0.
We may choose ϵ2 = Ra − Rac such that R2 = 1 to get the real Ginzburg-Landau equation
(RGLE) [1]

X
(64)∂τ̂A = A − ∣A∣2A + ∂2ˆ A,

first derived in the context of convection in [2].

3.2 Properties of the real Ginzburg-Landau Equation (RGLE) 

3.2.1 Symmetries

The RGLE is invariant under the transformations:

a. AÐ→ Aeiθ, θ = constant

b. AÐ→ A∗

Since ψ1(x,X, τ) = [A1(X,τ)eikcx +A∗1(X,τ)e−ikcx] sinπz, the phase changes (a) are gen-
erated by translations x Ð→ x + θ/kc and the reflections (b) are generated by reflections
xÐ→ −x.
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Figure 4: The fixed points of A in the complex plane as R2 is varied. Solid and dashed lines
indicate stable and unstable fixed points, respectively. Inset plots show solution streamlines
corresponding to points on the stable surface.

3.2.2 Spatially uniform solutions

For solutions that are uniform over long spatial scales (i.e., ∂X̂A = 0),

∂τ̂A = R2A − ∣A∣2A, (65)

which has fixed points (∂τ̂A = 0) at

A = 0, ∣A∣ =
√
R2 for R2 > 0. (66)

If R2 < 0 (i.e., Ra < Rac),
∂τ̂ ∣A∣ < 0.

If R2 > 0 (i.e., Ra > Rac),
∂τ̂ ∣A∣ > 0 if ∣A∣ <

√
R2,

∂τ̂ ∣A∣ < 0 if ∣A∣ >
√
R2.

Thus, the amplitude undergoes a supercritical pitchfork bifurcation at R2 = 0, beyond
which the fixed point A = 0 is no longer stable and the solution evolves towards the surface
∣A∣ =

√
R2. The latter is a circle in the complex plane, which exhibits the symmetries (a,

b) discussed earlier. Physically, this means that all reflections and translations of the con-
vection rolls along the horizontal direction are possible in a domain with infinite horizontal
extent. Figure 4 shows the bifurcation as a “pitchfork of revolution” in the complex plane.
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GFD 2024 Lecture 2: Nonlinear Theory for Convective

Instabilities

Edgar Knobloch; notes by Cécile Le Dizes and Vincent Laroche

June 18, 2024

1 Introduction

In Rayleigh–Bénard convection, a horizontal fluid layer of depth h is heated from below and
cooled from above, typically under the Boussinesq approximation with fixed temperatures
at the plates and either stress-free or no-slip velocity boundary conditions. In this system,
the fluid is gravitationally unstable, but not necessarily convectively unstable, as convective
motions are slowed by viscous effects and temperature gradients are smoothed by thermal
diffusion. The competition between buoyancy and dissipation is quantified by the Rayleigh
number

Ra =
gα∆Th3

νκ
, (1)

where ∆T is the difference in temperature between the bottom and top surfaces, h is the
layer thickness, α is the thermal expansion coefficient, ν is the fluid kinematic viscosity and
κ is the fluid thermal diffusivity.

The study of the linear stability of this system predicts the critical threshold Rac above
which the conduction state loses stability and convective motions set in, selecting a crit-
ical horizontal wavenumber kc. Linear stability analysis is essential for identifying these
thresholds, as well as growth rates, and mode shapes. But it cannot say anything about
the amplitude of the motion once the instability develops, nor about how different modes
interact. In the study of nonlinear systems, multi-scale analysis plays a central role because
it allows us to go beyond the strictly linear regime and obtain a description of how insta-
bilities evolve once they are triggered. Once the threshold is crossed, the amplitudes of the
unstable modes grow and nonlinear interactions become unavoidable. The nonlinear terms
tend to generate slow modulation of the fast oscillations identified by linear theory, or to
couple spatially extended modes through harmonics and resonances.

In this lecture, we study the nonlinear regime and derive amplitude equations for con-
vective oscillatory instabilities that arise when the linear problem yields an oscillatory Hopf
bifurcation, such as convection in binary-fluid mixture [5] or under rotation [3]. In these
cases, the instability takes the form of oscillating waves, either traveling or standing. We
present here two methods to analyse the nonlinear regime in such situations, a multiscale
expansion valid for small amplitude motions and an asymptotic analysis valid in the strongly
nonlinear regime. In the first part, we assume small nonlinearities and we derive a weakly
nonlinear theory for oscillatory instabilities by introducing an intrinsic small parameter ϵ.
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This procedure leads to the derivation of amplitude equations, such as the Stuart–Landau
or complex Ginzburg–Landau equations, that describe how the envelope of the oscillations
evolves with time and space. The second example focuses on fully nonlinear oscillatory con-
vection under strong rotation, where the leading order nonlinearity is of a different nature.
Instead of weak envelope modulations, the dominant nonlinear effect is the distortion of
the horizontally averaged temperature profile, which feeds back on the convective modes
themselves. In this case, the multi-scale procedure leads not to a simple amplitude equation
but to a nonlinear eigenvalue problem for the vertical structure of the solution. Traveling
and standing waves again emerge, but their existence and properties are controlled by the
interplay between rotation and the modified thermal profile rather than by weak nonlinear
saturation.

2 Weakly Nonlinear Theory for Wave Instabilities

In this section, we consider a general two-dimensional problem in an unbounded horizontal
layer of fluid of height h = 1, such as binary-fluid convection [5]. We study the nonlinear
evolution of small disturbances near a Hopf bifurcation. At the onset, the system becomes
unstable at a critical wavenumber kc with a nonzero oscillation frequency ωc. The previ-
ous lecture focused on the derivation of amplitude equations (real Ginzburg–Landau) for
unstable non-oscillatory modes. Here, we focus on oscillatory instabilities and derive the
complex Ginzburg–Landau equations.

2.1 Oscillatory instability without modulation in space

First, we derive the amplitude equations without amplitude modulation in space. We look
for a constant-amplitude, spatially periodic superposition of left- and right-traveling waves,

w(x, z, t) =
[(
A(t) +B(t)

)
eikcx +

(
A∗(t) +B∗(t)

)
e−ikcx

]
f(z) , (2)

where w is, for example, the vertical velocity. The function f(z) encodes the vertical
structure of the critical mode and may be complex [7]. Here we take f(z) = sin(πz), but
the exact form depends on the field being considered. The complex amplitudes A and B
represent left and right traveling waves; A∗ and B∗ denote the complex conjugates.

At the instability threshold kc, the complex amplitudes satisfy(
Ȧ

Ḃ

)
=

(
iωc 0
0 −iωc

)(
A
B

)
, (3)

where the dot operator ˙( ) represents a time derivative. The two carriers then oscillate at
±ωc. Moving away from threshold introduces a small real contribution. We parametrize
the distance from onset by λ ∝ R − Rc (with R a control parameter such as the Rayleigh
number). The oscillation frequency near onset is given by ω = ωc +O(λ).

The evolution must respect two symmetries. First, the system is translation-invariant
since there are no sidewalls and the effect of x→ x+ ϕ0

kc
is captured by (A,B) → eiϕ0(A,B).

Second, the system has reflection symmetry and the effect of x → −x is captured by
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(A,B) → (B∗, A∗). The most general smooth equivariant vector field at λ = 0 is then of
the form (

Ȧ

Ḃ

)
=

(
g1 g2
g∗2 g∗1

)(
A
B

)
, (4)

where g1, g2 depend only on the invariants σ1 = |A|2 + |B|2, σ2 = AB∗, σ3 = A∗B.
Expanding g1, g2 in these invariants and using a suitable near-identity nonlinear equiv-

ariant coordinate change of the form(
Ã

B̃

)
=

(
A
B

)
+

(
h1 h2
h∗2 h∗1

)(
A
B

)
allows us to recast these equations in a simpler form (the normal form) that reflects time-
translation invariance on time-periodic orbits, viz. invariance under (Ã, B̃) → (eiϕ1Ã, e−iϕ1B̃):(

Ã

B̃

)
=

(
f(|B̃|2, |Ã|2 + |B̃|2) 0

0 f∗(|Ã|2, |Ã|2 + |B̃|2)

)(
Ã

B̃

)
. (5)

Dropping the tildes, and unfolding the bifurcation by incorporating the small parameter λ,
leads to the (truncated) equations

Ȧ = (λ+ iω)A+
[
a|B|2 + b

(
|A|2 + |B|2

)]
A, (6)

Ḃ = (λ− iω)B +
[
a∗|A|2 + b∗

(
|A|2 + |B|2

)]
B, (7)

where ω = ωc + O(λ) and a, b are constant coefficients that can be determined from the
equations of motion. These are the amplitude equations in normal form to third order in
amplitude.

Writing A = x1e
iϕ1 , B = x2e

iϕ2 gives

ẋ1 = x1
[
λ+ arx

2
2 + br

(
x21 + x22

)]
(8)

ẋ2 = x2
[
λ+ arx

2
1 + br

(
x21 + x22

)]
(9)

ϕ̇1 = ω + aix
2
2 + bi

(
x21 + x22

)
(10)

ϕ̇2 = −ω − aix
2
1 − bi

(
x21 + x22

)
, (11)

where subscripts r, i denote the real and imaginary parts, respectively. These equations
yield four solutions of the form (x1, x2): the trivial solution (0, 0), the left-traveling wave
(x, 0), the right-traveling wave (0, x), and the standing wave (x, x). The amplitude of these
solutions as a function of the bifurcation parameter λ, and their stability properties are
summarized in Table 1.

Using the relations in the table, we can construct bifurcation diagrams in the parameter
space of ar and br, which are shown in Fig. 1. This figure also describes the competition
between traveling and standing waves at small amplitude. Note that at most one nonlinear
solution is stable near onset.
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Figure 1: Bifurcations in the ar-br parameter space showing the amplitude x21 + x22 as
function of λ for standing waves (SW) and traveling waves (TW) [5]. Continuous lines are
stable solutions, while dashed lines denote unstable solutions.

Solution Equation Eigenvalues Name
(0, 0) ∼ λ, λ trivial
(x, 0) λ+ brx

2 = 0 −2λ,−λar/br LTW
(0, x) λ+ brx

2 = 0 −2λ,−λar/br RTW
(x, x) λ+ (ar + 2br)x

2 = 0 −2λ,−λar/(ar/2 + br) SW

Table 1: Solution branches.
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2.2 Oscillatory instability with modulation in space

We now allow slow spatial modulation of the complex amplitudes. Consider a generic system

L
(
∂

∂t
,
∂

∂x
, ε2

)
ψ = N [ψ] ,

with linear operator L and nonlinearity N . We introduce the fast, slow and superslow scales

x, t, X1 = εx, T1 = εt, X2 = ε2x, T2 = ε2t, (12)

where the slow scales X1 and T1 are required to represent advection at the group velocity
cg, and the even slower scales X2 and T2 are required by diffusion. We seek a solution of
the form

ψ(x, t, ε) = εψ1 + ε2ψ2 +O
(
ε3
)
, (13)

where ψj ≡ ψj(t, T1, T2, x,X1, X2) is a function of the fast, slow, and superslow scales.
Expanding L about (∂t, ∂x, 0) yields

L = L0 + ε

(
L1

∂

∂T1
+ L2

∂

∂X1

)
+

1

2
ε2

(
L11

∂2

∂T 2
1

+ 2L12
∂2

∂T1∂X1
+ L22

∂2

∂X2
1

)
+ ε2

(
L1

∂

∂T2
+ L2

∂

∂X2
+ L3

)
+O

(
ε3
)
. (14)

At O(ε) we recover the linear problem

L0

(
∂

∂t
,
∂

∂x
, 0

)
ψ1 = 0 . (15)

whose plane-wave solutions yield the dispersion relation L0(iω, ik, 0) = 0, i.e., ω = ω(k),
shown in Fig. 2. The general solution with the critical wavenumber kc is

ψ1 = A1(T1, T2, X1, X2) e
i(kcx+ωct) +B1(T1, T2, X1, X2) e

i(kcx−ωct) + c.c., (16)

where A1 and B1 are the complex amplitudes of waves propagating to the left and to the
right.

At O
(
ε2
)
we obtain

L0ψ2 +

(
L1

∂

∂T1
+ L2

∂

∂X1

)
ψ1 = N [ψ1, ψ1] . (17)

The nonlinear quadratic terms on the right force nonresonant mean and second harmonics.
The system thus yields the two solvability conditions[

L1 (iωc, ikc, 0)
∂

∂T1
+ L2 (iωc, ikc, 0)

∂

∂X1

]
A1 = 0 (18)[

L1 (−iωc, ikc, 0)
∂

∂T1
+ L2 (−iωc, ikc, 0)

∂

∂X1

]
B1 = 0 (19)
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Figure 2: Dispersion relation ω = ω(k).

which form a linear hyperbolic system. Differentiating the dispersion relation L0 (iω(k), ik, 0) =
0 with respect to k at k = kc gives :

iω′(kc)L1 (iωc, ikc, 0) + iL2 (iωc, ikc, 0) = 0. (20)

As a result, the group velocity can be expressed as :

cg ≡ ω′(kc) = −L2 (iωc, ikc, 0)

L1 (iωc, ikc, 0)
, (21)

and similarly for −ωc: cg = +L2 (−iωc, ikc, 0)/L1 (−iωc, ikc, 0),. The solvability conditions
thus take the form

∂T1A1 − cg ∂X1A1 = 0, (22)

∂T1B1 + cg ∂X1B1 = 0, (23)

meaning that the envelopes A1 and B1 are advected to the right on the T1 time scale with
speeds ±cg.

Here, there is no saturation at O(ϵ2). This can be resolved by assuming that the group
speed is small, cg = O(ϵ), although this can only be achieved by varying a second parameter
at the same time as λ. Under this assumption, we obtain at O(ϵ3) the following amplitude
equations :

∂T2A1 −
cg
ϵ
∂X1A1 = µA1 + a|B1|2A1 + b

(
|A1|2 + |B1|2

)
A1 + γ∂2X1

A1, (24)

∂T2B1 +
cg
ϵ
∂X1B1 = µ∗B1 + a∗|A1|2B1 + b∗

(
|A1|2 + |B1|2

)
B1 + γ∗∂2X1

B1, (25)

where µ ≡ λ + iω, and a, b and γ are complex coefficients. The resulting equations are
coupled complex Ginzburg-Landau equations for the envelope functions A1, B1. They are
local but nonasymptotic since when cg ̸= 0 at λ = 0 one cannot take the limit ϵ → 0: the
validity of the equations does not extend all the way to threshold. This fact restricts the
applicability of the amplitude equations (24-25).
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This problem can be overcome writing the amplitudes A1, B1 in the slow co-moving
coordinates X±

1 = X1 ± cgT1 (see [6]). Proceeding to O(ε3) yields evolution equations on
the slowest time scale T2 (we suppress the superscripts on X±

1 for readability):

∂T2A1 − cg∂X−
1
A2 = µA1 + a|B1|2A1 + b

(
|A1|2 + |B1|2

)
A1 + γ∂2X1

A1, (26)

∂T2B1 + cg∂X+
1
B2 = µ∗B1 + a∗|A1|2B1 + b∗

(
|A1|2 + |B1|2

)
B1 + γ∗∂2X1

B1. (27)

The solvability conditions for A2, B2 are obtained integrating these equations over X±
1 ,

respectively, which yields asymptotically valid but nonlocal evolution equations for the
evolution of A1, B1 on the superslow time scale T2 (see equations (13) in [6]).

3 Strongly Nonlinear Rotating Convection

In this section, we consider two-dimensional convection in an unbounded horizontal layer of
fluid of height h under strong rotation. At the top and bottom, we consider impermeable
(u · ẑ = 0), stress-free surfaces (∂zu = ∂zv = 0) and fixed temperatures (θ(z = 0) = θ0 and
θ(z = h) = θ1 < θ0). We assume that the fluid is incompressible and that the temperature
fluctuations remain small enough to allow the Boussinesq approximation. In addition,
rotation is assumed to be antiparallel to gravity, i.e., at the North Pole. The equations
governing the problem are then:

∇ · u = 0, (28)

u,t + (u ·∇)u+ 2Ω× u = − 1

ρ0
∇p+ αg(θ − θ0)ẑ + ν∇2u, (29)

θ,t + (u ·∇)θ = κ∇2θ, (30)

where u = (u, v, w) is the velocity vector, θ is the temperature, p is the pressure andΩ = Ωẑ
is the rotation vector. The constants ν and κ are, respectively, the fluid kinematic viscosity
and thermal diffusivity (both in m2/s), and the constant α is the thermal expansivity. The
operator ∇ = (∂x, ∂y, ∂z) denotes the gradient vector, while commas followed by subscripts
denote partial derivatives, e.g., A,t ≡ ∂A/∂t.

Using the streamfunction ψ defined as (u,w) = (−∂zψ, ∂xψ) and the following dimen-
sionless quantities

t̂ =
tκ

h2
; [x̂, ŷ, ẑ] =

[x, y, z]

h
; û =

uh

κ
; ψ̂ =

ψ

κ
; θ̂ =

θ

θ0 − θ1
, (31)

we can rewrite the system as follows, dropping the hats for simplicity,

1

σ
[∇2ψt + J(ψ,∇2ψ)] = Rθx − Tvz +∇4ψ (32)

1

σ
[vt + J(ψ, v)] = Tψz +∇2v (33)

θt + J(ψ, θ) = ∇2θ, (34)
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where the symbol J is defined by J(f, g) = f,xDg − g,xDf and D ≡ ∂z. Here σ, R and
T are, respectively, the Prandtl number, the Rayleigh number and the square root of the
Taylor number, namely,

σ =
ν

κ
, R =

gα∆Th3

νκ
, T =

2Ωh2

ν
. (35)

The following derivation, as well as most of the figures in this section are taken from [3].

3.1 Linear stability criteria

We analyse the linear stability of the conduction state (θ0(z) = 1 − z, ψ0 = 0, v0 = 0)
by adding small perturbations (θ1, ψ1, v1) (see [1]). On substituting in the Boussinesq
equations, we can write the following linear equations:

1

σ
∇2ψ1,t = Rθ1,x − Tv1,z +∇4ψ1

1

σ
v1,t −∇2v1 = TDψ1

θ1,t + ψ1,xDθ0 = ∇2θ1

where D = ∂z.
We look for the onset of instability via a state of purely oscillatory solutions. This means

that we look for solutions under the form f1(x, t) ∼ A(z) exp(iΩt+ik⊥x), with Ω real. With
the stress-free and fixed temperature boundary conditions, we can show that for the lowest
vertical mode A(z) = sin(πz). We apply the operator

(
iΩσ + k2⊥ −D2

) (
iΩ+ k2⊥ −D2

)
to

the first equation. This leads to :

(
iΩ+ k2⊥ + π2

) [(
i
Ω

σ
+ k2⊥ + π2

)2 (
k2⊥ + π2

)
+ π2T 2

]
= k2⊥R

(
i
Ω

σ
+ k2⊥ + π2

)
. (36)

By separating the real and imaginary parts, we obtain a pair of equations that can be solved
for Ω2:

Ω2
0 = −σ2

(
k2⊥ + π2

)2
+
σ2(1− σ)

1 + σ

π2

k2⊥ + π2
T 2 (37)

and the critical Rayleigh number:

R(0) = 2(1 + σ)

(
k2⊥ + π2

)3
k2⊥

+
2σ2

1 + σ

π2

k2⊥
T 2. (38)

These equations need to be verified for overstable oscillations to occur with wavenumber
k⊥ and a Taylor number of T 2. In particular, for Ω0 to be real we need to have a Prandtl
number σ < 1. For σ > 1, overstable oscillations cannot occur, and the conduction state
will lose its stability to steady convection.

For σ < 1 and a given T , overstable oscillations are possible if k⊥ < k∗, defined by
Ω2
0 = 0, i.e.,

(k2∗ + π2)3 =
1− σ

1 + σ
π2T 2. (39)

22



Figure 3: Steady convection (solid line) and overstable oscillations (dashed line) neutral
stability curves as a function of the scaled wavenumber k⊥.T

−1/3 at (a) σ = 0.2, (b) σ = 0.4,
(c) σ = σ∗ ≈ 0.677 and (d) σ = 0.8. For each σ, nonlinear oscillatory solutions are located
between the corresponding dashed and dotted lines.

The marginal stability curves were plotted in Fig. 3. The solid line corresponds to
the critical Rayleigh numbers for which steady convection occurs for a given horizontal
wavenumber and applies for all Prandtl numbers. The dashed lines are the critical curves
for overstable oscillations at different Prandtl numbers (0 < σ < 1). The two curves
intersect at k⊥ = k∗, called the Takens-Bogdanov point [2].

Depending on the value of the Prandtl and Taylor numbers, instability will manifest
itself as stationary convection or overstable oscillations. For σ ≥ σ∗ ≈ 0.677 (cases c/d),
the linear analysis predicts that steady convection destabilizes first, since its critical Rayleigh
number is always lower than that for overstable oscillations. This statement applies only at
the level of linear onset: nonlinear effects may favor oscillatory states even when the steady
mode sets in first, as discussed by [8]. On the other hand, for σ < σ∗ (cases a/b), the linear
analysis predicts that instability will manifest itself as overstable oscillations in the limit of
large Taylor numbers.

3.2 Asymptotics analysis for the strongly nonlinear problem

In the limit of large Taylor numbers, the critical Rayleigh number is minimised by horizontal
wavenumber of scale k⊥ ∝ T 1/3. This leads to :

Ω2
0 ∼ σ2

(
−k4⊥ +

1− σ

1 + σ

π2

k2⊥

)
T 4/3 and R(0) =

(
2(1 + σ)k4⊥ +

2σ2

1 + σ

π2

k2⊥

)
T 4/3, (40)

where k⊥ now denotes the scaled horizontal wavenumber. Thus, R(0) ∝ T 4/3 and Ω0 ∝ T 2/3.
This suggests the scaling :

ξ = T 1/3x, τ = T 2/3t, R = R̂T 4/3, v = v̂T 1/3. (41)
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These scalings are chosen so that in the large Taylor number limit the horizontal scale and
frequency of the instability are of order 1 in the new variables. Note that, as a result of the
scaling chosen, the velocity u will be highly anisotropic in the horizontal:

ψ(x, z, t) = ψ0(ξ, z, τ) + T−1/3ψ1(ξ, z, τ) + T−2/3ψ2(ξ, z, τ) + ..., (42)

v̂(x, z, t) = v̂0(ξ, z, τ) + T−1/3v̂1(ξ, z, τ) + T−2/3v̂2(ξ, z, τ) + ..., (43)

θ(x, z, t) = θ0(ξ, z, τ) + T−1/3θ1(ξ, z, τ) + T−2/3θ2(ξ, z, τ) + ... . (44)

The Boussinesq equations (32-34) give at leading orders O(T 5/3), O(T ) and O(T 2/3),
respectively.

θ0,ξ = 0 ⇒ θ0 = θ̄0(z) (45)

1

σ
v0,τ = Dψ0 + v0,ξξ, (46)

(∂τ − ∂2ξ )θ0 = 0. (47)

At order O(T 4/3), equation (32) now gives:(
1

σ
∂τ − ∂2ξ

)
ψ0,ξξ = R̂θ1,ξ −Dv0, (48)

while equation (34) gives at order O(T 1/3):(
∂τ − ∂2ξ

)
θ1 = ψ0,ξDθ̄0. (49)

Using equations (46) and (48), we can rewrite equation (34) in the form:

(
∂τ − ∂2ξ

)
D2ψ0 + (∂τ − ∂2ξ )

(
1

σ
∂τ − ∂2ξ

)2

ψ0,ξξ = −R̂
(
1

σ
∂τ − ∂2ξ

)
ψ0,ξξDθ̄0. (50)

We look for solutions in the form of left and right-traveling waves with amplitudes that
depend on the vertical :

ψ0 = A(z) exp{iΩτ + ik⊥ξ}+B(z) exp{iΩτ − ik⊥ξ}+ c.c.
v0 = E(z) exp{iΩτ + ik⊥ξ}+ F (z) exp{iΩτ − ik⊥ξ}+ c.c.
θ1 = G(z) exp{iΩτ + ik⊥ξ}+H(z) exp{iΩτ − ik⊥ξ}+ c.c.

(51)

Substituting in equation (46) leads to:(
iΩ

σ
+ k2⊥

)
E = DA ,

(
iΩ

σ
+ k2⊥

)
F = DB (52)

and in equation (49), to:(
iΩ+ k2⊥

)
G = −ik⊥ADθ̄0 ,

(
iΩ+ k2⊥

)
H = ik⊥BDθ̄0 , (53)

i.e., linear equations. This is because the Jacobian terms J(·, ·) vanish identically. As a
result (45) represents a finite amplitude solution, and Ω is the (so far unknown) nonlinear
frequency.
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It remains to obtain an equation for the mean temperature gradient Dθ̄0. Equation (34)
at order O(T ) gives:

(∂τ − ∂2ξ )θ2 = D2θ̄0 −Dθ̄0ψ1,ξ − ψ0,ξDθ1 +Dψ0θ1,ξ. (54)

By taking the horizontal average of this equation, we keep only the terms without a
e2ik⊥ξ component:

∂τ θ̄2 = D2θ̄0 − ik⊥D(AG∗ −A∗G−BH∗ +B∗H), (55)

where ∗ denotes the complex conjugate. Here, the right hand-side is independent of τ .
However, the solvability condition tells us that it must be orthogonal to Ker(∂τ ) so that
θ̄2 remains bounded as τ → ∞, thereby preserving the assumed asymptotic ordering in
(42-44). This leads to:

D2θ̄0 − ik⊥(AG
∗ −A∗G−BH∗ +B∗H) = 0. (56)

Integrating once, we obtain :

Dθ̄0 − ik⊥(AG
∗ −A∗G−BH∗ +B∗H) = −K (57)

with K a constant. Replacing G and H with equations (53) now leads to:

Dθ̄0

(
1 +

2k4⊥
Ω2 + k4⊥

(|A|2 + |B|2)
)

= −K. (58)

Since
∫ 1
0 Dθ̄0dz = θ̄0(z = 1)− θ̄0(z = 0) = −1, we have an expression for K:

K−1 =

∫ 1

0

Ω2 + k4⊥
Ω2 + k4⊥ + 2k4⊥(|A|2 + |B|2)

dz. (59)

Equations (58) and (59) allow us to determine Dθ̄0(z) in terms of the amplitudes A(z)
and B(z) and thus to close the problem. Note that it is not necessary to calculate ψ1. In the
limit of large Taylor numbers, the mean flow associated with a traveling wave is negligible.

The constant K can be identified as the time-averaged Nusselt number ⟨N⟩. To see this,
we consider the horizontally averaged vertical heat flux

N(z, τ) ≡ −Dθ + wθ = −Dθ0 + ψ0ξθ1 +O
(
T−1/3

)
, (60)

Replacing θ0, ψ0ξ and θ1 in (60), it follows that ⟨N⟩ = K. In particular, ⟨N⟩ is independent
of z.

From equation (50), we can obtain the following two second-order nonlinear coupled
equations for the amplitudes A and B:

D2A− k2⊥

(
iΩ

σ
+ k2⊥

)2

A+ R̂k2⊥

(
(iΩ/σ) + k2⊥

) (
−iΩ+ k2⊥

)
Ω2 + k4⊥ + 2k4⊥(|A|2 + |B|2)

KA = 0, (61)

D2B − k2⊥

(
iΩ

σ
+ k2⊥

)2

B + R̂k2⊥

(
(iΩ/σ) + k2⊥

) (
−iΩ+ k2⊥

)
Ω2 + k4⊥ + 2k4⊥(|A|2 + |B|2)

KB = 0. (62)
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Figure 4: From [3] : (a) Time-averaged Nusselt number K and (b) frequency as functions

of the scaled Rayleigh number at the respective critical wavenumber k
(o,s)
c for oscillatory

(solid) and steady (dashed) solutions for : (i) σ = 0.2, (ii) σ = 0.4, (iii) σ ≈ 0.68 and (iv)

σ = 0.8. For comparison, the steady solution at the k
(o)
c for σ = 0.8 is plotted in the dotted

line.

Figure 5: From [3]: Profiles of (a) mean temperature and (b) streamfunction amplitude at
various scaled Rayleigh numbers.
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Figure 6: From [3]: Instantaneous streamlines in a left-traveling wave (left) and for a
standing wave at four times during half an oscillation period (right). Solid (dotted) contours
indicate clockwise (counterclockwise) motion.

We write A = C√
1+|c|2

, B = cC√
1+|c|2

, which represents traveling (c = 0) and standing

(c = 1) waves as well as modulated waves (0 < |c| < 1). In particular, these waves all have
the same time-averaged Nusselt number ⟨N⟩ = K. Equations (61-62) then collapse into a
single equation

D2C − k2⊥

(
iΩ

σ
+ k2⊥

)2

C + R̂k2⊥

(
(iΩ/σ) + k2⊥

) (
−iΩ+ k2⊥

)
Ω2 + k4⊥ + 2k4⊥|C|2

KC = 0. (63)

with K−1 =
∫ 1
0

Ω2+k4⊥
Ω2+k4⊥+2k4⊥|C|2dz.

This is a complex-valued nonlinear eigenproblem for the vertical structure C(z) with
eigenvalues R̂K and Ω. The problem was solved numerically in [3] with impenetrable
boundary conditions (C(0) = C(1) = 0) using an iterative Newton-Raphson-Kantorovich
scheme. The eigenfunction C(z) is then used to calculate K and, hence, the corresponding
value of R̂.

Fig, (4) shows the resulting K
(
R̂; k

(o)
c

)
and Ω

(
R̂; k

(o)
c

)
for various Prandtl number

σ at the most unstable mode k
(o)
c . The steady state values K

(
R̂; k

(s)
c

)
for its critical

wavenumber are plotted in the dashed line. For sufficiently small Prandtl numbers (cases
(i), (ii)), the oscillatory solutions that are the first to set in, transport heat more efficiently
than steady convection at its critical wavenumber. For larger σ, this is no longer so. Fig,

4 also shows K(R̂; k
(o)
c ) for steady convection at the wavenumber preferred for oscillatory

convection (dotted line).
Fig, (5) shows |C(z)| and the corresponding mean temperature θ̄0 for several values of

R ≥ R
(o)
c . We can see that the oscillations are responsible for large O(1) adjustments in the

mean temperature profile, and the development of thermal boundary layers as R increases.
We illustrate solutions in the form of traveling and standing waves, characterised by c = 0
and |c| = 1, in Fig. 6 (left and right, respectively).
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The above approach generalizes readily to three-dimensional oscillating patterns [4].
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GFD 2024 Lecture 3: Turbulence, Turbulent Asymptotics and
Turbulent Convection

Basile Gallet; notes by Camille Moisset and Matthew McCormack

June 20, 2024

This set of lectures combines standard textbook material with more recent progress in addressing 
strongly turbulent flows arising in geophysical and astrophysical fluid dynamics. The goal is two-
fold: because this is the GFD program, the lectures are motivated by situations of interest arising 
in geophysical and astrophysical contexts. They aim at designing a minimal model of the (often 
turbulent) processes at stake. But because this is the GFD program, the goal is also to learn 
methods in physics and applied mathematics that prove useful to solve these minimal models. Each 
lecture is thus designed with the goal of illustrating such a method.

To set the stage, we begin with a reminder of basic turbulence dynamics. We do not aim for a 
comprehensive description. Instead, we wish to highlight the key phenomenology behind the stan-
dard scaling arguments entering the description of turbulent flows. We introduce 3D turbulence 
first before discussing the specificities of 2D turbulence. Once we have basic intuition in turbu-
lence dynamics, we apply these ideas to predict the scaling-laws governing fully turbulent thermal 
convection, both with and without rotation.

1 3D Turbulence

1.1 Drag force on an object

Turbulence dynamics is perhaps an engineering problem to begin with, sketched in figure 1: an object 
of size R attached in a wind tunnel is subject to an incoming incompressible flow with uniform 
velocity Uex. The fluid has uniform density ρ and kinematic viscosity ν. The fluid exerts a drag force 
on the object, the time-averaged magnitude of which is denoted by F . We wish to express F in terms 
of the parameters of the problem.

The five-dimensional parameters of the problem and their respective dimensions are:

F , U , R , ρ , ν ,
MLT−2 LT−1 L , ML−3 L2T−1 ,

(1)

where M , L, T denote dimensions of mass, length and time, respectively. With five dimensional
quantities involving three dimensions, we conclude based on the Buckingham-π theorem that the
physical law governing the system involves two independent dimensionless parameters. Choosing
the dimensionless parameters F/(ρR2U2) and Re = UR/ν, the physical law takes the form:

F

ρR2U2
= F

(
Re =

UR

ν

)
, (2)
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R
Fex

Uex

ρ, ν

a. b.

Figure 1: a. Schematic of a sphere in a wind tunnel. b. Experimental realization (copyright
ONERA). We assume that energy dissipation takes place predominantly within a volume of order
R3 within the wake region, represented schematically in dashed orange.

where the function F is unknown at this stage. Strictly speaking, this is all we can infer from
dimensional analysis. However, we are interested in the turbulent regime, which one can think of
as the limit ν → 0 for otherwise constant parameters. If ν is so small, why should it enter the
dimensional analysis above? Assuming ν can be forgotten about in the limit ν → 0, we are left
with four dimensional parameters involving three dimensions, hence a single dimensionless quantity
according to the Buckingham-π theorem. The physical law reduces to:

F

ρR2U2
= const. for Re→ ∞ , (3)

or, equivalently, limRe→∞F(Re) = const. . We recover the standard scaling-law for a turbulent drag
force, the constant on the right-hand side (rhs) being typically denoted by Cx/2 in the engineering
literature, with Cx the drag coefficient.

1.2 Anomalous dissipation

Let us estimate the power dissipated by the turbulent flow in figure 1 on time average. In a wind
tunnel experiment, this dissipated power equals the mean power required to drive the incoming
flow. If, instead, the object is an airplane moving through initially steady fluid, then the dissipated
power – the fuel consumption of the airplane – is directly related to the work done by the force F
per unit time:

P = FU ∼ ρU3R2 , (4)

valid for Re → ∞. This result should appear as a paradox to the uninitiated reader. Indeed, the
estimate (4) does not involve the viscosity ν, even though viscosity is the very process responsible
for energy dissipation. For ν = 0 the Navier-Stokes equation reduces to the Euler equation, and,
provided the velocity field is smooth, the Euler equation conserves energy. As ν → 0 in the Navier-
Stokes equation, one may thus have expected the dissipated power to smoothly tend to zero. Instead,
the wealth of data from wind-tunnel experiments point to the limiting behavior (4) instead, known
as ‘anomalous dissipation’ or ‘zeroth law of turbulence’: the mean power dissipated by
the flow tends to a constant, strictly positive value as the dissipative coefficient (the
viscosity) tends to zero for otherwise constant parameters. The unavoidable conclusion
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is that high-Reynolds-number solutions to the Navier-Stokes equation do not resemble smooth
solutions to the Euler equation.

To further highlight this point, let us assume that the kinetic energy is dissipated predominantly
within the wake region behind the object, inside a volume of order R3. The mean kinetic energy
dissipation rate per unit mass of fluid is denoted by:

ϵ = ν
〈
|∇u|2

〉
x,t

, (5)

where u denotes the velocity field and ⟨·⟩x,t denotes a volume average over the wake region together
with a time average. Equating the input power (power of the force F acting on the object) with
the viscous dissipation inside the wake yields:

P ∼ ρR3ϵ ⇒ ϵ ∼ U3

R
, (6)

where we have inserted (4) to obtain the second estimate. Substituting the definition of ϵ we obtain
that the velocity gradients inside the wake diverge as ν → 0 (for constant U and R),

〈
|∇u|2

〉
x,t

∼ U3

Rν
→ ∞ as ν → 0 . (7)

As announced above, we conclude that the solutions to the Navier-Stokes equation become increas-
ingly rough as ν → 0 and do not resemble smooth solutions to the Euler equation.1

1.3 Turbulent energy cascade

In the 1920s, Lewis F. Richardson proposed the phenomenological picture of an energy cascade to
describe the formation of small-scale structures in turbulent flows. The energy cascade is sketched
in figure 2, and we discuss it based on the motion of fluid inside a blender. Assuming that the
blender has blades of size R spinning at linear velocity U (velocity of the tip of the blades), the
motion of the blades inputs a power per unit mass of fluid ϵ ∼ U3/R, see equation (6). This input
energy initially takes the form of large vortices of scale comparable to R. However, as a result of
the nonlinearities of the Navier-Stokes equation, these vortices break up into smaller vortices, and
the smaller vortices again break up into even smaller vortices, etc., the process repeating itself in
a self-similar fashion until the vortices are so small that the Reynolds number built on the size
ℓν of the smallest vortices is of the order of one. Viscosity then comes into play and damps the
fluid motion. In statistically steady state, there is thus a constant flux of energy ϵ ∼ U3/R (per
unit mass of fluid) from the larger to the smaller scales of the turbulent flow. Vortices within the
so-called inertial range of scales ℓν ≪ ℓ ≪ R receive an energy flux ϵ from larger vortices (of
size approx. ∼ 2ℓ, say) and transfer an equal energy flux ϵ to smaller vortices (of size approx.
ℓ/2). Such inertial-range flow structures are ‘unaware’ of the large-scale forcing mechanism and of
the small-scale viscosity. Instead, they only ‘know’ about the energy flux ϵ and their size ℓ. For
instance, their typical velocity uℓ is obtained from dimensional analysis based on ϵ and ℓ only. We
obtain

uℓ ∼ (ϵℓ)1/3 . (8)
1They may, however, resemble rough solutions to the Euler equation.
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Figure 2: Richardson’s turbulent cascade (panel b) is a phenomenological model for a high-Reynolds-
number flow driven at a scale R with a velocity U , such as the flow in a blender (panel a). The
motion of the blades inputs a power ϵ ∼ U3/R per unit mass of fluid. This energy flux ϵ is transferred
to smaller and smaller scales until the scales are small enough to be damped viscously.

At the end of the turbulent cascade, the smallest vortices with size ℓν finally dissipate this same
energy flux ϵ through viscosity.2 A scaling expression for ℓν is obtained from dimensional analysis
using ϵ and ν, which leads to

ℓν ∼
(
ν3

ϵ

)1/4

, (9)

known as the Kolmogorov dissipative scale. This is also the scale for which uℓ ℓ/ν ∼ 1.
To summarize, driving a turbulent flow at scale R with velocity U leads to energy input at a

rate of order U3/R. The forced flow structures are large and completely unaware of the tiny value
of the kinematic viscosity. However, the fluid finds a way to dissipate the input energy through
the turbulent cascade mechanism: the large flow structures break into smaller and smaller flow
structures that induce so much viscous friction that the total input power can be dissipated by
the tiny viscosity. In a thought experiment where the viscosity is decreased by a factor of ten, the
same power U3/R is input into the system (that is, the electrical consumption of the blender is
independent of the fluid’s viscosity). The cascade proceeds down to even smaller flow structures for
the input power to be damped by the smaller viscosity, in line with equation (9).

2 2D Turbulence

Although real flows are three-dimensional, flows of geophysical interest come with additional physical
ingredients that often make them strongly anisotropic. Global rotation, magnetic field, or simply a
very shallow fluid domain tend to favor quasi-two-dimensional motion. A good understanding of 2D
turbulence will thus provide useful insight to characterize the various flows of geophysical interest
considered in the subsequent lectures.

2Of course, in statistically steady state the vortices of all sizes coexist inside the blender at any given instant in
time.
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Consider an incompressible, two-dimensional, planar flow in the (x, y) plane:

u =

u(x, y, t)v(x, y, t)
0

 . (10)

The flow being incompressible, ∇ · u = 0, it stems from a streamfunction ψ(x, y, t):3

u = −∇× ψez =

−ψy

ψx

0

 . (11)

The vorticity is along the vertical direction z only, ∇ × u = ζez, and the vertical vorticity reads
ζ = ∆ψ, where ∆ denotes the (horizontal) Laplacian operator. Based on the streamfunction
representation (11) the advective nonlinearities are conveniently written using the Jacobian operator
J . That is, the advection of some arbitrary field ϕ is written as u ·∇ϕ = ψxϕy − ψyϕx ≡ J(ψ, ϕ).
In the absence of external forcing, the vertical vorticity equation takes the form:

∂t∆ψ + J(ψ,∆ψ) = ν∆2ψ . (12)

An important consequence of the 2D geometry is the absence of a vortex-stretching term in equation
(12).

2.1 Conservation of energy and enstrophy

Consider equation (12) in a square domain with periodic boundary conditions, and denote by ⟨·⟩ a
space average over the domain. Multiplying equation (12) by ψ before averaging over the domain
leads to the kinetic energy evolution equation:

d

dt

〈
u2
〉

2
= −ν

〈
(∆u)2

〉
, (13)

where we have used
〈
|∇ψ|2

〉
=
〈
u2
〉

and ⟨ψJ(ψ,∆ψ) = 0⟩.4 The kinetic energy of the flow is thus
conserved by the nonlinearities of the equation, and, in the present unforced problem, the kinetic
energy decreases as a result of viscosity.

A second conservation equation is obtained by multiplying the Navier-Stokes equation (12) by
∆ψ before averaging over the domain, which leads to:

d

dt

〈
(∆ψ)2

〉
2

= −ν
〈
|∇∆ψ|2

〉
. (14)

On the left-hand side is the time derivative of the enstrophy Z, defined as:

Z =

〈
ζ2
〉

2
=

〈
(∆ψ)2

〉
2

. (15)

3Beware of the minus sign in this GFD convention.
4Here and in the following we make extensive use of the formula ⟨aJ(b, c)⟩ = −⟨bJ(a, c)⟩ for any three fields a(x),

b(x) and c(x) satisfying the periodic boundary conditions. If any of these two fields are equal, the formula readily
gives ⟨aJ(b, c)⟩ = 0.
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Equation (14) shows that Z is conserved by the nonlinearities of the 2D Navier-Stokes equation. In
the present unforced problem, enstrophy decreases as a result of viscosity.

Enstrophy conservation is a specific property of 2D turbulence with important consequences for
the kinetic energy power integral of the system. Indeed, equation (14) indicates that Z decreases
with time as a result of viscous dissipation, such that 0 ≤ Z(t) ≤ Z(0) for any t ≥ 0. The absolute
value of the kinetic energy equation (13) then yields:∣∣∣∣∣ ddt

〈
u2
〉

2

∣∣∣∣∣ = 2νZ(t) ≤ 2νZ(0) → 0 as ν → 0 for fixed initial conditions. (16)

We conclude that there is no anomalous dissipation of kinetic energy in 2D turbulence.
Instead, we have obtained in equation (16) that the instantaneous dissipated power per unit mass
ν
〈
|∇u|2

〉
= 2νZ(t) tends to zero as ν → 0.

What happens then to the Richardson’s phenomenological picture in 2D turbulence? First, we
cannot establish a result similar to (16) for the enstrophy dissipation rate. We expect enstrophy to
be transferred to smaller and smaller scales in a turbulent 2D flow, in a cascading process similar to
the standard Richardson kinetic energy cascade of 3D turbulence. However, equation (16) forbids
a cascade of kinetic energy to small scales, where energy would be dissipated at an anomalous rate.
Instead, the following argument shows that kinetic energy is transferred to larger and larger scales
in 2D turbulent flows, a process referred to as the inverse energy cascade.

2.2 Fjørtoft’s argument

The following argument illustrates why energy is transferred to large scales in the freely evolving 2D
turbulent flow considered above. Inside a 2D periodic domain, the velocity field can be decomposed
into Fourier series in x and y. We thus introduce the energy spectrum E(k, t) defined such that
E(k, t)dk is the kinetic energy contained by the Fourier modes with wavenumber between k and
k + dk. The vorticity being a spatial derivative of the velocity field, one readily obtains that
k2E(k, t)dk is the enstrophy contained by the Fourier modes with wavenumber between k and
k + dk. Integrating over all k ∈ R we obtain:〈

u2
〉

2
=

∫ ∞

0
E(k, t)dk , (17)

Z =

∫ ∞

0
k2E(k, t)dk . (18)

A typical shape for the energy spectrum is sketched in figure 3. We characterize this spectrum using
its centroid k:

k(t) =

∫∞
0 kE(k, t)dk∫∞
0 E(k, t)dk

, (19)

which is a good estimate of the typical energy-containing wavenumber. Additionally, we introduce
the typical width δ of the spectrum around this centroid:

δ2(t) =

∫∞
0 (k − k)2E(k, t)dk∫∞

0 E(k, t)dk
. (20)
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Expanding the square at the numerator yields:

δ2(t) =

∫∞
0 k2E(k, t)dk∫∞
0 E(k, t)dk

− 2k

∫∞
0 kE(k, t)dk∫∞
0 E(k, t)dk

+ k
2
, (21)

=
2Z

⟨u2⟩ − 2k
2
+ k

2
=

2Z

⟨u2⟩ − k
2
, (22)

which we rewrite as:

k
2
(t) =

2Z

⟨u2⟩ − δ2(t) . (23)

We consider an initial condition with a relatively narrow spectrum, as sketched in figure 3 (left).
We assume that the viscosity is very small. The Reynolds number based on this initial condition
is large and the initial evolution is conservative (and remains conservative until enstrophy has been
transferred downscale all the way to the viscous dissipative scale). Z and

〈
u2
〉

are independent
of time during such conservative evolution and the first term on the rhs of (23) is constant. Now,
as a result of the quadratic nonlinearity of the Navier-Stokes equation we expect the generation of
harmonics in the spectrum and thus a broadening of E(k, t) with time. In other words, δ2 increases
in time, which using equation (23) implies that k decreases in time. We conclude that the energy-
containing wavenumber decreases as time evolves, that is, the energy of the flow is contained in
larger and larger fluid structures, as sketched in figure 3 (right). In physical space, such inverse
transfers are typically associated with mergers of isolated vortices. Such a merger event (i) results in
a vortex with a broader vortical core, and (ii) increases the typical inter-vortex distance (comparable
to the energy containing scale) by reducing the number of isolated vortices inside the domain.

E(k)

kk(t = 0)

δ(t = 0)

E(k, t = 0)

E(k)

k

δ(t1 > 0)

k(t1 > 0)

E(k, t1 > 0)

t1 > 0t = 0

Figure 3: Fjørtoft’s argument. Left: an initially narrow energy spectrum with centroid wavenum-
ber k(t = 0) and width δ(t = 0). Right: at some subsequent time t1 > 0 the spectrum has spread
as a result of nonlinearity and generation of harmonics. According to equation (23), the centroid
wavenumber is then necessarily smaller, k(t1 > 0) < k(t = 0).

2.3 Summary

To summarize sections 1 and 2 above, turbulent flows transfer invariants to small scales where they
are dissipated at an anomalous rate, unless some other conservation law forbids it.
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• 3D turbulence: Energy cascades to small scales. External forcing together with a small vis-
cosity result in anomalous dissipation of energy, at a rate per unit mass of fluid ϵ = ν

〈
|∇u|2

〉
∼

U3/R independent of ν. Such anomalous dissipation is sometimes referred to as the zeroth-
law of turbulence, an informal but quite general statement of which would be: large-scale
quantities are related in a way that does not involve the tiny molecular viscosity
(which, if applied to the input power P per unit mass, indeed yields P ∼ U3/R).

• 2D turbulence: Energy cascades to large scales because enstrophy conservation forbids a
standard ‘forward’ cascade of energy to small scales. As a consequences, energy is conserved
in the limit ν → 0. By contrast, enstrophy cascades to small scales and is damped at an
anomalous rate as ν → 0.

T0

T0 +∆T
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Figure 4: Rayleigh-Bénard convection. Left: theoretical setup. Right: mean temperature
profile in the turbulent regime according to the ‘classical theory’, see section 3.1. Turbulence
homogenizes the temperature in the bulk of the domain. Diffusion of heat across the marginally
stable boundary layers at top and bottom throttles the heat flux.

3 Turbulent Convection

Thermal convection is a main driver of geophysical and astrophysical flows. Consider the Earth
for instance: convection arises in the outer core, where it induces the geomagnetic field through
dynamo action. Above the core is the mantle, where convection drives plate tectonics. Above the
mantle is the Ocean, where high-latitude convection drives the downward branch of the meridional
overturning circulation. And above the Ocean is the atmosphere, where moist convection leads to
cloud formation, with important feedbacks on the global warming of the planet. These natural flows
are strongly turbulent, with large Reynolds numbers, beyond what can be achieved in the laboratory
of using Direct Numerical Simulations (DNS). The GFD approach thus consists of determining the
basic scaling-laws that govern turbulent convection, with the goal of extrapolating these laws to the
extreme parameter values of natural flows.

To wit, one typically considers the canonical Rayleigh-Bénard convection setup, sketched in
figure 4. A layer of fluid of height H lies between a warm bottom plate maintained at temperature
T0 + ∆T and a cool top plate maintained at temperature T0. At the theoretical level, the layer
can be considered infinite or periodic in the horizontal directions. The density depends linearly on
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temperature T , ρ = ρ0[1 − α(T − T0)]. Following the traditional Boussinesq approximation, the
other coefficients characterizing the fluid’s properties are independent of temperature: kinematic
viscosity ν, thermal diffusivity κ, thermal expansion coefficient α, specific heat capacity C, etc.
One can also show that, for small enough temperature drop ∆T , the density variations need only
be included in the expression of the weight of the fluid element [24], while the velocity field can be
considered incompressible (divergence-free).

There are two dimensionless control parameters for such Boussinesq RB convection. The
Rayleigh number,

Ra =
αg∆TH3

κν
, (24)

characterizes the intensity of the thermal driving as compared to diffusive effects. The Prandtl
number,

Pr =
ν

κ
, (25)

characterizes the relative importance of viscosity and thermal diffusion. To some extent, Pr can be
considered constant for a given fluid: Pr ≃ 7 for water around room temperature, Pr ≃ 3 × 10−2

for liquid metals, Pr ≪ 1 in typical astrophysical settings.
For Rayleigh numbers below a critical value Rac, the fluid remains motionless and heat is diffused

from the bottom to the top plate. The resulting heat flux P from the bottom to the top plate is
due entirely to thermal diffusion and equals ρ0Cκ∆T/H. For Ra≫ Rac a vigorous turbulent flow
arises inside the convection cell, transporting heat from the bottom to the top plate and therefore
enhancing the heat flux P . The heat flux P is a central quantity of the convection system, related
to most other global quantities of interest. The heat flux P is directly proportional to the rate of
mechanical energy input into the system, which in statistically steady state is balanced by viscous
dissipation. The heat flux P is also related to the input of buoyancy variance into the system, the
latter being balanced by turbulent mixing. In dimensionless form, the heat flux P is quantified
using the Nusselt number, defined as the ratio of P over the diffusive heat flux of the motionless
state:

Nu =
PH

ρ0Cκ∆T
. (26)

A significant fraction of the research on thermal convection has been devoted to the determination
of the scaling behavior of Nu as a function of Ra and Pr in controlled laboratory experiments and
numerical simulations. The goal is to determine the behavior of Nu at asymptotically large Ra,
and one typically seeks a power-law of the form Nu ∼ RaγPrχ. As discussed below, two competing
theoretical predictions have been put forward for the values of the exponents γ and χ.

3.1 ‘Classical’ scaling regime

The classical theory is based on the observation that the temperature is almost homogeneous in the
interior of high-Ra RB convection, with sharp gradients located within boundary layers adjacent
to the top and bottom plates (see figure 3.1b). The interpretation is that the bulk turbulent flow
efficiently mixes temperature, hence the isothermal profile in the interior of the domain. However,
fluid hardly moves (in the vertical direction) near the top and bottom plates, hence the existence
of boundary layers connecting the isothermal interior with the boundary values of the temperature
field. Because the fluid hardly moves near the boundaries, heat transfer is dominated by diffusion
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in the boundary layers. Assuming that diffusive transfer across the boundary layers throttles the
overall heat flux, we estimate P as

P ∼ ρ0Cκ∆T

δ
(27)

where δ denotes the thickness of the thermal boundary layer. The boundary layer thickness δ can
be deduced from a marginal stability argument initially articulated by Howard [13]: the Rayleigh
number based on δ is comparable to the threshold Rayleigh number for thermal convection,

Ra(δ) =
αg∆Tδ3

κν
≃ Rac . (28)

The rationale is the following: if δ were much thinner than (28), the boundary layer could grow
diffusively. However, if δ were greater than the estimate (28), the boundary layer itself would become
convectively unstable. The boundary layer would then spontaneously erode and δ would decrease.
The conclusion is that, in statistically steady state, the boundary layer thickness δ is given by (28),
where Rac is a constant number, typically of the order of 103. Substituting the estimate (28) for δ
into equation (27) yields, after multiplication by H/(ρ0Cκ∆T ):

Nu ∼ H

δ
∼ Ra1/3 , (29)

that is, γ = 1/3 and χ = 0.

3.2 Diffusivity-free or ‘ultimate’ scaling regime

The competing theoretical prediction, attributed to Spiegel and Kraichnan [23, 22, 15], is based
on the zeroth law of turbulence introduced in section 1.2. If the zeroth law holds for turbulent
convection, the large-scale quantities characterizing the turbulent flow should be related in a way
that does not involve the tiny molecular diffusivities. In the present situation, one thus seeks a
scaling relation between P and ∆T that does not involve κ nor ν. Start from the general scaling
relation:

Nu ∼ RaγPrχ . (30)

Demanding that P and ∆T be related in a way that does not involve ν leads to χ = γ, so that:

Nu ∼ (Ra× Pr)γ . (31)

Remembering that κ appears at the denominator of Nu, the only way for P and ∆T to be related
in a way that does not involve κ is to have the right-hand side of (31) be inversely proportional to
κ. We conclude that:

Nu ∼
√
Ra× Pr , (32)

that is, γ = χ = 1/2. Around Walsh cottage, the scaling relation (32) is often attributed to
E.A. Spiegel [23, 22], who is said to have put forward the idea in an astrophysical context without
publishing it. In the meantime, his postdoc advisor R.H. Kraichnan published a similar prediction
up to logarithmic corrections [15]. Kraichnan’s approach consists in arguing that the boundary
layers of the classical theory above should become turbulent at sufficiently high Rayleigh number.
He assumes that a turbulent velocity boundary layer arises at large Ra, and that this turbulent
boundary layer resembles that of standard wall-bounded turbulent flows, with a logarithmic layer
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Figure 5: Radiatively driven convection. Left: Schematic of the experimental setup, including
the motor driving global rotation when studying rotating convection. Right: Nusselt number as a
function of the Rayleigh number for non-rotating experiments. Filled triangles: Rayleigh-Bénard-
like situation with ℓ/H ≤ 10−4. The best-fit exponent is γ = 0.31, close to a third. Filled circles:
ℓ/H = 0.05. The best-fit exponent is γ = 0.54, close to a half. Open symbols are DNS.

and a viscous sublayer in the immediate vicinity of the boundary. This structure for the boundary
layer leads to the prediction (32) divided by a logarithmic correction in Rayleigh number. In the
physics and fluid dynamics community the scaling-law (32) is often referred to as the ‘ultimate’
scaling regime of convection, possibly because according to Kraichnan the velocity boundary layers
should ultimately become turbulent as Ra increases. In the astrophysics community, (32) is referred
to as the mixing-length scaling-law and is believed to be the relevant scaling-law for the extreme
parameter regimes of astrophysical flows.

While the precise value of the exponent γ remains debated for the highest Ra achieved in
laboratory experiments, all measured values lie in the range 0.26 ≤ γ ≤ 0.38 [2, 7, 17, 4, 20, 12, 8],
that is, the measured exponent is always strictly less than 1/2 (restricting attention to smooth top
and bottom plates, see below). There is thus a need to get rid of the (laminar or turbulent) boundary
layers if one aims at observing γ = 1/2. This has been attempted experimentally by considering a
tall channel connecting a reservoir of hot fluid to a reservoir of cool fluid [9, 5, 18], or by using rough
top and bottom plates with the goal of disrupting the boundary layers [6, 19, 21, 27, 28, 21, 26],
both approaches showing some degree of success, see Ref. [10] for a discussion. Here, we describe
a different experimental approach based on radiative heating, developed within our group at CEA
Saclay [16].

3.3 Radiatively driven convection

One way to mitigate the throttling effect of the boundary layers is to input the heat predominantly
beyond the latter, directly into the bulk turbulent flow. Lepot et al. [16] put this idea into practice by
employing radiative heating in the experimental setup described thereafter and sketched in figure 5.
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A cylindrical tank with a transparent bottom plate contains a mixture of water and carbon-black
dye. A powerful spotlight shines at the tank from below, and the absorption of light by the dye
induces radiative heating. Following Beer-Lambert’s law, the light flux decreases exponentially with
height z measured from the bottom of the tank, over an e-folding absorption scale ℓ, and so does the
internal heat source. The absorption length ℓ is easily tuned through the concentration of the dye.
For large dye concentration, the heat source is localized in the immediate vicinity of the bottom
plate, with ℓ much smaller than the thickness of the velocity and temperature boundary layers. Such
a heat source is similar to an imposed bottom heat flux; we thus expect a throttling effect associated
with the presence of the bottom boundary layer, in a similar fashion to Rayleigh-Bénard convection.
By contrast, using lower dye concentration, ℓ can be made much thicker than the boundary layers.
The heat is then directly input into the bulk turbulent flow, bypassing the high thermal impedance
of the boundary layers.

Denoting as P the energy flux radiated by the spotlight in the form of visible light (in units of
W.m−2), the governing equation for the temperature T (x, y, z, t) inside the tank becomes [16]:

∂tT + u ·∇T = κ∇2T +
P

ρ0Cℓ
e−z/ℓ , (33)

where u(x, y, z, t) denotes the velocity field and the last term on the rhs is the radiative heat source.
Note that there is no cooling mechanism in this experiment: cooling the fluid through the top

surface would necessarily introduce flux-throttling boundary layers. Instead, in the absence of any
cooling mechanism and provided the boundaries of the fluid domain are insulating, the system
is equivalent to convection heated radiatively and cooled down internally in a uniform fashion
throughout the fluid volume. Indeed, averaging equation (33) over space leads to the evolution
equation for the spatially averaged temperature T (t):

dT

dt
=

P

ρ0CH

(
1− e−H/ℓ

)
≃ P

ρCH
, (34)

where H denotes the height of fluid and we have assumed ℓ ≪ H to obtain the last equality (we
have also used the insulated boundary conditions to remove various surface terms). Equation (34)
indicates that the mean temperature inside the tank increases linearly with time, because heat
is supplied at a constant rate. To investigate the internal temperature structure within the fluid,
consider the variable θ(x, y, z, t) = T (x, y, z, t)−T (t), which represents the temperature fluctuations
around the spatial average and obeys:

∂tθ + u ·∇θ = κ∆θ +
P

ρ0C

(
e−z/ℓ

ℓ
− 1

H

)
. (35)

In the parentheses is the radiative heat source, together with an effective uniform heat sink that
balances the heat source over space average. Secular heating thus induces an effective uniform in-
ternal cooling term in equation (35), offering a way to avoid any boundary layer on the cooling side.
As for the traditional Boussinesq set of equations, equation (35) is coupled to the incompressible
Navier-Stokes equation, the latter including a buoyancy term proportional to θ. Solutions to this
set of equations reach a statistically steady state in the long time limit, which one can charac-
terize experimentally by measuring the emergent temperature drop between two probes placed at
two different heights (the resulting temperature drop reaches a stationary state according to equa-
tion (35)). With the flux and the temperature drop at hand, one has access to the Rayleigh number
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and the Nusselt number. In figure 5, the experimental data are shown in the (Ra,Nu) plane for two
limiting situations: for large dye concentration, ℓ/H ≤ 10−4, the heat is input radiatively very close
to the bottom boundary. As for standard Rayleigh-Bénard convection, the heat needs to diffuse
across the lazy bottom boundary layer before entering the turbulent bulk flow, and the measured
exponent γ is close to a third. More interestingly, for ℓ/H = 0.05 the heat is input predominantly
into the turbulent bulk flow. The boundary layers are bypassed and an exponent γ close to a half
is measured (see Ref. [1] for a more extended dataset).

4 Rapidly Rotating Convection

Global rotation is an important ingredient of various geophysical and astrophysical flows, and we
thus investigate how rotation around the vertical axis z impacts the scaling-laws discussed above.
Provided the centrifugal acceleration is negligible as compared to gravity, global rotation only enters
the problem through the addition of the Coriolis force in the Navier-Stokes equation. As compared
to non-rotating convection, the additional dimensional parameter Ω implies the existence of an
additional dimensionless control parameter in the problem, and we choose the Ekman number
E = ν/(2ΩH2). Because of this additional dimensionless parameter, the physical arguments invoked
for non-rotating convection in sections 3.1 and 3.2 are insufficient to determine the scaling-laws of
rotating convection. For instance, when seeking a scaling-law for the Nusselt number under the
form Nu ∼ RaγPrχEξ, demanding that P and ∆T be related in a way that does not involve κ
nor ν (zeroth-law of turbulence) only provides two constraints between the exponents γ, χ and ξ,
leaving us with an infinite number of acceptable values.

4.1 ‘Extrapolation from threshold:’ a method to determine the diffusivity-free
scaling laws

One way to make progress is to focus on the asymptotic limit of rapid global rotation. This approach
was pioneered by Stevenson [25] based on heuristic arguments, before being put on firmer analytical
footing by Julien & Knobloch through an asymptotic expansion of the equations in powers of
E1/3 [14]. As for any asymptotic expansion, one of the most difficult steps is perhaps to infer the
scalings of the various fields with the small parameter E1/3. In the following, I will describe a method
that could be coined ‘extrapolation from threshold’ to readily obtain the various scaling-laws of the
diffusivity-free regime, based on linear stability and the zeroth law of turbulence only.5 Beyond the
sole Nusselt number, we will determine the scaling behavior of the rms flow speed, of the horizontal
and vertical scales of the flow, and of the magnitude of the local temperature fluctuations.

The method consists of three steps, detailed in the following subsections:

• Perform a linear stability analysis of the system, before considering the rapidly rotating limit.

• Determine the saturation level based on the dominant nonlinearity.

• Invoke the diffusivity-free argument.
5The method is illustrated here for rapidly rotating convection but can be applied to other GFD systems (e.g.,

magnetoconvection).
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4.2 Inferring the scalings in E from linear stability analysis

Consider the simplest setup of rotating thermal convection: Rayleigh-Bénard convection subject
to rapid rotation around the vertical axis, with fixed-temperature stress-free boundary conditions
at top and bottom. The eigenmodes consist of Fourier modes in all directions and the instability
threshold and marginal eigenmode are easily computed, see e.g., the book by Chandrasekhar [3]. In
the asymptotic limit of rapid rotation (E ≪ 1), we obtain the following asymptotic scalings in E
for the first unstable mode:

Critical Rayleigh number: Rac ∼ E−4/3 , (36a)

Growth rate (say at Ra = 1.1Rac): σ ∼ κ
H2E

−2/3 , (36b)

Horizontal lengthscale
(horizontal wavelength of most unstable mode) : ℓ⊥ ∼ HE1/3 , (36c)

Vertical lengthscale
(vertical wavelength of most unstable mode) : ℓz ∼ H , (36d)

Ratio of temperature fluctuations in the horizontal
to velocity fluctuations: θstd ∼ ∆TH

κ

〈
w2
〉1/2

E2/3 , (36e)

Relation between the horizontal and
vertical velocity components:

〈
u⊥

2
〉
∼
〈
w2
〉
, (36f)

where θstd denotes the rms temperature fluctuations in the horizontal and in time at a fixed height
z (note that these fluctuations do not scale like the overall temperature drop ∆T ).

We want to describe the near-threshold regime for asymptotically fast rotation, that is E → 0
for Ra ∼ Rac ∼ E−4/3. This corresponds to the distinguished limit:

E → 0 for fixed R̃a = RaE4/3 . (37)

In this distinguished limit, the various relations (36) can be turned into equals signs, provided a
generic function F(R̃a, Pr) is included on the right-hand side (note that the symbol F denotes a
generic function, which differs between one equation and the next):

ℓ⊥

H
= E1/3F(R̃a, Pr) , (38a)

ℓz
H

= F(R̃a, Pr) , (38b)

θstd =
∆TH

κ

〈
w2
〉1/2

E2/3F(R̃a, Pr) , (38c)〈
u2
⊥
〉
=
〈
w2
〉
F(R̃a, Pr) , (38d)

σ =
κ

H2
E−2/3F(R̃a, Pr) . (38e)

At this stage, we do not know the scalings of the various fields u⊥, w and θ independently.
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4.3 Saturation level inferred from dominant nonlinearity

The saturation level of the various fields can be determined based on the dominant nonlinearity.
In the present system the nonlinearities are all of advective type: u⊥ · ∇⊥(. . . ) and w∂z(. . . ).
Starting from infinitesimal perturbations, the exponential-growth phase proceeds until the advective
nonlinearities become comparable to the growthrate. That is, when:

max {u⊥ ·∇⊥;w∂z} ∼ σ , (39)

such that the nonlinear terms can no longer be neglected. Based on the scalings (38) one easily
shows that horizontal advection dominates over vertical advection: u⊥ ·∇⊥ ∼ w/ℓ⊥ ≫ w/H ∼ w∂z.
Equation (39) thus reduces to u⊥/ℓ

⊥ ∼ σ, which yields the saturation level of the flow speed after
substituting (38):

u⊥ =
κ

H
E−1/3F(R̃a, Pr) . (40)

Combining (40) with (38) finally yields the scaling in E of all the dimensionless quantities of interest:

Nu = 1 +
⟨wθ⟩H
κ∆T

∼ H

κ∆T
w θstd ∼ H2

κ2
u2⊥E

2/3F(R̃a, Pr) = F(R̃a, Pr) (41a)

Re =
u⊥H

ν
=
H

ν

κ

H
E−1/3F(R̃a, Pr) = E−1/3F(R̃a, Pr) (41b)

θstd
∆T

=
H

κ
u⊥E

2/3F(R̃a, Pr) = E1/3F(R̃a, Pr) (41c)

ℓ⊥

H
= E1/3F(R̃a, Pr) . (41d)

4.4 Diffusivity-free assumption

By focusing on the rapidly rotating regime, we have crucially simplified the problem: equations
(41) involve unknown functions of the two parameters R̃a and Pr only, as opposed to the three
parameters R̃a, Pr and E initially. As E is made smaller and smaller, equations (41) will remain
valid up to higher and higher values of R̃a.6 The leap of faith is then to assume that, for E ≪ 1, R̃a
can be made large enough for a diffusivity-free regime to arise while the relations (41) still hold. The
resulting fully turbulent (or ‘ultimate’) scaling-laws are obtained by demanding that the functions
F in (41a-41d) be such that ν and κ can be crossed out from both sides of the scaling relations.

For instance, assume a power-law dependence in equation (41a), Nu ∼ R̃a
α
Prβ . Remembering

that R̃a = RaE4/3 ∼ ν1/3κ−1 and that Nu ∼ κ−1 (for otherwise constant parameters), we equate
the powers of κ and ν on both sides of the equation to obtain α = 3/2 and β = −1/2. Substituting
R̃a = RaE4/3 in the resulting scaling-law finally yields:

Nu ∼ Ra3/2E2Pr−1/2 . (42)

6The asymptotic expansion of Julien and Knobloch suggests that R̃a must remain O(1) with respect to their
expansion parameter E1/3, that is, it must satisfy R̃a ≪ E−1/3. This allows for large values of R̃a ≫ 1 provided E
is extremely small.
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Proceeding in a similar fashion with equations (41b-41d) gives the additional scaling predictions:

Re ∼ RaE

Pr
, (43)

θstd
∆T

∼ Ra1/2E Pr−1/2 , (44)

ℓ⊥

H
∼ Ra1/2E Pr−1/2 . (45)

The scaling predictions (42-45) correspond to the diffusivity-free regime of rapidly rotating convec-
tion, also known as the ‘geostrophic turbulence’ scaling regime.

4.5 Experimental realization using radiative heating

At the experimental level, the geostrophic turbulence (GT) regime has not been observed using
rotating Rayleigh-Bénard convection cells. Indeed, it proves challenging to achieve a strongly tur-
bulent flow in a rapidly rotating regime with negligible centrifugal effects. If the flow is not turbulent
enough, boundary layers near the top and bottom plates again throttle the heat flux, as in non-
rotating Rayleigh-Bénard convection. Radiative heating again appears as a promising way to bypass
the boundary layers and observe the GT regime. Rotating radiatively driven convection experiments
were thus performed and indeed led to a clear observation of the GT scaling regime. In such ex-
periments the natural control parameter is the flux-based Rayleigh number RaP = Nu × Ra. A
convenient way to plot the experimental data consists in introducing a diffusivity-free Nusselt num-
ber number N = NuE/Pr and a diffusivity-free flux-based Rayleigh number R = RaPE

3/Pr2.
These two parameters do not involve κ nor ν. If the convective system is indeed in a diffusivity-
free regime, we expect the datapoints corresponding to various RaP and E to gather onto a single
master curve in the (R,N ) plane. As shown in figure 6, this is indeed the case. Additionally, using
RaP = Nu×Ra the GT scaling-law (42) is easily recast as N ∼ R3/5. The master curve in figure 6
does behave as a power-law in the low-R rapidly rotating regime, and the exponent of the power-law
is in excellent agreement with the prediction 3/5 of the GT regime. A validation of the other scaling
predictions of the GT regime using rotating radiatively driven convection is reported in Ref. [11].
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Figure 6: Rotating radiatively driven convection. Diffusivity-free Nusselt number N as a
function of the diffusivity-free flux-based Rayleigh number R for various fluid heights: blue, H = 10
cm, RaP ≃ 2.5.1010; green, H = 15 cm, RaP ≃ 1.3.1011; red, H = 20 cm, RaP ≃ 3.5.1011; black,
H = 25 cm, RaP ≃ 9.1011. The dimensionless absorption length is ℓ/H = 0.024 (filled circles) or
ℓ/H = 0.048 (open squares). The triangles are DNS data for RaP = 1012, Pr = 7, and ℓ/H = 0.048.
In the rapidly rotating regime, entered for R ≲ 3.10−7, the master curve agrees closely with the
geostrophic turbulence scaling prediction N ∼ R3/5, shown as an eye guide.
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GFD 2024 Lecture 4: Geostrophic Turbulence and the Formation of

Large Scale Structures

Edgar Knobloch; notes by Ishwari Mulkawar and Nicolaos Petropoulos

June 20, 2024

1 The Non-hydrostatic Balanced Geostrophic Equations

1.1 Motivation

The aspect ratio of fluid flows (= H/L, or its inverse) often proves to be an important explicit
parameter in asymptotic reductions of the full equations. In the classical QG example, we assume
H ≪ L for rapidly rotating, stably stratified flows and obtain a reduced system that inhibits vertical
motion at leading order. We are now interested in studying convective columnar flows with strong
vertical motion in the rapidly rotating, weakly stratified regime. Examples of this include deep
convection in the Labrador Sea and Taylor columns often observed in rotating tank experiments.
Dynamically, this regime is described by:

• Rapid rotation: Ro≪ 1,

• Thin aspect ratio: H/L≫ 1,

• Weakly stratified flows: Fr = U
NL = O(1)

Scales of interest may be set by the conditions at the onset of convective instability but the theory
below has broader validity.

1.2 Derivation

1.2.1 Primitive equations

In the following, we consider a Cartesian coordinate system x = (x, y, z) rotating at a constant
angular velocityΩ = Ωẑ (where ẑ is the unit vector in the z direction). The Navier-Stokes equations
under the Boussinesq approximation (with characteristic density ρ0) read

∂tu+ (u · ∇)u+Ro−1ẑ × u = −P̂∇p+ Γ̂θẑ +Re−1∇2u, ∇ · u = 0,

∂tT + (u · ∇)T = Pe−1∇2T.

These equations have been non-dimensionalized using an arbitrary horizontal length scale L and
velocity scale U . They will be prescribed at a later stage. The dimensionless parameters are: the
Rossby number Ro := U/(2ΩL); the Euler number P̂ := P̃ /(ρ0)U

2 (the ratio of the a characteristic
pressure scale P̃ and the dynamic pressure ρ0U

2); the buoyancy number Γ̂ := −gαT̃L/U2 (here T̃
is a characteristic temperature scale, typically the temperature jump between the top and bottom
of the domain); the Reynolds number Re := UL/ν and the Péclet number Pe := UL/κ = PrRe
(where Pr := ν/κ is the Prandtl number).
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1.2.2 Asymptotic reduction

We consider the limit of fast rotation Ro≪ 1 and the dynamics of columnar structures with large
aspect ratio H/L ≫ 1 (where H is the height of the domain). We denote ϵ := Ro as our small
parameter and consider the distinguished limit L/H = ϵ. We assume that the columnar structures
can be modulated in the vertical on length scales of order L; these are the processes we want to
capture. It is then natural to introduce a large vertical scale Z = ϵz and decompose motion as
evolving on both the small and large scales:

∂z → ∂z + ϵ∂Z . (1)

Time is also split into a fast time t and slow time1 T = ϵ2t:

∂t → ∂t + ϵ2∂T . (2)

Balances between the Coriolis force, pressure and buoyancy terms in the momentum equation
impose Γ̂ = O(ϵ−1) and P̂ = O(ϵ−2). Hence, we define

Γ̂ = ϵ−1Γ, P̂ = ϵ−2P. (3)

The other constants are assumed order 1. Especially Re, Pe = O(1) (this will prove to be important
in the following). Concerning the fields, we seek solutions of the form:

ϕ = ϕ0 + ϵϕ1 + ϵ2ϕ2 + · · · . (4)

We also denote averages over the fast time and space variables by overbars · and split fields into
their mean and fluctuation contributions:

ϕ = ϕ+ ϕ′. (5)

The momentum and buoyancy equations for the mean quantities are

ϵ2∂Tu+ ϵ∂Z (wu) + ϵ−1ẑ × u = ϵ−1
(
−P∂Zp+ Γθ

)
ẑ + ϵ2Re−1∂2Zu,

ϵ2∂T θ + ϵ∂Z
(
wθ

)
= ϵ2Pe−1∂2Zθ, ∂Zw = 0.

Concerning the fluctuations, we have (with Dt := ∂t + u · ∇ where ∇ = (∂x, ∂y, ∂z))(
Dt + ϵ2∂T + ϵw∂Z

)
u′ + ϵw′∂Zu− ϵ∂Z

(
w′u′

)
+ ϵ−1ẑ × u′ = −ϵ−2

(
∇p′ + ϵ∂Zp

′ẑ
)

+ ϵ−1Γθ′ẑ +Re−1 (∇+ ϵẑ∂Z)
2 u′,(

Dt + ϵ2∂T + ϵw∂Z
)
θ′ + ϵw′∂Zθ − ϵ∂Z

(
w′θ′

)
= Pe−1 (∇+ ϵẑ∂Z)

2 θ′,

∇ · u′ + ϵ∂Zw
′ = 0.

The lowest order balance in the vertical mean momentum equation gives hydrostatic balance:

−P∂Zp0 + Γθ0 = 0 (6)

1This scaling for the slow time seems enigmatic at first sight. However, it can be justified a posteriori ; we will
see that the mean velocity field scales like ϵ at first order and hence, in order to achieve a balance between the
advective and viscous terms in the mean momentum equation (a reasonable balance to aim for, at least at the onset
of instability — more on this later), time should scale like ϵ2.
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Considering the horizontal components of the leading order (mean) momentum equation give
u0, v0 = 0. Incompressibility of the mean (leading order) velocity field imposes w0 = 0. The
leading order balance in the mean buoyancy equation writes

∂Z(w0θ0) = 0 ⇒ w0θ0 = 0
w0=0
====⇒ w′

0θ
′
0 = 0. (7)

Then, one can choose to have θ′0 = 0 or w′
0 = 0. The choice w′

0 = 0 leads to the vertical component
of the velocity field being (at least) one order smaller than its horizontal components. This is not
what we want (see Motivation, section 1.1). Therefore, we consider θ′0 = 0 instead. As a result, the
temperature field can be written as:

θ = θ0 + ϵ× [· · · ]. (8)

The order O(ϵ2) balance in the mean buoyancy equation is (using w1 = 0 — more generally
w = 0 due to the mean incompressibility equation — and θ′0 = 0):

∂T θ0 + ∂Z(w′
0θ

′
1) = Pe−1∂2Zθ0. (9)

The orderO(ϵ) balance in the fluctuation buoyancy equation reads, withD0
t = ∂t+u0·∇ = ∂t+u′

0·∇
(recall again θ′0 = 0)

D0
t θ

′
1 + w′

0∂Zθ0 = Pe−1∇2θ′1. (10)

The leading order balance in the fluctuation momentum equation is

∇p′0 = 0 ⇒ p′0 = 0. (11)

Using this result and θ′0 = 0, the order O(ϵ−1) balance in the momentum equation gives:

ẑ × u′
0 = −∇p′1 (12)

i.e., leading order velocity fluctuations are geostrophically balanced.
The order O(1) momentum equations are

D0
tu

′
0 = −∇p′2 − ∂Zp

′
1ẑ + Γθ′1ẑ +Re−1∇2u′

0. (13)

Incompressibility gives ∇ · u′
0 = 0 at order O(1) and ∇ · u′

1 + ∂Zw
′
0 = 0 at order O(ϵ).

Using the leading order geostrophic balance (12), we have ∂zp
′
1 = 0 and ∂zu

′
0 + ∂yv

′
0 = 0. As a

result ∂zu
′
0, ∂zv

′
0 = 0 (differentiating (12) with respect to z) and ∂zw

′
0 = 0 (using the leading-order

incompressibility condition ∇ · u′
0 = 0). Differentiating (10) with respect to z then gives

D0
t

(
∂zθ

′
1

)
= Pe−1∇2

(
∂zθ

′
1

)
. (14)

Hence, starting with no fluctuation on the small scales at the lowest order, none will be produced. It
therefore seems reasonable to assume ∂zθ

′
1 = 0. In other words, we proved the following statement:

u′
0, p

′
1 and θ

′
1 do not vary on the small vertical scale. We will use this result — essentially expressing

the Taylor-Proudman constraint2 — extensively in the following. First, we consider the vertical
component of (13)

∂zp
′
2 = −D0

tw
′
0 − ∂Zp

′
1 + Γθ′1 +Re−1∇2w′

0. (15)

2The Taylor-Proudman theorem states that in a rapidly rotating fluid, streamlines do not vary along the direction
of the axis of rotation; the fluid is “stiff” in the direction of Ω.
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The left-hand side depends both on the small and large scales whereas the right-hand side depends
only on the large ones. As a result, Fredholm’s alternative theorem gives the following solvability
condition3:

0 = −D0
tw

′
0 − ∂Zp

′
1 + Γθ′1 +Re−1∇2w′

0. (16)

Cross-differentiating the horizontal components of (13) gives

∂zw
′
1 = −D0

t

(
ẑ · ∇ × u′

0

)
− ∂Zw

′
0 +Re−1∇2

(
ẑ · ∇ × u′

0

)
. (17)

To prevent secular growth on small scales in w′
1 (the right-hand side of the above depends only on

large scale variables), we get the solvability condition

0 = −D0
t

(
ẑ · ∇ × u′

0

)
− ∂Zw

′
0 +Re−1∇2

(
ẑ · ∇ × u′

0

)
. (18)

Since the leading order horizontal flow (u′0, v
′
0) is in geostrophic balance with the pressure

gradient ∇p′1, p′1 can be understood as a streamfunction for the leading order velocity field. Let
ψ := p′1 and ω := ∂2xψ + ∂2yψ = ẑ · (∇ × u′

0) be the vorticity associated with the leading order
horizontal flow. Then u′

0 = (−∂yψ, ∂xψ,w′
0) and we get the following set of closed equations:

∂tω + J [ψ, ω]− ∂Zw
′
0 = Re−1(∂2xω + ∂2yω),

∂tw
′
0 + J [ψ,w′

0] + ∂Zψ = Γθ′1 +Re−1(∂2xw
′
0 + ∂2yw

′
0),

P∂Zp0 = Γθ0,

∂T θ0 + ∂Z

(
w′
0θ

′
1

)
= Pe−1∂2Zθ0,

∂tθ
′
1 + J [ψ, θ′1] + w′

0∂Zθ0 = Pe−1(∂2xθ
′
1 + ∂2yθ

′
1).

Note that we have not specified the scales U and L yet. Our derivation assumed that Re
was of order 1. Hence, it seems reasonable to assume the dissipative relationship U = ν/L. The
length scale L is also connected to the Rossby number through L/H = ϵ = Ro (where H is the
height of the domain). This is somewhat inconvenient: the Rossby number is an output of (say) an
experiment (one has to measure velocities to deduce a Rossby number). It would be more convenient
to express the functional dependence between scales in terms of input parameters. We choose the
scaling L/H = Ek1/3 (where Ek is the Ekman number), corresponding to a known scaling at the
onset of rapidly rotating convection [1]. Note that since we are expecting that unbounded growth
of unstable modes will be damped by dissipative processes, it seems relevant to look at scales for
which Re = O(1) to describe this phenomenon. All in all, the reduced-order model derived here
reads (removing primes and indices)

∂tω + J [ψ, ω]− ∂Zw = ∂2xω + ∂2yω,

∂tw + J [ψ,w] + ∂Zψ = Pr−1RaEk4/3θ + ∂2xw + ∂2yw,

∂T θ + ∂Z
(
wθ

)
= Pr−1∂2Zθ,

∂tθ + J [ψ, θ] + w∂Zθ = Pr−1(∂2xθ + ∂2yθ).

Here Ra is the Rayleigh number. These equations correspond to the non-hydrostatic balanced
geostrophic equations (NHBGE) [6, 3]. The problem is now fully described by two dimensionless

3The null space of ∂z is the space of all functions independent of z. Then, the solvability condition is that the
right-hand side is orthogonal to any z-independent function. But the right-hand side is already z-independent. Hence,
it should be 0. This result can also be understood using the following argument. If the right-hand side is not 0, then
p′2 ∝ z and hence is of order 1/ϵ2 for z of order 1/ϵ2, breaking the ordering of the expansions.
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Figure 1: The NHBGE capture the large Ta, low Roconv regime for Rayleigh-Bénard convection
(in red).

numbers: the Prandtl number Pr and the scaled Rayleigh number R := RaEk4/3. The scaled
Rayleigh number is consistent with the Ra ∼ Ek−4/3 scaling at the onset of convection [1]. Note
that using the working assumptions U = ν/L and L/H = Ek1/3, the Rossby number associated
with the scales of interest scales as Ek1/3. Invoking a diffusivity-free argument4, we can go a bit
further and define a ‘convective Rossby number’ Roconv := Ek1/3R1/2Pr−1/2. This is an a priori
measure of the importance of rotation as the Rayleigh number is varied. Figure 1 summarizes the
regime of applicability of the NHBGE.

1.3 Comments on the model

The following properties of the NHBGE have important implications.

• The flow is in geostrophic balance at leading order and hence the horizontal divergence of
the horizontal leading order flow is 0. However (and on contrary to ‘classic’ geostrophy), the
leading order vertical velocity field is non-zero and more specifically of the same order as the
horizontal components of the velocity field (i.e., u′0 ∼ v′0 ∼ w′

0).

• Non-divergent flow at leading order filters out inertia-gravity waves (IGW) in the fast vari-
ables. (IGWs need non-stationary, divergent/ageostrophic flow for propagation.)

• NHBGE are fully 3D and fully nonlinear.

• Conservation laws: The non-dissipative NHBGE equations conserve the energy E and po-
tential vorticity Π where:

E :=
1

2

∫ [
|u′0|2 +

Γ

∂Zθ
θ′

2
]
dxdydZ, Π := ω +

J [w, θ′] + ∂Zθ
′

∂Zθ
. (19)

4More precisely, we write Roconv = Ek1/3RαPrβ , and determine the exponents α and β assuming that the equality
is independent of both κ and ν.
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• Note that the model is valid in the bulk but not in boundary layers; there are no dissipative
terms in the vertical direction to allow for the formation of boundary layers in the case of
no-slip boundary conditions, for instance.

• Surprising symmetry: The transformation (x, y) → (x,−y) and (ψ,w, θ, θ′) → (−ψ,−w,−θ, θ′)
leaves the equations unchanged. Hence, at leading order, the model does not present any hand-
edness due to rotation. One needs to go to the next order to break this symmetry and retrieve
the expected handedness due to rotation. The idea that strong anisotropy dominates over the
chirality introduced by rotation has interesting implications for geophysical and astrophysical
problems.

2 Formation of Large-scale Structures

• Dynamical regimes and large scale structures. The reduced order model developed in the
previous section describes the formation of four dynamical regimes (depending on the value
of the reduced Rayleigh number R and Prandtl number Pr): cellular convection, convective
Taylor column, convective plumes and geostrophic turbulence (see figure 2). Qualitatively,
these regimes are characterised by elongated columnar structures with more or less vertical
structure. Interestingly, these dynamical regimes have been observed in direct numerical
simulation of the primitive equations, even for values of the Ekman number that were not in
the asymptotic regime needed to obtain the NHBG equations.

• Barotropic/baroclinic decomposition. Because of the presence of large-scale vertical colum-
nar structures in the four dynamical regimes presented above, it seems natural to decompose
solutions of the NHBG equations into barotropic (i.e., independent of the vertical coordinate
z) and baroclinic contribution. To this end, we decompose fields into vertical averages and
departures from these averages: ω = ⟨ω⟩ + ω′, ψ = ⟨ψ⟩ + ψ′. The mean and fluctuation
vorticity equations then are

∂t⟨ω⟩+ J [⟨ψ⟩, ⟨ω⟩] + ⟨J [ψ′, ω′]⟩ = ∇2
⊥⟨ω⟩,

∂tω
′ + J [⟨ψ⟩, ω′] + J [ψ′, ⟨ω⟩] + J [ψ′, ω′]− ∂Zw = ∇2

⊥ω
′.

The equation for the barotropic contribution is almost identical to the 2D vorticity equation,
with the exception of the additional barotropic/baroclinic term ⟨J [ψ′, ω′]⟩ that acts as a source
for the barotropic mode. Without this term, we would expect an inverse energy cascade and
a k−3

⊥ pile up at large scales (where k⊥ is the horizontal wave-number). This is also the case
in the presence of the barotropic/baroclinic term, as shown in [8]. The baroclinic equation

corresponds to fully 3D hydrodynamics and exhibits a k
−5/3
⊥ energy spectrum. These results

are summarized in figure 3.

• Nusselt number. In steady state, we have

∂Z
(
wθ

)
= Pr−1∂2Zθ, J [ψ, θ] + w∂Zθ = Pr−1(∂2xθ + ∂2yθ). (20)

Integrating the first equation gives

wθ − Pr−1Nu = Pr−1∂Zθ. (21)

Multiplying the second by θ and averaging gives

wθ∂Zθ = −Pr−1|∇⊥θ|2. (22)
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Figure 2: The NHBGE four dynamical regimes, depending on the value of the reduced Rayleigh
number R and Prandtl number Pr: cellular convection (C), convective Taylor columns (T), con-
vective plumes (P), geostrophic turbulence (G). These regimes were observed in direct numerical
simulations of the primitive equations at Ek = 10−7 with R = 11, Pr = 1 for regime C, R = 15,
Pr = 15 for regime T, R = 50, Pr = 3 for regime P and R = 90, Pr = 1 for regime G (insets).
(Figure adapted from [7]).

Then (
∂Zθ

)2
+Nu∂Zθ + |∇⊥θ|2 = 0 ⇒ ∂Zθ =

1

2

[
−Nu±

√
Nu2 − 4|∇⊥θ|2

]
. (23)

Here Nu is the Nusselt number, a non-dimensional parameter that measures the heat trans-
port, given by qH/ρ0cpκ∆T = −∂Zθ|Z=0. This relation implies that the temperature dissi-
pation rate is bounded by Nu2/4. The negative sign in (23) denotes the (large) temperature
gradient in the thermal boundary layer (which is largely conductive) while the positive sign
stands for the bulk region (well mixed by the convective instability). The transition be-
tween these two regions occurs when −∂Zθ = wθ = Nu/2, implying equipartition between
conduction and convection. This condition determines the extent of the thermal boundary
layer.

• Boundary layer instability and heat transport. Linear stability analysis around the mean tem-
perature gradients reveals that at large Rayleigh (or large R) numbers, the thermal boundary
layer can become unstable even when the convective core is stable (see figure 4). This is in
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NHBGE Primitive equations

Figure 3: Energy spectra for the NGBGE (left) and primitive equations (right). Here Kbc and Kbt

correspond to the baroclinic and barotropic spectra, respectively. (Figure adapted from [2]).

contrast to nonrotating RB convection, where the core loses stability first and boundary layer
instabilities only occur at Rayleigh numbers that are at least an order of magnitude larger
than the onset value.

The rapid rotation limit induces stiffness along the axis of rotation, which significantly changes
the heat transport properties of low-Rossby number convection from the nonrotating case in
the large R regime. When Ra ≫ Rac, we anticipate a self-similar structure in the thermal
boundary layer where all variables scale with some power of R, and thus introduce the scaling

τ = Rτ̂ t, η = Rη̂Z, λ = Rλ̂x⊥, ψ = Rψ̂Ψ,

ω = Rψ̂+2λ̂Ω, w = RŵW, θ = Rθ̂Θ, ∂ZT = Rη̂−∆∂ηTϵ.

Simulations indicate that all boundary layer variables remain comparable in magnitude even
at R ≫ Rc, which gives us the following relations between the exponents

λ̂ = ŵ = s, η̂ = 3s, τ̂ = ω̂ = 2s, ∆ = 1− s, ψ̂ = 0, θ̂ = 3s− 1.

Based on our earlier definition of the Nusselt number, this gives

Nu ∼ R4s−1. (24)

Using numerical simulations to determine s yields Nu ∼ R3/2, which implies s = 5/8 (see
figure 5)5. We can also arrive at this result independently using theoretical arguments: we
start with the general scaling law for the Nusselt number at large Ra

Nu− 1 ∼ C(σ)RaαEkβ. (25)

In the nonrotating case, β = 0, and experimental results indicate 0.28 < α < 0.31. The
mean temperature gradient in the bulk vanishes for large Ra, which implies that the Nusselt

5This asymptotic large R scaling is only valid as long as we are in the geostrophic turbulence regime, i.e., the
Prandtl number also needs to be appropriately small.
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Figure 4: (Left) Nusselt number Nu scaling with R for single-mode (SM) convection and for the
boundary layer (BL). (Middle) Mean temperature profiles for single-mode convection (filled circle)
and the boundary layer (open circle) when the BL loses stability. (Right) Boundary layer instability,
even where profiles are stable in the core of the flow. Here ζ is the vertical vorticity. (From [7]).

number is determined by the heat flux across the thermal boundary layers, which take up
most of the temperature gradient.

For large Rayleigh numbers in the rotating case, we expect Nu to depend only on Ra/Rac
(= R), i.e., Nu − 1 ∝ Rα. Using Kolmogorov-like scaling arguments and assuming that the
heat flux is independent of microscopic diffusion coefficients ν and κ, we get

Nu− 1 ∼ C1σ
−1/2Ra3/2Ek2, (26)

matching with the numerical results from figure 5. The reduced efficiency of the geostrophic
turbulence regime (α = 3/2) compared to the (larger Pr) convective Taylor column regime
(α ≈ 2) implies that the turbulent interior throttles the heat transport, in contrast to nonro-
tating RBC where the boundary layers are the bottleneck for transport efficiency. At large R,
the mean temperature gradient at midheight saturates instead of vanishing as in the nonrotat-
ing case. Along with the boundary layer thickness shrinking with R, this leads to the interior
taking up most of the temperature gradient, and thus determining the Nusselt number. We
have numerical evidence for heat transport in the rapidly rotating case being controlled by
the turbulent transport in the interior (see figure 5).

• Barotropic vortices and jet formation. The NHBG geostrophic turbulence regime is unstable
to the formation of domain-scale barotropic vortices via a strong inverse cascade fed by the
baroclinic fluctuations. Increasing the horizontal aspect ratio (going from a square to a
rectangular domain) leads to the formation of jet-like structures. In the case of the square
domain, the barotropic large scale vortex (see figure 6) transitions to unidirectional depth-
invariant jet flows when Lx/Ly is increased.
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Figure 5: (Left) Simulation results ofNu−1 scaling withR. Curves for highR exhibit the predicted
scaling of ∝ R3/2 within 6% (from [5]). (Middle) Midheight gradient saturating at large R for the
Pr = 1 case (from [7]). (Right) Contributions (in percentage form) to the Nusselt number from
the bulk (E int

θ ) and from the boundary layer (Ebl
θ ). At higher R, a larger contribution comes from

the interior indicating that Nu is limited by the ability of the bulk to transport heat (from [5]).

Figure 6: Jet formation is observed in the presence of domain anisotropy. There is a characteristic
wavelength associated with the jets. (Figure adapted from [4]).
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GFD 2024 Lecture 5: Reduced Description of Fingering and
Parametric Instabilities

Edgar Knobloch; notes by Adhithiya Sivakumar and Lulabel Ruiz Seitz

June 19, 2024

Our survey of asymptotic methods and their application to the analysis of fluid flows concludes 
with the development of reduced models describing (a) the evolution of salt-finger turbulence in the 
limit where heat diffusion is rapid relative to salinity diffusion, (b) the (strongly nonlinear) satu-
ration of the magnetorotational instability when rotational, wave-crossing, and diffusive timescales 
are widely separated, and (c) wave-mean flow coupling associated with nearly inviscid Faraday 
waves.

1 Reduced Description of Fingering Instabilities

In this section, we demonstrate the application of asymptotic (or perturbation) methods to fingering 
instabilities – so called due to the slender geometry (cf. Figure 1) and primarily unidirectional 
propagation associated with the resulting patterns. In the first case, we make use of the widely 
separated timescales that result in the formation of saltwater fingers to derive leading-order reduced 
equations governing their evolution; and in the second, we exploit the large aspect ratio of fingers 
in astrophysical accretion disks (formed due to an unstable angular momentum gradient) for the 
same purpose.

Figure 1: Left: DNS snapshot showing salt fingers in a strongly stratified environment. Image
sourced from Ref. [14]. Right: Evolution of the magnetorotational instability, as shown in Ref. [6].
The horizontal axis represents the radial direction and the vertical axis the poloidal.
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1.1 Salt-finger turbulence

Salt fingering is a distinct mode of double-diffusive convection that develops when a warm, saline
water layer overlies a cooler, fresher one such that the overall configuration has a stable stratification
of density. The density depends on two diffusing scalars which exert opposing effects: temperature
reduces density while salinity increases it. More pertinently, one of these scalars diffuses faster
than the other: thermal diffusivity is nearly two orders of magnitude larger than saline diffusivity.
As thermal energy leaks downward through the interface, the upper layer is stripped of buoyancy
while the lower layer gains it. Gravity seizes on this transient imbalance, driving salt-rich parcels
at the top to sink and salt-poor parcels at the bottom to rise. The exchange generates plumes
which sharpen into tall, slender tendrils – salt fingers – that convey salt downward and fresh water
upward. This much is describable via heuristics. A more precise description of the instability and
resulting dynamics requires analysis of the governing equations.

1.1.1 Mathematical formulation

A simple model that exhibits salt-fingering is the 2D Boussinesq system, summarized below.

∇ · u = 0, (1)

∂tu+ u · ∇u = −ρ−1
0 ∇p− ρg

ρ0
k̂ + ν∇2u, (2)

∂tT + u.∇T = κT∇2T, (3)

∂tS + u.∇S = κS∇2S, (4)

ρ (T, S) = ρ0 [1 + αS (S − S0)− αT (T − T0)] . (5)

Here u ≡ (u,w)T is the incompressible Eulerian velocity field; T and S are the temperature and
salinity fields, which both modify the density field ρ in accordance with equation (5). T0 and S0
are reference values of temperature and salinity, and the reference density ρ0 = ρ (T0, S0). The
positive constants αS and αT determine the magnitude of density variation in response to salinity
and temperature variation, while κS and κT determine the diffusivity of salinity and temperature.
Finally, g is the acceleration due to gravity and ν is the molecular kinematic viscosity. All fields
are functions of the spatial coordinates x ≡ (x, z)T and time t, and the spatial domain is a plane
of infinite extent.

The incompressibility constraint (1) makes u expressible in terms of a streamfunction ψ =
ψ (x, t) such that u ≡ ∇× ψĵ and allows the momentum equation (2) to be recast as an equation
for the evolution of the out-of-plane vorticity ∇ × u = −∇2ψ. Moreover, the temperature and
salinity fields may be decomposed into background profiles and departures from them (θ, s):

T (x, t) ≡ βT z + θ (x, t) , (6)

S (x, t) ≡ βSz + s (x, t) . (7)

Here βT and βS are positive constants that produce the desired configuration: a stabilizing back-
ground temperature profile and a destabilizing salinity profile – in other words, warm, salty water
over cold, fresh water. The configuration is statically stable provided the background density has
a negative vertical gradient, i.e.,

αSβS − αTβT < 0. (8)
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This condition can be recast in terms of the density ratio Rρ ≡ αTβT /αSβS as Rρ > 1. The
modifications detailed above, when applied to the system (1)-(5), result in

∂t∇2ψ + J
[
ψ,∇2ψ

]
= g (αT∂xθ − αS∂xs) + ν∇4ψ, (9)

∂tθ + J [ψ, θ] + βT∂xψ = κT∇2θ, (10)

∂ts+ J [ψ, s] + βS∂xψ = κS∇2s, (11)

(12)

where J [A,B] ≡ ∂xA∂zB − ∂xB∂zA. These equations describing the evolution of perturbations
(ψ, θ, s) to the stationary background configuration (0, βT z, βSz).

1.1.2 Preliminary scaling

Following the discussion in Chapter 1 of Ref. [15] we can develop an expression

d =

(
νκT
gαTβT

)1/4

for the natural salt-finger width d. Certain scaling assumptions are made – namely that in steady
state, there exists a balance between the horizontal density gradient and vorticity diffusion in
(9), and that salinity and temperature have comparable effects on the density anomaly. Scaling
distances with d allows us to define natural temperature and salinity scales

θ ∼ βTd,

s ∼ βSd.

Time can be rendered dimensionless using the salinity diffusion timescale d2/κS and thus velocities
using κS/d. Applying these scales to the equations (9)-(11) produces the dimensionless equations

τ

Pr

(
∂t∇2ψ + J

[
ψ,∇2ψ

])
=

1

τ
∂xθ −

1

Rρτ
∂xs+∇4ψ, (13)

∂tθ + J [ψ, θ] + ∂xψ = τ−1∇2θ, (14)

∂ts+ J [ψ, s] + ∂xψ = ∇2s, (15)

where the Prandtl number Pr ≡ ν/κT and the diffusivity ratio (or inverse Lewis number) τ ≡
κS/κT . Note that we may also formulate these equations in terms of the Schmidt number Sc ≡
Pr τ−1 instead of Pr or τ .

1.1.3 Linear heory

First, we add infinitesimal perturbations to the trivial solution of the system (13)-(15). This justifies
neglecting quadratic nonlinearities. The normal mode ansatz ϕ(x, t) ≡ ϕ̂ exp (λt+ ik · x) + c.c.,
where k ≡ (k,m)T ∈ R2, can then be applied to the linearized system, yielding

−λ τ

Pr
|k|2 ψ̂ = ik

(
1

τ
θ̂ − 1

Rρτ
ŝ

)
+ |k|4 ψ̂, (16)

λθ̂ + ikψ̂ = −τ−1 |k|2 θ̂, (17)

λŝ+ ikψ̂ = − |k|2 ŝ. (18)
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For specified k, this is a linear eigenvalue problem in λ ∈ C with three possible solutions. The
real part of λ represents the growth rate of the associated eigenfunction and the imaginary part
represents its oscillation frequency. The characteristic polynomial for λ is cubic:

λ3 + λ2 |k|2
[
1 +

1

τ
+
Pr

τ

]
+ λ

[
|k|4

τ

(
1 + Pr +

Pr

τ

)
+

k2

|k|2
Pr

τ2

(
1− 1

Rρ

)]

+
Pr

τ2

[
|k|6 + k2

(
1− 1

τRρ

)]
= 0. (19)

The equation above is invariant under the transformation

λ′ = aλ,
∣∣k′∣∣2 = a |k|2 , k′

2
= a3k2,

for some positive constant a. Choosing a = |k| /k ≥ 1 above yields the result∣∣k′∣∣2 = k′
2
=⇒ m′ = 0.

Thus, any wave-vector k can be mapped onto another wave-vector representing a vertically uniform
elevator mode. This means that we may let m = 0 in (18) without loss of generality. Further, the
eigenvalue λ of the untransformed problem obeys

λ = λ′/a ≤ λ′ for a ≥ 1,

with equality attained only when a = 1, or, equivalently, m = 0. Thus, the elevator mode growth
rate is larger than that of other modes. Taking m = 0 in (19) produces

λ3 + λ2k2
[
1 +

1

τ
+
Pr

τ

]
+ λ

[
k4

τ

(
1 + Pr +

Pr

τ

)
+
Pr

τ2

(
1− 1

Rρ

)]
+
Pr k2

τ2

[
k4 + 1− 1

τRρ

]
= 0. (20)

Given that the salt-fingering instability is expected to be stationary – i.e., it has ℑ(λ) = 0, we may
develop an instability criterion by setting λ = 0 in equation (20). This yields the relation

1

τRρ
− 1 = k4, (21)

which has roots k ∈ R provided the left-hand side is positive, i.e.,

Rρ < τ−1. (22)

The pure salt-fingering regime is therefore characterized by

1 < Rρ < τ−1. (23)

1.1.4 Asymptotic reduction in the small diffusivity ratio limit

Motivated by the fact that in the ocean, the diffusivity ratio τ = O (0.01), we analyze the governing
equations (13)-(15) in the limit τ ≪ 1, or equivalently, κS ≪ κT – where heat diffuses much
more rapidly than salinity. Two approximations are developed, distinguished by the scaling of the
Schmidt number (Sc) with τ :
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1. Sc = O(1), which requires small Pr = O (τ), as is seen in many astrophysical systems. This
results in a modified Rayleigh-Bénard system with salinity-driven instability and a rapidly
diffusing temperature.

2. Sc ≫ 1, which requires Pr ≫ τ , as in oceanic thermohaline flows. Here κS ≪ ν, meaning that
we expect momentum/vorticity to diffuse almost instantaneously on the long salinity diffusion
timescale. The reduced system has this property, and is referred to as the inertia-free salt
convection model.

The specification of a distinguished limit requires a scaling law for Rρ as τ → 0. We take
Rρ = O

(
τ−1

)
, a hypothesis appropriate for astrophysical, oceanographic, and experimental mea-

surements [19]. The parameter
1

Rρτ
≡ Ra

therefore remains O (1) as τ → 0. The rapid diffusion of heat makes temperature fluctuations
small, so θ 7→ τθ as τ → 0. Salinity fluctuations remain finite in this limit, but the transformation
s 7→ Ra−1s is applied for convenience. Note that the rescaled temperature and salinity are O (1)
quantities in the small diffusivity ratio limit. The rescaled governing equations are given below:

Sc−1
(
∂t∇2ψ + J

[
ψ,∇2ψ

])
= ∂xθ − ∂xs+∇4ψ, (24)

τ (∂tθ + J [ψ, θ]) + ∂xψ = ∇2θ, (25)

∂ts+ J [ψ, s] +Ra∂xψ = ∇2s. (26)

Modified Rayleigh-Bénard Convection (mRBC) Model: When applied to the equations (24)-(26),
the first distinguished limit τ → 0, Sc = O (1), Ra = O (1) produces at leading order in τ :

Sc−1
(
∂t∇2ψ + J

[
ψ,∇2ψ

])
= ∂xθ − ∂xs+∇4ψ, (27)

∂xψ = ∇2θ, (28)

∂ts+ J [ψ, s] +Ra∂xψ = ∇2s. (29)

Note the slaving of the temperature anomaly to the vertical velocity. This tends to be a robust
feature of systems operating on multiple timescales: fast processes are slaved to slow processes
over the slow timescale. Under appropriate boundary conditions, e.g., doubly periodic BCs, the
Laplacian operator in equation (28) can be inverted, enabling the system (27)-(29) to be rewritten
as

Sc−1
(
∂t∇2ψ + J

[
ψ,∇2ψ

])
= −∂xs+

(
∇4 +∇−2∂xx

)
ψ, (30)

∂ts+ J [ψ, s] +Ra∂xψ = ∇2s. (31)

This is the mRBC model. The salient feature of this model is the formal similarity to the Rayleigh-
Bénard convection (RBC) model, apart from the presence of large-scale thermal dissipation (mani-
fested in the inverse Laplacian) in addition to small-scale molecular dissipation of vorticity. This en-
ables the mRBC system (30)-(31) to select an intrinsic length scale, like the primitive salt-fingering
equations (24)-(26), and unlike the equations governing RBC.

63



Inertia-Free Salt Convection (IFSC) Model: Taking the limit Sc → ∞ in the mRBC equations
(30)-(31) yields the IFSC model (

∇6 + ∂xx
)
ψ = ∂x∇2s, (32)

∂ts+ J [ψ, s] +Ra∂xψ = ∇2s (33)

at leading order. The system (32)-(33) is first order in time – featuring a prognostic equation (33)
for the evolution of salinity on its diffusive timescale coupled with a diagnostic equation for the
streamfunction (32) – and is dependent only on a single parameter Ra. It is thus the simplest
derivable model for salt-finger convection [19]. The ∇6 and ∂xx terms are dominant on different
horizontal scales and may thus give rise to dynamics on multiple spatial scales.

1.1.5 Overview of results

Ref. [19] documents stability analyses and numerical simulations of the IFSC model. That the
model preserves primary and secondary linear instabilities present in the primitive equations, even
in large domains is verified. It captures the three stages – finger dominance, finger disruption, and
saturation – that lead to a statistically steady state. However, the oft-observed salinity staircases
are not captured by the IFSC model, which may be associated with the inherent filtration of gravity
waves. Ref. [18] documents the validation and analysis of the mRBC model. It is demonstrated
that this model evolves towards a structure consisting of horizontal jets that disrupt salt-finger tur-
bulence. Understanding of the jet-formation mechanism is achieved using further-reduced models:
a quasilinear approximation of the mRBC system and a single-mode reduction. These issues are
explored in Refs. [12] and [5].

1.2 Magneto-rotational instability

The classical problem with accretion disks
is that they do of course accrete.

Balbus [3]

Accretion disks are flat, rapidly rotating structures formed by diffuse interstellar or intergalactic
matter orbiting around and spiraling onto a massive central body. The inward spiraling of matter
in accretion disks requires not only the loss of gravitational potential energy but also of angular
momentum. Further, since the total angular momentum of the disk is conserved, the loss of angular
momentum from matter falling into the gravitational center must be compensated by a gain in
angular momentum towards the periphery of the disk, i.e., angular momentum must be transported
outwards. One might imagine that some form of turbulence might aid the redistribution of angular
momentum, but how exactly this turbulence might be driven was a matter of some debate. That
the angular momentum of an accretion disk increases radially outward (making it centrifugally
stable) rules out the possibility of a purely hydrodynamic instability mechanism. The addition of
a weak, poloidal (meridional) magnetic field, however, can drive a magnetorotational instability
(MRI) which is now thought to play a central role in this process [3].

A simple physical picture of the instability mechanism may be obtained by analogy with two
masses in orbit around a third massive object. These masses occupy different radial positions
relative to the central object, are connected by a weak spring, and the inner mass has a larger angular
velocity (but lower angular momentum) than the outer mass. The disparate angular momenta of
the masses produce a torque on the spring, whose restoring torque is such that the inner mass
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loses angular momentum, which the outer mass gains. The inner mass thus moves closer to the
gravitational center, and the outer mass moves further away, increasing the tension on the spring,
and “the process runs away” [3]. The instability thus grows by feeding on the shearing of matter in
the accretion disk and takes the form of thin sheets (fingers) of lower and higher angular momentum
moving alternately inward and outward in the radial direction [10].

1.2.1 Classical formulation and linear theory

The instability may be studied within a magnetohydrodynamic (MHD) framework. Equations
governing the motion of electrically conducting, non-magnetic fluids, e.g., liquid metals and plasmas,
are given below.

∂tu+ u · ∇u = −1

ρ
∇p+ ν∇2u− 1

2µ0ρ
∇B2 +

1

µ0ρ
B · ∇B, (34)

∂tB + u · ∇B = B · ∇u+ η∇2B, ∇ · u = 0, ∇ ·B = 0. (35)

We have here, in addition to the variables introduced previously, the solenoidal magnetic field
B (x, t), its magnitude B ≡ ||B||2 (where ||·||2 refers to the vector two-norm), the vacuum per-
meability µ0, and the magnetic diffusivity η. The other variables retain their definitions apart
from the stipulation that they are now three-dimensional, unless otherwise specified. The MRI is
studied most easily in the limit of a non-diffusive flow, the equations for which are obtained by
taking ν = η = 0 in the equations (34)-(35). The ideal equations thus obtained have axisymmetric
exact solutions of the form

u0 = (0, V (r), 0)T , B0 = (0, Bϕ(r), Bz(r))
T ,

in cylindrical polar coordinates (r, ϕ, z), with r ∈ [ri, ro]. Following Ref. [9], infinitesimal pertur-
bations to this state are written u = (u, v, w)T , b = (a, b, c)T with each of the perturbation fields
of the form f(r, ϕ, z, t) ≡ f(r) exp [i (nz + ωt)]. Linearizing the ideal MHD equations yields an
eigenvalue problem for the frequency ω ∈ C,

d

dr

[(
ω2 − n2V 2

z

)(du
dr

+
u

r

)]
− n2

[
ω2 − n2V 2

z + r
d

dr

(
V 2
ϕ

r2
− V 2

r2

)]
u

= −
4n2 (nVϕVz + ωV )2

r2 (ω2 − n2V 2
z )

u, (36)

where
Vϕ ≡ Bϕ/

√
µ0ρ, and Vz ≡ Bz/

√
µ0ρ

are the Alfvén speeds associated with the imposed azimuthal and vertical magnetic fields, and−ℑ[ω]
represents the linear growth rate of the perturbation. Eigenfunctions may either be localized at
the radial boundaries (and thus depend strongly on boundary conditions) or may extend across
the disk (and only have a weak dependence on boundary conditions). MRI eigenfunctions are an
example of the latter. Below, we briefly outline solutions to equation (36) in two different cases.

Case I, Standard MRI: Here, we impose the condition u (ri) = u (ro) = 0, and take Vz =
constant ̸= 0, Vϕ = 0 above. Multiplying equation (36) by u∗ – the complex conjugate of u –
and integrating by parts, we get(

ω2 − n2V 2
z

)2
=
n2

D

∫ ro

ri

[
ω2

r2
d

dr
r2V 2 − r2n2V 2

z

d

dr

(
V 2

r2

)]
|u|2 dr, (37)
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where

D ≡
∫ ro

ri

[
r

∣∣∣∣dudr
∣∣∣∣2 + |u|2

r
+ n2r |u|2

]
dr > 0.

Equation (37) is quadratic in ω2 and has the form

ω4 − ω2n2
(
2V 2

z + G1

)
+ n4

(
V 4
z + V 2

z G2

)
= 0,

where ω2n2G1 is the first term on the right-hand side of (37) and −n4V 2
z G2 is the second. It can

be seen that its discriminant

∆q ≡ G2
1 +

16V 2
z

D

∫ ro

ri

|u|2 V 2

r
dr > 0,

and thus ω2 ∈ R. It follows that a magnetized disk is linearly stable provided ω2 > 0. Thus, for a
hydrodynamically stable disk, i.e., one in which

d

dr

(
V 2r2

)
> 0,

a sufficient condition for the stability of the previously defined basic state is

n2
(
2V 2

z + G1

)
±
√
∆q > 0 =⇒ d

dr

(
V 2

r2

)
> 0

for all r ∈ (ri, ro), i.e., for hydrodynamic stability the angular momentum must increase outwards.
This provides a necessary condition for instability:

d

dr

(
V 2

r2

)
< 0

at some r ∈ (ri, ro), i.e., the angular velocity must decrease outwards. Keplerian accretion disks, for
instance, being thin and lacking self-gravity, spin in a gravity field that is predominantly set by the
central mass. The angular velocity is given by Kepler’s laws of orbital motion, i.e., V (r) ∼ 1/

√
r,

which can be shown to simultaneously satisfy the conditions for both hydrodynamic stability and
MRI.

Case II, helical MRI: Differential rotation accross an accretion disk always generates an azimuthal
magnetic field from an imposed vertical magnetic field, hence we repeat the analysis performed
above but take Vz = constant ̸= 0, Vϕ ̸= 0. This results in the identity

d

dr

(
r
du

dr

)
− u

r
− n2ru

=
n2

(ω2 − n2V 2
z )

2

[
r2
d

dr

(
V 2
ϕ − V 2

r2

)(
ω2 − n2V 2

z

)
− 4

r
(nVϕVz + ωV )2

]
u. (38)

Here, exponentially growing perturbations are only possible if (Ref. [9])∫ ro

ri

1

r
VϕVz |u|2 dr = 0,

i.e., Vϕ or Vz (or both) need to change sign at some point across the accretion disk. If not, the
instability takes the form of growing axisymmetric waves with a preferred direction of propagation
in the vertical direction. This is a consequence of fact that the product VϕVz ̸= 0 determines the
sign of the magnetic field helicity – and thus robs the problem of its invariance (relative to the
previous case) under the reflection z → −z.
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1.2.2 Saturation of the MRI

Astrophysical applications require estimation of the amplitude at which the MRI saturates in an
accretion disk, which in turn enables estimation of the efficiency of angular momentum transport.
Sufficient numerical dissipation is known to result in saturation of the MRI [1], however, dissipative
processes are generally weaker (though non-negligible) than required in accretion disks [8]. In the
astrophysical context, the MRI is believed to saturate by generating turbulence, which enhances
dissipation and quenches the instability. Here, the background shear is maintained by the gravi-
tational field of the central object and accretion disk turbulence is too weak to perturb it. This,
however, is not the case in experimental studies of the MRI – where the radial boundaries can
support pressure gradients that arise due to background shear modification. We explore MRI sat-
uration in this regime using an asymptotic model that leverages the small vertical scale associated
with the instability in order to explore its evolution far from threshold (i.e., in the strongly nonlinear
regime).

The Shearing Sheet Approximation: Consider a straight channel for which dimensional co-ordinates1

x∗ = (x∗, y∗, z∗)T are defined such that

x∗ ∈ [−L/2, L/2]× R2.

This channel is filled with an electrically conducting incompressible fluid and rotates about the
vertical axis z∗ with constant angular velocity Ω∗

0. A linear shear flow U∗
0 = (0, σ∗x∗, 0)T , with

σ∗ < 0, is maintained in the channel. This could be because of lateral boundaries that slide in
the y∗ direction with speeds ±0.5σ∗L or, in the astrophysical context, a result of the shearing box
approximation – where a small patch of accretion disk is studied via a local expansion of the shear
profile Ω∗ (r∗) about a point r∗0 – with

σ∗ ≡ dΩ∗

d ln r∗

∣∣∣∣
r∗=r∗0

.

Further, imagine that a constant magnetic field B∗
0 =

(
0, B∗

ϕ, B
∗
z

)T
is present. To proceed, we

write down (dimensionless) equations for y∗-independent (i.e., axisymmetric) perturbations u ≡
(u, v, w)T ≡ (−ψz, v, ψx), b ≡ (a, b, c)T ≡ (−ϕz, b, ϕx) about the previously defined basic state:

∇2ψt + 2Ωvz + J
[
ψ,∇2ψ

]
= v2A∇2ϕz + v2AJ

[
∇2ϕ, ϕ

]
+ ν∇4ψ, (39)

vt − (2Ω + σ)ψz + J [ψ, v] = v2Abz + v2AJ [b, ϕ] + ν∇2v, (40)

ϕt + J [ψ, ϕ] = ψz + η∇2ϕ, (41)

bt + J [ψ, b] = vz − σϕz − J [v, ϕ] + η∇2b. (42)

Here
vA ≡ B∗

z/U
∗√µ0ρ

is proportional to the Alfvén speed associated with the imposed vertical (poloidal) magnetic field,
and

Ω ≡ Ω∗
0L/U

∗, σ ≡ σ∗L/U∗, ν ≡ ν∗/U∗L, η ≡ η∗/U∗L,

are the dimensionless rotation rate, background shear, kinematic viscosity and ohmic diffusivity,
and J [A,B] ≡ ∂xA∂zB − ∂zA∂xB. These, and all other variables are non-dimensionalized using

1Henceforth, all starred quantities are to be considered dimensional.
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the channel width L and an as-yet-undefined velocity scale U∗. Note that the equations (39)-
(42) contain no trace of the imposed toroidal (azimuthal) magnetic field B∗

ϕ, making this a two-
dimensional three-component (2D-3C) model in which the velocity and magnetic fields are solenoidal
in the xz-plane. This reduction is not realistic in an annulus, as previously indicated.

Asymptotic Theory: We identify three timescales: the rotation timescale, the Alfvén crossing
timescale, and a dissipative timescale. The first is taken to be O (δ) relative to the second, which
is itself taken to be O (ε) relative to the third, where ε, δ ≪ 1. Next, we choose the velocity scale
U∗ ≡ B∗

z/
√
µ0ρ ≡ v∗A. A series of implications follows:

vA = 1,

(η, ν) = (η∗, ν∗)/v∗AL =
(η∗, ν∗)/L2

v∗A/L
= O (ε) ,

(Ω, σ) = (Ω∗
0, σ

∗)L/v∗A =
(Ω∗

0, σ
∗)

v∗A/L
= O

(
δ−1
)
.

It is thus convenient to transform (Ω, σ) → δ−1 (Ω, σ) and (η, ν) → ε (η, ν). Two distinguished
limits are useful to consider: when ε = o (δ) as δ → 0, the instability saturates by modifying the
background shear, but does so diffusively when ε = O (δ). To see this one must first identify the
appropriate scales. Since the MRI is expected to take the form of long, thin fingers propagating in
the radial (x) direction, we expect vertical derivatives to be large

(
∂z → δ−1∂z

)
. Rapid rotation and

consequent shear means that time derivatives are also expected to be large
(
∂t → δ−1∂t

)
. Finally,

the radial length of the fingers motivates the multi-scale transformation
(
∂x → δ−1∂x + ∂X

)
, where

we have introduced the ‘slow’ length-scale X ≡ δx to capture radial modulations to averaged
quantities and also retained the ‘fast’ length-scale x. Rapid shearing by the azimuthal flow also
suggests (ψ, ϕ) → ε1/2δ1/2(ψ, ϕ) and (v, b) → δ−1(v, b).

Next, we decompose all fields into mean and fluctuating components, defined for a generic field
f as the transformation

f(x,X, z, t) → f(X) + f ′(x,X, z, t), with f = f and f ′ = 0,

where the overbar denotes an average over (x, z, t). Averaging equations (40)-(41) eliminates all
(x, z, t) (i.e., fast) derivatives, yielding the mean azimuthal equations

ε1/2δ1/2JX [ψ, v] = ε1/2δ1/2v2AJX [ϕ, b] + εδνvXX , (43)

ε1/2δ1/2JX [ψ, b] = ε1/2δ1/2v2AJX [ϕ, v] + εδνbXX , (44)

where JX [A,B] ≡ ∂XA∂zB − ∂zA∂XB. Note that the Jx [A,B] terms can be written ∂x(A∂zB)−
∂z(A∂xB), and can thus be shown to vanish upon averaging. The fluctuating equations are obtained
by subtracting the mean equations from their counterparts in (39)-(42):

∇2
ψ′
t + (εδ)−1/2 2Ωv′z + (ε/δ)1/2Jx

[
ψ,∇2

ψ
]

= v2A∇
2
ϕ′z + (ε/δ)1/2v2AJx

[
ϕ,∇2

ϕ
]
+ (ε/δ)ν∇4

ψ′ +O
(
(εδ)1/2 , δ

)
, (45)

v′t − (εδ)1/2 (2Ω + σ)ψ′
z + (ε/δ)1/2

(
Jx [ψ, v] + δ

(
JX [ψ, v]− JX [ψ, v]

))
= v2Ab

′
z + (ε/δ)1/2 v2A

(
Jx [ϕ, b] + δ

(
JX [ϕ, b]− JX [ϕ, b]

))
+ (ε/δ) ν∇2

v′, (46)
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ϕ′t + (ε/δ)1/2 Jx [ψ, ϕ] = ψ′
z + (ε/δ) η∇2

ϕ′ +O
(
(εδ)1/2 , δ

)
, (47)

b′t + (εδ)1/2 σϕ′z + (ε/δ)1/2
(
Jx [ψ, b] + δ

(
JX [ψ, b]− JX [ψ, b]

))
= v′z + (ε/δ)1/2 v2A

(
Jx [ϕ, v] + δ

(
JX [ϕ, v]− JX [ϕ, v]

))
+ (ε/δ) η∇2

b′, (48)

where Jx [A,B] ≡ ∂xA∂zB − ∂zA∂xB and ∇ ≡ (∂x, 0, ∂z)
T . We now posit the expansion

f(x,X, z, t; ε, δ) =

∞∑
i=0

∞∑
j=0

εi/2δj/2fij (x,X, z, t)

and analyze equations (43)-(48) order by order. At O
(
δ−1/2

)
, we get, from equation (45), that

v′10,z = 0. Using this in equations (46) and (48) at O
(
ε1/2

)
allows us to conclude that b′10 = v′10 = 0.

Next, from equations (46) and (48) at O
(
δj/2

)
, j > 0, we get the relations

v′0j,t = v2Ab
′
0j,z,

b′0j,t = v′0j,z.

These are self-contained linear PDEs representing Alfvén waves propagating in the vertical direc-
tion. Non-trivial balances occur at O(1) in equations (45) and (47) and at O

(
ε1/2δ1/2

)
in equations

(46) and (48). The resulting reduced equations are

∇2
ψ′
00,t + 2Ωv′11,z + (ε/δ)1/2Jx

[
ψ′
00,∇

2
ψ′
00

]
= v2A∇

2
ϕ′00,z + (ε/δ)1/2v2AJx

[
ϕ′00,∇

2
ϕ′00

]
+ (ε/δ)ν∇4

ψ′
00, (49)

v′11,t − (2Ω + σ + v00,X)ψ′
00,z + (ε/δ)1/2 Jx

[
ψ′
00, v

′
11

]
= v2A

(
b′11,z + (ε/δ)1/2 Jx

[
ϕ′00, b

′
11

]
− b00,Xϕ

′
00,z

)
+ (ε/δ) ν∇2

v′11, (50)

ϕ′00,t + (ε/δ)1/2 Jx
[
ϕ′00, ψ

′
00

]
= ψ′

00,z + (ε/δ) η∇2
ϕ′00, (51)

b′11,t + (ε/δ)1/2 Jx
[
ψ′
00, b

′
11

]
− b00,Xψ

′
00,z

= v′11,z − (σ + v00,X)ϕ′00,z + (ε/δ)1/2 v2AJx
[
ϕ′00, v

′
11

]
+ (ε/δ) η∇2

b′11. (52)

These equations are stated incorrectly in [9]but the correct equations are given in [7]).
The above formulation, with small parameters ε and δ still present in the leading order equations,

shows that the nonlinear and dissipative terms become subdominant when ε = o (δ) but are not
so when ε = O (δ), and captures the feedback of the large-scale quantities v00,X and b00,X onto
small-scale fluctuations. Examination of the mean equations (43)-(44) at O(εδ) shows us that these
quantities are locked to fluctuating quantities with

νv00,XX = −
(
ψ′
00,zv

′
11 − v2Aϕ

′
00,zb

′
11

)
X
,

ηb00,XX = −
(
ψ′
00,zb

′
11 − ϕ′00,zv

′
11

)
X
,
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the integration of which yields

νv00,X = −
(
ψ′
00,zv

′
11 − v2Aϕ

′
00,zb

′
11

)
,

ηb00,X = −
(
ψ′
00,zb

′
11 − ϕ′00,zv

′
11

)
+ C,

(53)

where the constant C is determined by a radial force balance across the channel upon saturation
of the instability [10]. The relations (53) indicate how the stresses induced by the MRI feed back
onto the mean and thus allow us to close the system (49)-(52).

1.2.3 Overview of results

Refs. [9, 10] document semi-analytical and numerical solutions to the above reduced model. When
ε = O (δ), dissipation directly leads to saturation of the MRI on the dissipative timescale. In
contrast, when ε = o (δ), dissipation is subdominant and the MRI saturates via modification of
the background shear on a rotational timescale. The saturated state in the latter case can be
predicted analytically and is shown to agree with simulations initialized with multiple modes or
with small random perturbations, provided one uses the vertical wavenumber corresponding to the
final coarsened state.

2 Wave-Mean Flow Coupling in Nearly Inviscid Faraday Waves

Faraday waves, i.e., gravity-capillary waves formed on the free surface of a fluid due to vertical
oscillation of its enclosure, are an example of a parametric instability. That is, they are excited
by a time-varying parameter (in this case the time-periodic oscillations of the container) that finds
resonance with the natural frequency of the system. These waves are well-studied, but the theory
surrounding them is incomplete (particularly in geometries with large aspect ratio) if the effects of
viscosity (however weak) are not accounted for. This is because oscillatory viscous boundary layers
can drive a mean “streaming” flow in the fluid interior which couples non-trivially with the Faraday
waves. Our objective is to develop an asymptotic theory for the coupled evolution of Faraday waves
and the resultant streaming flow leveraging the smallness of the viscosity and inverse aspect ratio.
Before that, however, it might be useful to illustrate viscous (boundary layer) effects on water waves
in a simpler setting.

2.1 Prelude: Stokes drift in nearly inviscid water waves

In this section, we derive expressions for the Stokes drift associated with a surface wave in both
inviscid and viscous cases. Considering both versions of this problem illustrates the dangers of
ignoring viscosity entirely, motivating why we will not do so when analyzing nearly inviscid Faraday
waves.

Stokes drift velocity arises from the fact that, in general, the Eulerian and Lagrangian descrip-
tions of the mean flow are not equivalent. Formally, Stokes drift uS can be defined as

uS ≡ ⟨uL⟩ − ⟨uE⟩, (54)

where uL denotes the Lagrangian mean velocity, i.e., the mean velocity that would be felt by an
individual particle (or parcel) as its evolution is tracked, and uE denotes the Eulerian mean velocity,
i.e., the mean velocity with respect to a fixed spatial reference point, and the brackets denote the
time average (in particular, one could consider the time average over a wave period) [2].
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Surface

Wave propagation

Figure 2: Schematic diagram of Stokes drift. The black line outlines a wave at the surface, prop-
agating in the direction of the arrow. The thin black lines underneath the surface mark the paths
of a particles starting at different vertical positions with respect to the surface, and the dots along
those lines represent the positions after a wave period. The dashed grey lines indicate how the drift
is purely in the horizontal; there is no vertical drift.

To illustrate the existence of Stokes drift, consider a situation in which there is a wave propa-
gating on the surface of a fluid. For an idealized, sinusoidal wave the horizontal average over a wave
period at any fixed spatial location will clearly be zero. However, if we were to instead consider the
velocity a particle experiences and take the average, we would get a different result. The particle
would move faster in the direction of wave propagation when it is near the wave crest and slower
(or even slightly backward) when it is in the wave trough. The orbital path of the particle is then
not exactly closed, and will consequently not yield a zero (horizontal) average. This results in a
net displacement, or drift, in the direction of wave propagation after each wave period, as shown
in Figure 2. This figure also shows how in this scenario, there would be smaller Stokes drift for
particles starting deeper in the fluid because the influence of the surface wave is weaker at greater
depths. As shown in Figure 2, the particle does not change its mean vertical position relative to
the surface. For instance, a particle starting at the surface would always stay at the surface.

We can see how Stokes drift arises mathematically in the following manner [11]. Note that
in the following derivation we are really deriving an expression for the Lagrangian drift, i.e., the
mean velocity a particle experiences, but this ends up being equal to the Stokes drift because the
Eulerian mean is zero (see (54)). We will use Cartesian coordinates, with the x-axis oriented along
the unperturbed free surface of the fluid, and the y-axis directed vertically upwards.

If a flow is irrotational and incompressible, we can express the Eulerian velocity uE in terms
of a potential, so that uE = (ϕx, ϕy) and ∇2ϕ = 0. Let η denote the free surface deflection and p
denote the excess pressure due to the presence of surface tension. By calculating the curvature at
a given point on the surface, one can then find that

p = p0 − Tηxx(1 + η2x)
−3/2, (55)

where T is the surface tension. Let ρ denote the fluid density and g denote the acceleration due
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to gravity. Then the flow is subject to one boundary condition at the bottom and two at the free
surface, respectively:

ϕy = 0 at y = −h, (56a)

ηt + ϕxηx = ϕy at y = η, (56b)

ϕt +
|uE |2

2
+
p

ρ
+ gη = 0 at y = η. (56c)

Since we are first considering the case where the fluid is strictly inviscid, the fluid remains irrota-
tional if it is initially irrotational.

Consider a particle starting at the position x = a at time t = 0, where particle positions are
described in terms of the two-dimensional spatial vector x = (x, y). As in (54) let uL(x, t) denote
the Lagrangian velocity field. At time t, the particle’s position is then given by

x = a+

∫ t

0
uL(a, s) ds.

To second order2, the Lagrangian velocity is related to the Eulerian velocity by

uL(a, t) = uE(a, t) +

(∫ t

0
uE(a, s) ds

)
· ∇auE(a, t). (57)

In particular, suppose the wave is a progressive sinusoidal wave of small amplitude A. Then

η = A cos(kx− ωt) +O(A2)

and

ϕ =
ηt cosh k(y + h)

k sinh kh
+O(A2).

Now suppose A is constant in space. We compute, where uE = (u, v),

u = ϕx =

[
−
(
cosh k(y + h)

k sinh kh

)
ωA sin(kx− ωt)

]
x

= −
(
cosh k(y + h)

k sinh kh

)
ωAk cos(kx− ωt),

v = ϕy =

[
−
(
cosh k(y + h)

k sinh kh

)
ωA sin(kx− ωt)

]
y

= −ωAk sin(kx− ωt)

(
sinh k(y + h)

k sinh kh

)
.

Thus, the time-averaged Eulerian velocity ⟨uE⟩ vanishes to second order. On the other hand, we
can calculate the time-averaged Lagrangian drift. To this end, we compute the terms in (57),

∇au(a, t) =

−( cosh k(y+h)
sinh kh

)
ωAk sin(kx− ωt)

−ωAk sin(kx− ωt)
(
cosh k(y+h)

sinh kh

)
and

∫ t

0
u(a, s) ds =

 −
(
cosh k(y+h)

sinh kh

)
A(sin(kx− ωt)− sin(kx))

−
(
sinh k(y+h)

sinh kh

)
ωA(− cos(kx− ωt) + cos(kx))

 .
2Following the convention that the first term in the Taylor expansion, i.e., the constant term, is the “first-order”

term.
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Substituting into (57) and applying the double-angle identity for cosh, we obtain the time-averaged
uL,

⟨uL⟩ =
(
ωkA2 cosh 2k(y + h)

2 sinh2 kh
, 0

)
. (58)

Since the Eulerian mean velocity is zero, we can also identify this quantity with the Stokes drift
uS . Notice here that there is no Stokes drift in the vertical (here, y) direction.

We now contrast this with the case of small but nonzero viscosity, so the fluid is not strictly
inviscid. In this case the above is not correct, as the description of the velocity field in terms of the
potential does not hold, and the boundary conditions are incorrect.

Let β = (ω/2ν)1/2. If there is sufficiently small viscosity, βh ≫ 1 and βk−1 ≫ 1, then the
inviscid solution applies outside of the two thin oscillatory viscous boundary layers, along the top
and bottom, respectively, of thickness O(β−1). In other words, when the viscosity is sufficiently
small, the inviscid solution applies in most of the domain. Now we consider the flow inside the
boundary layers. In the bottom boundary layer, decompose

uE = ∇ϕ+ u′
E ,

where u′
E = (u′, v′). At leading order, u′

E satisfies the vorticity equation

∂Ω

∂t
= ν

(
∂2Ω

∂x2
+
∂2Ω

∂y2

)
, Ω = ∇× u′

E ,

with boundary conditions at the bottom{
u′ = −ϕx
v′ = 0

at y = −h

and
u′ = 0 for β(y + h) ≫ 1.

An explicit solution can be obtained for u′ and v′,

u′ = −ωAcosech(kh)e−β(y+h) cos(kx− ωt+ β(y + h))

v′ = −
∫ y

−h

∂u′(x, ỹ, t)

∂x
dỹ.

The time-averaged Reynolds stress in the oscillatory boundary layer can then be computed as (to
second order in A)

⟨u′v′⟩ = ω2A2k

4β sinh2 kh
(2(β(y + h) sinβ(y + h) + cosβ(y + h))e−β(y+h) − e−2β(y+h) − 1). (59)

The Reynolds stress induces a mean flow (U ′(y), 0) (so U ′(y) is the time-averaged Eulerian velocity),
as can be seen from the mean momentum equation

ν
∂2U ′

∂y2
=
∂⟨u′v′⟩
∂y

.

Letting ⟨u′v′⟩∞ represent the Reynolds stress just outside of the boundary layer, we have

ν
∂U ′

∂y
= ⟨u′v′⟩ − ⟨u′v′⟩∞. (60)
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Now we consider β(y + h) → ∞, i.e., the situation in which y is outside the boundary layer at
y = −h. We need to match the inner boundary layer solution to the y + h → 0 limit of the outer
(bulk) solution. This boundary layer is very thin for small ν, so we can set β(y + h) = 0 in (58).
Letting β(y + h) → ∞ in (59) yields

⟨u′v′⟩∞ = − ω2kA2

4β sinh2 kh
.

Since U ′(−h) = 0, (60) implies that

lim
y→∞

U ′(y) =
3ωkA2

4 sinh2 kh
,

valid when β(y+h) ≪ 1. This is a finite limit (at second order) and does not feature any dependence
on ν. The impact of this Eulerian mean flow needs to be added to the Stokes drift computed in
the inviscid case, (58). The net Lagrangian drift for βh≫ 1 and β/k ≫ 1 is thus

⟨uL⟩∞ =

(
5ω2kA2

4 sinh2 kh
, 0

)
.

We have thus seen that the computed Stokes drift (to second order) is different when we consider
the effects of viscosity, which we must do, as there is an O(1) impact even when viscosity is very
small. We will now apply this insight to analyze Faraday waves, going beyond the traditional
potential theory description as used in Ref. [4].

2.2 Nearly inviscid Faraday waves

Faraday waves (or “Faraday patterns”) are nonlinear standing waves that appear in liquids which
are in vibrating, enclosed containers. They can easily be observed in a laboratory setting: put
liquid in a petri dish on a loudspeaker, play a sound, and the fluid in the dish will form patterns
depending on the frequency of the sound being played. There are many different structures that
may be obtained, especially in the case of multi-frequency forcing, but in the simplest case Faraday
waves are the manifestation of a subharmonic instability, that is, the observed waves have half the
frequency of the container vibration.

Figure 3: Faraday waves in a petri dish.[17] For more interesting Faraday patterns, see this link.
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2.2.1 Dispersion relation for viscous water waves: two types of modes

To see how Faraday waves arise mathematically, we consider viscous water waves. Since we are not
neglecting viscosity altogether, it is not guaranteed that a flow, which is initially irrotational, stays
irrotational, and we are therefore not guaranteed a potential description for the velocity field for
all time. Instead, one must use a streamfunction, which is one reason why it is simpler to consider
the strictly inviscid case.

We follow [13]. The dimensionless equations for gravity-capillary waves in a layer of fluid with
(undisturbed) depth h that is viscous and incompressible are

ut + u · ∇u = −∇p+ C∇2u, (61)

∇ · u = 0, (62)

where C is a dimensionless constant measuring the viscous effects. Note that we no longer specify
the subscript of E for an Eulerian velocity, and unless otherwise specified, it can be assumed a
given velocity is Eulerian. The constant C can be prescribed, depending on the scale adopted for
time. A natural choice is [13]

C ≡ ν(gh3)−1/2 ≪ 1, (63)

where ν is the kinematic viscosity. At the bottom (in the non-dimensional variables, this is at
y = −1) we impose the boundary condition u = 0. In the non-dimensionalization, all lengths are
in units of h and time in units of

√
h/g. At the free surface y = η(x, t), we have the kinematic

boundary condition
ηt + uηx = v

as before. The mean of the free surface is then at y = 0. Define the (dimensionless) inverse Bond
number

B−1 =
T

ρgh2
, (64)

which measures the importance of surface tension T versus the importance of gravity. There are
two additional boundary conditions at the free surface:2C

(
uxη2x−ηx(uy+vx)+vy

1+η2x

)
= p− η + T ∂

∂x

(
ηx√
1+η2x

)
(uy + vx)(1− η2x) + 2ηx(vy − ux) = 0.

at y = η(x, t). (65)

Now we linearize about the state (u, v, p, η) = (0, 0, 0, 0),

(u, v, p, η) = (uk(y), vk(y), pk(y), ηk) exp(ikx+ st), (66)

where

suk = −ikpk + C(ukyy − k2uk), (67)

svk = −pky + C(vkyy − k2vk), (68)

ikuk + vky = 0, (69)

subject to the conditions
uk(−1) = vk(−1) = 0. (70)

In (67)-(69), the subscript of k denotes the functions uk, etc. whereas the subscript y denotes a
derivative of such a function with respect to y. Lastly,

sηk = vk(0), 2Cvky(0) = pk(0)− (1 + k2T )ηk, uky(0) + ikvk(0) = 0, (71)
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and η0 = 0 due to mass continuity.
Suppose k ̸= 0. Then (67)-(69) can be written as a fourth-order eigenvalue problem for vk(y).

The solution of this eigenvalue problem is of the form

vk(y) = a cosh ky + b sinh ky + c cosh qy + d sinh qy,

where q2 ≡ (s/C) + k2.
By additionally imposing the boundary conditions (70) and (71), we can now obtain the dis-

persion relation, which is more conveniently written in terms of the new variable q. It is given
by:

k(1 + Tk2)(q cosh q sinh k − k cosh k sinh q) =C2(4k2q(k2 + q2) + (k4 + 6k2q2 + q4)k sinh k sinh q

− (5k4 + 2k2q2 + q4)q cosh k cosh q).

(72)

We need to solve (72) for s (recall this is the frequency in (66), which appears also in (72) via
the definition of q) in order to understand the different modes. To that end, we solve (72) for
q = q(k;C, T ), from which we can find s via the relation s = C(q2 − k2).

The special case k = 0 is particularly simple. The solutions are of the form

(u0, v0, p0, η0) ∝
(
cos

((
n+

1

2

)
πy

)
, 0, 0, 0

)
,

n = 0, 1, 2, ..., with s = −C(n + 1
2)

2π2. Notice that s < 0. These are pure hydrodynamic modes
and decay viscously.

Next we turn to the asymptotic behavior of the solutions s to (72) in the limiting case C ≪ 1.
There are three different regimes depending on the magnitude of the wavenumber k but we only
discuss the case k = O(1).

In this case, the wavelength is of the order of the depth of the fluid layer. For these general
values of k (k ̸= 0), the dispersion relation has two solution types: gravity-capillary modes and
viscous modes.

Gravity-Capillary Modes: The gravity-capillary modes, also called nearly inviscid modes or sur-
face modes, are associated with solutions of the form

s= ±i
√
k(1 + Tk2) tanh k− (k(1 + Tk2) tanh k)1/4

sinh 2k
k

(
1± i√

2

)√
C − k2

(
2 +

5 + 3 tanh2 k

16 sinh2 k

)
C + ...,

(73)
where qr ∼ C−1/2 ≫ 1, qr > 0. Linear Faraday waves are given by the frequencies in the first term
of (73) with a decay due to viscous dissipation in the boundary layer (real parts of remaining terms
of (73)). This decay comes in already at order

√
C (also at higher orders if one expands further).

The modes associated with these frequencies oscillate with O(1) dimensionless frequency and their
decay rate is proportional

√
C.

Viscous Modes: There is another class of solutions to (72). The viscous modes, also called hydro-
dynamic modes, have |q| = O(1). At leading order, these are given by

q cosh q sinh k = k cosh k sinh q
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, which has infinitely many solutions of the form q = iζn(k), n = 1, 2, ..., where ζn(k) are monoton-
ically decreasing functions of k and satisfy

lim
k→∞

ζn(k) = nπ, where nπ ≤ ζn(k) ≤
(
n+

1

2

)
π,

lim
k→0

ζn(k) = ζn(0), where ζn(0) = tan ζn(0).

Then solution s (which is the decay rate) is given by

s = −C(k2 + ζn(k)) + ...

which shows that the viscous modes decay more slowly than the gravity-capillary modes, given that
C is small. More specifically, the viscous modes decay on a timescale determined by C rather than√
C. This indicates the viscous modes are actually the slowest modes of the system. In a consistent

theory, the fast modes are necessarily controlled by the slow modes, and so these viscous modes
must be considered.

2.2.2 Multiscale analysis of the viscous fluid equations

With this timescale separation in mind, we can now perform a multiscale analysis for the viscous
fluid equations. Considering small viscosity, there are three regions in the physical domain: two

oscillatory boundary layers with thickness O(C
1/2
g ) and the remaining part of the domain (referred

to as the “bulk” in Ref. [11]). We omit the details of the derivation, which may be found in Ref.
[16], and instead present the main steps.

Figure 4: Problem set-up, reproduced based on [16].

Setup: We consider a model of Faraday waves in annular containers. Accordingly, we consider a
two-dimensional, laterally unbounded fluid layer which is above a horizontal plate being vibrated
vertically with frequency 2ω and a sufficiently small amplitude. We use a Cartesian coordinate
system, where the x-axis is oriented to be along the unperturbed free surface and y is oriented
vertically upward. We non-dimensionalize space with the unperturbed depth h and time with
the gravity-capillary time (g/h+ T/(ρh3))−1/2. Non-dimensionalizing with respect to the gravity-
capillary time is useful because in the resulting equations, we have the option to take either the
limit T → 0 or g → 0, enabling analysis of both effects.
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Governing Equations: Let ψ be a streamfunction such that (u, v) = (−ψy, ψx). Let Ω denote the
vorticity and η the free surface deflection, as before. Recall the definition of the capillary number,
given in (63), and of the Bond number

B ≡ ρgh2

T
. (74)

In the non-dimensionalized governing equations, two parameters will arise naturally: the capillary-
gravity number

Cg ≡ C

(1 +B)1/2
(75)

and the gravity-capillary balance parameter

S ≡ 1

1 +B
. (76)

Notice from the definitions of B and S that 0 ≤ S ≤ 1. The extreme values of S, S = 0 and S = 1,
correspond to the purely gravitational (T = 0) and purely capillary (g = 0) cases, respectively. The
non-dimensionalized governing equations are

ψxx + ψyy = Ω, (77)

Ωt − ψyΩx + ψxΩy = Cg(Ωxx +Ωyy). (78)

Equation (77) is simply the vorticity in terms of the Laplacian of ψ, and (78) is the vorticity
equation. We additionally impose two boundary conditions at y = η:

ηt − ψx − ψyηx = (ψyy − ψxx)(1− η2x)− 4ηxψxy = 0 (79a)

(1− S)ηx − S

(
ηx√
1 + η2x

)
xx

− ψyt + ψxtηx − (ψx + ψyηx)Ω +
1

2
(ψ2

x + ψ2
y)x +

1

2
(ψ2

x + ψ2
y)yηx

= 4µω2 cos(2ωt)ηx − Cg(3ψxxy + ψyyy − (ψxxx + ψxyy)ηx)

+ 2Cg

((
2ψxyη

2
x + (ψxx − ψyy)ηx

1 + η2x

)
x

+
(ψxxy − ψyyy)η

2
x − ψxyy(1− η2x)ηx
1 + η2x

)
.

(79b)

Here, µ is a nondimensional measure of the amplitude of the vibrations applied to the system. As
this is a free surface problem, η would need to be calculated.

On the other hand, the bottom boundary condition is given at y = −1:∫ L

0
Ωy dx = ψ = ψy = 0 (80)

and ψ and η are both taken to be periodic in x with spatial period L (which is the non-dimensional
length of the annulus). Lastly, η must satisfy the volume conservation condition∫ L

0
η dx = 0. (81)

The first boundary condition in (79a) ensures that the pressure is periodic in x.
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Asymptotic Expansion: We assume that the viscosity is small so that Cg ≪ 1. We also assume
that there are two well-separated scales: in space, x ∼ 1 vs. x ≫ 1, and in time, t ∼ 1 vs. t ≫ 1.
We saw in the previous section that in the case of small viscosity, there are two different types of
modes that arise: the nearly inviscid modes and the viscous modes. Although the viscous modes
do not significantly deform the free-surface at leading order, as discussed previously, they cannot
be neglected. However, we can at least assume that the relevant viscous modes are concentrated
around a discrete set of wavenumbers (see Ref. [16] for more details). It is this assumption that
allows us to decompose the streamfunction in the bulk and the free surface deflection into three
parts:

1. Two counter-propagating wavetrains, with amplitudes A and B, respectively, slowly modu-
lated in space and time about wavenumbers ±k and response frequency ω,

2. A mean flow that has a weak time dependence but can have a strong spatial dependence, and

3. The remaining component, which is referred to as “nonresonant.”

Equations for η, ψ and Ω can then be written according to this separation. Using boundary condi-
tions that are derived via an asymptotic expansion with small parameter ϵ chosen to be the order
of magnitude of the complex amplitudes of the counterpropagating wavetrains (i.e., |A| ∼ |B| ∼ ϵ),
equations for the mean quantities ηm, ψm, and Ωm and for the perturbation quantities η+, ψ+, and
Ω+ can be obtained. A solvability condition must be imposed on these quantities, and this leads
to the evolution equations for the amplitudes A and B.

We look at the spectrum of the unforced problem, linearized around ψ = η = 0. The normal
modes are then of the form

(ψ, η) = (Ψ, η̂)eλt+ikx.

The nearly inviscid modes obey the dispersion relation

λ = iω − (1 + i)α1C
1/2
g − α2Cg +O(C3/2

g ) (82)

ω = (1− S + Sk2)k tanh k)1/2, α1 =
k(ω/2)1/2

sinh(2k)
, α2 =

(
2 +

5 + 3 tanh2 k

16 sinh2 k

)
k2 (83)

From the dispersion relation, the damping rate δ can be approximated,

δ ≡ −Re(λ) = α1C
1/2
g + α2Cg.

The viscous modes on the other hand follow the dispersion relation

λ = −Cg(k
2 + qn(k)

2) +O(C2
g )

where qn denotes the nth root of q tanh k = k tan q, k > 0.

Resulting Equations: The evolution equations for A and B are

At − vgAx = iαAxx − (δ + id)A+ i(α3|A|2 − α4|B|2)A+ iα5µB

+ iα6

∫ 0

−1

2ωk cosh(2k(y + 1))

sinh2 k
⟨ψm

y ⟩xdy A+ iα7⟨ηm⟩xA+ higher order terms, (84a)

Bt + vgBx = iαBxx − (δ + id)B + i(α3|B|2 − α4|A|2)B + iα5µA

− iα6

∫ 0

−1

2ωk cosh(2k(y + 1))

sinh2 k
⟨ψm

y ⟩xdy B + iα7⟨ηm⟩xB + higher order terms, (84b)
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A(x+ L, t) ≡ A(x, t), B(x+ L, t) ≡ B(x, t).

Here, α = −1
2ω

′′(k) and may be found via (82) and (83). The group velocity vg can also be
calculated from (82), as vg = ω′(k). The remaining coefficients α3, ..., α7 are calculated from the
solvability condition, and depend on ω = ω(k), k and S (see Ref. [16] for the full definitions). The
small parameter µ ≪ 1 denotes the nondimensional vibration amplitude. The aspect ratio of the
system, L≫ 1, is in units of the layer depth. Note that it was also assumed that

1 ≪ L≪ vg
δ + |d|+ µ

,

where δ is the damping rate as before and d is the detuning of the surface waves. Lastly, the mean
value ⟨·⟩x is defined

⟨G(x, y, t)⟩x = (2ℓ)−1

∫ x+ℓ

x−ℓ
G(z, y, t) dz with 1 ≪ ℓ≪ L.

Notice that the first seven terms of the equations (84a)-(84b) represent inertia, propagation at the
group velocity, dispersion, damping, detuning, cubic nonlinearity, and parametric forcing. The last
two terms express the coupling with the mean flow in the bulk. These terms are conservative,
implying that the mean flow does not extract energy from the system, at least at leading order.
The mean flow variables in the bulk, which depend weakly on time but strongly on the spatial
variables x and y, evolve according to the equations

ψm
xx + ψm

yy = Ωm

Ωm
t − [ψm

y + (|A|2 − |B|2)g(y)]Ωm
x + ψm

x Ωm
y = Cg(Ω

m
xx +Ωm

yy)

subject to the top boundary conditions, at y = 0,

ψm
x − ηmt = β1(|B|2 − |A|2)x (85a)

ψm
yy = β2(|A|2 − |B|2) (85b)

(1− S)ηmx − Sηmxxx − ψm
yt + Ch(ψ

m
yyy + 3ψm

xxy) = −β3(|A|2 + |B|2)x (85c)

and the bottom boundary conditions, at y = −1,∫ L

0
Ωm
y dx = ψm = 0 (86)

ψm
y = −β4(iABe2ikx + c.c. + |B|2 − |A|2). (87)

These boundary conditions are determined by matching the boundary layer solutions at the top
and bottom to the bulk solution just as done in Section 2.1. In particular the Reynolds stress in
the bottom boundary drives a horizontal mean flow ψm

y at y = −1 while a similar analysis at the
upper stress-free boundary shows that this boundary layer imposes a mean velocity gradient ψm

yy at
y = 0 (Eq. (85b)), with additional contributions from the presence of large scale spatial modulation
(Eqs. (85a,c)). Finally, the mean fields satisfy the periodicity conditions

ψm(x+ L, y, t) ≡ ψm(x, y, t) and ηm(x+ L, t) ≡ ηm(x, t)

together with the volume constraint ∫ L

0
ηm(x, t) dx = 0.

Together, these equations are referred to as the general coupled amplitude-mean-flow (GCAMF)
equations.
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Differences Between the GCAMF and the Governing Equations: The GCAMF equations describe
the bulk dynamics, outside of asymptotically thin boundary layers at the top and bottom, in the
weakly nonlinear regime. The right-hand sides of the boundary conditions (85a) and (85c) provide a
normal forcing mechanism. The right-hand sides of the boundary conditions (85b) and (86) provide
shear forcing mechanisms via a tangential stress at the free surface and a tangential velocity at the
bottom boundary. The presence of these forcing terms is important as they capture the effect of
the primary viscous boundary layers on the bulk. These forcing terms are one of the essential ways
the GCAMF equations differ from the exact equations at the outset of the analysis. The other key
difference is in two simplifications: (1) fast oscillations associated with surface waves are filtered
out in the GCAMF, and (2) the boundary conditions are applied at y = 0 which is the unperturbed
location of the free surface.

3 Concluding Remarks

We have outlined the application of asymptotic methods to derive reduced descriptions of complex,
nonlinear phenomena by exploiting scale disparities and small parameters. In salt-fingering turbu-
lence, it was the disparity between the heat and salinity diffusion timescales, whereas in accretion
disk turbulence (driven by the magnetorotational instability) it was the disparity between the char-
acteristic vertical and horizontal length scales of the fingers, and in nearly inviscid Faraday waves,
it was the small amplitude of the waves together with the low value of the viscosity (and the large
aspect ratio of the domain). Fingering instabilities exemplify a characteristic feature of systems
with timescale disparities – rapidly varying fields often lock onto slowly evolving ones, presenting
opportunities for model reduction. Nearly inviscid Faraday waves illustrate the non-trivial effects
that slow modes may have over long periods of time.
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GFD 2024 Lecture 6: Multiscale Modeling of Layered
Anisotropic Stratified Turbulence (LAST)

Greg Chini; notes by Paul Curtis and Cy David

June 24, 2024

1 Introduction

This lecture continues to develop the theme of utilizing asymptotic methods for studying 
turbulence in constrained flows. While earlier lectures in this series have discussed rota-
tionally or magnetically influenced systems, the focus of this lecture is on turbulent flows 
constrained by stable stratification, i.e., the increase of background density with depth.

Stratified turbulence is an essential ingredient in closing the oceanic overturning circu-
lation (e.g., [6]), although it occurs on scales too small to be resolved in global circulation 
models. Overcoming this issue via parameterization requires an understanding of the fun-
damental properties of stratified turbulence.

2 Layered Anisotropic Stratified Turbulence (LAST)

Strongly stratified turbulence dominates atmospheric and oceanic flows on horizontal scales 
L less than the scale of rotationally constrained (quasi-geostrophic) flows and l arger than
the Ozmidov scale,

LO =

(
E
N3

)1/2

, (1)

below which buoyancy forces are unimportant [7]. Here, E denotes the turbulent kinetic
energy (TKE) dissipation rate, and N is the Brunt–Väisälä frequency, which characterizes
the free oscillation of a parcel of fluid within a stably-stratified layer and is given by

N =

√
− g

ρ0

dρ

dz
, (2)

where g is the acceleration due to gravity, ρ0 is the mean density, and ρ(z) is the background
density profile as a function of height z.

Far from boundaries and for fixed Prandtl number Pr ≡ ν/κ, where ν is the kinematic
viscosity and κ is the thermal diffusivity of the fluid, two parameters control stratified
turbulent flows: the Reynolds number

Re ≡ UL

ν
(3)
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Figure 1: (a). Snapshot of the out-of-plane vorticity field from a direct numerical simulation
(DNS) in the LAST regime, illustrating the characteristic anisotropic horizontal layering.
(b) Regime diagram indicating the location of the LAST regime in the space of Re and
Fr−1. Reproduced from [7].

and the Froude number

Fr ≡ N−1

L/U
, (4)

which may be interpreted as the ratio of the buoyancy period to the horizontal advection
time of the large-scale,layer-like flow with characteristic speed U . An alternative interpre-
tation of the Froude number may be obtained by assuming that E ∼ U3/L, from which it
follows that

Fr ≡ U

NL
=

(√
U3

LN3

)2/3

L2/3
∼

(√
E/N3

L

)2/3

∼
(
LO

L

)2/3

. (5)

Hence, strongly-stratified flows (Fr ≪ 1) exhibit a wide range of scales, with LO ≪ L.
Such flows may exhibit an additional inertial range ∈ (LK , LO), where LK is the Kol-

mogorov microscale

LK =

(
ν3

E

)1/4

. (6)

Assuming again that E ∼ U3/L, the width of this inertial range is characterized by the
buoyancy Reynolds number

Reb ≡ ReFr2 =

(
UL

ν

)(
U2

N2L2

)
=

[(
U3

LN3

)1/2(
ν3

U3/L

)−1/4
]4/3

∼

[(
E
N3

)1/2(ν3

E

)−1/4
]4/3

∼
(
LO

LK

)4/3

. (7)
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Stratified turbulence in the ocean and atmosphere is characterised by Reb > 1 and
Fr ≪ 1, a regime termed “layered anisotropic stratified turbulence” (LAST) following [8].
Figure 1b highlights the LAST regime in the space of Re and 1/Fr.

The LAST regime is distinguished from weakly-stratified turbulence by the presence of

1. Anisotropic layers with horizontal scales L that are much greater than their vertical
extent h (h ≪ L), as suggested in figure 1a;

2. Spectrally non-local energy transfers that compete with an anisotropic (hydrostratic)
energy cascade [1];

3. Self-organization such that the horizontally-averaged flow is approximately marginally
stable to linear instabilities [15].

For inviscid two-dimensional (2D) disturbance to (vertically) stratified parallel shear flows,
these instabilities are governed by the Taylor–Goldstein eigenvalue problem:

ŵzz −
[
k2 +

uzz
u− c

− Bz

(u− c)2

]
ŵ = 0, (8)

where the z subscript denotes ordinary differentiation with respect to z;

w′ = ŵ(z)eik(x−ct) + complex conjugate (9)

is the vertical velocity perturbation with (real) horizontal wavenumber k and complex phase
speed c; and here

Bz = − g

ρ0
ρz = N2(z) (10)

is the background buoyancy gradient, while u(z) is the background parallel flow profile.
The unstable modes include Kelvin-Helmholtz, Holmboe, and Taylor-Caulfield modes.

Though the sufficient conditions for these instabilities may vary, a necessary condition
for instability (of the background flow) may be found by making the transformation ŵ =
(u− c)1/2ϕ in (8) and taking the inner product with ϕ∗, yielding

Im{c}
∫ (

|ϕz|2 +
Bz − 1

4u
2
z

|u− c|2
|ϕ|2 + k2|ϕ|2

)
dz = 0. (11)

Growth of the perturbations can occur (Im{c} ̸= 0) only if

Bz −
1

4
u2z < 0 (12)

somewhere in the flow. Defining the gradient Richardson number

Rig = Bz/u
2
z = N2/u2z, (13)

the necessary condition for instability is that

Rig < 1/4 (14)
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Figure 2: Schematic of the columnar vortex dipole generated by the closing of flaps in
the experiment performed by [2]. Laboratory visualizations of the zigzag instability using
fluorescein dye. Figure adapted from [2].

somewhere in the flow, a result known as the Miles–Howard theorem. Interestingly, flows
in the LAST regime appear to self-organize such that the turbulent mean Rig ≲ 1/4 [15].

The instabilities discussed thus far are applicable to a unidirectional background parallel
shear flow. A different type of instability, which can arise when the background flow is
instead a vertical columnar vortex pair, has been studied in the context of layer formation
seen in strongly stratified turbulence [2, 3]. Sinusoidal undulations of the columnar vortex
pair with height tend to grow unstably and slice the column into a set of “pancake” vortices.
Figure 2 shows laboratory visualizations of this “zigzag” instability and the formation of
vertically-layered vortices.

Connecting this physical picture to the actual mechanism(s) of layer formation in the
LAST regime requires investigations at extreme values of Re and Fr. The corresponding
range of scales that must be resolved makes geophysically-relevant parameter values cur-
rently inaccessible to direct numerical simulations (DNS).

An alternative approach, laid out by [7] and validated by [10], relies on an asymptotic
reduction of the full Boussinesq equations.

3 Single-Scale Asymptotic Reduction

We first describe a single-scale asymptotic reduction. Consider a (non-rotating) Boussinesq
flow with an imposed linear background buoyancy profile bB(z) such that the total buoyancy

btotal =
−(ρtotal − ρ0)

ρ0
g

= bB(z) + b. (15)

Let g = −gez, x⊥ = xex + yey, where x and y are horizontal coordinates, and u⊥ =
uex + vey = u − wez is the horizontal velocity field. In the following, we scale horizontal
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coordinates x⊥ by L, height z by h, horizontal velocity u⊥ by U , pressure p by ρ0U
2, and

time t by L/U . Buoyancy b is scaled by U2/h to allow for a balance with the vertical pressure
gradient. The vertical velocity w is scaled by W = Fr2UL/h = U3/(N2Lh) ∼ E/(N2h),
where N2h is a buoyancy anomaly (cf. [14]). With this choice, W is the vertical velocity
scale at which the work done against the vertical buoyancy gradient balances the TKE:

WN2h ∼ E . (16)

The resulting dimensionless equations are

∇⊥ · u⊥ +

(
Fr2

α2

)
∂zw = 0, (17a)

∂tu⊥ + (u⊥ ·∇⊥)u⊥ +

(
Fr2

α2

)
w∂zu⊥ = −∇⊥p+ f⊥ +D[u⊥], (17b)

Fr2
[
∂tw + (u⊥ ·∇⊥)w +

(
Fr2

α2

)
w∂zw

]
= −∂zp+ b+ Fr2D[w], (17c)

∂tb+ (u⊥ ·∇⊥)b+

(
Fr2

α2

)
w∂zb = −w +

1

Pr
D[b], (17d)

where the Laplacian diffusion operator D is given by

D =
1

Re

[
∇2

⊥ +
1

α2
∂2
z

]
, (18)

α = h/L is the aspect ratio of layered structures, and f⊥ is a (large-scale) horizontal body
force incorporated to drive the flow.

As Fr → 0, two distinct asymptotic reductions of system (17) can be envisaged.

1. Following [11], consider Fr/α → 0.

All vertical advection terms in equations (17) vanish, and the continuity equation
reduces to ∇⊥ · u⊥ = 0. The resulting system captures layer-wise 2D flow, for which
an upscale transfer of energy (inverse cascade) may be expected, contradicting what is
known about strongly-stratified turbulence. Thus, this limit system is not appropriate.

2. Following [4, 5], set α = Fr as Fr → 0 with Pr and Reb ≡ ReFr2 fixed.

The Boussinesq equations (17) then reduce to the “hydrostratic primitive equations”:

∇⊥ · u⊥ + ∂zw = 0, (19a)

∂tu⊥ + (u⊥ ·∇⊥)u⊥ + w∂zu⊥ = −∇⊥p+ f⊥ +
1

Reb
∂2
zu⊥, (19b)

0 = −∂zp+ b, (19c)

∂tb+ (u⊥ ·∇⊥)b+ w∂zb = −w +
1

PrReb
∂2
zb, (19d)

which filter out isotropic turbulence while permitting fully 3D flow.

Although the second limit system is an improvement over the first, the hydrostatic prim-
itive equations (19) cannot capture small-scale isotropic and non-hydrostatic dynamics,
e.g., associated with stratified shear instabilities. Instead of modeling these processes phe-
nomenologically, [7] proceed more formally using a multiscale asymptotic reduction.
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4 Multiscale Asymptotic Reduction

4.1 Multiscale problem formulation

Multiple scales asymptotic analysis can be employed to systematically incorporate small
scale (‘fast’) dynamical behaviour. Treating the aspect ratio α = h/L as a small parameter,
we introduce a fast (dimensionless) spatial variable χ = x/α and a corresponding fast
(dimensionless) time variable τ = t/α. In dimensional terms (where x̃ and t̃ are dimensional
variables), we see that

• χ measures horizontal variability in units of h, i.e., commensurate with the layer
thickness: x = x̃/L → x/α = χ = (x̃/L) · (L/h) = x̃/h;

• τ measures temporal variability in units of h/U , i.e., commensurate with the vertical
shearing timescale: t = t̃U/L → τ = t/α = (t̃U/L) · (L/h) = t̃U/h. Moreover, in
the asymptotic analysis that follows, α = Fr; thus, h/U = N−1; i.e., τ equivalently
measures variability on the buoyancy timescale.

Spatiotemporal derivative operators transform as ∂x → ∂x + α−1∂χ and ∂t → ∂t + α−1∂τ ,
while, e.g., the x-component of the velocity transforms as u(x, z, t;Fr) → u(χ, x, z, τ, t;Fr)
and analogously for other dependent fields. In our analysis, we further decompose these
fields into fast and slow components respectively denoted with an overbar and a prime:

u = u(x, z, t;Fr) + u′(χ, x, z, τ, t;Fr), (20)

where

(·) ≡ 1

∆τ∆χ

∫ χ+∆χ

χ

∫ τ+∆τ

τ
dχdτ(·)

defines an average over the fast time and fast spatial coordinates, and u′ = 0. (Here, ∆τ
and ∆χ are suitable fast-averaging periods.)

For brevity of exposition, we restrict attention to 2D dynamics in the x–z plane; the
generalization of the derivation of the multiscale reduced model to 3D dynamics is straight-
forward. We first identify a physically relevant and mathematically consistent distinguished
limit in which Re → ∞ while Fr → 0 and α → 0 such that α = Fr and the buoyancy
Reynolds number Reb ≡ ReFr2 remains (asymptotically) fixed and O(1). Next, we posit
the following asymptotic expansions for the various (total) fields:

[u,w, p, b] = [u0, w0, p0, b0] + Fra[u1, w1, p1, b1] + Fr2a[u2, w2, p2, b2] +O(Fr3a). (21)

Here, it is important to note that, for consistency in the indexing of the expansion, the
vertical velocity w has been scaled by U and not by αU and, as in Section 3, the buoyancy
b has been scaled by U2/h. The a priori unspecified exponent a is determined from the
following considerations. First, the leading-order incompressibility condition for the pre-
sumed isotropic fluctuations requires w′ = O(u′). Secondly, the dominant “Reynolds stress”
divergence feedback from the fluctuations should balance the time-tendency and nonlinear
advection of the large-scale horizontal velocity. As evident in the subsequent derivation,
these considerations imply a = 1/2. In particular, while the mean fields u ∼ u0 and b ∼ b0,
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the corresponding fluctuation fields u′ ∼ Fr1/2u′1 and b′ ∼ Fr1/2b′1; i.e., these fluctuations
are small compared to their respective means. It is this ordering that leads to a systematic
generalized quasilinear (GQL) reduction. In contrast, it will be shown that w ∼ Fr w2, as
already evident from the single-scale asymptotic reduction described in Section 3. Since
w′ ∼ Fr1/2w′

1, a key deduction is that, in stratified turbulence, vertical velocities are larger
for motions with small horizontal scales than they are for motions with large horizontal
scales. This prediction accords with available DNS results [12, 10].

We begin by writing the exact equations of motion (17) in 2D using the multiscale
derivative operators:

(∂x + Fr−1∂χ)u+ Fr−1∂zw = 0, (22a)

(∂t + Fr−1∂τ )u+ u(∂x + Fr−1∂χ)u+ Fr−1w∂zu = −(∂x + Fr−1∂χ)p+ f +D[u], (22b)

(∂t + Fr−1∂τ )w + u(∂x + Fr−1∂χ)w + Fr−1w∂zw = Fr−1∂zp+ Fr−1b+D[w], (22c)

(∂t + Fr−1∂τ )b+ u(∂x + Fr−1∂χ)b+ Fr−1w(∂zb+ 1) = Pr−1D[b], (22d)

where the Laplacian diffusion operator

D ≡ 1

Reb

[
(∂χ + Fr∂x)

2 + ∂2
z

]
=

1

Reb

[(
∂2
χ + ∂2

z

)
+ 2Fr∂x∂χ + Fr2∂2

x

]
.

4.2 Multiscale reduced model of stratified turbulence

In this section, we summarize the multiscale asymptotic reduction of the non-rotating
Boussinesq equations in the limit of strong stratification and large Reynolds number. The
result is a multiscale reduced model of strongly stratified turbulence, which, as noted above,
will be shown to have a GQL form. We first parse the equations into two sets, one governing
the mean and one governing the fluctuation fields. We then use the asymptotic expansions
(21) to determine the leading-order equations. In the following, numbered equations corre-
spond to key results, while un-numbered equations provide critical methodological steps.

1. The Continuity Equation.

Substituting the decomposition (20) into the continuity equation (22a) and performing
a fast average yields the following mean and perturbation equations:

∂xu+ Fr−1∂zw = 0, (23)

∂xu
′ + Fr−1(∂χu

′ + ∂zw
′) = 0. (24)

The balance in equation (23) implies that w ∼ O(Fr) (and, hence, w̄0 = w̄1 = 0). At
leading order, equation (24) implies that w′ ∼ O(u′), consistent with the expectation
that isotropic flow structures can arise on small scales. Substituting the asymptotic
expansions into equation (23) then yields

∂x(u0 + Fr1/2u1 + Fru2 + ...) + Fr−1∂z(w0 + Fr1/2w1 + Frw2 + ...) = 0.

The leading order balance [O(Fr0)] for the mean continuity equation is

∂xu0 + ∂zw2 = 0. (25)
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Similarly, for the perturbation continuity equation (24), we obtain

∂x

(
Fr1/2u′1 + ...

)
+

1

Fr

[
∂χ(Fr1/2u′1 + Fru′2 + ...) + ∂z(Fr1/2w′

1 + Frw′
2 + ...)

]
= 0,

recalling the perturbations to the velocity field are O(Fr1/2). Here, the leading order
balance arises at O(Fr−1/2):

∂χu
′
1 + ∂zw

′
1 = 0. (26)

Thus, to leading order, variability in the fluctuation fields occurs on commensurate
horizontal and vertical scales, corresponding to small-scale isotropic structures in the
flow. In contrast, large-scale horizontal divergences in the horizontal mean flow are
balanced by vertical divergences of a much smaller vertical flow, consistent with a
layering of the mean large-scale flow.

2. The Horizontal and Vertical Momentum Equations.

Considering next the horizontal momentum equation, we proceed by first using the
exact continuity equation (22a) to re-express equation (22b) in conservative form,
then substitute the Reynolds decomposition (20), noting, e.g., uu = u u + u′u′, and
finally fast average to obtain

∂tu+ ∂x (uu) +
1

Fr
∂z (uw) = −∂xp+ f +

1

Reb

(
∂2
z + Fr2∂2

x

)
u

− ∂x
(
u′u′

)
− 1

Fr
∂z
(
u′w′

)
, (27)

where the forcing is assumed to be strictly large scale (i.e., f = f := f0, and f ′ = 0).
Recalling w = O(Fr) and that w′ = O(u′), a physically meaningful dominant balance
as Fr → 0 can be obtained by requiring the leading-order fluctuation fields to be
O(Fr1/2); i.e., by requiring the expansion exponent a = 1/2, as noted previously.
Validation of this crucial scaling has recently been provided via the DNS of [10].
Substituting the expansion (21) into (27),

∂t

(
u0 + Fr1/2u1 + ...

)
+ ∂x

[
(u0 + Fr1/2u1 + ...)(u0 + Fr1/2u1 + ...)

]
+

1

Fr
∂z

[
(u0 + Fr1/2u1 + ...)(Frw2 + Fr3/2w3 + ...)

]
= ∂x

(
p0 + Fr1/2p1 + ...

)
+ f0

1

Reb
∂2
z

(
u0 + Fr1/2u1 + ...

)
− ∂x

[
(Fr1/2u′1 + Fru′2 + ...)(Fr1/2u′1 + Fru′2 + ...)

]
− 1

Fr
∂z

[
(Fr1/2u′1 + Fru′2 + ...)(Fr1/2w′

1 + Frw′
2 + ...)

]
,

yields, at O(1),

∂tu0 + ∂x (u0u0) + ∂z(u0w2) = −∂xp0 + f0 +
1

Reb
∂2
zu0 − ∂z(u′1w

′
1). (28)

The horizontal component of the fluctuation dynamics is obtained by subtracting the
exact horizontal momentum mean equation (27) from the exact full equation (22b).
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Substituting the asymptotic expansions for the various fields then yields

∂t

(
Fr1/2u′1 + ...

)
+

1

Fr
∂τ

(
Fr1/2u′1 + Fru′2 + ...

)
+
(
Fr1/2u′1 + ...

)
∂x

(
Fr1/2u′1 + ...

)
+
(
u0 + Fr1/2u1 + ...

)
∂x

(
Fr1/2u′1 + Fru′2 + ...

)
+
(
Fr1/2u′1 + Fru′2 + ...

)
∂x

(
u0 + Fr1/2u1 + ...

)
+

1

Fr

[
(u0 + Fr1/2u1 + Fru2 + ...

)
+
(
Fr1/2u′1 + . . .)

]
∂χ

(
Fr1/2u′1 + ...

)
+

1

Fr

(
Frw2 + Fr1/2w′

1 + Frw′
2

)
∂z

(
Fr1/2u′1 + Fru′2 + ...

)
+

1

Fr

(
Fr1/2w′

1 + Frw′
2 + ...

)
∂z

(
u0 + Fr1/2u1 + ...

)
= −∂x

(
Fr1/2p′1 + Frp′2 + ...

)
− 1

Fr
∂χ

(
Fr1/2p′1 + Frp′2 + ...

)
+

1

Reb

[
∂2
χ + ∂2

z + 2Fr∂χ∂x + Fr2∂2
x

] (
Fr1/2u′1 + Fru′2 + ...

)
+ ∂x

[(
Fr1/2u′1 + ...

) (
Fr1/2u′1 + ...

)]
+

1

Fr
∂z

[(
Fr1/2w′

1 + ...
) (

Fr1/2u′1 + ...
)]

.

The leading-order dynamics arises at O(Fr−1/2):

∂τu
′
1 + u0∂χu

′
1 + w′

1∂zu0 = −∂χp
′
1. (29)

The detailed analysis used to simplify the vertical momentum equation is similar to
that used for the horizontal momentum equation, although the resulting leading-order
mean equation,

0 = −∂zp0 + b0, (30)

is hydrostatic owing to the relative smallness of w. In contrast, the leading-order
equation for the vertical velocity fluctuations,

∂τw
′
1 + u0∂χw

′
1 = −∂zp

′
1 + b′1, (31)

more closely resembles the corresponding equation for the horizontal component of the
fluctuating velocity field (apart from the absence of a w′∂zw term and the inclusion
of a fluctuation buoyancy term).

3. The Buoyancy Equation.

Derivation of the reduced mean and fluctuation buoyancy equations closely parallels
the reduction of the mean and fluctuation horizontal momentum equations. Accord-
ingly, only the resulting leading-order equations are documented here. Specifically,
the mean equation is given by

∂tb0 + u0∂xb0 + w2(∂zb0 + 1) =
1

PrReb
∂2
zb0, (32)

while the fluctuation equation reduces to

∂τ b
′
1 + u0∂χb

′
1 + w′

1(∂zb0 + 1) = 0. (33)
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It is straightforward to extend the derivation given above to 3D scenarios having two
fast horizontal coordinates χ = (χ, ζ) and two slow horizontal coordinates x = (x, y), where
ζ = y/Fr The only restriction is that the fast-time average of the fast-streamwise mean
fields should vanish; i.e., the extension excludes scenarios in which slow dynamics occur
on fast ‘spanwise’ scales. With this caveat, the resulting asymptotically-reduced multiscale
model of strongly stratified turbulence is summarized below.1

Mean Field Equations

∂tu0 + (u0 · ∇x)u0 + w2∂zu0 = −∇xp0 − ∂z(w′
1u

′
1) +

1

Reb
∂2
zu0 + f0 (34a)

0 = −∂zp0 + b0 (34b)

∇x · u0 + ∂zw2 = 0 (34c)

∂tb0 + (u0 · ∇x)b0 + w2

(
∂zb0 + 1

)
= −∂z(w′

1b
′
1) +

1

PrReb
∂2
zb0 (34d)

Fluctuation Equations

(∂τ + u0 · ∇χ)u
′
1 + w′

1∂zu0 = −∇χp
′
1 (35a)

(∂τ + u0 · ∇χ)w
′
1 = −∂zp

′
1 + b′1 (35b)

∇χ · u′
1 + ∂zw

′
1 = 0 (35c)

(∂τ + u0 · ∇χ)b
′
1 + w′

1

(
∂zb0 + 1

)
= 0 (35d)

Crucially, equation (35b) confirms that vertical motions at small scales are non-hydrostatic.
Moreover, equations (35a) and (35d) indicate that small-scale fluctuations can be amplified
via interactions with vertical gradients in the leading-order mean fields u0 and b0.

4.3 Structure of the reduced equations

Equations (34a)–(34d) are precisely the hydrostatic primitive equations (19) obtained from
the single-scale reduction (Section 3), but here self-consistently augmented with the vertical
divergences of the leading horizontal-momentum and buoyancy fluxes arising from the fast
dynamics. Inspection of equations (35a)–(35d) confirms that the fast fluctuations dynamics
are non-hydrostatic, formally inviscid (since Re → ∞ as Fr → 0 in the distinguished
limit considered), and linear about the mean fields. Thus, taken together, the mean and
fluctuation equations comprise a quasilinear (QL) system. More precisely, the retention of
the slow x variation of the mean fields implies that the reduction is of generalized quasilinear
(GQL) form. Note that the (G)QL reduction is often invoked as a useful but ultimately
ad hoc approximation; one virtue of the present analysis is to show the formal asymptotic
validity of the (G)QL approximation for strongly stratified shear flows at large Reynolds
number.

1In these equations, it is implicit that all vectors lie in the plane perpendicular to the vertical; e.g.,
u ≡ (u, v).
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Two strategies can be employed to numerically simulate the multiscale reduced equa-
tions. Firstly, a strict QL initial-value problem can be obtained by reinterpreting the
averaging as a strict horizontal average (only), i.e., suppressing the slow x and slow y co-
ordinate dependencies, and formally replacing ∂t = (1/Fr)∂τ so that the resulting system
of χ-mean and fluctuation equations can be co-evolved on a single (fast) time scale. Of
course, this strategy has the undesirable feature of rendering the equation set numerically
stiff, as the small parameter Fr is reintroduced into the system. An alternative strategy,
which respects the multi-time-scale character of the reduced system, involves treating the
fluctuation system as an eigenvalue problem. Unlike more standard ‘wave/mean-flow in-
teraction’ models, here it is crucial to recognize that, with the mean fields locally frozen in
fast time, the fluctuation fields can undergo exponential growth; that is, modal instabilities
can arise as the fluctuations ‘feed’ off of vertical gradients of the mean horizontal velocity
and buoyancy fields. Indeed, when treated as an eigensystem, the fluctuation equations
(35a)–(35d) can be reduced exactly to the Taylor–Goldstein (TG) equation (8) discussed in
Section 2. Thus, by inspection, the fluctuation subsystem admits all of the stratified shear
instabilities admitted by the TG equation.

The new algorithm then couples the fast dynamics, treated as an eigenvalue problem,
with a slow initial-value problem for the mean fields. As discussed in the next section,
temporal scale separation can be maintained for this slow–fast (G)QL system only by en-
suring at each slow time instant that the mean fields are marginally stable with respect to
the fast fluctuations. Otherwise, the fluctuations can grow exponentially on the fast time
scale, with the mean fields locally frozen in fast time, thereby breaking the ‘asymptotic-
ness’ of the posited expansion. Before describing this novel algorithm, we note that, in
practice, the formally non-diffusive fluctuation dynamics must be regularized once the fast
subsystem is treated as an eigenvalue rather than initial-value problem. One approach,
followed here, is simply to reincorporate formally small Laplacian diffusion terms (in the
fast coordinates) on the grounds that, should critical layers arise, vertical gradients would
become sufficiently large to require inclusion of these terms. Another possibility should be
acknowledged, however; namely, that nonlinearity may become significant within the thin
critical layers, providing a mechanism by which strong fluctuation–fluctuation nonlinearity
(beyond the reach of the QL reduction) could arise even in the given distinguished limit.

5 Integration of Slow–Fast QL Models with Fast Instabilities

For QL systems with fast instabilities (rather than fast waves), the reduced (Fr → 0) two
time-scale system is problematic. If the slow field is fixed locally in time while the fast field
advanced, the latter can become unbounded. As shown in [13], this issue may be resolved
using a new asymptotic formalism for slow–fast QL systems subject to fast instabilities that

1. exploits emergent marginal stability; and

2. algebraically slaves the amplitude of fluctuations to the mean fields.

As an example of emergent marginal stability, consider the following slow–fast QL system of
ordinary differential equations (ODEs), with slow time t, in the limit the parameter Fr → 0:

dU

dt
= 4(1 + sin t)− U − b2,

db

dt
=

1

Fr
Ub. (36)
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Figure 3: Numerical integration of the ODE system (36) for two values of Fr. The red lines
show the leading asymptotic approximations (37) as Fr → 0, confirming that, in this limit,
the slow variable U is maintained in a state of emergent marginal stability.

As shown in figure 3, there is an initial transient after which the system evidently tunes
itself so that the “mean” variable U is statistically marginally stable. (Note that here the
dominant, slow part of U—shown by the red curve—plays the role of an eigenvalue.) It is
straightforward to obtain an asymptotic reduction of this system of ODEs that algebraically
links the fast variable b to the slow variable U such that the leading-order approximation
to U is marginally stable. To wit,

U ∼ 0 + FrU1(t) + ... (37a)

b ∼ 2
√
1 + sin t+ ... (37b)

Although db/dt ̸= 0, asymptotic consistency is maintained since |db/dt| ≪ 1/Fr as Fr → 0.
This approach can be extended to partial differential equations (PDEs). As an example,

consider the coupled evolution of a slow field U and fast field η subject to z- and (slow)
time-varying forcing F :

∂tU = F (z, t)− U − η2, (38a)

ϵ∂tη = Uη + ∂2
zη − ϵη3. (38b)

To analyze the limit in which the small parameter ϵ → 0, two time variables T = t and
τ = t/ϵ are introduced such that ∂t → ∂T + ϵ−1∂τ . After expanding the fields as (u, η) ∼
(u0, η0) + ϵ(u1, η1) + ... , the leading-order reduction of the PDE system (38) becomes

∂Tu0 = F − u0 − η20, (39a)

∂τη0 = Lη0, (39b)

where the linear differential operator

L = ∂2
z + u0(z, T ) (40)

and ( · ) denotes a fast time average; i.e.,

( · ) = lim
τ∗→∞

1

τ∗

∫ τ∗

0
( · )dτ. (41)
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Letting
η0 = Aη̂0(z)e

στ , (42)

equation (38b) is transformed into the eigenvalue problem

[L− σI]η̂0 = 0, (43)

where the operator on the left-hand side (LHS) can vary in slow time T . Taking a cue
from the analysis of the slow–fast ODE system, we insist that the (real) eigenvalue σ re-
main bounded above by zero (i.e., corresponding to a mean state of marginally stability) to
maintain temporal scale separation. We use this requirement as a constraint on the other-
wise indeterminate amplitude A by first forming an equation for the slow-time evolution of
σ. Differentiating (43) gives

(∂TL)η̂0 + L∂T η̂0 =
dσ

dT
η̂0 + σ∂T η̂0. (44)

Rearranging yields

[L− σI]∂T η̂0 =
dσ

dT
η̂0 − (∂TL)η̂0. (45)

Since the operator on the LHS has a nontrivial kernel, the Fredholm Alternative Theorem
requires that the right-hand side must satisfy a solvability condition. As the operator is
self-adjoint, we may take the inner product [⟨f, g⟩ =

∫
fgdz for functions f , g] with η̂0:〈

dσ

dT
η̂0 − (∂TL)η̂0, η̂0

〉
= 0. (46)

Rearranging and normalizing such that ⟨η̂0, η̂0⟩ = 1 yields

dσ

dT
= ⟨(∂TL)η̂0, η̂0⟩. (47)

Using equations (40) and (39a), we obtain

∂TL = F − u0 − η20. (48)

Collecting these results, the slow evolution of the fast eigenvalue σ can be expressed as

dσ

dT
= α− βA2, (49)

where, when σ = 0,

α =

∫ lz

0
(F − u0)η̂

2
0dz, (50a)

β =

∫ lz

0
η̂40dz. (50b)

The following algorithm then ensures the amplitude A is self-consistently tuned to maintain
the slow dynamics in a state of marginally stability provided the ‘forcing’ functional α is
driving the mean field toward instability:

• If σ < 0, A = 0;

• If σ = 0 and α > 0, set A =
√

α/β such that dσ/dT = 0.

This formalism has been extended to two space dimensions by [9], who also predict the slow
evolution of the marginal k, and implemented in strongly stratified Kolmogorov flow by [7].
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GFD 2024 Lecture 7: Two-dimensional Turbulence Above
Topography

Basile Gallet; notes by Vincent Laroche and Cécile Le Dizes

June 25, 2024

With the goal of discussing ocean turbulence, we build upon the simple 2D Navier-Stokes model 
considered in the Lecture 3, adding physical ingredients of oceanic relevance. The first such in-
gredient is ocean bathymetry, whose influence is illustrated in figure 1. We show the 
geostrophic flow inferred from satellite altimetry (OSCAR surface currents) together with ocean 
bathymetry. While the flow displays various eddies and appears rather turbulent, one can notice 
some correlation between the direction of the flow and the bottom topography. Indeed, in figure 
1a we observe that the flow somewhat follows the main trenches and topographic mounts. Figure 
1b shows the Lofoten basin, a topographic depression at the center of which lives a persistent 
anticyclone. Why is it that the flow inferred from surface altimetry contains information about 
topographic variations several kilometers below? The main physical reason is rapid planetary 
rotation: the Taylor-Proudman theorem suggests that the flow tends to organize into vertically 
coherent columnar structures that communicate the topographic variations all the way to the 
surface. A first motivation for the present lecture is to derive a simple asymptotic model that 
captures this phenomenon.

A second motivation is perhaps at a more fundamental level. Topography can be thought of as 
external ‘disorder’ that disrupts the natural tendency for 2D flows to self-organize into large-scale 
coherent structures. In a similar fashion to statistical physics, one would like to be able to predict 
the influence of the disorder onto the end state of the 2D flow: does topography affect the natural 
tendency for freely-evolving 2D flows to form a large scale ‘condensate’ at the domain scale? How 
to predict the strength of the resulting condensate as a function of the strength and structure of the 
topographic disorder? More generally, can one determine a large-scale organizing principle that 
would allow for predictions of the end state? Historically, two such principles have been designed 
over the last 50 years. The statistical mechanics of two-dimensional flows assumes that the system 
is fully conservative and makes predictions based on the conservation of the many invariants of 
the system [11, 7, 9, 10, 2]. By contrast, the selective decay principle assumes that, even when 
the viscosity is made very small, some invariants decay as a result of turbulent transfers to small 
scales and anomalous dissipation [5, 13, 8, 3]. In this lecture we will focus on the selective decay 
principle, because numerical simulations show that enstrophy indeed robustly decays regardless of 
the small value of the (hyper)viscosity [12]. A limitation of such variational approaches, however, is 
that they apply to unforced systems in the limit where the small-scale viscosity tends to zero. As 
discussed in the first lecture, the system then conserves energy. However, in most situations of 
interest energy is input by some external forcing mechanism and removed by some combination 
of viscosity and large-scale friction. How to adapt the selective decay principle to such a forced-
dissipative system?This will be the topic of the last section, where we will provide a large-scale 
organizing principle for (weakly) forced-dissipative systems.
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a. b.

Figure 1: OSCAR surface currents (orange) superposed onto the ocean bathymetry (blue, the darker
the deeper). a. Southern Ocean East of New Zealand. b. Lofoten basin off the coast of Norway.

Let us start with the derivation of what is arguably the simplest model to study the influence of
bottom topography on the dynamics of a rapidly rotating flow: the single-layer quasi-geostrophic
model.

1 Derivation of the Single-layer Quasi-geostrophic Model

1.1 Rotating shallow-water equations

With ocean dynamics in mind, we consider a shallow layer of fluid in a frame rotating around the
vertical axis at a rate f/2, as sketched in figure 2. The mean-zero irregular bathymetry of the ocean
floor is denoted by h(x, y). We denote the vertical coordinate by z, with z = 0 at the average depth
of the ocean floor. The fluid surface lies at z = H(x, y, t), the mean fluid height being at z = H0.
Above the fluid, the atmosphere has uniform pressure P0. The total thickness of the fluid layer is

H(x, y, t) = H(x, y, t) + h(x, y) . (1)

Within the shallow-water approximation, the horizontal velocity field is vertically invariant, with
horizontal components u⊥ = [u(x, y, t), v(x, y, t)]. The pressure field P (x, y, z, t) satisfies hydrostatic
balance. Denoting as g the acceleration of gravity and ρ the uniform fluid density:

0 = −∂zP/ρ− g , (2)

which we integrate into:
P = −ρg[z −H(x, y, t)] + P0 . (3)

The rotating shallow-water equations then read:

∂tu⊥ + (u⊥ ·∇)u⊥ + fez × u⊥ = −g∇H , (4)
∂tH+∇ · (Hu⊥) = 0 , (5)
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Figure 2: Single-layer shallow-water model. A shallow layer of fluid is subject to gravity g in
a frame rotating at a rate f/2 around the vertical axis z. The mean-zero bathymetry of the ocean
floor is denoted by h(x, y). The free surface lies at z = H(x, y, t), with z = 0 denoting the average
depth of the ocean floor. H0 denotes the average thickness of the layer at rest. The atmospheric
pressure above the fluid layer is uniform and equal to P0.

where ∇ = (∂x, ∂y). Cross-differentiation of equation (4) yields the governing equation for the
vertical vorticity ζ = ∂xv − ∂yu:

∂tζ + u⊥ ·∇ζ + (f + ζ)∇ · u⊥ = 0 . (6)

We non-dimensionalize the set of equations (4-6) using the timescale f−1 and the lengthscale H0

(in all three directions):

x = H0x̃ , t = t̃/f , u⊥ = H0f ũ⊥ , (7)

H = H0H̃ , H = H0H̃ , h = H0h̃ . (8)

Dropping the tildes for brevity, the dimensionless equations read:

∂tu⊥ + (u⊥ ·∇)u⊥ + ez × u⊥ = −Bu2∇H (9)
∂tH+ u⊥ ·∇H = −H∇ · u⊥ , (10)
∂tζ + u⊥ ·∇ζ = −(1 + ζ)∇ · u⊥ , (11)

where we have isolated the total (Lagrangian) derivatives of H and ζ on the left-hand sides, using
∇ · (Hu⊥) = u⊥ ·∇H+H∇ ·u⊥ for equation (10). In equation (9), Bu denotes a Burger number,
defined as :

Bu =

√
g

f2H0
. (12)

1.2 Conservation of potential vorticity

Quasi-geostrophy greatly simplifies the description of the system: as opposed to the three evolution
equations (9-11), we will end up with a single evolution equation for a scalar quantity – the potential
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vorticity (PV) – that encodes the full evolution of the system. For the present shallow-water system,
PV is defined as Q(x, y, t) = (f + ζ)/H in dimensional form, its dimensionless counterpart being
Q̃ = (1 + ζ̃)/H̃. Dropping the tildes again, the Lagrangian derivative of the dimensionless PV is:

(∂t + u⊥ ·∇)Q =
(∂t + u⊥ ·∇)ζ

H
− 1 + ζ

H2
(∂t + u⊥ ·∇)H (13)

=
−(1 + ζ)∇ · u⊥

H
+

(1 + ζ)H(∇ · u⊥)

H2
= 0 , (14)

where we have substituted the expressions (10) and (11) of the Lagrangian derivatives of H and
ζ to obtain the second line. We conclude from the computation above that potential vorticity
is a material invariant, conserved along flow trajectories in the absence of forcing and
dissipation.

1.3 Asymptotic expansion

We are interested in the rapidly rotating, strongly stratified (strong gravity) regime where the
dynamics are governed by quasi-geostrophy. We thus focus on the following range of parameters:

• Rapid rotation: small Rossby number u⊥
fH0

, that is ũ⊥ ≪ 1.

• Strong stratification (strong gravity): Bu≫ 1.

• Weak topography: h≪ H0, that is h̃≪ 1.

• Even weaker fluctuations of the height of the free surface, also known as the ‘rigid-lid’ regime.

Introducing a bookkeeping parameter ϵ ≪ 1, we posit the following expansions for the various
dimensionless fields:

ũ⊥ = ϵu1(x, y, T ) + ϵ2 u2(x, y, T ) +O(ϵ3) , (15)

ζ̃ = ϵ ζ1(x, y, T ) + ϵ2 ζ2(x, y, T ) +O(ϵ3) , (16)

h̃ = ϵ h1(x, y) , (17)

H̃ = 1 + ϵ2H2(x, y, T ) +O(ϵ3) , (18)

H̃ = 1 + ϵ h1(x, y) + ϵ2H2(x, y, T ) +O(ϵ3) , (19)

where we have introduced the slow time variable T = ϵ t.1 Finally, we assume a large Burger
number:

Bu2 = 1/ϵ . (20)

To O(ϵ), equation (9) reduces to geostrophic balance:

ez × u1 = −∇H2 , (21)

a consequence being that u1 is divergence-free. Introducing the streamfunction ψ(x, y, T ) such that
u1 = −∇× (ψez) leads to:

ψ = H2 and ζ1 = ∆ψ = ∆H2 , (22)
1Note that this is not a multiple-scale expansion but simply a rescaling of the time variable, with ∂t = ϵ∂T .
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where ∆ = ∂xx + ∂yy. Now, expanding the expression of the (dimensionless) PV Q̃ yields:

Q̃ =
1 + ζ̃

H̃
=

1 + ϵ∆ψ

1 + ϵ h1
+O(ϵ2) = 1 + ϵQ1 +O(ϵ2) , where Q1 = ∆ψ − h1 . (23)

To O(ϵ2), the PV conservation equation becomes:

∂TQ1 + u1 ·∇Q1 = 0 , (24)

where the advective term can be written as u1 ·∇Q1 = J(ψ,Q1). Equation (24) together with the
definition of Q1 in (23) can be recast under the dimensional form:

∂tq + J(ψ, q) = 0 , (25)
q = ∆ψ + η(x, y) , (26)

where the quasi-geostrophic PV q consists of the relative vorticity ∆ψ and the ‘topographic potential
vorticity’ η(x, y) = −f h(x, y)/H0. The set of equations (25-26) fully determines the evolution of
the system in the quasi-geostrophic regime.2 One easily checks that in the absence of topography,
η = 0, equations (25-26) reduce to the standard 2D Euler equation.

In the following we will consider both the unforced, undamped system (25-26), but also the
following forced-dissipative version:

∂tq + J(ψ, q) = F(x, y)− κ∆ψ − ν∆3ψ , (27)
q = ∆ψ + η(x, y) . (28)

On the right-hand side of equation (27) is a steady forcing term F(x, y), together with a linear
damping term −κ∆ψ and a hyperviscous term −ν∆3ψ to damp small-scale structures. In the
ocean context, F(x, y) stems from the curl of a wind stress applied on the ocean surface, while
−κ∆ψ stems from Ekman friction on the ocean floor.

2 Selective Decay

2.1 Invariants of the conservative system

We first consider the conservative system (25-26) (that is, F = 0, κ = 0, ν = 0) inside a square
domain D with periodic boundary conditions. We denote by ⟨·⟩ a space average inside this domain.
Multiplying equation (25) with ψ before averaging over space leads to:

⟨ψ∂t∆ψ⟩+ ⟨ψJ(ψ, q)⟩ = 0 (29)

The second term on the left-hand side vanishes (based on properties of J discussed in the previous
lecture). Performing an integration by parts in space for the first term, using the periodic boundary
conditions, finally yields:

d

dt

〈
|∇ψ|2

〉
= 0 . (30)

2Indeed, starting from the knowledge of q(x, y, t), one can invert (26) to obtain ψ(x, y, t), before time-stepping
(25) to obtain q(x, y, t+ dt), and so on.
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We obtain that the kinetic energy E =
〈
u2

〉
is conserved, where we omit the 1/2 prefactor

in the standard definition of the kinetic energy to alleviate the algebra in the next sections. Now
multiply equation (25) with q before averaging over space to get:

d

dt

〈
q2
〉
= 0 , (31)

where we have used ⟨qJ(ψ, q)⟩ = 0. We conclude that the (potential) enstrophy Q =
〈
q2
〉

is
conserved in the absence of forcing and dissipation.3

Two-dimensional turbulence above topography thus possesses two quadratic invariants, just like
standard (flat-bottom) 2D turbulence. Based on our understanding of standard 2D turbulence, we
expect Q to be transferred to smaller and smaller scales, while E should be transferred to larger
scales. If some tiny hyperviscosity ν is retained in the problem, we expect Q to be robustly damped
(anomalous dissipation), while we expect E to be conserved to an excellent approximation. Based on
this intuition, Bretherton and Haidvogel [3] proposed in 1976 to apply the selective decay principle
to this system:

Selective decay principle: the end state of the system is obtained by minimizing Q while
conserving the initial value of E.

2.2 The variational problem

To minimize the enstrophy Q while conserving the initial value of the energy E we consider the
following functional:

L{ψ} =

∫∫
D
q2dxdy + µ

∫∫
D
u2dxdy =

∫∫
D
q2 + µ(∇ψ)2dxdy , (32)

where µ is a Lagrange multiplier ensuring the energy constraint. For a small variation δψ of the
streamfunction, the variation of L reads:

δL =

∫∫
D
2qδq + 2µ(∇ψ) ·∇δψdxdy , (33)

=

∫∫
D
2qδq − 2µψ∆(δψ)dxdy , (34)

=

∫∫
D
2qδq − 2µψδ(∆ψ)dxdy , (35)

= 2

∫∫
D
(q − µψ) δq dxdy , (36)

where we have perfomed an integration by parts using the periodic boundary conditions. Extremal-
izing L requires δL to vanish for any small variation δq, which implies that the parenthesis in (36)
must vanish. We finally obtain:

q = ∆ψ + η = µψ . (37)

3In fact, the space average of any function of q is conserved. When the system is truncated at some finite large
wavenumber, however, the truncated system only conserves the quadratic invariants E and Q. We focus on E and
Q in the following, discarding the other invariants.
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Ẽ = 1.44Ẽ = 0.743Topography

Figure 3: For the topography shown on the left-hand panel, a numerical run initialized with energy
Ẽ = 0.743 displays no condensation (center column), whereas a run initialized with Ẽ = 1.44 settles
in a condensed state in the long-time limit (right-hand column).

Remark 1: Fields satisfying (37) correspond either to extrema of Q or to saddle points. The
extrema can be either local or global.

Remark 2: Once (37) has been solved for ψ, the value of the Lagrange multiplier µ is obtained
from the value of the initial energy using the constraint E =

〈
|∇ψ|2

〉
.

Remark 3: An appealing aspect of selective decay is that any solution to (37) is a steady solution
to (25). Indeed, using q = µψ we have J(ψ, q) = µJ(ψ,ψ) = 0.

Remark 4: Additionally, if the state obtained by solving (37) corresponds to the minimum of Q
then it is stable [1]. Indeed, any departure from this minimum of Q would increase Q. This cannot
happen spontaneously, however, because Q can only decrease as a result of the dynamics (for F = 0,
κ = 0 and very small ν).

3 Solutions to the Variational Problem: Transition to Condensa-
tion

For simplicity, we consider monoscale topography in the following, such that ∆η = −k2η η(x, y),
where kη denotes the wavenumber of the topography. Denoting as k0 the gravest wavenumber
within the square domain (k0 = 2π/sidelength), we restrict attention to topography at smaller
scale than the domain size, kη > k0, with a strict inequality (although there is no need for scale
separation, that is, we do not demand kη ≫ k0).
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3.1 The Betherton-Haidvogel branch of solutions

Seeking a solution to the variational problem (37) at the scale kη of the topography, one can
substitute ∆ψ = −k2η ψ(x, y) into (37) to obtain:

ψ(x, y) =
η(x, y)

µ+ k2η
. (38)

We refer to this solution as the ‘Bretherton-Haidvogel’ (BH) branch of solutions to the
variational problem. The energy of the BH solution (38) is:

E =
〈
|∇ψ|2

〉
= −⟨ψ∆ψ⟩ = k2η

〈
ψ2

〉
=

k2η
(µ+ k2η)

2

〈
η2
〉
, (39)

while the enstrophy is:

Q =
〈
q2
〉
= µ2

〈
ψ2

〉
=

µ2

(µ+ k2η)
2

〈
η2
〉
. (40)

As discussed above, equation (39) can be inverted to express the Lagrange multiplier µ in terms
of the (conserved) initial energy E. The resulting µ can be substituted into (40) to express the
enstrophy Q in terms of the initial energy E on the BH branch of solutions. We leave these steps
as an exercise for the motivated reader, the result being:

Q
⟨η2⟩

=
(√

Ẽ − 1
)2

. (41)

where we have introduced the dimensionless energy Ẽ = Ek2η/
〈
η2
〉
. Expression (41) for Q vs E on

the BH branch is shown in figure 4 (right).

3.2 The condensed branch of solutions

We are about to show that the BH branch considered above does not always correspond to the abso-
lute minimum of the enstrophy Q. Indeed, there are other solutions to the variational problem (37),
as seen by recasting (37) as:

∆ψ − µψ = −η . (42)

When computing the BH branch above, we have implicitly assumed that the operator acting on ψ
on the left-hand side of (42) is invertible. However, this is not necessarily the case. Consider for
instance µ = −k20. Equation (42) becomes:

∆ψ + k20ψ = −η . (43)

The solution consists of the sum of a particular solution and a solution to the homogeneous equation
∆ψ + k20ψ = 0. We seek a particular solution at scale kη, which we denote by ψη. Using ∆ψη =
−k2ηψη, we obtain:

ψη =
η(x, y)

k2η − k20
. (44)
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Figure 4: Left: Amplitude Ã of the condensate as a function of the (conserved) energy of the
initial condition Ẽ. The theory predicts the existence of a condensed branch for Ẽ > 1 in the scale
separation limit. The data points agree well with the prediction (48), shown as a solid line. Right:
Enstrophy Q in the (quasi-)stationary state as a function of the (conserved) energy Ẽ of the initial
condition. Also shown are the results of the minimization: BH branch in blue and condensed branch
in red, for kη/k0 = 12. The absolute minimum (over the branches) is shown as a black dashed line.
The inset is a zoom on the data for Ẽ ≥ 1.

The solution to the homogeneous solution is written as Aψ0(x, y), where A ≥ 0 is an amplitude and
ψ0(x, y) is a normalized harmonic function at the gravest wavenumber k0 of the domain. That is,
ψ0(x, y) satisfies ∆ψ0 = −k20 ψ0, and we further demand that ψ0 satisfy the normalization condition〈
ψ2
0

〉
= 1.

Adding the particular solution to the solution of the homogeneous equation finally leads to:

ψ = Aψ0(x, y) + ψη(x, y) . (45)

We refer to (45) as the ‘condensed’ branch of solutions to the variational problem. Indeed, (45)
consists of a flow ψη at the topographic scale, together with a ‘condensed’ flow at the scale of the
domain, with spatial structure ψ0 and amplitude A. The amplitude A is determined by writing the
energy associated with the streamfunction (45):

E =
〈
|∇ψ|2

〉
= A2k20 + k2η

〈
ψ2
η

〉
, (46)

⇒ A2k20 = E −
k2η

〈
η2
〉

(k2η − k20)
2
. (47)

Although not a necessary assumption, the algebra is made even simpler by focusing on the limit of
scale separation, kη ≫ k0, which we consider in the following. The expression of the dimensionless
amplitude of the condensate then reduces to:

Ã =
√
Ẽ − 1 , where Ã =

Akηk0√
⟨η2⟩

. (48)
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One immediately observes that expression (48) is valid only for Ẽ ≥ 1. There are no condensed
solutions for Ẽ < 1.

One can also compute the enstrophy associated with the condensed branch of solutions (45),
before substituting the expression of A above to express Q as a function of E. We leave these steps
as an exercise for the interested reader, the result being:

Q
⟨η2⟩

=
k20
k2η

(Ẽ − 1) , (49)

valid for kη ≫ k0 and Ẽ ≥ 1. We plot expression (49) in figure 4 (right) for comparison with the
BH branch. The prefactor k20/k2η in (49) is an asymptotically small quantity in the limit kη ≫ k0
considered here, and Q is thus much smaller on the condensed branch of solutions than on the BH
branch.

We conclude that, for E ≥ 1, there are (at least) two branches of solutions to the variational
problem. The enstrophy on the condensed branch of solutions is smaller than the enstrophy on
the BH branch. Based on the selective decay principle, we thus expect the system to end up in a
condensed state. For E < 1 there is a single branch of solutions and we expect the system to be
on the BH branch of solutions. This is summarized in figure 4 (left), where we plot the amplitude
of the condensate as a function of the energy of the initial condition. We predict a continuous
transition to condensation as the initial energy exceeds a threshold value

〈
η2
〉
/k2η, the amplitude

of the condensate above threshold being given by expression (48).
We compare the predictions to numerical simulations in figures 3 and 4. We consider random

approximately monoscale topography around wavenumber kη/k0 = 12 (see Ref. [4] for details).
There is no forcing nor friction, and we employ very small hyperviscosity. Enstrophy robustly
decreases in such simulations, while energy is conserved to a very good approximation. In figure 3
we show snapshots obtained at the end time of two simulations differing in the value of the initial
energy. The streamfunction ψ agrees qualitatively with the theory: the simulation with Ẽ < 1
displays no large-scale condensation, whereas the simulation with Ẽ > 1 displays a strong large-
scale condensate. By contrast, in line with previous studies the PV q exhibits strong isolated vortices
that are not predicted by enstrophy minimization [14, 12, 6]. When condensation arises, however,
these vortices appear to be rather sparsely distributed above the faint background PV structure of
the condensed branch, given by (37) with µ = −k20. There is thus hope for large-scale condensation
to be quantitatively predicted by enstrophy minimization despite the emergence of the isolated
vortices.

To characterize the condensation transition quantitatively, we extract from the DNS the ampli-
tude A (rms value of the streamfunction restricted to the gravest Fourier modes only). In figure 4 we
show the resulting dimensionless condensate amplitude Ã as a function of the dimensionless initial
energy Ẽ. The numerical data are in very good agreement with the theoretical prediction from
enstrophy minimization. There is some departure from the theoretical prediction in the immediate
vicinity of the bifurcation threshold only, as a consequence of the isolated vortices pinned to the
topography.

In figure 4, we also plot the equilibrated enstrophy Q extracted from the DNS. Above the
transition Q is significantly lower than the enstrophy of the BH branch, because the latter is not
the absolute minimizer. Instead, the equilibrated Q lies close to the prediction of the condensed
branch. It is slightly greater than this absolute minimum as a result of the extra isolated vortices.
Once again, this slight departure from the absolute minimum of Q has only a modest impact on
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the value of the condensate amplitude A, which closely follows the theoretical prediction.

4 Forced Dissipative System

As discussed at the outset, selective decay deals with unforced systems in the limit of weak small-
scale damping. Most flows of interest, however, are forced and dissipative. How to adapt selective
decay to such an out-of-equilibrium situation? Progress can be made by considering weak forcing
and dissipation. While the energy-conserving system has a continuum of solutions indexed by the
initial energy, we show in the following that weak forcing and dissipation select a single member out
of this continuum of solutions to the energy-conserving problem, leading to quantitative predictions
for the strength of the condensate.

4.1 Selection of minimum-enstrophy states

Consider equation (27) with weak forcing and friction:

∂tq + J(ψ, q) = ϵ[F (1)(x, y, t)− κ(1)∆ψ] , (50)
q = ∆ψ + η (51)

where ϵ≪ 1 is a small parameter and we omit the hyperviscous term (assumed to be even smaller)
for brevity. Expand the fields in powers of ϵ:

q(x, y, t) = q(0)(x, y, T ) + ϵq(1)(x, y, T ) + . . . , (52)
ψ(x, y, t) = ψ(0)(x, y, T ) + ϵψ(1)(x, y, T ) + . . . , (53)

where we have introduced the slow time variable T = ϵt, that is, ∂t → ∂t + ϵ∂T .
Collecting terms of order O(ϵ0) leads to:

∂tq
(0) + J(ψ(0), q(0)) = 0 , q(0) = ∆ψ(0) + η . (54)

This is the set of equations discussed in the previous section. We consider a solution to these
equations that lies on the condensed branch, allowing the amplitude of the condensate to vary
slowly in time:

ψ(0)(x, y, T ) = ψη(x, y) +A(T )ψ0(x, y) . (55)

Following the standard method of mutiple-scale expansion, the slow evolution equation for the
amplitude A(T ) can be obtained from a solvability condition at next order. An alternate and
more enlightening way of obtaining this amplitude equation consists of writing the energy evolution
equation to lowest order. Upon multiplying equation(27) with ψ before averaging over x and y, one
obtains the evolution equation for the energy:

d

dT

〈
|∇ψ|2

〉
2

= −⟨Fψ⟩ − κ
〈
|∇ψ|2

〉
, (56)

where, in line with selective decay, the hyperviscous term does not contribute to energy dissipation
and has been omitted. Using the lowest-order streamfunction (55), we estimate the various terms
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Figure 5: Topographic-scale forcing. Condensate amplitude as a function of the forcing expressed
in terms of the Grashof number. When small hyperviscosity is retained the theoretical prediction
becomes Ã =

√
Grη − 1− νk4η/κ, shown as a dashed line using νk4η/κ = 0.28. DNS data points for

these parameter values are in good agreement with this theoretical prediction.

of equation (56) to lowest order ϵ, considering for brevity the scale separation limit k̃η ≫ 1:

d

dT

〈
|∇ψ|2

〉
2

= ϵ
k20
2

d(A2)

dT
+O(ϵ2) , (57)

⟨Fψ⟩ = ϵ

[
A(T )

〈
F (1)ψ0

〉
+

〈
F (1)η

〉
k2η

]
+O(ϵ2) , (58)

κ
〈
|∇ψ|2

〉
= ϵ κ(1)

[
A2k20 +

〈
η2
〉

k2η

]
+O(ϵ2) . (59)

Keeping these dominant contributions only, equation (56) leads to the following evolution equation
for the dimensionless amplitude Ã of the condensate, recast in terms of the non-expanded variables:

1

2κ

d

dt

(
Ã2

)
= Grη +Gr0 Ã− 1− Ã2 , (60)

where the forcing enters the equation through a domain-scale Grashof numberGr0 and a topographic-
scale Grashof number Grη, defined as:

Gr0 = − ⟨Fψ0⟩
k0κ

√
Eη

and Grη = − ⟨Fη⟩
κ ⟨η2⟩

. (61)

4.2 Topographic-scale forcing

We first consider the (arguably somewhat academic) situation of a small-scale forcing correlated
with the topography and uncorrelated with the domain-scale condensate, that is Gr0 = 0 and
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Figure 6: Domain-scale forcing. Condensate amplitude as a function of the large-scale forcing
amplitude expressed in terms of Gr0. The DNS data points are in good agreement with the theo-
retical prediction A+ in (63) associated with the selection of minimum-enstrophy solutions (dashed
line).

Grη ̸= 0. Seeking steady solutions to the amplitude equation (60) leads to 0 = Grη − 1− Ã2, with
solution:

Ã =
√
Grη − 1 , (62)

valid for Grη ≥ 1. For Grη < 1 we find Ã2 < 0 ; this is an indication that the ansatz (55) is incorrect
and that the system lies on the BH branch instead, with Ã = 0. We thus predict a continuous
transition to condensation as the topographic-scale Grashof number exceeds one. In
figure 5, we plot a slightly modified version of this prediction where an O(ϵ) hyperviscosity is retained
in the computation, the consequence being that the threshold value of Grη shifts from 1 to 1+νk4η/κ
(see Ref. [4] for details). We compare the prediction to numerical simulations of the forced-dissipative
system with forcing that is either directly proportional to η(x, y), or proportional to η(x, y)+ξ(x, y),
where ξ(x, y) is a random field with the same statistics as η(x, y) but corresponding to another
realization. Both forcing protocols lead to data points that fall close to the theoretical prediction,
illustrating the predictive skill of the present approach.

4.3 Domain-scale forcing

We now consider the more geophysically relevant situation of large-scale forcing at the scale of the
domain: Gr0 ̸= 0 and Grη = 0. Seeking steady solutions to the amplitude equation (60), we obtain:

Ã± =
Gr0 ±

√
Gr20 − 4

2
, (63)
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valid for Gr0 ≥ 2 only (for Gr0 < 2 the system lies on the BH branch). Closer investigation
indicates that the branch Ã− is unstable. We thus expect a discontinuous transition to condensation
as Gr0 exceeds 2. We plot the predicted bifurcation curve in figure 6, together with data points
from numerical simulations performed with a forcing proportional to cos(k0y) (see Ref. [4] for
details). Once again, the agreement with the theory is excellent at finite distance from the instability
threshold, with slight discrepancies near threshold. In particular, the amplitude of the condensate
is very well captured by the upper-branch Ã+ for Gr0 ≥ 2. We observe only a very narrow region of
bistability, possibly because the uncondensed BH branch has other directions of instability, besides
direct condensation following equation (60). Additionally, the region of stability of the condensed
branch extends somewhat below Gr0 = 2, down to Gr0 ≃ 1.8. This 10% correction in threshold
value may be a consequence of the extra vortices pinned to the topography. As for the previous
case considered above, we conclude that the amplitude of the condensate is accurately predicted by
the theory, except in the immediate vicinity of the instability threshold where the pinned vortices
impact the dynamics of the system.
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GFD 2024 Lecture 8: Baroclinic Instability and Ocean Mesoscale
Turbulence

Basile Gallet; notes by Ishwari Mulkawar, Nicolaos Petropoulos,
Camille Moisset and Matthew McCormack

June 26, 2024

The external fluid layers of planets and their satellites are subject to meridionally dependent 
heating due to incoming radiation from a distant star, or intrinsic heat fluxes emanating from the 
planetary interior. On a rocky planet without an atmosphere, such a heat source would induce 
a strong difference in surface temperature between the equator and the poles. The presence of 
an atmosphere and/or an ocean strongly mitigates that temperature difference: the meridional 
temperature gradient induces turbulence in these external fluid layers through a process called 
baroclinic instability. The resulting ‘baroclinic turbulence’ greatly enhances heat transport from the 
equator to the poles, thereby reducing the emergent meridional temperature gradient. Predicting 
the equilibrated meridional temperature profile of these external fluid layers is arguably one of the 
central questions that a theory of climate should address. We provide two illustrations of baroclinic 
turbulence in figure 1: panels a and b correspond to the near-surface layer of Jupiter, while panel 
c corresponds to the Southern Ocean, where turbulent eddies result from the baroclinic instability 
of the Antarctic Circumpolar Current flowing around Antarctica.

The images in figure 1 show that the equilibrated state of baroclinic turbulence consists of a 
turbulent flow whose energy-containing scale is small compared to the size of the planet or ocean 
basin, which is also the extent of the large-scale heating pattern: scale separation spontaneously 
arises in this problem, opening an avenue for describing the turbulent heat transport in terms of a 
diffusive closure. A diffusive closure relates the turbulent heat flux to the meridional temperature 
gradient through a diffusivity coefficient that encodes the macroscopic transport induced by the 
small-scale erratic turbulent motion. The situation is analogous to the textbook examples of molec-
ular diffusion, where a macroscopic downgradient flux of heat or particles is induced by molecular 
agitation at microscopic scale. In both cases the role of theory is to express the diffusion coefficient 
in terms of external parameters [2, 7]. That scale separation spontaneously arises in a fully turbu-
lent flow is more the exception than the rule, and the reader accustomed to the standard textbook 
examples of turbulent flows – Couette flow, Rayleigh-Bénard convection, etc. – which all lack 
scale separation, ought to be skeptical about the use of a diffusive closure. That reader would be 
right in the sense that the diffusive closure is valid only when applied at scales larger than the 
energy containing scale, but this is precisely what a parameterization of turbulence in coarse 
atmosphere and/or ocean models intends to do: the diffusive closure is to be used as a 
parameterization of tur-bulent transport in a coarse model that cannot resolve the turbulent eddies 
that populate baroclinic turbulence.

With the goal of keeping the description as simple as possible, we build upon the model of the 
previous lecture and complexify it by considering two shallow layers of fluid sitting on top of one
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Figure 1: Baroclinic turbulence in planetary atmospheres and oceans. South pole (a) and sideview
(b) of Jupiter (composite image from NASA Juno mission). c: Magnitude of the horizontal velocity
20 meters below the surface from a numerical simulation of the Southern Ocean run at 2.5-km
resolution by the ICON-N group [8], illustrating baroclinic instability of the Antarctic Circumpolar
Current (ACC).
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Figure 2: Schematic of the 2LQG model. The fluctuations h1(x, y, t) of the position of the free
surface are much smaller than the fluctuations h(x, y, t) of the position of the interface between the
two layers.

another, within the QG regime: this is the two-layer quasi-geostrophic (2LQG) model [10, 9, 12]. As
compared to a single-layer model, including a second fluid layer allows for a description of density
variations within a fluid column. New equilibria arise through thermal-wind balance (section 1)
and these new equilibria are subject to new instability mechanisms, such as baroclinic instability
(section 2). The derivation of the multi-scale model for turbulent heat transport proceeds in two
steps: we first derive a scaling theory for the turbulent transport arising in a homogeneous model
(section 3), before implementing the resulting effective diffusivity in an inhomogeneous model with
large-scale forcing (section 4).

1 The Two-layer Quasi-geostrophic (2LQG) Model

We consider the system sketched in figure 2. A shallow fluid layer of density ρ1 lies above a shallow
fluid layer of density ρ2 > ρ1, in a frame rotating around the vertical axis at a rate f/2. For
simplicity, we consider the following regime:

• No dependence of the Coriolis parameter with latitude: we work on the f plane (as opposed
to the β plane).1

• Equal depth at rest for the two layers, denoted by H0.

• Rigid-lid approximation: the mean-zero fluctuations h1(x, y, t) of the height of the free surface
are much smaller than the mean-zero fluctuations h(x, y, t) of the position of the interface
between the two layers.

1Mostly for simplicity, although the f plane may be a reasonable first approximation to describe baroclinic tur-
bulence in the Southern Ocean.
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1.1 Conservation of QGPV within each layer

We consider a QG regime similar to the one derived in the previous lecture for the single-layer
model. Namely, the vertically invariant horizontal flow within each layer obeys geostrophic balance
to lowest order, with a streamfunction ψ1(x, y, t) in the upper layer and ψ2(x, y, t) in the lower layer.
A QGPV conservation equation holds within each layer (same derivation as in the previous lecture).
The QGPV is the sum of a relative vorticity term ∆ψ1;2 and a topographic PV term η1;2(x, y, t)
proportional to the local departure of the thickness of the layer from its rest value: −h(x, y, t) in
layer 1 and +h(x, y, t) in layer 2, making use of the rigid-lid approximation h1 ≪ h. Including the
prefactor f/H0 from the previous lecture yields η1(x, y, t) = f h(x, y, t)/H0 for the upper layer and
η2(x, y, t) = −f h(x, y, t)/H0 for the lower layer. The QGPV conservation equation within each
layer finally reads:

q1 = ∆ψ1 +
f

H0
h(x, y, t) , ∂tq1 + J(ψ1, q1) = 0 , (1)

q2 = ∆ψ2 −
f

H0
h(x, y, t) , ∂tq2 + J(ψ2, q2) = 0 . (2)

The equations are not closed at this stage, as we need to relate the position h(x, y, t) of the
interface to the streamfunctions ψ1;2.

1.2 Relating the position of the interface to the streamfunctions

We relate the position of the interface to the streamfunctions based on hydrostatic and geostrophic
balance. When invoking hydrostatic balance, it is safer to keep track of the small fluctuations
h1(x, y, t) ≪ h(x, y, t) in the position of the free surface. Measuring the vertical coordinate z
upwards from the flat ocean floor, the interface lies at z = H0+h(x, y, t), while the top free surface
lies at z = 2H0 + h1(x, y, t). We denote by P0 the uniform atmospheric pressure above the upper
layer, P1(x, y, z, t) the pressure field in the upper layer and P2(x, y, z, t) the pressure field in the
lower layer. Hydrostatic balance in the upper layer leads to:

0 = −∂zP1 − ρ1g ⇒ P1 = −ρ1g(z − 2H0 − h1) + P0 . (3)

Hydrostatic balance in the lower layer leads to:

0 = −∂zP2 − ρ2g ⇒ P2 = −ρ2g(z −H0 − h) + C(x, y, t) , (4)

where the integration constant C(x, y, t) is obtained by demanding that P1 = P2 at the interface
z = H0 + h. We finally obtain:

P2 = −ρ2g(z −H0 − h) + P0 − ρ1g(h− h1 −H0) . (5)

The pressure field within each layer decomposes into a horizontally invariant z-dependent part
A1;2 + B1;2z, plus a mean-zero horizontally varying z-independent part p̃1;2(x, y, t). Using this
decomposition, geostrophic balance within each layer reads ψ1;2 = p̃1;2(x, y, t)/(ρ1;2 f), that is:

ψ1 =
gh1
f

, (6)

ψ2 =
ρ1gh1 + g(ρ2 − ρ1)h

ρ2f
. (7)
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We focus on the situation where there is only a slight density difference between the two layers:
ρ2 − ρ1 ≪ ρ1. Then, to lowest order, ρ2 can be replaced with ρ1 at the denominator of (7), leading
to:

ψ2 ≃
gh1
f

+ g
ρ2 − ρ1
ρ1

h . (8)

Subtracting (6) from (8) finally leads to the desired relation between h and the two streamfunctions:

h =
f

g′
(ψ2 − ψ1) , (9)

where we have introduced the reduced gravity g′ = g(ρ2 − ρ1)/ρ1 ≪ g.2

Substituting expression (9) for h(x, y, t) into equations (1-2) finally leads to the 2LQG system:

q1 = ∆ψ1 +
ψ2 − ψ1

2λ2
, ∂tq1 + J(ψ1, q1) = 0 , (10)

q2 = ∆ψ2 −
ψ2 − ψ1

2λ2
, ∂tq2 + J(ψ2, q2) = 0 , (11)

where we have introduced the Rossby deformation radius λ =
√
g′H0/(

√
2f), a characteristic length-

scale set by the relative importance of density stratification over global rotation.

1.3 Barotropic-baroclinic decomposition

Instead of using streamfunctions associated with each layer, it proves insightful to decompose the
flow into a vertical average (over the two layers) and the remaining z-dependent part. That is, we
introduce the fields ψ(x, y, t) and τ(x, y, t), defined as:

ψ =
ψ1 + ψ2

2
, (12)

τ =
ψ1 − ψ2

2
. (13)

ψ is referred to as the ‘barotropic streamfunction’.3 It is the vertically averaged stream-
function, which is also the streamfunction of the vertically averaged flow. τ is called the
‘baroclinic streamfunction’, but in the present context we will refer to τ as the temperature field.
Indeed, consider the situation where the density stratification is entirely due to temperature, the
uniform temperature of the upper-layer fluid being warmer than the uniform temperature of the
lower-layer fluid. As illustrated, e.g., in figure 3a, the vertically averaged temperature of a fluid col-
umn then depends only the position of the interface. If the interface is locally deeper, there is more
warm fluid inside the water column and the vertically averaged temperature is higher. Conversely,
if the interface is locally shallower there is locally more cool fluid in the water column and the verti-
cally averaged temperature is lower. Now, notice using equation (9) that τ is directly proportional
to −h: a fluid column with larger τ is warmer on vertical average, and τ(x, y, t) is a direct proxy
for the vertically averaged temperature of the local fluid column. We thus refer to τ
as the temperature field, even though τ has units of a streamfunction.

2Equation (6) can be recast as h1 = fψ1/g. Assuming that ψ1, ψ2, and ψ2 − ψ1 are comparable, using (9) we
obtain that h1/h ∼ (ρ2 − ρ1)/ρ1 ≪ 1, which justifies the rigid-lid approximation a posteriori.

3Often, in physical oceanography, barotropic simply means ‘z-invariant’, while baroclinic means ‘z-dependent’.
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Figure 3: Homogeneous model for a local patch of ocean or atmosphere. a. Base state
of the model. The uniform meridional temperature gradient corresponds to a tilted interface in
the 2LQG framework. It is associated with a vertically sheared zonal flow through thermal-wind
balance. This base state is subject to baroclinic instability, the ensuing baroclinic turbulence being
illustrated in the low-drag regime in panels b (temperature) and c (barotropic vorticity).

1.4 Thermal-wind balance

Consider a local patch of ocean or atmosphere at mid-latitudes in the Northern hemisphere. We
wish to describe this patch of fluid using a local Cartesian 2LQG model, with x the zonal coordinate,
y along latitude, pointing northward, and z along the local vertical. Because the poles are cooler,
∂yτ < 0, and because the patch of ocean is small we consider a uniform latitudinal temperature
gradient, which we denote by U = −∂yτ . Based on equation (9) the uniform gradient of τ corre-
sponds to a sloping interface between the two fluid layers, as sketched in figure 3a. But based on
the definition (13) of τ , the uniform gradient also corresponds to a vertically sheared zonal flow:

U = −∂yτ =
∂yψ2 − ∂yψ1

2
=
U1 − U2

2
, (14)

where U1 and U2 correspond to uniform zonal flows in the upper and lower layers, respectively.
Equation (14) is referred to as thermal-wind balance: the meridional temperature gradient
necessarily coexists with a vertically sheared zonal flow. Physically, the latitudinal pressure
gradient associated with the tilted interface has opposite signs in the two layers (the interface would
like to relax to a flat position) and can only be balanced by the Coriolis force inside each layer, hence
the opposite zonal flows in the two layers. Figure 3a corresponds to a situation where the vertically
averaged velocity vanishes.4 Another possibility is for the zonal flow to vanish in the lower layer,
for instance as a result of strong bottom friction on the ocean floor or on the ground below the
atmosphere. One then has U2 = 0, and using equation (14), U1 = 2U . This simple model explains
why the latitudinal temperature gradient in the atmosphere is associated with a strong eastward
jet stream, and why a similar latitudinal temperature gradient in the Southern Ocean is associated
with the Antarctic Circumpolar Current.

4or has been removed by switching to a comoving frame.
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2 Baroclinic Instability

The lowest energy state of the two-layer system corresponds to motionless layers separated by a flat
interface. As compared to this lowest energy state, the thermal-wind state sketched in figure 3a has
available potential energy associated with the tilt of the interface. While this thermal-wind state
is a valid solution to the equations, it turns out to be an unstable one. Indeed, we are about to
introduce the baroclinic instability mechanism, through which the system taps into the potential
energy reservoir to induce fluid motion and heat transport. In a model of finite extent, such heat
transport acts to flatten the interface between the two layers.5

To wit, perform the sum and difference of equations (10) and (11) to recast the evolution
equations in terms of ψ(x, y, t) and τ(x, y, t):

∂t(∆ψ) + J(ψ,∆ψ) + J(τ,∆τ) = 0 , (15)

∂t

(
∆τ − τ

λ2

)
+ J

(
ψ,∆τ − τ

λ2

)
+ J(τ,∆ψ) = 0 . (16)

Decompose the temperature field into a uniform background meridional gradient −Uy, plus an
arbitrary departure τ̃(x, y, t):

τ = −Uy + τ̃(x, y, t) . (17)

Inserting this decomposition into (15-16) yields:

∂t(∆ψ) + J(ψ,∆ψ) + J(τ̃ ,∆τ̃) + U∂x(∆τ̃) = 0 , (18)

∂t

(
∆τ̃ − τ̃

λ2

)
+ J

(
ψ,∆τ̃ − τ̃

λ2

)
+ J(τ̃ ,∆ψ) + U∂x

(
∆ψ +

ψ

λ2

)
= 0 . (19)

2.1 Linear instability

Let us focus first on the linear stability of the system by considering infinitesimal perturbations ψ
and τ̃ . Linearizing the equations leads to:

∂t(∆ψ) + U∂x(∆τ̃) = 0 , (20)

∂t

(
∆τ̃ − τ̃

λ2

)
+ U∂x

(
∆ψ +

ψ

λ2

)
= 0 . (21)

Seeking solutions under the form: (
ψ(x, y, t)

˜τ(x, y, t)

)
=

(
ψ̂
τ̂

)
eik·x+σt (22)

leads to a 2× 2 system in ψ̂ and τ̂ , the determinant of which must vanish for non-trivial solutions
to exist. This leads to a dispersion relation providing the acceptable values of the growth rate:

σ̃2 = k̃2x
1− k̃2

1 + k̃2
, (23)

5In the following doubly-periodic model, however, the tilt of the interface is prescribed and the flow cannot feed
back onto it.
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where the dimensionless growth rate and wavevector are defined as σ̃ = σλ/U and k̃ = kλ = (k̃x, k̃y).
Expression (23) immediately shows that there are many values of k̃ associated with a positive
growth rate σ: the system is linearly unstable, this instability being known as ‘baroclinic
instability’. As an exercise, the interested reader can maximize (23) over wavevector k to check that
the most unstable wavenumber corresponds to k̃y = 0 and k̃x =

√√
2− 1. The most unstable

(dimensional) wavelength is thus of the order of the Rossby deformation radius λ.

2.2 Equilibrated state: baroclinic turbulence

Following the exponential growth of perturbations in the linear regime, we expect a fully nonlinear
regime where the flow is turbulent. To numerically investigate such baroclinic turbulence, we
consider the governing equations (18) and (19) inside a doubly periodic domain (x, y) ∈ [0, 2πL]2,
with the addition of dissipative terms:

• We include hyperviscous terms in both equations to damp the small-scale vorticity filaments.

• We expect the turbulent 2D flow to display some form of inverse energy cascade, towards
large scale. We thus include a large-scale drag term to damp kinetic energy at the end of this
cascade.

For simplicity, we include a drag term in the governing equation for the barotropic flow only. We
consider both the case of a linear drag force, proportional to the barotropic velocity, and the case
of a quadratic drag force, proportional to the squared barotropic velocity. Taking the curl of this
force yields the contribution to the barotropic vorticity equation. Equations (18) and (19) are thus
supplemented with the following terms on the right-hand side:

∂t(∆ψ) + J(ψ,∆ψ) + J(τ̃ ,∆τ̃) + U∂x(∆τ̃) = −ν∆5ψ + drag , (24)

∂t

(
∆τ̃ − τ̃

λ2

)
+ J

(
ψ,∆τ̃ − τ̃

λ2

)
+ J(τ̃ ,∆ψ) + U∂x

(
∆ψ +

ψ

λ2

)
= −ν∆4

(
∆τ̃ − τ̃

λ2

)
, (25)

where ν denotes hyperviscosity and the drag term reads:

drag =

{
−κ∆ψ for linear drag

−µ
2 [∂x(|∇ψ|∂xψ) + ∂y(|∇ψ|∂yψ)] for quadratic drag (26)

with κ the linear drag coefficient and µ the quadratic drag coefficient. The motivation for linear
friction is that it naturally arises as a consequence of a laminar Ekman boundary layer near a flat
bottom boundary. The flow may not be laminar at the bottom of the Ocean, however, and the
Ocean floor is certainly not smooth. In this context, quadratic friction may be a better model for
the turbulent drag force on the 3D roughness elements of the Ocean floor (as discussed in the first
lecture). In the following, for brevity we drop the tilde on τ , but the reader should remember that
τ now denotes the departure from the uniform background temperature gradient.

In figure 3b,c, we show snapshots in the equilibrated state of a simulation with weak hypervis-
cosity and friction. The barotropic vorticity ∆ψ displays strong isolated coherent vortices with weak
fluctuations in between. By contrast, the temperature field displays strong fluctuations between the
vortices.
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Figure 4: a. The mixing length ℓ can be thought of as the typical mean free path over which a fluid
element travels carrying its initial background temperature, before interacting with the environment,
thereby relaxing to the new local background temperature. b. A fluid column initially at rest ‘freely
falls’ in the meridional direction over a distance ℓ, transforming potential energy into kinetic energy.
The final velocity is given by (35).

2.3 Quantities of interest

Denoting as ⟨·⟩ a space and time average, our main goal is to determine the eddy-induced meridional
heat flux ⟨ψxτ⟩, or equivalently the diffusivity D = ⟨ψxτ⟩ /U connecting this heat flux to the
background temperature gradient −U . As will be illustrated in section 4, the heat diffusivity D is
the key quantity to parameterize the turbulent transport in a coarse-grained model. We thus focus
primarily on D in the following.

When the domain is large enough, the energy-containing scale is much smaller than the domain
size, which becomes irrelevant. Similarly, the heat flux is independent of the hyperviscosity ν when
the latter is small enough. We thus seek D as a function of the relevant dimensional parameters
U , λ, and the friction coefficient κ or µ. In dimensionless form, we seek the dimensionless
diffusivity D∗ = D/(Uλ) as a function of the dimensionless drag coefficient κ∗ = κλ/U or
µ∗ = µλ (for linear and quadratic drag, respectively).

A related quantity of interest is the mixing length ℓ =
√

⟨τ2⟩/U . As illustrated schematically
in figure 4a, ℓ is the typical distance – or mean free path – traveled by a fluid element carrying its
background temperature before it is mixed with the environment and relaxes to the local background
temperature. It follows that the typical temperature fluctuations around the background gradient
are of the order of Uℓ. The dimensionless mixing length ℓ∗ = ℓ/λ is again a function of κ∗ or µ∗,
depending on the form of the drag.

Thompson & Young ran simulations of the present model with linear drag and report a somewhat
surprising observation [11]: the numerical data for bothD∗ and ℓ∗ seem to lie onto a curve of the form
exp(const./κ∗). This empirical observation points to an extreme sensitivity of the heat transport
and mixing-length on bottom drag, stronger than the typical power-law relations observed in most
turbulent scaling regimes (see e.g. Lecture 3). More recently, Chang & Held revisited this problem,
considering quadratic bottom drag instead of linear drag [1]. They report power-law behaviors for
the diffusivity and the mixing-length: D∗ ∼ µ−1.24

∗ and ℓ∗ ∼ µ−0.58
∗ . These scaling exponents depart

from the values predicted based on standard inverse cascade phenomenology, the predictions being
D∗ ∼ µ−2

∗ and ℓ∗ ∼ µ−1
∗ (see Ref. [1] for details). The conclusion is that standard inverse cascade
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arguments do not apply to baroclinic turbulence. In the following section we introduce an alternate
scaling theory that predicts both the exponential dependence of D∗ and ℓ∗ on inverse linear drag
coefficient, and the correct power-law exponents for quadratic drag.

3 A Scaling Theory for the Turbulent Transport

The derivation of a scaling theory hinges on a combination of exact relations on the one hand, and
plausible physical arguments on the other hand. We start with the former, more rigorous arguments
of the theory, before discussing the more hand-wavy arguments.

3.1 An exact relation: the energy power integral

Let us derive the evolution equation for the mechanical energy in the system, considering the case
of linear drag. Multiply equation (24) with ψ before averaging over the domain (denoted by ⟨·⟩x).
After a few integrations by parts using the periodic boundary conditions, this leads to:

d

dt

〈
|∇ψ|2

〉
x

2
= ⟨ψJ(τ,∆τ)⟩x + U ⟨ψ∂x(∆τ)⟩x − κ

〈
|∇ψ|2

〉
x
, (27)

where we omit the hyperviscous term, whose contribution vanishes in 2D as ν → 0. Multiplying
equation (25) with τ before averaging over the domain and neglecting the hyperviscous contribution
leads to:

d

dt

(〈
|∇τ |2

〉
x

2
+

〈
τ2
〉
x

2λ2

)
=
U

λ2
⟨ψxτ⟩x − U ⟨ψ∂x(∆τ)⟩x − ⟨ψJ(τ,∆τ)⟩x . (28)

The evolution equation for the mechanical energy in the system is obtained by adding equations (27)
and (28):

d

dt


〈
|∇ψ|2

〉
x

2︸ ︷︷ ︸
barotropic KE

+

〈
|∇τ |2

〉
x

2︸ ︷︷ ︸
baroclinic KE

+

〈
τ2
〉
x

2λ2︸ ︷︷ ︸
potential energy

 =
U

λ2
⟨ψxτ⟩x︸ ︷︷ ︸

power released by instability

− κ
〈
|∇ψ|2

〉
x︸ ︷︷ ︸

frictional dissipation

. (29)

Performing a time average leads to the energy power integral. Substituting ⟨ψxτ⟩ = DU , we obtain:

U2

λ2
D = κ

〈
u2
〉
, (30)

where u = −∇× (ψez) denotes the barotropic velocity field. In the case of quadratic drag instead
of linear drag, the energy power integral takes the form:

U2

λ2
D =

µ

2

〈
|u|3

〉
. (31)
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Figure 5: a. The barotropic vorticity field is modeled as an ideal gas of identical vortices with
circulation ±Γ, core radius rcore ∼ λ and typical inter-vortex distance ℓiv. b. The moments of
the barotropic velocity field are estimated by considering a single isolated vortex at the center of a
disk-shaped domain or radius ℓiv.

3.2 Large-scale dynamics of τ

At scales much greater than λ, the evolution equation for τ can be simplified based on the approx-
imation ∆τ ≪ τ/λ2 and ∆ψ ≪ ψ/λ2:

∂t

(
��∆τ − τ

λ2

)
+ J

(
ψ,��∆τ − τ

λ2

)
+�����J(τ,∆ψ) + U∂x

(
��∆ψ +

ψ

λ2

)
= 0 , (32)

⇒ ∂tτ + J(ψ, τ) = U∂xψ . (33)

This equations shows that, at large scales, τ is simply advected by the barotropic flow. The source
of fluctuations of τ on the right-hand side is the distortion of the background temperature gradient
−Uy by the barotropic flow.

3.3 Vortex-gas model

The failure of standard cascade arguments to model the present turbulent flow is somewhat puzzling
and points to the role of coherent structures in physical space. In figure 3c, we observe that the
barotropic vorticity exhibits strong isolated vortices. We embrace this picture and propose a vortex-
gas model for the barotropic vorticity, sketched in figure 5a [3, 4]. We consider a dilute gas of identical
vortices with vortical cores of radius comparable to the injection scale λ of baroclinic instability,
and circulation ±Γ. The vortices are separated by a typical inter-vortex distance ℓiv, and they
wander around as a result of mutual induction, with a typical velocity V ∼ Γ/ℓiv. There are now
five dimensional quantities in the model: D, ℓ, ℓiv, Γ (or V ∼ Γ/ℓiv) and a drag coefficient κ or
µ. To come up with a fully closed scaling theory, in the following we derive four relations between
these five quantities.

Transport by a vortex dipole. The first relations are obtained by assuming that the transport
properties of the vortex gas are correctly estimated by considering an isolated dipole of counter-
rotating vortices. As sketched in figure 6a, according to equation (33) such a dipole induces effective
heat sources and sinks that are directly correlated with the meridional velocity component ψx. We
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Figure 6: Transport by an idealized vortex dipole. a. Through the distortion of the background
gradient, a vortex dipole induces temperature fluctuations that are directly correlated to the merid-
ional velocity. Simulating equation (33) for the velocity field of a self-translating vortex dipole
leads to the following vorticity (b), temperature (c) and heat flux (d) maps at the end time of the
simulation.

thus expect a positive heat flux ⟨ψxτ⟩x. As time evolves, the vortex dipole sketched in figure 6a
would translate along y as a result of mutual induction. We expect the dipole to translate over a
typical distance ℓiv, before the vortices pair up with other neighbors within the vortex gas. With
this idealized picture in mind, we carried out simulations of the large-scale τ equation (33) for
the velocity field of a self-propagating vortex dipole, stopping the simulation when the vortices
have propagated over a distance ℓiv (after which we assume that the vortices would pair up with
other neighbors within the gas). At the end time of the simulation (illustrated in figure 6b,c,d),
we compute the space averaged heat flux and the rms temperature fluctuations over an area of
several ℓ2iv around the dipole. Repeating this experiment for various values of ℓiv allows us to obtain
the (perhaps obvious from a dimensional point of view) scaling relations for the mixing-length and
diffusivity associated with dipolar transport:

ℓ ∼ ℓiv , D ∼ Γ ∼ ℓV . (34)

Slantwise free fall. The second scaling argument is an equivalent of the standard ‘free-fall’ velocity
estimate for standard upright thermal convection. We consider baroclinic instability as some form of
‘slantwise convection’ and we adopt the ‘kinetic theory’ view of the vortex gas sketched in figure 4b.
We consider a fluid element in the inter-vortex region, initially at rest. The free evolution of this
fluid element consists of an acceleration in the meridional direction, the fluid particle transforming
potential energy into kinetic energy. Such slantwise free-fall motion takes place over a typical
distance ℓ – the ‘mean free path’ of the turbulent motion – after which the particle interacts – or
‘collides’ – with neighboring fluid elements. At the end of the slantwise free-fall motion, the typical
velocity of the fluid element V is obtained by equating the final barotropic kinetic energy V 2 with
the drop in available potential energy associated with a displacement by a distance ℓ in latitude,
U2ℓ2/λ2. This leads to the velocity estimate:

V ∼ Uℓ

λ
. (35)

Using equation (34), this relation can be recast into the useful relation:

D∗ ∼ ℓ2∗ . (36)
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Energy power integral. The last relation is based on an estimate of frictional dissipation within
the vortex gas. To estimate the moments of the velocity field

〈
u2
〉

and
〈
|u|3

〉
entering the power

integral (30) or (31), we consider the idealized situation of an isolated vortex located at the center
of a disk-shaped domain of radius ℓ ∼ ℓiv, see figure 5b. Using polar coordinates, the velocity field
is azimuthal, with magnitude Γ/(2πr) outside the vortex core. The moments of the velocity field
are thus estimated as: 〈

u2
〉
∼ 1

πℓ2

∫ ℓ

λ

Γ2

4π2r2
2πrdr ∼ V 2 log ℓ∗ , (37)

〈
|u|3

〉
∼ 1

πℓ2

∫ ℓ

λ

Γ3

8π3r3
2πrdr ∼ V 3 ℓ∗ . (38)

Focusing on linear drag first, substituting (37) into the power integral (30) yields, using (34) and (35):

D
U2

λ2
∼ κV 2 log ℓ∗ ∼ κ

U2ℓ2

λ2
log ℓ∗ ∼ κU2ℓ2∗ log ℓ∗ ∼ κU2D∗ log ℓ∗ (39)

⇒ log ℓ∗ ∼
1

κ∗
(40)

⇒ ℓ∗ = c1e
c2/(2κ∗) , (41)

where the (ci)i∈N are dimensionless constants and the factor 2 in front of κ∗ in (41) is arbitrary.
Substitution into (36) yields:

D∗ = c3e
c2/κ∗ . (42)

For quadratic drag, substituting (38) into the power integral (31) yields, using (34) and (35):

D
U2

λ2
∼ µV 3ℓ∗µU

3ℓ4∗ ∼ µU3D2
∗ (43)

⇒ D∗ ∼
1

µ∗
, (44)

and using (36) once again:

ℓ∗ ∼
1√
µ∗

. (45)

To summarize, we have obtained the following scaling dependence of ℓ∗ and D∗ on the dimen-
sionless drag coefficient:

linear drag: ℓ∗ = c1e
c2/(2κ∗) D∗ = c3e

c2/κ∗ , (46)

quadratic drag: ℓ∗ =
c4√
µ∗

D∗ =
c5
µ∗

. (47)
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Figure 7: Dimensionless diffusivity (left) and mixing-length (right) as functions of the dimensionless
drag coefficient for both linear and quadratic drag. The solid lines are the predictions (46) and (47)
of the vortex-gas scaling theory.

The same vortex-gas scaling theory thus provides theoretical footing for Thompson & Young’s
empirical observation that the diffusivity is exponentially sensitive to the inverse linear drag coeffi-
cient, and for Chang & Held’s empirical scaling exponents for D∗ and ℓ∗ versus µ∗. In figure 7, we
provide numerical data on ℓ∗ and D∗ as functions of κ∗ or µ∗.6 The numerical data are in excellent
agreement with the predictions (46) and (47) of the vortex-gas scaling theory.7

4 Forcing at the Planetary Scale: Multiscale Approach

We now illustrate the implementation of the eddy diffusivity derived in the previous section into
a model forced at the large planetary scale. We will show how the expression of the diffusivity
computed using a local model with prescribed background temperature gradient holds in the more
general situation where turbulence feeds back onto the temperature profile.

4.1 Latitudinally varying external heat source

Our starting point is a 2LQG system without base state, in Cartesian geometry for simplicity. We
consider linear drag, but the procedure readily carries over to quadratic drag. The system is
forced by a weak heat flux that depends slowly on the ‘latitude’ coordinate y:

∂t(∆ψ) + J(ψ,∆ψ) + J(τ,∆τ) = −κ∆ψ , (48)

∂t

(
∆τ − τ

λ2

)
+ J

(
ψ,∆τ − τ

λ2

)
+ J(τ,∆ψ) = −Q(y) , (49)

6The numerical simulations employ a friction term in the lower layer only, but this does not affect the scaling
predictions of the vortex-gas model.

7Some slight discrepancy may be visible for D∗ at very low quadratic drag µ∗. A recent study indicates that this
due to the vortex cores becoming larger than λ for very small drag (see Refs. [5, 6] for refined predictions that capture
the very low µ∗ regime).

126



where we omit the hyperdiffusive terms for brevity. The external heat source term on the right-hand
side of the temperature equation reads:

Q(y) =
λ

L
Q0S

( y
L

)
, (50)

where the scale L is much greater than the deformation radius λ. The multiscale approach is based
on the small parameter ϵ = λ/L. The magnitude of the forcing is quantified by Q0, and we include
an extra prefactor ϵ = λ/L in (50) in anticipation of the scalings below. The latitudinal variations
of the forcing are encoded by the dimensionless function S. We non-dimensionalize the equations
using the lengthscale λ and the time scale 1/

√
Q0, denoting with a hat the dimensionless variables:

t̂ =
√
Q0 t , x̂ =

x

λ
, ψ̂ =

ψ

λ2
√
Q0

, τ̂ =
τ

λ2
√
Q0

, κ̂ =
κ√
Q0

. (51)

The dimensionless equations read:

∂t̂(∆̂ψ̂) + Ĵ(ψ̂, ∆̂ψ̂) + Ĵ(τ̂ , ∆̂τ̂) = −κ̂∆̂ψ̂ , (52)

∂t̂(∆̂τ̂ − τ̂) + Ĵ(ψ̂, ∆̂τ̂ − τ̂) + Ĵ(τ̂ , ∆̂ψ̂) = −ϵS(ϵŷ) , (53)

where the operators with a hat involve differentiation with respect to the dimensionless variables.

4.2 Multiple-scale expansion

We consider the following slow time and space variables:

• Slow variable along latitude, Y = ϵŷ. That is, ∂ŷ = ∂ỹ + ϵ∂Y , where x̃ = (x̃, ỹ) denotes the
standard (fast) variables.

• Slow time variable, T = ϵ2t̂. That is, ∂t̂ = ∂t̃+ ϵ
2∂T , where t̃ denotes the standard (fast) time.

Introduce an average · over the fast space variables x̃ and ỹ. This average can be thought of as
an average or coarse-graining over some intermediate scale, much greater than λ but much smaller
than L. Decompose the fields into mean and fluctuating parts:

τ̂ =
τ(Y, T )

ϵ
+ τ̃(x̃, t, Y, T ) , with τ̃ = 0 , (54)

ψ̂ = ψ̃(x̃, t, Y, T ) , with ψ̃ = 0 . (55)

Finally, we assume κ̂ = O(1) and S = O(1).
To obtain the evolution equation for τ , we wish to average equation (53) over x̃ and ỹ. It proves

useful to first recast the advective nonlinear terms in divergence form:

Ĵ(ψ̂, ∆̂τ̂ − τ̂) = ∇̂ ·
[
−[∇̂× (ψ̂ez)] (∆̂τ̂ − τ̂)

]
, (56)

Ĵ(τ̂ , ∆̂ψ̂) = ∇̂ ·
[
−[∇̂× (τ̂ez)] ∆̂ψ̂

]
. (57)
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Averaging equation (53) then yields, to order O(ϵ):

ϵ2∂T

(
−τ
ϵ

)
+ ϵ∂Y

(
ψ̃x̃(∆̃τ̃ − τ̃)

)
+ ϵ∂Y

(
τ̃x̃∆̃ψ̃

)
︸ ︷︷ ︸
=−ψ̃x̃∆̃τ̃

= −ϵS(Y ) (58)

⇒ ∂T τ + ∂Y

(
ψ̃x̃τ̃

)
= S(Y ) , (59)

where operators with a tilde involve differentiation with respect to the fast variables x̃ and ỹ only
(that is, ∆̃ = ∂x̃x̃ + ∂ỹỹ).

The governing equations for ψ̃ and τ̃ are obtained from equations (52) and (53) at O(1). The
only contributions from τ arise from the substitution ∂ŷ τ̂ → ∂Y τ + ∂ỹ τ̃ in the advective terms. We
thus introduce the field U(Y, T ) ≡ −∂Y τ . Equations (52) and (53) at O(1) read:

∂t̃∆̃ψ̃ + J̃(ψ̃, ∆̃ψ̃) + J̃(τ̃ ,∆τ̃) + U∂x̃(∆̃τ̃) = −κ̂∆̃ψ̃ , (60)

∂t̃(∆̃τ̃ − τ̃) + J̃(ψ̃, ∆̃τ̃ − τ̃) + J̃(τ̃ , ∆̃ψ̃) + U∂x̃(∆̃ψ̃ + ψ̃) = 0 . (61)

We stress the fact that U(Y, T ) appears only as a ‘parameter’ in these equations for the evolution of
ψ̃ and τ̃ with respect to the fast time and space variables. That is, we recover the set of equations
governing the local homogeneous patch of ocean considered in section 3.

The multiscale model consists of equations (60) and (61) for the fast evolution of the fluctuating
fields, together with equation (59) for the slow evolution of the background temperature profile.
The determination of the equilibrated temperature profile τ(Y ) consists of three steps:

1. ‘Solve’ equations (60) and (61) to obtain the eddy-induced heat flux ψ̃x̃τ̃ in terms of U and
κ̂. Instead of actually solving the equations (likely an impossible task), we will use the
quantitative scaling theory introduced in section 3.

2. Substitute the resulting expression for ψ̃x̃τ̃ into (59) to get a closed equation for τ(Y, T ).

3. Solve for the equilibrated temperature profile τ(Y ).

4.3 An example: S(Y ) = sinY

As an example, we consider sinusoidal variations of the external heat source/sink term, S(Y ) =
sinY . This large-scale heating/cooling pattern is represented in figure 8a. To avoid confusion, we
denote by Udim the dimensional version of the shearing velocity U . From the scaling theory in
section 3, we know that:

D∗ =
D

Udimλ
= c3e

c2/κ∗ , (62)

where κ∗ = κλ/Udim. The dimensional shearing velocity is Udim = −λ√Q0 ∂Y τ , the dimensional
friction coefficient is κ =

√
Q0κ̂ and the dimensional eddy-induced heat flux is ⟨ψxτ⟩ = λ3Q0ψ̃x̃τ̃ .

Equation (62) thus leads to the following expression for the dimensionless flux:

ψ̃x̃τ̃ = −c3(∂Y τ)|∂Y τ |ec2|∂Y τ |/κ̂ . (63)
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Figure 8: Numerical solution of the inhomogeneous model. a. Sinusoidal pattern of the
heat source/sink term. b. Instantaneous snapshot of the temperature field τ̂ in the statistically
steady state of a numerical simulation (κ̂ = 0.0707, ϵ = 0.02). c. Corresponding zonally averaged
temperature profile (blue) compared to the theoretical prediction (67) from the multiscale model
(black dashed).
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The steady version of equation (59) with sinusoidal forcing reads:

∂Y

(
ψ̃x̃τ̃

)
= S(Y ) = sinY (64)

⇒ ψ̃x̃τ̃ = − cosY +���const. , (65)

where the integration constant is set to zero based on the vanishing Y -average of the eddy-induced
heat flux. Substituting expression (63) for the flux yields:

c3(∂Y τ)|∂Y τ |ec2|∂Y τ |/κ̂ = cosY . (66)

This is an implicit equation for ∂Y τ , which we solve using the Lambert function W ,8 before inte-
grating over Y . We finally obtain:

τ(Y ) =
2κ̂

c2

∫ z=Y

s=0
W

(
c2

2κ̂
√
c3

√
cos s

)
ds , (67)

valid for Y ∈ [−π/2;π/2] (use symmetry and periodicity for other ranges of Y ). We stress the fact
that there are no adjustable parameters in the prediction (67) once the constants c2 and c3 have
been determined from the study of the homogeneous model (see section 3).

To test the prediction above, we have integrated the inhomogeneous model (52-53) numerically
for a sinusoidal heating/cooling pattern, using ϵ = λ/L = 0.02, κ̂ = 0.0707, and very small hypervis-
cosity. In figure 8b we show an instantaneous snapshot of the temperature field τ̂ in the statistically
steady state. We clearly see the large-scale pattern of the forcing, together with erratic smaller-scale
fluctuations. The corresponding zonally averaged temperature profile is shown in panel c, together
with the prediction (67) computed using the values of c2 and c3 deduced from figure 7. We obtain an
excellent agreement between the numerical data and the theoretical prediction from the multiscale
model.

8such that W (x) exp[W (x)] = x.
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GFD 2024 Lecture 9: Near-inertial Waves Interacting with
Balanced Flows

Basile Gallet; notes by Lulabel Ruiz Seitz and Adhithiya Sivakumar∗

June 27, 2024

We have focused so far on the slow balanced motion arising in rapidly rotating shallow layers 
of fluid, described through quasi-geostrophic (QG) dynamics. But what if the initial condition 
is incompatible with geostrophic balance and hydrostatic balance? The short answer is that the 
resulting flow consists of a combination of balanced flow and waves. The simplest example is perhaps 
a 3D homogeneous body of fluid subject to rapid rotation around the vertical axis: if the initial 
condition is incompatible with the Taylor-Proudman theorem, the flow consists of inertial 
waves interacting with vertically invariant Taylor columns.

The motivation for this lecture is two-fold. The first motivation comes from ocean dynamics: 
a significant fraction of the ocean kinetic energy takes the form of near-inertial waves interacting 
with the slower balanced QG flow. The second motivation is at the level of physics or applied 
mathematics: wave-mean flow interaction is a fascinating topic that bridges seemingly different 
research areas. In the present context, we will see in section 2 that there is an exact analogy 
between the evolution of near-inertial waves in a background flow and the dynamics of a 
quantum particle in an electromagnetic field. While this analogy may seem far-fetched, it has useful 
practical consequences. In particular, it points to equilibrium statistical mechanics as an 
efficient way to predict the statistics of the near-inertial wave field, as discussed in section 4.

To introduce inertial oscillations and near-inertial waves, we consider a two-layer system with 
a shallow upper layer of depth h(x, y, t), described within the rigid-lid approximation (see figure 
2). The atmospheric pressure above the layers is uniform. We denote the horizontal velocity inside 
the upper layer by u = [u(x, y, t), v(x, y, t)] and the Coriolis parameter as f. Linearizing the 
shallow-water equations around a state of rest with u = 0 and h = H0, we obtain:

∂tu− fv = −g′∂xh , (1)
∂tv + fu = −g′∂yh , (2)

∂th+H0∇ · u = 0 , (3)

where ∇ = (∂x, ∂y) and we have used hydrostatic balance to express the horizontal pressure gradient
in terms of the reduced gravity g′ and h(x, y, t) (see previous lecture).

Let us first focus on a horizontally homogeneous initial condition. With ∂x = ∂y = 0, the
evolution is governed by:

∂tu− fv = 0 , (4)
∂tv + fu = 0 . (5)

∗Some of the material presented during the lecture corresponds to the internship work of Alexandre Tlili, who is
gratefully acknowledged (see Ref.[4])
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Figure 1: Following a storm, the trajectories of surface drifters consist of circular motion associated
with near-inertial waves, together with a drift induced by the background flow. (figure reproduced
from d’Asaro et al. [3]).

Introducing the complex velocity field U = u+ iv, this set of equations is recast as ∂tU + ifU = 0,
with solution:

U =Me−ift , (6)

where M ∈ C is an integration constant. Shifting the origin of time such that M ∈ R, one can
check that the trajectories corresponding to (6) are:

x(t) = x0 +
M

f
sin(ft) , (7)

y(t) = y0 +
M

f
cos(ft) . (8)

The fluid elements describe circular trajectories, in the clockwise direction in the Northern hemi-
sphere. Such circular motion at the Coriolis frequency is called ‘inertial oscillation’. If some de-
pendence on x and y is retained under the form of a single Fourier mode, one obtains the following
dispersion relation between the angular frequency ω of the waves and the wavenumber k:

ω2 = f2 + g′H0k
2 . (9)

A natural lengthscale arising in this dispersion relation is the deformation radius based on the depth
H0 of the upper layer, λ0 =

√
g′H0/f . If the wavenumber k is much smaller than λ−1

0 , ω is close to
f and the waves are called ‘near-inertial waves’ (NIW).

In figure 1 we show the trajectories of surface drifters following the impulsive forcing of the ocean
surface by an extended atmospheric storm. The trajectories of the drifters consist of circular motion
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together with a drift. The circular motion is the signature of NIWs, while the drift corresponds to
advection by the background balanced flow.1

Near-inertial waves represent a significant fraction of the kinetic energy of the ocean. Within a
timescale of several weeks following a storm, NIWs are observed to propagate deeper into the water
column, where they can induce mixing as a result of shear instabilities. Such rapid downward prop-
agation is not obvious at the theoretical level. Indeed, atmospheric storms have a large horizontal
scale of ∼ 103 km. They drive a NIW field that is quasi-homogeneous in the horizontal directions.
In a fully 3D body of fluid, the dispersion relation of inertia-gravity waves is such that the group
velocity is perpendicular to the phase velocity: the energy of waves with no horizontal structure
(purely vertical wave vector) does not propagate vertically. The solution to this puzzle lies in the
interaction between NIWs and the balanced QG flow: the balanced flow shapes the NIW field,
which rapidly develops a smaller horizontal scale.2 Horizontal structure in the NIW field allows for
downward propagation of the wave energy. In this lecture we address the following questions:

• In the absence of spatial scale separation between the wave field and the balanced flow, how
to describe the interaction between the two?

• Starting from a horizontally homogeneous initial condition induced by an impulsive storm,
how to predict the distribution of NIW energy within the quasi-2D balanced flow? Where
does the wave kinetic energy localize? What about the wave potential energy?

• How does the NIW field contribute to horizontal transport near the ocean surface? Can we
predict the Stokes drift induced by the NIW field?

A solution to the first question above was proposed by Young & Ben Jelloul [5]. They took ad-
vantage of the timescale separation between the fast inertial frequency and the slow advection by
the balanced flow to derive a reduced equation governing the evolution of the NIW field. We de-
rive a simple version of this equation in section 1. It turns out that the Young-Ben Jelloul (YBJ)
equation is also the Schrödinger equation for a charged particle in a steady, 2D electromagnetic
field. We introduce this analogy in section 2, focusing first on the ‘strong-dispersion’ quantum limit
(section 3). In the opposite, ‘strong-advection’ limit, the analogy suggests leveraging the statical
mechanics of conservative systems to predict the various statistics of the charged particles, and thus
of the NIW field. We describe this approach in section 4, where we derive quantitative predictions
for the spatial distribution of the wave kinetic energy, wave potential energy, and Stokes drift.

1 Multiscale Derivation of the YBJ Equation

1.1 Wave dynamics in a shallow upper layer

Consider the system sketched in figure 2. This is the two-layer system mentioned in the introduc-
tion, with an infinitely deep lower layer. The base state consists of a steady, vertically invariant
background flow U(x, y) spanning both layers. The background flow is in geostrophic balance with
a vertically invariant lateral pressure gradient. It stems from a streamfunction ψ(x, y), that is,
U = [U(x, y), V (x, y)] = −∇ × (ψ ez). There is no deformation of the interface associated with

1together with possible Stokes drift.
2The β-effect also plays a role in this process, but we will restrict attention to the effect of the balanced flow in

this lecture.
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P = P0

g

f

2
ez

H0
ρ1

ρ2 > ρ1

h(x, y, t)
u(x, y, t)

U(x, y)

Figure 2: A two-layer model with an infinitely deep lower layer. The base state consists of a vertically
invariant steady horizontal flow U(x, y) spanning both layers, together with a flat interface between
the two layers (U = 0 in the introduction section). We consider perturbations u(x, y, t) to the
horizontal velocity in the upper layer only, whose depth is then denoted by h(x, y, t). In line with
the rigid-lid approximation, we neglect the fluctuations of the free surface as compared to h.

such a vertically invariant balanced flow. We consider the rotating shallow-water equations in the
upper layer, linearized around the background balanced flow:

∂tu+ J(ψ, u) + u∂xU + v∂yU − fv = −g′∂xh , (10)
∂tv + J(ψ, v) + u∂xV + v∂yV + fu = −g′∂yh , (11)

∂th+ J(ψ, h) +H0∇ · u = 0 . (12)

We non-dimensionalize the equations using a timescale f−1, a velocity scale
√
g′H0 and a height

scale H0:

t =
t̃

f
, u =

√
g′H0 ũ , x =

√
g′H0

f
x̃ , ψ =

g′H0

f
ψ̃ , h = H0h̃ . (13)

Substituting and dropping the tildes for brevity leads to the following dimensionless equations:

∂tu+ J(ψ, u) + u∂xU + v∂yU − v = −∂xh , (14)
∂tv + J(ψ, v) + u∂xV + v∂yV + u = −∂yh , (15)

∂th+ J(ψ, h) +∇ · u = 0 . (16)

Introduce the complex velocity field U = u + iv. Denoting the complex conjugate with a star, the
velocity components read:

u =
U + U∗

2
v =

U − U∗

2i
. (17)

The evolution equation for U is obtained from the linear combination (14)+i(15) of the equations
above:

∂tU + iU + J(ψ,U) + i

2
(∆ψ)U + U∗

(
−ψxy −

i

2
ψyy +

i

2
ψxx

)
= −hx − ihy , (18)
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where ∆ = ∂xx + ∂yy. This equation is coupled to the evolution equation for h, where u and v are
recast in terms of U and U∗ using (17):

∂th+ J(ψ, h) = −∂x
(U + U∗

2

)
− ∂y

(U − U∗

2i

)
. (19)

1.2 Multiple-scale expansion

We consider weak waves that are slowly modulated in space and time:

ψ = ψ0(X,Y ) , (20)

U = ϵU1(X,Y, t, T ) + ϵ3U3 + . . . , (21)

h = 1 + ϵ2h2(X,Y, t, T ) + . . . , (22)

where we have introduced the slow variables:

X = ϵx , Y = ϵy , T = ϵ2t . (23)

The single bookkeeping parameter ϵ ≪ 1 encodes the various scalings considered here. Through
equation (23), ϵ can be interpreted as the ratio of the Rossby deformation radius λ0 over the large
horizontal scale of both the background flow and the wave field. As discussed in the introduction,
such a large horizontal scale for the wave field indeed corresponds to the NIW regime of the full
dispersion relation (9). Based on this large horizontal scale, the Rossby numbers of both the
background flow and the wave field are of order ϵ2, providing another interpretation for ϵ.

We stress the fact that the ansatz (20-22) is really a mutliple-scale expansion in time only, with
two time variables t and T . By contrast, the introduction of X and Y is only a mere rescaling of
the space variables. In other words:

∂x = ϵ∂X , ∂y = ϵ∂Y , ∂t → ∂t + ϵ2∂T . (24)

To order ϵ, equation (18) reads:

∂tU1 + iU1 = 0 , (25)

with solution:

U1 =M(X,Y, T )e−it . (26)

The lowest-order velocity field above corresponds to near-inertial oscillations with an amplitude M
that is slowly modulated over space and time. Our goal is to obtain an evolution equation for M .
To order ϵ3, equation (18) reads:

∂tU3 + iU3 =− ∂TU1 − J(ψ0,U1)−
i

2
(∆ψ0)U1 − U∗

1

[
−∂XY ψ0 −

i

2
∂Y Y ψ0 +

i

2
∂XXψ0

]

− ∂Xh2 − i∂Y h2 , (27)

The solvability condition demands that there be no resonant terms on the rhs: the amplitude in
front of e−it on the rhs must vanish. To write this solvability condition, we first need to determine
the resonant part of h2, denoted by h(res)

2 . To wit, we consider equation (19) at O(ϵ2):

∂th2 = −∂X
(U1 + U∗

1

2

)
− ∂Y

(U1 − U∗
1

2i

)
. (28)
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On the rhs, only the terms involving U1 contribute to the resonant part of h2, while the terms
involving U∗

1 are non-resonant. Keeping the contributions from U1 only leads to:

∂th
(res)
2 =

[
−1

2
∂XM +

i

2
∂YM

]
e−it ⇒ h

(res)
2 =

[
− i

2
∂XM − 1

2
∂YM

]
e−it . (29)

Denoting with an arrow the amplitude in front of e−it of the resonant contribution from each term
on the rhs of equation (27), we obtain:

−∂TU1 → −∂TM , (30)
−J(ψ0,U1) → −J(ψ0,M) , (31)

− i

2
(∆ψ0)U1 → − i

2
(∆ψ0)M , (32)

−U∗
1 [. . . ] → 0 , (33)

−∂Xh2 − i∂Y h2 →
i

2
∆M . (34)

The solvability condition requires that the sum of the terms appearing on the rhs of (30-34) be
zero. Recasting this solvability condition in terms of the original fields and variables leads to (the
simplest version of) the YBJ equation:

∂tM + J(ψ,M)︸ ︷︷ ︸
advection

+
i

2
(∆ψ)M

︸ ︷︷ ︸
refraction

− i

2
∆M

︸ ︷︷ ︸
dispersion

= 0 . (35)

This equation describes the slow modulation of the complex NIW amplitude as a result of advection
by the background flow velocity, refraction by the background flow vorticity, and dispersion.3

2 Quantum Analogy

2.1 Charged particle in a static electromagnetic field

Upon multiplication by i, the YBJ equation can be recast as a Schrödinger equation:

i∂tM = −1

2
∆M − iJ(ψ,M) +

1

2
(∆ψ)M . (36)

To interpret this Schrödinger equation, recall the Hamiltonian for a particle of mass m and charge
q in a static 2D electromagnetic field:

H =
1

2m
[p− qA(x, y)]2 + qV (x, y) , (37)

where V (x, y) denotes the electric potential and A(x, y) denotes the vector potential. We choose the
Coulomb gauge, ∇ ·A = 0, such that the vector potential itself reads A(x, y) = −∇× [ϕ(x, y) ez].
Denoting the wave function as Ψ(x, y, t), the Schrödinger equation for this particle reads iℏ∂tΨ =

3The reader can check that the term − i
2
∆M corresponds to the first correction in a low-k expansion of the NIW

dispersion relation.
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H{Ψ}, where the operator H{·} is obtained by substituting p = −iℏ∇ into (37). Expanding the
square in (37) we obtain:4

iℏ∂tΨ =
1

2m
[−ℏ2∆Ψ+ iqℏ∇ · (AΨ)︸ ︷︷ ︸

iqℏA·∇Ψ

+iqℏA ·∇Ψ+ q2A2Ψ] + qVΨ . (38)

Choosing units such that ℏ = 1, m = 1 and q = 1,5 this equation becomes:

i∂tΨ = −1

2
∆Ψ+ iJ(ϕ,Ψ) +

(
A2

2
+ V

)
Ψ . (39)

Finally, we consider the situation where the external electric potential is given by:

V (x, y) = −A2

2
− 1

2
∆ϕ = −|∇ϕ|2

2
− 1

2
∆ϕ . (40)

With this choice for the electric potential, the dimensionless Schrödinger equation (39) becomes:

i∂tΨ = −1

2
∆Ψ+ iJ(ϕ,Ψ)− 1

2
(∆ϕ)Ψ . (41)

This is the YBJ equation (36), where the wavefunction Ψ plays the role of the complex wave
amplitude M , and ϕ plays the role of minus the streamfunction ψ. There is thus an exact
analogy between the YBJ equation and the quantum dynamics of a charged particle in a
2D static electromagnetic field. Table 1 summarizes the analogy between the various quantities
of interest. In particular, the vector potential A(x, y) plays the role of minus the background velocity
field U(x, y), and the vertical magnetic field B(x, y)ez is analogous to minus the vorticity ∆ψez
of the background balanced flow. Parts of the quantum analogy are discussed at various places
the literature: early on, YBJ noticed the similarity between the YBJ equation and a Schrödinger
equation. Balmforth et al. [1] notice the analogy between the advective term of the YBJ equation
and the effect of an external magnetic field on a charged particle, but they deem the potential term
unphysical. Danioux, Vanneste and Bülher [2] (DVB in the following) discuss the fact that, in the
absence of the advective term, the YBJ equation reduces to the Shrödinger for a charged particle
in an electric potential. By contrast, the present version of the analogy includes all the terms of the
YBJ equation.

2.2 Conserved quantities

There are two ways of determining the conserved quantities of the YBJ equation: one can directly
deduce them from the equation, or one can readily infer them from the quantum analogy. Consider
the YBJ equation inside a doubly periodic domain (x, y) ∈ D = [0, 2πL]2. Multiplying the YBJ
equation (35) with M∗ before adding the complex conjugate and averaging over the domain D
yields, after a few integrations by parts using the periodic boundary conditions:

dA
dt

= 0 where A =
〈
|M |2

〉
, (42)

4Beware that the operators inside the square bracket do not commute.
5That is, we nondimensionalize the equation using the scales ℏ = 1 for action, m for mass and q for electric charge,

assuming that the particle is positively charged, q > 0.

138



Quantum particle YBJ system
wave function Ψ(x, y, t) M(x, y, t)
vector potential A(x, y) −U(x, y)
magnetic field B(x, y)ez −∆ψez

electric potential V (x, y) ∆ψ
2 − |∇ψ|2

2
conserved probability

∫
D |Ψ|2dx conserved wave action A =

〈
|M |2

〉

conserved energy ⟨Ψ|H|Ψ⟩ conserved wave energy E, see (43).

Table 1: Summary of the analogy between the Schrödinger equation for a charged particle (left)
and the YBJ equation (right).

where the angular brackets denote space average over the domain D. The conservation of A is also
readily inferred from the quantum analogy, as A corresponds to the conserved total probability of
finding the particle somewhere inside the domain D. Wave action is defined as the ratio of the
wave energy to the wave frequency. In the YBJ context, the mechanical energy of the waves is
dominated by the kinetic energy

〈
|M |2

〉
(omitting the prefactor 1/2), while the frequency is equal

to f to lowest order. The conservation of wave action thus reduces to the conservation of the
space-averaged kinetic energy of the wave field,

〈
|M |2

〉
.

The conservation of A is discussed in the original YBJ paper [5]. Eighteen years later, a sec-
ond independent conserved quantity was uncovered by DVB based on manipulations of the YBJ
equation. Once again, this second conserved quantity is easily inferred from the quantum analogy.
Indeed, the Hamiltonian being time independent, its expectation value is conserved over time: the
mechanical energy of the charged particle is conserved. In the quantum context, this expectation
value is ⟨Ψ|H|Ψ⟩ =

∫
D Ψ∗H{Ψ}dx. For the YBJ system the analog of Ψ∗ is M∗, while the analog

of H{Ψ} is the rhs of (36). The conserved quantity becomes:

E =

〈
M∗

[
−1

2
∆M − iJ(ψ,M) +

1

2
(∆ψ)M

]〉

=

〈 |∇M |2
2

+
(∆ψ)|M |2

2
− iψJ(M,M∗)

〉
, (43)

where we have performed various integrations by parts using the periodic boundary conditions to
obtain the second expression. We refer to (43) as the wave energy. Strictly speaking, the total
mechanical energy of the waves consists of a leading-order kinetic energy term, proportional to A,
and the weaker contributions gathered in E above. In the present context A and E are conserved
independently. In the absence of background flow, ψ = 0, only the term |∇M |2/2 remains in (43).
This term corresponds to the potential energy of the waves.

2.3 Two limits of interest

At this stage one may reasonably object that we have made an analogy with a system that is even
less intuitive than the original system. We argue, however, that the analogy leads to various simple
observations. Among our goals is to predict where NIW action gets localized by the background
flow. DVB address this question based on a partial quantum analogy: neglecting the advective
term in (36), the YBJ equation looks like a Schrödinger equation with a potential proportional to
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the vorticity ∆ψ of the background flow. DVB thus argue that the particles will accumulate in
the regions of lowest potential, which correspond to the anticyclones of the background flow. This
prediction is backed by numerical data for flows of intermediate strength only, whereas simulations
with very weak or very strong background flows exhibit only a weak correlation between wave action
and background flow vorticity. The exact quantum analogy somewhat challenges the argument by
DVB. Indeed, the full potential (40) consists of half the background flow vorticity, to which is added
minus the flow kinetic energy. In the limit of fast background flow, the potential minima correspond
to fast-flow regions, as opposed to anticyclones. Finally, one may wonder why the particles would
accumulate in potential minima at all. Indeed, while a damped particle ends up in the potential
well, a conservative particle accelerates as it reaches the potential minimum, spending very little
time in the well.

In the following we thus revisit the problem of predicting the statistics of NIW interacting with
a background flow. We quantify the strength of the background flow using the rms magnitude of
the dimensionless streamfunction. Recasting ψ as:

ψ(x, y) = ψrms χ(x, y) with
〈
χ2

〉
= 1 , (44)

the YBJ equation (35) reads:

1

ψrms
∂tM + J(χ,M) +

i

2
(∆χ)M− i

2ψrms
∆M = 0 . (45)

In the next sections we consider a homogeneous initial condition M(x, y, t = 0) = 1,6 with the goal
of characterizing the long-time statistics of the NIW field in two limits of interest:

• ψrms ≪ 1: this is the ‘quantum’ or ‘strong-dispersion’ limit. The flow is weak and the
dispersive effects in (45) are strong.

• ψrms ≫ 1: this is the limit of ‘classical mechanics’. The YBJ equation is analogous to the
dynamics of a quantum particle in the small-ℏ limit.

3 The Strong-dispersion, ‘Quantum’ Limit

In the strong-dispersion limit ψrms ≪ 1 the potential reduces to:

V (x, y) = −ψ2
rms

|∇χ|2
2

+
ψrms

2
∆χ ≃ ψrms

2
∆χ . (46)

In line with the intuition of DVB, the potential minima then correspond to the anticyclones of
the background flow. Following YBJ we introduce the following expansion for the NIW complex
amplitude:

M = M(t) + ψrmsm(x, y, t) +O(ψ2
rms), with ⟨m⟩ = 0 . (47)

In (47) the homogeneous initial condition has evolved into a strong homogeneous part M(t) of
the solution, together with a weaker mean-zero spatial modulation ψrmsm(x, y, t) induced by the

6The YBJ equation being linear and phase invariant, the uniform initial value of M is irrelevant and can be set
to one without loss of generality.
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|∇χ|2∆χχ

Figure 3: The normalized background flow considered throughout this lecture. From left to right:
streamfunction χ, vorticity ∆χ and kinetic energy |∇χ|2.

weak background flow. Both M and m are O(1) in the expansion above. Averaging equation (45)
over space simply leads to ∂tM = 0 + O(ψrms): the spatially homogeneous part of the solution
is time-independent to lowest order, and using the initial condition we obtain M = 1. To O(1),
equation (45) then yields:

∂tm+
i

2
∆χ− i

2
∆m = 0 . (48)

The solution to this equation is:

m = χ(x, y) + m̃(x, y, t) , (49)

where the term m̃(x, y, t) oscillates in time with vanishing long-time average. The approximate
solution then reads:

M ≃ 1 + ψrms χ(x, y) + ψrmsm̃ = 1 + ψ(x, y) + ψrmsm̃ . (50)

Denoting time average as ·, the time-averaged distribution of wave action finally reads:

|M |2(x) = 1 + 2ψ(x, y) +O(ψ2
rms) . (51)

We conclude that, although the potential minima correspond anticyclonic regions, the distribution
of wave kinetic energy (or wave action) is modulated by the streamfunction of the flow, the regions
of maximal wave kinetic energy corresponding to the regions of maximal streamfunction. In the
particular case of a monoscale flow, where ψ is a harmonic function, the vorticity is directly propor-
tional to −ψ: regions of strong ψ indeed correspond to anticyclonic regions, confirming the intuition
of DVB. For multiscale flows involving a broad range of scales, however, the streamfunction can
differ very much from the vorticity field. Beyond the sole kinetic energy, one may be interested in
the distribution of wave potential energy, |∇M |2(x), omitting the prefactor 1/2. As opposed to
|M |2(x), a quantitative prediction for |∇M |2(x) requires computing m̃ above, which goes beyond
the scope of the present lecture. Upon arbitrarily neglecting m̃ in (50), however, one expects some
level of correlation between the wave potential energy |∇M |2(x) and the kinetic energy |∇ψ|2 of
the background flow.
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Wave potential energyWave kinetic energy
|M |2 |∇M |2/ψ2

rms

Figure 4: Time averaged NIW kinetic energy (left) and potential energy (right) for a simulation with
ψrms = 0.05 (strong-dispersion limit). The structure of the wave kinetic energy is given by that of
the streamfunction χ(x, y), see figure 3. The prefactor agrees quantitatively with the prediction (51).
The structure of the wave potential energy is correlated with that of the background flow kinetic
energy, although a quantitative prediction would require computing the unsteady term m̃. Contours
on both panels correspond to isovorticity lines.

To test these predictions, following DVB we consider a steady flow obtained from a homogeneous
isotropic Gaussian random process, with Gaussian correlation function and a correlation length of
approximately 1/7 of the domain size. In figure 3, we show the streamfunction χ, the vorticity ∆χ,
and the kinetic energy |∇χ|2 of the background flow considered throughout this lecture.

We consider first a simulation of the YBJ equation with weak background flow, ψrms = 0.05. In
figure 4 we show the time-averaged spatial distributions of wave kinetic energy and wave potential
energy. One clearly sees that the modulation of wave kinetic energy is given by the streamfunction
pattern, as opposed to the vorticity pattern.7 The strength of the modulation agrees quantitatively
with the prediction (51). As far as the wave potential energy is concerned, there is indeed some
correlation with the kinetic energy of the background flow (see figure 3). A quantitative prediction
would require computing the unsteady term m̃ in (50).

4 The Classical Limit, ψrms ≫ 1

In the classical limit, ψrms ≫ 1, the potential reduces to:

V (x, y) = −ψ2
rms

|∇χ|2
2

+
ψrms

2
∆χ ≃ −ψ2

rms
|∇χ|2

2
. (52)

We thus expect the particles to be attracted to the regions of maximum kinetic energy. ψrms ≫ 1 is
also the ray-tracing limit, where the trajectories of compact wave packets are determined based on
a WKB expansion. We readily infer the resulting ray-tracing equations using the quantum analogy:
this is the limit of classical mechanics. A compact wave packet localized at X(t) corresponds to a

7There is, however, some correlation between the two.
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Figure 5: A narrow wave packet with mean position X(t) and wavevector k(t) behaves like a charged
classical particle in a static 2D electromagnetic field.

charged classical particle subject to a Lorentz force, and Newton’s third principle yields:

mẌ = q(E+ Ẋ×B) . (53)

where E = −∇V , B = ∇ × A, and we have explicitly written the mass m and the charge q to
highlight the analogy.

As mentioned above, it is far from obvious that the conservative dynamics of such classical
particles would lead to accumulation in the potential minima. One should not immediately conclude
from (52) that the particles – and thus the NIW kinetic energy – will accumulate in the fast-flow
regions. Instead, a better-suited framework to infer the statistics of such classical particles is the
statistical mechanics of equilibrium systems, which we recall in the following.

4.1 Ergodic theory and microcanonical ensemble

Instead of Newton’s third law, the statistical mechanics of equilibrium system starts from the classi-
cal version of the Hamiltonian (37). Setting the mass and charge of the particle to one and denoting
as X(t) and k(t) the position and momentum of the classical particle, the classical Hamiltonian
reads:

H(X,k) =
1

2
[k+U(X)]2 + V (X) , (54)

where we have substituted the expression of the vector potential given in table 1. The potential
V is also to be read in table 1. Hamilton’s equations for the above-written Hamiltonian govern
the evolution of a narrow wave packet located at X(t) = [X(t), Y (t)] with wavevector k(t) =
[kx(t), ky(t)] (see sketch in figure 5):

dX

dt
=
∂H

∂k
,

dk

dt
= −∂H

∂X
, (55)

where the equations are to be understood componentwise. Consider a cloud of initial conditions
in the phase space (X,Y, kx, ky). Liouville theorem states that, following the Hamiltonian evo-
lution (55), the cloud will deform in phase space conserving its initial volume. In other words,
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Figure 6: Time-averaged distribution of NIW kinetic energy for numerical simulations with two
large values of ψrms. The numerical data agree with the prediction of uniform |M |2 over most of the
domain. The deficits in kinetic energy near the centers of cyclones are captured by a refined statis-
tical mechanics calculation. By contrast, the excess kinetic energy near the centers of anticyclones
results from a local failure of the ergodic assumption.

the volume in phase space is conserved by the dynamics because equations (55) correspond to an
incompressible phase-space flow.

Consider now an ensemble of particles with the same initial energy E0. Because energy is
conserved, these particles only have access to the hypersurface H(X,k) = E0 in phase space. Like
a cloud of dye getting homogenized by a chaotic flow and achieving uniform concentration in the
long-time limit, we expect the Hamiltonian phase-space flow (55) to homogenize a cloud of initial
conditions with initial energy E0 over the hypersurface H(X,k) = E0. The ergodic assumption thus
consists in assuming that, in the long time limit, the probability of finding a particle with position X
and momentum k is uniform over the hypersurface H(X,k) = E0 and zero elsewhere. Introducing a
probability density P (x,k) in phase space such that the P (x,k)dxdk is the probability for a particle
to be in a phase-space volume dxdk around the point (x,k), the ergodic assumption translates into:

P(x,k) = C δ[H(x,k)− E0] , (56)

where the constant C is a normalization factor. In the following we assume that the ergodic as-
sumption holds and we replace long-time averages with averages in phase space using the probability
density (56).

4.2 Distribution of NIW kinetic energy

As a first illustration, let us determine the spatial distribution of NIW kinetic energy using an
average in phase space. The time-averaged NIW kinetic energy at location x0 is given by |M |2(x0).
According to table 1, this is also the time-averaged probability of finding the quantum particle at
location x0. And in the classical limit, this is also the time-averaged probability of finding the
classical particle at location x0, regardless of its momentum k. Using the probability density (56),
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the probability of finding the classical particle at location x0, regardless of its momentum k is given
by:

|M |2(x0) =

∫

x∈D;k∈R2

δ(x− x0)︸ ︷︷ ︸
particle located at x0

P(x,k) dxdk (57)

= C
∫

x∈D;k∈R2

δ(x− x0) δ[H(x,k)− E0] dxdk (58)

= C
∫

k∈R2

δ[H(x0,k)− E0] dk (59)

= C
∫

k∈R2

δ

[
1

2
(k+U(x0))

2 + V (x0)− E0

]
dk . (60)

Changing the integration variable to K = k+U(x0) with norm K = |K|, this integral becomes:

|M |2(x0) = C
∫

K∈R2

δ

[
1

2
K2 + V (x0)− E0

]
dK (61)

= C
∫

K∈R+

δ

[
1

2
K2 + V (x0)− E0

]
2πK dK (62)

= 2πC
∫

K∈R+

δ

[
1

2
K2 + V (x0)− E0

]
d

(
K2

2

)
(63)

The remaining integral equals one if V (x0)− E0 < 0 and zero if V (x0)− E0 > 0. That is:

|M |2(x0) = 2πC H[E0 − V (x0)] , (64)

where H denotes the Heavyside function.
The initial energy of the particles is estimated by inserting the initial conditionM(x, y, t = 0) = 1

into expression (43) for the energy. Only the term (∆ψ)|M |2/2 remains: the local initial energy is
of the order of the local vorticity ; it is thus proportional to ψrms. By contrast, the potential (52)
has much greater magnitude, of order ψ2

rms, and it is always negative. We conclude that the initial
energy is negligible as compared to the potential V < 0 in the limit ψrms ≫ 1 of interest here:
E0 ≃ 0. To a good approximation, H[E0 − V (x0)] = 1 almost everywhere, and we thus predict a
uniform distribution of NIW kinetic energy, |M |2(x0) = 2πC. Because of action conservation the
space average of |M |2 is conserved and equal to one. We thus obtain:

C =
1

2π
, (65)

the prediction for the time-averaged spatial distribution of kinetic energy being simply:

|M |2(x) = 1 . (66)

Somewhat surprisingly, based on statistical mechanics we predict a uniform distribution of NIW
kinetic energy, despite the spatial structure of the potential (52). In figure 6 we plot |M |2(x) for
simulations with large values of ψrms. We observe indeed an almost uniform background level of
NIW kinetic energy. Failures of the statistical mechanics prediction are observed only in regions of
two kinds:
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DNS (ψrms = 10) Prediction: 2|U|2|∇M |2(

Figure 7: Time-averaged distribution of NIW potential energy from a numerical simulation with
ψrms = 10 (left), compared to the theoretical prediction from statistical mechanics (right).

• The particles are absent from the central regions of cyclones. This is because the precise
value of E0 matters near the center of a cyclone. Indeed, the full potential V in table 1
becomes positive there. Few of the particles have sufficient initial energy to get on top of such
a potential hill, hence the gap in NIW kinetic energy.8

• In line with DVB, there is a concentration of NIW kinetic energy near the centers of anticy-
clones. The reason is that the ergodic assumption breaks down there. For instance, the motion
of a particle in a locally axisymmetric anticyclone conserves both energy and angular momen-
tum, so that the dynamical system (55) is effectively two-dimensional. A 2D autonomous
dynamical system cannot lead to chaos and is unable to mix the probability density in phase
space. Hence, the loss of ergodicity in such regions. Overall, only a modest fraction of the
total kinetic energy remains trapped in the anticyclones in figure 6. For a more realistic 2D
background flow of ocean relevance, such as the vortex gases discussed in the previous lectures,
a negligible fraction of the kinetic energy gets trapped in anticyclones.

4.3 Distribution of NIW potential energy

As a second illustration of the statistical mechanics approach, we consider the time-averaged spatial
distribution of NIW potential energy, |∇M |2(x0). Remembering that the momentum operator is
−iℏ∇ in quantum mechanics, the NIW potential energy is analogous to the expectation value of
the squared momentum. Alternatively, based on the sketch in figure 5 one estimates ∇M ≃ ikM
and |∇M |2 ≃ k2|M |2. We thus want to compute the averaged squared momentum of the particles
that are located at x0. In phase space this average reads:

|∇M |2(x0) =

∫

x∈D;k∈R2

k2︸︷︷︸
squared momentum

δ(x− x0)︸ ︷︷ ︸
particle located at x0

P(x,k) dxdk . (67)

8A refined computation taking this effect into account is feasible but goes beyond the scope of the present lecture.
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Substituting the probability density (56) with the prefactor (65), before changing integration vari-
able again to K = k+U(x0) leads to:

|∇M |2(x0) =
1

2π

∫

x∈D;k∈R2

k2δ(x− x0)δ[H(x,k)− E0] dxdk (68)

=
1

2π

∫

k∈R2

k2δ[H(x0,k)− E0] dk (69)

=
1

2π

∫

k∈R2

k2δ

[
1

2
(k+U(x0))

2 + V (x0)− E0

]
dk (70)

=
1

2π

∫

K∈R2

[K−U(x0)]
2δ

[
1

2
K2 + V (x0)− E0

]
dK (71)

=
1

2π

∫

K∈R2

[K2 −������
2K ·U(x0) +U(x0)

2] δ

[
1

2
K2 + V (x0)− E0

]
dK , (72)

where the crossed-out term above is odd in K, thus leading to a vanishing integral. We finally
obtain:

|∇M |2(x0) =
1

2π

∫

K∈R+

[K2 +U(x0)
2] δ

[
1

2
K2 + V (x0)− E0

]
2π d

(
K2

2

)
(73)

=

∫

K∈R+

K2 δ

[
1

2
K2 + V (x0)− E0

]
d

(
K2

2

)
(74)

+U(x0)
2

∫

K∈R+

δ

[
1

2
K2 + V (x0)− E0

]
d

(
K2

2

)
(75)

= 2 (E0 − V (x0))︸ ︷︷ ︸
≃U(x0)

2

2

+U(x0)
2H(E0 − V (x0))︸ ︷︷ ︸

=1

(76)

= 2U(x0)
2 . (77)

We conclude that the spatial distribution of NIW potential energy is directly given by the kinetic
energy distribution of the background flow, with an accumulation of NIW potential energy in fast-
flow regions. In figure 7 we plot |∇M |2(x) extracted from simulations of the YBJ equation with
large values of ψrms. The numerical data are in very good agreement with the prediction (77) from
statistical mechanics, both the spatial structure and the prefactor being correct.

4.4 Other quantities

The same approach can be applied to various other quantities of interest. For instance, one can
predict the time-averaged Stokes drift induced by the NIW field, us(x) = (ξ ·∇)u, where the
particle displacement is defined as ∂tξ = u. We leave this as an exercise for the interested reader.
For the normalized initial condition M(x, y, t = 0) = 1 (and therefore A = 1) the end result is:

us(x) = −U(x)

2
. (78)

For arbitrary initial action A the expression (78) is to be multiplied by A. The time-averaged Stokes
drift is proportional to the local velocity of the background flow and antiparallel to it.
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Figure 8: Time-averaged Stokes drift velocity for a numerical simulation with ψrms = 10 (left),
compared to the theoretical prediction from statistical mechanics (right).

5 Conclusion

Focusing on the simplest instance of the YBJ model for NIWs interacting with a steady background
flow, we have studied how the flow shapes the NIW field. Following the original article by YBJ,
the strong-dispersion regime is efficiently studied through an asymptotic expansion in ψrms ≪
1, corresponding to a dimensional streamfunction much weaker than g′H0/f . For instance, the
NIW kinetic energy has an almost uniform spatial distribution, together with a small modulation
proportional to the streamfunction of the background flow.

The opposite limit is that of strong advection, ψrms ≫ 1 (dimensional streamfunction much
greater than g′H0/f). Introducing an analogy with the dynamics of a charged particle in an elec-
tromagnetic field, we have predicted various statistics of the NIW field using the statistical mechanics
of equilibrium systems. We have obtained that the NIW kinetic energy is almost uniformly dis-
tributed on average, while the NIW potential energy is spatially distributed following the kinetic
energy of the background flow. Finally, the time-averaged Stokes drift induced by the NIW wave
field is proportional and antiparallel to the local background flow velocity.
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The Dynamics of Stacked Stratified Shear Layers
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1 Introduction

Stratified shear flows are unstable to several distinct instabilities. Three canonical examples 
are the Kelvin–Helmholtz (KH) instability, the Holmboe wave (HW) instability, and 
the Taylor–Caulfield (TC) instability. The KH instability develops when shear across a 
density interface is strong enough to roll the interface into billow-like structures [3]. In 
contrast, the HW instability—first described by Holmboe [10]—arises at higher levels of 
stratification, producing cusped interfacial waves propagating in opposite directions on a 
sharp density jump. The TC instability was originally identified by Taylor in his 1915 
Adams Prize essay, reported in the paper in which he also presented the derivation of 
Taylor-Goldstein Equation (TGE) for normal mode analysis of stratified shear flows[8, 16] 
and subsequently generalised by Caulfield [5] and observed experimentally by Caulfield 
and co-workers [6]. It emerges when two buoyancy interfaces lie within a single shear layer 
and is canonically characterized by the formation of stationary elliptical vortices, although 
its finite-amplitude development and morphology can be sensitive to flow parameters [7].

These instabilities have been documented in the literature [3], usually in the context of an 
isolated stratified shear layer. However, multiple vertically arrayed stratified shear layers 
are frequently observed in laboratory experiments and naturally occurring flows [1, 9]. 
Until recently, the dynamics of closely spaced shear layers received relatively little 
attention. New studies have begun to explore how instabilities in adjacent shear layers 
interact, for example, recent work by Liu et al. [12] examined a stacked stratified 
system susceptible to the KH instability and found, among other things, a novel 
oscillatory mode unique to the stacked configuration. Such findings motivate the 
present investigation into stacked Holmboe wave instabilities, which are prevalent when 
stratification is sufficiently strong to favor HW instabilities over KH instabilities.

In this report, we examine the stability of a three-layer stably stratified fluid with two buoy-
ancy interfaces embedded in two distinct shear layers separated by a quiescent middle layer. 
Our approach is to first analyze the inviscid limit using piecewise-continuous idealizations 
of the velocity and buoyancy profiles and classical linear stability theory. This permits 
analytical insight into the growth of small disturbances and the identification of instabil-
ity modes. We then introduce diffusive effects (finite viscosity and thermal diffusivity) 
to investigate how nonzero diffusivity alters the stability characteristics, such as growth 
rates and instability bands.
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Figure 1: Dimensonal (left) and dimensionless (right) profiles of the background velocity
(solid blue curve) and buoyancy (dashed red curve).

Finally, we explore the finite-amplitude evolution of instabilities in this stacked-layer system
through direct numerical simulations. These simulations reveal how nonlinear interactions
between Holmboe waves on the two interfaces lead to flow features and statistics that
differ from those of the classical case described in Refs. [10, 15]. The overall aim of this
study is to characterize the dynamics of stacked stratified shear layers across the linear
and nonlinear regimes, thereby extending classical single-layer instability theory to more
complex, multilayered flow environments.

1.1 Mathematical formulation

We start with the 2D Boussinesq equations, presented here in dimensional form (denoted
by asterisks) on the cartesian (x∗-z∗) plane [14],

∇ · u∗ = 0,

∂t∗u
∗ + u∗ · ∇∗u∗ = −∇∗π∗ + b∗ẑ + ν∗∇∗2u∗,

∂tb
∗ + u∗ · ∇∗b∗ = κ∗∇∗2b∗,

(1)

where the velocity u∗ ≡ (u∗, w∗)T , and b∗ ≡ −g∗δρ∗/ρ∗ref is the buoyancy (or negative
reduced gravity), π∗ is the dynamic pressure, ν∗ is the molecular kinematic viscosity and
κ∗ is the thermal diffusivity. Our initial condition consists of a streamwise flow U∗ (z∗) and
buoyancy B∗ (z∗), given by

U∗ (z∗) ≡ U∗
0

[
tanh

(
z∗ −H∗ − h∗

h∗

)
+ tanh

(
z∗ +H∗ + h∗

h∗

)]
,

B∗ (z∗) ≡ B∗
0

[
tanh

(
z∗ −H∗ − h∗

h∗/R

)
+ tanh

(
z∗ +H∗ + h∗

h∗/R

)]
.
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This configuration (see Figure 1, left panel) organizes the domain into two stratified shear
layers of thickness 2h∗ separated by a quiescent region of thickness 2H∗. Non-dimensionalizing
velocities using U∗

0 , distances using h∗, and the buoyancy using B∗
0 produces the equations

∇ · u = 0,

∂tu+ u · ∇u = −∇π +Ri0bẑ +Re−1∇2u,

∂tb+ u · ∇b = (PrRe)−1∇2b,

(2)

and the basic velocity and buoyancy profiles

U (z) ≡ tanh (z −H − 1) + tanh (z +H + 1) ,

B (z) ≡ tanh [R (z −H − 1)] + tanh [R (z +H + 1)] ,
(3)

where Ri0 ≡ B∗
0h

∗/U∗2
0 is the bulk Richardson number of the flow, Pr = ν∗/κ∗ is the

Prandtl number, Re ≡ U∗
0h

∗/ν∗ is the Reynolds number, H ≡ H∗/h∗ is a dimensionless
measure of shear layer separation, and R is the ratio of shear layer thickness to buoyancy
layer thickness. Figure 1, right panel, represents these profiles schematically. At the outset,
we note two limiting configurations previously examined in the literature, which appear as
special cases of ours:

1. When H → 0, the two stratified shear layers merge into a single shear layer which
envelops both density interfaces. This configuration was investigated in the work of
Caulfield [5].

2. When H → ∞, the two stratified shear layers are too widely separated to realisti-
cally influence each other. Each layer is then expected to have purely the dynamics
originally elaborated by Holmboe [10].

We next examine the response of this set-up to small-amplitude perturbations using the
mechanics of linear stability theory, first in the inviscid case, and next in the viscous case.

2 Inviscid Linear Theory

Figure 2: Piecewise approxi-
mations to the basic velocity
(solid blue lines) and buoyancy
(dashed red lines) profiles (3).

Taking Re → ∞, P r = O (1) in equations 2 and using the
variable transformation

u → U(z)x̂+ εû (z) eiα(x−ct),

b → B(z) + εb̂ (z) eiα(x−ct),

π → Π(z) + επ̂ (z) eiα(x−ct),

(where the base-state pressure Π(z) is in hydrostatic bal-
ance with the base state buoyancy B(z)) produces, at
O (ε) as ε → 0, the aforementioned Taylor-Goldstein
Equation (TGE)

wzz +

[
Ri0

Bz

(U − c)2
− Uzz

(U − c)
− α2

]
w = 0, (4)
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where the caret has been dropped for convenience, and which describes the evolution of
small vertical velocity perturbations (with real wavenumber α and complex phase speed
c = cr + ici) to the basic state (Ux̂,B,Π). Analytical solutions to the TGE may be found
by approximating U(z) and B(z) by piecewise linear and constant functions, with linear
instabilities corresponding to solutions with non-zero imaginary phase speed ci and hence
growth rate αci. Noting that the sharp interfaces implied by such approximations are
permitted by the inviscid equations, we use

U(z) ≡



2, z ∈ [H + 2,∞)

(z −H) , z ∈ [H,H + 2]

0, z ∈ [−H,H]

(z +H) , z ∈ [−H − 2,−H]

−2, z ∈ (−∞,−H − 2]

, B(z) ≡


2, z ∈ (H + 1,∞)

0, z ∈ (−H − 1, H + 1)

−2, z ∈ (−∞,−H − 1)

, (5)

which is represented schematically in Figure 2. It also proves convenient to calculate the
vertical shear

Uz(z) =



0, z ∈ (H + 2,∞)

1, z ∈ (H,H + 2)

0, z ∈ (−H,H)

1, z ∈ (−H − 2,−H)

0, z ∈ (−∞,−H − 2)

, (6)

The problem, thus reduced, has three parameters (H,Ri0, α), on which the stability of the
basic state (5) depends. Our objective is to investigate the effects of these parameters on the
stability of the basic state by solving the TGE (4) with the basic state (5-6) and, further,
to summarize state transitions in the Ri0 − α plane for various values of H. The methods
used are well documented in the literature (see Ref. [14], for instance), but some simple
calculations will be presented below as examples.

2.1 Isolated interfaces, wave resonances, and the large-α approximation

Figure 3: Three simple cases. An isolated shear interface (a), an isolated buoyancy interface
(b), and a semi-infinite stratified shear layer (c).
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Judging by the jumps in background shear (6) and buoyancy (5), our set-up has four shear
interfaces and two buoyancy interfaces. Therefore, we may divide our domain into seven
regions (labelled (I)-(VII)), separated by six buoyancy or shear interfaces. We label these
interfaces using the roman numerals (i)-(vi) starting from the top. Table 1 below collects
definitions/labels for each region and interface, and indicates for each interface whether it
is a shear (S) or a buoyancy (B) interface.

Region Definition

I z ∈ (H + 2,∞)

II z ∈ (H + 1, H + 2)

III z ∈ (H,H + 1)

IV z ∈ (−H,H)

V z ∈ (−H − 1,−H)

VI z ∈ (−H − 2,−H − 1)

VII z ∈ (−∞,−H − 2)

Interface Definition Type

(i) z = H + 2 S

(ii) z = H + 1 B

(iii) z = H S

(iv) z = −H S

(v)) z = −(H + 1) B

(vi) z = −(H + 2) S

Table 1: Division of the fluid domain into regions of continuous shear and buoyancy and
labelling of these regions (left), as well as the interfaces which separate them (right). Refer
also to Figure 2.

Our strategy is to solve the TGE in each region separately and then to apply continuity
conditions across each interface, using the ‘Wave-Interaction-Theory’ (WIT) (see reviews [3,
14]). Before diving into the heavy algebra of our problem, we describe the WIT methodology
and build intuition through three simplified scenarios, illustrated schematically in Figure 3.

2.1.1 An isolated shear interface

First, we consider an isolated shear interface at z = 2 with the streamwise velocity held
constant at 2 above it and decreasing linearly below it (see Figure 3a). The background
velocity is

U(z) ≡

{
2, z ∈ [2,∞)

z, z ∈ (−∞, 2]
, (7)

and the TGE reduces to

wzz −
[

Uzz

(U − c)
+ α2

]
w = 0. (8)

Uzz vanishes everywhere in the domain except at the location of the interface (z = 2), and
therefore, the TGE further reduces to wzz − α2w = 0, which has general solutions

wtop = Aeαz +Be−αz, and wbot = Ceαz +De−αz,

above and below the interface, respectively. The undetermined constants must now be
determined by imposing additional constraints on the general solution.

1. First, we require that the solution remain bounded throughout the domain. This
requirement (far-field boundedness) fails as |z| → ∞ when A and D are non-zero.
Therefore, we set A = D = 0.
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2. Next, we enforce the kinematic boundary condition of interfacial continuity of w(z),
i.e., wtop(z → 2+) = wbot(z → 2−). This yields the equation Be−2α = Ce2α.

3. Finally, we enforce the dynamical boundary condition of interfacial continuity of π(z),
without which the vertical acceleration across the interface would become infinite.
Applying the perturbation ansatz defined above to the inviscid horizontal momentum
equation produces a formula for the perturbation pressure

π(z) =
i

α
[(U − c)wz − Uz w] .

As above, pressure continuity may be cast as πtop(z → 2+) = πbot(z → 2−). Substi-
tuting into this known values of U and Uz above and below the interface, we obtain
a condition on the jump in wz

wz(z → 2+)− wz(z → 2−) = −w(z = 2)

2− c
.

Using here expressions for wz above and below the interface produces the equation

α
(
Be−2α + Ce2α

)
=

Be−2α

2− c
.

4. Eliminating the constants B and C between the equation above and that produced
by step 2 results in the dispersion relation

c = cv ≡ 2− 1

2α
, (9)

which corresponds to a neutrally stable vorticity (or Rayleigh) wave (VW) supported
on the shear interface.

The limiting behaviour of cv as α → ∞, and the exponential structure of the vertical
velocity eigenfunctions w(z) imply that short wavelength perturbations (larger values of α)
are more highly localized at the interface and propagate with phase speeds closer to the
mean flow velocity U(z) at the interface. In contrast, longer wavelength perturbations are
less localized and subject to the shear-induced reduction in phase speed 1/(2α).

2.1.2 An isolated buoyancy interface

Next, we consider an isolated buoyancy interface at z = 1 with the buoyancy held constant
at 1 above it and vanishing abruptly below it (see Figure 3b). The background buoyancy is

B(z) ≡

{
2, z ∈ [1,∞)

0, z ∈ (−∞, 1]
, (10)

and the TGE reduces to

wzz +

[
Ri0

Bz

(U − c)2
− α2

]
w = 0. (11)
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Repeating the steps above, we derive

c = cb ≡ 1±
√

Ri0
α

, (12)

representing rightward and leftward propagating gravity waves (GW). Like vorticity waves,
longer waves have vertical structure that is not localized to the interface, and suffer stratification-
dependent modifications to phase speed. The same cannot be said of shorter waves.

2.1.3 A semi-infinite stratified shear layer

A single stratified shear layer may be modelled by superimposing the velocity profile (7)
and the buoyancy profile (10). This is shown schematically in Figure 3c. The full TGE 4
applies, and the algorithm detailed above produces the cubic dispersion relation [14]

(c− 1)3 − (cv − 1) (c− 1)2 − 0.5 (cb − 1)2 (c− 1)

− 0.5 (cb − 1)2
[
1 + (cv − 2)

(
1− e−2α

)]
= 0. (13)

Considering, in sequence, the balances between the leading term and the next two terms
above shows that these terms codify the isolated effect of vorticity waves and gravity waves,
respectively. The constant term encodes wave-wave interactions and is worth pausing over.
This term can be rewritten

T3 (Ri0, α) ≡ Ri0

(
1

2α
+

1

4α2
− e−2α

4α2

)
.

Clearly, the term is significant when α ≪ 1. That is to say, long wavelength perturbations
whose eigenfunctions are not localized around interfaces are susceptible to ‘proximity’ based
wave interaction (hence the name ‘Wave-Interaction-Theory’) – longer waves enable greater
coupling between interfaces, allowing gravity and vorticity waves to ‘feel’ one another across
a finite vertical gap. As one might expect, this term appears to vanish when α ≫ 1.
However, this is true only for certain values of Ri0. Importantly, when cb = cv, i.e., when
the vorticity and gravity waves have the same phase speed,

Ri0 = α

(
1− 1

2α

)2

,

and T3 (α → ∞) = 1/2. Balancing the leading term and constant term in (13) in this
limit yields complex conjugate roots for c, indicating the possibility of strong wave-wave
interactions leading to a linear instability even in the large-α limit, where proximity-based
effects are expected to be weak.

This phenomenon, known as wave resonance, is comprehensively and more rigorously docu-
mented in the shear instability literature [3, 4, 14]. Here, we provide an intuitive overview of
the conditions that must be met for it to occur. Briefly, wave pairs that are Doppler-shifted
by the background shear can support mutual resonant growth, which may lead to a flow
instability, provided that:
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(a) the waves can attain a position in which the vertical velocity perturbations of one
amplify crests and troughs of the other. This is always possible if the fluid in the
layer between two interfaces is subject to shear; and:

(b) the waves can maintain this position over time (essentially travelling as one while they
amplify each other). This is known as phase locking, and requires that the shear profile
be such that the mutual amplification of nearly phase-locked waves acts to reduce the
phase difference between them [14]. This occurs if both waves are propagating against
the background shear at their height.

Wave resonance provides a powerful interpretive framework for shear flow instabilities. Dif-
ferent classes of resonant wave interactions are associated with different instability mech-
anisms. VW-VW interactions are associated with the Kelvin-Helmholtz (KH) instability,
GW-VW interactions are associated with the HolmboeWave (HW) instability, and GW-GW
interactions are associated with the Taylor-Caulfield (TC) instability. More importantly for
our purposes, it can be used to determine approximately the corresponding values of Ri0
and α for which instabilities occur [5]. We do this by setting the phase speeds of the inter-
acting waves equal to each other and taking the short-wave limit α → ∞. The procedure
results, in this case, in the relation Ri0 = α − 1. Figure 4.11 of Ref. [14] shows that the
actual stability boundaries are well approximated by this line on the Ri0 − α plane in the
wave resonance limit.

2.1.4 Wave resonances in stacked stratified shear layers

We now return to Figure 2 and enumerate all possible instabilities and the (approximate)
Ri0 − α conditions for their occurrence using the wave resonance framework. We consider
each of the interfaces (i) – (vi) (see Table 1) in isolation and, using the procedure outlined in
section 2.1.1, we derive dispersion relations describing the neutrally stable waves supported
on each of them.

c(i) = 2− (2α)−1 , c(vi) = −2 + (2α)−1 ,

c
(ii)
± = 1±

√
Ri0α−1, c

(v)
± = −1±

√
Ri0α−1,

c(iii) = (2α)−1 , c(iv) = − (2α)−1 .

(14)

As mentioned before, each buoyancy interface supports two internal gravity waves (GW) and
each shear interface supports one vorticity wave (VW). As we did in the previous section,
we will look for sustainable wave resonances by setting the above dispersion relations equal
to each other pairwise, and checking whether criterion (b) for phase-locking is met. For
each potential instability, we will also estimate the phase speed using the formula

cin ≡ Umax + Umin

2
, (15)

from Howard’s Semicircle Theorem[11], where Umax and Umin are extremal values of stream-
wise velocity taken over the pair of interfaces under consideration.

157



VW-VW Interactions. The interaction between two vorticity waves gives rise to a KH
instability which is stationary relative to the background shear flow. Three such interactions
are possible in total, enumerated by counting points where the dispersion curves c(Ri0, α)
intersect. In this case, it can be shown that all three interactions can be sustained by phase
locking. In addition to the local KH instabilities in each shear layer (K), there is also a non-
local one (KN ) that arises from the interaction of VWs at the top-most and bottom-most
interfaces. These results are summarized in table 2 below.

Interaction Interaction Condition |cin| Label

c(i) = c(iii) α ≈ 1/2 1 K

c(i) = c(vi) α ≈ 1/4 0 KN

c(iv) = c(vi) α ≈ 1/2 1 K

Table 2: Summary of resonant VW-VW interactions. Labels are defined as a useful short-
hand for future usage on plots and charts.

GW-VW Interactions. The interaction between a vorticity wave and a gravity wave
gives rise to a HW instability which is nonstationary relative to the background shear flow.
Eight such interactions are possible in total (counting interactions with right- and left-
propagation GWs as one). Only six of these meet criterion (b) above. These may be said
to cause three classes of HW instabilities (see Table 3): Exterior instabilities (HE), which
arise due to the interaction between a GW and the VW on its ‘outside’ (i.e., above it at the
top shear layer, and below it at the bottom); interior instabilities (HI), which arise from
the interaction between a GW and the VW on its ‘inside’; and non-local instabilities (HN ),
which involve the interaction between a GW and the farthest VW from it.

Interaction Interaction Condition |cin| Label

c(i) = c
(ii)
+ Ri0 ≈ α− 1 1.5 HE

c(iii) = c
(ii)
− Ri0 ≈ α− 1 0.5 HI

c(vi) = c
(ii)
− Ri0 ≈ 9α− 3 0.5 HN

c(iv) = c
(v)
+ Ri0 ≈ α− 1 0.5 HI

c(vi) = c
(v)
− Ri0 ≈ α− 1 1.5 HE

c(i) = c
(v)
+ Ri0 ≈ 9α− 3 0.5 HN

Table 3: Summary of resonant GW-VW interactions.

GW-GW Interactions. The interaction between two internal waves gives rise to a TC
instability, which is stationary relative to the background shear flow.

Interaction Interaction Condition |cin| Label

c
(ii)
− = c

(v)
+ Ri0 ≈ α 0 T

Table 4: Summary of resonant GW-GW interactions.

158



To recap, our setup admits 3 KH instabilities, 6 HW instabilities, and 1 TC instability;
their corresponding Ri0-alpha conditions are shown in Figure 4.

Figure 4: Conditions for sustainable wave-wave resonance on the Ri0-α plane.

2.2 A dispersion relation for stacked stratified shear layers

The previous section focused on individual pairs of waves. Now we will follow the algorithm
outlined in section 2.1.1 to derive a dispersion relation for normal mode perturbations to
our basic configuration (5). Away from the interfaces (i)-(vi), defined in Table 1, we have
Bz = Uzz = 0, which reduces the inviscid TGE (4) to

wzz − k2w = 0, (16)

a general solution to which can be defined inside each region, as summarized in Table 5.
The unknown constants Ac–Nc must be determined by enforcing far-field boundedness,
interfacial continuity, and interfacial jump conditions.

Region w(z)

I Ace
αz +Bce

−αz

II Cce
αz +Dce

−αz

III Ece
αz + Fce

−αz

IV Gce
αz +Hce

−αz

V Ice
αz + Jce

−αz

VI Kce
αz + Lce

−αz

VII Mce
αz +Nce

−αz

Table 5: General solution to the TGE in each region between two interfaces.
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Far-field Boundedness. The function w(z) has to remain bounded as z → ±∞, which
requires Ac = Nc = 0.

Interfacial Continuity of Vertical Velocity. The function w(z) must remain contin-
uous across each interface, which yields the equations in table 6.

Interface Continuity Condition Implication

(i) w(z → H + 2+) = w(z → H + 2−) Bc − Cce
2α(H+2) −Dc = 0

(ii) w(z → H + 1+) = w(z → H + 1−) Cce
2α(H+1) +Dc − Ece

2α(H+1) − Fc = 0

(iii) w(z → H+) = w(z → H−) Ece
2αH + Fc −Gce

2αH −Hc = 0

(iv) w(z → −H+) = w(z → −H−) Gc +Hce
2αH − Ic − Jce

2αH = 0

(v) w(z → −H − 1+) = w(z → −H − 1−) Ic + Jce
2α(H+1) −Kc − Lce

2α(H+1) = 0

(vi) w(z → −H − 2+) = w(z → −H − 2−) Kc + Lce
2α(H+2) −Mc = 0

Table 6: Application of continuity conditions at each interface to the general solutions
summarized in table 5.

Interfacial Continuity of Pressure. The previous condition allowed for determination
of six out of twelve unknowns. We require six more equations for a fully determined system.
These are obtained by ensuring that the perturbation pressure remains continuous across
each interface, as in section 2.1.1. We note here that the resulting jump condition on wz

can also be derived by integrating the TGE in the vicinity of a discontinuity. For a generic
discontinuity at z = zj and this produces

lim
ε→0

∫ zj+ε

zj−ε

{
d

dz

[
(U − c)wz − Uzw +Ri0

B

U − c
w

]
−Ri0B

d

dz

[
w

U − c

]
− α2 (U − c)w

}
dz = 0,

which means that the jump across the interface

lim
ε→0

ϕ(z)|zj+ε
zj−ε = [[ϕ]]zj ≡

[[
(U − c)wz − Uzw +Ri0

B

U − c
w

]]
zj

= 0. (17)

Note that the second and third terms in the integral equation above vanish upon taking
the limit ε → 0 since they are continuous. Applying this jump condition to each interface
yields a completely determined system of equations, from which a dispersion relation may
be derived.

Dispersion Relation. The following substitutions are made for convenience:

E ≡ e2αH , E1 ≡ e2α(H+1), E2 ≡ e2α(H+2), δ± ≡ α (2± c) , β± ≡ α (1± c)2 , γ ≡ αc.
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Then, we may summarize the results of these calculations as

Bc − CcE2 −Dc = 0,

CcE1 +Dc − EcE1 − Fc = 0,

EcE + Fc −GcE −Hc = 0,

Gc +HcE − Ic − JcE = 0,

Ic + JcE1 −Kc − LcE1 = 0,

Kc + LcE2 −Mc = 0,

Bδ− + CcE2 [δ− − 1]−Dc [δ− + 1] = 0,

CcE1 [β− + 2Ri0]−Dc [β− − 2Ri0]− EcE1β− + Fcβ− = 0,

EcE [γ + 1]− Fc [γ − 1]−GcEγ +Hcγ = 0,

Gcγ −HcEγ − Ic [γ + 1] + JcE [γ − 1] = 0,

Icβ+ − JcE1β+ −Kc [β+ − 2Ri0] + LcE1 [β+ + 2Ri0] = 0,

Kc [δ+ + 1]− LcE2 [δ+ − 1]−Mcδ+ = 0,

(18)

or in matrix-vector notation as Ac = 0, with c ≡ (Bc, Cc, . . . ,Mc)
T and A defined as the

matrix of coefficients. The existence of non-trivial solutions to equation (18) requires that
detA = 0. This yields a biquartic equation in c

P (c) ≡ c8 +A6c
6 +A4c

4 +A2c
2 +A0 = 0 (19)

where A0, A2, A4, andA6 are functions of (α,Ri0, H). We will analyze this dispersion
relation in various limits.

2.3 Stability at zero separation

When H = 0, the basic configuration (5) reduces to a rescaled version of the R − 1/2 flow
considered by Caulfield with doubled length scales, velocity and density variation [5], i.e.,

U(z) ≡


2, z ∈ [2,∞)

z, z ∈ [−2, 2]

−2, z ∈ (−∞,−2]

, B(z) ≡


2, z ∈ (1,∞)

0, z ∈ (−1, 1)

−2, z ∈ (−∞,−1)

,

and the dispersion relation (19), upon division by c2 (note that A0(H = 0) = 0), reduces
to a bicubic polynomial

P1 (c) ≡ c6 + L4c
4 + L2c

2 + L0 = 0. (20)

where again L4, L2, and L0 are coefficients depending on α and Ri0. These correspond to
the expressions presented in Ref. [5] after applying the transformation

c ≡ c̃/2, α ≡ α̃/2

and noting that in the present problem, the ratio of density layer depth to shear layer depth
(the variable denoted R in Ref. [5]) is fixed at 1/2. By way of verification, we attempt to
reproduce some results obtained in Ref. [5].
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2.3.1 Oscillatory instability boundaries

Transitions between neutrally stable waves and oscillatory instabilities are associated with
the dispersion relation (20) having a pair of double roots1 (c = ±m;m ∈ R+). Being cubic
in c2, P1 (c) has a pair of double roots when P1

(
c2
)
has a double root, i.e., if and only if

the cubic discriminant

∆3(Ri0, α) ≡
5∑

n=0

bnRin0 = 0, (21)

where the coefficients {bn} are defined in Ref. [5]. The discriminant takes the form of a
quintic polynomial in Ri for which closed form roots are in general not possible to find. In
order to calculate stability boundaries, we find the roots numerically. It transpires that for
sufficiently large α, four root branches Ri0 = Ri0(α) exist that are real and positive. These
demarcate regions of instability on the Ri0−α plane. The fifth branch corresponds to neg-
ative values of Ri0, which corresponds to unstable stratification, and so it is ignored. Note
that this approach also captures transitions from an oscillatory instability to a stationary
instability, which tend to occur for smaller values of α.

2.3.2 Stationary instability boundaries

Transitions marking the onset of stationary instabilities are associated with c = 0 being a
double root of equation (20). This can happen if L0 ≡ A2(H = 0) = 0. Being a quadratic
polynomial in Ri, L0 has the roots

Ri0,± =
α
[
(4α− 1)± e−4α

]
[1∓ e−2α] [(4α− 1) + e−2α]

, (22)

which is identical to the reference up to the transformation defined above. Further, note
that upon taking the large-α limit, exponential terms decay faster than algebraic terms
grow, leaving behind, at leading order

Ri0 ∼ α,

which recovers the resonance-approximated stability boundary for the TC instability.

1That this has to be the case can be seen by realizing that there are a finite number of dynamics that
can occur in the Ri0 −α plane: neutrally stable waves (c ∈ R), oscillatory instabilities (c ∈ C,ℜ[c] ̸= 0), and
stationary instabilities (c ∈ C,ℜ[c] = 0). Any (continuous) transition between neutrally stable waves and
an instability requires the creation or destruction of imaginary parts of a complex conjugate pair. At the
point of creation or destruction, it follows that the system needs to have two nondistinct real roots which
eventually merge/separate into complex conjugate pairs.
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Figure 5: Invisicid stability boundaries (solid black curves) at zero separation. White regions
represent neutrally stable waves, coloured regions represent instability. Dashed grey lines
are the corresponding resonance approximations, which agree well with the actual stability
boundaries at large α, as expected. The instability naming convention developed in section
2.1.4 is used here.

2.3.3 Stability diagram

Positive solutions to the equation (21) and the curves (22) partition the Ri0 − α plane
into regions of stability and various kinds of instability. These curves have been plotted in
Figure 5. Solid lines are stability boundaries separating regions where the fastest growing
perturbations represent neutrally stable waves (white) from those where the fastest growing
perturbations represent various perturbations (coloured). The resonance approximation to
each stability boundary has been plotted as a dashed line. These lines, among other things,
enable identification of the linear instability mechanism (KHI, HWI, or TCI).

Pink and grey regions in Figure 5 have ∆3 < 0, meaning that P1(c
2) has a complex con-

jugate pair of roots cR ± icI , and consequently P1(c) has 4 roots of the form ±
√
cR ± icI

– two complex conjugate pairs, out of which the two with positive cI correspond to a HW
instability. Everywhere else, meanwhile, corresponds to ∆3 > 0, meaning that P1(c) has 6
roots given by ±√

cR,1,2,3. These are born from the three real roots cR,1,2,3 of P1(c
2). In the

event that one of these is negative, its square root would give rise to a conjugate imaginary
pair, representing a stationary instability (the TC or KH instability). This is what occurs
in the regions coloured green (TCI) and blue (KHI).

2.4 Stability at finite separation

We now investigate the effect of finite shear layer separation on the stability properties of
the system. To begin, we revisit the dispersion relation (19).
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Behaviour Criterion P
(
c2
)
Roots

Neutrally Stable Waves ∆4 > 0, P4 < 0, and D4 < 0 4 real distinct roots

Stationary Instability ∆4 < 0 2 real, 2 imaginary roots

1 Oscillatory Instability ∆4 < 0 2 real distinct, 2 c.c. roots

2 Oscillatory Instabilities ∆4 > 0, and P4 > 0, or D4 > 0 2 c.c. root pairs

Table 7: Criteria for the segregation of the Ri0 − α plane based on values of ∆4 and the
root determinants (23). The abbreviation c.c. refers to complex conjugate. Note that the
criterion ∆4 < 0 is somewhat non-specific at this stage, being that it could mean either a
stationary instability (if the real part of the complex conjugate root pair is zero) or a single
oscillatory instability (if it is non-zero).

Being a quartic polynomial, P
(
c2
)
has four roots2, whose positions in the complex plane

may be determined by studying the functions

P4 (Ri0, α,H) = 8A4 − 3A6,

R4 (Ri0, α,H) = A3
6 − 8A2 − 4A6A4,

∆0 (Ri0, α,H) = A2
4 − 3A6A2 + 12A0,

D4 (Ri0, α,H) = 64A0 − 16A2
4 + 16A4A

2
6 − 16A6A2 − 3A2

6,

(23)

in addition to the quartic discriminant ∆4 (Ri0, α,H), which happens to be a tenth order
polynomial in Ri0. As before, stability boundaries are identified as values of (Ri0, α;H)
for which P

(
c2
)
has a double root, i.e., when ∆4 = 0, which occurs, for fixed H and α, at

ten values of Ri0. Among them, only those which are positive real numbers are considered
stability boundaries. Thus, upon solution of the equation ∆4 = 0 at a fixed H, the Ri0 −α
plane is segmented into multiple regions. Whether each region supports neutrally stable
waves, stationary instabilities, or (one or two) oscillatory instabilities3 is determined by
examination of the values of ∆4 and the root determinants (23) in that region. The criteria
are presented in Table 7 below. Determination of instability type (KHI, interior/exterior
HWI, TCI) may be made by reference to the resonance approximation (see Figure 4), or by
solving the biquartic equation (19).

2.4.1 Structure of the Ri0 − α plane, H = 1

We apply the procedures outlined above to equation (19), fixing H = 1, an intermediate
value chosen with the expectation that the interfaces will be neither so far apart as to exert
no influence on each other, nor so close together as to render the resonance approximation
results invalid. Stability boundaries are found by solving ∆4 = 0 numerically for a range of
wavenumbers, and perturbation characteristics (growth rate and phase speed) are obtained
by solving P

(
c2
)
= 0. Using these in conjunction with the criteria listed in Table 7 and

the resonance approximation results (Figure 4), we produce the stability and growth rate
diagrams in Figures 6 and 7.

2The square roots of which constitute the eight roots of the biquartic polynomial P (c).
3The possibility for two oscillatory instabilities arises due to the fact that a quartic polynomial can have

two complex conjugate root pairs.

164



165



The stability diagram (Figure 6) provides a high-level overview of our system’s response to
small perturbations in parameter space. Overall, it looks very much like the zero separation
stability diagram (Figure 5), save for a few important departures.

1. Unlike the case when H = 0, no region of the Ri0 − α plane exhibits TCI-type in-
stability when H = 1, or indeed for any nonzero value of H, however small. This is
due to the reappearance of the coefficient A0 in the biquartic dispersion relation (19),
which vanishes only when H = 0. Recall that stationary instability boundaries were
previously identified by locating curves in parameter space along which the character-
istic polynomial (20) admitted a double root at c = 0. A sufficient condition for this
to occur was L0 (Ri0, α) = 0. For H ̸= 0, the condition A0(Ri0, α,H) = 0 remains
sufficient for P(c2) to possess such a root. Although A0, like L0, is quadratic in Ri0,
its two roots coalesce into a double root given by

Ri0 =
α
(
1− e4α + 4αe4α

)
(e2α − 1) (1− e2α + 4αe2α)

,

which defines a single curve in the Ri0−α plane rather than the bounded region found
in the H = 0 case. Moreover, the expression above is independent of H, confirming
that the TC-unstable region does not re-emerge for any finite value of H.

2. Although at first glance it appears as though no changes have occurred in the HW-
unstable region (Figure 6a), closer examination reveals that this region has foliated
into two overlapping leaves (see Figure 6b) composed of

(a) a small lobe which is unstable only to to interior Holmboe waves (coloured deep
red in Figure 6b),

(b) a large middle lobe (coloured pink) which is unstable to both interior and exterior
Holmboe waves, and,

(c) a very narrow lobe (invisible in Figure 6) which is unstable only to exterior
Holmboe waves.

We see how these transitions between the two kinds of HWIs occur by computing eigen-
values of the inviscid TGE (4) at Ri0 = 0.2 (marked by the dash-dot line in Figure
6b, eigenvalues plotted in Figure 7). Very large wavelength (very small α) perturba-
tions excite neutrally stable waves. As perturbation wavelength is decreased, unstable
interior Holmboe waves are excited. A further decrease in wavelength prompts the
excitation of unstable exterior Holmboe waves, which initially have a lower growth
rate than interior waves. However, as wavelength is decreased even further, exterior
HW modes grow faster relative to interior HW modes. For very small wavelengths
(large α), both interior and exterior HW modes are suppressed, although the former
are suppressed earlier (i.e., for larger wavelengths relative to the latter).

In sum, for H = 1, the TCI is never excited, and two different types of HWI, distinguished
by their large-α phase speeds (or equivalently, by the interfaces which interact to drive
them), are seen. The interior HWI is dominant for larger wavelengths than the exterior
HWI. We expect these disparities to become more pronounced as H → 0 and the stacked
layers exert a greater influence on each other.
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2.4.2 Unstable regions in the zero separation limit

Having identified and demarcated instability regions for H = 1 and H = 0, we now examine
the transition from the former to the latter. Stability diagrams at successively smaller values
of H, viz. H = 0.5, 0.05, and 0.005, are provided in Figure 8. From these, we may see that
as H → 0:

1. The interior and exterior HW-unstable lobes fan out further, as expected, reducing
the size of the overlapping region where they are both active.

2. The (non-local) KH-unstable region grows in size, a phenomenon which may be un-
derstood by recalling that the associated KH instability occurs due to the interaction
of vorticity waves on the top-most and bottom-most shear interfaces. These interfaces
are drawn closer in the zero separation limit and, therefore, interact more strongly
for a larger range of α and Ri0. Moreover, for very small values of H, this region ap-
pears to merge with the interior HW-unstable region, thus producing the TC-unstable
region when H = 0.

3. The local KHI do not appear in any of these stability diagrams. Their suppression
likely has to do with proximity-based interactions between vorticity waves on the
interior shear interface and requires further investigation. At this stage we merely
conjecture that they appear only for large H.

2.5 Summary

In this section, we employed piecewise-linear approximations of U(z) and B(z) (5) and
solved the inviscid Taylor-Goldstein equation (4) analytically, ultimately obtaining a biquar-
tic characteristic polynomial (19), the roots of which encoded temporal attributes (growth
rate, phase speed) of small perturbations to our setup. We then tracked these roots across
(Ri0, α,H) in order to chart the temporal behaviour (decay, exponential growth) of these
perturbations in parameter space. Our survey of the inviscid linear problem highlights three
new behaviours relative to the zero separation case of Caulfield [5]. First, any finite separa-
tion (H > 0) cleaves the HW-unstable band into distinct interior and exterior HW-unstable
lobes distinguished by their large-α phase speeds. The interior HWI is dominant for smaller
wavenumbers than the exterior HWI, although there always is a range of wavenumbers for
which they both coexist (see Figures 6 and 7). Second, once H > 0 the constant coefficient
A0 in the dispersion polynomial (19) re-appears, erasing the TC-unstable region altogether.
Third, as the vertical gap between stratified shear layers narrows, the interior and exterior
HW lobes fan out, and the KH-unstable region swells in size, ultimately fusing with the in-
terior HW lobe and resurrecting the TC instability at zero separation (see Figure 8). These
results demonstrate that even modest layer separation reorganizes the instability landscape
and changes the character of the classic HW instability.

Going forward, we will incorporate viscosity and diffusivity to determine how finite Re and
Pr reshape or modify the inviscid stability diagrams, and perform fully nonlinear DNS to
track how interior and exterior HW modes evolve once they have grown to finite amplitude,
restricting attention initially to the intermediate values of H, viz. H = 1, 0.5.
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3 Viscous Linear Theory

We now reintroduce the diffusion of momentum and buoyancy into the governing equations.
This necessarily precludes sharp shear and buoyancy interfaces, so we return to the diffuse-
interface configuration given by equations (3) and represented schematically in the right
panel of Figure 1. The linearization procedure described in the previous section now yields
the viscous Taylor-Goldstein Equations

(σ + iαU)∇2ŵ − iαUzzŵ = −Ri0α
2b̂+Re−1∇4ŵ,

(σ + iαU) b̂+Bzŵ = (PrRe)−1∇2b̂,
(24)

a generalized eigenvalue problem where σ = −iαc is the complex eigenvalue whose real

part provides the growth rate of the perturbation eigenfunction
[
ŵ(z), b̂(z)

]T
, and the

differential operator ∇ is (re)defined ∇ ≡ [iα, dz]
T . We solve this eigenvalue problem

numerically using open-source code developed by W.D. Smyth and colleagues [13]. This
code utilizes a Fourier-Galerkin discretization and a QR factorization encoded in MATLAB’s
eig() function.

We choose Re = 104 and Pr = 1 to simulate a fluid relatively weakly affected by momentum
and buoyancy diffusion, Lz = 20 is chosen so that the vertical boundaries are far away from
the interfaces, R = 6 ensures that the buoyancy interface is much sharper than the shear
interface (which is conducive to the HW instability), and finally H takes values of 0.5, 1, and
∞. With these parameters, the number of vertical gridpoints required for the eigenvalues
to converge is 1024.

The generalized eigenvalue problem is solved for a range of wavenumbers. At each one,
the numerical solution consists of 1024 eigenvalues and as many eigenfunctions, ranked
by growth rate. In what follows, we will adopt the convention ϕ̂j,2α, where ϕ̂ (z) is some
eigenfunction and j ∈ Z+ is the mode index. Note that the streamwise wavenumber of the
perturbation is represented by 2α instead of α so as to avoid decimal points in the subscript.
First, results from the H = ∞ case will be presented, followed by the H = 1 and H = 0.5
cases.

3.1 H = ∞, pure Holmboe waves

The H = ∞ label represents calculations with a modified basic state consisting of just one
stratified shear layer – i.e., the classical HWI setup – intended to validate the solver and,
more importantly, provide a comparative baseline for the H = 0.5 and H = 1 calculations.
The modification is implemented by setting H = 1 in our basic state (3) and then excising
the stratified shear layer at the bottom. This leaves us with a single stratified shear layer
whose buoyancy interface is centered at z = 2. This is presented schematically in Figure 9a.
The other three panels of the figure contain selected results from the stability calculation.
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Figure 9b contains (complex conjugate) eigenvalues associated with the top two fastest
growing modes for α ∈ [0, 1.7] and Ri0 = 0.2. The blue curves represent their phase speeds,
which are measured on the left axis; and the red curves represent their growth rates, which
are measured on the right axis. The dashed green line should be read off the left axis
and represents the basic state velocity U = 1 at the buoyancy interface. The circles mark
wavenumbers α = 0.5 and α = 1 for which growth rates are nearly (though not quite) equal.

The vertical structures of the first two streamwise velocity modes with α = 0.5 (i.e., modes
û1,1 and û2,1, following our naming convention) are plotted in Figure 9c. Similarly modes
û1,2 and û2,2 are plotted in 9d. Note that in each case, one mode has an amplitude peak
below the buoyancy interface (z = 2), and the other has a peak above the interface. The
former has a large-α phase speed of 0.5, whereas the latter has 1.5. This is the criterion that
we previously used to distinguish interior HW modes from exterior HW modes; however,
for a single stratified shear layer, the distinction is meaningless since both of these modes
have the same growth rate.

3.2 H ̸= ∞, stacked Holmboe waves

Solutions to the viscous TGE obtained at H = 1 and H = 0.5 are characterized in Figure
10. For each H, Ri0 − α growth rate contours are plotted on the left, and eigenvalues
associated with the first six fastest growing modes are plotted on the right. Streamwise
velocity eigenfunctions are provided in Figure 11. We outline a few observations below.

1. At least for the parameters considered, there is no evidence for a TC-unstable region.

2. As in the inviscid case, two distinct, disparately growing branches of HWI (interior
and exterior) emerge, distinguished by their large-α phase speeds (Figures 11b,d).
The disparity in growth rates is more pronounced at smaller values of H.

3. Interior HWmodes grow faster at smaller α than exterior HWmodes, and the converse
is true at larger α, as indicated by the dashed blue separatrices in Figures 10a,c.
However, in addition to suppressing growth rates, the reintroduction of diffusion has
also broadened both interior and exterior HWI bands, thereby rendering the region
of overlap (where both interior and exterior HW modes are growing) larger. Indeed,
at Ri0 = 0.2 and H = 1 (Figure 11b) there is no α for which only one HW mode is
growing, and at H = 0.5 (Figure 11d), there is only a very small interval near α = 0
where interior HW modes alone grow.

4. The zero phase speed non-local KHI (denoted KN ) is fully suppressed at H = 1 but
reappears at H = 0.5 at very low wavenumber. As in the inviscid case, the local KHI
is absent.

5. Finally, as the naming convention suggests, interior HWI streamwise velocity modes
have an amplitude peak interior to the buoyancy interface on which they occur. Like-
wise, the corresponding exterior HWI modes have a peak exterior to their buoyancy
interface (see Figure 11).
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Figure 11: Streamwise velocity mode amplitudes at H = 1, and Ri0 = 0.2. The modes
in panel (a) have wavenumber α = 0.5 and those in panel (b) have wavenumber α = 1,
corresponding to the circles in Figure 10b. In each case, interface locations z = ±1 have
been marked with a cyan line, and amplitudes of the first and third ranked eigenmodes –
û1,2α and û3,2α – have been plotted. The second and fourth ranked ones, being reflections of
these about z = 0, have been omitted. Note that here, the line-type does carry an additional
meaning (cf. Figure 9c, d). Solid black curves represent dominant eigenmodes (i.e., those
that grow faster) and dashed black curves represent subdominant ones. At α = 0.5, the
interior HWI is dominant and the exterior HWI is subdominant, whereas the exterior HWI
is dominant at α = 1.

3.3 Summary

As might be expected, the primary effect of viscosity is to diminish interior and exterior
HW mode growth rates and broaden their instability bands in the Ri0 − α plane. Other
features observed from our inviscid linear stability calculations, i.e., the absence of a TC-
unstable region, the presence of a KH-unstable region at very small α persist (the latter with
similar diffusive modifications). Through our calculations, we have identified perturbation
wavenumbers α = 0.5, 1 for which different types of HW instabilities are dominant and
parameter values (Ri0 = 0.2) where they have similar growth rates. These results will
inform numerical simulations of the governing equations (2), utilized to study the finite-
amplitude evolution of interior and exterior HW instabilities.
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4 Finite Amplitude Evolution of Stacked Holmboe Waves

We would now like to understand the evolution of stacked HW instabilities beyond the
exponential growth regime (i.e., once they have attained finite amplitude). In particular,
we are interested in differences from the pure HW case. Our study consists of six direct
numerical simulations of the 2D Boussinesq equations (2). These are summarized in Table
8, below.

Group Label α0 Dominant HWI Type

Pure HWI (P)
H = ∞

I 0.5 Interior/Exterior

E 1 Interior/Exterior

Stacked HWI (SA)
H = 1

I 0.5 Interior

E 1 Exterior

Stacked HWI (SB)
H = 0.5

I 0.5 Interior

E 1 Exterior

Table 8: Simulation plan for our investigation into the finite-amplitude evolution of stacked
Holmboe waves. Group P (pure HW) simulations provide a comparative baseline (i.e.,
they constitute a control group). The parameter α0, listed for each simulation in the
third column, is the streamwise wavenumber of the initial perturbation. The simulation
label reflects the dominant HW type at the wavenumber α0, except for group P, where,
as discussed in section 3.1, there is no growth rate disparity (and hence no meaningful
distinction) between the interior and exterior HW mode.

Physical and numerical parameters chosen for our simulations are summarized in Table 9
below.

Re Pr H R Ri0 α0 Lx × Lz Nx ×Nz

104 1 0.5, 1, ∞ 6 0.2 0.5, 1 4π × 20 5122

Table 9: Parameter values for DNS of the 2D Boussinesq equations.

All physical parameters remain the same between the previous section and this one. The
only addition is Ri0 = 0.2, chosen to leverage the dominance (in terms of growth rate) of
different HWI types at two different wavenumbers (0.5 and 1) related by an integer factor
(see section 3.2). Recall that despite the difference in dominant HWI types, the excited
modes have nearly equal growth rates.

To solve the governing equations, we utilize a pseudospectral method with Fourier-Chebyshev
spatial discretization and time-marching using a Semi-Implicit Backward Difference For-
mula. The computational domain is chosen to be 4π units long in order to accommodate
perturbations of wavenumber 0.5 (one wavelength) and 1 (two wavelengths). We use 512
gridpoints in each direction, and our simulations appear to remain resolved up to around
65 time units (as judged by the visual absence of numerical artifacts in simulated primi-
tive variables), which covers a few cycles of the nonlinear regime. Admittedly, the chosen
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resolution is not sufficient to resolve fine features that appear late into the simulations. Nev-
ertheless, it was judged to be resource-efficient for the preliminary exploration presented
here. This is a limitation of the study in its current stage, and will be addressed as it
progresses (see section 5). For now, we note that the discussion in this section covers only
the early nonlinear evolution of HW instabilities and that the preliminary results presented
here should be subject to verification via higher-resolution computations.

Our discretization enables the implementation of periodic boundary conditions in the stream-
wise direction and the appropriate Dirichlet boundary conditions in the vertical direction.
We use the Dedalus [2] framework to implement our solvers and run simulations on UNH
computing clusters Premise and Plasma.

Stacked HW simulations (groups SA and SB) are initialized with the basic state (3) and
a small monochromatic perturbation composed of the four fastest growing eigenmodes a
single wavenumber α0. For example, the generic state variable ϕ(x, z, t) with basic state
Φ(z) is initialized

ϕSH(x, z, 0) = Φ(z) + 0.01
4∑

n=1

ϕ̂n,2α0 (z) exp

(
i
4πα0

Lx
x

)
+ c.c., (25)

where, in accordance with linear stability results, we consider α0 = 1 and 0.5. To reiterate,
in the former case, the dominant mode is an interior HWI, and in the latter case, an exterior
HWI. The initial perturbations (25) for groups SA and SB contain the dominant complex
conjugate pair (e.g. the interior HW modes for SA-I) as well as the subdominant one (the
exterior HW modes). The subdominant HW mode pair is included since, for the parameters
chosen, its growth rate is not very small compared to the dominant pair (see Figures 10b,
d). In contrast Pure HW simulations (group P) use an initial perturbation composed only
of the two fastest growing eigenmodes, i.e.,

ϕPH(x, z, 0) = Φ(z) + 0.01
2∑

n=1

ϕ̂n,2α0 (z) exp

(
i
4πα0

Lx
x

)
+ c.c. (26)

The amplitude 0.01 renders the perturbation peak value O(0.01), ensuring that it is small
enough for linear theory to apply. In our simulations, we track the volume-averaged pertur-
bation kinetic energy and verify that the growth rate and phase speed of initial perturbations
match that predicted by linear theory. Moreover, linear growth appears to hold for 30 – 40
time units. In what follows, we will first cover the linear growth phase of Holmboe waves
(pure and stacked) and then describe the early-stage nonlinear evolution of stacked HWIs
qualitatively, comparing and contrasting with the pure HWI. In both phases of develop-
ment, we will attempt to diagnose and quantify the interaction of stacked HWs relative to
pure HWs.

4.1 Linear growth and early-time interaction of Holmboe waves

Much of the terminology and diagnostics used in this and subsequent sections comes from
the work of Smyth et al. [15]. Our simulations (especially in group P) are qualitatively
comparable to the ‘moderate stratification simulations’ described in Ref. [15]. Holmboe
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waves (both pure and stacked) occur in counterpropagating pairs on each side of a buoyancy
interface. In our set-up the wave on top of the interface travels rightward, and the wave
at the bottom travels leftward. These waves impart onto the central buoyancy interface
a sinusoidal deformation (see Figures 12b, e), pushing heavier (less buoyant) fluid above
the interface and pulling lighter (more buoyant) fluid below it. This allows us to identify
the streamwise position of a Holmboe wave ‘crest’ at a particular depth with the point at
a depth where buoyancy is minimized (if above the interface) or maximized (if below the
interface). In other words, buoyancy extrema at a fixed value of z can be used as a proxy
for the location of the Holmboe wave crest [15].

Note, however, that the identification of buoyancy extrema with HW crests does not hold

(a) very far from the interface, due to the localization of Holmboe waves, and

(b) beyond the linear growth phase, as nonlinear effects can lead to the destruction of
extant buoyancy extrema as well as the creation of new ones that have nothing to do
with HW crests.

HWI evolution is characterized by the regular crossing and interaction of waves on either side
of the buoyancy interface. At the instant where HW crests have zero horizontal separation,
the central buoyancy interface becomes completely flat (see Figures 12c, f) and HW speeds
(relative to the mean flow) are maximized [15]. A natural question, at this point, is whether
stacking Holmboe waves has any effect whatsoever on their crossing speeds.

Therefore, we track HW crests (i.e., buoyancy extrema) in all our simulations at selected
depths on either side of the top buoyancy interface for 30 time units, as shown in Figure
12. Our results confirm that wave speeds (for both pure and stacked Holmboe waves) are
minimum when wave crests on either side are far apart, increase as they cross each other,
and are maximized at the instant of zero horizontal separation. Stacking effects appear to
be slight for the parameters we have chosen; nevertheless, we observe that

1. the maximum absolute speed of Holmboe waves below the interface increases with
decreasing H – i.e., it is the same as the maximum absolute speed above the interface
when H = ∞, very slightly higher when H = 1, and even higher when H = 0.5.

2. Further, this effect is more pronounced when the interior HW modes are dominant
(i.e., for α0 = 0.5), than when they are subdominant (α0 = 1).

In sum, stacking enables cross-layer HW interaction, i.e., interaction between Holmboe
waves on different buoyancy interfaces. The effects, though slight, are observed to be
stronger on waves below the top buoyancy interface – likely due to proximity with their
counterparts atop the bottom buoyancy interface – and on interior HW modes (α = 0.05).
We now proceed to discuss the nonlinear regime of evolution.
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4.2 Holmboe wave crossing in the nonlinear regime

A well-known characteristic of HWIs is that component waves have concentrations of clock-
wise vorticity at their leading (downwind) edges [15]. The strength of these vortices fluc-
tuates as Holmboe waves propagate along the buoyancy interface – attaining a maximum
when the waves are far apart (i.e., when wave phase speed is minimized) and decreasing
as the waves come closer to each other (and their phase speed increases). These vortices
support the sharpening of Holmboe waves in streamwise-localized cusp/ridge-like structures
(see Figures 13a, b), and are also responsible for entraining stratified fluid from within the
shear layer and ejecting it outward, ultimately forming the thin plumes or fringes that crown
travelling wave cusps.

Figure 13 consists of buoyancy field snapshots illustrating a single wave crossing cycle –
with HW cusps approaching each other (panels a, b), passing each other (panels c, d), and
then reapproaching (panels e, f) – for simulations PI (left) and PE (right). The period
covered by these snapshots is approximately from t = 43 to t = 56. We can see that over
the period of time covered by the snapshots, HW cusps become thicker and jut out farther
away from the interface; and the plumes lengthen, flatten, and also occupy more space away
from the interface. These changes are more pronounced in simulation PI (left panels) than
in simulation PE (right panels).

A similar sequence of events is depicted for simulations SBI (left) and SBE (right) in Figure
14. Comparing HW plumes exterior to the buoyancy interfaces to those interior to the
buoyancy interfaces between panels (c), (d), (e), and (f), we make two observations:

1. HW plumes interior to their respective interfaces grow flatter and longer as they
propagate than plumes exterior to their interfaces. This can be visually seen by
comparing the lengths of the red boxes (interior plume) and the blue boxes (exterior
plume) in Figures 13e and 14(e, f). This asymmetric morphology has to be a result
of cross-layer HW interaction.

2. As before, these changes are more pronounced in simulations where the interior HWI
is dominant (SBI, left panels) than in those where the exterior HWI is dominant (SBE,
right panels).

These observations hold true for simulation group SA as well (not shown), although the
stacking-induced changes in HW plume structure are comparatively muted.

To better quantify and compare stacking-induced effects, we compute streamwise averaged
Reynolds stress profiles ⟨u′w′⟩x for simulations PI, SAI, and SBI. This quantity provides
information about the vertical flux of horizontal momentum (through its negative vertical
derivative, a positive value of which denotes net upward flux). Results for two instants of
time after HW cusps on either side of an interface have crossed each other – when the cusps
are (a) closer together, and (b) farther apart – are plotted in Figure 15 below. We see that:

1. When HW cusps are close to each other, the Reynolds stress profiles have peaks of
positive magnitude at buoyancy interfaces and similar values in the center of the
quiescent region between the two stratified shear layers. This corresponds to a net
transport of horizontal momentum into the center of each shear layer. In simulation
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4.3 Summary

Our direct numerical simulations confirm and extend the picture developed in the preceding
sections on linear theory. Stacking effects are characterized by asymmetries in flow struc-
tures and statistics across buoyancy interfaces. We find that these effects are sensitive to
the initial perturbation: perturbations composed of interior HWI modes exhibit noticeably
stronger asymmetries in HW speeds, plume morphology, and streamwise-averaged Reynolds
stress across the buoyancy interface than those composed of exterior HWI modes. More-
over, the separation between stacked stratified shear layers (or stacked Holmboe waves)
plays a key role. Reducing the separation half-width from H = 1 to H = 0.5 amplifies
cross-interface asymmetries.

5 Conclusion

In this report, we have studied the dynamics of a stably stratified three-layer fluid system
with localized shear around buoyancy interfaces (see Figure 1). This configuration, with its
relatively sharp density transitions, is conducive to the growth of Holmboe wave instabilities.
Our goals were threefold:

(a) to chart the onset and growth of Holmboe waves from infinitesimal disturbances as a
function of stratification strength Ri−1

0 , shear layer gap H, and perturbation wave-
length 2π/α, using inviscid linear stability theory;

(b) to investigate the effects of finite diffusivity on the stability properties; and

(c) to characterize their finite-amplitude evolution through direct numerical simulations.

Two well-studied configurations emerge as limiting cases of our setup: (i) a two-layer fluid
sheared around a single buoyancy interface [10], and (ii) a three-layer fluid with both buoy-
ancy interfaces embedded in a single shear layer [5].

Both limiting cases exhibit Holmboe wave instabilities within a bounded region of the
(Ri0, α) plane. Our setup introduces new dynamics: analytical solutions of the inviscid
Taylor-Goldstein equation reveal a splitting of the Holmboe-unstable region into two bands
associated with distinct interior and exterior Holmboe wave modes, distinguished by their
large-α phase speeds. Moreover, the Taylor-Caulfield instability, present in case (ii), is
suppressed.

The reintroduction of diffusive effects broadens interior and exterior Holmboe wave insta-
bility bands and lowers growth rates but preserves the differential dominance of interior
and exterior Holmboe modes at different wavenumbers. Finally, a suite of direct numerical
simulations initialized with either interior or exterior Holmboe wave modes reveals novel
effects in the finite-amplitude regime of evolution: stacking induces asymmetries across
buoyancy interfaces in Holmboe wave speeds, plume morphology, and Reynolds stresses.
These asymmetries are more pronounced for interior Holmboe wave instabilities and are
amplified when the shear layers are more closely spaced.

This work is ongoing; therefore, there are several opportunities for refinement. Firstly, it
would be useful to identify and draw stability boundaries separating Holmboe wave-unstable
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regions from Kelvin-Helmholtz-unstable regions systematically in viscous stability diagrams.
This may be accomplished by tracking transitions from zero to finite wavenumbers along the
wavenumber axis, thereby clarifying the relative prevalence of each instability type across
parameter space. Secondly, a more complete picture of linear instability mechanisms could
be obtained by investigating the dependence of interior and exterior stacked Holmboe waves
on the Prandtl number. Varying Pr would allow us to assess the role of buoyancy and vis-
cous diffusion separately and to chart changes in instability growth rates and structures.
Our direct numerical simulations could also benefit from enhanced spatial resolution, par-
ticularly near the buoyancy interfaces, as well as from the adoption of more judicious basis
functions in the vertical direction, which may help to better resolve fine-scale features of the
flow. Finally, studies of finite-amplitude evolution at a range of Ri0 and Pr values would be
valuable, enabling an assessment of the robustness of stacking-induced asymmetries across
different stratification and diffusion regimes. More comprehensive diagnostics of flow struc-
ture, energy exchanges, and mixing statistics would complement these efforts and further
elucidate the nonlinear dynamics of stacked Holmboe instabilities.

Beyond these immediate refinements, several non-trivial extensions of this work suggest
themselves. One natural avenue is the study of stacked Holmboe waves in three spatial di-
mensions, enabling direct comparison with the recent numerical simulations of Liu et al. [12]
on neighboring stratified shear layers, as well as with measurements of turbulent energetics
and mixing efficiency from laboratory experiments and field observations. The transition to
three dimensions would allow us to explore secondary instabilities, spanwise coherence, and
the breakdown of stacked Holmboe modes into turbulence. Other promising avenues include
the exploration of asymmetric configurations, in which the buoyancy interface is displaced
away from the center of the shear layer, leading to distinct upper and lower Holmboe wave
modes, and the consideration of alternative velocity profiles, such as vertically stacked jets.
These profiles could support new types of instabilities or modify the competition between
interior and exterior Holmboe waves, opening up a broader landscape of layered stratified
turbulence.
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Settling of Porous and Deformable Disks

Nicolaos Petropoulos

August 19, 2024

1 Introduction

Figure 1: Abandoned filter net
or ‘house’ of an appendicularian,
a free-swimming invertabrate
(from [2]).

The study of the motion of bodies falling in a fluid dates
back to Stokes (1851) [13] and Maxwell [11], and has re-
ceived a lot of interest since then. Indeed, rigid or de-
formable objects that settle (or rise, depending on their
density relative to that of the surrounding fluid) are en-
countered in a wide range of fields. Of oceanographic and
biological relevance, many marine plants and animals rely
on the settling of propagules (i.e., any material that func-
tions in propagating an organism to the next stage in its
life cycle, such as by dispersal) as their only means of
reproduction and dispersal [1]. Similarly, settling rates
affect the flux of nutrients, food, and wastes to and from
organisms throughout the water column [5]. Settling of
marine snow (a continuous shower of mostly organic de-
tritus falling from the upper layers of the water column;
see figure 1) is of crucial importance in bringing energy
and nutrients from the photic (light-rich) upper ocean to the aphotic regions of the water
column. Of topical concern are also microplastics whose path in the world’s oceans is still
highly uncertain [15].

Most theoretical, experimental and numerical studies of slowly settling objects have fo-
cused on solid particles with simple geometries (such as spheres or disks). The problem is
already challenging. In fact, a dimensional analysis reveals that three dimensionless param-
eters govern the problem of a solid disk settling in a homogeneous fluid: the aspect ratio
λ of the disk (characterizing its geometry); the ratio of the object and fluid densities, ρ
and ρf , respectively (characterising the strength of the buoyancy force driving the motion);
the Reynolds number Re (quantifying the importance of inertia over viscous forces). In-
terestingly, as the Reynolds number increases, the settling motion’s characteristics change
drastically [7]. At low Re, the settling motion is rectilinear and for intermediate ones, it is
oscillatory. For large Re, the motion becomes chaotic. The transition between oscillatory
and chaotic motion happens at smaller Reynolds numbers as the product of the density
ratio ρ/ρf and aspect ratio λ (often referred to as the dimensionless moment of inertia
I∗ := πρλ/(64ρf ) of the settling disk) increases. For large enough I∗, the transition dis-
appears and the settling dynamics is characterized by a tumbling motion at all Reynolds
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Figure 2: Set-up for the PIV (left) and the settling velocity measurements (right) experi-
ments.

numbers [7]. These intricate transitions are thought to be linked with changes in the struc-
ture of the wake behind the settling disk and more precisely the development of a wake
instability and vortex shedding as Re increases [16].

The research presented here is ultimately motivated by the desire to understand the
settling behaviour of fragile, porous objects like marine snow and biofouled microplastics.
However, these objects have wide-ranging and ill-defined geometries and density distribu-
tions. Consequently, as a step towards this more complex problem, here we examine the
settling of porous (rather than solid) disks. Specifically we examine settling meshes, asking
how is their settling and the ambient flow modified when allowing fluid to flow through as
well as around the settling object? To answer this question, we experimentally character-
ize the settling behaviour and wake structure of meshes as the control parameters of the
problem are varied.

Microplastic and marine snow aggregates are also flexible (see figure 1). In an attempt
to better understand how elastic structures and flow interact to modify the shape of elastic
objects settling and consequently their settling trajectories, we present in this work a simple
model for the settling dynamics of a filament in a viscous fluid and numerically solve for the
stationary shapes of the filament as the ratio of elastic and buoyancy (i.e., driving) forces
is varied.

The rest of the report is organised as follows. In section 2 we present the experimental
apparatus and techniques used to decipher the settling dynamics and flow structure around
and behind a settling mesh; results of these experiments are presented in sections 3.1 and 3.2.
In section 4, elasticity is introduced in the problem and a model for the settling dynamics of
an elastic filament in a viscous homogeneous fluid is presented. Brief conclusions are drawn
in section 5.

187



Figure 3: Examples of PIV results. (Left) Plug flow behind mesh 1 with R = 2.5 cm.
(Right) Wake behind mesh 7 with R = 5 cm.

2 Experiment Set-up and Measurement Techniques

All experiments use a 60 cm × 60 cm × 60 cm cubic tank filled with filtered tap water
(viscosity ν = 10−6 m2/s). Circular disks (cut out of various meshes) of radius R = 2.5 cm
or R = 5 cm are released individually and their settling dynamics, as well as the flow around,
them are analysed. To ensure similar initial conditions throughout the experiments, a release
mechanism, made out of two immersed thin plastic plates that can horizontally translate to
release the disk carefully disposed on top of them, was used. Note that the tank is assumed
to be large enough (compared to the size of the settling disks) so that boundary effects can
be neglected.

Two different experimental setups are employed as illustrated in figure 2. In one, an
LED panel placed underneath the tank shines upward upon the settling disks and a video
of the mesh settling is recorded using a smartphone camera (model Samsung Galaxy S20).
This setup was used to measure mesh settling speed and behaviour. In some of these
experiments dye was injected in the path of the mesh to observe bulk flow through and
around it. In the other set-up used for particle image velocimetry (PIV) measurements
of ambient fluid motion, a projector produced a vertical light sheet by shining on a thin
(∼ 3 mm) slit cut through a black screen placed on one side of the tank. The light sheet
illuminated micron-sized particles consisting of store-bought pollen. Videos are recorded
using the same camera as in the first setup. We used the PIV package DPIVsoft2010 [12]
to calculate (two-dimensional) velocity fields with 40 × 20 vectors over an area equivalent
of 25 cm× 40 cm.

The disks used in this work are cut from 13 different meshes composed of different ma-
terials that have different thicknesses, h (measured using a calliper with 0.1 mm accuracy)
and pore geometries (squares, circles, hexagons). The geometry of a single pore is charac-
terised by an equivalent radius rp (i.e., the radius of the circle of similar area as the one
of the pore), as listed in table 1. Note that the area of one pore is estimated using precise
(with a 0.1 mm accuracy) measurements of relevant lengths characterising the pore (such
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as the length of the size of polygonal pores or the diameter of circular ones). These lengths
being typically of order 1 mm, we estimate that the error in approximating rp is of about
10%.

As another measure of the mesh porosity, we determine the area of the solid part of a
mesh, A by taking a snapshot of it on a background of contrasting colour. The image is then
binarised (with solid represented by 1 and pore represented by 0; see figure 4). The area A
is estimated by counting the number of pixels with value 1, and multiplying by the pixel
area. Note that this method provides an approximation of the total area of the mesh; more
precisely, the fine-scale porous structure of the fibres (of the polyester meshes, for instance)
cannot be properly mapped using this optical technique (the main limitation being due to
the resolution of the camera). From the geometric characteristics of a mesh, we construct
two dimensionless numbers: the dimensionless area of mesh A/(πR2) (a measure of the
mesh porosity) and its aspect ratio h/R. Our meshes allowed us to explore variations of
almost an order of magnitude for each of these dimensionless numbers (see figure 5).

The density ρ of the meshes is evaluated using displacement and geometric methods. In
the latter case, a mesh thread is extracted and its volume is computed using precise mea-
surements of its thickness and length (using a calliper with an accuracy of 0.1 mm). Its mass
is measured using a high-precision scale (precision of 0.001 g). From the density estimates,
we computed a third set of dimensionless numbers characterising the meshes, namely the
density ratio ρ/ρf (with ρf the density of water). The 13 meshes used in this work span
an order of magnitude in each dimensionless parameter (see figure 5). Note that two of the
meshes are buoyant (i.e., ρ/ρf < 1). In that case, the release mechanism was placed at the
bottom of the tank. However, in that case, the release mechanism was perturbing the entire
fluid column ahead of the (rising) mesh, polluting velocity measurements. For that reason,
we use PIV measurements only for settling meshes (i.e., for which ρ/ρf > 1).

Note also that some meshes were slightly deformable (see figure 5). We characterise a
mesh as ‘deformable’ when it visibly bent under its own weight when held at one side. No
measure of bending moduli or any other relevant measure of ‘deformability’ was conducted
during the summer.

In conclusion, we fully characterised the settling dynamics of 11 meshes, as we will see
in the next section. Except for mesh 4 (for which the A ≃ 1) that oscillates while settling,
all the meshes settle following a straight line.

3 Experimental Results

3.1 Settling velocities

We recorded between 4 and 10 videos for each mesh settling in the quiescent tank. For
each video, a vertical line of pixels going through the mesh is extracted for each frame of
the video and then stacked together to form a vertical time series from which the settling
velocity of the mesh can be estimated from the slope of the line of bright pixels (see figure 6).
These estimates are then averaged over settling experiments, for each mesh. We denote the
average settling velocity Us. The experimental results are presented in table 2. Interestingly,
the settling velocity does not depend on the radius R. Based on these velocity estimates,
three Reynolds numbers based on the mesh radius R, thread thickness h and pore size rp,
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Figure 4: (Left) Geometric characterisation of a mesh (2) and its pores. (Right) Example
of meshes. The numbers correspond to the mesh number in table 1.

Figure 5: Solid area fraction versus aspect ratio for the meshes used in this work (in log-log
scale). The green wiggle denotes a flexible mesh. The shade of the outer circle surrounding
each point represents relative density as indicated in the colourbar to the right. Note also
that the silk screen (mesh 4), for which A/(πr2) ≃ 1 is not presented here.
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Mesh Use Material Flexible Pore ρ [g/cm3] h [mm] rp [mm] A/(πR2)

1 Mesh bag Polyester yes hexagon 1.3 0.5 4.6 0.1
2 Mesh bag for balls Polyester yes hexagon 1.3 0.3 3.6 0.08
3 Aquarium bag Polyester yes hexagon 1.3 0.2 1.8 0.1
4 Silk screen Polyester yes - 1.3 0.09 < 0.1 1
5 Window screen Fiber glass no square 3.0 0.5 1.5 0.1
6 Garden drainage Polyamide yes square 0.3 0.3 1.3 0.1
7 Computer screen PVC no circle 1.2 0.4 0.9 0.2
8 Embroidery Acrylic no square 0.7 1.2 2.4 0.2
9 Beehive screen Steel no square 6.2 0.4 1.0 0.1
10 Rodent barrier Steel no square 6.6 0.7 2.6 0.1
11 Window screen Steel no square 7.6 0.3 1.0 0.09
12 Window screen Steel no square 7.6 0.6 5.5 0.06
13 Window screen Steel no square 7.8 0.3 1.2 0.1

Table 1: Properties of meshes used in this work including their density ρ and geometric
characteristics: thickness h, pore size rp and solid fraction A/(πR2).

of the pores are computed:

Re :=
UsR

ν
, Rep :=

Usrp
ν

, Reh :=
Ush

ν
. (1)

The Reynolds number on the scale of the mesh is of order between 103 and 104. The
Reynolds numbers on the scale of the pores and of the thickness range from 10 to 103 (see
table 2).

The settling velocity Us arises as a balance between the buoyancy and hydrodynamic
forces acting on the settling meshes. The large values of the Reynolds numbers justify
modelling the effect of the hydrodynamic forces as a drag force proportional to U2

s . Then,
the force balance acting on the settling mesh reads

Ah(ρ− ρf )g = CDρfAU2
s , (2)

with CD a drag coefficient that might depend on the particular shape of the pores, threads,

etc. This balance gives Us ∝
√

ρ−ρf
ρf

gh that is independent of A and R. This theoretical

estimate is compared to the experimental measurements in figure 7. Two trends stand out.
The settling velocities of the steel mesh — that have circular thread cross-section and square
pores — collapse onto the same linear curve, suggesting a similar drag coefficient CD. Sim-
ilarly, the plastic ones, with square-ish thread cross-sections and hexagonal pores, collapse
onto another linear curve, suggesting another drag coefficient CD. Note also that these
meshes slightly bend as they settle, giving another potential explanation for the relatively
lower drag coefficient observed in figure 7 (indeed, we can speculate that a mesh settling
with a characteristic Pringles-like shape will settle faster than if straight and orthogonal to
the settling velocity, as is the case for settling deformable filaments [6]; tangential drag is
usually weaker than normal drag).

Most interestingly, whereas the Reynolds number Re is large enough so that a solid
full disk of similar dimensions to the meshes used in this work should oscillate as they
settle (the transition between a rectilinear and oscillatory descent is thought to happen for
Re ≃ 100 [7, 16]), none of the meshes considered here oscillate nor tumble while settling.
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Figure 6: Method to estimate settling velocity. (Left) Snapshot from experiment with
settling mesh (11). (Right) Vertical time series constructed by horizontally stacking in time
successive vertical lines of pixels passing through the mesh, as indicated by a red line in the
left panel. The slope of the green line (passing through the bright pixel of the vertical time
series, corresponding to the mesh) corresponds to the settling speed Us.

R = 5 cm R = 2.5 cm
Mesh Us [cm/s] Re Rep Us [cm/s] Re Rep
1 2.0(± 0.04) 2022 92 2.1(±0.04) 1082 99
2 1.4(± 0.03) 1433 51 1.4(±0.03) 701 50
3 1.2(± 0.02) 1179 21 1.4(±0.03) 686 24
4 0.92(± 0.02) 934 - 0.93(±0.02) 472 -
5 2.5(± 0.05) 2550 38 2.5(±0.05) 1250 37
6 0.75(± 0.01) 762 10 0.74(±0.01) 376 10
7 3.6(± 0.07) 3698 33 4.0(±0.08) 2052 36
8 2.4(± 0.01) 2459 57 2.6(±0.01) 1306 60
9 14.4(± 0.3) 14630 144 15.3(±0.3) 7777 153
10 23.3(± 0.5) 23622 605 23.5(±0.5) 11948 612
11 12.3(± 0.2) 12517 123 12.9(±0.3) 6558 129
12 21.3(± 0.4) 21620 1170 21.5(±0.4) 10937 1184
13 12.6(± 0.3) 12760 151 13.5(±0.3) 6853 162

Table 2: Measured settling velocities for the meshes with R = 5 cm and R = 2.5 cm, and
their associated Reynolds numbers associated with the disk radius R (Re) and the pore size
rp (Rep).
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Figure 7: Comparison of the theoretical estimate of the settling velocity based on equation 2
(
√

gh(ρ− ρf )/ρf ) with the experimental data (U exp
s ). The slope of the dashed lines gives

the inverse of the square root of the effective drag coefficient CD for the metal and plastic
meshes. The ‘dancing queen’ mesh refers to the silk screen (mesh 4) that is (almost) not
porous and that oscillates while settling, as expected for a full solid disk settling in the
range of Reynolds numbers (of order 1000; see table 2) considered here.

We hypothesise that flow through the pores of the mesh prevents the vortex formation
and wake destabilization that is at the heart of settling disk oscillations. We discuss this
hypothesis in the next section.

3.2 Ambient flow structure

In this section, we study the flow structure around, through and behind the settling mesh.
First, a blob of dye is released below the initial location of the settling mesh. An example
is presented in figure 8. As the mesh settles, the entirety of the dyed fluid goes through
the mesh. Second, PIV measurements are performed. These show that fluid in front of the
mesh travels through the pores. After a short transient, a plug flow with approximately
uniform speed Up < Us and depth develops in the wake of the mesh, as shown in figure 9.
This, plus flow, is followed by a return flow that replenishes the volume behind the plug (by
incompressibility). Importantly, no vortex shedding and wake instabilities are observed.

We now seek to predict the plug flow velocity Up. The arguments presented here are
based on mass conservation. First, we assume that in each pore, the flow is made of a
Blasuis boundary layer and an undisturbed plug flow with velocity Us in a reference frame
attached to the settling mesh (see figure 10). Note that order of magnitude estimates assure
that the Blasius boundary layer (which is growing as

√
νz/Us) is not interfering with itself

in the pore (i.e.,
√
νh/Us is always much smaller than rp). Then, we have that the mass
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Figure 8: Dye experiments: a blow of dye (food colouring) is released in front of the settling
meshes. Mesh 7 is presented here. As the mesh settles, the entirety of the dye goes through
the pores of the mesh.

Figure 9: (Left) Snapshot from PIV experiment (mesh 7). (Middle, right) PIV measurement
of the horizontal (u; middle) and vertical (w, right) components of the velocity field. The
time series is constructed by stacking in time successive velocity measurements along a
vertical line passing through the mesh, as indicated by the red line in the leftmost panel.
The slope of the white line, separating the quiet fluid ahead of the mesh from the plug flow
in its wake, corresponds to the settling speed of the mesh Us.
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Figure 10: Flow structure in the wake of the settling mesh and assumed flow structure in
the pores of the mesh (note that the reference frame is here attached with the mesh).
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Figure 11: Comparison between the theoretical prediction of Up (equation (5); U th
p ) and

experimental measurements Umes
p . The dashed line corresponds to U th

p = U exp
p .

flux Qp though one pore is

Qp = ρπr2pUs

[
1− CBRe−1/2

p

(
h

rp

)1/2
]
. (3)

Here we used the fact that, for a Blasius boundary layer (with velocity profile u), we have

1

r2p

∫ (
1− u

Us

)
rdr = CBRe−1/2

p

(
h

rp

)1/2

, (4)

where CB is an order 1 integration constant [4, 14]. Then, using mass conservation in the
blue (dashed line) control volume depicted in the schematic figure 10, we get:

Up = Us

Npπr
2
p

πR2

[
1− CBRe−1/2

p

(
h

rp

)1/2
]
= Us

[
1− A

πR2

] [
1− CBRe−1/2

p

(
h

rp

)1/2
]
. (5)

Here, Np is the number of pores in the mesh (and hence Npπr
2
p = πR2 −A). This estimate

is compared to experimental measurement in figure 11. Note that the PIV measurements
were precise enough only for four experiments. Therefore, we unfortunately cannot conclude
anything regarding the validity of our model.

However, the above ideas can potentially be useful in designing a code to simulate a
settling mesh without fully resolving the structure of the flow inside the pores of the mesh.
More precisely, the object is represented as a field H such that H = 1 where the mesh is
and H = 0 otherwise (with a smooth transition at the object boundary) that is advected
at a velocity U that arises from the following force balance on the settling object:

MdtU = F h︸︷︷︸
hydrodynamic forces

+ F b︸︷︷︸
buoyancy forces

. (6)
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Here M is the mass of the settling object. The hydrodynamic forces, that arise from the
interaction between the surrounding fluid and the complex porous structure of the object,
need to be modelled. We consider the formulation (with u the fluid velocity), following
ideas from [9]

F h ∝ 1

τ
H × (u−U). (7)

As a rule of thumb, as the fluid (with velocity u) penetrates the porous structure of the
settling object it is decelerated by viscous drag to match the velocity of the object over a
time-scale τ .

Since the object exerts a force −F h on the fluid, the (incompressible) velocity field u is
a solution of the Navier-Stokes equation

∂tu+ u · ∇u = − 1

ρf
∇p+ ν∆u− 1

τ
H × (u−U), ∇ · u = 0, (8)

with p the pressure. The closed set of equations (6-8) can now be solved using, for instance,
Dedalus.

In the case of the mesh considered here, we can estimate τ in function of the geometric
structure of the mesh. Indeed, considering at first one pore and the flow structure described
in figure 10, we have, using results from Blasius boundary layer theory (Ue is the mean
velocity at the exit of the pore):

τ ≃ h

Us − Ue
=

1

2CB
Re

1/2
h

rp
Us

. (9)

Then considering all the (Np) pores, we get:

τ ≃
Npπr

2
p

πR2

1

2CB
Re

1/2
h

rp
Us

=

(
1− A

πR2

)
1

2CB
Re

1/2
h

rp
Us

. (10)

This relationship, linking the free parameter τ and the geometric characteristic of the mesh
and fluid properties, arises from a set of assumptions concerning the flow geometry inside
each pore of the mesh. Comparing simulation and experimental outputs could validate or
invalidate these assumptions. We did not have time to run accurate simulations during the
summer. Especially, we ran into convergence issues when time-stepping the equations.

4 Settling of Deformable Objects

In the previous sections, we saw how porosity influences the settling dynamics of disks and
the structure of their wake. Here we consider another property of settling objects that
might influence their settling velocity: deformability. More precisely, we aim to answer the
following question: how does the deformability of an object influence its settling velocity?
Presumably, a stiff settling disk falling perpendicular to its settling velocity will settle at a
lower speed than a deformable one taking a U-shape (everything else being equal), tangential
drag being usually smaller than normal drag [3]. It is therefore crucial to understand first
how the fluid and the deformable object interact to set the shape of the settling object.
In an act of extreme reductionism, we will consider one-dimensional filaments rather than
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Figure 12: Schematic of a (green) filament

two-dimensional disks. The framework presented here closely follows the one described in
[8], adapted to take into account buoyancy forces, the driving force of our problem. Note
that porosity is not considered here.

A filament, depicted in figure 12, will be represented as a map α ∈ [0, 1] 7→ r(α), r(α)
being the position of a point labelled α on the filament. We also define s the arclength
coordinate along the filament. We denote rα := ∂αr. Similar notation will be adopted for
other partial derivatives. Note also that

∂s =
1
√
g
∂α, g := rα · rα, (11)

with g the metric. We then define the tangent vector to the filament t := ∂sr. Normal
to this vector is the normal vector n. Our aim here is to write Newton’s force balance on
the filament in the coordinate system associated with the tangent and normal vector t and
n. To this end, we will use a variational approach and hence first need to account for the
different forms of energy in the system at hand.

First, the filament is subject to a bending energy that tends to bring the filament to a
state of zero curvature. More precisely, the bending energy is assumed to be of the form

Eb =
A

2

∫
α
κ2

√
gdα. (12)

Here, A is the bending modulus and has units energy·length and κ = ∂sθ is the local
curvature of the filament with θ being the tangent angle to the filament (i.e., the angle
between the tangent vector t and the horizontal). In terms of calculus of variations, this
means that the filament pays a cost of being in a position with non-zero curvature. Second,
the filament is subject to the buoyancy force that derives from the following energy:

Egr = −
∫
α
β · r√gdα. (13)

Here β
√
gdα = βds is the buoyancy force of a piece of size ds of filament. Third, the filament

is assumed inextensible. This constraint will be imposed using a Lagrange multiplier Λ(α)
(the tension along the filament) and the energy

Et = −
∫
α
Λ(α)

√
gdα. (14)
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Finally, the filament has a kinetic energy

K =
1

2

∫
α
r2t
√
gdα. (15)

Here rt is the time derivative of r.
From the above potential and kinetic energies, one could write a variational version of

Newton’s force balance from the following minimum action principle:

Minimize

∫
Ldt =

∫
[K − Eb − Egr − Et]dt. (16)

The above is equivalent to the following Euler-Lagrange equation:

d

dt

∂K
∂rt

=
∂

∂r
[Eb + Egr + Et]. (17)

This is exactly Newton’s force balance, with acceleration (inertia) on the left and conser-
vative forces on the right. Here, no interaction between the filament and the surrounding
fluid is taken into account. We will model this interaction as a drag force deriving from the
following Rayleigh dissipation function:

R :=

∫
α

[
ζ⊥(rt · n)2 + ζ∥(rt · t)2

]√
gdα. (18)

Here, ζ⊥ and ζ∥ are the drag coefficients in the normal and tangential direction, respectively.
For simplicity, we consider the slender-body approximation for which ζ⊥ = 2ζ∥ [3]. Finally,
to take into account the non-conservative drag forces, we consider the following variational
formulation:

d

dt

∂K
∂rt

=
∂

∂r
[Eb + Egr + Et]−

∂R
∂rt

. (19)

For simplicity, we consider the overdamped limit for which the inertia (left-hand side) can
be neglected compared to the over forces, i.e.,

∂R
∂rt

=
∂

∂r
[Eb + Egr + Et]. (20)

Taking the necessary functional derivative involved in the force balance (20) (note that the
functionals considered here are written in function of the coordinate α rather that s; α and
r are independent variables whereas s and r are not) and projecting into t and n (with
rt = Un+W t), we get:

U = ζ−1
⊥

[
A

(
κss +

1

2
κ3

)
+ β · n+ (β · r)κ+ Λκ

]
, (21)

W = 2ζ−1
⊥ [−Λs + β · t− β · t] . (22)

The cubic non-linearity arises from the functional derivative of the bending energy Eb with
respect to r. It is usually neglected in the small displacement approximation [10] but is
needed when considering large deviations from a flat filament (indeed, if one considers the
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Figure 13: Equilibrium positions of the filament for different values of the dimensionless
bending modulus A. Here l/L is the ratio of the distance between the tips of the filaments
and the distance between the highest and lowest point of the filament.

extreme case of a filament taking the shape of a circle for which κs = 0 everywhere, the
κ3 term is needed to bring the filament back to its state of minimal energy). The tension
ensures that the metric g is time-independent (i.e., that the filament is inextensible). This
condition can be written Ws + κU = 0, i.e.,

Λss −
1

2
(Λ + β · r)κ2 = 1

2
(β · n)κ+

A

2

(
κss +

1

2
κ3

)
κ. (23)

Note that equations (21-23) are written in both extrinsic (r) and intrinsic (t and n) coor-
dinates, which is not handy. However, making the change of tension Λ → Λ+ β · r, we get
the force balance

U = ζ−1
⊥

[
A

(
κss +

1

2
κ3

)
+ β · n+ Λκ

]
, (24)

W = 2ζ−1
⊥ [−Λs + β · t] , (25)

Λss −
1

2
Λκ2 =

1

2
(β · n)κ+

A

2

(
κss +

1

2
κ3

)
κ, (26)

that is independent of r and hence of any extrinsic reference frame. The above set of
equations gives the normal (U) and tangential (W ) velocity of the filament in function of
its curvature as well as the necessary tension along the filament to ensure inextensibility.
The tangent angle evolves in time as θt = −Us + θsW . The boundary conditions are no
force and no torque at the tips of the filament, i.e., κ = 0 and κs = 0 at s = 0, L where L
is the total length of the filament.

We now seek stationary solutions to the above set of equations, with rt ∥ ẑ, i.e., U =
V cos(θ) and W = V sin(θ) where V is the settling velocity of the filament. For symmetry,
we also impose θ(s = L/2) = 0. Then, we need to solve a differential and algebraic non-
linear problem for θ (recall that κ = θs by definition), V and Λ. This is numerically
extremely challenging and we could not find a way to numerically converge solutions (using
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Dedalus) without further simplifications. We eliminate the algebraic part of the problem
(i.e., V ) assuming that the settling velocity arises from a balance between buoyancy and
drag, i.e., V ≃ ζ−1

⊥ |β|. We also non-dimensionalise the system in the following way:

U → β

ζ⊥
U, s → Ls, κ → 1

L
κ, Λ → LβΛ.

so that the only control parameter of the problem is the (dimensionless) bending modulus
A/(L3β) (denoted A in the subsequent), effectively quantifying the ratio of elastic and buoy-
ancy forces. All in all, we numerically solve the non-linear boundary value problem defined
by equations (24) and (26) (the tangential velocity can then be recovered by inextensibility)
with no force and no torque boundary conditions for θ and Λ using Dedalus. The results
are presented in figure 13 for various dimensionless bending moduli A. As A decreases and
the filament becomes more flexible, the filament takes a characteristic U shape. For A even
smaller, a W shape develops, as already observed in [6] using a different method (more
precisely the authors considered a mass and spring description of the filament).

Finally, we now need to check if our ansatz for the settling velocity V is adequate. To
do so, for a given value of the dimensionless bending modulus A we would like to time-step
the set of equations (24-26) (with θt = −Us + θsW and appropriate boundary conditions)
starting from the equilibrium configuration of the filament found above (that hopefully is
not too far from the actual stationary state of the filament) for the considered value of A and
see if this configuration is indeed a stationary one and, if not, analyse the arising stationary
state of the simulation, if it exists. This has proven to be an extremely difficult task (and
in fact we did not manage to find a satisfactory solution by the end of the summer). Indeed
it involves solving a differential, algebraic and non-linear initial value problem for U , W , θ
and Λ, a numerically challenging endeavour. First, ensuring that the problem’s algebraic
constraint is satisfied at each time step is not obvious. Second, because of the cubic non-
linearity, small errors in the curvature equation are rapidly amplified, leading to rough (and
unphysical) numerical solutions for θ. The (not so satisfying) solution found was to add
diffusive terms in the equation defining the time evolution of θ:

θt = −Us + θsW +Dθss. (27)

This has proven enough to time-step the set of equations defining our problem over long
simulation times (we show an example in figure 14). However, the relatively large value of
D needed makes it difficult to draw any conclusion regarding the stationary shape of the
filament (since the diffusive term tends to smooth θ, leading to a flat filament) and settling
velocity V and the hack used here was not enough to answer our initial question and find
a relationship between V and A.

5 Conclusion

Here, we summarise the findings (even partial) that arise from our work and suggest avenues
for future research.

Even though solid (full) disks settling at a speed such that the associated Reynolds num-
ber is of order 100 and above showcase oscillatory or chaotic settling trajectories, meshes
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Figure 14: A filament with an initial U-shape (dotted line) unfolds and settles in its reference 
frame (right) and in the ‘laboratory’ reference frame (left). Gravity is in the z direction

— for which fluid can flow through their porous structure — settle in a straight line re-
gardless the Reynolds numbers (however this one is defined, based on the mesh thickness, 
pore size, or object size). The structure of a mesh wake differs from that of a full disk in 
many ways. Importantly, no vortex shedding and wake instability were observed in our 
PIV experiments. On the contrary, the wake is a plug flow that follows the mesh at a 
speed smaller than the mesh settling speed. Using conservation of mass arguments and 
assuming that the structure of the flow inside each pore making up the mesh was essentially 
a Blasius boundary layer, we concluded that the ratio of the plug and settling velocities was 
controlled by the number and geometry of the pores as well as the pore size-based 
Reynolds number. This theoretical result was verified on an impressive number (three!) of 
PIV experiments. Further experimental investigation is therefore needed.

The shape of a settling object also influences its settling velocity (drag being a function 
of the shape). Hence, the complex interaction between a deformable object and the flow 
around it that constantly changes the shape of the object might have important implications 
on how an elastic object settles. We developed here a simple model for the settling dynamics 
of an elastic filament settling under gravity in a low Reynolds number flow. This model 
is based on an energetic approach and reduces flow-filament interaction to drag forces. 
Stationary solutions of the model are numerically found. These solutions depend on a single 
control parameter A (quantifying the ratio of elastic and buoyancy forces) and interesting 
behaviours arise for relatively small values of A. Indeed, for A small enough, the stationary 
shape of the settling filament takes the form of a W rather than the classic U. Such a 
result has already been numerically observed [6], using a bead-spring model. We hope 
that our model is flexible (no pun intended) and generalisable enough to be extended to 
two-dimensional objects. The numerical resolution of the model also opens avenues for 
interesting (but extremely challenging) numerical and theoretical questions such as how to 
accurately solve a non-linear set of (ordinary or partial) differential and algebraic equations. 
Finally, is the W stationary shape of physical relevance or a mere theoretical construction?

All in all, we explored how certain aspects of porosity or deformability could influence 
the settling of objects in a quiescent and homogeneous fluid. However, most of the ‘objects’ 
of marine biology interest (such as ‘marine snow’) are both porous and flexible. Is there
any interesting coupling to expected?
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Interaction of Microplastics and Settling Sand

Vincent Laroche

August 20, 2024

1 Introduction

It is estimated that 10 million tonnes of plastic waste enter the world’s oceans each year [3]. 
This comes from a variety of anthropogenic sources including consumer products, industrial 
runoff, and commercial fishing. Once in the ocean, larger plastic pieces will continuously 
be broken down to smaller sizes due to mechanical abrasion, exposure to UV radiation, and 
biological degradation [1], such that approximately 13.5% of oceanic plastic by mass can be 
classified as microplastic (<1mm) [6].

This plastic poses a grave threat to the environment, as it is typically either made of 
toxic material itself or covered in a toxic substance. Microplastics, when suspended in the 
ocean surface layer, are readily consumed by fish, krill, and other animals fundamental to the 
food chain. In addition to harming these creatures themselves, microplastics can be further 
passed along to humans where they accumulate in vital organs. This leads to a variety of 
negative health impacts including metabolic dysfunction, organ failure, neurotoxicity, and 
infertility [8].

1.1 Physical transport of microplastic

In order to quantify and predict the impact of plastics on the environment and human pop-
ulations using numerical modeling, a robust physical description of microplastic transport is 
required, but this is an area that still has significant room for development [11]. Although the 
majority of plastic waste is buoyant [2], the plastic apparent in the ocean surface layer only 
accounts for ∼1% of the total estimated oceanic plastic [3], leaving the open question 
regarding the fate of the remaining 99%. The leading hypothesis is that much of this plastic 
ends up on the ocean floor, with many studies documenting accumulations of both buoyant 
and dense plastic in locations off the continental shelf [4]. Because 80% percent of plastic 
waste originates from land (versus offshore sources), turbidity currents have been suggested 
as one possible mechanism contributing to these seafloor accumulations of plastic [5]. A 
turbidity current can occur when suspended sediment, e.g., from a river outlet, creates a 
density imbalance with the ambient water, leading to the sediment-laden water propagating 
downslope and along the ocean floor. If plastics are present in the outcoming river water, it is 
possible that they are carried by the turbidity current and end up on the seafloor as well.

Pohl et al. (2020) explores the potential role of turbidity currents in the transport of 
microplastic in a laboratory setting [9]. In their setup, dense plastic of two types, elongated
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fibers and more spherically shaped fragments, are mixed with sediment and then injected
along the floor of a sloped tank. After all particles have settled, the fibers are found in
greater concentrations buried among the sediment than the fragments are, suggesting that
the fibers are more easily physically pushed downwards by the sediment particles due to their
shape. In the present study, we explore a different mechanism (conglomeration, see Figure 1)
as a potential factor in deposition of microplastic, specifically in the case of buoyant plastic.
By this mechanism, sediment and plastic particles become attached to each other, forming
a conglomerate. The sediment has a greater density than the buoyant plastic, causing the
overall density of the conglomerate to be negatively buoyant. As such, the formation of these
conglomerates can result in deposition of otherwise buoyant plastic. The actual mechanism
behind the attachment of one particle to another is not fully understood. Current research
suggests that conglomeration is caused by surface charges induced by the presence of water
and surfactant [10], but this process is not the focus of the present study.

Conglomeration of buoyant plastic and sediment particles has been previously studied
using laboratory experiments [10; 7]. Sutherland et al. (2023) used beaker experiments
in which clay, plastic, and surfactant are stirred together in a beaker with water and then
allowed to settled undisturbed (Figure 1a). Their results indicated that the clay and surfac-
tant enhanced the deposition of microplastics. The authors of Kriaa et al. (2024) similarly
conducted experiments in a beaker, using plastic and glass spheres as sediment (Figure 1b).
While they saw conglomerates forming and settling to the bottom, they observed that small
disturbances to the beaker would frequently result in conglomerates breaking apart, indi-
cating that the conglomerates are very fragile. They also ran experiments of a turbidity
current, which offered a less energetic turbulent event and saw greater plastic deposition.

While the beaker and turbidity current experiments described above provide useful re-
sults, we seek to examine the interaction of plastic and sediment in a more controlled
experiment for the purpose of constructing a numerical model that describes plastic trans-
port and deposition. We achieve this by allowing settling sand to pass through suspended
microplastics in vertical tube experiments, which will be described in Section 3. Here, a key
parameter we consider is the relative particle size between sediment and plastic. Work by
Sutherland et al. (2023) and Kriaa et al. (2024) fell in a regime where sediment was smaller
than plastic; in the present study we highlight a case where this is reversed (Figure 1c).
Additionally, while both studies varied surfactant concentration, we do not explore this as
an experimental parameter, although it could be an area of future work.
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(a) (b) (c)

Figure 1: Examples of conglomerates formed by the adhesion of plastic and sediment. (a)
Plastic fragment (mean dp = 83 µm) with microscopic pieces of clay (ds < 1 µm) attached
to it [10]. (b) Plastic fragment (mean dp = 338 µm) with glass spheres (mean ds = 75
µm) attached to it [7]. The small ring of eight lights in each sphere are reflections of the
microscope LEDs. (c) Sand grain (mean ds = 568 µm) with multiple plastic fragments
(mean dp = 215 µm) attached to it.

2 Experimental Theory and Design

2.1 Population dynamics for continuum model

In order to relate a laboratory experiment to a numerical model, first consider standard
governing equations for a multi-species model of particles in a continuum flow, defined as

∂np

∂t
+∇ · (unp) = −αnpns + βnsnc , (1)

∂ns

∂t
+∇ · (uns) = −αnpns + βnsnc , (2)

∂nc

∂t
+∇ · (unc) = +αnpns − βnsnc , (3)

where np, ns, and nc represent the number density of the three species of particles in our
experiments: plastic, sand, and conglomerates. The velocity field of the fluid is u. The
first term on the right-hand side (αnpns) represents formation rate of conglomerates due to
collisions of plastic and sand. This term will depend on the amounts of plastic and sand,
as well as some unknown coefficient α. This term is positive in the conglomerate evolution
equation and negative in the plastic and sand equations since formation of a conglomerate
will remove plastic and sand from their respective populations. Likewise, the second term
on the right-hand side (βnsnc) represents destruction rate of conglomerates by collision
with sand. As in the first term, this will depend on sand and conglomerate quantity and
a coefficient β. While in reality there may be numerous additional terms incorporating
the many complex interactions between particles, e.g., plastic colliding with a conglomerate
and breaking it apart, plastic colliding with a conglomerate and becoming attached, two
conglomerates colliding, etc., but the two terms shown here are sufficient for illustrating the
mechanism explored in the present study. Implementing this model requires a closure for
the unknown right-hand side terms, in particular the conglomerate production rate term.
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2.2 Kinetic theory of particles

To estimate the rate of conglomerate production, we draw upon concepts from the kinetic
theory of gases, which describes how gas molecules interact with each other. Although we
are not working with gases, we are interested in particle-particle interactions, and we apply
the ideas of kinetic theory in order to calculate the number of collisions occurring in the
flow.

Consider an individual grain of sand as it travels through the suspended plastic particles
as shown in Figure 2. Here, all particles, both sand and plastic, are assumed to be spheres.
Plastic particles are stationary, while the sand particle moves with velocity u. The total
distance traveled by the sand over an arbitrary time period t is the length ut. As the sand
moves through the field of plastic, it ”sweeps out” a cylindrical volume in which collisions
with plastic will occur. The radius of this cylindrical volume is the combined radius of
the two types of particles, r = rs + rp. Plastic particles whose center point lies within
the cylinder will experience a collision with the sand, while those outside the cylinder will
not (see annotated plastic particles in Figure 2). Thus, the total number of collisions can
be calculated as the volume of the cylinder (utπ (rs + rp)

2) multiplied by the number of
particles per unit volume,

ncollisions = utπ (rs + rp)
2 np . (4)

The frequency of collision is likewise defined as

fcollisions =
ncollisions

t
= uπ (rs + rp)

2 np . (5)

Equations (4) and (5) apply to a single sand particle, so to account for all sand particles in
the domain the rate of conglomerate production can be estimated by

αnpns = nsfcollisionsP , (6)

where P represents the probability that an individual collision between sand and plastic
particles results in the formation of a conglomerate. Note that the relationship between α
and P is simply given by α = uπ(rs+rp)

2P . Substituting this result back into Equation (3)
yields

∂nc

∂t
+∇ · (unc) = uπ (rs + rp)

2 nsnpP − βnsnc . (7)

Equation (7) can then be simplified in various ways. First, we neglect the second right-hand
side term representing destruction of conglomerates due to collision with sand, which we
expect to be small. We can also integrate over time and volume, leading to an equation for
the total, final number of conglomerates,

Nc,final =

(
rs + rp
rtube

)2

NsNpP , (8)

where the radius of the tube rtube has entered the equation due to volume integration.
In this equation, rs, rp, rtube, Ns, and Np are known quantities. P is unknown and

Nc,final will be measured experimentally, which is the primary focus of this project. We will
measure Nc,final by assuming that it is equal to the number of plastic particles deposited. In
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Figure 2: Hypothetical particle path for a single grain of sand traveling through a field of
suspended plastic.

other words, we assume that each conglomerate forms as a result of a single plastic particle
adhering to a single sand particle, and that if a plastic particle is present at the bottom of
our experiment, it is there because it was part of a conglomerate.

Two important nondimensional parameters in this flow are the Stokes number, which
describes to what degree a particle follows the flow, and the particle Reynolds number,
which compares the particle motion to the effects of viscosity. These are defined as

St =
ut

l
, Rep =

udp
ν

,

where u is particle velocity, t is a characteristic timescale of particle travel, l is a length
scale of the flow, d is the diameter of the particle, and ν is the kinematic viscosity of the
fluid. These parameters describe how particles interact with the flow and with each other,
and are related to the collision probability P .

3 Vertical Tube Experiments

3.1 Procedure

The experiments described in this study are conducted in a vertical tube, as shown in
Figure 3. The tube has an inner diameter of 5 cm, a length of 111 cm, a total volume of
V = 2.18 L, and is made of hard plastic. First, the tube is aligned vertically and levelled,
and a plumber’s plug is inserted into the bottom end to seal it. Then it is filled roughly
halfway with 1 L of fresh tap water that has been filtered and deaerated. Separately, another
1 L of filtered and deaerated freshwater is mixed in a large beaker with 10 drops (0.5 mL)
of Kodak Photo-Flo surfactant (octylphenoxypolyethoxyethanol). Approximately 0.5 g of
plastic is then added to the beaker and mixed until homogeneous. The plastic-laden water
is poured from the beaker into the tube, with a squeezable wash bottle being used to rinse
all plastic from the beaker. Roughly 100 mL of additional water is added until the tube is
full. Then sand, typically 100 g, is poured into the tube through a funnel and quickly sinks
to the bottom, bringing some plastic with it. The lower half of the tube is recorded with
a 4K 60fps camera (iPhone 13 mini) in order to capture the settling sand. A lid is then
placed on top of the tube to prevent dust contamination while the experiment is left to rest
overnight. This allows sufficient time for any unattached plastic to rise to the water surface
and for any conglomerates to settle to the bottom.

209



11
1c
m

5cm

(a) (c) (e)(d)(b)

Figure 3: Step-by-step progression of the vertical tube experiments. (a) Tube half-filled
with filtered and deaerated freshwater. (b) Upper half of tube filled with plastic-laden
water. (c) Sand deposited in tube via funnel. (d) Sand accumulates at bottom of tube
having transported some plastic with it. (e) All plastic has risen to top of tube after being
left to rest overnight.
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3.2 Data collection

Obtaining high-accuracy measurements of the plastic mass, particularly the plastic mass
from the bottom of the tube, is the primary goal of the vertical tube experiments. While this
is a straightforward objective, the procedure proved to be quite an extensive and delicate
process, which we will describe in detail here.

As indicated in Figure 3e, the final state of an experimental run features an accumulation
of plastic at the top of the tube and a mixture of sand and plastic at the bottom. In order
to access the bottom contents, the rest of the tube must be carefully emptied in such a
way that plastic from the top does not contaminate measurements of the bottom plastic.
First, the top plastic is skimmed from the water surface and side walls using a combination
of a silicone spatula, a plastic 60ml syringe, and a small pump. The plastic is collected
on a sheet of filter fabric lining a mesh colander, allowing any water to drain out. Once
the water surface is plastic-free, a siphon is used to remove the majority of the remaining
water in the tube. This water is likewise deposited in the same filter-colander apparatus,
ensuring that any lingering plastic particles are also collected. The tip of the siphon tube
is positioned approximately 5cm above the sand level so that the bottom contents remain
undisturbed during the siphoning process. All tools used up to this point (spatula, syringe,
pump, siphon) are then disassembled and thoroughly rinsed inside-and-out with water that
is then deposited in the filter.

Before collecting the bottom contents, a separate filter-colander apparatus is created
using a clean sheet of fabric. The plug is removed from the bottom of the tube and the
sand and plastic mixture are deposited into the new filter. Remaining sand stuck to the
walls is removed and collected using the spatula and a small squeezable wash bottle.

With the tube now completely empty, the final step is to rinse the inner walls of the
tube to dislodge any plastic left behind. This plastic is collected in the first filter-colander,
which contains the rest of the top plastic.

Both sheets of filter fabric and their contents are then transferred to an oven, where
they are dried at 49◦C overnight. Once dry, the bottom contents are separated by size using
a stack of sieves on a lab vibrator. As we discuss later, we run experiments with various
combinations of sizes for the plastic and sand. The sieves are chosen such that there is
always one level of separation between the minimum size of the larger particle and the
maximum size of the smaller particle. For example, in a case with ds = 425−710 µm and
dp = 180−250 µm (Exp. 7 in Table 1), we use sieves of sizes 425, 250, and 45 µm. In theory,
all sand remains in the 425 µm sieve, the 250 µm sieve is left empty, and all plastic works
its way down to accumulate in the 45 µm sieve. However, this is not always the case in
practice. In our experiments, we see small amounts of sand present among the plastic even
after sieving (see Figure 4). This can be attributed to how the sand was initially prepared.
We use real sand that was first washed, dried, and sieved on its own in order to sort it
into the desired size ranges. The sieving process was repeated a few times when preparing
the sand, but it is still possible that the sand wasn’t perfectly separated. In the quantities
we use in each experiment (most commonly 100 g, or approximately ∼400,000 individual
grains), it is inevitable that there are a handful of missized particles mixed in.

While the number of sand particles present among the plastic is relatively small, their
contribution to the measured mass is non-negligible as they have a much larger density
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Figure 4: Post-sifting contents of a 45 µm sieve containing plastic with dp = 180−250 µm.
Note that there are a few similarly sized grains of sand among the plastic, circled in red.
The inset in the lower left-hand corner shows the full sieve.
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(ρs = 2500 kg/m3 versus ρp = 930 kg/m3). Removing these sand particles poses a challenge
because they cannot be separated from the plastic using size. Instead, we use density to
separate the two types of particles by placing them back into water. The particles are mixed
in a small beaker filled with 100 mL of freshwater and 5 drops (0.25 mL) of surfactant. The
few remaining sand particles sink to the bottom of the beaker, allowing the plastic to be
skimmed from the top. The extracted plastic is again collected on filter paper, dried in the
oven, and finally weighed. The final measurements of plastic present at the bottom of the
tube are reported as a percentage of total input plastic mass in Table 1.

In summary, running and collecting data from each experiment took about 5−6 hours
to complete, spread out over a minimum of 3 days. Because the plastic needed to remain
in the tube overnight in order rise to the surface, only one experiment could be run each
day. Coupled with the fact that the experimental apparatus was not finalized until Week
8 of the program, this resulted in a relatively small number of experiments. Our priority
was not to have a large amount of inaccurate data, but rather to have the highest quality
measurements achievable, with all of the experiments presented in Section 4 having a plastic
loss, defined as the percentage of plastic mass not recovered post-experiment, of 10% or less.

4 Results and Discussion

The parameters of each vertical tube experiment, including the dependent variable of plastic
deposition at the bottom, are shown in Table 1. A typical example of one experiment (Exp.
7) is shown in Figure 5.

The figure shows the lower half of the tube, which is mostly devoid of plastic at first.
Some plastic is visible near the midway point of the tube (top of the image in Figure 5), but
there is a sizable region of clean water separating the plastic from the bottom. This prevents
any accidental deposition of plastic before the experiment begins. Once we begin to add the
sand, it takes anywhere from 20−120 seconds for all of it to reach the bottom, depending on
funnel diameter, input mass of sand, and sand size. During this time, sand particles collide
with plastic and form conglomerates, which deposit at the bottom of the tube. As the sand
continues to settle, conglomerates are covered and locked in with the sand. Towards the end
of the experiment, all sand has settled, and a few remaining conglomerates become visible
in the water column (see Figure 5d). These conglomerates slowly sink and eventually come
to rest atop the sand.

4.1 Formation of conglomerates

The first result from the vertical tube experiments is simply the fact that conglomerates are
forming (see Figure 5e), just as in the previous work by Sutherland et al. (2023) and Kriaa
et al. (2024). The figure shows grains of sand, usually tan or dark grey in color, joined
with plastic particles, white in color and semi-translucent. In other words, our experiments
confirm that conglomeration is indeed a mechanism that actively yields plastic deposition
in a sediment-laden flow.

As an aside, the mechanism of physical burial set forth in Pohl et al. (2020) may
also play a role here. In one experiment (Exp. 5) not shown here, plastic particles are
visibly hit by and jostled around by sand in the flow. It is not clear whether these are
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Exp.
Input

Plastic [g]
Input

Sand [g]
Plastic

Diam. [µm]
Sand

Diam. [µm]
Funnel

Diam. [mm]
Bottom

Plastic [%]

1 0.4939 94.0077 215 568 3.94 1.98
2 0.5072 100.1300 215 780 3.94 1.50
3 0.4938 100.1647 100 568 3.94 1.68
4 0.4997 100.0448 925 568 3.94 2.08
5 0.5074 99.1999 568 200 3.94 7.00
6 0.5099 99.8723 215 568 3.94 1.69
7 0.5079 100.0505 215 568 3.94 1.87
8 0.5011 188.6490 215 568 3.94 3.45
9 0.4899 50.1463 215 568 3.94 1.45
10 0.5005 99.9901 215 568 7.69 1.16
11 0.5000 101.6981 215 568 12.91 0.44

Table 1: Vertical tube experiment parameters. Particle diameters are calculated as the
average of a range of values.

(e)(a) (b) (c) (d)

Figure 5: Step-by-step progression of a typical experiment (Exp. 7). The lower half of the
tube is shown. (a) The tube immediately before sand has been added. (b) Sand makes its
way down the tube, carrying plastic with it. (c) Sand begins accumulating on the bottom.
(d) All sand has settled to the bottom. Conglomerates, which settle at slower rate, are
circled in red. (e) Close-up in situ photos of individual conglomerates.

214



”clean” (no attachment with sand) buoyant pieces of plastic that are being transported
downward by physical impact with sand or whether they are fully-formed negatively-buoyant
conglomerates that are in the process of sinking regardless of further impact with sand.
The formation of conglomerates does not rule out burial as a contributing factor to plastic
deposition; we will discuss this further in Section 4.2.2.

4.2 Experimental parameters

Based on the form of Equation 8, the three experimental parameters varied in this study
were: particle size, sand concentration (controlled by funnel diameter df ), and sand quan-
tity. The case in which dp = 215 µm, ds = 568 µm, ms = 100 g, and df = 3.94 mm acted
as a base case around which the parameters were varied. The base case was conducted a
total of three times (Exp. 1,6,7 in Table 1) in order to obtain an estimate for the repeata-
bility errors of the experiment. The error bars in the following figures are calculated as one
standard deviation of the plastic deposition percentage value for the base case experiments.

4.2.1 Particle size

Varying particle size was the primary parameter motivating this study. Prior studies on
plastic-sediment conglomerates used sediment particles smaller than the plastic fragments
[10; 7]; we reverse this with sand larger than our plastic in an effort to further explore this
parameter space, although two cases with dp/ds > 1 are also included.

Increasing the size of the plastic relative to the sand leads to greater plastic deposition
on the bottom of the tube (see Figure 6). One physical explanation for this is that settling
velocity is proportional to the square of particle diameter. Large sand grains move with
higher velocities, meaning that the collision energy between sand and plastic is greater
as well. It is possible that in the cases of dp/ds < 1, the collision between a large grain
of sand and small plastic fragment is not suitable for forming a conglomerate. Existing
conglomerates may also be ripped apart by drag forces from the water, which will also
be elevated in cases with large sand. This phenomenon was visually observed in some
experiments where a slowly settling conglomerate spontaneously breaks, sending the plastic
back towards the top of the tube while the sand continues to settle.

Another contributing factor to the trend in Figure 6 could be the difference in surface
roughness between the sand and plastic used. The sand is real sand that has been worn
down by abrasion over time. The surface is relatively smooth and uniform; there is not
much concavity. The plastic, on the other hand, was prepared from larger pieces of plastic
(nurdles a few millimeters in diameter) that were ground down to the desired size ranges
using a cryogrinder. The resulting plastic fragments are generally rougher than the sand.
The plastic’s surface is jagged and covered in small cavities. Thus, when the sand is small
relative to the plastic (dp/ds > 1), the two can attach easily because sand becomes wedged
in the cavities on the plastic’s surface. When the sand is relatively large (dp/ds > 1), plastic
can attach to the smooth surface of a sand grain, but it may be attached only at one contact
point - a very weak connection.

These results seem to be consistent with previous work by Kriaa et al. (2024), which saw
an even greater amount of plastic deposition (∼15%) with higher diameter ratio (dp/ds =
4.5) [7]. However, the experiments conducted by Kriaa et al. (2024) used a turbidity current
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(a)

Figure 6: (a) Examples of different-sized particles used in the experiments, with a fingertip
for scale. Not all sizes used are shown here. (b) Relationship between plastic deposition
and ratio of average sand and plastic diameters. Percent plastic deposition is calculated as
the mass of plastic found at the bottom of the tube divided by total input plastic mass.

rather than a vertical tube to explore the interaction of microplastics and sediment, so the
two results are not directly comparable.

4.2.2 Sand concentration

Practically, we varied the sand concentration by varying the outlet size of the funnel used to
pour in the sand (Figure 7a,b). Of the different experimental parameters in this study, we
have the weakest understanding of how we expect the sand concentration to affect plastic
deposition. Using a very rudimentary approach, we would expect more concentrated sand
to cause more collisions with plastic and thus more conglomeration. Instead, the data
in Figure 7c shows a clear linear trend of decreasing deposition with sand concentration.
There could be several different reasons for this trend. Although there are more collisions
and more chances to form conglomerates, there must also be more collisions between sand
and conglomerates that may break the conglomerates apart. The process of conglomerate
destruction is not well characterized in this study; we have neglected it when considering
the model laid out in Section 2. Another potential explanation is that the Stokes number
(St = ut/l, where u is particle speed and t is settling time) of the plastic particles has
decreased. With more sand in the flow, it’s possible that the sand moves in larger collections
and induces larger eddies in the flow than in a low concentration case. Larger eddies indicate
a large turbulent length scale l, which reduces the effective Stokes number of the plastic
- meaning it is less likely to cross streamlines and collide with sand particles. In this
explanation, there are actually fewer collisions occurring as concentration increases, so less
conglomerates form.

An interesting takeaway from Figure 7c is that our results seem to contradict previous
work demonstrating physical burial as the primary mechanism of plastic deposition [9].
Experiments conducted by Pohl et al. (2020) showed that long and stringy plastic fibers were
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(b)

Figure 7: (a) Three different funnels used in the experiments. (b) Instantaneous snapshots
of experiments showing sand concentration corresponding to each funnel. (c) Relationship
between plastic deposition and funnel diameter. Percent plastic deposition is calculated as
the mass of plastic found at the bottom of the tube divided by total input plastic mass.

deposited at a higher rate than more uniformly shaped fragments, suggesting that sinking
sediment particles were physically pushing down the plastic and were able to catch on the
fibers to a greater degree than the fragments. In our experiments, if this burial mechanism
were at play, we would expect that increasing sand concentration would increase the amount
of plastic deposition - the greater number of collisions would provide more opportunities
to force the plastic downwards. However, our results show the opposite. The fact that
deposition decreases with sand concentration reinforces our hypothesis that the mechanism
of conglomeration can be more important than burial in the process of sediment-aided
plastic deposition, particularly in the case of buoyant plastic as in the present study.

4.2.3 Sand quantity

It must be emphasized that the sand quantity is a different parameter from the sand con-
centration. Three different total masses of sand are used in the experiments (Figure 8a),
but the sand concentration (set via funnel diameter) is kept constant. With a constant flow
rate, changing the sand quantity is equivalent to changing the duration of the experiment.

Varying the sand quantity should have the most straightforward effect on plastic de-
position: the experiment lasts longer, there are more opportunities for collision and more
chances for conglomerates to form. From an analytical standpoint, this is shown in Equa-
tion 8. There is a linear relationship between the number of conglomerates formed and
the number of sand particles Ns. Here we estimate Ns using the known density, mass, and
approximate volume of the sand. The data in Figure 8b confirms this relationship with a
monotonically increasing trend.
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Figure 8: (a) Different sand quantities used in the experiments. (b) Relationship between
plastic deposition and number of sand particles as estimated from the mass. Percent plastic
deposition is calculated as the mass of plastic found at the bottom of the tube divided by
total input plastic mass.

4.3 Estimation of P

As discussed in Section 2, using measurements of plastic deposition to estimate unknown
coefficients is necessary for closure of a numerical model. Using Equation 8 and the input
parameters, a value for the probability coefficient P can be calculated in each experiment
(Figure 9).

In theory, P should reflect the fundamental interaction between one grain of sand and
one plastic particle colliding - it should depend solely upon factors such as particle sizes,
speed of collision, surface roughness, relative orientation of motion, particle spin, etc. Most
of these parameters are not explored in this study because they would be too difficult to
measure in our experimental setup. Among the parameters we do study here, particle size
should influence P , while the concentration of sand and the input sand mass should not. As
shown in Figure 9, P decreases with relative particle size. When plastic is large compared
to sand, P is relatively small. The physical process that explains this relationship is not
clear. It is possible that small sand grains simply deflect off of large plastic particles at a
greater rate than when the sizes are reversed. P also decreases with sand concentration and
input sand, although these trends are even less explainable using physical reasoning. The
inherent challenge is that we attempt to make estimates of a small-scale parameter P that
the interaction of individual sand and plastic particles, but we do so using data collected
from the bulk interaction between many sand and plastic particles. As a result, these bulk
parameters (concentration, input sand) show up in the data for P . Despite the apparent
disagreement with theory, we still see very consistent results for the estimation of P . The
value of P is O(10−4) across all experiments.

Looking beyond the immediate study presented here, P is a remarkably useful parameter
because it informs a general numerical model which can then be applied to simulate any
flow involving plastic and sand particles. As laid out in Section 2, P can be used to calculate
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Figure 9: Estimates of P from each experiment, varying with the three independent pa-
rameters (a) particle size ratio, (b) funnel diameter, and (c) amount of sand.

the coefficient α = uπ(rs + rp)
2P , which directly defines the conglomerate production rate

term. A complementary extension to this study would involve running simulations with
P ∼ 1× 10−4 and comparing to experimental data. The value of P could also be varied in
order to explore how this parameter affects the behavior of particles in a simulation context.

4.4 Challenges and experimental error

In addition to the numerical data, another extremely valuable result is the experience and
knowledge gained regarding the experiment itself. The vertical tube experiment presented
here is the cumulative result of a summer-long iterative process that built upon many failed
experiments. Initial tests with our particles (sand ds = 568 µm, plastic dp = 215 µm)
were actually conducted as a turbidity current, although the sand proved to be too large to
drive the flow in the available tank. The settling velocity of the sand was too high, so the
sand would completely settle to the bottom of the tank before the turbidity current could
propagate horizontally. At one point, the vertical tube experiment involved preloading sand
at the bottom and plastic at the top, followed by flipping the entire tube upside down. This
method proved to be unreliable due to large air bubbles and significant amounts of plastic
sticking to the plug in the end of the tube.

The vertical tube experiment is still in active development, and there are remaining
unaddressed experimental considerations worth mentioning. Some of the most prominent
challenges and sources of error in conducting the experiments are listed here:

1. The tube is shaken slightly during extraction of plastic from the top, causing plastic
along the sand’s surface to dislodge and float away (Figure 10a). Similar to what
was reported in Kriaa et al. (2024), even slight disturbances are capable of breaking
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apart conglomerates, which are held together by very fragile bonds. Since most of the
deposited plastic is embedded beneath layers of sand, this phenomenon is likely only
a small contribution to the experimental error.

2. Plastic particles become trapped on the tube’s side walls due to air bubbles and
imperfections in the tube (Figure 10b). In theory this impacts the concentration
of plastic in the tube, although it is likely a minimal effect. During preparation of
the experiment, a long stick is used to agitate and remove bubbles on the sides which
would interfere with the particles in the tube, but not all bubbles could be eliminated.
and would obscure filming of the experiment. Completely removing this as a source
of error could require leaving water in the tube to deaerate or finding a new tube of
a different material.

3. Even without external disturbances, conglomerates break apart over time (Figure 10c).
Because conglomerates have a smaller combined density than the sand alone, they sink
slower and as a result end up on top of the bottom sand. There is no sand above the
conglomerates to hold them in place, so if the fragile bonds holding sand and plastic
particles break at any point during the overnight waiting period, the separated plastic
will float back to the water surface. This sets forth an interesting question: Should
these transient conglomerates be included in measurements of plastic deposition, and
if so, how can those measurements be achieved? If we consider these experiments
as a proxy for plastic deposition in the ocean, then it seems logical to only measure
plastic that has been carried to the bottom and actually remains there in the long
term. However, since we seek to estimate a probability of conglomerate formation,
the transient conglomerates should be measured, as each one represents a successful
collision between sand and plastic regardless of whether or not the two remain attached
after the experiment has ended. Measuring the transient conglomerates is a challenge
in and of itself. Some time must be given after the experiment ends for all the
loose plastic to rise to the top so that it can be collected. During this time, it
is inevitable that some conglomerates break apart. It is possible that there is an
optimal window of time where most of the loose plastic has reached the top and most
of the transient conglomerates are still intact; identifying this window would certainly
require additional testing.

It is worth noting that the case in Figure 10c (Exp. 4) is one specific size combination
that led to a large number of conglomerates resting atop the sand. Most cases only
had a few conglomerates atop the sand (see Figure 10a again for example), so it is
unlikely that this was an issue in the majority of the experiments.

4. When not removed entirely, plastic from the top of the tube can contaminate mea-
surements of bottom plastic (Figure 10d). The plastic remains on the water surface
and is transported downwards with the water level during siphoning. This is plastic
that did not reach the bottom as a sinking conglomerate, but it is still counted among
the deposited plastic. As in the previous item, Figure 10d shows an extreme example;
in most cases there was a minimal amount of top plastic left on the water surface
post-siphoning. In one case where the plastic was large enough (Exp. 4), the plastic
particles on the surface were counted individually before draining the bottom of the
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tube. When compared to the total number of plastic particles recovered from the
bottom, the top plastic only accounted for 11% by number. This estimate suggests
that contamination by top plastic is not a major issue, although future work should
aim to either reduce this error or improve quantification of the contamination.

5. The most consistent challenge throughout the development of the experimental ap-
paratus and procedure was minimizing plastic loss. Reducing the amount of plastic
lost due to error is essential for building confidence in our results, which center on
accurate measurements of plastic deposition. Because plastic deposition is a relatively
low proportion of input plastic mass (typically <5%), having significant plastic loss
is unacceptable. Figure 11 shows how plastic loss improved with time, from as high
as 20% to consistently below 5% in the last several experiments. This improvement
can be attributed to changes in the setup and procedure, as well as the simple fact of
having more practice handling the plastic with each new experiment.

5 Conclusion

In order to explore the processes involved in sediment-aided microplastic deposition, we
conduct laboratory experiments in which sand was allowed to settle through plastic-laden
water in a vertical tube. We identify conglomeration of individual sand and plastic particles
as a mechanism by which plastic is transported to the bottom of the experimental setup.
Motivated by the equations for a simple particle transport flow model, we vary the relative
sizes of the plastic and sand, the concentration of sand, and the overall quantity of sand in
the experiments. Increasing the plastic-to-sand size ratio yields greater deposition of plastic,
likely due to smaller sand settling velocities. Higher concentrations of sand in the flow
inhibit plastic deposition, indicating that conglomeration may be the dominant mechanism
involved rather than physical burial. Increasing the sand quantity corresponds to a roughly
linear increase in deposition, which is to be expected from theory. The experimental data
is also used to estimate a universal probability coefficient for a numerical model, with all
parameter cases giving a consistent result to one order of magnitude.

Due to the difficulty in obtaining high-quality measurements of plastic deposition, few
experiments were conducted. Immediate future work on this topic should include running
additional experiments to further map out the relationships between plastic deposition and
the independent parameters. Other extensions of this project could examine the effect
of surfactant, running complementary simulations, or could involve designing a related
experiment to study the process of conglomerate destruction.
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(a) (b)

(c) (d)

Figure 10: Challenges and sources of error in vertical tube experiments. (a) Conglomerates
on the sand surface are dislodged by small motions during extraction of top plastic. The
image shows one very large conglomerate as well as many other plastic particles floating
away after a small shake to the tube. (b) Plastic attached to the side wall of the tube after
draining all the water out. (c) Sand surface immediately after experiment completion and
after experiment has been left overnight. The significant number of conglomerates present
resting on the sand have broken apart, allowing the plastic to float back to the top of the
tube. (d) Plastic on the water surface after the majority of the water has been siphoned
from the tube. This plastic originated from the top of the tube and was carried down
along with the water level. If collected with the rest of the bottom contents, this plastic
contaminates the measurements of deposited plastic.
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Figure 11: Percentage plastic loss, defined as the plastic mass not recovered during data
collection divided by input plastic mass. Unlabelled data shown in red represents prelim-
inary experiments conducted before the apparatus and procedure were finalized. Data in
blue corresponds to the experiments listed in Table 1.
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Abstract

The density of seawater is controlled by two components that diffuse at 
different rates: heat in the ocean diffuses a hundred times faster than salt. This 
makes the ocean prone to double diffusive instabilities in which spice—the orthogonal 
variable to density—is an active contributor to diapycnal mixing. Stratified 
turbulence has also been shown to mix temperature and salinity differently in 
numerical and laboratory experiments as well as ocean observations. These effects 
influence our choice of mixing parameterizations but are generally omitted from both 
large-scale ocean models and small-scale idealized turbulence models. Here, we 
numerically investigate the effects of differing diffusivities in a two-dimensional 
turbulence model of the stratified Kolmogorov flow as seen in Balmforth & Young 
(2002), now stratified by both temperature and salinity. Linear stability analysis 
reveals that the flow supports two distinct instabilities: a monotonic mode resembling 
the classical shear instability of the unstratified flow, and a slower-growing oscillatory 
mode arising from stratification and differential diffusion. We demonstrate an 
equivalence between this model and the linear stability of flows stratified in a single 
scalar with an intermediate diffusivity between heat and salt, and propose an effective 
Prandtl number for the spicy flow based on scalar variance budgets. At low Reynolds 
numbers, numerical simulations confirm linear stability predictions through the 
emergence of finite-wavelength billows in the monotonic regime and long-wavelength 
oscillations in the oscillatory regime. For the monotonic mode, the density ratio plays 
an analogous role in setting scalar gradients and dissipation rates to the Prandtl 
number in the singly-stratified fluid, indicating that the leading-order effects of spice 
can be formulated under an effective Prandtl number in this weakly turbulent regime.

1 Background

Double diffusion, which occurs when the density of a fluid is controlled by two com-
ponents diffusing at different rates, has been known for several decades now to be a source
of turbulent mixing in the ocean. The density of seawater is most saliently controlled by
temperature and salinity which have markedly different molecular diffusivities, with heat
diffusing a hundred times faster than salt. As early as 1960, Melvin Stern argued that these
two orders of magnitude between diffusivities allow the slow-diffusing component to “pre-
serve” the density of a displaced water parcel, leading to interesting and perhaps unintuitive
instabilities driven by molecular diffusion [18].
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The earliest observations of these structures come from the laboratory, seen in finger-
like intrusions of a denser fluid into an underlying lighter fluid in a temperature-stratified
system. This behavior results from the salt-finger instability. In a stably stratified system
with warm and salty water over cold and fresh water, imagine perturbing a parcel slightly
downwards: the temperature of the parcel equilibrates faster with its colder and fresher
surroundings than its salinity. The parcel is then saltier and heavier than its surroundings
and keeps sinking under gravity, creating “salt-fingers” protruding into the fresher fluid.
This process takes an already stable density configuration to one with an even lower center
of mass, releasing potential energy. Counter-intuitively, diffusion thus acts towards creating
density gradients.

This is the case when the slow diffuser is the destabilizing component (salty over
fresh); the other kind of double-diffusive instability occurs when the fast-diffusing compo-
nent is unstably stratified. When a parcel is disturbed downwards in a cold and fresh over
warm and salty configuration, the parcel is fresher than its surroundings after its tempera-
ture equilibrates and thus is more buoyant and rises. As it is warmer than the water it is
rising into, it overshoots its original position, until its higher salinity makes it sink again.
This causes an oscillatory instability that keeps growing in amplitude, which is known as
diffusive convection (also known as semiconvection in some contexts).

1.1 The density ratio and double-diffusive regimes

A useful measure of the stratification pattern is the density ratio Rρ which depends
on the local large-scale gradients in T and S. It is defined as

Rρ =
αTz

βSz

, (1)

where α and β are the thermal expansion and haline contraction coefficients respectively,
and (Tz, Sz) are the background vertical T and S gradients1 (note that α and β are both
defined to be positive values). The salt-fingering case happens when Sz > 0 (destabilizing)
and Tz > 0 (stabilizing), i.e., for positive values of Rρ. Positive values can also indicate
diffusive convection, with Sz < 0 (stabilizing) and Tz < 0 (destabilizing). This ambiguity
has led to another quantity, called the Turner angle2, to be commonly used to characterize
double diffusive regimes. In terms of the density ratio, the Turner angle is given by

Rρ = − tan (Tu+ 45◦), (2)

ranging from 0 to 2π. Figure 1 shows the double diffusive regimes described by the Turner
angle. As the buoyancy is given by

b = gαT − gβS, (3)

1We can also define a horizontal density ratio based on horizontal T and S gradients, this is often used to
quantify thermohaline compensation across fronts. Horizontal gradients lead to instabilities like interleaving
currents which can drive double-diffusive mixing in large parts of the ocean, but that has not been the focus
of this project.

2Named after J. Stewart Turner, the principal lecturer at the GFD school in 1972, where he demonstrated
mixing experiments reportedly taught to him by G. I. Taylor.
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Figure 1: A sketch of the Turner angle with the density ratio showing different double diffusive
regimes. Tu values between −90◦ and −45◦ are favorable to diffusive convection, and between 45◦

and 90◦ can lead to fingering instability. For Tu between −45◦ and 45◦, the water column in stable
in both T and S.

strongly double-diffusive regions that have values of Rρ close to one, where both salinity and
temperature gradients are equally strong, show significant density compensation [7]. (At
very small scales, density gradients are destroyed by viscous effects which gives a density
ratio of almost exactly one.) Negative values of Rρ indicate either a top-heavy (unstable
in both T and S) or a doubly stable (stable in both T and S) configuration. Global
climatological Turner angle atlases show that significant parts of the thermocline in the
three major ocean basins are susceptible to diffusive convection or salt fingering instabilities
[21], with the rest having a doubly stable density profile.

1.2 Buoyancy–spice formulation

Strong T–S compensation in the ocean motivates the definition of an additional
variable called “spice” that captures the uncompensated part of T–S variance. Using a
linear combination of T and S, spice is defined orthogonal to buoyancy as

γ = gαT + gβS. (4)

Warm and salty water is called spicy, and cold and fresh water is minty. The advection-
diffusion equations for temperature and salinity

∂tT + (u · ∇)T = κT∇2T, (5)

∂tS + (u · ∇)S = κS∇2S (6)
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can be rewritten in terms of buoyancy and spice to give

∂tb+ (u · ∇)b =
κT + κS

2
∇2b+

κT − κS
2

∇2γ, (7)

∂tγ + (u · ∇)γ =
κT + κS

2
∇2γ +

κT − κS
2

∇2b. (8)

When κT = κS = κb, equation 7 becomes the standard advection-diffusion buoyancy equa-
tion

∂tb+ (u · ∇)b = κb∇2b ,

and spice is considered a passive scalar that does not affect the evolution of buoyancy. How-
ever, when κT ̸= κS , the spice contribution to buoyancy is nonzero and thus spice actively
stirred in a double diffusive fluid. Although the equations for the numerical simulations in
this project have been written in T and S, the buoyancy and spice space provides more
intuitive descriptions of the energetics, as will be described later.

1.3 The cascade of spice variance and mixing parameterizations

Double diffusion arises from differences in the molecular diffusivities of salt and heat,
which are on the order of 10−9 and 10−7 m2/ s, respectively. Double-diffusive instabilities
therefore occur on the microscale and the finescale and can contribute significantly to the
local diapycnal buoyancy fluxes. In fact, in regions where internal wave-driven shear turbu-
lence is not very strong, double diffusive turbulence can be the main driver of small-scale
buoyancy mixing [13]. However, the role of these mechanisms at larger scales and the net
effect this behavior has on the global ocean circulation remain unclear.

The temperature-salinity relationship is largely set at the surface mixed layer, where
density-compensated T -S fronts (that is, fronts with small density gradients but large spice
gradients in the horizontal) are a prevailing feature [7]. This compensated thermohaline
variance that extends over isopycnal surfaces can then be acted upon by mesoscale eddies
that stir along isopycnals, cascading spice gradients to smaller horizontal and vertical scales.
Smith and Ferrari ([17]) showed that the passive stirring of spice by quasi-geostrophic eddies
can effectively produce vertical gradients by creating thin tracer filaments, that could then
be dissipated by a vertical turbulent diffusivity KV , arresting the forward cascade of T −S
variance. However, instead of a constant KV that assumes variance destruction by wave
breaking-generated isotropic turbulence, it is also possible that thermohaline gradients are
ultimately dissipated through the active process of double diffusive convection. Middleton
et al. ([14]) estimated the dissipation rates associated with pure double diffusive turbulence
acting on spice gradients set by large-scale stirring. They found that these rates agreed
well with microstructure measurements made in the Chukchi Sea, Alaska, especially in
regions where conventional shear-driven turbulence was considered subdominant. Double
diffusive instabilities can thus be brought on by eddy-stirring rather than just background
T -S gradients, highlighting the possibility that double diffusion may be far more widespread
globally than what our conventional Turner angle maps predict.

This contributes to the challenges in estimating and parameterizing the vertical dif-
fusivity and illustrates how little we understand about the exact mechanisms that lead to
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diapycnal mixing in the ocean. Even the traditional pathway of mixing directly driven by
internal wave shear is now believed to be an incomplete description—the forward cascade
to small scales is suspected to occur through interaction with intermittent patches of tur-
bulence characteristic of the LAST regime (layered anisotropic stratified turbulence) [5]
[4]. The mixing efficiency Γ—a quantity that measures how much energy is expended in
changing the background potential energy3 via mixing, often modeled as the mixing pa-
rameterization in place of KV —is extensively prescribed in large-scale ocean models as a
constant value of 0.2. However, estimates of Γ vary quite widely between observations,
laboratory studies and numerical experiments [10]. In the presence of double diffusive in-
stabilities or differential restratification, the mixing efficiency can be negative, implying a
kind of “un-mixing”. Improving our understanding of the mixing processes at LAST scales,
like whether spice is stirred actively or not in stratified turbulence, can help bridge this lack
of consensus.

1.4 The doubly stable case

The doubly stable case with stabilizing mean gradients in both T and S is not ex-
pected to be subject to double diffusive instabilities, as there is no further potential energy
to be released. However, double diffusive instabilities can still arise from T -S gradients
being locally unstable or unresolved, or from the influence of horizontal temperature and
salinity gradients leading to interleaving instability [19].

Even when double diffusion itself is not the source of turbulence, mechanical tur-
bulence can still transport T and S at different rates because of their different molecular
diffusivities. This is known as differential diffusion; it has been observed in the preferential
transport of temperature over salinity (KT > KS) in several numerical and lab experiments,
and some oceanic observations [9]. Jackson and Rehmann [11] showed that this differential
transport is dependent on the buoyancy Reynolds number Reb. Given by Reb ≡ ε/νN2,
where ε is the turbulent kinetic energy dissipation rate, ν is the molecular viscosity and
N is the buoyancy frequency, it is often used as a measure of the strength of isotropic
turbulence. At large values of Reb the scalars are irreversibly mixed by the flow before
restratification can take place, and they get mixed at equal rates: KT = KS , which, along
with other assumptions, leads to the widely used mixing efficiency value of 0.2. At lower
values of Reb (< 40, which is commonly seen in weakly turbulent parts of the ocean) sig-
nificant differential diffusion is observed, causing the mixing efficiency to depend on the
density ratio. Ocean model estimates of water mass transformations and upwelling rates
are highly sensitive to the mixing efficiency parameterization [6], and hence understanding
the functional dependencies of Γ on flow properties like the density ratio Rρ is a central
challenge.

3Introduced by Lorenz [12], background potential energy (BPE) is defined as the minimum potential
energy of a stratified fluid that can be achieved by adiabatic rearrangement of the fluid parcels. Changes in
BPE can only be brought upon by irreversible mixing [20], although this is not true in a double diffusive
fluid: more on this later.
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Figure 2: A schematic of the 2D Kolmogorov shear flow model, with stable mean gradients in T
and S.

2 Aim

The Kolmogorov flow, a popular idealized model of shear-driven turbulence, is a
two-dimensional shear flow with a unidirectional sinusoidal velocity profile that has to be
maintained by an external forcing in a viscous fluid. This model admits a well-studied long-
wave instability that is seeded by small-scale perturbations and cascades energy to large
scales [16].

In a series of papers, Balmforth and Young4 [1] [2] studied the stability and the
evolution of the weakly stratified Kolmogorov flow. They noted that stratification was an
arresting influence on the inverse cascade, limiting the large-scale instability—what they call
the “viscous” instability—of the unstratified Kolmogorov flow to a finite wavenumber that
resembled Kelvin-Helmholtz-like billows at equilibrium. In this project, we investigate the
Kolmogorov flow that has been stably stratified in temperature and salinity, and numerically
study the linear stability and the full nonlinear evolution of this two-component fluid system.
We limit ourselves to the weakly stratified and weakly turbulent domain where the viscous
(or monotonic) instability is active, and vary the diffusivity ratio τ = κS/κT and the density
ratio Rρ. How does the mixing of temperature and salinity depend on τ and Rρ? Does
double diffusion and/or differential diffusion affect the stability of the stratified shear flow?
How actively are spice gradients stirred to smaller scales in stratified turbulence? These are
some of the questions we seek to address in this study.

4This work actually began as Yuan-nan Young’s GFD Summer Program project in 1999.
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3 Formulation

3.1 Governing equations

Along with the temperature and salinity equations 5 and 6, we have the mass and
momentum conservation equations for a 2-dimensional stratified flow in the (x, z) plane,
with gravity along the negative z-direction, in a Boussinesq fluid:

∇ · u = 0, (9)

∂tu+ (u ·∇)u = −ρ−1
0 ∇p+ ν∇2u+ g(αT − βS)ẑ. (10)

Consider perturbations from a linear background profile in T and S:

T = T zz + T ′, S = Szz + S′. (11)

Here, the mean gradients T z and Sz are constant values. Absorb the mean temperature and
salinity terms into the pressure, so the momentum equation is unchanged except that T ′

and S′ now appear in the buoyancy. The temperature and salinity equations now become

∂tT
′ + (u ·∇)T ′ = κT∇2T ′ − T zw, (12)

∂tS
′ + (u ·∇)S′ = κS∇2S′ − Szw. (13)

Recall that T z > 0 and Sz < 0 are stabilizing whereas T z < 0 and Sz > 0 are destabilizing.
We also have the perturbation equations in buoyancy and spice

∂tb
′ + (u ·∇)b′ =

κT + κS
2

∇2b′ +
κT − κS

2
∇2γ′ −N2w, (14)

∂tγ
′ + (u ·∇)γ′ =

κT + κS
2

∇2γ′ +
κT − κS

2
∇2b′ − γzw, (15)

where

N2 ≡ bz = gαT z − gβSz, γz = gαT z + gβSz. (16)

3.2 Non-dimensionalization

Since we will consider a flow forced to a particular mean velocity profile, we can
non-dimensionalize the velocity by a typical scale U which varies on a typical length scale
L. We then consider perturbations to temperature and salinity scaled by the background
gradients, i.e., that T ′ ∼ |T z|L and S′ ∼ |Sz|L. Choosing a pressure scale to balance the
inertia, we then arrive at the dimensionless system

∂tu+ (u ·∇)u = −∇p+ Re−1∇2u+
Ri

Rρ − 1
(Rρsgn(T z)T

′ − sgn(Sz)S
′)ẑ, (17)

∂tT
′ + (u ·∇)T ′ =

κT
UL

∇2T ′ − sgn(T z)w,

=
1

PrRe
∇2T ′ − sgn(T z)w, (18)

∂tS
′ + (u ·∇)S′ =

κS
UL

∇2S′ − sgn(Sz)w,

=
τ

PrRe
∇2S′ − sgn(Sz)w, (19)
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with the non-dimensional parameters

Re =
UL

ν
, Ri =

N2L2

U2
, P r =

ν

κT
, (20)

which are respectively the Reynolds number, the Richardson number, and the molecular
Prandtl number for temperature, along with the previously defined density ratio Rρ and
diffusivity ratio τ . We also write down the non-dimensional equations for buoyancy and
spice perturbation, where b′ ∼ |N2|L and γ′ ∼ |γz|L, as we will need them to calculate the
buoyancy variance:

∂tb
′ + u · ∇b′ =

1

Peb
∇2b′ +

A

Peγ
∇2γ′ − sgn(bz) w, (21)

∂tγ
′ + u · ∇γ′ =

1

APeγ
∇2b′ +

1

Peb
∇2γ′ − sgn(γz) w, (22)

where

Peb =
UL

(κT + κS)/2
, P eγ =

UL

(κT − κS)/2
, A =

∣∣∣∣γzbz
∣∣∣∣ . (23)

3.3 Kolmogorov forcing

The steady x-directional shear background flow of Balmforth and Young [1] (BY2002)
is maintained by an external forcing (see figure 2 for a schematic). Adding in a forcing term
F (z)x̂ to the non-dimensional momentum equation 17 and decomposing u as a steady
u = − sin z x̂ and a perturbation u′, we get

∂tu
′− sin z∂xu

′ − w′ cos z x̂+ (u′ ·∇)u′ =

−∇p+ Re−1
(
sin z x̂−∇2u′)+ Ri

Rρ − 1

(
Rρsgn(T z)T

′ − sgn(Sz)S
′) ẑ+ F x̂. (24)

To match with the form used in BY2002, we need the forcing to follow F = −Re−1 sin z, i.e.,
the forcing needs to balance the viscous dissipation of the shear flow. The Reynolds number
is thus the non-dimensional input parameter for this system. The velocity perturbation
equation then becomes

∂tu
′ − sin z∂xu

′−w′ cos z x̂+ (u′ ·∇)u′ =

−∇p+ Re−1∇2u′ +
Ri

Rρ − 1

(
Rρsgn(T z)T

′ − sgn(Sz)S
′) ẑ. (25)

Although the sinusoidal background flow is just a source of constant velocity shear for
generating turbulence, for small values of Re, we notice that in the horizontally averaged
u-momentum equation

∂t⟨u⟩+ ∂z⟨uw⟩ = Re−1∂zz⟨u⟩+ F (z), (26)

it is possible for the shear flow to be the steady solution, i.e., ⟨u⟩ = − sin z. This can
happen for laminar flows with small values of Re, when the two terms on the right-hand
side constitute the dominant balance, and the Reynolds stress term ⟨uw⟩ is negligible.
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4 Results

We first perform a linear stability analysis on the non-dimensionalized system to
compare the modes of instability of the doubly stratified system to results from Balmforth
and Young. We then follow up with numerical simulations of the governing equations to
test our predictions from linear stability and investigate the nonlinear effects of spice on
flow evolution.

4.1 Linear stability

We linearize the perturbation equations in u′, T ′ and S′ (equations 25, 12, 13) around
the basic state by dropping the nonlinear advection terms, and eliminating pressure from
the w-momentum equation using the divergence of 25. We get three equations in w′, T ′

and S′

(∂t + u∂x)∇2w′ − uzz∂xw
′ =

Re−1∇4w′ +
Ri

Rρ − 1

(
Rρ sgn

(
T z

)
∂xxT

′ − sgn
(
Sz

)
∂xxS

′) , (27)

(∂t + u∂x)T
′ + sgn

(
T z

)
w′ − 1

PrRe
∇2T ′ = 0, (28)

(∂t + u∂x)S
′ + sgn

(
Sz

)
w′ − τ

PrRe
∇2S′ = 0. (29)

Substituting normal modes of the form [w′, T ′, S′] = exp
{
(ikx+ σt)[ŵ(z), T̂ (z), Ŝ(z)]

}
with

periodic boundary conditions on the amplitude functions at 0 and 2π, we get

(σ + iku)∇2ŵ − ikuzzŵ =

Re−1∇4ŵ − k2
(

RρRi

Rρ − 1
sgn

(
T z

)
T̂ − Ri

Rρ − 1
sgn

(
Sz

)
Ŝ

)
, (30)

(σ + iku) T̂ + sgn
(
T z

)
ŵ − 1

PrRe
∇2T̂ = 0, (31)

(σ + iku) Ŝ + sgn
(
Sz

)
ŵ − τ

PrRe
∇2Ŝ = 0, (32)

where ∇2 = d2/dz2 − k2.

For the nonstratified case (Ri = 0), this system is unstable to long-wave perturbations
above a critical value of the Reynolds number, Rec =

√
2 [16]. Weak stratification exerts

a stabilizing effect on the longest length-scales and cordons off the linearly unstable region
from extending to the smallest wavenumbers (BY2002). The critical threshold for stratifi-
cation strength above which the instability is fully suppressed was found to be in excess of
the Ri = 1/4 rule given by the famous Miles-Howard criterion for inviscid flows, indicating
that the combined effect of viscosity and thermal diffusion destabilizes the sheared flow.

BY2002 also examines the low and high Péclet number cases for this flow, which is
equivalent to the low and high Prandtl number cases as the Péclet number can be written
as Pe = PrRe. They carried out numerical simulations to show that, for a fast diffusing
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scalar (low Pr), the flow rolls up into billows of an intermediate wavelength that are stable
for moderate Reynolds numbers. For a slow diffusing scalar (high Pr), the instability
evolution is more complicated, possibly due to restratification of the scalar and formation
of strong internal gradients that are harder to overturn. Our focus here is on understanding
the behavior at intermediate-to-high Prandtl numbers, since heat has Pr = 7, and the
equivalent for salt, the Schmidt number, is Sc = 700 in the ocean, and thus we closely
examine the bifurcation behavior in the linear stability in this Prandtl range.

4.1.1 Two modes of instability

We solve the eigensystem in 30, 31, 32 using the spectral DE solver Dedalus [3]. We
use 64 grid points in z to resolve one scale height and vary the horizontal wavenumbers
between 0 and 1. The diffusivity ratio is set to be τ = 0.01, and the temperature Prandtl
number is set at Pr = 7.

Figure 3(a) shows the maximum growth rates in the k − Re plane for the doubly
stable flow (negative Rρ) with weak stratification (Ri = 0.05). The marginal stability
curves show two different regions of linear instability, both with critical Reynolds numbers
greater than

√
2. From figure 3(b), we see that the region with the shorter wavelengths

shows no oscillatory component, while the other region shows growing oscillations with
a frequency very close to the non-dimensional buoyancy frequency

√
Ri. Hence, we will

label the two instability modes as the monotonic mode and the oscillatory mode. The
eigenfunctions for the fastest growing mode also have different vertical structures for the two
regions, as shown in figure 3(c). The monotonic mode is symmetric in z with four nodes, or
two full waves. The eigenfunction for the oscillatory region is similar to the neutrally stable
region (i.e., region with neutral oscillations)—asymmetric in z with two nodes. Growth
rates for the monotonic mode dominate the oscillatory mode, although the modes respond
differently to changing the parameters of interest, Rρ and Ri, as we discuss below.

4.1.2 Effect of the density ratio and stratification strength

Larger magnitudes of the density ratio indicate that the fast diffuser, temperature,
contributes more to the stratification, while low magnitudes mean that the slow diffusing
salinity dominates the buoyancy dynamics. Both instabilities are affected by the value of
the density ratio, but the effect varies with the strength of the stratification.

In the k − Re plane, when Ri exceeds 0.25, the critical Reynolds number for the
monotonic instability is lower when |Rρ| ≪ 1, i.e., when slow diffusion is prevalent. For
weaker stratification, the monotonic mode is not strongly affected by the density ratio, but
shows a slight inverse trend, i.e, lower threshold Re values for higher |Rρ|. The oscillatory
mode, on the other hand, shows a more dramatic dependence on Rρ. The instability
extends to shorter waves, shows larger growth rates, and smaller threshold Rec values with
decreasing |Rρ|. This holds across the range of Ri values that we tested (10−4−0.5), but the
effect is most pronounced for low Ri, in contrast to the monotonic mode. Conversely, for
|Rρ| ≫ 1, the oscillatory mode weakens and can become completely suppressed. Thus, slow,
salinity-dominated diffusion has a destabilizing effect on both modes, although this is only
explicit in the monotonic mode for Ri > 0.25 (Figure 5). Generally, increasing Ri pushes
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Figure 3: Linear stability results for Ri = 0.05, Rρ = −100, τ = 0.01, and Pr = 7. (a) Maximal
values of the (real) growth rate for different (k,Re) pairs. Stability boundaries contoured in black.
The region on the right with larger σr is the monotonic mode (what BY call the viscous mode),
and the long-wave region on the left is the oscillatory mode. (b) Imaginary components of the
growth rates in (a). (c) Vertical eigenfunctions T̂ (z) of the fastest-growing modes for the monotonic
instability in red, and the oscillatory instability in blue.

the wavelength with the maximal growth rate—we can call this kmax—to smaller values
for both modes, for k ranging from 0 to 1. (For k larger than 1, we see some short-wave
modes showing more complex behavior that we have not investigated in detail.) Increasing
Ri also makes for slower growth rates for both modes, although the oscillatory mode can
also disappear at very low values of Ri. This, along with the oscillation frequency being
close to

√
Ri, indicates that the mode arises as a result of the stratified dynamics, although

it is eventually suppressed at large Ri (¿ 0.5). Furthermore, the slow-diffusive low |Rρ|
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Figure 4: Effect of the density ratio and the stratification strength on the two modes, for 0 < k < 1
and 1 < Re < 11. Panels growth rates and stability boundaries contoured in black for density ratios
at the bottom and Richardson number at the left of the figure. Dotted grey lines show stability
boundaries for similar single diffusion cases, with Prandtl numbers indicated underneath density
ratios.

scenario allows this instability to grow even at large Ri values, while high |Rρ| suppresses it
for stratification strengths well below the Miles-Howard threshold. The monotonic mode is
also in general hampered by the increasing stratification, but as discussed earlier, low |Rρ|
allows the instability to grow up to Ri = 0.5 (we did not test beyond that), albeit with
smaller growth rates.

These competing influences of Ri and Rρ on the linear stability of the Kolmogorov
flow are summarized in figure 4 and 5. We find that there are regions of overlap between
the two modes of instability and that the monotonic mode always grows faster than the
oscillatory mode when both are present in the parameter space.

The density ratio also controls the shape of the vertical eigenfunctions for buoyancy.
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Figure 5: Stability boundaries in the (k,Re) plane for the oscillatory mode (top) and monotonic
mode (bottom) for Ri ≥ 0.25. Thick colored lines indicate stability curves for the double diffusive
flow with given Rρ at the bottom of each panel, dotted black lines indicate curves for the single
diffusive case with given Pr.

The eigenmode for salinity shows sharper gradients than for temperature, consistent with
the “internal boundary layer” structure noted by BY2002 for slow diffusers. Being a linear
combination of T and S, the buoyancy eigenfunction correspondingly has sharp gradients
for low |Rρ| values, when controlled by the slow diffuser, and smooth gradients for high |Rρ|
values when it is controlled by the fast diffuser. Spice also shows a similar pattern, but
for intermediate values of |Rρ| close to 1, there is no large-scale spice gradient, but local
gradients can be quite sharp and persistent.
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4.1.3 Comparison with single diffusion

In order to understand precisely how the spiciness affects the stability of this Kol-
mogorov flow, we need to compare to the linear stability results for a singly-stratified flow.
We numerically solve the eigensystem for the single diffusion linear stability problem with
parameters Re, Ri and Pr,

(σ + iku)∇2ŵ − ikuzzŵ = Re−1∇4ŵ − k2Ri sgn
(
T z

)
T̂ , (33)

(σ + iku) T̂ + sgn
(
T z

)
ŵ − 1

PrRe
∇2T̂ = 0. (34)

The single diffusion problem has been addressed before—BY2002 looks at a narrow
region in the parameter space, covering only the monotonic mode, which they call the
“viscous” instability. Their second paper [2], BY2005, mentions an additional mode that
they call the “conductive” mode that seems to match the oscillatory mode we see in the
doubly-stratified case above. However, they do not deliberate much on its oscillatory nature,
focusing instead on the “negative-diffusion” and potential layer formation aspects of this
mode. Their multiple scales theory for linear stability yields high Re cutoffs for both modes
(Fig. 2 in the paper), which we have not seen in our computations for the either the single-
or double-diffusion case, except for very low Prandtl numbers (< 10−2). Additionally, their
analysis is limited to Pr ∼ O(1), which is not very applicable to our salt-stratified case with
Pr (or Sc) = 700, especially since Prandtl is unmistakably a very influential parameter in
controlling the behavior of these modes. A 2015 study [8] by Garaud et al. looked at the
3D Kolmogorov flow for low Péclet numbers in stellar interiors, but they also present linear
stability results for 2D modes (Fig. 2 in the paper) that closely match the two modes we
found in both the single- and double-diffusion cases. They also note that the growth rate
for one of the modes has a non-zero imaginary part.

Now we briefly summarize our results for the linearized single-diffusion (SD) prob-
lem. As in the double-diffusion (DD) case, we find two main distinct unstable regions in
parameter space. They are completely equivalent to the two DD modes; one of the modes
is oscillatory with longer wavelengths and weaker growth rates, and the other is monotonic
and grows much faster. The Prandtl number in the SD problem works analogously to the
density ratio in the DD problem (when Pr and τ are kept constant) in controlling the
relative strength and stability criteria for these modes. Indeed, we find that even at large
Richardson number (∼ 0.5), the oscillatory mode is marginally stable at lower Rec for larger
Pr (corresponding to |Rρ| ≪ 1). Conversely, it disappears below a Pr threshold of ∼ 0.1—
this was not observed in the DD case because the Prandtl number there ranged from 7 to
Pr/τ = 700. We also find a similar dependence on the Richardson number; the SD oscil-
latory mode appears only above a certain stratification strength, becomes more unstable
with growing Ri up to Ri ≈ 0.25, after which the stratification has more of a stabilizing
effect on the mode. Similar to DD, the SD monotonic mode is not very strongly affected by
Pr in the range 7− 700, except at high Ri, where large Pr leads to a more unstable mode.

Extending the parameter space to Pr ≪ 1, k > 1 and large Re reveals new re-
gions of instability. We find a long-wavelength monotonic mode for small Pr (< 10−2) for
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Richardson number up to 1, which is the instability described in [8] for high Ri and low
Pe astrophysical flows. We also find two other unstable regions at Re ∼ O(103) and k > 1
respectively. The equivalence of the SD and DD linear stability problem is such that it is
possible to find these extra modes in the DD case by tweaking Pr, τ and Rρ appropriately.
For large Pr/small Rρ, the stability behavior of the two-component flow with two diffusiv-
ities can be represented by a single-component fluid with an intermediate diffusivity. We
now attempt to construct a form for this intermediate diffusivity, or an effective Prandtl
number, for the spicy flow.

4.1.4 Budget terms

We define some quantitative measures of the flow dynamics to characterize the insta-
bility evolution. From the buoyancy perturbation equation 21, we get the following equation
for the evolution of the buoyancy variance (see Appendix 7.1 for derivation details), where
the angle brackets represent a volume average:

d⟨b′2⟩
dt

= −⟨χb⟩ − ⟨χγb⟩ − 2 sgn(bz)⟨wb′⟩, (35)

where we have the diffusive fluxes

⟨χb⟩ =
2

Peb
⟨|∇b′|2⟩, ⟨χγb⟩ =

2A

Peγ
⟨∇γ′ · ∇b′⟩. (36)

The term ⟨χγb⟩ is the extra double diffusive term that is absent in the single diffusion scalar
variance equation which is given by

d⟨T ′2⟩
dt

= −⟨χT ⟩ − 2 sgn(Tz)⟨wT ′⟩. (37)

Since ⟨∇γ′ · ∇b′⟩ can be negative if ∇γ′ and ∇b′ are anti-correlated, this becomes a diffu-
sive term that leads to an increase in scalar variance, i.e., creating up-gradient fluxes via
diffusion. This behavior is sometimes called anti-diffusion, and is believed to be one of the
mechanisms that leads to the staircase-like density profiles seen in many ocean observations.

In the single-diffusive fluid, diffusive mixing only leads to down-gradient fluxes and
an increase in the background potential energy BPE (see footnote 3), which is considered
irreversible. Available potential energy APE, defined as (total PE - BPE), is the part of the
potential energy that can can drive fluid motion through its conversion to kinetic energy by
the buoyancy flux. In double diffusion, however, energy can also be drawn from the BPE
reservoir, making the conversion from APE to BPE bidirectional. Middleton and Taylor
(2020) [15] discuss the possibility of parameterizing this up-gradient flux with an effective
diffusivity that is in general a function of τ , Rρ and the angle between ∇γ′ and ∇b′, with
negative values of the diffusivity indicating a “reversible” BPE to APE transfer. Although
it is not exactly the same as the effective Prandtl number we are interested in, this suggests
that the effective Pr is unlikely to be represented by a simple sliding scale between the high
salt Pr and low heat Pr values, but could be a more complex and multivariate function.
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4.1.5 Effective Prandtl number from linear stability

The intermediate Prandtl number is likely a complex function of Rρ, τ, Ri and other
variables, and can be constructed in many different ways. However, motivated by our goal to
understand double-differential mixing, we propose a construction based on scalar variance
equations. Using 35 to define an effective Prandtl (or Péclet) for the fluxes would give the
following definition in terms of Rρ and τ

2

Peeff
⟨|∇b′|2⟩ = 2

Peb
⟨|∇b′|2⟩+ 2A

Peγ
⟨∇γ′ · ∇b′⟩, (38)

=⇒ Pe−1
eff = Peb

−1

(
1 +

1− τ

1 + τ

∣∣∣∣Rρ + 1

Rρ − 1

∣∣∣∣ ⟨∇γ′ · ∇b′⟩
⟨|∇b′|2⟩

)
(39)

The term ⟨∇γ′·∇b′⟩
⟨|∇b′|2⟩ captures the relative contribution of spice variance to total buoyancy

dissipation. For the effective Péclet formulation to hold, we need the definition given in
39 to be largely independent of ⟨|∇b′|2⟩. This is possible if we assume spice variations are
correlated with buoyancy with a correlation coefficient X̂, and have a deviation γ′′,

γ′ = X̂b′ + γ′′, (40)

so that we get

⟨∇γ′ · ∇b′⟩
⟨|∇b′|2⟩

= X̂ +
⟨∇γ′′ · ∇b′⟩
⟨|∇b′|2⟩

. (41)

We can calculate the relative magnitudes of the two terms on the right hand side from
the stable end states of the monotonic mode DNS results. If the second term dominates
over the correlation coefficient, the effective Péclet in 39 may not hold. But assuming that
term is small, this allows us to now write the following relations. From the non-dimensional
scalar variance evolution equations, and the non-dimensional turbulent diffusivity closure
⟨wT ′⟩ = −KT sgn(Tz), at steady state we get:

⟨|∇T ′|2⟩ = −PrTRe sgn(Tz)⟨wT ′⟩ = PrTRe sgn(Tz)
2KT , (42)

⟨|∇S′|2⟩ = −PrTRe

τ
sgn(Sz)⟨wS′⟩ = PrTRe

τ
sgn(Sz)

2KS , (43)

⟨|∇b′|2⟩ = −2PreffRe sgn(bz)⟨wb′⟩ = 2PreffRe sgn(bz)
2Kb, (44)

We can also write the buoyancy variance in terms of the temperature, salinity and spice
variance, and then substitute 42–44:

⟨|∇b′|2⟩
2

=
R2

ρ

|1−Rρ|2
⟨|∇T ′|2⟩+ 1

|1−Rρ|2
⟨|∇S′|2⟩ − |1 +Rρ|2

|1−Rρ|2
⟨|∇γ′|2⟩

2
, (45)

PreffKb =
PrT KS

τ

[
τd−1R2

ρ + 1

|1−Rρ|2
− |1 +Rρ|2

|1−Rρ|2
τ

1− τ

(
χγ

χS

)]
. (46)

Here, d = KS/KT is the eddy diffusivity ratio, and χγ , χS = ⟨|∇γ′|2⟩/Peγ , ⟨|∇S′|2⟩/PeS .
The ratio of the spice and salinity chi terms is assumed to be small, and thus second term
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on the RHS in 46 becomes negligible. If we further assume Kb = KS , our proposed effective
Prandtl number simplifies to

Preff = 7
100 + d−1|Rρ|2

(1 + |Rρ|)2
. (47)

To test our construction of the effective Prandtl number, we track how the critical Reynolds
number changes with Rρ and Pr for the doubly- and singly-stratified flow respectively, for
the same Ri values. Figure 6 shows the difference between the single-diffusion and double-
diffusion Rec for the monotonic mode for Ri = 0.3. The zero contour (solid black line) in
this figure maps the density ratio to its equivalent Prandtl number. We plot the effective
Prandtl from 47 for d = 1 (magenta dashed) and d = 1/150 (green dashed) to show that the
simplified formula captures the shape and trend of the observed curve fairly well, especially
after including differential transport (KT > KS) in the form of d. We also calculate the
effective Prandtl for density ratios in figures 4 and 5. With d = 1, Rρ = −0.001 =⇒
Preff = 699, Rρ = −1000 =⇒ Preff = 6.98, Rρ = −0.08 =⇒ Preff = 600.1, and
Rρ = −2 =⇒ Preff = 80.8. We find that these values are not too far from the Prandtl
numbers we have used to recreate the single diffusion stability boundaries in these figures.

4.2 Direct numerical simulations

Numerical simulations of the nonlinear perturbation equations 25, 12, 13, along with
non-divergence and pressure gauge conditions5 are carried out in the MPI-parallelized spec-
tral solver Dedalus. Periodic boundary conditions are imposed in both directions. The
computational domain is rectangular and fits one wavelength of the sinusoidal shear flow in
the vertical and eight wavelengths in the horizontal (similar to BY2002), and the grid size is
512×64 points. The velocity and scalar fields are initialized with random and uncorrelated
perturbations of very small size. The code uses a second-order semi-implicit BDF scheme
in time and discretizes x and z with Fourier bases. The time step is chosen appropriately
to ensure stable and convergent solutions.

4.2.1 Pure monotonic mode

Figure 7 shows the evolution of the flow with Re = 3, Ri = 0.01, and Rρ = −2.
Results from the previous section predict that this flow should be unstable only to the
monotonic instability. The evolution of instability for this case compares well to the mono-
tonic instability results of BY2002, with the vorticity pattern developing into meandering
jets with embedded vortices at the center that grow into a finite wavelength at equilib-
rium, which is around one-fourth the domain length. Temperature, salinity and buoyancy
form layers that then develop Kelvin-Helmholtz-like overturning vortices—called the “cat’s
eye” pattern in BY2002—which expand vertically until they reach the domain height. This
results in rhomboid-shaped well-mixed vortices separated by diffusive interfaces, with the

5Pressure is only determined up to an arbitrary constant in the incompressible Navier Stokes equations,
and thus a pressure gauge is needed to establish the exact value of the pressure. The non-divergence
constraint on the mean Fourier mode also becomes degenerate because of the underdetermined pressure
variable. Dedalus v3 handles this slightly indirectly by introducing a constant tau variable in the divergence
equation to absorb the degeneracy, along with a pressure gauge.
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Figure 6: Effective Prandtl number curve for the monotonic mode at Ri = 0.3. For k = 1,
Rec(single diffusion) - Rec(double diffusion) is plotted for −0.12 < Rρ < −0.001 and 580 < Pr <
700. Black curve shows the zero contour, dashed magenta (green) curve shows the predicted effective
Prandtl number for d = 1 (d = 1/150).

interface gradients much sharper for salinity than temperature. These billows remain at a
stable intermediate horizontal wavenumber and do not coarsen further, showing the clear ar-
rest of the inverse cascade. For low Reynolds numbers, weak stratification and |Rρ| ∼ O(1)
or higher, i.e., when the monotonic mode is dominant, linear stability predicts the existence
of this instability quite well. We compare the end states for Rρ = −2 and Rρ = −100 in
figure 8 and find that the smaller |Rρ| case significantly sharpens the buoyancy gradient, in
line with our linear stability observation of the low |Rρ| case effectively behaving like a high
effective Pr fluid. Noting the similarity of figure 8 with the single-diffusion Pe = 400 and
Pe = 100 end states in Figure 14 of BY2002 (which have the same Re, Ri values) further
confirms this.

Figure 9 shows the evolution of ⟨χb⟩ and the TKE dissipation rate ε (dimensionless, so
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Figure 7: Snapshots of the (a) total buoyancy, and (b) total vorticity fields showing the development
of the monotonic instability at times t = 228 (top) and t = 356 (bottom). (c) End states of the
total temperature (top) and salinity (bottom) fields. (d) Evolution of the volume-averaged ε and χb

terms.
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Figure 8: Final snapshots of the total buoyancy for Rρ = −100 (top) and Rρ = −2 (bottom).

given by = 1
Re⟨

∂u′
i

∂xj

∂u′
i

∂xj
⟩) when we vary the density ratio for the runs. We find that low |Rρ|

leads to larger values of ⟨χb⟩ at equilibrium, since slow dissipation would be less effective in
destroying buoyancy variance. We also see a slight increase in ε with decreasing |Rρ|, about
a 10% change as we go from Rρ = −100 to Rρ = −2. We compare this to single diffusion
runs with the same (Re,Ri) values for different Pr, and observe a similar trend (figure 10)
in ⟨χT ⟩ that it increases with Pr. The TKE dissipation also increases with Pr but seems
to plateau for higher values, reflecting how the linearized monotonic mode is also not very
sensitive to large Pr in this weak stratification scenario. We also note that the density ratio
has an effect on the onset time of the instability, but we have not looked into this further.

4.2.2 Effective Prandtl number from the monotonic mode

We can also try to empirically extract the effective Pr. Like in the previous section,
we compare ∆(εDD − εSD) and ∆(⟨χb⟩DD − ⟨χb⟩SD) for different (Rρ, P r) pairs to extract
their functional relationship. A next step for this project would be to compare the effective
Prandtl number constructed earlier to one from the DNS end state budget terms.

4.2.3 Pure oscillatory mode

As we move into the linear instability region for the oscillatory mode in parameter
space, we find growing oscillations seen as pulsations and nutations in the flow structures and
in ε and ⟨χb⟩. For smaller Reynolds numbers, these oscillations show a regular periodicity
very close to the buoyancy frequency

√
Ri. As longer wavelengths are unstable to the

oscillatory mode, we see more large-scale structures in this case.

In figure 11, we look at a case with parameters that are linearly unstable only to
the oscillatory mode. Small initial perturbations start to oscillate and grow to a wave-like
structure that is around half the domain length, so twice the wavelength of the monotonic
mode. We also note the later onset of the instability, which might be due to the smaller
growth rates of this mode compared to the monotonic mode. We were unable to determine
if there is a stable end state for the oscillatory mode within the length of our runs.
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Figure 9: Dissipation rates for the monotonic mode with Re = 3, Ri = 0.01, Pr = 7 and τ = 0.01.
For three different Rρ values, top (bottom) panel shows the evolution of ε (χb).

Figure 10: Same as Fig. 9 but for the single diffusion case with three different Pr values.
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Figure 11: Snapshots of the (a) total buoyancy, and (b) total vorticity fields showing the develop-
ment of the oscillatory instability at times t = 584 (top) and t = 644 (bottom). (c) Evolution of the
volume-averaged ε term.
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4.2.4 Combination modes

Lowering the stratification for the case above to a point where both instabilities
are present, we find oscillations growing from the rolled-up end state of the monotonic
instability. This could be due to the comparable growth rates for both modes at this
Reynolds number, or this might be a secondary instability of the rolled-up state. The
former might be the more likely case, as perturbing the density ratio to a larger value (so
that monotonic mode is stronger) leads to slower-growing oscillations. Moreover, in these
combination modes, oscillations sometimes set in at a much later time, and they can attain a
steady amplitude or even decay. This could result from the monotonic mode dominating and
suppressing the oscillatory mode when both are present (as noted by BY2005), or might be
a different nonlinear effect introduced by the stratification. For higher Reynolds numbers,
pure modes are rarely observed (atleast in the moderate Re range we tested). Figure
12 shows the development of instability for Re = 6, Ri = 0.05, and Rρ = −0.5. Weak
intermittent oscillations of the stable rolled-up state are seen for a while, until an energetic
burst of cycling merges the vortices and rearranges the flow into a new long-wavelength
state that is reminiscent of the structure seen for the pure oscillatory mode (in figure 11).
Increasing Re further leads to combination modes with large aperiodic oscillations, with
continuous rearrangement, merging and re-forming of the vortex billows. No steady state is
observed, even for a short while. Although we do still see some of the expected behavior from
linear stability results (oscillations suppressed for weak stratification and weak diffusion),
the flow very quickly becomes inherently nonlinear and chaotic.

4.2.5 Layer formation

BY2005 investigated the oscillatory (or “conductive”) instability as a source of layer
formation. They noted the negative-diffusion behavior created within this instability, and
observed buoyancy layers with coarsening vertical scales even in rather low Re simulations
which were run for tall boxes with multiple scale heights. Given that a differentially diffusing
fluid is also prone to negative diffusion (or restratification), it may be possible to observe
layering in this setup too. Although we have not explored this question in much detail, we
tried computations for boxes with equal length scales in x and z (figure 13). We see some
markers of the monotonic mode in the evolution of this flow, in the formation of blob-like
vortices of an intermediate size that pulsate and meander with the horizontal mean flow.
We also see aperiodic oscillations and horizontal merging of vortices, trying to form larger-
scale structures, and we see some interaction between vorticity layers that may point to
some vertical merging as well. However, the flow remained chaotic for the entire length of
time that we ran it for, and we did not observe any stable large-scale structures forming.
This may be, as BY2005 claim, due to the monotonic mode dominating and suppressing
layer formation, but it is hard to compare with the simulation end states in BY2005 as they
have a different setup with a horizontal shear forcing.

5 Summary and Future Steps

We have investigated the stability of the two-dimensional spicy Kolmogorov flow by
numerical exploration of the linear stability problem and the nonlinear flow evolution. Lin-
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Figure 12: Evolution of the run with Re = 6, Ri = 0.05, and Rρ = −0.5 for the (a) total buoyancy,
and (b) total vorticity fields, for times t = 350 (top), t = 700 (middle), and t = 850 (bottom). (c)
Dissipation rates of TKE and scalar variance with time.
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Figure 13: Evolution of the flow in a computational box with equal length scales in x and z.
Snapshots of total buoyancy (top) and total vorticity (bottom) for times t = 232 (left), t = 512
(middle) and t = 888 (right), for the run with parameters Re = 15, Ri = 0.01, and Rρ = −2.

ear stability analysis reveals two major regions of instability that we call the monotonic
and the oscillatory mode. The oscillatory mode arises from the stratified dynamics and
is destabilized further under weakly diffusing scalars, i.e., when salinity controls the buoy-
ancy gradient. The monotonic mode dominates in weak stratification and fast diffusion
(temperature-controlled) scenarios. For strong stratification, weak diffusion pushes both
modes into instability well beyond the classical Miles-Howard threshold of Ri = 1/4 for in-
viscid shear stratified flows. The effect of changing the density ratio of the doubly-stratified
flow is equivalent to changing the Prandtl number in the singly-stratified flow, and we use
this to postulate an “effective Prandtl number” to capture the linear stability behavior of
the two-component flow.

At low Reynolds number (Re ≤ 4), linear stability predicts the nonlinear evolution of
the flow fairly well. DNS for the monotonic mode shows intermediate-wavelength overturn-
ing billows, and the oscillatory mode shows longer-wavelength pulsating structures with a
slower onset. The density ratio for the double-diffusive case affects the equilibrium values
of the buoyancy fluxes in a similar way to the Prandtl number in the single-diffusive case.
We can use this equivalence to construct an effective Prandtl number, or an effective di-
apycnal diffusivity KV , for the weakly turbulent Kolmogorov flow. This will be especially
enlightening in understanding how valid the widely-used KT = KS assumption (which gives
Γ = 0.2) is for smaller Reb flows.
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Here, we find that the strongly stratified Kolmogorov flow is unstable in both laminar
(low Re, via the oscillatory mode) and turbulent (high Re, via the monotonic mode) flow
regimes for small |Rρ|. Slow diffusion can allow the creation of very small-scale density gra-
dients that could become locally unstable and overturn, especially when viscous effects are
weak (high Re). This results in locally well-mixed patches in a flow where vertical motion
is otherwise restricted because of stratification. This is a pathway through which instability
in high-Pr stratified turbulence often leads to the formation of layer-like structures in the
scalar fields. Therefore, it is possible that the monotonic mode under strong stratification
may lead to density layering, especially if double-diffusive effects are also present. Investi-
gating whether layer formation occurs, and whether double-diffusive effects play a role in it
beyond just changing the effective Pr, could be another interesting line of inquiry.

6 Acknowledgments

I want to thank my advisors for this project, Chris Howland and Leo Middleton, for propos-
ing this very interesting and enjoyable project, and their constant guidance and support
through my attempts at understanding what double-diffusion means. I would like to thank
Colm-cille Caulfield for providing his invaluable insight and perspective on this problem
throughout the summer. Edgar Knobloch, Basile Gallet and Greg Chini were fantastic
principal lecturers and I deeply appreciate the opportunity to learn about multiscale turbu-
lence from them. I want to acknowledge the efforts of Bruce Sutherland, Julie Hildebrandt,
Janet Fields and Lanie Plueddemann in running a very-well organized program this sum-
mer. Lastly, a heartfelt thank you to all the other fellows for the joy of their company and
friendship this summer!

7 Appendix

7.1 Scalar variance budget

We derive the evolution of the volume-averaged buoyancy variance ⟨b′2⟩ for the spicy flow
as follows:

d⟨b′2⟩
dt

=

〈
∂b′2

∂t

〉
+ L, (48)

where L contains the boundary terms from applying the Leibniz integral rule; L = 0 as the
boundaries of the box are fixed in time. Therefore

d⟨b′2⟩
dt

=
〈
2b′∂tb

′〉 , (49)
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and substituting 21,

d⟨b′2⟩
dt

=

〈
2b′

(
−u · ∇b′ +

1

Peb
∇2b′ +

A

Peγ
∇2γ′ − sgn(bz) w

)〉
, (50)

= −⟨∇ · (ub′2)⟩+ 2

Peb
⟨∇ · (b′∇b′)⟩ − 2

Peb
⟨|∇b′|2⟩+ 2A

Peγ
⟨∇ · (b′∇γ′)⟩

− 2A

Peγ
⟨∇γ′ · ∇b′⟩ − 2 sgn(bz)⟨wb′⟩, (51)

= −∇ · ⟨ub′2⟩+ 1

Peb
∇ · ∇⟨b′2⟩+ 2A

Peγ
⟨∇ · (b′∇γ′)⟩

− ⟨χb⟩ − ⟨χγb⟩ − 2 sgn(bz)⟨wb′⟩, (52)

where we have defined the the diffusive flux terms

⟨χb⟩ =
2

Peb
⟨|∇b′|2⟩, ⟨χγb⟩ =

2A

Peγ
⟨∇γ′ · ∇b′⟩. (53)

Periodic boundary conditions make the divergences of the volume averages zero, and we get

d⟨b′2⟩
dt

= −⟨χb⟩ − ⟨χγb⟩ − 2 sgn(bz)⟨wb′⟩. (54)
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Mixing and Layering in Stratified Rotating Turbulent Flow
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1 Introduction

Layered density structures, commonly referred to as “staircases,” are a common feature in 
stratified turbulent flows. These structures consist of vertically stacked well-mixed 
layers separated by sharp density gradients. They can have a significant impact on 
large-scale mixing and transport in geophysical and astrophysical systems (3), as they can 
significantly alter vertical fluxes of heat and momentum, as well as chemical mixing.

Persistent stepped profiles in temperature and salinity have been extensively docu-
mented in regions subject to double-diffusive instabilities, such as beneath the Mediter-
ranean outflow in the Tyrrhenian Sea (6) and in the Arctic Ocean (10). In these cases, 
staircase formation is attributed to either salt fingering or diffusive convection. However, 
staircases have also been observed in systems where the stratification is stable to double-
diffusive effects. For example, (15) documented stepped density profiles in Loch Ness, where 
stratification arises solely from temperature variations. Laboratory experiments have fur-
ther demonstrated staircase formation in non-double-diffusive systems (11; 8), providing 
evidence that these structures can emerge from turbulent processes only.

In particular, (11) and (8) observed experimentally the spontaneous emergence of lay-
ers in a linearly stratified saltwater fluid stirred by the horizontal oscillation of vertical 
rods. Their design is similar to the one used in this project (see Figure 1), though with-
out rotation. Their findings revealed distinct behaviours depending on the values of the 
Richardson number Ri and the Reynold Re, defined using external parameters. For weak 
stratification and strong stirring (small Ri and large Re), well-mixed regions initially form 
near the boundaries, where turbulent buoyancy fluxes are blocked by impermeable walls. 
These regions gradually extend into the interior, with a smooth transition. At higher Ri 
and over a wide range of Re, the density profile no longer remains smooth but develops 
a series of mixed layers separated by sharp interfaces. In cases with small Ri and small 
Re, (8) observed a different mechanism, which they named ”boundary layering.” Here, the 
mixed regions at the top and bottom boundaries erode the stratification, forming sharp 
interfaces. These interfaces, in turn, act as a barrier for buoyancy transport and additional 
mixed layers form. A summary of the experimental results from (8) is presented in Figure 
2.

Staircases have also been observed in other experimental configurations (3; 16). In-
terestingly, the layering process appears consistent across a variety of setups, with layer 
thickness scaling as 3U/N , where U is the characteristic velocity scale and N is the buoy-
ancy frequency. This scaling law was also discussed by (2) and (4), using asymptotic analysis
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for strongly stratified turbulence. They assumed that the strong stratification leads to an
anisotropy of the turbulence, with horizontal scales larger than vertical scale.

The first theoretical models capturing the self-organization of stratified turbulence into
staircases were proposed by (12) and (13). They showed that if the buoyancy flux depends
on the local density gradient and decreases with increasing stratification beyond a certain
threshold, the system becomes anti-diffusive and unstable to perturbations in the mean
buoyancy. This mechanism explains the growth of localized layers, where converging buoy-
ancy fluxes above regions of weakened stratification and diverging fluxes below drive the
formation of layers. However, these models are limited by their ill-posed nature; smaller
disturbances grow faster, leading to steepened interfaces and discontinuities in the absence
of molecular diffusion. Building on these ideas, (1) developed a more comprehensive model
that incorporates both the mean buoyancy field b(z, t) and the turbulent kinetic energy
density e(z, t). Their model proposed an N-shaped law for the buoyancy flux, enabling
layering instabilities at intermediate stratifications while arresting steepening at higher gra-
dients. This equilibrium predicts finite-thickness interfaces, aligning with experimental
observations. However, the relationship between buoyancy flux and stratification remains
uncertain, and the model’s simplified representation of turbulence and dissipation limits its
general applicability (3).

Several questions still remain on the staircase formations. What mechanism selects the
characteristic layer scale U/N? How are turbulent buoyancy flux and mean buoyancy gra-
dient coupled? What distinguishes the layering and boundary layering regimes observed by
(8)? To our knowledge, there have been no three-dimensional direct numerical simulations
(DNS) reproducing the experiments of (11) and (8). In order to answer the previous ques-
tions, we revisit the Holford–Linden experiments in the laboratory and use DNS to access
detailed turbulence statistics not directly measurable in experiments.

Stratified turbulence in geophysical and astrophysical applications is also influenced by
rotation. This introduces additional complexity to staircase formation by incorporating
Coriolis forces, which affect the anisotropy and coherence of turbulent motions (9). When
stratification dominates (f/N ≪ 1), horizontal layers with pancake vortices form (14).
Conversely, when rotation dominates (f/N ≫ 1), columnar vortices aligned with the rota-
tion axis emerge. For intermediate regimes, vortex interactions fragment vertical coherence,
producing layered structures with scales influenced more by f/N than U/N (7; 5). As ro-
tation rates increase, the system transitions from pancake-like structures to robust vertical
columns. These columns persist even under strong interactions, highlighting the stabiliz-
ing influence of rotation at high f/N . However, key questions remain: Can staircases still
develop in rotating flows? If so, under what conditions do they emerge, and how do the
Reynolds, Froude, and Rossby numbers influence their formation? What role does f/N
play in setting the layer scale, and what processes govern their formation and stability over
time?

In this study, we aim to investigate the formation and evolution of staircase structures
in stratified, rotating turbulent flows. We begin by describing the experimental setup in
section 2. Next, we detail in section 3 the numerical simulations conducted to complement
the experiments, specifying the governing equations, boundary conditions, and forcing.
The results for the non-rotating case are presented in §4, analyzing the mechanisms behind
layering and identifying scaling laws. Finally, we examine the effects of rotation on staircase
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Figure 1: Experimental set-up

formation in §5, focusing on the role of f/N in shaping the observed patterns and comparing
them to the non-rotating case.

2 The Experiments

2.1 The set-up

The experiments were conducted in a rectangular channel of length L, width W , and height
H, mounted on a 2 m–diameter rotating platform (see Figure 1). The near-linear salt strat-
ification is created using the double-bucket method. Fresh water is injected into a brine
reservoir via a peristaltic pump, where it is mixed with the surrounding fluid by a stirring
impeller. A second pump transfers the resulting mixture to the tank through a floating
sponge to minimize mixing caused by surface waves. The flow rates of the pump are regu-
lated to ensure a linear density gradient as the tank fills. To avoid temperatures variations,
fresh water and brine were stored in large reservoirs at room temperature (18◦C) before use.
We estimate temperature variations to remain within 1.5◦C, such that density variations
associated with temperature can be neglected. Buoyancy frequencies in the experiments
ranged from 0.6s−1 < N < 1.8s−1.

The turbulence is generated by towing an array of vertical rods with width d and mesh
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Figure 2: Diagram adapted from (8). The shaded regions correspond to the different regimes
identified by (8). The blue dots and red stars correspond to experiments run at the WHOI
GFD laboratory during this project, with the experiments denoted (a-b-c) discussed in §4.1.
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Figure 3: Measures of density profiles for different probe velocities

spacing M , at a constant speed U over the distance Lstir ∼ L−2M . The rods are suspended
from a carriage driven by a computer-controlled DC motor, ensuring consistent motion and
repeatability. The rake’s velocity ramped linearly from 0 to U on a short distance of about
M/2 and returned to 0 with controlled acceleration and deceleration.

Following (8), each run consisted of n sequences of 15 consecutive back-and-forth passes.
After each sequence, the flow was allowed to decay for 150 s before the density profile was
measured with a downward traverse of a conductivity probe. The probe was calibrated
weekly to prevent drift. Since thin well-mixed layers rapidly formed at the top and bottom,
the gradient in the central stratified region was used to determine the initial buoyancy
frequency N0. The effect of probe descent speed is shown in figure 3. At low speeds
(v = 1-2 mm.s−1), the probe resolved sharp density interfaces accurately. At higher speeds,
entrainment of lighter fluid caused artificial smoothing of the gradients. All profiles were
therefore measured at v = 1 mm.s−1.

Additionally to the density measurements, shadow-graph imaging is used to monitor the
evolving density field, highlighting regions with significant density curvature and providing
independent measurements of layer scales along with insights into transient flow structures.

2.2 Rotating experiments

The rotating experiments were performed with the channel mounted on a 2 m–diameter
turntable, whose rotation axis was aligned to within a few degrees of vertical. The angular
velocity Ω = f/2 of the rotating table was chosen in the range 0 ≤ f ≤ 2 rad/s and held
constant throughout each run.

The tank was set into rotation while empty and filled while rotating. In initial trials, we
attempted to fill the tank from the bottom, in order to shorten the spin-up time. However,
this method proved unsuitable: the bottom-filling device generated excessive mixing both
during filling and throughout the experiment, which compromised the density stratification.
We therefore reverted to filling from the top through a floating sponge, as in the non-rotating
runs, which showed only minimal influence on the density profile.

To ensure that the fluid was in a state of solid-body rotation before the start of stirring,
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the filling rate was reduced considerably, resulting in total filling times of 4 to 6 hours.
However, this duration may still be insufficient to guarantee perfect solid-body rotation
throughout the depth. This would necessitate additional verification, for example by track-
ing the motion of neutrally buoyant particles released at different depths during the filling
process.

2.3 Dimensionless parameters

These experiments include a large number of control parameters, including five characteristic
length scales (the dimensions of the tank W , L, H, the rod size d and mesh spacing M),
the towing velocity U and the two frequencies N0 and f = 2Ω.

For definition of relevant dimensionless parameters of the turbulence, we need to use the
turbulent velocity and horizontal integral length scales. Since we do not directly measure
the turbulent field, these scales must be inferred indirectly. We consider the turbulence
to be roughly uniform in the horizontal direction, with no significant mean flow over the
length of a stirring sequence. Each tow of the rods creates structured wakes, but after many
tows these patterns tend to mix and spread out evenly. With this in mind, we can describe
the turbulence using a single velocity scale and a single length scale based on the external
forcing. The forcing provides two possible horizontal length scales: the rod diameter d and
the mesh spacing M . (8) found that in unstratified turbulence from biplanar grids, the
main turbulent length scale is usually proportional to the mesh size, making M the most
relevant scale for weakly stratified fluid. For higher stratification and low turbulence, the
rod diameter d, which sets the scale of the wake, becomes more important. (8) argue that
the best scaling for the layer depth was found using the length scale L0 =

√
dM and the

velocity scale U0 = U (1− d/M), which account for both the effects of the rod size and the
mesh spacing. Both our and their experiments are reported in Figure 2 using these scalings.

For the present analysis, however, we use only the mesh spacing M and the towing
velocity U as characteristic scales. This choice simplifies comparison with the DNS, which
do not explicitly include the rod geometry. We then define the Reynold, Péclet, Richardson
and Rossby numbers as :

Re =
UM

ν
; Pe =

UM

κ
; Ri =

N2
0M

2

U2
; Ro =

U

fM
(1)

We can equivalently define a Froude number as : Fr = Ri−1/2.
Other geometric parameters of interest are the various aspect ratios between the tank

dimensions and the rod length scales. These were varied by (8), who found no significant
influence on layer formation. In our experiment, the tank dimensions were set to L = 120
cm, W = 50 cm and H ≈ 45 cm.

All of the experiments conducted are listed in Table 1 and reported in the diagram of
(8) (see Fig. 2). The black dots correspond to their experiments, while the red stars and
the blue dots are the experiments run at the WHOI GFD laboratory during this project.
The red stars correspond to the configuration (1) with an array of five small rods of width
d = 0.6 separated by M = 3 cm, while the blue dots corresponds to the configuration (2)
with two large rods (d = 2.5 and M = 10.6 cm). The smaller rods (1) are used to reach the
boundary layering regime, as discussed in section 4.1.
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Rods N (s−1) U (cm/s) Re0 Ri0 Re Ri Case n°
(1) 1.2465 2 263.4 1.432 800 6.215
(1) 1.77795 3 395 0.6902 1200 3.4083
(1) 1.3846 3 395 1.1380 1200 5.6197

(2) 0.8480 1 393.4 31.561 1060 80.796 (a)
(2) 0.82263 2 786.7 7.4255 2120 19.009 (b)
(2) 0.66425 3 1180 2.1518 3180 5.509 (c)
(2) 1.34044 1.5 590 36.2410 1590 89.7272
(2) 1.32688 2 786.7 19.9752 2120 49.4555

Table 1: Parameters used in the non-rotating experiments. The rod configurations corre-
spond to : (1) d = 0.6 cm, M = 3 cm; (2) d = 2.5 cm, M = 10.6 cm. The value Re0
and Ri0 are the Reynolds and Richardson numbers computed using the length scale L0 and
velocity U0 from (8).

3 The DNS

We simulate a three-dimensional, rotating, incompressible flow in Cartesian coordinates
(x, y, z). The vertical coordinate z (unit vector ez) is aligned with both gravity (g = −gez)
and the rotation axis (Ω = Ωez). The rods in the experiments move along the horizontal
x-axis. The fluid is stably stratified with mean density ρ0 and constant buoyancy frequency
N . The computational domain is triply periodic, which eliminates boundary layers and free-
surface effects. While this simplifies the numerical set-up, it also removes physical processes
present in the experiments, limiting direct comparison. Capturing these effects numerically
would require no-slip walls and a free surface. The domain size is set to (Lx, Ly, Lz) =
(4M,M, 2M), so only one rod spacing is represented explicitly in the y-direction.

The stirring effect of the rods is modelled using a vertically uniform, horizontal body
force Fh that generates two counter-rotating vortices of scale M as illustrated in Figure 4.
The vortex centres move back and forth in x. In a traverse from left to right, they are
accelerating from 0 to U for x ∈ [0,M ], then moving at the constant speed U for x ∈ [M, 3M ]
before decelerating and reversing direction. This forcing was implemented in PADDI by
UCSC MS student Tiam Babadiyaghoubi.

We decompose the density field as ρ(x, t) = ρ̄(z) + ρ′(x, t), where ρ̄ is the background
density field such that dρ̄

dz = −ρ0N
2/g and ρ′ are the density perturbations. In the Boussi-

nesq approximation, the governing equations are:

∇ · u = 0, (2)

∂u

∂t
+ u · ∇u+ fez × u = − 1

ρ0
∇p+ ν∇2u+ bez +

1

ρ0
Fh, (3)

∂b

∂t
+ u ·∇b+N2w = κ∇2b, (4)

where u = (u, v, w) is the velocity field, p is the pressure, and b = −gρ′/ρ0 are the buoyancy
perturbations. Buoyancy variations are assumed to arise solely from temperature, so the
kinematic viscosity ν and diffusivity κ are constant.
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Figure 4: (a) Numerical set-up; (b) Snapshot of the forcing in an horizontal plane.

Since the rod geometry is not resolved and the domain is periodic, the only characteristic
length scale is the mesh spacing M . We introduce the non-dimensional variables :

t∗ = t
U

M
; (x∗, y∗, z∗) =

(x, y, z)

M
; u∗ =

u

U
; b∗ =

b

N2M
; p∗ =

p

ρ0U2
; Fh∗ = Fh

M

ρ0U2
(5)

Using the dimensionless numbers defined in (1), we can rewrite the equations in the
dimensionless form, getting rid of the * subscript for simplicity.

∇.u = 0, (6)

∂u

∂t
+ u.∇u+

ez × u

Ro
= −∇p+

1

Re
∇2u+Ri bez + Fh, (7)

∂b

∂t
+ u.∇b+ w =

1

Pe
∇2b. (8)

For a fluid stratified in temperature, the Prandtl number ν/κ = O(1), so we set Pe = Re.
This choice is another critical difference between the experiments and the simulations, as salt
tend to diffuse much slower than temperature (Pr ≈ 1000 for salt-stratified experiments),
which could influence the layer formation. In particular, strong temperature gradients that
can arise in staircases are more easily smoothed out by diffusion than in salt-stratified
staircases.

The equations are discretised over a 768 × 192 × 384 grid for varying values of Ri and
Re, listed in table 2. This choice of mesh size ensures that the turbulence and mixing are
appropriately resolved since Pr = 1.

4 Staircase Formation in the Non-rotating Case

4.1 Laboratory experiments

In this first section, we focus on reproducing the experimental results of (8), examining
three specific experiments (Fig. 5). The top panels show the evolution of the density profile
from the initial to the final state, while the bottom panels show the time evolution of the
vertical density-gradient profile.
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Re Ri Ro f/N Total n° of passes
400 30 ∞ 0 30
400 100 ∞ 0 19
400 300 ∞ 0 25
800 60 ∞ 0 21
800 60 1 0.13 17
800 60 0.12 0.8 14

Table 2: Parameters used in the DNS.

For case (a), with Re = 3200 and Ri = 5.5, well-mixed layers form at the the top and
bottom boundaries, where turbulent buoyancy fluxes are constrained by the impermeable
boundaries. These mixed regions progressively expand toward the interior. However, the
overall density profile remains smooth and monotonic, with no interior interfaces: it de-
creases from top to bottom without distinct steps. This case lies close to the non-layering
threshold identified by (8) (see the regime diagram in Fig. 2), so the absence of layering is
expected.

In case (b), with Re = 2120 and Ri = 20, mixed boundary layers again develop at
the top and bottom, but here they are separated from the stratified interior by sharp
gradients, visible as two pronounced peaks in the density-gradient profile. These ‘interfaces’
migrate toward mid-depth and eventually merge, yielding two mixed layers. However, no
additional interior layers appear. This behaviour was reported by (11) but not discussed
explicitly by (8). Although the parameters fall within the layering regime of (8), our tank’s
limited vertical extent likely allowed the boundary layers to meet before interior layers could
develop. We, however, did not test this hypothesis further.

In case (c), with Re = 1069 and Ri = 80, quasi-homogeneous layers separated by thin
interfaces form rapidly within the interior. The initial layer thickness is of order 3U/N0,
where U is the rod speed and N0 the initial buoyancy frequency. This is similar to what was
observed in previous experiments (11; 8). Over time, the interior layering pattern evolves
as the interfaces drift together and merge. Simultaneously, the edge layers advance inward,
gradually eroding the interior layering structure. The experiment was stopped after 120
hours. The final state consists of four mixed layers separated by three strong interfaces. We
expect that if the experiment was carried out for longer, the residual structure would have
continued to evolve with interfaces merging or decaying, resulting in a fully homogeneous
state.

To investigate the vicinity of the boundary layering regime, we also performed experi-
ments with smaller rods (d = 0.6 cm, M = 3 cm), represented by red stars in Fig. 2. In this
configuration, the layers were thinner and less distinct. The characteristic vertical scale in
these cases was closer to U/N and typically smaller than the canonical 3U/N , which made
precise identification difficult. Layer formation was also slow, often taking more than 20 h,
which made reaching the layering regime difficult within the timeframe of this project. As a
result, this regime was not investigated further. However, the physical distinction between
the ‘boundary layering’ and ‘classical layering’ regimes of (8) remains unclear and needs
further investigations.

Layering proved more difficult to observe than anticipated; in particular, early attempts
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Figure 5: Top panels : evolution of the density profile from the initial state (blue) to the
end state (yellow). Bottom panels : time-evolution of the vertical density gradient profile
(in g.cm−4).
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with a larger tank were unsuccessful and are not discussed here. Nevertheless, we were
able to reproduce the non-rotating results of (8) and (11) and identify the main regimes of
density layering. However, our experiments are still limited by the tank size, which accel-
erated boundary-layer merging and suppressed interior layering, and by the long timescales
required for layer formation. A more systematic survey with longer runs, a larger aspect
ratio, and denser sampling in (Re,Ri, U,N) is needed to better understand the layering
process and clarify the transition between ‘boundary-layering’ and ‘classical layering’.

4.2 Direct numerical simulations

We also attempted to reproduce layer formation numerically, using the setup described
in §3. The formation of layers in numerical simulations was also challenging. Across all
cases studied (Table 2), quasi-homogeneous layers appeared only for one parameter set
(Re = 800, Ri = 60). In all other cases, the horizontally averaged density profile showed
no stepped structure or sharp interfaces, despite lying in parameter regimes where layering
was observed in the laboratory.

This discrepancy can be explained by several differences between the simulations and
experiments. First, the numerical runtimes may have been too short for layers to emerge.
Second, the simulations use a Prandtl number fixed to 1 for efficiency, whereas in the
experiments it reaches values of about 700. This strongly influences the relative roles of
viscous and thermal diffusion, potentially leading to distinct layering mechanisms. Another
notable distinction is the absence in the simulations of physical walls, particularly the lower
boundary, as well as the absence of a free surface. In the experiments, these boundaries
play a crucial role in the formation of homogeneous layers at the top and bottom, which
could be an important mechanism for the formation of interior layers.

The forcing mechanism also differs. In the experimental setup, the presence of a verti-
cal bar introduces additional small-scale forcing that interacts with the stratification and
promotes the formation of layers. This feature is not modeled in the simulations, where
we introduce a forcing of horizontal scale corresponding to the mesh spacing M . Moreover,
achieving Reynolds and Richardson numbers as high as those in the experiments remains
a significant challenge in numerical simulations. The computational cost of resolving such
high values is prohibitively expensive, limiting the parameter space that can be explored
numerically.

Despite these limitations, we observed layering for the case (Re = 800, Ri = 60). In this
run, the horizontally averaged buoyancy field exhibits a staircase-like pattern (Fig. 6). We
observe regions of relatively weak gradient separated by thin interfaces of stronger gradient.
The layers were not fully formed or homogenized, i.e., the gradient did not relax to zero
by the end of the run (see Fig.6(b)). Here, the layer thickness is of order 6U/N ∼ 0.8,
larger than the O(3U/N) reported in the laboratory experiments. This difference may be
explained by the lower value of the Prandtl number.

To investigate the role of buoyancy flux in layer formation, we analyzed the time evo-
lution of the horizontally averaged vertical buoyancy flux (Fig. 7). At first glance, low-flux
regions tend to coincide with strong background density gradients, consistent with the
Phillips–Posmentier flux–gradient feedback. However, the flux also exhibits pronounced
temporal modulation driven by the rod motion: high-flux ‘turbulent episodes’ occur while

263



Figure 6: Evolution with time of the profiles of : (a) buoyancy, (b) buoyancy gradient for
the case Re = 800, Ri = 60.

Figure 7: (a) Evolution with time of the horizontally averaged turbulent buoyancy flux. (b)
Horizontally averaged buoyancy flux averaged over a turbulent event as a function of the
total buoyancy gradient. Dots of a same color represent a single turbulent event at different
vertical positions.
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Figure 8: Vertical profile of the horizontally averaged velocity along the x-component as a
function of time.

the rods are moving, whereas low-flux phases correspond to their deceleration and stop at
the channel walls.

To refine our analysis, we consider the buoyancy flux averaged both spatially in the
horizontal direction and temporally over a single stirring event, and we compare it to the
total density gradient averaged over the same event and depth. This approach provides a
more reliable comparison by filtering out low flux values. The resulting flux–gradient scatter
is shown in Figure (7), where each color represents a distinct stirring event across different
vertical positions. The results do not provide clear evidence of a systematic decrease in flux
with increasing density gradient, as expected in the Phillips instability. However, a plateau,
or even a slight decrease, is observed, compatible with the slow interface sharpening.

To gain further insight into layer-formation dynamics, we examine the horizontally aver-
aged streamwise velocity (Fig. 8). The velocity field exhibited a vertically layered structure
that is closely correlated with the observed density layers. The influence of this vertical
structure on layer formation remains uncertain and raises new questions about how a mean
flow with a distinct vertical structure might contribute to the layering process. This mean
flow represents a fundamental difference from previous experiments, where the presence of
horizontal boundaries suppressed such flows, making direct comparisons with the experi-
ments difficult.

5 Influence of Rotation

5.1 Staircase formation in the experiments

In this section, we investigate the influence of rotation on staircase formation, with a par-
ticular focus on the role of the ratio f/N . We begin by considering the non-rotating case,
where layering is observed, corresponding to a Richardson number Ri ≈ 50 and a Reynolds
number Re ≈ 2100. These parameters are kept roughly constant across all experiments,
while the angular velocity of the rotating table, f , is varied from 0 to 2 s−1 (see Table 3).

Figure 9 shows the temporal evolution of the density gradient for the different rotations
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Rods N (s−1) f (s−1) U (cm/s) Re0 Ri0 Re Ri Ro

(2) 1.32688 0 2 786.7 19.9752 2120 49.4555 ∞
(2) 1.26948 0.25 2 786.7 18.28425 2120 45.26904 0.755
(2) 1.39135 0.5 2 786.7 21.9636 2120 54.37856 0.3774
(2) 1.32724 0.75 2 786.7 19.9860 2120 49.4823 0.2516
(2) 1.32665 1 2 786.7 19.9682 2120 49.4382 0.1887
(2) 1.35153 2 2 786.7 20.7241 2120 51.3098 0.0943

Table 3: Parameters used in the rotating experiments.

rates. In the absence of rotation, the density gradient progressively develops a well-defined
staircase structure. This structure consists of four well-mixed layers separated by three
sharp interfaces, with the two intermediate layers measuring approximately 8 cm in height.
Over time, the interfaces strengthen, reaching their maximum after approximately 6 hours.
The top and bottom mixed layers then begin to erode these interfaces, with the top interface
disappearing after 20 hours.

As the rotation rate increases, staircase formation is progressively delayed and even-
tually suppressed. For moderate values of f/N = 0.2, 0.4, 0.5, the density gradient still
exhibits layering, but only two distinct interfaces form, instead of the three observed in the
non-rotating case. Additionally, the time required for these interfaces to reach maximum
strength increases significantly: 15 hours for f/N = 0.2, 20 hours for f/N = 0.4, and 30
hours for /N = 0.5. This suggests that rotation weakens the efficiency of layer formation
by reducing the intensity of vertical mixing. Another observation is that the layer scale
does not seem to be very affected by the rotation, but more data points would be needed
to confirm this.

For higher values of f/N = 0.75, 1.5, no staircase forms. Instead, well-mixed layers
develop at the top and bottom boundaries, progressively eroding the stratification in the
interior. An additional observation is that the depth of these mixed layers at a given
time decreases as rotation increases, indicating reduced mixing efficiency. In these cases,
the vertical extent of the tank may be insufficient, preventing the interfaces from fully
strengthening before the boundary layers reach the center of the tank. Future experiments
with a taller tank would help determine whether interfaces would eventually emerge under
strong rotational effects.

To better understand the differences between strongly rotating and non-rotating cases,
we analyze the structure of the wake using the shadowgraph visualizations. Figure 10
presents snapshots of the flow at an early time (before layer formation) for the non-rotating
case (left) and for the case f/N = 1.5 (right). The large vertical shadows correspond to the
rods and the arrows to their direction. In the non-rotating case, turbulence initially appears
homogeneous throughout the domain before interfaces develop. In contrast, under strong
rotation, the flow structure differs dramatically. Rather than a homogeneous turbulent
field, the density gradient reveals the presence of vertically invariant vortices that dominate
the dynamics. Furthermore, turbulence becomes more localized, as the flow in the vortices
remain relatively undisturbed. In particular, the suppression of vertical motion within these
structures is evident, suggesting that vertical mixing is severely restricted. These vortices
remain stable for a short time after the rods pass before gradually breaking down into
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Figure 9: Time-evolution of the vertical density-gradient profiles, with rotation increasing
from left to right and top to bottom.

Figure 10: Shadowgraph visualisations of the turbulent flow past the rods in the beginning
of the experiments The black shadows show the rods, and the arrows their direction. Both
experiments were done with Ri ≈ 50 and Re ≈ 2100 at two different rotation rates: (left)
f/N = 0, (right) f/N = 1.5.
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Figure 11: Top : Horizontally averaged buoyancy b̄. Bottom : buoyancy gradient 1+ db̄/dz
for different rotation rates.

turbulence. The persistence of these coherent vortices could play a crucial role in inhibiting
staircase formation, and the reduced vertical mixing may explain the delayed formation of
the density layers.

Another interesting question would be to vary the Rossby number, which measures how
much the wake structure is influenced by the Coriolis effects, but keeping the ratio f/N
fixed.

5.2 In the DNS

Similarly, we investigated the effect of rotation on layer formation in the DNS by varying
the Coriolis frequency f while holding Re = 800 and Ri = 60 fixed. The Rossby number
was varied from the non-rotating case Ro = ∞ to Ro = 1 and Ro = 0.12, corresponding to
ratios f/N = 0, 0.13, and 0.8, respectively.

Figure 11 shows time–depth diagrams of the horizontally averaged buoyancy b̄ and
the total buoyancy gradient 1 + ∂z b̄ for the three cases. In the moderately rotating case
((b) f/N = 0.13), the buoyancy profile shows no clear layering; the gradient exhibits
temporal fluctuations but no persistent, sharp interfaces. In the strongly rotating case ((c)
f/N = 0.8), a weakly layered structure appears in b̄, but the amplitude is small and we do
not observe interfaces that strengthen over time. For these cases (b) and (c), the simulations
may not have been run long enough for layers to form; longer runs are needed to resolve
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Figure 12: (a) Vertical vorticity ωz. (b) Buoyancy gradient.

this question.
We also visualized the three-dimensional flow for the rotating case f/N = 0.8. Fig-

ure 12(a) shows the vertical vorticity, while Fig. 12(b) displays the local field |∇b|2, the
squared magnitude of the buoyancy gradient. When multiplied by the molecular diffusivity,
κb|∇b|2 gives the local irreversible sink of buoyancy variance, highlighting where diffusion
consumes variance, i.e., regions of intense small-scale stirring. The rod wake consists of a
quasi–vertically invariant cyclone that is stabilized by rotation (see Fig. 12(a)), whereas the
anticyclones are more distorted and intermittent; enhanced values of |∇b′|2 are collocated
with the latter (Fig. 12(b)). This supports the interpretation that, under rotation, the pres-
ence of stabilized cyclones reduces the overall mixing in the tank and can delay or inhibit
staircase formation.

6 Conclusion

This two-month project established the experimental and numerical framework for inves-
tigating the formation of density staircases in stratified and rotating turbulence. By com-
bining laboratory experiments with direct numerical simulations, we aimed to explain how
layering depends on stratification, forcing, and rotation and how these parameters influence
the turbulence properties.

In the non-rotating case, we reproduced the main behaviours reported by (11) and (8).
At high Re and low Ri, the density profile shows no layering: well-mixed boundary layers
first develop at the top and bottom and progressively erode the interior stratification, and
the profile remains smooth until it is fully homogenized. At high Ri, an interior staircase
develops. At intermediate Ri and Re, no interior staircase forms, yet the profile is not
smooth: sharp gradients separate the boundary layers from a stratified interior. Whether
interior layers would emerge in this case within a taller tank remains an open question.
Preliminary experiments in the boundary-layering regime at low Re and low Ri seem to
produce layers thinner than the 3U/N scale observed by (11; 8). However, the parameter
space is not yet sufficiently explored. Clarifying the transitions and layer scales will require
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denser sampling in (Re,Ri), as well as longer runs in a taller tank. Possible improvements
of the experimental set-up also include direct measurements of the turbulent field (using
hot-wire or PIV).

In the DNS, staircase-like structure emerged in one case, but layers were not fully ho-
mogenized by the end of the integrations. The absence of rigid boundaries and a free surface
limits direct comparison with the tank, and computational cost constrains the accessible pa-
rameter space. Wall-bounded DNS and longer integrations would enable closer quantitative
comparison to the experiments.

In both the laboratory experiments and the DNS, layering was delayed or suppressed
under rotation. We attribute this behaviour to the reduced mixing associated with vertically
invariant vortices (stabilised cyclones), which confine small-scale mixing to anticyclones.
However, a denser mapping of Rossby number and f/N , additional numerical experiments
involving walls and a more detailed analysis of the flow structure are still required to clarify
the role of rotation in inhibiting or delaying staircase formation.
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Idealised Models of Moist Convection
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1 Introduction

1.1 A brief review of atmospheric convection

Theories of atmospheric convection underpin our understanding of weather and climate (e.g.,
[24]). In full, atmospheric convection is a remarkably complex phenomenon involving: compli-
cated moist thermodynamics, planetary rotation, non-hydrostatic effects, interactions across many 
spatiotemporal scales, turbulence, radiation, cloud microphysics, air-sea interactions, orographical 
effects, and more (all e.g., [30, 18, 1, 16, 19, 21, 22]). It is thus essential to have relatively simple, 
interpretable analytic models to link observed atmospheric phenomena to the underlying physics. 
Focusing primarily on the first three factors, this project aims to develop an analytical model of 
atmospheric convection which interweaves the effects of (i) moist thermodynamics, (ii) planetary 
rotation, and (iii) deep-reaching (non-hydrostatic) vertical convection. Our theory must therefore 
encompass several fundamental elements of atmospheric convection:

1. Earth’s atmosphere is stable to dry convection, but unstable to moist convection:
in essence, this lies in how temperature decreases with height. For dry adiabatic displace-
ments, a simple calculation using the first law of thermodynamics and hydrostatic balance
yields:

dU = δQ− δW (1a)

cvdT = δQ− Pdv (1b)

cvdT = δQ− d(Pv) + vdP (1c)

cvdT = δQ− d(RdT ) + vdP (1d)

(cv +Rd)dT = δQ− vρgdz (1e)

cpdT = δQ− gdz (1f)

(as δQ→ 0) dT/dz = −g/cp ≈ −9.8K/km (:= −Γd) (1g)

where Γd ≈ 9.8K/km is the ‘dry adiabatic lapse rate’. Typical observed ‘environmental’ (or
‘ambient’) lapse rates are ≈ 7K/km . That is, air parcels displaced to higher (lower) altitude
along Γd will be less (more) buoyant than the environment, and will tend to return to their
initial position. Hence the atmosphere is stable to dry convection. However, from simply
observing phenomena such as thunderstorms and hurricanes, we know that convection does
occur in the atmosphere. The condensation of water vapor1 and subsequent latent heating of

1Or more broadly in planetary science, a condensate. For instance, in Titan’s atmosphere methane (CH4) plays
the role of water. Moreover, for simplicity, in this work we will only consider the phase changes associated with the
condensation of water vapor in Earth’s atmosphere. In the real atmosphere, the picture is far more complicated due
to the presence of multiple phases of water (see e.g., [30]).

272



the atmosphere is absolutely fundamental to the physics of such systems, and therefore plays
a primary role in theories of atmospheric convection.

Condensation of water vapor can only occur once the specific humidity of an air parcel (q)
exceeds its saturation value (qs). Thereupon water vapor will condense and latent heat is
released, generating significant buoyancy which can lead to convection. To illustrate this,
once condensation has initiated, the first law must be modified:

cpdT = −gdz − Lvdqs (2)

where Lv ≈ 2.5 × 106J/kg is the latent heat of fusion of water. A similar calculation to
before shows that a saturated air parcel evolves its temperature according to the ‘saturated
adiabatic lapse rate’ Γm, which has the form:

Γm = C (qs, T )Γd (3)

where C is a relatively complicated function of qs and T . Crucially, however, C ≈ 0.3 ⇒ Γm ≈
3K/km in the lower atmosphere, increasing to C ≲ 1 ⇒ Γm ≈ Γd at higher altitude. Hence,
saturated parcels can be unstable with respect to the ambient environment when displaced
vertically.

More strictly, latent heating through condensation only occurs for upward displacements of air
parcels, manifesting a ‘top-down’ asymmetry. The first reason is that T generally decreases
as a function of increasing altitude (Z). Since qs = qs(T, ...), which in practice is determined
with an approximated form of the Clausius-Clapeyron relation:

qs ≈ q0e
αT ≡ q0e

α(b−ΓdZ) (4)

(where T is the absolute temperature; b is the buoyancy; α is a parameter that controls the
severity with which moisture falls of exponentially as a function of temperature; and q0 is the
specific humidity of the surface atmosphere) it is clear that qs decreases sharply with altitude.
Secondly, in the absence of condensation and diffusion, q is a materially conserved property
of an air parcel. Hence, if an air parcel is unsaturated and quickly displaced downward into
a warmer environment, q is conserved and q − qs simply becomes more negative. However,
upward displacement into a cooler environment may eventually cause q = qs, at which point
water vapor condenses and convection may occur2. The key physics here is that latent heating
and moist convection will only occur for large-scale upward displacements of air parcels3

2. Convection in the atmosphere is non-hydrostatic. The relatively large magnitude of
Lv generates a significant buoyancy source. The resulting vertical convection (e.g., that char-
acteristic of a thunderstorm) is deep-reaching throughout the troposphere with large vertical
velocities on the order 1−2m/s. This represents an inherently non-hydrostatic phenomenon.
A number of studies derive extensions of classical quasi-geostrophy with moist thermodynam-
ics (e.g., [17, 15, 28]), but these are necessarily hydrostatic theories, and consequently do not
permit large-scale vertical convection.

2In the real atmosphere this is the ‘lifting condensation level’ (zLCL). Yet, in general an air parcel may still be
less buoyant than the environment at z = zLCL, and hence sustained, deep-reaching convection can only occur once
the parcel has been displaced along the moist adiabat to a high enough altitude to reach the level of neutral buoyancy.
This is called the ‘level of free convection’: zLFC . This level of detail is more than we will consider in this project.

3See [26] for an example where the opposite is true.
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3. Earth’s rotation exerts a critical influence. The Coriolis acceleration has a considerable
effect on convection in the atmosphere, for instance, in the maintenance of tropical cyclones
and midlatitude storm systems. Although several studies have incorporated moist thermody-
namics into analytical models of convection (e.g., [3, 4, 23, 9, 32]), thus linking bullet points
1 and 2 above, all are in the absence of rotational effects.

Our principal research question is hence stated: can we construct an analytical model of at-
mospheric convection which (i) incorporates the fundamental influence of moist ther-
modynamics; (ii) permits deep-reaching non-hydrostatic columnar convection; and
(iii) the impact of planetary rotation? Only rarely have these three essential ingredients been
considered together either analytically (e.g., [14]) or numerically (e.g., [7]). The next subsection
details the foundational analytical models of convection from which our research builds upon.

1.2 Introducing models of convection

1.2.1 Classical and moist Rayleigh-Bénard convection

How do we begin to model atmospheric convection? We begin with the Rayleigh-Bénard con-
vection (RBC) problem (e.g., [27]) of fluid flow between two solid plates aligned normal to gravity,
each of a fixed temperature, where the bottom plate is warmer than the top plate. The relevant
equations of motion are the Boussinesq equations (e.g., [31]):

Du

Dt
= − 1

ρ0
∇p+ bẑ+ ν∇2u (5a)

Db

Dt
= κT∇2u (5b)

∇ · u = 0 (5c)

Equation (5a) is the momentum equation; (5b) is the buoyancy equation; equation (5c) is the
continuity equation. u(x, t) ≡ (u(x, t), v(x, t), w(x, t)) is the velocity; b(x, t) = −gρ(x, t)/ρ0 is
the buoyancy; p(x) is the pressure perturbation; ν is the kinematic viscosity; κT is the thermal
diffusivity; D/Dt ≡ ∂/∂t + u · ∇ is the material (or Lagrangian) derivative, where ∇ := ∂xx̂ +
∂yŷ + ∂zẑ; ∇2 ≡ ∇ · ∇ is the Laplacian operator; vectors written (e.g.,) x̂ denote unit vectors in
the respective co-ordinate direction. Our co-ordinate system is orthogonal such that ẑ is oriented
anti-parallel to gravity, and x̂, ŷ lie in the plane perpendicular to gravity: x̂× ŷ = ẑ.

The relevant control parameter of the flow is the Rayleigh number

Ra =
gα∆TH3

νκ
(6)

which is a measure of buoyancy forces to viscous dissipation. A standard linear stability analysis
(e.g., [27]) of equations (5a-5c) determines that for Ra > 27π4/4 the system will transition from a
motionless state characterised by the diffusion of heat, to a state of vigorous organised convection.
The analytic simplicity of the Rayleigh-Bénard convection problem is our primary motivation for
using it as a starting point. However, in light of the physics discussed in section 1.1, equations
(5a-5c) are clearly insufficient to accurately describe the atmospheric problem.

One direction taken to make equations (5a-5c) more appropriate for the atmosphere is discussed
in [32]: the ‘Rainy’-Bénard convection (RyBC) model. The fundamental aim of the RyBC model is
to study the influence of latent heating (through the condensation of water vapor) on convection.
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Their model incorporates a simple scheme for moist thermodynamics into the system 5a-5c in the
following way:

Du

Dt
= − 1

ρ0
∇p+ bẑ+ ν∇2u

Db

Dt
= κT∇2u+ γ

q − qs
τ

H (q − qs)

Dq

Dt
= κq∇2q − q − qs

τ
H (q − qs)

∇ · u = 0

(7a)

(7b)

(7c)

(7d)

Where equation (7c) describes the conservation of moisture in the system; γ is a constant which
quantifies the relative strength of latent heating.

In this model, the key physics that convection should only occur when q ≥ qs is enforced through
the Heaviside step function, H (q − qs), on the right hand sides of equations (7b-7c). Another key
aspect (and simplification) of this model is that it is non-precipitating: i.e., condensate is not solved
for. This rapid condensation and rain-out is enforced through the very small timescale τ .

Ultimately, the main advantage of the model 7a-7d, and the primary motivation for its inclusion
in our project is the simplicity with which latent heating is represented. However, this model omits
the fundamental influences of (i) planetary rotation and (ii) non-hydrostatic effects.

1.2.2 Rapidly rotating non-hydrostatic Rayleigh-Bénard convection

To incorporate these latter effects into our theory of moist convection, we employ the (dry)
rapidly rotating nonhydrostatic theory of [11] as a basis, which is detailed in this subsection. There-
fore, our theory will necessarily deviate from more canonical models of rotating moist convection
based on quasi-geostrophic (QG) theory (e.g., [15]).

After rotation has been included, the (dry) equations (5a-5c) are non-dimensionalised using
scales for the: velocity u = U û; buoyancy b = Bb̂; pressure perturbation p = P p̂; space x = Lx̂;
and time t = (L/U)t̂; where the velocity (U) and length (L) scales are as of yet unspecified.
The resulting non-dimensional rotating Boussinesq equations read, after dropping the hats on non-
dimensional quantities:

Du

Dt
+

1

Ro
ẑ× u = −Eu∇p+ Γbẑ+

1

Re
∇2u (8a)

Db

Dt
=

1

Pe
∇2b (8b)

∇ · u = 0 (8c)

where the non-dimensional: Rossby number, Ro ≡ U/f0L; Euler number, Eu ≡ P/ρ0U
2; Reynolds

number, Re ≡ UL/ν; buoyancy number, Γ = BL/U2; and Péclet number, Pe = UL/κT have been
introduced.

How does strong rotation influence the nature of convection? [11] address this problem by
reducing the system 8a-8c under the distinguished limit Ro → 0. Although not a full restatement
of their derivation, several key points are now detailed as they pertain to our research.

First, in the limit of rapid rotation, convection should be constrained to tall, thin vertical
columnar structures through the Taylor-Proudman constraint. This a-priori scale separation be-
tween the horizontal and vertical length scales is exploited by introducing a vertical aspect ratio:
AZ := H/L and corresponding “slow” vertical co-ordinate Z := A−1

Z z. An analogous “slow” time
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T := A−1
T t is introduced to capture the long-time modulation of the convection. This allows a

multiscale re-formulation of the system 8a-8c, resulting in the re-scaled equations:(
Dt +

1

AT
∂T +

w

AZ
∂Z

)
u+Ro−1ẑ× u =

− Eu

(
∇+

ẑ

AZ
∂Z

)
p+ Γbẑ+Re−1

(
∇+

ẑ

AZ
∂Z

)2

u

(9a)(
Dt +

1

AT
∂T +

w

AZ
∂Z

)
b = Pe−1

(
∇+

ẑ

AZ
∂Z

)2

b (9b)

∇ · u+
1

AZ
∂Zw = 0 (9c)

It is specifically the vertical scale separation which permits non-hydrostatic vertical convection.
Secondly, the fast/slow scale separation is further exploited by introducing an average over fast

scales; for a general variable V (x, y, z, Z, t, T ):

V (Z, T ) := lim
T ,V→∞

1

T · V

∫
T ,V

V (x, y, z, Z, t, T )dxdt; x, t ∈ V , T (10)

with which the re-scaled equations (9a-9c) are decomposed into mean:

1

AT
∂Tu+

1

AZ
∂Z(wu) +Ro−1ẑ× u =

(
− Eu

AZ
∂Zp+ Γb

)
ẑ+

1

ReA2
Z

∂2Zu (11a)

1

AT
∂T b+

1

AZ
∂Z(wb) =

1

PeA2
Z

∂2Zb (11b)

∂Zw = 0 (11c)

and fluctuating (i.e., V ′ ≡ V − V ) components:(
Dt +

1

AT
∂T +

w

AZ
∂Z

)
u′ +

w′

AZ
∂Zu− 1

AZ
∂Z(w′u′) +

1

Ro
z× u′

= −Eu
(
∇+

z

AZ
∂Z

)
p′ + Γb′ẑ+

1

Re

(
∇+

ẑ

AZ
∂Z

)2

u′ (12a)

(
Dt +

1

AT
∂T +

w

AZ
∂Z

)
b′ +

w′

AZ
∂Zb−

1

AZ
∂Z(w′b′) =

1

Pe

(
∇+

ẑ

AZ
∂Z

)2

b′ (12b)

∇ · u′ +
1

AZ
∂Zw

′ = 0 (12c)

All barred variables depend only on the slow co-ordinates Z, T and all primed variables depend
only on “fast” co-ordinates (i.e., parametric dependence on the slow co-ordinates).

Thirdly, in the distinguished limit of rapid rotation (Ro→ 0), the Rossby number is the formal
small parameter4. Hence the mean and fluctuating variables in equations (11a-11c) and (12a-12c)
are expanded in powers of Ro; as an example using the velocity:

u = u0 +Rou1 +Ro2u2 + O(Ro3) (13a)

4n.b., in the rapidly rotating limit this is asymptotically equivalent to expanding in powers of E1/3, where
E ≡ ν/(f0l) is the Ekman number, and taking the limit E → 0; see e.g., [2].
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u′ = u′
0 +Rou′

1 +Ro2u′
2 + O(Ro3) (13b)

Using this, the equations (11a-11c) and (12a-12c) are reduced under the distinguished limit Ro→ 0,
as described fully in [11]. The resulting asymptotically reduced equations read (with the asymptotic
ordering of terms introduced in the expansions (13a-13b) suppressed for clarity):

∂t∇2
⊥ϕ+ J(ψ,∇2

⊥ϕ) + ∂Zψ =
R̃a

Pr
b′ +∇4

⊥ϕ

∂t∇2
⊥ψ + J(ψ,∇2

⊥ψ)− ∂Z∇2
⊥ϕ = ∇4

⊥ψ

∂tb
′ + J(ψ, b′) +∇2

⊥ϕ∂Zb = Pr−1∇2
⊥b

′

∂T b+ ∂Z(b′∇2
⊥ϕ) = Pr−1∂2Zb

(14a)

(14b)

(14c)

(14d)

Equations (14a) and (14b) arise from the momentum equations (11a) and (12a), respectively;
equations (14c) and (14d) arise from the buoyancy equations (11b) and (12b), respectively. In the
above, the toroidal (ψ) and poloidal (ϕ) streamfunctions are defined via a Helmholtz decomposition:
u′ := −∇×ψẑ−∇×∇×ϕẑ (where w′ = ∇2

⊥ϕ is the vertical velocity fluctuation). The horizontal
Laplacian operator∇2

⊥ := ∂2x+∂
2
y (consequently∇4

⊥ := ∇2
⊥∇2

⊥ ≡ ∂4x+2∂2x∂
2
y+∂

4
y), and the horizontal

Jacobian J(f, g) := ∂xf∂yg − ∂xg∂yf are introduced. Finally, a diffusive non-dimensionalisation is

ultimately chosen for L and U , which introduces a ‘scaled’ Rayleigh Number, R̃a, the measure of
supercriticality in the system.

The “fast” z− dependence has been eliminated in the equations (14a-14d). This is a direct
consequence of the Taylor-Proudman constraint under the asymptotic derivation, in which large
scale non-hydrostatic vertical motions (i.e., those on the scale of Z) are balanced by small scale
horizontal motions (i.e., those on the scale of x, y).

In addition to being significantly cheaper than direct numerical simulation of (8a-8c) at very low
Ro, one major success of the reduced equations (14a-14d) is the ability to access different regimes

of convection5 based on the Rayleigh number, R̃a, and Prandtl number, Pr. n.b. the critical value
of the Rayleigh Number for the onset of organized convection as it is defined in this system is
R̃ac ≈ 8.7.

Numerical simulations of the reduced equations (14a-14d) are solved spectrally and output from
two such simulations are shown in figure 1 (all simulation details are given in the caption). The
system is solved with no-slip, and constant top and bottom buoyancy (b(Z = 0) = 1; b(Z = 1) = 0)

boundary conditions. For R̃a = 40 and Pr = 7, figure 1.a (also figure 2) shows a developed state

of convection characterised by laminar columnar structures. Then, for R̃a = 80 and Pr = 1, figure
1.b shows a flow which is still rotationally constrained, but has developed into a state representa-
tive of geostrophic turbulence. For instance, note the more vigorous convection indicated by the
colourbars in figure 1.b.

1.3 Tying together moist thermodynamics, rotation, and non-hydrostatic con-
vection: initial project aims

We can now re-cast our initial research question in context with the aforementioned models:
can the latent heating closure of [32] be consistently incorporated into the asymptotic
reduction of [11]? The primary aim is to thus write down a set of reduced equations extending
(14a-14d) to include latent heating. With this model, we aim to answer questions such as: can we

5A full assessment of the convective regimes accessible from equations (14a-14d) is shown in figure 5 of [29].
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a

b

Figure 1: End of simulation vertical velocity (w′) snapshots in the Z− midplane from simulations of the
reduced equations (14a-14d). Red colours correspond to regions of upwelling (i.e., out of the page); blue

colours correspond to regions of downwelling (i.e., flow into the page). In a: R̃a = 40 and Pr = 7; in b:

R̃a = 80 and Pr = 1. All simulations were performed using the Dedalus spectral code ([5]) in a doubly
periodic (in the horizontal) domain with size Lx,y = 10Lc;Lz = 1, where Lc is the wavelength of the
most unstable mode obtained from a linear stability analysis of equations (14a-14d) (cf. [29]); simulations
are performed by resolving 64 Fourier coefficients in the horizontal, and 64 Chebyshev polynomials in the
vertical. The simulations are time stepped using a fourth-order Runge-Kutta method, with initial timestep
dt = 5 × 10−4; the Courant-Friederichs-Lewy condition is used to ensure good accuracy of the solution.
Simulations are run towards a quasi-equilibrated state.
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Z

Figure 2: As in figure 1.a (R̃a = 40 and Pr = 7), but showing vertical velocity in the y−midplane
to emphasize the columnar nature of the flow due to the Taylor-column constraint. All simulation
details are given in the caption to figure 1.

understand the influence of both rotation and latent heating on the transition from a non-convecting
to a convecting state? How does latent heating change the properties of the resulting convection
compared to models which only incorporate dry thermodynamics? What observed properties of
atmospheric convection can be explained by our model?

Despite the large degree of isomporphism between the systems 7a-7d and 8a-8c, and the apparent
simplicity of the latent heating closure, using the RyBC system as a starting point for an asymptotic
reduction closely following [11] turns out to be an immensely challenging problem. This is primarily
due to two underlying factors:

1. The rapid condensation timescale parameter, τ , which is strictly the fastest timescale in the
system.

2. The discontinuous nature of the forcing on the right hand sides of equations (7b and 7c). In
general, this is a highly non-trivial problem (cf. differential inclusions; [8]).

Several approaches were taken to arrive at a set of reduced equations with latent heating, but issues
arising from combinations of the aforementioned precluded progress. Appendices A and B provide
a more comprehensive overview of these issues and the conclusions which motivated our revised
approaches.

Instead, the rest of this report details our revised approach, providing an outline to circumvent
many of the problems we faced with our first approach. Ultimately, we are able to write down
a new set of rapidly rotating non-hydrostatic reduced equations incorporating latent heating. To
start, the next section is specifically dedicated to a linear stability analysis of the RyBC system
about the transition to organised convection. Understanding this provides a crucial insight to how
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the asymptotic reduction starting from 7a-7d should ultimately be performed.

2 Towards a Set of Asymptotically Reduced Equations

The aim of this section is to delve into the RyBC system and investigate linear stability prop-
erties about the transition into organised convection. Although also challenging in and of itself,
understanding this problem (in conjunction with material discussed in appendices A and B) pro-
vides critical insight into the behaviour of asymptotically reduced equations with the latent heating
closure developed in [32]. Our approach first directly addresses the aforementioned issue regarding
the rapid-condensation timescale by establishing a new system of equations with rapid-condensation
‘hard-built’ in, derived under the limit τ → 0. Then, by taking advantage of the properties of atmo-
spheric convection, we demonstrate how the representation of latent heating in this system can be
simplified for exponentially growing eigenmodes about the base diffusive state. The resulting (quasi-
)linear system is amenable to a small-amplitude analysis which explicates the general structure of,
and crucially the impact of rotation and latent heating on the fastest growing eigenmode. This
information ultimately informs our development of a new set of rapidly rotating non-hydrostatic
reduced equations incorporating latent heating, as described in the next section.

2.1 Transforming the RyBC equations

2.1.1 Taking the rapid-condensation limit: τ → 0

Our first aim is to take the limit τ → 0 of the system 7a-7d to effectively eliminate τ from the
system. However, a useful (and simple) first stage is to re-cast the equations to more cleanly differ-
entiate the dynamics in sub-saturated and saturated regions. We first define a ‘super-saturation’
parameter, s:

s =
q − qs
τ

(15)

with which the buoyancy (7b) and moisture (7c) equations are re-written:

Db

Dt
= κ∇2b+ γsH (s) (16a)

D

Dt
(qs + τs) = κ∇2(qs + τs)− sH (s) (16b)

noting that H (sτ) ≡ H (s), and κb = κq = κ for simplicity. Evaluating the material derivative on
the left-hand side of equation (16b) generates:

Dqs
Dt

=
D

Dt
(q0 exp (αb− βz)) = αqs

Db

Dt
− βqsw (17)

where β = αΓd is defined from equation (4). By directly substituting equation (16a) for Db/Dt
and gathering terms, equation (17) can be re-written:

τ

[
Ds

Dt
− κ∇2s

]
= −(1 + αqsγ)[sH (s)− S]; S =

−αqsκ∇2b+ βqsw + κ∇2qs
1 + αqsγ

(18)

hence yielding an evolution equation for the super-saturation parameter, s. Note that S is not a
function of q, since qs = qs(b, z).

To proceed, it is important to have an a-priori picture of the system behaviour under the limit
τ → 0. To replicate the physics of atmospheric convection, the purpose of τ is to strongly restrict
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q to minimal increases above saturation: i.e., q ≳ qs. For saturation, as τ → 0, we then expect
s = O(1). More specifically we expect s = S through equation (18). However, in the atmosphere q
can drop well below qs. Hence for sub-saturation, s may become arbitrarily negative as τ → 0. In
the latter situation, moisture is advected as a passive tracer.

With this information, and further noting that S is O(τ0) (cf. equation (18)), we change
variables: s = S + χ/τ , where χ is an O(τ0) parameter. Equation (18) becomes:

τ2
(
DS

Dt
− κ∇2S

)
+ τ

(
Dχ

Dt
− κ∇2χ

)
= −(1 + αγqs)χ For S + χ/τ ≥ 0 (19a)

τ

(
DS

Dt
− κ∇2S

)
+

(
Dχ

Dt
− κ∇2χ

)
= (1 + αγqs)S For S + χ/τ < 0 (19b)

Then, taking the limit τ → 0 we obtain:

χ = 0 For χ ≥ 0

Dχ

Dt
− κ∇2χ = (1 + αγqs)S For χ < 0

(20a)

(20b)

with corresponding buoyancy equations (cf. 16a):

Db

Dt
= γS + κ∇2b For χ ≥ 0

Db

Dt
= κ∇2b For χ < 0

(21a)

(21b)

where, on the right hand side of equation (21a), there is a buoyancy tendency through latent heat-
ing which is ∝ S. Equations (20a-21b) describe the evolution of moisture and buoyancy in the
rapid-condensation limit. Ultimately, the aim is to use these equations to understand the linear
growth of the system as it transitions from a diffusing to convecting state. First, however, we take
advantage of the physics of atmospheric convection to simplify their form.

2.1.2 Connecting latent heating and convective motions

We move to the case where both the buoyancy variations and the domain height are small.
Equation (4) hence approximates to:

qs ≈ q0(1 + αb− βz) (22)

and S simplifies to:

S =
βq0

1 + αγq0
w (23)

critically this tells us that S ∝ w only in this approximation. As stated in [32], the base diffusive
state of the RyBC system corresponds to w = 0 (∀x) and b(z) = b0+Gz (here G quantifies the bulk
vertical buoyancy stratification in the domain), where the domain is at the condensation threshold
q = qs (∀x), and moisture simply diffuses through the top and bottom boundaries. We consider a
small-amplitude analysis about the diffusive base state by introducing:χ(x, t)b(x, t)

w(x, t)

 =

χ̂(x)b̂(x)
ŵ(x)

 eσt (24)
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and dropping non-linear terms. Now, the question is to understand the linear evolution in regions
of downwelling: ŵ < 0; and upwelling: ŵ > 0.

First, consider the case when ŵ < 0 (S < 0; cf. equation (23)). Using expressions (23) and
(24), equations (20b) and (21b) are transformed:

σχ̂− κ∇2χ̂ = βq0ŵ (25a)

σb̂+Gŵ = κ∇2b̂ (25b)

Equations (25a-25b) are a statement that downwelling regions correspond to passive advection of
moisture without latent heating. To illustrate this, consider an exponentially growing eigenmode
(σ > 0), and recall that βq0ŵ < 0. Then, in evaluating equation (25a) for the maximum value of χ̂
in the downwelling region, χmax, the diffusive term becomes negative since ∇2χ̂|χ=χmax < 0. Taken
altogether, these enforce χmax < 0, and hence downwelling regions of the domain are necessarily
sub-saturated. The second case is when ŵ > 0. Using a similar argument, evaluating equation
(25a) at the minimum value of χ in the upwelling region, χmin, we have∇2χ̂|χ=χmin > 0. Hence,
for σ > 0, χmin > 0, and upwelling regions of the domain necessarily correspond to saturated fluid.
The buoyancy equation in this second scenario is 21a with S expressed using 23.

For exponentially growing eigenmodes, equations (25b) and 21a can therefore be combined into
a single equation, where the latent heating term is expressible in the following way:

σb̂+Gŵ =
βγq0

1 + αγq0
ŵH (ŵ) + κ∇2b̂ (26)

Advantageously, this equation does not require any specification of the moisture field. Once the
continuity and momentum equations (with rotation) are included, we have the ‘quasi’-linear system:

∂tu+ f0ẑ× u = −∇ϕ+ bẑ+ ν∇2u

∂tb = κ∇2b− (N2 − µ̃H (w))w

∇ · u = 0

(27a)

(27b)

(27c)

where we’ve re-cast: G = N2; µ̃ = βγq0/(1+αγq0), and replaced σ → ∂t. This system is not quite
linear since equation (27b) contains a term which is sign-dependent on w.

Equations (27a-27c) represent a significant milestone in this project. (i) From 2.1.1 these equa-
tions have rapid-condensation hard-built in; and (ii) for linear growth about the base diffusive state
we do not need to keep track of the moisture field! From equations (27a-27c) we can far more easily
investigate the influence of both rotation and the magnitude of latent heating on the structure of
the fastest growing eigenmode. This last point is instrumental for an apriori understanding of the
behaviour of asymptotically reduced equations with latent heating, i.e., the ultimate goal of this
project.

2.2 The fastest growing eigenmode of the quasi-linear system

2.2.1 Deriving the characteristic wavenumber polynomial

We are interested in the structure of the fastest growing eigenmode of the system 27a-27c,
and how it varies with both rotation rate and latent heating. This first requires ascertaining the
characteristic polynomial of the system (e.g., [6]). Anticipating cylindrically symmetric solutions
we perform a 2-dimensional/3-component analysis - hence from hereon all system variables will
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be functions of x, z, t only. Some minor algebraic manipulation of equations (27a-27c) yields the
system:

−f0∂xv +∇2ϕ− ∂zb = 0 (28a)

∂tζ + f0∂zv − ν∇2ζ − ∂xb = 0 (28b)

∂tv + f0u− ν∇2v = 0 (28c)

∂tb− κ∇2b+ (N2 − µ̃H (w))w = 0 (28d)

∂xu+ ∂zw = 0 (28e)

ζ − ∂xw + ∂zu = 0 (28f)

Where we have also introduced the vorticity defined through 28f.
Equations (28a-28f) are closed using stress-free boundary conditions. With that, the six problem

variables are decomposed into spatially and temporally varying components:

ζ(x, z, t)
u(x, z, t)
v(x, z, t)
w(x, z, t)
b(x, z, t)
ϕ(x, z, t)

 =



ζ̂(x) sin (kzz)
û(x) cos (kzz)
v̂(x) cos (kzz)
ŵ(x) sin (kzz)

b̂(x) sin (kzz)

ϕ̂(x) cos (kzz)


eσt (29)

It is re-stressed that the linear stability of 27a-27c depends upon the sign of w. However, we readily
identify that when w < 0, the prefactor on w in equation (28d) is simply N2, and when w ≥ 0, the
pre-factor is N2 − µ̃. Therefore, the following derivation is the same for both cases and we carry
the Heaviside through. The ansatz 29 transforms the three diagnostic equations (28a), 28e, 28f):

kzw = −∂xu (30a)

kzζ = −∇2u (30b)

kzb = ∇2ϕ− f0∂xv (30c)

respectively; and the three prognostic equations (28b, 28c, 28d):

(σ − ν∇2)∇2u+ f0k
2
zv + kz∂xb = 0 (31a)

(σ − ν∇2)v + f0u = 0 (31b)

kz(σ − κ∇2)b− (N2 − µ̃H (w))∂xu = 0 (31c)

respectively, where equations (30a-30c) have been used in the manipulation. In matrix form equa-
tions (31a-31c) read: (σ − ν∇2)∇2 f0k

2
z kz∂x

f0 (σ − ν∇2) 0
−(N2 − µ̃H (w))∂x 0 kz(σ − κ∇2)

uv
b

 =

00
0

 (32)

Evaluating the matrix determinant in equation (32) yields the eighth-order operator equation:

[(σ − ν∇2)2∇2(σ − κ∇2)− f20k
2
z(σ − κ∇2) + (N2 − µ̃H (w))∂2x(σ − ν∇2)]u = 0 (33)
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Our interest is in the marginal stability problem. Thus, setting σ = 0 in 33 and further non-
dimensionalising by Lz, we obtain:[

∇8 − f20L
4
z

ν2
(kzLz)

2∇2 +
(N2 − µ̃)L4

z

νκ
∂2x∇2

]
u = 0 (34)

where we recognise the Taylor Number, T , Rayleigh Number, R (defined with N2 < 0), and
non-dimensionalised latent heating parameter, µ6:

T =
f20L

4
z

ν2
; R = −N

2L4
z

νκ
; µ =

µ̃L4
z

νκ
(35)

We now restrict our attention to the fundamental vertical mode, kz = π, with domain height Lz = 1.
Moreover we assume a periodic horizontal variation: ∂x → ikx. Taken altogether, the Laplacian
is rewritten: ∇2 = −(k2x + π2), and the resulting characteristic polynomial (in kx) obtained from
equation (34), general for regions of upwelling and downwelling, reads:

(k2x + π2)4 + Tπ2(k2x + π2)− (R+ µH (ŵ))k2x(k
2
x + π2) = 0 (36)

where in taking the fundamental vertical mode: H (ŵ(x) sin (πz)) ≡ H (ŵ(x)). Equation (36) is
another milestone in our analysis. This may be compared to the (dry) rotating analysis of [6]; also
that of [14] and [3], but those studies use differing formulations of moist thermodynamics to the
present study.

Finally, we discuss an important balance in the characteristic polynomial 36 in the limit of rapid
rotation. For R = 0, equation (36) can be factorised:

α[α3 − µH (ŵ)α+ (T + µH (ŵ))π2] = 0 (37)

where α := k2x + π2 has been introduced. Considering upwellling regions, and inspecting the
resulting cubic inside the parentheses in equation (37), for the system to feel the effects of rotation,
all three terms need to balance. To illustrate this, consider the cubic discriminant:

∆ = −4µ3 − 27(T + µ)2 (38)

which, when one is close to threshold (i.e., ∆ ≈ 0), admits µ3 ∼ T 2 ⇒ µ ∼ T 2/3(≡ E−4/3). It
hence follows from equation (37) that α ∼ T 1/3(≡ E−2/3)7.

Crucially, this tells us that in the rapid rotation limit T >> 1, the critical heating rate for the
onset of convection should scale with the Ekman number as µc ∼ E−4/3. This is in accordance
with our intuition that any latent heating needs to be significantly large to overcome the strongly
stabilising influence of rapid rotation. More fundamentally, this scaling informs how our latent
heating term should be balanced in the asymptotically reduced equations of [11] (see also [2]).

2.2.2 Non-rotating and rapidly rotating solutions to the characteristic polynomial

In the last part of this section we discuss solutions to the characteristic polynomial 36. As
we proceed, we will anticipate plume-like solutions (e.g., [14, 3, 33, 13]; cf. figure 3). Informing
these solutions, we know that upwelling regions correspond to saturated fluid with non-zero latent

6In essence, µ takes on a very similar role to the Rayleigh Number.
7Note the balance α ∼ T 1/3 holds in downwelling regions from equation (37).
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Figure 3: Schematic for periodic plume-like solutions. Here, h refers to latent heating: h = wH (w).

heating (µ ̸= 0), and downwelling regions correspond to un-saturated fluid without latent heating
(µ = 0). Moreover, any ascending plume must be balanced by adjacent downwlling regions as
dictated by continuity.

First, we consider the non-rotating case: T = 0; moreover we set R = 0. Figure 4 presents
solutions to equation (36) where we solve for a periodic ‘chain’ of plumes with upwelling half-width,
a; furthermore, each adjacent plume has a half-spacing, L. The fastest growing mode is defined
by the minimum value of the critical heating, which from figure 4 is an array of non-interacting
plumes. Explicitly, as the plume half spacing, L, is increased, the critical heating rate decreases
monotonically.

To further confirm this result, we perform direct numerical simulations (DNS) of the equations
(27a-27c) initialised with noise. A simulation snapshot is shown in figure 5. Following the initial
transient growth, it is clear that the fastest growing mode of the system is (in this example) two
plumes which are isolated from each other and do not impact each other’s growth. Broadly, this
result is consistent with (e.g.,) [3].

We now consider the rotating case. Figure 6 shows results obtained by performing a similar
analysis to the non-rotating case, but with different (non-zero) values of the Taylor Number, T . To
complement this, numerical simulations of the 2-dimensional/3-component equations (27a-27c) are
presented in figure 7.

In contrast to the non-rotating case, it becomes clear from these figures that the fastest growing
mode in the rapidly rotating regime (i.e., for sufficiently high T ) is an array of tightly packed
periodic plumes. As T is increased, a distinct minimum in the critical heating rate corresponding
rate to a narrow plume half spacing is observed. The DNS results presented in figure 7 confirm this.
This is a fundamental result which tells us that the fastest growing mode of the system 27a-27c
changes qualitatively as rotation becomes more dominant.

3 Non-hydrostatic QG Equations with Latent Heating

3.1 Statement of the new reduced system

On the basis of the analysis presented above, and that discussed in appendix B, we propose a
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Figure 4: As a function of the plume half-spacing, L: top: critical heating rate, normalised by
the critical Rayleigh number obtained from a classical Rayleigh-Bénard stability analysis ([27]);
middle: updraft half width; bottom: updraft half-width normalised by the plume half-spacing.
All panels correspond to the non-rotating case (T = 0). This figure confirms that the most unstable
mode of the system is an array of non-interacting plumes.
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Figure 5: Results from direct numerical simulations of the Boussinesq equations with latent heating
as described in equations (27a-27c) for the case where T = 0. Presented is the buoyancy (b),
horizontal velocity (u), vertical velocity (w), and latent heating rate (h = µwH (w)). In good
agreement with the results presented in figure 4, we observe that the fastest growing mode of the
system corresponds to non-interacting plumes. One should further note the asymmetry present in
the vertical velocity, where updrafts (reds) are narrower, but stronger than adjacent downdrafts
(blues)
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Figure 6: As in figure 4, but for different values of the Taylor number (T ), as indicated by the
legend in the top panel. In contrast to the non-rotating case, we see that for large T , the most
unstable mode is now an array of closely packed plumes - cf. the distinct minimum in the top
panel.
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Figure 7: As in figure 5, but with rotation (i.e., 2-dimensional/3-component). In stark contrast to
figure 5 the fastest growing mode of the system corresponds to an array of plumes, in agreement
with the results of figure 6. Note the presence of the vertical velocity asymmetry described in the
caption to figure 5.
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Figure 8: Time series of maximum vertical velocity w (evaluated over the whole domain) for

different values of µ = constant. Here R̃a = 80 and Pr = 1. The case µ = 0 corresponds to the
original reduced equations described by [11] (J98). Note in particular the increase in growth rate
as µ is increased. All simulation details are the same as those given in the caption to figure 1;
however, due to computational expense and our focus here on the initial linear growth stage, these
simulations were not run to a quasi-equilibrated state.

set of reduced equations, which read thus:

∂t∇2ϕ+ J(ψ,∇2ϕ) + ∂Zψ =
R̃a

Pr
b′ +∇4

⊥ϕ

∂t∇2
⊥ψ + J(ψ,∇2

⊥ψ)− ∂Z∇2ϕ = ∇4
⊥ψ

∂tb
′ + J(ψ, b′) +∇2ϕ∂Zb = Pr−1∇2

⊥b
′ + µ(Z)[∇2ϕH (∇2ϕ)]′

∂T b+ ∂Z(b′∇2ϕ) = Pr−1∂2Zb+ µ(Z)∇2ϕH (∇2ϕ)

(39a)

(39b)

(39c)

(39d)

Here the latent heating term has both a mean term: µ(Z)∇2ϕH (∇2ϕ); and a fluctuating term: 
µ(Z)[∇2ϕH (∇2ϕ)]′. In practice, we solve for 39a-39d using the substitution ∇2ϕ = w′, as defined 
through the Helmholtz decomposition of the streamfunction.

The asymptotic validity of including these terms as written in equations (39c) and (39d) is
discussed in the conclusions section and remains an open question of this project. For now, we will
proceed with equations (39a-39d) fairly ad-hoc. In the next subsection we demonstrate that the
system 39a-39d is a good starting point for a set of reduced equations.

3.2 Numerical simulations of the reduced equations (39a-39d)
We first briefly consider the case where µ is a constant in the Z−direction. Figure 8 shows time

series of max (w′) for simulations using different values of µ ∈ [0, 0.5, 1, 2, 4, 8]; n.b. that the case µ = 
0 simply corresponds to the ‘dry’ reduced equations (14a-14d) and is referred to as ‘J98’ from hereon.
All numerical simulation details are given in the caption to figure 1.

These simulations confirm that the linear growth rate scales with µ, as broadly expected from
(e.g.,) figure 6. This is also in accordance with our intuition with atmospheric convection, that
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Figure 9: Time series of maximum vertical velocity w (evaluated over the whole domain) for

different values of the scaled Rayleigh number, where in particular we consider R̃a ·∆ for R̃a = 80
and Pr = 1. In panel a we consider the case where µ = 0, and hence the value of ∆ corresponding
to criticality as obtained by [29] is ∆c ≈ 0.11, as broadly confirmed in this panel. In panel b we
use an exponentially decaying form of µ(Z) (details given in the text), and find that the action of
latent heating is to dramatically reduce the value of the critical ∆c. See the caption to figure 8 for
a description of the simulation procedure.
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a

b

Figure 10: End of simulation vertical velocity (w′) snapshots from simulations of the reduced equations

(39a-39d) for R̃a = 40 and Pr = 7. In particular, one should compare panel a with figure 1.a, and panel

b with figure 2, and observe that for the same values of R̃a and Pr, latent heating has pushed the system
towards a state of geostrophic turbulence. All simulations are quasi-equilibrated; other simulation details
are the same as those given in the caption to figure 1.
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Figure 11: a,b: as in figure 10 but for snapshots earlier in the simulation to empahsize the asymmetries
present in simulations of equations (39a-39d) (e.g., one should compare panel a here with fig 1.a). To
present a quantitative measure of the asymmetry introduced through the latent heating terms in equations
(39a-39d), in c we compute the sknewness as a function of time, S(t), for the midplane vertical velocity,

w′ (blues), and streamfunction, ψ (reds). a-c: Both simulations are performed with R̃a = 40 and Pr = 7;
we compare the case with µ = 0, and with an exponentially decaying profile, µ = µ(Z), as indicated in the
legend to panel c.
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Figure 12: Direct numerical simulation of the Boussinesq equations with latent heating h ∝ wH (w). The
output is for early times in the simulation. Note the strong asymmetry in the vertical velocity, as also seen
in simulations of the reduced equations in figure 11.
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stronger latent heating should, in general, lead to stronger updrafts. In the remainder of our
simulations and discussion of equations (39a-39d), we use an exponentially decaying profile of
µ(Z):

µ(Z) = −γ∂Zqs (40)

where qs is determined through equation (4), and for Earth’s atmosphere γ = 0.2, β = 2, and α = 3
(all [32]). This form of µ(Z) has been chosen because it far more closely represents the atmospheric
situation than a constant value (and arises directly in the analysis of appendix B).

The first investigation we perform seeks to answer the question “what impact does latent heating
have on the criticality of the reduced equations?”. To answer this, we construct figure 9.b, which
broadly extends the analysis shown in figure 8, but now we use an exponentially decaying form
of µ(Z), and importantly vary the Rayleigh number (see the description in the caption to figure
9) to assess the transition to organized convection in the system. We also construct figure 9.a to
compare these results to simulations of the ‘dry’ equations (14a-14d). We choose a range of values

of R̃a which span sub-critical and critical values in the ‘dry’ equations: (R̃a ·∆) ∈ [0, 1, 2, 4, 8, 16],

for which the critical value (R̃a ·∆)c ≈ 11 is determined by (e.g.,) [29].
In the dry case, figure 9.a confirms that the system becomes convecting above this threshold

value. Then in the ‘moist’ case, figure 9.b indicates that the system 39a-39d transitions to a
convecting state at a much lower value of R̃a ·∆. Hence, a critical piece of atmospheric physics is
seen in the system 39a-39d, that is, the presence of latent heating leads to organized convection in
situations when ‘dry’ convection would not occur. To complement this, figures 10.a and 11.a show
the structure of the vertical velocity field in the Z−midplane for the system 39a-39d with R̃a = 40,
Pr = 7. Several important differences to the dry case are worth pointing out.

The first is that, due to the latent heating, for these parameter values the system transitions
ultimately from a regime of laminar columnar convection (as shown in figure 1.a), into one which
is characterised by geostrophic turbulence (10). Note for instance the more turbulent convective
columns in figure 10.b as compared to figure 2. One hypothesis is that the latent heating term acts
to increase the effective Rayleigh number of the system until the system transitions into a more
turbulent state.

The second important difference is a transient anticylone/cyclone symmetry breaking in the
system. Figure 11.c shows skewness as a function of time for the Z−midplane vertical velocity
w′(x, y, zmid) (and Z−midplane streamfunction, ψ(x, y, zmid)) where at each time instance the
skewness computed over all horizontal gridpoints. During the initial growth of the system, the
large positive skewness in w′(x, y, zmid) indicates that there is a tendency towards stronger, but
narrower updrafts, which are surrounded by broader, but weaker downwelling regions. This is
clearly visible in figure 11.a. This pattern of updrafts and downdrafts clearly aligns with the
picture obtained from linear stability, and will be a point of further investigation.

A similar positive skew is observed in the streamfunction ψ, which indicates a preference for
either anticyclonic or cyclonic motion. Due to the computational expense of these experiments
over the summer period, it is currently unclear whether this asymmetry persists through towards
a statistically steady state. Nevertheless, even if this a transient phenomenon, it indicates a signif-
icant departure from the strong symmetry present in the original reduced equations (cf. (11.c)).
Finally, we compare these results to direct numerical simulation of the 3D equations at high Rossby
number(figure 12). Our simulations also show this asymmetry.

4 Discussion and Conclusions

The principal aim of this work is to develop a relatively simple theoretical model which unites
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three elemental physical aspects of convection: moist thermodynamics; planetary rotation; and
deep-reaching (non-hydrostatic) convection. This is an immensely rich and ongoing research prob-
lem, thus only the major conclusions of our work are detailed here.

We first attempted to formulate our model of atmospheric convection by performing an asymp-
totic reduction in the distinguished limit Ro → 0 (following that detailed in [11]) using the RyBC
model as our starting point. This approach for studying moist convection had hitherto not been
performed.

Significant challenges in this approach quickly precipitated, primarily relating to the parametri-
sation of latent heating as a discontinuous function, and the formal ordering of the rapid conden-
sation timescale. Partial differential equations with discontinuous forcing terms represent highly
non-trivial problems, and such systems are not readily amenable to an asymptotic reduction (e.g.,
[8]). Other models similar to RyBC (e.g., [9], [28]) also employ discontinuous functions, hence sim-
ilar starting points would have yielded the same conclusion. Whether there are other formulations
of latent heating which (i) can be incorporated consistently into the dry Boussinesq equations and
(ii) be more amenable to an asymptotic reduction remains an interesting question.

Instead, significant progress was made by understanding linear stability properties of the RyBC
model in the limit τ → 0. Specifically, our interest was on the transition from a diffusive to a
convective state. We ultimately showed that, for an exponentially growing eigenmode, regions of
latent heating correspond to convective updrafts, and regions of zero latent heating correspond to
downdrafts. This greatly simplifies the form of the latent heating closure, and remains rooted in
the physics of atmospheric convection by establishing the clear role of convective updrafts and the
top-down asymmetry.

Although the resulting ‘quasi’-linear system 27a-27c is still discontinuous in a system variable,
we were able to determine the physical structure of the fastest growing mode of the system. The
analysis developed in 2.2 established the characterstic polynomial 36, broadly an extension to those
discussed in other studies (e.g., [6, 14, 3]). Most importantly, in the limit of rapid rotation (T ≫ 1),
the fastest growing eigenmode computed from this equation is characterised by relatively strong
and narrow updrafts with adjacent, weaker, but broader, downwelling regions. Figure 6 shows that
these plumes are tightly spaced. This represents a significant qualitative departure to the fastest
growing eigenmode in the non-rotating case (T = 0) which is characterised by isolated plumes
(e.g., figure 4). All of these results were found to be robust via a direct numerical simulation of the
quasi-linear equations (27a-27c).

Finally, in the rapidly rotating limit, the eigenmode equation (36) admits the scaling for the
critical latent heating rate µc ∼ T 2/3 ≡ E−4/3, indicating that latent heating needs to be large.
Physically, this makes sense: given the stablising effect of rotation through the Taylor-Proudman
effect, any heat source should be significant to force convection in the system. This result in
particular is crucial as we continue to scrutinise the form of our reduced equations with latent
heating 39a-39d.

Using the aforementioned results, and the findings from appendices A-B, in section 3 we wrote
down ‘new’ reduced equations with latent heating 39a-39d. Although ad-hoc, these equations ex-
hibit many behaviours which align with our intuition of atmospheric convection. How exactly one
should asymptotically balance the latent heating term remains an unsolved and interesting problem
of this project.

4.1 Avenues for further work

With regards to the multiscale asymptotics analysis there are several avenues. An extension
to the reduced equations is made by [10] in which they include slow modulation in the horizontal
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directions, i.e., including slow variables: X = A−1
X x; Y = A−1

Y y. A recurring issue in our initial
derivation of reduced equations was finding a horizontally invariant latent heating, which is not a
physically interesting problem in the context of this study. Inclusion of slow modulation, and the
corresponding re-definition of the fast scale average (defined through equation (10)) may provide
an important insight.

This may also allow a study of the convective aggregation problem. One motivation would be
to understand how, e.g., the ∼ O(hours) and ∼ O(1km) scales for cumulus convective clouds which
interact with the ∼ O(weeks) and ∼ O(100-1000km) scales typical of tropical cyclones and the
intertropical convergence zone. Similar approaches have been used to explicate the dynamics of the
tropical atmosphere on (fast) mesoscale and (slow) synoptic spatiotemporal scales (e.g., [16]). As
pointed out by [16], general circulation models do not accurately represent statistical interactions
between tropical convection across spatiotemporal scales making this an important question for
climate dynamics.

It is important to reconcile the asymptotic validity of the latent heating terms incorporated in
equations (39a-39d). In their original derivation, equation (14c) enters at O(Ro) in the fluctuating
buoyancy equation (12b), and equation 14d enters at O(Ro2) in the mean buoyancy equation
(11b). Hence, any additional terms need to respect this asymptotic ordering. Tangentially, whether
equations (39a-39d) admit single-mode solutions is of great future interest.

With respect to numerical simulations, there are several ways in which one could envisage
making the convection more appropriate for Earth’s atmosphere. For instance, restoring to a
profile of b which satisfies the nonlinear elliptic equation ∂zm = 0, where m = b+ γqs is the moist
static energy like variable in the system, would provide a closer analogy to tropical convection (e.g.,
[20]).

Another avenue would be to consider different orientations of the Coriolis acceleration to access
different regimes of Earth-like convection. Such analytic models were detailed in [12], but have not
been performed numerically (to the knowledge of the author). These models allow for arbitrary
orientation of the rotation vector relative to the horizontal plane, and with the inclusion of moist
thermodynamics could aid in a description of, e.g., midlatitude ‘sloping convection’ versus the up-
right convection characteristic of the tropics.
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A Tribulations with Multiscale Asymptotics

A.1 The timescale ratio conundrum

The role of τ in the RyBC model is crucial; however, it creates significant challenges in per-
forming the asymptotic reduction of [11], as exemplified below. Starting with the re-scaled and
non-dimensionalised buoyancy equation (9b), including the latent heating term from the right hand
side of equation (7b), and introducing the shorthand δq ≡ q − qs, we have:

(Dt +A−1
T ∂T + wA−1

Z ∂Z)b = Pe−1(∇+A−1
Z ẑ∂Z)

2b+ γ

(
L

Uτ

)
δqH (δq) (41)

where γ is non-dimensional (cf. [32]). To make progress, we consider the mean buoyancy equation
and take the scalings of [11]: A−1

Z = ϵ; A−1
T = ϵ2; Pe ∼ O(1) ≡ ϵ0. We will also take γ ∼ O(1)

and assume the mean component of the latent heating term is expressible as: δqH (δq). This
leaves free the scaling for the ratio of the advective to condensation timescales, for which we choose
(L/Uτ) = ϵα. Some manipulation yields:

ϵ2∂T b+ ϵ∂Z(wb) = ϵ2∂2Zb+ ϵαδqH (δq) (42)

Then inserting explicit forms for the asymptotic expansions:

ϵ2∂T (b0 + ϵb1 + ...) + ϵ∂Z(b′0w
′
0 + ϵ(b′1w

′
0 + b′0w

′
1) + ...) = ϵ2∂2Z(b0 + ϵb1 + ...) + ϵαδqH (δq) (43)

n.b. we have not made any decisions regarding the asymptotic expansion of δqH (δq) - this separate
and crucial issue is discussed in the next sub-appendix.

Continuing - caveat emptor - the leading order equation would read:

∂Z(b′0w
′
0) = ϵα−1δqH (δq) (44)

Then, it is fundamental that non-hydrostatic convection cannot occur unless w′
0 ̸= 0. In [10],

where there is no term on the right hand side of equation (44), they enforce b′0 = 0. This result is
ultimately critical for closing the system and arriving at the reduced equations (14a-14d). Hence,
we also adopt this constraint for the case with latent heating. An exercise was performed relaxing
this constraint, which led to the aforementioned closure issues and is thus not included in this
report.

Enforcing the constraint b′0w
′
0 = 0 above implies α − 1 ≥ 1 ⇒ α ≥ 2. Then, to the next order

in the mean buoyancy equation we have:

∂T b0 + ∂Z(b′1w
′
0) = ∂2Zb0 + ϵα−2δqH (δq) (45)

If we take α = 2, the above equation is exactly equation 12 of [10] with an additional latent heating
term.

However, choosing α ≥ 2 fundamentally violates the underlying principle that the condensation
timescale is the fastest timescale in the system! A-priori we would expect L/(Uτ) >> 1 and hence
conclude that α should be negative, i.e., at least α ≤ −1. In turn, this would require that the
leading order relevant term in the expansion of δqH (δq) were at minimum an order O(ϵ3) quantity.
Ultimately, this would require solving for many higher order terms in the expansions of q and qs,
leading to a system which can’t be closed.
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A.2 The discontinuous latent heating term

The discontinuous manner in which latent heating is (necessarily) parametrised in the RyBC
system raises two immediate questions: (i) how do we expand this term asymptotically, and (ii)
what does it mean to formally take a fast-scale average?

To deal with the terms ∝ (q − qs)H (q − qs), we use the asymptotic expansions:

q = q0 + ϵ(q1 + q′1) + O(ϵ2) (46)

qs = qs,0 + ϵ(qs,1 + q′s,1) + O(ϵ2) (47)

where, through the isomporphism with b we have taken q′0 = q′s,0 = 0. Then, writing out the
discontinuous part of the latent heating term explicitly:

H (q − qs) = H (q0 − q0,s + ϵ(q1 − q1,s + q′1 − q′1,s) + O(ϵ2)) (48)

we could write down a Taylor expansion about the leading-order mean term to give:

H (q − qs) = H (q0 − q0,s) + ϵ(q1 − q1,s + q′1 − q′1,s)δ(q0 − q0,s) + O(ϵ2) (49)

Already this is an issue because the leading order term hints at a horizontally-uniform latent heating.
I.e., latent heating is only triggered once the mean component of the moisture field - which here is
equivalent to a domain average - exceeds the mean saturated component. For instance there will
be situations where small-scale fluctuations in moisture can cause local saturation. These are not
encapsulated by the above formulation. Moreover, to order O(ϵ) in the above expansion, there are
higher order (than 0th) mean terms which aren’t required to be solved for in the original derivation
of [11].

Secondly, if we now write out the latent heating term in full:

(q − qs)H (q − qs) =

[q0 − q0,s + ϵ(q1 − q1,s + q′1 − q′1,s) + O(ϵ2)]H (q0 − q0,s)

+ ϵ[q0 − q0,s + ϵ(q1 − q1,s + q′1 − q′1,s) + O(ϵ2)](q1 − q1,s + q′1 − q′1,s)δ(q0 − q0,s)

+ O(ϵ2) (50)

Then, what does the fast scale average look like for these terms? As an example using the leading-
order mean component:

(q − qs)H (q − qs)0 = lim
T ,V→∞

1

T · V

∫
T ,V

(q0 − q0,s)H (q0 − q0,s)dxdt; x, t ∈ V, T (51)

through equation (10). How to evaluate integrals such as the one above in the context of the physics
of our problem remains an open mystery (cf. also [25]).

A.3 A ‘generalised’ condensation term

Both issues discussed above directly relate to the explicit form with which latent heating is
parametrised in the RyBC model. Taking a step back, another approach could be to derive a set of
reduced equations with a general condensation term: P. Explicitly, the (dimensional) buoyancy
and moisture equations would then be written:

Db

Dt
= κ∇2b+ γP (52)
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Dq

Dt
= κ∇2q − P (53)

As a thought experiment, we won’t yet make an appeal to rapid-condensation and assume that P
can be ‘nicely’ decomposed into mean and fluctuating parts.

To understand how to carry this forward, it is critical that equations 14a and (14b) enter
as a solveability condition in the O(Ro2) fluctuating momentum equation; equation (14c) enters
at O(Ro); equation (14d) enters at O(Ro2). As such, any additional forcing terms in the reduced
equations must respect this asymptotic ordering (cf. [12]). This eventually implies P = ϵ2P+ϵP ′.

However, we do not have evolution equations for P nor P ′. Rather, it is impossible to compute
either quantity without first computing the full condensation field, P. The necessary decompo-
sition of P into mean and fluctuating components would thus require an arbitrary ϵ! Moreover,
in principle P must be computed from the full q and qs fields (i.e., mean + fluctuations), thus
also requiring reconstruction of the fields with arbitrary ϵ! There are considerable issues with this
approach before we’ve even considered the rapid-condensation timescale and averaging.

B Treating τ as a Formal Small Parameter

B.1 Derivation of preliminary reduced equations with moisture in the limit
τ → 0

The purpose of this subsection is to show how one might approach the asymptotic reduction
of equations (7a-7d) with rotation following [11], but treating τ as a formal small parameter of
the system. It is taken that both τ and Ro are formal small parameters, in such a way that
τ << ϵ = Ro << 1. Given the critical role of τ , here we will consider the following ‘dual’
expansion to q − qs, where it is assumed that the limit τ → 0 is taken before ϵ→ 0.

q − qs ∼

{
(q0 + ϵq1 + ...)− (qs,0 + ϵqs,1 + ...) when q < qs

(q0 + τqτ + ...)− (qs,0 + ϵqs,1 + ...) when q ≥ qs
(54)

Note that the leading order fluctuating terms q′0 and q′s,0 would be determined to be 0.
Considering the expansion in expression 54, for q < qs, the asymptotic reduction can be carried

exactly as in [11] since q is decoupled from the buoyancy equation, and behaves as a passive tracer
in the system.

Then, for q > qs, one can show that the leading order mean and fluctuating q equations yield,
after taking the limit τ → 0:

ϵ2∂T q0 + ϵ2∂2Z(w
′
0q

′
1) = ϵ2Pe−1∂2Zq0 − qτ (55a)

ϵD0
t q

′
1 + ϵw′

0∂Zq0 − ϵPe−1∇2q′1 = −q′τ (55b)

and hence find that the mean and fluctuating parts of qτ can be written:

qτ = −ϵ2[Pe−1∂2Zq + ∂T qs − ∂Z(w′
0q

′
s)] (56a)

q′τ = −ϵ[Dtq
′ + w′∂Zqs − Pe−1∇2q′] (56b)

where the asymptotic ordering of individual terms has been suppressed.
Critically qτ ∼ O(ϵ2) and q′τ ∼ O(ϵ). Then, in re-introducing the streamfunction formulation

(e.g., w′ = ∇2
⊥ϕ), one can write a set of reduced equations of the following form:

∂t∇2
⊥ϕ+ J(ψ,∇2

⊥ϕ) + ∂Zψ =
R̃a

Pr
b′ +∇4

⊥ϕ (57a)
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∂t∇2
⊥ψ + J(ψ,∇2

⊥ψ)− ∂Z∇2
⊥ϕ = ∇4

⊥ψ (57b)

∂Zp =
R̃a

σ
b (57c)

∂T b− Pe−1∂2Zb+ ∂Z(b′∇2
⊥ϕ) =

{
0 for q < qs

−γ[∂T qs − Pe−1∂2Zqs + ∂Z(q′∇2
⊥ϕ)] for q ≥ qs

(57d)

∂tb
′ + J(ψ, b′) +∇2

⊥ϕ∂Zb− Pr−1∇2
⊥b

′

=

{
0 for q < qs

−γ[∂tq′ + J(ψ, q′) +∇2
⊥ϕ∂Zqs − Pr−1∇2

⊥q
′] for q ≥ qs

(57e)

{
∂T q − Pe−1∂2Zq + ∂Z(q′∇2

⊥ϕ) = 0 for q < qs

q = qs for q ≥ qs
(57f)

{
∂tq

′ + J(ψ, q′) +∇2
⊥ϕ∂Zq − Pr−1∇2

⊥q
′ = 0 for q < qs

∂tq
′ + J(ψ, q′) +∇2

⊥ϕ∂Zqs − Pr−1∇2
⊥q

′ = 0 for q ≥ qs
(57g)

Note that the last equation above is essentially a statement that one must keep track of the q′ fields
in order to evaluate the condition q ≥ qs at each point in (x, t), which still requires reconstruction
of the fields at arbitrary small Ro. Furthermore, equation (57f) leaves us with a situation in which
there is a horizontally-uniform latent heating.

Nevertheless, the most important point to make is that equation (57e) contains a term on the
right-hand side which goes as −γ(∇2

⊥ϕ)∂Zqs ≡ −γw′∂Zqs. This term is evocative of latent heating
closures used in other studies [17]. In section 2 we take the τ → 0 limit of the RyBC equations
which shows that under certain conditions, this term is actually the only term which one needs to
include. In section 3 we hence argue the case for a set of reduced equations with this term. Hence,
although somewhat unfruitful in of itself, the analysis described above greatly inspired the work
outlined in the main report.

B.2 Moist static energy

A final interesting point is that one can use these equations to obtain evolution equations for
moist static energy (MSE; e.g. [20]). For q < qs: 57d+ γ × 57f yields:

∂T [b+ γq]− Pe−1∂2Z [b+ γq] + ∂Z([b′ + γq′]∇2
⊥ϕ) = 0 (58)

For q ≥ qs, equation (57d) can be re-arranged:

∂T [b+ γqs]− Pe−1∂2Z [b+ γqs] + ∂Z([b′ + γq′]∇2
⊥ϕ) = 0 (59)

Hence, we may combine both equations above through an MSE-like variable: Λ = b + γq, which
has mean, Λ = b+ γq, and fluctuating Λ′ = b′ + γq′ parts.

Introducing the slow differential operator DT ≡ ∂T − Pe−1∂2Z , one obtains:

DTΛ = −∂Z(Λ′∇2
⊥ϕ)

(
≡ −∂Z(Λ′w′)

)
(60)
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and note that in the absence of diffusion (i.e., the RHS of the above → 0), one would conserve the
mean MSE on long scales. A similar manipulation of the fluctuating equations, and introducing
the fast differential operator Dt ≡ ∂t + J(ψ, ...)− Pe−1∇2

⊥ yields:

DtΛ
′ = −∇2

⊥ϕ∂ZΛ

(
≡ −w′∂ZΛ

)
(61)

and hence small-scale fluctuations in the MSE feed off gradients in the mean MSE through the
small-scale vertical velocity fluctuations.

C Notes on the solution to the characteristic polynomial (33)

C.1 Dispersion relations

First re-stating the operator equation (33:

)[(σ − ν∇2)2∇2(σ − κ∇2)− f20k
2
z(σ − κ∇2) + (N2 − µ̃)∂2x(σ − ν∇2)]u = 0

but now taking σ ̸= 0, we may obtain dispersion relationships for σ in terms of kx, kz.

• In the diffusion-free case: κ, ν → 0, and where N2 = µ = 0.

σ3∇2 − f20k
2
zσ = 0 (62)

this gives us

σ2 = − f20k
2
z

k2x + k2z
(63)

σc =
f0kz
|k|

(64)

where σc denotes the complex part of the growth rate. Equation (52) hence corresponds to
inertial waves.

Including diffusion: Then, one could relax the constraint κ, ν ̸= 0, whilst maintaining
N2 = µ = 0. In this situation the operator equation reduces to:

(σ − ν∇2)2∇2 = f20k
2
z (65)

and after some algebra leads to damped inertial waves:

σ = −ν|k|2︸ ︷︷ ︸
σr

±i f0kz
|k|︸ ︷︷ ︸
σc

⇒ (e.g.,) w ∝ e−ν|k|2e
±i

f0kz
|k| (66)

since the real part of the growth rate, σr is < 0.
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Fast Singular Limits of the Lagrangian-averaged
Navier-Stokes-α Model

Lulabel Ruiz Seitz

August 21, 2024

1 Introduction

The Lagrangian-averaged Navier-Stokes-α, or LANS−α, equations constitute a turbulence 
closure method based on mathematical regularization, and have been shown to be more 
successful than commonly used closure schemes in a number of contexts [9, 11, 12, 14]. In 
particular, the LANS−α model is more energetic at lower resolutions than large eddy 
simulations (LES) with other turbulence closure schemes at higher resolutions; it achieves at 
lower resolution what other methods require higher resolution to accomplish. Despite its 
successes in turbulence modeling, the LANS-α model’s origins lie outside this field. Most 
directly, the LANS-α model emerged from the Gjaja-Holm Wave-Mean Flow Interaction 
(WMFI) equations, which were developed for entirely different purposes [14]. Once again 
appearing in an unexpected context, the LANS-α equations were subsequently found to 
answer a long-standing question related to the mathematical regularization of Navier-Stokes, 
with roots in Leray’s work from 1934 [19].

Leray famously proved the existence of weak solutions to the Navier-Stokes equations, 
while recognizing the challenge of proving uniqueness for three-dimensional solutions [19]. 
Leray’s key insight, now known as Leray regularization, involves smoothing the (nonlinear) 
advection term to form a regularized version of the equations. Leray accomplished this by 
using a sequence of mollifiers {ϕϵ} and replacing v · ∇v with (ϕϵ ∗ v) · ∇v [10]. Taking ϵ → 0 
recovers the unregularized Navier-Stokes equations. The LANS-α equations employ this 
same regularization principle, but with a different operator than convolution with a molli-

fier: an inverse Helmholtz operator with smoothing parameter α, (1 −α2∆)−1. This inverse 
Helmholtz operator is an approximation of the transformation between Lagrangian and Eu-
lerian velocities and is the namesake of LANS-α. Although the Leray equations successfully 
regularize Navier-Stokes, they raised a key question: how to achieve such regularization while 
preserving important circulation properties. This open question was answered by the LANS-
α equations, which extend Leray’s approach by retaining a Kelvin circulation the-orem while 
maintaining well-posedness [24] and convergence to the original Navier-Stokes equations as α 
→ 0.

Furthermore, the LANS-α equations embody the fundamental principle of LES: confin-
ing the inertial range of the energy cascade to exclude motions at unresolvably small spatial 
scales. Indeed, unlike many LES approaches that lack mathematical rigor, the LANS-α
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model is particularly compelling due to its rigorous mathematical derivation and its deep
connection to regularized Navier-Stokes [10].

Figure 1: The hierarchy of equations: from the Navier-Stokes momentum equation to
the LANS-α momentum equation. In blue, what differs from the previous equation is
highlighted. From Navier-Stokes to Leray−α may be considered successive approximations,
while the transition to LANS-α then adds necessary terms to obtain a Kelvin circulation
theorem.

Despite its demonstrated success and theoretical foundations, the LANS-α model ex-
hibits unusual numerical stability issues for certain values of the parameter α. Specifically,
Hecht et al. (2008) found that simulations were unstable – the kinetic energy blew up –
when α ≥ 2∆x, where ∆x is the grid spacing [12]. This behavior is not unique; the mathe-
matically similar Anstey and Zanna closure method has also faced numerical stability issues
[1]. Although stability analyses have been conducted (c.f. [4], [12]), a clear resolution to
these stability issues has remained elusive.

To this end, we compute fast singular limits of the LANS-α equations. The fast singular
limit intended for “averaging over fast gravity waves” in geophysical flows was established
by Embid and Majda in 1996 and further developed in 1998 [5, 6, 7]. This method not only
determines the limiting slow dynamics, as in a singular limit, but also explicitly describes
the impact of fast dynamics (i.e. waves) at that order. This approach yields a natural
partition into slow and fast dynamics, unlike other asymptotic methods that only capture
slow dynamics explicitly. It is often desirable to derive reduced, more computationally
tractable equations that still model key dynamics of interest. By appropriately choosing a
small parameter, one can employ multiscale asymptotics to obtain such reduced equations
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representing “slow dynamics” while filtering out “fast dynamics.” For example, the quasi-
geostrophic equation represents the “slow dynamics” while wave effects filtered out during
the reduction constitute fast dynamics.

The extent to which one can truly “filter out” fast dynamics was central to studies of the
slow manifold. If there is a slow manifold – a subspace of the whole solution space on which
only the balanced or dominant dynamics lie – is it true that dynamics off the manifold do
not affect the evolution of those on the manifold? This concept was of much interest in
the 1980s-1990s and sparked debate due to a fundamental disconnect: a slow manifold in
the scientific sense, corresponding to the slow dynamic equations, is not necessarily a slow
manifold in the mathematical sense of a center manifold. Even if there is a slow manifold
in the mathematical sense, it does not necessarily serve as the desirable slow manifold in
the scientific sense, on which, for instance, there would never be any gravity wave activity
[16, 21, 22]. This framework has nonetheless provided valuable insights in many situations
(c.f. [2], [20]).

Figure 2: A schematic diagram of the (idealized) slow manifold: the slow manifold occupies
a subset of the overall solution space, shown in light blue, and the reduced dynamics live
on the slow manifold, shown in dark blue. Fast dynamics live off the manifold, shown in
black. These dynamics are shown as oscillatory to represent that they are associated with
different types of waves, and are shown as approaching the slow manifold to represent that
the slow manifold may be thought of as an “attractor.”

Whitehead and Wingate (2011) used the fast-slow decomposition that arises from a fast
singular limit to assess the influence of fast dynamics on those lying on the slow manifold,
and in doing so, addressing the validity of using the reduced equations and analyzing mean
flow-wave interactions [29]. This investigation involved an analysis of the energy evolution
of the system, in each of the three asymptotic limits for the Boussinesq equations (low
Rossby only, low Froude only, and QG). It should be noted that not all of the three possible
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slow manifolds should have no waves; in the low Rossby but finite Froude limit, for instance,
the Froude-related operator is slow, so waves created due to stratification can be on the
slow manifold. The energy analysis revealed that slow potential energy can convert to slow
kinetic energy (remain slow) only in the QG limit. In the other cases, potential energy fed
into the fluctuating components of the flow. However, when forcing the whole flow rather
than just the slow or fast components, the fast dynamics significantly modulate energy
transfer. Thus the fact that leading order fast dynamics cannot affect leading order slow
dynamics gives an incomplete picture. These results concretely illustrate the potential of
fast singular limits, especially when comparing multiple distinguished limits for the same
system whenever they exist.

We similarly take advantage of the fast-slow decomposition, but in particular to ap-
proach the numerical instability issue. While slow dynamics for the LANS-α equations
have been previously mathematically studied – in that the existence of attractors has been
proven for the LANS-α equations [18] and the dimensions of these attractors studied [17]
– the aim of prior work was not to study the evolution of fast and slow dynamics or to
address the stability issue. In light of the kinetic energy blow-up, we hypothesize that the
fast component of the energy is problematic: the fast dynamics drive the instability. By
taking fast singular limits, we can better understand the properties of the LANS-α model
and localize the origin of the stability issue, guiding the development of stable numerical
implementations.

The structure of this report is as follows. In Section 2, we provide a full mathematical
background for taking a fast singular limit in the context of geophysical fluids. A goal of
this section is to provide a more robust exposition of this methodology, so that it may be
readily applied to problems of interest by a reader who does not have prior experience with
the method. This section also includes three fast singular limits calculated for unregularized
Navier-Stokes, so that we can compare the α = 0 results to the α ̸= 0 (LANS-α) results
found in Section 3. Section 3 contains the three fast singular limits for LANS-α, which is
the theoretical work underlying our results. Lastly, Section 4 describes the continued work
following what is written in this report, including numerical simulations to complement the
theoretical findings, and outlines possible future directions.
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2 Background: Fast Singular Limits

In this section, we discuss the methodology of taking a fast singular limit and the significance
of the resulting fast-slow decomposition, and apply this method to the (unregularized,
α = 0) Boussinesq equations. The rigorous mathematical formulation explicated in this
section further illustrates why taking a fast singular limit is a particularly useful approach
towards resolving the numerical instability associated with the LANS-α model.

2.1 Rotating, stably-stratified Boussinesq equations

To make the general framework for taking a fast singular limit established by [5] less ab-
stract, we first write out the system it was originally designed to analyze. Note, however,
that there are relatively relaxed requirements for applying this methodology such that it
may be readily applied to other systems. The rotating, stably-stratified Boussinesq equa-
tions are given by

DHvH
Dt

+ w
∂vH
∂z

+ fv⊥
H +

1

ρ0
∇Hp = ν∆HvH (1)

DHw

Dt
+ w

∂w

∂z
+

1

ρ0

∂p

∂z
+

g

ρ0
ρ = κ∆Hρ (2)

Dρ

Dt
= −w∂ρ

∂z
(3)

∇H · vH +
∂w

∂z
= 0. (4)

Here, the velocity field v is written in terms of its horizontal components and vertical
component, v = (vH , w). The density ρtotal is decomposed into ρtotal = ρ + ρ, where the
mean ρ = ρ0 − bz and b > 0 for stable stratification. The conservation of momentum has
been split into an equation for the horizontal, Eq. (1), and the vertical, Eq. (2). In the
momentum equations, ν and κ are constants. Conservation of mass is given by Eq. (3) and
incompressibility by Eq. (4). The notation D

Dt indicates the total derivative,
∂
∂t +v ·∇. The

horizontal version DH

Dt
.
= ∂

∂t+vH ·∇H , where ∇H denotes the horizontal gradient. Similarly,
∇H · denotes the horizontal divergence. The symbol ⊥ denotes v⊥

H = (−v2, v1).
Now we non-dimensionalize Eqs. (1) to (4). Consider a characteristic velocity scale U ,

a characteristic length scale L, and a characteristic time scale T = L/U . We replace x with
x/L, t with t/T , and v by v/U . We non-dimensionalize ρ using the buoyancy fluctuation
scale bU/N , where N = (gb/ρ0)

1/2 is the Brunt-Vaisala frequency. We replace p with p/p.
We now introduce the Rossby, Froude, Reynolds, Prandtl, and Euler numbers:

Ro
.
=

U

fL
, Fr

.
=

U

NL
, Re

.
=
UL

ν
, Pr

.
=
ν

κ
, and Eu

.
=

p

ρ0U2
.
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We then obtain the non-dimensional equations

DHvH
Dt

+ w
∂vH
∂z

+
1

Ro
v⊥
H + Eu∇Hp =

1

Re
∇HvH (5)

DHw

Dt
+ w

∂w

∂z
+ Eu

∂p

∂z
+ Γρ =

1

Re

∂w

∂z
(6)

Dρ

Dt
= − 1

ΓFr2
w +

1

RePr
∆ρ (7)

∇H · vH +
∂w

∂z
= 0. (8)

Here, Γ
.
= bgL

U2 . Note that we can solve for the pressure by taking the divergence, to find

Eu∇p = ∇∆−1

(
1

Ro
(ẑ × v)−∇ · (v · ∇v)− 1

Fr

∂ρ

∂z

)
.

Substituting this back into Eqs. (5) to (8), we obtain

DHvH
Dt

+ w
∂vH
∂z

+
1

Ro
v⊥
H +∇H∆

−1

(
1

Ro
ẑ · (∇× v)−∇ · (v · ∇v)− 1

Fr

∂ρ

∂z

)
(9)

=
1

Re
∇HvH (10)

DHw

Dt
+ w

∂w

∂z
+

∂

∂z
∆−1

(
1

Ro
ẑ · (∇× v)−∇ · (v · ∇v)− 1

Fr

∂ρ

∂z

)
+ Γρ =

1

Re

∂w

∂z
(11)

Dρ

Dt
= − 1

ΓFr2
w +

1

RePr
∆ρ (12)

∇H · vH +
∂w

∂z
= 0. (13)

There are three distinguished limits of interest: low Rossby and finite Froude (rapid rota-
tion but O(1) stratification), low Froude and finite Rossby (strong stratification but O(1)
rotation), and simultaneously low Rossby and low Froude (quasi-geostrophy). In partic-
ular, when taking the quasi-geostrophic (QG) limit, one assigns ϵ

.
= Ro where ϵ ≪ 1, so

that rotation has a strong influence on the flow. One also uses geostrophic balance, which
can be found from the leading order equations, so that Eu = 1

Ro . One then assumes that
Fr = BuRo where Bu is the Burger number and is constant, so that the Froude number is
small and proportional to the Rossby number. The scaling Γ = 1

Fr is used so the buoyancy
force is balanced in Eq. (6) and density changes due to buoyant convection in Eq. (7).

2.2 General mathematical framework

Before writing the equations for the three distinguished limits, we introduce the abstract
operator form of the equations. This format is used to formally define the method for taking
fast singular limits. We use w to denote the concatenation w = (v, ρ). We can now express
the problem in the abstract form

∂w

∂t
+

1

ϵ
LFw + LSw + B(w,w)−Dw = 0, (14)
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with w|t=0 = w0(x). Here, ϵ is the small parameter of interest, LF is a fast operator, LS is
a slow operator, B is a bilinear form, and D is an operator associated with viscosity. In the
above equation, 0 is really the zero vector, but we will denote it without boldface throughout
since its dimension is clear from context. The small parameter ϵ ≪ 1 corresponds to a
constant specific to the problem (e.g., the Rossby number), so Eq. (14) corresponds to the
non-dimensionalized version of the equations of interest, e.g. Eqs. (5) to (8). Under various
mathematical conditions described in [5], which the Boussinesq equations satisfy, Eq. (14)
is well-posed. The solution to Eq. (14), which is based on the method of multiple scales,
will be denoted wϵ and depends on both the fast time scale τ = t/ϵ and the slow time scale
t. In particular, the solution can be expanded as

wϵ(x, t, τ) = w0(x, t, τ)|τ=t/ϵ + ϵw1(x, t, τ)|τ=t/ϵ. (15)

For this to be asymptotically valid, the first order term cannot have secular growth, so we
require |w1(x, t, τ)| = o(τ) uniformly on the interval of existence of solutions. Substituting
the decomposition of the solution Eq. (15) into the abstract operator form Eq. (14), we
obtain the O(ϵ−1) equation

∂w0

∂τ
+ LF (w0) = 0. (16)

By separation of variables, Eq. (16) has a solution of the form

w0(x, t, τ) = e−τLFw(x, t). (17)

At next order, we obtain the O(ϵ0) equation

∂w1

∂τ
+ LF (w1) = −

(
∂w0

∂τ
+ LS(w0) + B(w0,w0)−D(w0)

)
. (18)

Using Duhamel’s principle and Eq. (17), we see that Eq. (18) has a solution of the form

eτLFw1 = w1(x, t, τ)|τ=0 − τ
∂w

∂t
(x, t)

−
∫ τ

0
esLF (LS(e−sLFw) + B(e−sLFw, e−sLFw)−D(e−sLFw))ds.

(19)

An easy condition to satisfy the sublinear growth condition is then for this integral to be
zero, i.e. for

∂w

∂t
(x, t) = − lim

τ→∞

1

τ

∫ τ

0
esLF (LS(e−sLFw) + B(e−sLFw, e−sLFw)−D(e−sLFw))ds

w(x, 0) = w0(x).

(20)

The fact that Eq. (20) is satisfied is what is due to [26]. Then due to the identification
Eq. (17), the principal term w(x, t) has no fast oscillations.

Overall, to order ϵ,

wϵ(x, t) = e−
t
ϵ
LFw(x, t) + o(1), (21)

valid as ϵ → 0. While w has no oscillations, e−
t
ϵ
LFw(x, t) does. This motivates the fast-

slow decomposition. Since LF is required to be skew-Hermitian, by the Spectral Theorem,
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we can decompose w into a portion in the null space of LF and a portion not in the null
space of LF . Recall that LF is interpreted as the operator yielding the fast dynamics –
indeed, it is multiplied by 1/ϵ in Eq. (14). Then this decomposition into one piece in Kernel
LF and one piece in Range LF can be interpreted as

w(x, t) = wF (x, t) +wS(x, t), (22)

where wF ∈ Range LF is the fast portion and wS ∈ Kernel LF is the slow portion. Sub-
stituting Eq. (22) into Eq. (21),

wϵ(x, t) = e−
t
ϵ
LFwF (x, t) +wS(x, t) + o(1). (23)

Then wS has no fast oscillations. Now we can find equations whose solutions are wF and
wS , respectively. We can find an equation for the slow operator by projecting Eq. (14) onto
the null space of the fast operator. However, we can actually simplify this by projecting
only the O(ϵ0) version of Eq. (14), which we have found so far to be

∂w0

∂t
+ LF (w1) + LS(w0) + B(w0,w0)−D(w0) = 0. (24)

onto the null space of the fast operator. Letting P denote such a projection operator, then
wS may be alternatively represented as the solution to (i.e. it is identified with w0 in the
following)

∂w0

∂t
+ P (LS(w0) + B(w0,w0)−D(w0)) = 0. (25)

We will see that such a projection can be more readily found by using a Fourier transform
in Section 3.

An equation for wF can of course be found by projecting onto the range of LF ; equiva-
lently, by characterizing the orthogonal subspace to Kernel LF ; or, equivalently, by subtract-
ing the projection from the original. However, we will obtain a more useful interpretation
if we keep in mind that for the fast dynamics, we are interested in wave effects. While the
fast-slow decomposition is not necessarily into waves and mean-flow, the fast dynamics do
involve waves. To that end, the method proposed by Embid and Majda is to expand w in
Eq. (20) in terms of the eigenfunctions of the fast operator LF . This method makes use of
the theory of cancellation of oscillations due to [26]. The only terms that will then survive
in the limit in Eq. (20) represent three-wave resonant interactions with frequency given by
the eigenvalues of the fast operator. The central task for analyzing the fast dynamics is then
finding the eigenvalues and eigenfunctions of the fast operator, and subsequently analyzing
which three-wave resonance interactions can occur, and of those, which will appear in the
equation for the fast dynamics and thus affect wF .

To see this explicitly, let w
(β)
k (x) = eik·xr

(β)
k denote an element of an orthonormal basis

of periodic eigenfunctions for the fast operator LF , as in [30]. Here, k = (k, l,m) is the
wavenumber (vector), β is a label which will be associate with the different modes that arise,

and r
(β)
k = (v

(β)
k , ρ

(β)
k ). Denote the associated purely imaginary eigenvalues as λ

(β)
k = iω

(β)
k .

Then we can rewrite w in terms of these eigenfunctions,

w(x, t) =
∑
k

∑
β

σ
(β)
k (t)eik·xr

(β)
k . (26)
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Now, since

e−sLF (eix·k · r(β)k ) = e−isω
(β)
k eik·xr

(β)
k = ei(k·x−sω

(β)
k )r

(β)
k , (27)

upon writing the bilinear form in terms of the eigenfunctions, we will obtain in the in-

tegral in Eq. (20) terms of the form e
i(k·x−(ω

(β′)
k′ +ω

(β′′)
k′′ −ω(β)

k′+k′′ )s). A limit of the form
limτ→∞

1
τ

∫ τ
0 e

iωsds is one whenever ω = 0 and zero otherwise, so only modes associated

with wavenumbers such that ω
(β′)
k′ + ω

(β′′)
k′′ − ω

(β)
k′+k′′ = 0 can possibly contribute to the dy-

namics. To make this concrete, denote the set of constituent wavenumbers and mode labels
that result in a resonant interaction for a particular mode label β and wavenumber k as

Rβ,k
.
= {(k′,k′′, β′, β′′) |k′ + k′′ = k, ω

(β′)
k′ + ω

(β′′)
k′′ = ω

(β)
k } (28)

(R for “resonant”). After substituting the representation Eq. (27) into the bilinear form,
one finds its contributions are

lim
τ→∞

∫ τ

0
esLFB(e−sLFw(x, t), e−sLFw(x, t)) =

∑
k∈Z3

∑
β

∑
Rβ,k

B
(β′,β′′,β)
(k′,k′′,k)σ

(β′)
k′ (t)σ

(β′′)
k′′ (t)

 eik·xr
(β)
k ,

(29)

where the B
(β′,β′′,β)
(k′,k′′,k) are interaction coefficients which can be computed based on the eigen-

vectors (c.f. [7], p.18). Similar formulas with other coefficients can be found for the con-
tributions from LS and D. Thus, for there to be any dynamical contribution associated
with a particular set of wavenumbers, there must be a triad interaction (determined by the
eigenvalues), and at least one of the coefficients associated with the operators B, LS , and D
(determined by the eigenvectors and the matrix form of those operators) must be nonzero.

One can explicitly calculate the Fourier amplitudes σ
(β)
k as in Wingate et al. (2011)

and thus actually calculate wF (x, t) (for a finite range of possible k) [30]. However, this
is generally not computationally feasible; for instance, in Embid and Majda (1998), over
200 resonant interactions of a single type (as in, combinations of the possible labels β) were
found for just |k|, |m|, |l| ≤ 30, in the (simpler than QG) low Froude, finite Rossby case [7].
In any case, it is more interesting to analyze which types of wave interactions are present
in the fast dynamics, in order to understand which wave interactions can and cannot affect
the overall dynamics.

2.3 Summary of requirements and method

The requirements for applying this method of finding a fast singular limit can then be
summarized:

1. There is a small parameter ϵ occurring in the non-dimensionalized version of the
system of interest, such that the system may be written in the abstract operator form
Eq. (14).

2. The fast operator LF is skew-Hermitian.
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3. While a timescale separation is assumed, no additional separation of spatial scales is
assumed; in this case, it is not guaranteed that this method can be used to obtain
a true fast-slow decomposition, as the theory of cancellation of oscillations may not
apply [27]. While one can still get the slow equations in the same fashion, it is not
necessarily the case that the leading order slow solution is truly “slow.”

If the requirements are satisfied, the application of the method can be summarized:

1. An explicit formula for a projection operator onto the null space of the fast operator
must be found.

2. The eigenvalues and eigenvectors of the fast operator must be found, and which reso-
nant triads with frequency given by those eigenvalues can occur must be determined.

We then have a convenient representation of the slow dynamics, given by Eq. (25), while
the fast dynamics can best be (mathematically) analyzed by considering which resonant
triad interactions can occur according to the eigenfrequencies.

2.4 Fast singular limits of the rotating, stably-stratified Boussinesq equa-
tions

Now we return to the concrete system, Eqs. (5) to (8), see what the abstract operator form
is, and discuss the slow/reduced equations and the analysis of the fast dynamics found in
[7]. We start by writing Eqs. (10) to (13) in the abstract operator form Eq. (14). Clearly
this depends on what ϵ is, which depends on the dynamical regime of interest. Following
[29], we can first write the system in the form

∂w

∂t
+

1

Ro
LRow +

1

Fr
LFrw + B(w,w)−Dw = 0, (30)

where

LRow
.
=

v⊥
H +∇H∆

−1(ẑ · (∇× v))
∂
∂z∆

−1(ẑ · (∇× v))
0

 ,

LFrw
.
=

−∇H∆
−1

(
∂ρ
∂z

)
−∆−1 ∂2ρ

∂z2
+ ρ

−w

 ,

B(w,w)
.
=

(
v · ∇v −∇∆−1(∇ · (v · ∇v)

v · ∇ρ

)
,

Dw
.
=

1

Re

(
∆v
1
Pr∆ρ

)
.

(31)

Then, based on which of the three limiting cases we consider, we can decide which of
the two linear operators is fast or slow. In the low Rossby, finite Froude regime, we decide
Ro = ϵ, Fr, Pr, Re = O(1) as ϵ → 0, and LRo is identified as LF while LFr is identified
as LS . For low Froude, finite Rossby scaling, we make the opposite identification. For the
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simultaneously low Froude and Rossby (QG) limit, we have no slow operator and the sum
of the two linear operators is identified as the fast operator. More specifically, we assign
Fr = ϵ, and assume that the Rossby and Froude numbers scale in a constant ratio, the
Burger number Bu = Fr/Ro. It was known prior to this work that the slow solution (which
has been referred to as the quasigeostrophic equation) satisfies conservation of potential
vorticity. In this situation, we notice that even if there is no slow operator in the equation,
the projection onto the slow subspace still applies and will yield the slow equation. This
further motivates why we have been considering this projection to be onto the null space
of the fast operator rather than the range of the slow operator. Additionally, using the
projection provides another, perhaps more mathematical, route to deriving conservation of
potential vorticity. Moreover, it also allows us to see the “fast portion” associated with QG
scaling, which cannot be readily obtained through the classical derivation of QG.

To obtain the slow equations, we compute the projection in each case. These are written
explicitly in [29], and the full details of how to compute the projection in the QG case is
provided in the Appendix, Section 6.1. For concreteness, the projection in this case is given
by

PQGw =

vH − Bu2∆−1
QG

∂2vH
∂z2

−∆−1
QG

(
∇H(∇H · vH) + Bu∇⊥

H

(
∂ρ
∂z

))
0

ρ− Bu∆−1
QG

(
∂
∂z (∇H × vH)

)
−∆−1

QG∆Hρ

 , (32)

where ∆QG = ∆H+Bu2 ∂2

∂z2
and ∇⊥

H =
(
− ∂
∂x2

, ∂
∂x1

)
. By substituting in B(w,w)−D(w) in

for the placeholder w in Eq. (32), the slow equations can be found as in [29], which can then
be seen to reduce to conservation of potential vorticity (PV) (in the case of no diffusion).
After some (involved) algebra (shown in the Appendix, Section 6.4), we indeed obtain

D

Dt

(
ω3 − Bu

∂ρ

∂z

)
= 0. (33)

Here, ω3 denotes the vertical component of the vorticity. In terms of the streamfunction ψ,
ω3 = ∆Hψ. Equation (33) can be equivalently expressed in terms of the potential ϕ (which

is the pressure), so that q = ∆Hϕ + Bu2 ∂
2ϕ
∂z2

and q (the potential vorticity) is materially
conserved. Thus, the projection method does yield the usual slow dynamics equation.

For completeness and to contrast with the α ̸= 0 versions of these limits, we write
the limiting slow dynamics for the other two limits, as in [29]. We will again neglect the
diffusion terms for simplicity. For low Rossby number and finite Froude number,

DH

Dt
vH +∇H∆

−1
H (∇H · (vH · ∇HvH)) = 0

DH

Dt
w +

1

Fr
⟨ρ⟩z = 0

D

Dt
ρ− 1

Fr
w = 0,

(34)

where ⟨·⟩z indicates a vertical average. Note that the vertical average comes from a different
approach of finding the projection operator than the Fourier transform method used to
obtain Eq. (32), since the form of the projection is not unique. It should be noted that
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the Fourier transform method may not provide the most informative formulation of the
projection in all cases, e.g. when the equation to find the vector spanning the nullspace is
either algebraically intractable or only gives a trivial result.

For low Froude number and finite Rossby number,

DH

Dt
vH +

1

Ro
(ẑ × vH) +∇H∆

−1
H

(
1

Ro
ω −∇H · (vH · ∇HvH)

)
= 0

∇H · vH = 0

∂

∂t
ρ = 0.

(35)

The form of the projection in this limit is due to the fact the null space of the fast operator
is characterized by ∇ · vH = 0, w = 0, and ρ = ρ(z) [7].

Now we summarize the limiting fast dynamics for each case. Let |·| denote the Euclidean
norm. The subscript H denotes that only the first two components of the wavenumber are
being considered, kH

.
= (k, l). Throughout this section we will focus on the general case

and assume that |k|, |kH | ̸= 0, though eigenvalues and eigenvectors can still be computed
when this is not the case.

For the low Rossby, finite Froude limit,

ω
(−1)
k = −|m|

|k|
, ω

(0)
k = 0 (double) , ω

(1)
k =

|m|
|k|

. (36)

Here, the eigenfrequencies without the absolute value also work, but then a desirable sym-

metry condition r
(1)
k = r

(−1)
−k that is used if one wants to actually compute σ

(β)
k in Eq. (26)

does not hold for the corresponding eigenvectors.
For the low Froude, finite Rossby case, the eigenfrequencies associated to a wavenumber

k can be computed as

ω
(−1)
k = −|kH |

|k|
, ω

(0)
k = 0 (double) , ω

(1)
k =

|kH |
|k|

. (37)

Lastly, for the QG case, the eigenfrequencies are

ω
(−1)
k = −(|kH |2 +Bu2m2)1/2

|k|
, ω

(0)
k = 0 (double) , ω

(1)
k =

(|kH |2 +Bu2m2)1/2

|k|
. (38)

For each of the limits, we notice that there is a zero eigenfrequency with multiplicity
two and two nonzero eigenfrequencies that are the same except for sign. The interpretation
is that the zero eigenfrequencies correspond to a slow vortical mode, while the other two
correspond to fast gravity waves (or inertial modes) [7].

Interestingly, we can observe that if one assembles the eigenfrequencies of the simpler
cases into a vector (ωRo

k ,Bu ωFr
k ), then (for each label, {−1, 0, 1}),

ωQG
k = |(ωRo

k ,Bu ωFr
k )|.

This identification reflects the intuition that each of the simple limits is along each of two
orthogonal axes, with the combined limit representing the hypotenuse connecting points
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along them. Physically, the slow manifold can have waves generated by the slow operator.
In the case of QG, there is no slow operator, so all of these waves are associated with the
fast operator. Of the three limits considered here, only in the QG limit is the fast-slow
decomposition truly a wave-mean flow decomposition.

3 Three Fast Singular Limits for the LANS-α Model

Before deriving the same three fast singular limits for the LANS-α model and comparing
to the α = 0 case, we introduce the governing equations in detail. The LANS−α equations
are given by [15]:

∂v

∂t
+ u · ∇v + v · ∇uT + f ẑ × u+∇ϕ+

ρ

ρ0
gẑ = ν∆v

∂ρ

∂t
+ u · ∇ρ− u · bẑ = κ∆ρ

∇ · u = 0

v = u− α2∆u,

(39)

where ϕ is the modified pressure,

ϕ =
p

ρ0
− 1

2
|u|2 − α2

2
|∇u|2,

and α ∈ R is a parameter with units of length whose meaning will soon be elucidated. We do
not split into horizontal and vertical equations in order to draw attention to the presence of
the term v ·∇uT , which is also written as (∇uT )·v or vj∇uj . In the x-momentum equation,
this term then contributes v1∂xu1+v2∂xu2+v3∂xu3, in the y−momentum equation, v1∂yu1+
v2∂yu2 + v3∂yu3, and in the z-momentum equation, v1∂zu1 + v2∂zu2 + v3∂zu3. Besides this
and of course the presence of both u and v, the main difference from Eqs. (1) to (3) is the
modification to the pressure.

We will denote
v = Su, S .

= (1− α2∆). (40)

This operator S is the Helmholtz operator or filter, and is denoted with an S because of the
interpretation of “smoothing” (in particular, its inverse is “smoothing”). Then u = S−1v is
the “smoothed” version of v. We can immediately see from this that the incompressibility of
u implies that of v, and vice versa, since the order of the divergence and the Laplacian can
be interchanged. Note also that S can be applied to scalar functions, with the interpretation
that ∆ is the scalar Laplacian rather than the vector Laplacian (which is just the scalar
Laplacian, copied in each component).

The introduction of the smoothing parameter α partially reveals why this is called the
LANS-α model, but why is it “Lagrangian-averaged”? From Eq. (40), we can see that if
u can be interpreted as the Lagrangian average of v, it would then make sense why this
is “Lagrangian-averaged” Navier-Stokes. For this to be true, it must be the case that the
Helmholtz operator, applied to a Lagrangian-averaged field, yields an Eulerian-averaged
field, and vice versa with the inverse. This is true under certain approximations, i.e. S is
an approximation to the true operator for which this (asymptotically) true.
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This operator, the dynamical Helmholtz operator, is given by (1 − ∆̃) where ∆̃ =
∇ · ⟨ξξ⟩ · ∇ [13]. Here, ξ represents a displacement fluctuation of a particle trajectory X,
i.e.

ξ
.
= Xξ − ⟨Xξ⟩

where ⟨·⟩ denotes time-averaging over a fixed Lagrangian label. Accordingly, ⟨ξξ⟩ is the
covariance of the displacement fluctuation. It can be seen that to o(|ξ|2) that

(∇ · ⟨ξξ⟩ · ∇)⟨U⟩L,

where ⟨U⟩L is a Lagrangian mean velocity, is the Stokes drift. Thus, the dynamical
Helmholtz operator (1 − ∆̃) can indeed be interpreted as mapping Lagrangian-averaged
fields to their Eulerian-averaged counterparts.

Of course, the LANS-α equations do not feature the dynamical Helmholtz operator; ∆̃ is
replaced with the much simpler α2∆. This is possible under the isotropy condition ⟨ξkξl⟩ =
α2δkl, and α can be assumed to be constant so long as the statistics are homogeneous. Thus,
by assuming statistically stationary and isotropic turbulence (in a sense), we can indeed
interpret this model as Lagrangian-averaged Navier-Stokes and S to be a Lagrangian filter.
This interpretation is in fact mathematically necessary. This is due to the interpretation as
a Lagrangian average (which can be mathematically shown, up to o(|ξ|2)), the dynamical
Helmholtz operator commutes with the advective time derivative D

Dt . We will see that
this is a key property when deriving the slow dynamics equations. By making the necessary
assumptions so that the dynamical Helmholtz operator reduces to the constant α Helmholtz
operator S appearing in the LANS-α equations, we can then justify commuting this operator
with the advective operator. We can see mathematically that the Helmholtz operator
commutes with space and time derivatives in general, but without the interpretation of
Lagrangian averaging, the general Helmholtz operator with constant α cannot be shown
to commute with the advective operator. While one can imagine formulating a smoothed
Navier-Stokes akin to the LANS-α model above by applying a number of different filters,
this particular filter, with the given meaning of α, is especially advantageous due to its
commutative properties with space and time derivatives and advection.

Another peculiarity of the LANS−α model is the presence of the additional nonlinear
term v · ∇uT . As mentioned in the introduction, the LANS-α model can be seen as an
extension of the Leray-regularized Navier-Stokes, and this term is one of the differences.
This term arises in order to formulate a regularized Navier-Stokes that also possess a Kelvin
circulation theorem. For more details, one may see [9]. This is also where the remaining
extra terms, which appear in the modified pressure, stem from.

Lastly, we can see that this system reduces to our original un-regularized system in the
case of α = 0. Clearly, u ·∇v reduces to v ·∇v. The additional nonlinear term then cancels
with the remaining term 1

2 |v|
2 in the modified pressure, after applying the gradient on ϕ.

From this, we can expect that the results found in the following sections must reduce to
those of the previous sections in the case α = 0.

We use the same non-dimensionalization as before. Omitting the primes, we then obtain
the non-dimensionalized momentum equation

∂v

∂t
+S−1v ·∇v+

1

Ro
ẑ×v+∇

(
Eu p− 1

2
|S−1v|2 − L2

α

2
|∇(S−1v)|2

)
+Γρẑ =

1

Re
∇v. (41)
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Here, S is actually the non-dimensionalized (1−L2
α∆), where Lα = α/L. The constant Γ is

as before and we will use the scaling Γ = Fr−1. We further simplify Eq. (41) by eliminating
the modified pressure in exactly the same way as before. After taking the divergence of
Eq. (41), rearranging, and taking the gradient, we find

∇
(
Eu ϕ− 1

2
|S−1v|2 − L2

α

2
|∇(S−1v)|2

)
=

∇∆−1

(
1

Ro
ẑ · S−1ω −∇ · (S−1v · ∇v + v · ∇(S−1v)T )− 1

Fr
ρẑ

)
.

(42)

The modified pressure then does not make any further impact on the difference between
LANS-α and the original system; ϕ is a free variable in exactly the same sense p is. We will
use Eq. (42) in Eq. (41) to determine the abstract operator equation for LANS-α.

3.1 Slow dynamics

We again write

∂w

∂t
+

1

Ro
LαRow +

1

Fr
LαFrw + Bα(w,w)−Dαw = 0,

where

LαRow =

S−1(v⊥
H +∇H∆

−1 (ẑ · (∇× v)))

S−1( ∂∂z∆
−1(ẑ · (∇× v)))

0

 ,

LαFrw =


−∇H∆

−1
(
∂ρ
∂z

)
−∆−1

(
∂2ρ
∂z2

)
+ ρ

−S−1w

 ,

Bα(w,w) =

(
(S−1v · ∇)v −∇∆−1(∇ · ((S−1v · ∇)v))

(S−1v · ∇)ρ

)
,

Dαw =
1

Re

(
∆v
1
Pr∆ρ

)
.

(43)

To write the operators in this form, we made use of the commutative properties of S.
Comparing to Eq. (31), we see that LαRo = S−1LRo, i.e. it is the “smoothed” version. In
contrast, only the third component of LFr features S−1, so it is not the case that S−1 is just
applied to every term in the slow α = 0 equations in order to get the α ̸= 0 slow equations.

3.1.1 Low Rossby, finite Froude

Because LαRo = S−1LRo, the projection in the low Rossby, finite Froude case is exactly the
same for α = 0 and α ̸= 0 cases. The slow dynamics equation will be slightly different
though, since we substitute in S−1w in the fourth slot rather than just w, and the bilinear
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form involves the inverse Helmholtz operator. Neglecting diffusion, the slow equations are

DH,α

Dt
vH +∇H∆

−1
H (∇H · ((S−1vH) · ∇H)vH)) = 0

DH,α

Dt
w +

1

Fr
⟨ρ⟩z = 0

Dα

Dt
ρ− 1

Fr
S−1w = 0,

(44)

where DH,α

Dt denotes horizontal advection but with respect to the smoothed velocity.

3.1.2 Low Froude, finite Rossby

Since only w is modified in LαFr from LFr, and the equation for the null space in that
component still reduces to w = 0, the projection also does not change. Since LαRo = S−1LRo

and the operator S−1 can be “factored out” of the bilinear form as well using the commuting
property, the slow equations, neglecting diffusion, are nearly the same between the α = 0
and α ̸= 0 cases in the low Froude, finite Rossby cases (but not quite because of the time
derivative). The slow equations are

DH,α

Dt
vH +

1

Ro
S−1(ẑ × vH) +∇H∆

−1
H

(
1

Ro
S−1ω −∇H · ((S−1vH) · ∇H)vH)

)
= 0

∇H · vH = 0

∂

∂t
ρ = 0.

(45)

Notice the second equation could equivalently be formulated with S−1; this originally came
from w = 0, so ∇H · vH = 0 is true for incompressibility. From the projection it is perhaps
“more directly” true that S−1w = 0 in this case, but in any case, they are equivalent.

3.1.3 Low Rossby and low Froude (QG)

For the QG case, we do need to actually compute the projection. This calculation may be
found in the Appendix, Section 6.1. The projection is given by

PQGα
w =

vH − Bu2S−2∆−1
QGα

∂2vH
∂z2

−∆−1
QGα

(
∇H(∇H · vH) + BuS−1∇⊥

H

(
∂ρ
∂z

))
0

ρ− BuS−1∆−1
QGα

(
∂
∂z (∇H × vH)

)
−∆−1

QGα
∆Hρ

 (46)

where ∆QGα
= ∆H +Bu2S−2 ∂2

∂z2
, and S−2 denotes S−1 applied twice. We can immediately

see that when α = 0, since S = S−1 = I, this correctly reduces to the known projection
operator, Eq. (32).

From here, some involved algebra is required in order to obtain the QG-α equation; this
is shown in its entirety in the Appendix, Section 6.5.2. The slow dynamics are found from
the projection via

∂w0

∂t
+ PQGα

(B(w0,w0)−D(w0)) = 0. (47)
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The slow dynamics equation, which we title QG-α, is then given by

Dα

Dt

(
∆HSϕ+Bu2S−1 ∂

2

∂z2
ϕ

)
= 0, (48)

where Dα

Dt denotes advection with respect to the smoothed velocity, and ϕ denotes the
potential, so that the third component of the vorticity ω3 = S∆Hϕ. In the original QG,
this was the pressure, and in QG−α, this is then the modified pressure. By using the
commuting properties of S, we can see that analogously to the α = 0 case, the PV is just
the ∆QGα

operator applied to the potential ϕ. We can also rewrite Eq. (48) as

Dα

Dt

(
ω3 − Bu S−1 ∂

∂z
ρ

)
= 0, (49)

which is very similar to the PV conservation equation in the α = 0 case, Eq. (33) (and
indeed reduces appropriately). The key differences are that the density is now smoothed,
and the vorticity has a different relationship to the (modified) pressure, now involving the
Helmholtz operator.

3.2 Fast dynamics

In this section, we again focus on the general case and assume that |k|, |kH | ̸= 0.

3.2.1 Low Rossby, finite Froude

We obtain the matrix representation for the fast operator

LRo(ik) =
1

(1 + Lα|k|2)|k|2


−kl −(l2 +m2) 0 0

k2 +m2 kl 0 0
−lm km 0 0
0 0 0 0

 . (50)

We then obtain the eigenvalues λβ = iω
(β)
k where

ω
(0)
k = 0 (double) and ω

(±1)
k = ± m

|k|(1 + Lα|k|2)
. (51)

3.2.2 Low Froude, finite Rossby

In this case, we obtain the matrix representation for the fast operator

LFr(ik) =


0 0 0 − km

|k|2

0 0 0 − km
|k|2

0 0 0 1− m2

|k|2

0 0 − 1
1+Lα|k|2 0

 . (52)

The eigenvalues are then given by

ω
(0)
k = 0 (double) and ω

(±1)
k = ± |kH |

(1 + Lα|k|2)1/2|k|
. (53)

321



3.2.3 Low Rossby and low Froude (QG)

The matrix representation for the fast operator is given by 1
RoLRo(ik) +

1
FrLFr(ik), written

out explicitly in the Appendix, Eq. (57). Using this matrix representation, we find

ω
(0)
k = 0 (double) and ω

(±1)
k = ±((1 + Lα|k|2)|kH |2 +Bu2m2)1/2

(1 + Lα|k|2)|k|
. (54)

3.2.4 Discussion of fast dynamics: α = 0 vs. α ̸= 0

The set of triads is described by

Rαβ,k = {(k′,k′′, β′, β′′) | k′ + k′′ = k, ω
(β′)
k′ + ω

(β′′)
k′′ = ω

(β)
k }.

The superscript α indicates that the set of possible interactions now depends on α in the
α ̸= 0 case, since the eigenvalues do. In Sections 3.2.1 to 3.2.3, we saw that in each of
the three limiting cases, there are slow modes (zero eigenvalues) and fast modes. The the
possible triad interactions can be grouped into six types : slow-slow-fast, slow-fast-fast,
fast-fast-fast, slow-slow-slow, slow-fast-slow, and fast-fast-slow. In this list, slow-slow-fast
should be read as “slow+slow→fast,” so two slow frequencies add to make a fast frequency.
The list has only six entries because permutations of the first two frequencies are considered
the same (a slow frequency written first added to a fast frequency written second is not
functionally different than adding them in the reverse order).

To analyze the fast dynamics, we are concerned with the first three types. The second
three types represent an alternative way to compute the slow dynamics, which gives the
same result as the projection method ([7], c.f. p.21). Importantly, it can be shown that the
interaction coefficients corresponding to fast-fast-slow interactions are zero, so that the slow
dynamics are decoupled from fast (at the orders considered) [7, 30]. Within the interactions
that result in fast frequencies, we can be even more specific; for the low Froude, finite Rossby
and QG cases in Sections 3.2.1 to 3.2.3, it is not possible to have slow-slow-fast interactions,
and for the low Rossby, finite Froude case, it is only possible when the vertical wavenumbers
are zero. In all three cases, slow-fast-fast and fast-fast-fast triads are possible when both
α = 0 and when α ̸= 0. Because of the relationship between the eigenvalues,

ω
(±1)
QG (k) = ±|(ω(±1)

Fr (k),Bu ω
(±1)
Ro (k))|, (55)

we focus on the QG case.
We first observe that the shift from α = 0 to α ̸= 0 can significantly affect geometric

properties of the hyperplanes corresponding to the eigenfrequencies: an example is shown
in Figure 3. It is clear that the set of wavenumbers k ∈ Z3 and corresponding k′ and k′′

can be completely different for each value of α.
The slow-fast-fast interactions involve a higher dimensional equation in the α ̸= 0 case

than the α = 0 case, whose solutions have been described in a relatively simple geometric
fashion. In the α = 0 case, due to Eq. (38), [7] state that the k′ that result in resonance
interactions with k (if k′′ corresponds to the vortical mode, it plays no role except for that
associated with k = k′ + k′′) lie within a cone generated by rotating k about the vertical
axis. This implies that the Burger number, which scales the vertical component of the
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Figure 3: A plot of two instances of the QG dispersion relation, for α = 0 vs. a small value
of α, 0.1, and an arbitrarily selected value of the Burger number. Here, dimensions are
suppressed in that |kH | is represented on the x-axis, m is represented on the y−axis, and

the output ω
(1)
QG(k) is represented on the z-axis. We can qualitatively see a large difference

going from zero α to small nonzero α, and that geometric properties, such as convexity in
certain regions, are altered.

wavenumber, then does not play a role in this geometric constraint. This should still hold
in the α ̸= 0 case as the relative scaling between |kH |2 and |k| versus that of m2 is still
the same. However, this geometric picture is more complicated in the presence of nonzero
α because it introduces an additional scaling by |k|2 as well the non-dimensionalized α in
Eq. (54).

The fast-fast-fast resonant interactions are of perhaps most interest for two reasons: they
exclusively feature fast modes, and their defining relationship is much more algebraically
involved. Unlike the other fast resonant interactions, the fast-fast-fast triads lack a geo-
metric characterization of solutions even in the α = 0 case. However, we do find a striking
mathematical result: the algebraic argument in Sections 6.6.2 to 6.6.4 shows that any fast-
fast-fast interactions that can occur in the α = 0 case cannot occur in the α ̸= 0 case when
Lα|k′|2 < 1, and similarly for k′′ and k = k′ + k′′. A numerical search shows that there
are indeed fast-fast-fast triad interactions when this criterion is not met. It makes intuitive
sense that there should be less resonant interactions possible in the LANS-α equations than
the unregularized equations, but the crucial point is that this specifically depends on picking
α below a threshold value.

The practical significance of this threshold is not immediately apparent. However, when
implementing these equations numerically, there are general relationships that can be formed
between the maximum resolvable wavenumber and the grid spacing. Recall that the numer-
ical issues associated with α were only found for specific values of α with respect to the grid
spacing. Rewriting our criterion, we have that there are no resonance interactions when

α

L
|k| < 1. (56)
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In particular, this is true when
α

L
|kmax| < 1,

where kmax is the maximum resolvable wavenumber. One may reasonably choose L to be
the length of the domain. Suppose we have N gridpoints and a domain length of 2π, so
that L = 2π (for simplicity – other scalings of this also yield the same conclusion). Then
replacing |kmax| with the Nyquist wavenumber, we have

α

L

π

∆x
< 1.

Substituting in L and re-arranging, we then find

α < 2∆x,

which is the exact criterion for stability that was empirically found, as discussed in the
introduction. This is of course not an exact explanation for this empirically determined
bound, as there are other rules of thumb for what the maximum resolvable wavenumber is
in terms of the grid spacing, depending on the setup of the simulation. The key point is
the similarity between this mathematically-determined threshold for α, based on the fast
dynamics, and the empirical observations of that threshold. The criterion on α relates
directly to grid spacing, providing guidance for both our investigation of the instability
and, eventually, how to choose α in future implementations of LANS-α.

4 Directions for Current and Future Work

This report presents the theoretical framework for our investigation of the LANS-α model.
The continued work on this project involves numerical simulations to complement our find-
ings.

These numerical simulations are implemented in Dedalus [3]. We use random forcing
about a specific wavenumber, as described in [28]. We will compare the across different
values of α, including α = 0 and values previously associated with numerical instability.
Our goal is to run simulations at a resolution of 2563, computational resources allowing.
Following Whitehead and Wingate (2011), a key focus of our analysis will be examining
the evolution of slow versus fast energy for different values of α. If there are values of α
for which the kinetic energy exhibits blow-up behavior, it will be useful to see whether only
the fast component of the energy is driving this.

While our analysis of the slow and fast dynamics suggests that resonant interactions
may be the source of instability, something else, such as near-resonance interactions, could
also be responsible. In any case, the theoretical framework in this paper will still help
to identify the origin of the numerical problems, particularly because we can separate out
the slow dynamics. Beyond addressing numerical stability, these simulations will provide
valuable insights into the broader behavior of the LANS-α model, as relatively few such
simulations exist in the literature. For instance, we will be able to specifically see how α
affects different flow features, such as potential vorticity evolution. We can also analyze the
α criterion Eq. (56) in greater detail given our simulation setup.
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The analysis of the slow and fast dynamics and energy evolution for the LANS-α model
from our simulations will complete this project, but several immediately feasible future
directions are apparent. One is a deeper analysis of the fast dynamics given what was pre-
sented here: a more robust exploration of how the geometry of solutions to the slow-fast-fast
resonant equation changes going from α = 0 to α ̸= 0. A more computational route would
be to employ a large numerical search of solutions to the fast-fast-fast resonance equation,
which may reveal underlying patterns. It would also be a straightforward extension of the
simulations to experiment with forcing the dynamics at resonant frequencies. The results
of this project will inform how to improve implementations of the LANS-α model, and de-
veloping publicly available, accessible versions using different numerical methods, such as
spectral methods, would be valuable. Our simulation results may build on findings such
as those in Hecht et al. (2008b), which suggest an alternate filter could address the nu-
merical issues. In that case, it must be determined whether such modifications preserve
the Lagrangian-averaging interpretation, and if not, evaluate the theoretical implications
of losing this framework. This motivates the search for filters that improve computational
performance while maintaining the model’s desirable properties as possible. Lastly, LANS-
α is a prime example of invertible-operator-based LES techniques, as in Geurts and Holm
(2003), which are also promising turbulence closure models due to their mathematical ba-
sis [8]. This motivates implementing these techniques in novel situations, such as ocean
biogeochemistry. Overall, LANS-α remains a rich model with many unexplored facets and
far-reaching applications.
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6 Appendix

6.1 Obtaining the projection operator

6.2 Projection for QG, α=0

This section contains the full details of how to obtain the projection operator onto the null
space of the fast operator, Eq. (32). We can find the following matrix for the fast operator
in Fourier space:

A(k) =
1

|k|2


− kl

Ro − l2+m2

Ro 0 −km
Fr

k2+m2

Ro
kl
Ro 0 − lm

Fr

− lm
Ro

km
Ro 0 k2+l2

Fr

0 0 − |k|2
Fr 0

 .
The null space is spanned by the unit vector

1√
k2 + l2 +Bu2m2


l

−k
0

Bu m


Then we can construct, where ŵk = (ûk, v̂k, ŵk, ρ̂k),

P ŵk =
1

k2 + l2 +Bu2m2


l2ûk − klv̂k +Bu lmρ̂k
k2v̂k − klûk − Bu kmρ̂k

0
Bu m (lûk − kv̂k +Bu mρ̂k)


To transform back into physical space, we just need to add and subtract (k2 + Bu2m2)ûk
from the first component and (l2 + F 2m2)v̂k from the second. Next notice that in Fourier
space, ∇H(∇H · vH) is (k2ûk + klv̂k, lkûk + l2v̂k, 0)

T . This then covers what we added
and what is left except for the terms involving the Burger number: Bulmρ̂k and Bu2m2ûk,
and similarly in the other component. Transforming back into physical space then yields
Eq. (32).

6.3 Projection for QG, α ̸=0

We take Fourier transform and find the the matrix for the fast operator:

A(k) =
1

|k|2


− kl

RoC − l2+m2

RoC 0 −km
Fr

k2+m2

RoC
kl

RoC 0 − lm
Fr

− lm
RoC

km
RoC 0 k2+l2

Fr

0 0 − |k|2
FrC 0

 (57)

where C
.
= 1 + Lα|k|2. The null space is spanned by the unit vector

1√
k2 + l2 +

(
Bu
C

)2
m2


l

−k
0

Bu
C m


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Then we can construct, where ŵk = (ûk, v̂k, ŵk, ρ̂k),

P ŵk =
1

k2 + l2 +
(
Bu
C

)2
m2


l2ûk − klv̂k +

Bu
C lmρ̂k

k2v̂k − klûk − Bu
C kmρ̂k

0
Bu
C m

(
lûk − kv̂k +

Bu
C mρ̂k

)


To transform back into physical space, we just need to add and subtract (k2+
(
Bu
C

)2
m2)ûk

from the first component and (l2+
(
Bu
C

)2
m2)v̂k from the second. With the cancellation with

the denominator, we can get the vH term (notice this does not have any S−1). Transforming
back into physical space yields Eq. (46).

6.4 Slow dynamics equation from the projection, α=0

In this section, we see in detail how the projected equations simplify to the PV equation
that was found in [7] for the α = 0 case. An important note prior to performing this
calculation is that the identity for the vector Laplacian,

∆v = ∇(∇ · v)−∇×∇× v

does not hold for the two-dimensional vector Laplacian. Indeed, when we define curl for a
two-dimensional vector, it outputs a scalar, so this could not possibly work. Instead, we
derive the following vector identity for the vector Laplacian in 2D:

∆HvH = ∇H(∇H · vH)−∇⊥
H(∇H × vH). (58)

Here, ∇⊥
H is the perpendicular gradient, (− ∂

∂y ,
∂
∂x) (notice that when we have a streamfunc-

tion, vH = ∇⊥
Hψ).

Recall the projection is given by

PQGw =

vH − Bu2∆−1
QGα

∂2vH
∂z2

−∆−1
QG

(
∇H(∇H · vH) + Bu∇⊥

H

(
∂ρ
∂z

))
0

ρ− Bu∆−1
QG

(
∂
∂z (∇H × vH)

)
−∆−1

QG∆Hρ

 (59)

where ∆QG = ∆H + Bu2 ∂2

∂z2
and ∇⊥

H =
(
− ∂
∂x2

, ∂
∂x1

)
. Recall also that in place of w above,

we must substitute B(w,w)−D(w)) where these w are really w0. The bilinear form and
diffusion operator were found to be

B(w,w) =

(
v · ∇v −∇∆−1(∇ · (v · ∇v)

v · ∇ρ

)
and Dw =

1

Re

(
∆v
1
Pr∆ρ

)
.

It does not add any difficulty to evaluate the projection on Dw, but since we aim to
derive the conservation of PV, we will consider the case with no diffusion.

Using the new identity Eq. (58), we calculate the result of substituting in the term
∇H∆

−1
H (∇H · (vH · ∇H)vH). We will be left with a term

∆−1
QG(∇

⊥
H(∇H ×∇H∆

−1
H (∇H · (vH · ∇H)vH))).
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Notice that this is zero, because ∇H× a gradient is something of the form ∂2v
∂y∂z −

∂2v
∂y∂x , but

u and v are going to be the same here because they come from the vector Laplacian, which
is just the Laplacian in each component. Then we can conclude the contribution from that
term is zero.

Then considering our equation, plugging in everything except what we know will yield
a zero contribution from B(·, ·), we have

−Bu2∆−1
QG

∂2

∂z2
((vH · ∇)vH)−∆−1

QG(∇H(∇H · vH · ∇HvH)) =

−(vH · ∇H)vH +∆−1
QG(∇

⊥
H(∇H × ((vH · ∇H)vH))).

The momentum equation then reduces to, from Eq. (25),

∂vH
∂t

+∆−1
QG

(
∇⊥
H(∇H × ((vH · ∇H)vH))− Bu∇⊥

H

(
∂

∂z
(vH · ∇H)ρ)

))
= 0.

Note that we can interpret the advection term applied to ρ as a matrix times a scalar func-
tion. We will want to take the curl of the momentum equation to get the PV conservation
equation. First, we need to simplify the equation so there is no operator ∆−1

QG. If we replace

vH in terms of the streamfunction ψ, so that ∂ψ∂z = −Bu−1ρ (hydrostatic balance), we obtain

∂vH
∂t

+∆−1
QG

(
∇⊥
H(∇H × ((vH · ∇H)vH)) + Bu2∇⊥

H

(
(vH · ∇H)

∂2

∂z2
ψ)

))
= 0.

This was because
∂zvH = ∂z∇⊥

Hψ = ∇⊥
H∂zψ = −Bu−1∇⊥

Hρ,

and ∇Hρ · ∇⊥
Hρ = 0. Since ω3 = ∆Hψ,

−∂vH
∂t

= ∆−1
QG

(
∇⊥
H((vH · ∇H)∆Hψ) + Bu2∇⊥

H

(
(vH · ∇H)

∂2

∂z2
ψ)

))
= ∆−1

QG∇
⊥
H((vH · ∇H)q)

where q denotes potential vorticity, by definition. Since this approach to finding the slow
dynamics equations, which can also be found in [23], may be considered, due to the explicit
calculation of the projection, the more mathematically rigorous derivation of the slow dy-
namics equations than the classical derivation of QG, c.f. [25], it may seem odd to simply
“apply” hydrostatic and geostrophic balance here. However, this can actually be seen for-
mally as the leading order solution from the asymptotic expansion (so order 1

ϵ ), e.g. [23]
pp.155-157. This requires initial data to be in geostrophic balance. There is the the ques-
tion of whether we can still use these balances in the case of the fast singular limit, in which
there are fast gravity waves. We indeed can, only because the wave contributions (both slow
and fast) can be shown to not affect these balances: see Lemma 8.3 and the proceeding text
in [23]. A key fact is that expanded potential vorticity, qϵ = q+ o(1), where q

.
= ω3−Bu ∂ρ

∂z
is the familiar potential vorticity, has no leading order gravity wave fluctuations for small
ϵ. This is shown mathematically in [23], though it was of course known before, i.e. that the
waves do not carry PV.
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Applying the operator ∆QG to both sides, and substituting ∇⊥
Hψ = vH , we obtain

−∇⊥
H

∂

∂t
q = ∇⊥

H(vH · ∇H)q.

We cannot just take an inverse on both sides because that is not necessarily well-defined,
but notice if we take the horizontal curl of both sides, we obtain a horizontal Laplacian
rather than the perpendicular gradient. Then we can apply the inverse horizontal Laplacian
operator to both sides, rearrange, and obtain exactly

DH

Dt
q = 0.

Notice we essentially used the same procedure as if we were deriving the conservation of PV
from the momentum equation – as in, we took the horizontal curl – with the key difference
being that we did so in a more convenient order, given the presence of the ∆QGα

operator.
Now we will also check what we obtain for the density equation. To do so, we substitute

in (vH · ∇H)ρ for ρ and (vH · ∇H)vH −∇H∆
−1
H (∇H · (vH · ∇)vH) for vH , to obtain

(vH ·∇H)ρ

−∆−1
QG

(
F
∂

∂z
(∇H × ((vH · ∇H)vH −∇H∆

−1
H (∇H · (vH · ∇)vH)) + ∆H(vH · ∇H)ρ

)
.

Again the term with ∆−1
H will end up contributing zero. We are left with

(vH · ∇H)ρ−∆−1
QG

(
F
∂

∂z
(∇H × ((vH · ∇H)vH) + ∆H(vH · ∇H)ρ

)
,

or equivalently,

(vH · ∇H)ρ−∆−1
QG

(
F
∂

∂z
((vH · ∇H)ω3) + ∆H(vH · ∇H)ρ

)
.

Notice that using ω3 = ∆Hψ and ∂ψ
∂z = −Bu−1ρ, ω3 = ∆Hψ. Then since ρ = Bu ∂ψ

∂x3
, we

can equivalently write

(vH · ∇H)ρ−∆−1
QG

(
−∆H

∂ψ

∂z
+∆H

∂ψ

∂z

)
= (vH · ∇H)ρ

We then see that for density, we just have the mass continuity equation

Dρ

Dt
= 0.

6.5 Slow dynamics equation from the projection, α ̸=0

6.5.1 Vorticity identities

In this section, we establish the necessary vorticity identities for obtaining the (simplified)
slow dynamics equation from the projection. From [13], the vorticity equation for the
Leray-α model is

∂ω

∂t
+ S−1v · ∇ω = ω · ∇S−1v + ν∆ω + [∇vj ×∇S−1vj ]
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whereas for the LANS−α model, we have

∂ω

∂t
+ S−1v · ∇ω = ω · ∇S−1v + ν∆ω.

Here, the notation S−1v · ∇ω means multiplying a row vector S−1v with the gradient
matrix for ω. From these equations and the proof of Ertel’s PV theorem in [23], we can
now hypothesize that the projected equations for the LANS-α model will just be advection
of PV by the smoothed velocity and the Leray-α model will be the same thing but with
a source term resulting from the extra [∇vj × ∇S−1vj ]. This is another reason why the
LANS−α model is the more physical of the two; the added terms play a crucial role in
formulating the generalized α ̸= 0 slow equations.

A useful note is that the extra term [∇vj×∇S−1vj ] arises when we consider∇×((u·∇)v).
We can rewrite this as∇×((∇v)·u), where the notation of the inner part means the Jacobian
of v times the column vector u on the right. However, the term will cancel out when we
instead consider ∇× ((∇v) · u + v · (∇u)). Note that the exact form of the terms will be
different when we are considering the 2D curl (which results in a scalar) rather than the 3D
curl.

Since we wil be interested in the horizontal velocities, we compute explicitly what we will
get in 2D. We will use the notation uH instead of S−1vH for simplicity. We are interested
in computing ∇H × ((uH · ∇H)vH) and, for the LANS−α model, ∇H × ((vH · ∇H)u

T
H).

We can equivalently write this quantities as ∇H × ((∇HvH)uH) + vH(∇uH)) where again
the parentheses indicate this is a Jacobian matrix. We denote ω3

.
= ∇H × vH . An explicit

calculation yields that

∇H × ((∇HvH)uH) = ∂xv2∂xu1 + u1∂xxv2 + ∂yv2∂xu2 + u2∂xyv2

− (∂xv1∂yu1 + u1∂xyv1 + ∂yv1∂yu2 + u2∂yyv1)

∇H × (vH(∇HuH)) = ∂yu1∂xv1 + v1∂xy∂u1 + ∂yu2∂xv2 + v2∂xyu2

− (∂xu1∂yv1 + v1∂xyu1 + ∂xu2∂yv2 + v2∂xyu2)

= ∂yu1∂xv1 + ∂yu2∂xv2 − ∂xu1∂yv1 − ∂xu2∂yv2

(∇Hω3)uH = u1∂xxv2 − u1∂xyv1 + u2∂xyv2 − u2∂yyv1.

Thus, upon using the incompressibility of vH and uH ,

∇H × ((∇HvH)uH) + vH(∇uH)) = (∇Hω3)uH

∇H × ((∇HvH)uH) = (∇Hω3)uH + (∂xuH · ∇Hv2 − ∂yuH · ∇Hv1).

Writing this in the notation we have been using,

∇H × ((∇HvH)uH + vH(∇HuH)) = (S−1vH · ∇H)ω3 (60)

and

∇H × ((∇HvH)uH) = (S−1vH · ∇H)ω3 + (∂xS−1vH · ∇Hv2 − ∂yS−1vH · ∇Hv1). (61)

To reduce the projected equations to the conservation of PV, we crucially needed to
use hydrostatic and geostrophic balance, which, as discussed previously, can be seen to be
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formally valid even in the case of a fast singular limit. The key equation to see that this
generalizes in the α ̸= 0 case is Eq. (60). From this, a generalized Ertel’s PV theorem can
be proven, which is the theorem required to formally show leading order hydrostatic and
geostrophic balance. Notice that this will not apply in the Leray−α case because instead
Eq. (61) holds.

6.5.2 Derivation of 3D QG-α, conservation of PV

We will make use of the results of §6.4 and §6.5.1. To evaluate PQGα(B(w,w) − Dw), we
need to substitute in for vH

(S−1vH · ∇H)vH −∇H∆
−1
H (∇H · ((S−1vH · ∇H)vH))−

1

Re∆vH
,

and for ρ,

(S−1vH · ∇H)ρ−
1

RePr
∆ρ.

Here, S−1 indicates the two-dimensional version of the operator, and there is an H on the
inverse Laplacian because it is actually a vector Laplacian. For now, we will ignore the
diffusion terms.

Notice that for the same reason as the α = 0 case, the contribution from the latter term
in the sum, ∇H∆

−1
H (∇H · ((S−1vH · ∇H)vH)), will be zero. At this stage, we have

PQGα(B(v,v)−Dv)

= ∆−1
QGα

(
∇⊥
H(∇H × ((S−1vH · ∇H)vH))− BuS−1∇⊥

H

(
∂

∂z
((S−1vH · ∇H)ρ)

))
= ∆−1

QGα

(
∇⊥
H((S−1vH · ∇H)ω3)− BuS−1∇⊥

H

(
∂

∂z
((S−1vH · ∇H)ρ)

))
.

Using the commutativity of S−1 with the advection operator (under the interpretation of
Lagrangian averaging, i.e. that this is a valid approximation to the dynamic Helmholtz op-
erator), from which it follows due to the lack of time-dependence that there is commutativity
with just the S−1vH · ∇H) portion, we obtain

PQGα(B(v,v)−Dv)

= ∆−1
QGα

(
∇⊥
H((S−1vH · ∇H)ω3)− Bu∇⊥

H

(
∂

∂z
(S−1vH · ∇H)S−1ρ)

))
We apply hydrostatic balance, which in this case yields that ω3 = S∆Hϕ and ρ = −Bu∂ϕ∂z .
We can again commute the partial derivative with respect to z with the advective term due
to the relationships with ϕ. We obtain

PQGα(B(v,v)−Dv)

= ∆−1
QGα

(
∇⊥
H((S−1vH · ∇H)S∆Hϕ) + Bu2∇⊥

H

(
(S−1vH · ∇H)S−1 ∂

2

∂z2
ϕ

))
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Now assembling the first row (velocity portion) of the slow equation Eq. (47), we have

∂vH
∂t

+∆−1
QGα

(
∇⊥
H((S−1vH · ∇H)S∆Hϕ) + Bu2∇⊥

H

(
(S−1vH · ∇H)S−1 ∂

2

∂z2
ϕ

))
= 0.

After applying ∆QGα
to both sides, and substituting in vH = S∇⊥

Hϕ, we obtain

∂

∂t

(
∆H∇⊥

HSϕ+Bu2S−2 ∂
2

∂z2
S∇⊥

Hϕ

)
+∇⊥

H((∇⊥
Hϕ · ∇H)S∆Hϕ)

+ Bu2∇⊥
H

(
(∇⊥

Hϕ · ∇H)S−1 ∂
2

∂z2
ϕ

)
= 0.

After pulling out the ∇⊥
H and either taking the horizontal curl of both sides in order to get

a horizontal Laplacian and then applying the inverse horizontal Laplacian to both sides,
or integrating each row and then putting together the results to see that the constant of
integration must be zero, we obtain

DH,α

Dt

(
∆HSϕ+Bu2S−1 ∂

2

∂z2
ϕ

)
= 0.

Above, this is advection with respect to the (horizontal) smoothed velocity (which is equal
to ∇⊥

Hϕ). If we use the commuting property again, We can see that again the PV is just
the ∆QGα

operator applied to the potential (which is the modified pressure) ϕ. We can also
rewrite this as

DH,α

Dt

(
ω3 − BuS−1 ∂

∂z
ρ

)
= 0,

which is very similar to the PV in the α = 0 case (and indeed reduces appropriately) but
the density is now smoothed and the vorticity has a different relationship to the pressure,
now involving the Helmholtz operator.

6.6 Fast dynamics, α ̸=0

6.6.1 More details for QG-α

Eigenvectors.

r
(1)
k =

1√
2|kH ||k|C


iCkm− Bu lm

ω
(1)
k

iClm+ Bu km

ω
(1)
k

−iC|kH |2
|kH |2

ω
(1)
k

 and r
(−1)
k =

1√
2|kH ||k|C


−iCkm− Bu lm

ω
(1)
k

−iClm+ Bu km

ω
(1)
k

iC|kH |2
|kH |2

ω
(1)
k

.


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Notice most of the C = (1 + Lα|k|2) factor out and cancel, so we can obtain the more
familiar form

r
(1)
k =

1√
2|kH ||k|


ikm− Bu lm|k|

(C|kH |2+Bu2m2)1/2

ilm+ Bu km|k|
(C|kH |2+Bu2m2)1/2

−i|kH |2
|kH |2|k|

(C|kH |2+Bu2m2)1/2

 ,

r
(−1)
k =

1√
2|kH ||k|


−ikm− Bu lm|k|

(C|kH |2+Bu2m2)1/2

−ilm+ Bu km|k|
(C|kH |2+Bu2m2)1/2

i|kH |2
|kH |2|k|

(C|kH |2+Bu2m2)1/2

 .

6.6.2 Triads: low Rossby only

We are interested in the set of possible three-wave resonant interactions. The eigenvalues
of the fast operator are described by Eq. (51). The set of triads is described by

Rαk = {(k′,k′′, β′, β′′, β) | k′ + k′′ = k, ω
(β′)
k′ + ω

(β′′)
k′′ = ω

(β)
k }.

The superscript α indicates that the set of possible interactions does depend on α in the
α ̸= 0 case. Using Eq. (51), the relationship between the frequencies, under the assumption
that k′,k′′,k ̸= 0 and k′

H ,k
′′
H ,kH ̸= 0, is given by

m1

|k′|(1 + Lα|k′|2)
+

m2

|k′′|(1 + Lα|k′′|2)
=

m

|k|(1 + Lα|k|2)

where m1 is the third component of k′, m2 is the third component of k′′, m is third
component of k. We assume m1,m2 ̸= 0, or else we obtain a trivial solution to this
relationship. Now imposing also the condition k′ + k′′ = k, we obtain

m1

|k′|(1 + Lα|k′|2)
+

m2

|k′′|(1 + Lα|k′′|2)
=

m1 +m2

|k′ + k′′|(1 + Lα|k′ + k′′|2)
. (62)

Notice in Eq. (62), for simplicity, we did not use the absolute value version of the eigenvalues;
the below argument still goes through if we consider the absolute value version of the
eigenvalues, since we would just solve for |m1 + m2| and then substitute it in at each
subsequent step. Moreover, we do not obtain the trivial case: the linearly dependent case
is impossible (given they are not both zero).

We are in particular interested in how the solution set of Eq. (62) differs from the α = 0
case, which has eigenvalues described by Eq. (36). By using a series expansion in Eq. (62),
we can obtain the characterization:

m1

|k′|
+

m2

|k′′|
− m1 +m2

|k′ + k′′|
(63)

−(Lα|k′|m1 + Lα|k′′|m2 − Lα|k′ + k′′|(m1 +m2)) (64)

+ L2
α|k′|3m1 + L2

α|k′′|3m2 − L2
α|k′ + k′′|3(m1 +m2) + ... = 0 (65)
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This expansion is valid / the series converges whenever Lα|k′|2 < 1 (and similarly for
k′′ and k). Note also that we have treated each term as something like fg, where f and
g are functions, series expanded g, and then multiplied by f , i.e. we only series expanded

1
1+Lα|k′|2 . Then there is no technical point about some dependence of |k′| on m, etc.

We can at this point see issues with solvability (regardless of the exact value of Lα). We
can break this up into a system of equations

m1

|k′|
+

m2

|k′′|
− m1 +m2

|k′ + k′′|
= 0

Lα|k′|m1 + Lα|k′′|m2 − Lα|k′ + k′′|(m1 +m2) = 0

L2
α|k′|3m1 + L2

α|k′′|3m2 − L2
α|k′ + k′′|3(m1 +m2) = 0

...

and show that if the first equation holds, none of the others hold. Then the overall equation
Eq. (65) cannot hold. This is just because zero + nonzero is nonzero, since the remaining
equations cannot cancel each others’ (nonzero) contributions due to the powers of |k′|.
For instance, the only way to satisfy x + y = z and x2 + y2 = z2 simultaneously, where
x, y, z > 0, is for at least one of x, y, z = 0, which we cannot have by assumption here. It is
not hard to show that in general xn + yn = zn, xm + ym = zm where x, y, z > 0, n,m ∈ N,
m > n do not have a simultaneous solution. First, one shows there is no c > 0 such that
x = cy and this holds, and then, towards a contradiction, one can see via substitution that
xm+ ym = zm−n(xn+ yn) which by the linear independence implies zm−n = xm−n = ym−n

but then those are all actually zero.
The first equation yields

m1 +m2 = |k′ + k′′|
(
m1

|k′|
+
m2

|k′′|

)
. (66)

Now consider the next equation. The Lα cancel out and we need

|k′|
|k′ + k′′|

m1 +
|k′′|

|k′ + k′′|
m2 = m1 +m2, (67)

but from assuming Eq. (66) holds,

|k′|
|k′ + k′′|

m1 +
|k′′|

|k′ + k′′|
m2 =

|k′ + k′′|
|k′|

m1 +
|k′ + k′′|

|k′′|
m2.

Assuming m1 and m2 are linearly independent, we can compare the coefficients on
each one, which implies |k′ + k′′|2 = |k′|2 = |k′′|2 which contradicts our assumption that
k′,k′′ ̸= 0.

If they are not linearly independent, i.e. m2 = Am1 for some A ∈ R, then we solve the
first equation to obtain that either |m1| = 0 (which we cannot have, by assumption) or

A =

(
|k′′|
|k′|

)
|k′| − |k′ + k′′|
|k′ + k′′| − |k′′|

.
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From Eq. (67) though,

A =
|k′| − |k′ + k′′|
|k′ + k′′| − |k′′|

.

Since A is a constant, then |k′′| = |k′|, so A = −1, and this is another trivial solution.
Higher order equations just yield

A =
|k′|n − |k′ + k′′|n

|k′ + k′′|n − |k′′|n

but since |k′′| = |k′|, this is also −1 and there is no contradiction. In the absolute value
case, however, we still obtain A = −1 but that is a contradiction because |m2| cannot be a
negative number times |m1|.

The next order equation: we need

|k′|3

|k′ + k′′|3
m1 +

|k′′|3

|k′ + k′′|3
m2 = m1 +m2.

Substituting the result from the first equation, Eq. (67),

|k′|3

|k′ + k′′|3
m1 +

|k′′|3

|k′ + k′′|3
m2 =

|k′ + k′′|
|k′|

m1 +
|k′ + k′′|

|k′′|
m2.

Then we obtain |k′+k′′|4 = |k′|4 = |k′′|4, which is the same contradiction again. We can see
inductively that this will always be the case, and we actually cannot get any fast-fast-fast
three-wave resonances, at least when we assume all the signs are the same.

Suppose we decide only the mode corresponding to k′ is actually the negative one (as
in the −1 mode; it is not necessarily negative because that depends on the sign of m, which
we make no assumptions on). Then we have the system

−m1

|k′|
+

m2

|k′′|
− m1 +m2

|k′ + k′′|
= 0

−Lα|k′|m1 + Lα|k′′|m2 − Lα|k′ + k′′|(m1 +m2) = 0

−L2
α|k′|3m1 + L2

α|k′′|3m2 − L2
α|k′ + k′′|3(m1 +m2) = 0

...

If the first equation holds, we have

m1 +m2 = |k′ + k′′|
(
−m1

|k′|
+
m2

|k′′|

)
.

Then we need

− |k′|
|k′ + k′′|

m1 +
|k′′|

|k′ + k′′|
m2 = −|k′ + k′′|

|k′|
m1 +

|k′ + k′′|
|k′′|

m2

which is the exact same contradiction again. By symmetry, we can also conclude the result
in the case that only the mode corresponding to k′′ is the negative one.
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All that is left is to consider the case where the two sides of the equations are opposite
modes. Without loss of generality, we consider the case ω(1)(k′)+ω(1)(k′′) = ω(−1)(k′+k′′).
If the first equation holds in this case, we have

m1 +m2 = |k′ + k′′|
(
m1

|k′|
+
m2

|k′′|

)
.

Then we need

|k′|
|k′ + k′′|

m1 +
|k′′|

|k′ + k′′|
m2 = −|k′ + k′′|

|k′|
m1 −

|k′ + k′′|
|k′′|

m2

which again yields the contradiction that k′ = k′′ = k = 0.

6.6.3 Triads: low Froude only

Now we complete the same analysis but for the low Froude, finite Rossby case. Based on
the eigenvalues, Eq. (53), we are interested in the relationship

|k′
H |

|k′|(1 + Lα|k′|2)1/2
+

|k′′
H |

|k′′|(1 + Lα|k′′|2)1/2
=

|k′
H + k′′

H |
|k′ + k′′|(1 + Lα|k′ + k′′|2)1/2

. (68)

We cannot series expand in exactly the same way as in the low Rossby only case because of
the square root. However, we can actually just get the same decoupling if we use the series
expansion for 1√

1+x2
. For the first term:

|k′
H |

|k′|(1 + Lα|k′|2)1/2
=

|k′
H |

|k′|

(
1− Lα|k′|2

2
+

3L2
α|k′|4

8
− 5L3

α|k′|6

16
+ ...

)
Note that the coefficients are

(−1/2
n

)
. The only difference from the above analysis is the

constant coefficients, which do not affect the analysis. We can immediately see that we
get the same conclusion as before. To illustrate, for the first equation, we could solve for
|k′
H + k′′

H |,

|k′
H + k′′

H | = |k′ + k′′|
(
|k′
H |

|k′|
+

|k′′
H |

|k′′|

)
.

The next order equation reduces to

|k′|
|k′ + k′′|

|k′
H |+

|k′′|
|k′ + k′′|

|k′′
H | = |k′

H + k′′
H |.

Substituting,

|k′|
|k′ + k′′|

|k′
H |+

|k′′|
|k′ + k′′|

|k′′
H | =

|k′ + k′′|
|k′|

|k′
H |+

|k′ + k′′|
|k′′|

|k′′
H |

and we have the same contradiction. Notice we will also reach the same contradiction upon
assuming linear dependence.
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6.6.4 Triads: simultaneously low Rossby and low Froude

Lastly, we complete the same analysis but for the low Froude and low Rossby case. Based
on the eigenvalues, Eq. (54), we are interested in the relationship(

|k′
H |2

|k′|2(1 + Lα|k′|2)
+

Bu2m2

|k′|2(1 + Lα|k′|2)2

)1/2

+

(
|k′′
H |2

|k′′|2(1 + Lα|k′′|2)
+

Bu2m2

|k′′|2(1 + Lα|k′′|2)2

)1/2

=

(
|k′
H + k′′

H |2

|k′ + k′′|2(1 + Lα|k′ + k′′|2)
+

Bu2m2

|k′ + k′′|2(1 + Lα|k′ + k′′|2)2

)1/2

.

(69)

We assume that |mi| ̸= 0 and that |k′
H | ̸= 0 or else what we want to show follows from the

previous cases, due to c55. We write each term in a more convenient form:

((1 + Lα|k′|2)|k′
H |2 +Bu2m2)1/2

|k′|(1 + Lα|k′|2)

Let

ω′
0
.
=

(|kH |2 +Bu2m2
1)

1/2

|k′|
We cannot really series expand in |k′| because unlike the other cases, we cannot express
this as the product of a function involving only |k′| and no other variables dependent on
k,m, l and another function. Expanding in |k′| would then necessarily involve doing a
multivariable Taylor series. Instead, we expand in Lα. For each term, we obtain

ω′
α = ω′

0

(
1 +

Lα|k′
H |2

2(ω′
0)

2

)
(1− L2

α|k|2 + ...)

so everything follows as before except we also need to address the terms involving
Lα|k′

H |2
2(ω′

0)
2 .

However, it does not actually matter whether these terms have a zero or nonzero contri-
bution so long as if they have a nonzero contribution, they cannot cancel out the nonzero
contribution from the terms ω′

0L
2
α|k|2, ω′

0L
2
α|k|4, etc. To that end, we essentially need to

show that

c1x
n + c2y

n − c3z
n ̸= d1

c1
xn +

d2
c2
yn − d3

c3
zn

where in our case n = 1, 2, 3, ..., x = |k′|, y = |k′′|, z = |k′ + k′′|, c1 = (|k′
H |2 + Bu2m2

1)
1/2

and analogously for c2, c3, and d1 = |k′
H | (and similarly for d2, d3). This is in fact true

because otherwise mi would be zero, which is not the case by assumption.
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Oceanic Internal Tides: Do They Get Phased at the Equator?

Camille Moisset

August 21, 2024

1 Introduction

Oceanic tides are an essential component of the global ocean circulation, with an impor-
tant role in the exchanges between the different energy reservoirs [15, 4]. However, 
two different contributions need to be separated: the first is the barotropic tide, 
generated by astronomical forcing, which produces a large scale movement of water 
masses across the entire global ocean; the second is baroclinic tide (or internal tide) which 
are internal waves excited by the movement of the water masses over topography [6, 18]. 
These waves then propagate away from their sources as low vertical modes and interact 
with numerous other oceanic processes [7]. The dynamics of internal tides are incredibly 
rich involving complex generation mechanisms, their interactions with topography, but 
also wave-wave and wave-mean flow interactions, all through the stratified and rotating 
fluid that is the ocean [see 5, 12, 17, for reviews on different dynamical aspects]. Internal 
tides are a significant source for deep oceanic mixing through their non-linear dynamics 
that ultimately induce turbulent dissipation and diapycnal mixing.

The lunar semidiurnal internal tide, denoted M2, is the most energetic tidal mode excited 
in Earth oceans and, as such, a major actor of oceanic dynamics. It is excited at a fixed 
frequency ω0 = 1.4 × 10−4 rad.s−1 and propagates over long distances as low modes with a 
horizontal wavelength around 150 kilometers [14, 3]. The ultimate fate of the baroclinic tides 
remains uncertain but a significant number of processes are proposed, amongst them non-
linear breaking, triadic interactions, scattering of the energy to higher modes, and interaction 
with currents and eddies. Likewise, the interaction between the internal tides and eddy fields 
could cause such incoherences in the tidal signal [16]. It is also possible that strong currents 
and shelf fronts influence the dynamics of the M2 internal tide [9].

Satellite altimetry provides a way to track the baroclinic tidal signal over the global 
ocean, as oscillations of the interior affect the surface of the ocean. But in the region of 
the Equatorial Pacific, such observations show that the M2 signal (for example propagating 
northward from its generation near the French Polynesia Islands) seems to disappear when 
the internal waves cross the Equator (see fig. 1 from [1]). Buijsman et al. [1] argue that 
it could be due to a loss of coherence of the M2 signal and they hinted that equatorial jets 
(see figure 1) could play a significant role: the vertical and meridional variations in the 
zonal currents and the stratification can scatter the energy to higher modes and modify 
the phase and group speed of internal waves resulting in their incoherences. In such type

341



Figure 1: Vertical structure of the zonal equatorial current, computed using the LLC4320
configuration of the Massachusetts Institute of Technology general circulation model (MIT-
gcm, [13])

of observations, the signal of the M2 internal tide is extracted using a harmonic fit to the
excitation frequency of the tidal mode, meaning that incoherences could induce a significant
loss of information.

We investigate whether the dynamics of the wave-mean flow interaction between the M2
internal wave and the equatorial jets could cause a loss of coherence in the M2 altimetry
signal. To do so, we study the more general interaction between a vertical mode 1 inter-
nal tide wavepacket and a vertically sheared zonal jet. We follow the work of Kelly et
al. [8, 10, 11] who proposed a model able to decompose the modal dynamics of the M2
internal tides. In particular, linear wave-mean flow interactions are retained but non-linear
wave-wave interactions are neglected. Section 2 details the formalism of the vertical mode
decomposition for internal tides, as well as the analytical framework used in our model.
Simulations are realised using Dedalus [2], the numerical setup and parameters which are
presented in section 3. Section 4 show the results for a simplified model in which the ocean
is supposed to linearly stratified. This approximation allows for the exact comparison be-
tween the analytic calculations and the simulations. The conclusions and perspectives for
future work are presented in section 5.

2 Analytical Framework

2.1 General equations

We use the tangent plane approximation to describe a patch of the Equatorial Pacific Ocean
as a Cartesian box, where (x, y, z) represent longitude, latitude and depth respectively,
with unit vectors (ex, ey, ez). We consider the fully non-linear Euler equations with the

342



Boussinesq approximation:

∂tuT + (uT ·∇)uT + f × uT = −∇p+ bTez, (1a)

∂tbT + uT ·∇bT = 0, (1b)

∇ · uT = 0, (1c)

where uT = (uT , vT , wT ) = (U + u, v, w) is the total velocity field (including currents and
waves, with U the velocity of the current), f = 2Ω0 sinλ the Coriolis parameter with Ω0

the rotation vector and λ the latitude. p = P/ρ0 is the reduced pressure where P is the
dynamic pressure, the density has been decomposed as ρ = ρ0 + ρ(z) + ρ(x, y, z, t) with ρ0
a reference density, ρ the mean density profile and ρ the perturbation density. The squared

buoyancy frequency is N
2
= −gρ′/ρ0 = −b

′
, where g is gravity and the primes denote

derivatives. The total buoyancy field is bT = B + b+ b with B the buoyancy perturbation
corresponding to the zonal current, b that of the background stratification and b that of the
waves.

At the Equator, in the f -plane approximation the traditional Coriolis parameter f =
(0, 0, f) goes to zero so we use the β-plane approximation f = βy (with constant β =
2× 10−11 m−1s−1).

The mean flow U and its associated buoyancy B and pressure fields PU verify the geostrophic
and hydrostatic balance:

βyU = −∂yPU , (2a)

0 = −∂zPU +B, (2b)

which leads to
∂yB = −βy∂zU. (3)

2.2 Base state

The base velocity considered is a zonal jet with separated meridional and vertical depen-
dencies:

U = (U(y, z), 0, 0) with U(y, z) = E(y)Ũ(z), (4)

where the meridional structure E(y) is taken as a Gaussian:

E(y) = exp

(
− y2

2W2

)
, (5)

with the characteristic width of the jet denoted by W.

In what follows, Ũ(z) will be either a constant or a cosine function and N
2
will be a con-

stant. It is, however, possible to generalise to more complex and realistic jet configurations
and background stratification.

Using (3), the associated base buoyancy is in hydrostatic and equatorial geostrophic balance:

B(y, z) = βW2E(y)Ũ ′(z). (6)
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The background stratification includes the contribution of the equatorial jet (∂zB) and the
far field stratification:

N2(y, z) = βW2E(y)Ũ ′′(z) +N
2
(z) . (7)

2.3 Equations for the perturbations

The base state (4-6) is subjected to perturbation by the internal tide. The total fields are
given by:

(uT, vT, wT, pT, bT) = (U, 0, 0, PU , B) + (u, v, w, p, b). (8)

Substituting and neglecting non-linear wave-wave interaction terms in (1) yields the lin-
earized system for the evolution of waves:

∂tu+ EŨ∂xu+ E′Ũv + EŨ ′w − βyv = −∂xp, (9a)

∂tv + EŨ∂xv + βyu = −∂yp, (9b)

α
(
∂tw + EŨ∂xw

)
= −∂zp+ b, (9c)

∂tb+ EŨ∂xb+ E′Ũ ′βW2v + βW2EŨ ′′w +N
2
w = 0, (9d)

∂xu+ ∂yv + ∂zw = 0 (9e)

where α ∈ {0, 1} allows to distinguish between the hydrostatic approximation (α = 0) and
non-hydrostatic case (α = 1).

2.4 Vertical mode decomposition for internal tides

We will consider internal tides incident upon and interacting with equatorial jets. They are
initialised far from the equator, where the equatorial currents are negligibly small. Here we
describe the process of determining the internal structure of these waves.

2.4.1 General formalism

We derive the vertical structure of internal tides with no background flow (U = 0). Hydro-
static balance is also assumed by setting α to zero. The system (9) is linear and we expand
the perturbations using the plane wave ansatz:

(u, v, w, p, b)(x, y, z, t) = (û, v̂, ŵ, p̂, b̂)(z)ei(kxx+kyy−ωt) , (10)

where kx and ky are the wavenumbers in the zonal and meridional directions, respectively
and ω is the frequency. The system (9) becomes:

−iωû− βy0v̂ = −ikxp̂, (11a)

−iωv + βy0û = −ikyp̂, (11b)

0 = −p̂′ + b̂, (11c)

−iωb̂+N
2
ŵ = 0, (11d)

ikxû+ ikyv̂ + ŵ′ = 0 , (11e)
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in which y0 is the initial latitude of the waves with |y0| ≫W. The system (11) reduces to:

ŵ′′ + k2h
N

2
(z)

ω2 − (βy0)2
ŵ = 0 , (12)

where k2h = k2x + k2y.
The solution of (12) gives a sum of vertical modes ŵ = ΣnwnΦn(z) where the Φn satisfy
the Sturm-Liouville problem:

Φ′′
n +

N
2
(z)

c2n
Φn = 0 with Φn(0) = Φn(−H) = 0, (13)

with c2n = (ω2 − (βy0)
2)/k2h as the eigenvalue and H the height of the domain. This gives

the dispersion relation ω2 = c2nk
2
h + (βy0)

2. The vertical modes, Φn, are orthogonal with

respect to the weight function N
2
(z). The normalisation is chosen so that max(|Φn| = 1).

Using (11) we can derive the corresponding expressions for horizontal velocity, pressure and
buoyancy as a sum of vertical modes:

[û, v̂, p̂](z) =

∞∑
n=0

[un, vn, pn]ϕn(z), (14a)

b̂(z) =
∞∑
n=0

bnN
2
(z)Φn(z) (14b)

where ϕn = Φ′
n.

2.4.2 Case N = constant

In the case whereN = N0 = constant, equation (13) reduces to that of a harmonic oscillator:

Φ′′
n +m2

nΦn = 0 with m2
n =

N
2
0

ω2 − (βy0)2
k2h. (15)

Combined with the boundary conditions (13), the vertical structure functions Φn can be
expanded as a series of sine functions:

Φn(z) = sin (mnz), (16)

where mn = nπ/H, n = 1, 2, ....
Likewise,

ϕn(z) = mncos (mnz). (17)

Figure (2) shows the first three vertical structure functions for the case N0
2
= 1×10−4 s−2,

with H= 5000m.

From (15), the dispersion relation is given by

ω2 = N0
2
(

kh
mn

)2

+ (βy0)
2. (18)

Thus, specifying the frequency ω and mode number n of the initial waves gives the corre-
sponding magnitude of the horizontal wavenumber kh.
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Figure 2: Three first vertical structure functions, Φn, for N0
2
= 1×10−4 s−2 and H= 5000m.

2.5 Ray-tracing theory

Ray tracing predicts the path of the wave energy, as it moves at the group velocity cg. For
horizontal motion:

cg = ∇k ω =

(
∂ω

∂kx
,
∂ω

∂ky

)
(19)

This is different from the phase velocity cp that gives the velocity of the crests:

cp =

(
ω

|k|

)
k̂ =

k

|k|2
ω, (20)

In the long wave limit to be considered here, the group and phase velocity are in the same
direction.

The addition of a mean flow U = U(y, z)ex will introduce a difference between the absolute
frequency ω0 and the intrinsic frequency ωint, that are linked through:

ω0 = ωint + Ukx, (21)

where ω0 = 1.4× 10−4 rad.s−1 is the excitation frequency of the M2 internal tide and ωint

the intrinsic frequency satisfies the dispersion relation for waves in stationary fluid. In all
the expressions of sections 2.4.1 and 2.4.2 we replace ω → ωint.

In the absence of mean flow, (21) reduces to:

ω0 = ωint, (22)

and ω0 verifies the dispersion relation and all the results of sections 2.4.1 and 2.4.2.

As waves move inside the equatorial jet, it is necessary to separate:

• the absolute frequency ω0, which is the frequency observed from the fixed frame: it
is composed of the intrinsic frequency ωint and a Doppler-shift that arise from the
movement of the background fluid U ;
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• the intrinsic frequency ωint, which is the frequency that corresponds to the frame
moving with the mean-flow.

The separation between ω0 and ωint induced by the presence of the mean flow is inherited
by the group velocity (19), such that:

cgx0 = cgxint + U, cgy0 = cgyint (23)

where (cgxint , cgyint) are given by injecting the dispersion relation (18) in equation (19).

For ray tracing to be valid outside and inside of the jet, the vertical and horizontal scale of
variations of the waves must be much shorter than the characteristic scale of background
variations of N and U , respectively. The ray-tracing equations yield the evolution of the
position of the wavepacket (x, y) and its direction (kx, ky):

dx

dt
=

∂ω0

∂kx
= cgxint + U,

dkx
dt

= −∂ω0

∂x
, (24a)

dy

dt
=

∂ω0

∂ky
= cgyint ,

dky
dt

= −∂ω0

∂y
. (24b)

For both cases (21) or (22), the dispersion relation yields:

ω = ω(kx, ky; y) = ωint + Ukx, ωint = c2nk
2
h + (βy)2. (25)

which, combined with the right-equation of (24a) gives

kx = kx0 = constant. (26)

The left hand equations of (24), gives the slope in the horizontal of the path:

dx

dy
=

cgxint + U

cgyint
(27)

Given the dispersion relation (25), ky is implicitly a function of y, likewise cgx = ∂ω0/∂kx
and cgy = ∂ω0/∂ky are implicitly functions of y.

If U = E(y), independent of z, then (27) can be integrated to give the path starting at
(x0, y0):

x(y) =

∫ y

y0

cgxint(ỹ) + E(ỹ)

cgyint(ỹ)
dỹ + x0 (28)

Ray tracing helps reveal how the β-plane and jet influence the dynamics of the wavepacket.

For example, ignoring the β-effect and supposing U = E(y), (24b) yields

dky
dt

= −kx0E
′(y). (29)

Figure 3 shows how the results from this translate to wave dynamics. Variations of U change
ky affecting the wavelength and orientation of the wavepacket. If E′ > 0, then ky decreases.
The wavepacket would contract and deviate away from northward (figure 3, bottom right).
Ultimately, this could lead to total reflection. Conversely, if E′ < 0 and ky increases, the
wavepacket would redirect more toward the north where ky → ∞ (figure 3, top panel) and
this could encounter critical layers.
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Figure 3: Schematics of the evolution of the wavepacket when interacting with a uniform jet
ignoring the β effect. Initial situation is displayed in the center, with wavenumbers drawn in
grey arrows. In the upper part, the wavepacket is incident upon a positive horizontal shear
so that ky increases while kx stays fixed (black arrows), ultimately reacting to a critical layer
where ky → ∞. In the lower part, the wavepacket is incident upon a negative horizontal
shear and ky decreases while kx stays fixed (black arrows), ultimately leading to a total
reflection of the wavepacket where ky → 0.
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2.6 Modal wave equations

The modal wave equations are obtained by substituting the expansions (14) into the gen-
eral equations (9). Multiplying (9a), (9b) and (9e) by ϕn, and (9c) and (9d) by Φn and
integrating in the vertical, orthogonality allows us to extract the equations for the evolution
of the amplitudes of each mode. Equation (9c) gives

0 = pn + c2nbn , (30)

and equation (9e) gives
∂xun + ∂yvn + wn = 0. (31)

These diagnostic equations are used to replace wn and pn in the remaining equations for
horizontal velocity and buoyancy. From (9a):

∂tun +
∞∑

m=0

(
E∂xumC1mn + vmE′C1mn + E′(y)wmC2mn

)
− βyvn − c2n∂xbn = 0, (32)

where the interaction coefficients between the vertical structure of the modes and the vertical
structure of the jet are given by

C1nm =

∫ 0

−H
ŨΦ′

nΦ
′
mdz∫ 0

−H
(Φ′

n)
2dz

and C2nm =

∫ 0

−H
Ũ ′Φ′

nΦmdz∫ 0

−H
(Φ′

n)
2dz

. (33)

From (9b), we find

∂tvn +

∞∑
m=0

(E∂xvmC1mn) + βyun − c2n∂ybn = 0, (34)

and from (9d),

∂tbn+

∞∑
m=0

[
E∂xbmC3nm+βW 2E′vmC4nm−βW 2E(∂xum+∂yvm)C5nm

]
−(∂xun+∂yvn) = 0,

(35)
in which

C3nm =

∫ 0

−H
N

2
ŨΦnΦmdz∫ 0

−H
N

2
Φ2
ndz

, C4nm =

∫ 0

−H
N

2
Ũ ′Φ′

nΦmdz∫ 0

−H
N

2
Φ2
ndz

, and C5nm =

∫ 0

−H
Ũ ′′ΦnΦmdz∫ 0

−H
N

2
Φ2
ndz

.

(36)
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Figure 4: Initial condition in a typical simulation: the wavepacket is launched from the
position (x0, y0) in the southern hemisphere at an angle θ from north. Jet limits at y± 2W
are shown by orange lines, sponge layers limits are shown by red dashed lines.

3 Numerical Methods

The equations for the mode amplitude evolution (32), (34) and (35) are solved using Dedalus
[2]. The coefficients (33) and (36) are solved beforehand, using vertical modes Φn computed
with the Galerkin method for a given stratification profile from (13), and a prescribed ver-
tical profile Ũ for the jet.

The domain represents a patch of the Equatorial Pacific latitudinally centered on the
equator. The domain is such that x ∈ [−Lx; Lx] and y ∈ [−Ly; Ly] where (Lx, Ly) =
(8000, 8000) km (figure (4)). It needs to be sufficiently large to allow the wavepacket to
propagate toward the jet, interact with it and exit on the other size. The equator, specif-
ically, is centered at y = 0. The equatorial jet uniformly spans the zonal direction. It is
centered on the equator with an horizontal width of W=400 km. The domain is periodic in
both x and y with zonally uniform sponge layers located near the north and south bound-
aries of the domain to prevent the waves crossing the top and bottom boundaries.

The resolution is set to (Nx, Ny) = (512, 512) so that the wavelength of the internal tides
are resolved by at least 16 grid points. The typical simulation duration is approximately
8.7 days: the number of iterations is fixed at 1500 with a timestep of dt = 500s ensuring
numerical stability of the CFL criterion. Viscosity is also added for numerical stability. It
is fixed at ν = 1 m2·s−1, though much larger than the viscosity of sea water, it is still small
enough that dissipation of the waves is insignificant.

The dimensions of the domain are chosen to match the physics of the problem: the M2
internal tide has a forcing frequency of ω0 = 1.4 × 10−4 rad.s−1, with typical horizontal
wavelengths having an order of magnitude ∼400 km (kh ∼ 1.5× 10−5 m−1) and horizontal
phase speeds 2 m·s−1. We are free to choose the orientation θ from north of initial horizontal
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wavenumber vector (kx, ky) = (khsinθ, khcosθ).

The model is tested here for a constant buoyancy frequency of N
2
0 = 1×10−4 s−2. Through

the dispersion relation (18), for a mode 1 wave at y0 ≪ −W the resulting M2 horizontal
wavelength is of order 600 km, a value on the larger side.

The wavepacket is initialized with inner oscillations of ω0 fixed at the M2 forcing frequency
(figure (4)). The effect of the rotation is included using f = βy0. The envelope has a typical
width of σx and σy with an amplitude fixed as A0 = 0.01 × H with H the depth of the
ocean previously used for computing the vertical modes. The wavepacket can be launched
from different locations (x0, y0) and with various angles θ compared to the north.

The kinetic energy (KE), available potential energy (APE) and total energy (TE=KE+APE)
of the different modes of the internal tides are computed numerically using the vertical mode
decomposition:

KEn =
1

2

∫ ∫
(u2n + v2n)dxdy

∫
(Φn

2)′dz, (37)

APEn =
1

2N
2
0

∫ ∫
b2ndxdy

∫
N

2
0Φn

2dz. (38)

The total energy budget is also computed:

∂t(KE +APE) = −uv∂yU − uw∂zU − 1

N
2 bv∂yB − 1

N
2 bw∂zB, (39)

where the two first terms of the right hand side correspond to shear production and the two
others to buoyancy production.

4 Results for the Model N0 = Constant

4.1 No Equatorial jet

4.1.1 Trajectories and dynamics

The model is first tested without any equatorial jet, to check the propagation of the
wavepacket and the influence of the rotation on its dynamics through the beta-plane ap-

proximation. In all that follows, the buoyancy frequency is kept constant, at N0
2
= 1×10−4

s−2. In that case, (32), (34) and (35) reduce to decoupled equations for each mode:

∂tun − βyvn − c2n∂xbn = 0, (40a)

∂tvn + βyun − c2n∂ybn = 0, (40b)

∂tbn − (∂xun + ∂yvn) = 0, (40c)

where c2n = (ω2
0 − (βy)2)/k2h.
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Figure 5: Zonal velocity (m·s−1) of vertical mode 1 M2 internal tide. The wavepacket is
launched from (x0, y0) = (−0.5Lx,−0.5Ly) with θ = π/4.
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Figure 6: Trajectories computed using ray tracing for different angles of launch θ.

For a mode 1 wave (n = 1), c1 is fixed. Setting ω0 = 1.4 × 10−4 rad.s−1 yields the initial
wavenumber kh0 = 7.2× 10−6 m−1.

Figure (5) shows the evolution of a wavepacket, launched from (x0, y0) = (−Lx/2,−Ly/2) =
(−4000,−4000)km with an angle of θ = π/4 and σx = σy = 500 km. As such, the
wavepacket is quasi-monochromatic, with σkh0 ≫ 1. As it crosses the domain, its tra-
jectory is slightly deviated. It is also subjected to significant dispersion due to the limited
number of wavelengths composing it. The measurements over time in simulations yield
values around cp = 27m·s−1 and cg = 9m·s−1 for the mode 1.

4.1.2 Ray tracing

The ray-tracing analysis (see section 2.5 with ωint = ω0) can help disentangle the effect
of the rotation over the wavepacket. In the β-plane approximation, the trajectory of the
wavepacket can be computed using (28) with E(y) = 0:

x(y) =
1√
C1β2

atan

(
y√

C2 − y2

)
, (41)

with:

C1 =
π2

H2k2x0
(N0

2 − ω2
0)
, and C2 =

1

β2

(
ω2
0 −

1

C1

)
(42)

This expression is valid provided:

y2 < C2 =
ω2
0

β2
− 1

C1β2
(43)

The effect of the rotation and the influence of the initial angle of launch both directly in-
fluence the trajectory of the wavepacket through (41).
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Figure (6) shows the expected trajectories for angles of θ = π/4, θ = π/8 and θ = 7π/16.
Rotation is responsible for the observed deviation of the trajectories. This effect also tends
to disappear as the wavepacket approaches and crosses the Equator (where βy goes to zero).

Figure (7) shows the superposition of the computed trajectory with an initial angle of
θ = 7π/16 and the simulation. Both are in good agreement and illustrate how ray tracing
succeeds in predicting the path of the wavepacket due to the rotation.

4.1.3 Energetics

In addition to the numerical computation (37), KE was computed analytically:

KE1 =
π

16
A2

0σxσy

(
N

2
+ 2

m2
1

k2h
(βy)2

)
, (44)

Equation (44) shows how rotation directly acts as a source term of kinetic energy for inter-
nal tides.

Figure (8) shows the total energy (TE; left panel), kinetic energy (KE; middle panel) and
available potential energy (APE; right panel) of the first mode of the internal tide corre-
sponding to the case in figure (5). As only the first mode is initialized and because there
is no jet to create new modes, all the wave energy is present in the first mode. The steady
decrease of total energy (figure (8), left panel) is explained by the dissipation added to
guarantee numerical stability (fixed at ν = 1 m·s−2). Over the time of the simulation, the
loss of energy due to viscosity is ∼1% initial energy. The kinetic energy (figure (8), middle
panel) first decreases as the wavepacket approaches the Equator as a result of the term due
to rotation in (44) tending to zero. Once the tide has crossed the Equator, the effect of
rotation increases and KE increases again. APE (figure (8), right panel) changes as KE
changes to keep the total energy nearly constant. In particular, at the Equator (here at
t ∼ 90h), equipartition of the energy between KE and APE is reached.

4.2 Vertically uniform equatorial jet

4.2.1 Jet configuration and M2 dynamics

The equatorial jet is added, centered on y = 0 with a characteristic width of W = 400 km
and is uniform in the vertical:

U = U0exp

(
− y2

2W2

)
. (45)

The strength of the jet and its direction is fixed by the value taken for U0 (positive eastward
and negative westward).

Following (45), the equations (32), (34) and (35) become:

∂tun + EU0∂xun + vnE
′U0 − βyvn − c2n∂xbn = 0, (46a)

∂tvn + EU0∂xvn + βyun − c2n∂ybn = 0, (46b)

∂tbn + EU0∂xbn − (∂xun + ∂yvn) = 0. (46c)
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Figure 7: Colors: zonal velocity (m·s−1) of vertical mode 1 M2 internal tide. The wavepacket
is launched from (x0, y0) = (−0.5Lx,−0.5Ly) with θ = 7π/16. Grey dashed lines: trajec-
tory computed using ray tracing.
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Figure 8: a) Total energy, b) kinetic energy, c) available potential energy; all computed for
the simulation presented in figure (5).

Again the lack of vertical structure to U decouples the mode-mode interactions. The added
terms show that the flow mostly contributes to the advection of the wave. Only the term
vnE

′U0 in (46a) contributes to the interaction between the perturbations and the mean flow
gradient.

4.2.2 Ray tracing

The trajectories of the wavepacket can be predicted with ray tracing (see section 2.5, with
ω0 = ωint + Ukx). As the jet is located at the equator, where the rotation through the β-
plane approximation is negligible, the Coriolis force is not included; ω0 = ωint(kx, ky)+Ukx
with ωint(kx, ky) the dispersion relation (18), which is then independent of y. Using (28),
we find

x(y) = kx0

(
cgxint

cgyint
y +

1

cgyint

√
π

2
Werf

(
y√
2W

))
(47)

The trajectories for two jets of opposite direction (U0=-5 m·s−1 and U0=5m·s−1) are shown
in figure (9). These results are valid only inside the jet, where the effect of the rotation
is negligible. Depending on the direction of the jet and its intensity, the trajectory of the
wavepacket is diverted in the direction opposite (case U0=-5) or toward (U0 = 5) the direc-
tion propagation.

Figures (10) and (11) show two cases where the initial point of the wavepacket and its angle
of launch ((x0, y0) = (−7Lx/8,−Ly/2) and θ = 7π/16) have been optimized to maximize
the interactions with the jet. The jet is also stronger in both cases to enhance the effect. For
a jet of U0 = −6 m·s−1 (figure 10), the crests are strongly diverted in the direction of the
current. When approaching this level, the increase in ky (smaller meridional wavelength)
means the simulation under-resolves the waves. Conversely, for U0 = 6 m·s−1 (figure 11),
the wavepacket largely reflects.

356



Figure 9: Zonal velocity (m·s−1) of vertical mode 1 M2 internal tide. The wavepacket is
launched from (x0, y0) = (−0.5Lx,−0.5Ly) with θ = π/4. Trajectory computed using
ray tracing shown by oblique grey dashed lines. Jet limits are denoted by horizontal grey
dashed lines. Jet is uniform on the vertical with maximum amplitude set at U0 = 5m·s−1,
its direction varies according to the orange arrow: a) westward and b) eastward.

4.2.3 Energetics

Figure (12) shows the total energy (TE; left panel), kinetic energy (KE; middle panel) and
available potential energy (APE; right panel) of the mode 1 wavepacket with no jet as in
figure (8), also with a simulation computed with a westward jet having U0=-1 m·s−1 (grey
dashed profiles). Because in both cases the dynamics do not involve higher modes, the total
wave energy is contained in mode 1.

The interaction between the jet and the wave causes the total energy of the wavepacket
to rise significantly as it enters the jet (around t ∼ 60h), but the process reverses before
the wavepacket exits the jet (around t ∼ 160h). This reversal of the energy transfer occurs
after the wavepacket crosses the Equator at around t ∼ 95 h.

As no evolution of the jet or feedback from the jet is included into the model, the total
energy is not conserved (in addition to the effect of dissipation, as shown in figure (12a)).
In such configuration, it is the wave action A =TE/ωint that is conserved, provided that
there is a scale separation between the wave and the jet.

Outside of the jet, where ωint = ω0, TE is given by:

TE = Aω0, (48)

where ω0 is fixed at the excitation frequency of the M2 internal tide and A is affected by
the dissipation, causing the initial decrease observed in figure (12a).
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Figure 10: Zonal velocity (m·s−1) of vertical mode 1 M2 internal tide. The wavepacket
is launched from (x0, y0) = (−0.9Lx,−0.5Ly) with θ = 7π/16. Jet limits are denoted by
horizontal grey dashed lines, its direction by the orange arrow. Jet is uniform on the vertical
with U0 = −6m·s−1.
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Figure 11: Zonal velocity (m·s−1) of vertical mode 1 M2 internal tide. The wavepacket
is launched from (x0, y0) = (−0.9Lx,−0.5Ly) with θ = 7π/16. Jet limits are denoted by
horizontal grey dashed lines, its direction by the orange arrow. Jet is uniform on the vertical
with U0 = 6m·s−1.
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Figure 12: a) Total energy, b) kinetic energy, c) available potential energy. Blue profiles
correspond to the case with no jet, grey dashed lines for the jet uniform on the vertical with
amplitude U0=-1 m·s−1.

Inside the jet ωint = ω0−E(y)kx0. With E(y) < 0 as is the case in figure (12), ωint increases
to a maximum before decreasing back to ω0 as the wavepacket exits the jet. As

TE = A(ω0 − E(y)kx0), (49)

it means that, superimposed to the steady decrease caused by dissipation, TE first increases
to a maximum due to wave/jet interactions before decreasing back to the value imposed by
the dissipation when the wavepacket exits the jet.
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Figure 13: Vertical structure Ũ of the jet as described in (50).

4.3 Vertical mode 2 equatorial jet

4.3.1 Jet configuration and M2 dynamics

The horizontal structure of the equatorial jet is kept identical but its vertical structure
corresponds to a vertical mode 2 (n = 2):

U(y, z) = U0 cos(mnz)exp

(
− y2

2W2

)
, (50)

where mn = 2π/H, U0 = −1 m·s−1, W = 400 km and H = 5 km.

The sheared vertical structure of the jet is displayed in figure (13) and represents an ide-
alised equatorial jet: westward at the top and bottom of the ocean but eastward in the
center of the ocean.

With the jet sheared in the vertical, the model is driven by the modal equations (32), (34),
(35) with non-trivial interactions coefficients. Equations (33) and (36) also become non-
trivial, representing the interactions between the vertical modes of the waves. In particular,
for a jet with a vertical mode 2 structure, the coefficients have non-zero values for the wave
modes m = n − 2 and m = n + 2, except for the case n = 1 which has also a non-zero
interaction coefficient with itself (m = n = 1).

Despite this, the evolution of the vertical mode 1 M2 internal tide is qualitatively similar
to the cases with no jet or with a vertically uniform jet. For example, the evolution shown
in figure (14) should be compared with figure (7) that has no jet.

Higher modes are excited, but at much smaller amplitudes than mode 1. Figure (15) shows
how, the mode 1 wavepacket, when propagating inside the jet, generates mode 3 with smaller
amplitude less than 10% that of the mode 1 wave. This higher mode propagates inside the
jet, in the same direction as the incident wave. It eventually decays, giving its energy back
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Figure 14: Zonal velocity (m·s−1) of vertical mode 1 M2 internal tide. The wavepacket
is launched from (x0, y0) = (−0.5Lx,−0.5Ly) with θ = π/4. Jet limits are denoted by
horizontal grey dashed lines, with a structure as in (50).
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to mode 1 as the mode 1 leaves the jet. Such behaviour is also observed with higher modes,
modes 5, 7, 9,..., all created inside the jet with smaller and smaller amplitudes and vanishing
as the mode 1 wavepacket leaves the jet.

For the case treated here (where N is constant) and near the equator where β|y| ∼ 0, the
phase and group speeds are inversely proportional to the mode number. As a result, the
wavepacket envelope as well as the crests of higher modes are slower than those of the
initial mode 1. For example, for θ = π/4, the mode 1 velocities are cp1 = 27m·s−1 and
cg1 = 9m·s−1, whereas the mode 3 has cp3 = 9m·s−1 and cg3 = 3m·s−1.

These higher modes also have smaller horizontal wavelengths (the wavenumbers grow with
the mode number), which would cause then to be more susceptible to dissipation and
encountering critical layers. Numerically it means that the number of modes solved for is
limited (to 10 in our case) as well as the maximum velocity of the jet.

4.3.2 Energetics

Figure (16) shows the total energy of the wavepacket (left panel) for the case with the mode
2 jet, first for all the vertical modes (dark blue profile), then for the mode 1 only (light blue
profile). The case with no jet has also been added (grey dashed line). Compared to the
variation caused by the wave-mean flow interaction, the difference brought by the creation
of the higher modes is small. However, looking at the middle panel figure (16) that repre-
sents the difference between the total energy of all the modes and that of mode 1, shows
that this difference still accounts for more than 200 MJ and develops only when the M2
internal waves crosses the jet. In the right panel of figure (16), this difference in the total
energy is mostly explained when also adding the total energies of mode 3 and mode 5. As
such, it shows how the higher modes created inside the jet are the result of the scattering
of the energy from mode 1 to the modes of higher order, made possible by the interaction
with the jet’s non-uniform vertical structure.

The difference between the total energy and the energy of the mode 1, due to the scat-
tering of energy to higher modes, is observed to decay at later times, when the wavepacket
exits the jet, it corresponds to the vanishing of the higher modes signal observed in figure
(15). This scattered energy is returned to the mode 1, as observed for the energy of the
wave-mean flow interaction in figure (12). Also, successive higher modes created receive
less and less energy, as their amplitudes decrease with mode number.

The left panel of figure (17) shows the total energy of the mode three, which is the first to
be created through wave-mean flow interactions and also the higher mode that receives the
most energy. The comparison with the case without the jet is added in grey dashed lines
to show how the creation is only possible with the addition of the vertically mode 2 jet.
The middle panel of figure (17) presents only the kinetic energy of the mode 3. It demon-
strates how the scattering of energy to the higher modes is realised through the growth of
kinetic energy as it nearly accounts for the all of the mode’s energy in comparison to the
previous panel. The right panel of figure (17) shows the kinetic energy of all the higher
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Figure 15: Zonal velocity (m·s−1) of vertical mode 1 (panels a), c), e)) and mode 3 (panels
b), d), f)) M2 internal tide. The wavepacket is launched from (x0, y0) = (−0.5Lx,−0.5Ly)
with θ = π/4. Jet limits are denoted in grey dashed lines, with a structure as in (50).
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Figure 16: a) Total energy. Grey dashed profile corresponds to the case with no jet, light
blue to the total energy of mode 1 with the sheared jet and darker blue to the total energy
of all the modes combined, in the case of the sheared jet. b) difference between the total
energy in the domain and the total energy of the mode 1. c) difference between the total
energy in the domain and the total energy of the modes 1, 3 and 5 combined.

modes created (the maximum number of vertical modes solved for here is 10), normalised
by their maximum value. It shows how the modes are created subsequently, mode 3 then
mode 5, 7 and 9. The reverse transfer of energy toward mode 1 then occurs in the inverse
order, mode 9 being the first to give all its energy back to mode 7 then mode 7 to mode 5
and so forth to mode 1. This effect is somewhat masked by the normalisation (right panel
of figure (17)) as it shows that mode 9 seems to be the last to vanish. However, mode 9
represents so little energy compared to mode 3, that the tail of the distribution of mode 3
(around t ∼ 160) still contains more of the total energy than what is distributed amongst
the higher modes. The last mode to transfer its energy to mode 1 is then effectively mode 3.

Figure (18) shows the evolution of each term of the energy budget (39). The dominant
terms are those of shear production (blue and orange profiles), related to the horizontal and
vertical shear of the mean flow. Both shear contributions change sign after the wavepacket
crosses the Equator. The part due to the vertical shear of the mean flow constitutes the
biggest contribution to the energy budget as the shear is more intense being localised over
the 5 km depth, as opposed to the 400 km of width the equatorial jet. The terms of
buoyancy production do not contribute to the evolution of the total energy.

4.3.3 Possible incoherence?

Coming back to the motivating question, we want to check if the wave-mean flow interaction
could explain the lack of observed M2 internal tide signal in the Equatorial Pacific [1].

We found the overall propagation of the tidal mode 1 negligibly changes with or with-
out a sheared jet (figure (5) and (14)) and the processes related to the excitation of higher
modes reverse when the wavepacket exits the jet (see section 4.3). To check if there are any
differences due to the interaction with and without a jet, we assess wave incoherence, from

365



Figure 17: a) Total energy of mode 3. Grey dashed profile corresponds to the case with no
jet and blue profile to the sheared jet case. b) kinetic energy of mode 3. c) kinetic energy
of modes 3 (blue), 5 (orange), 7 (green) and 9 (red), normalized by their maximum values
respectively.

Figure 18: Variation of the different terms of the energy budget, as computed in (39).
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the difference between the case with the mode 2 jet and the case with no jet.

Figure (19) shows how a difference in the dynamics is indeed created by the addition
of the sheared jet. The difference only becomes significant when the wavepacket enters the
jet and grows as long as both interact. The difference remains after the wavepacket is well
north of the jet. This is unlike the dynamics and energy transfer observed for the creation of
higher modes and it points toward the creation of lasting incoherence due to the wave-mean
flow interaction.

Figure (20) is a schematic representation of our interpretation of such incoherence. As
the mode 1 wavepacket enters the vertically sheared jet, energy is scattered toward higher
modes. These modes propagate at a speed that is lower than that of mode 1 (both the
group and phase speed are lower the higher the mode number). When the reverse transfer
of energy occurs as the wavepacket propagates north of the Equator, the energy is transferred
back to mode 1, but with a shift caused by the difference of phase speeds. The mode 1
wavepacket thus becomes phase shifted, creating incoherence in the internal tide signal.
This incoherence is a possible explanation of the lack of internal tide signal detected north
of the equator in the Equatorial Pacific [1].

5 Conclusion

We have investigated, by means of theory and numerical simulations within a idealised
setup, the wave-mean flow interaction between a mode 1 M2 internal tide and a vertically
uniform and sheared equatorial jet. The aim was to validate if such interactions could result
in incoherence and hence explain the lack of M2 altimetry signal in the Equatorial Pacific.

We have identified different effects that can influence the dynamics of the M2 wavepacket.
The β-effect deflects the path of the wavepacket but has negligible influence immediately
at the Equator. A vertically uniform jet could, depending on its strength, lead to total
reflection of the wavepacket or strong distortion of the crests. A vertically sheared jet,
however, scatters energy to higher modes. These higher modes have smaller horizontal
wavelength but also lower phase and group speed. The transfer of energy is reversed after
the wavepacket crosses the Equator, the higher modes vanishing and all the energy going
back into mode 1. It is the difference of propagation speed between the different modes
that could explain the creation of incoherence in the signal, that would affect the altimetry
observations [1].

Because of their smaller horizontal wavelength and lower phase and group speed, the
higher modes excited by the jet are likely to be more sensitive to dissipation, but also to
critical layers in a case where N is not constant. It could cause further deposition of energy
inside the jet and hence modify its dynamics as well as that of the wavepacket. It is an
effect that we will develop further in future work.

The theoretical tools developed here are readily adapted to realistic profiles of stratifica-
tion and equatorial currents. In particular, future work will model stratification motivated
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Figure 19: Zonal velocity (m·s−1) of vertical mode 1 M2 internal tide with the sheared mode
2 jet (panels a), c), e)). Difference in the zonal velocity of vertical mode 1 M2 internal tide
between the case with the sheared jet and the case with no jet (panels b), d), f)). The
wavepacket is launched from (x0, y0) = (−0.5Lx,−0.5Ly) with θ = π/4. Jet limits are
denoted in grey dashed lines, with a structure as in (50).
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Figure 20: Scheme of the incoherence mechanisms due to wave-mean flow interaction and
the creation of higher modes.
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by observations and a zonal equatorial jet with strong westward near-surface flow and un-
derlying countercurrents, as shown in figure (1).
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Interaction of Internal Gravity Waves with Magnetic Fields in
Red Giant Stars

Cy Srisawas David

August 22, 2024

1 Introduction

Magnetic fields shape the dynamics in many stars and yield insights into stellar evolution
[15, 10]. Though magnetic fields have largely been observed near the stellar surface [11], they
may also exist in the convective cores of massive main sequence stars [5]. A deep magnetic
field may persist even as a main-sequence star exhausts its supply of core hydrogen and
moves onto the red giant branch (RGB) [14], leaving a stably stratified radiative
interior surrounded by a convective outer envelope [20, 7].

While deep magnetic fields in RGB stars are inaccessible to direct measurement, their
interaction with internal waves may be detectable in asteroseismological surface observations
[22, 14]. Near-surface convective turbulence excites acoustic waves in the outer envelope [6],
which tunnel into the core and propagate as internal gravity waves (IGWs) [2], which are
restored by the buoyancy force. A cartoon of this process (adapted from [7]) is illustrated
in figure 1(a). These IGWs can tunnel back out and convert to acoustic waves, setting
up global mixed modes and producing periodic fluctuations in the brightness of the stellar
surface [4]. Photometric observations of these deviations integrated over the stellar disk
have been used by asteroseismologists to detect the lowest degree modes (higher degree
modes are difficult to detect due to increasing geometric cancellation) [1]. Of particular
importance are dipole modes, which are expected to couple strongly to IGWs in the core
and thus effectively probe the deep interior [7].

However, roughly 20 percent of the RGB stars observed in the first 37 months of NASA’s
Kepler mission exhibit suppressed dipole modes [17, 22]. Curiously, the occurrence of dipole
mode suppression is a strong function of stellar mass, and all the stars with suppressed
dipole modes have masses at least 1.1 times the solar mass, the threshold above which core
convection occurs while on the main sequence [22].

Convective dynamo magnetic fields in main-sequence cores may persist as these stars
move onto the RGB due to the low magnetic diffusivity of stellar plasma (η ∼ 10−7–10−3 m2/s 
based on models of main sequence cores [9]). Ref. [7] thus proposed that a “magnetic
greenhouse effect” from fossil magnetic fields could be responsible for trapping IGWs in RGB
cores and stopping them from forming global dipole modes in the outer envelope.

Ref. [13] showed that a radially decaying background magnetic field can trap axisym-
metric dipole modes in the core by converting downgoing IGWs to a class of magnetohy-
drodynamic (MHD) waves termed slow-magnetosonic (SM) waves. These incompressible
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waves confusingly have the word “sonic” in their name, which originates from the fact that
there are two (fast and slow) branches of mixed magnetosonic waves when the sound speed
and Alfven speed are comparable [21]. In the limit of fast sound speed (relative to Alfven
speed), the fast and slow branches diverge — the former turning into acoustic waves and
the latter into the incompressible SM waves relevant here. Axisymmetric SM waves are
confined to regions with high magnetic field strength [13], and are characterized by motion
(u) in the same plane as the wavenumber vector (k) and background magnetic field (B0):

u · (k ×B0) = 0. (1)

In the axisymmetric case, the SM waves are decoupled from a second class of MHD waves:
Alfven waves with

u× (k ×B0) = 0. (2)

These Alfven waves can only couple to the IGW and SM waves in the non-axisymmetric case,
and develop much finer horizontal scales as the result of resonances with the background
magnetic field [12, 19].

Though all three wave classes have been identified in eigenvalue problems [12, 19], analy-
sis of their interaction is missing from the literature. In particular, it is unclear if downgoing
IGWs or upgoing SM waves convert to resonant Alfven waves.

Here, we extend the analysis in [13] to non-axisymmetric modes. For wave frequencies
much smaller than the background buoyancy frequency, the linear governing equations
reduce to a generalized eigenvalue problem involving an internal singularity, which gives rise
to a continuous spectrum of fine-scale resonant Alfven waves. By evolving the full linear
equations, we show conversion between IGW and SM waves and the emergence of fine-scale
features not seen in the axisymmetric case. Though the nature of these sharp features are
unclear at present, they suggest that the mechanism of dipole mode suppression in RGB
stars may be fundamentally different for non-axisymmetric versus axisymmetric modes.

2 Problem Set-up

We consider a Cartesian model of the stably stratified RGB core, with “latitude” x ∈ [0, L],
“azimuth” y, and “radius” z ∈ [0, L/6]. Figure 1(b) shows a diagram of the domain over x
and z, roughly corresponding to the dashed region of the RGB core in figure 1(a).

Perturbations in velocity u, pressure p, density ρ, and the magnetic field b are governed
by the linearized magneto-Boussinesq equations [18]:

ρ0∂tu+∇p = −gρez +
1

µ0
(∇× b)×B0 +

1

µ0
(∇×B0)× b, (3a)

∇ · u = 0, (3b)

∂tb = ∇× (u×B0) + η∇2b, (3c)

∇ · b = 0, (3d)

∂tρ =
ρ0N

2

g
ez · u, (3e)
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Figure 1: (a) Cartoon cross-section of an RGB star with convective outer envelope and stably-
stratified core, adapted from [7]. Convective turbulence in the outer envelope excites acoustic waves
which convert to internal gravity waves (IGWs) in the core. These IGWs may interact with slow
magnetosonic (SM) and resonant Alfven waves supported by a remnant core magnetic field. (b)
Idealized Cartesian model formed by “unwrapping” the region of the radiative core indicated with
blue dashed lines in panel a, with x, y, z corresponding to latitude, azimuth, and radius, respectively.
The field lines for the sinusoidal, vertically decaying background magnetic field B0 used in this study
are plotted in purple. The opacity of the plotted field lines increases with |B0|. (c) The equilibrated
numerical solution for the pressure perturbations driven by a sinusoidal wavemaker (kx = 2π/L,
ky = 4π/L) located at the dotted line and damped at layers indicated by the hatched areas. A
stretched-aspect version of the same plot is shown in figure 3(c). The true-aspect ratio version
shown here emphasizes the scale separation between the vertical and horizontal oscillations.

where ρ0 is the mean density, g is the gravitational acceleration, µ0 is the magnetic perme-
ability of free space, and η is the magnetic diffusivity. Rotation is neglected as the frequency
of observed dipole modes ω is much faster than the rotational frequency Ω of the RGB stars
(ω/Ω ∼ 20 [22, 8]). Magnetic diffusion is retained to regularize sharp features associated
with the hydromagnetic waves described in the next section, while viscous and radiative
diffusion is neglected so that the propagation of IGWs is minimally affected.

We assume a uniform Brunt-Vaisala frequency N and a non-uniform background mag-
netic field chosen to mimic a dipole magnetic field in spherical geometry:

B0 = Be−2πz/L [sin(2πx/L)ex + cos(2πx/L)ez] . (4)

Associated fieldlines are plotted in purple in figure 1(b). Importantly, this background
magnetic field has no current (i.e., J0 = µ−1

0 (∇×B0)), which ensures that B0 is stable to
perturbations (see Appendix A.1.1 for a derivation of this result).

We consider “non-axisymmetric” dipole-like modes forced at the top of the domain
(z0/L = 1/6 − 1/40) with frequency ω and horizontal wavenumbers kx = 2π/L, ky =
4π/L ̸= 0. We chose ky > kx to yield clear separation in the behavior of IGWs with
different parity, as will be shown in the following section. This facilitates analysis and is
not expected to qualitatively change the physics.
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The flow is controlled by three dimensionless ratios: the Froude number,

Fr =
wave inertia

gravity
=

ω

N
∼ 10−1 in RGB core [22, 16], (5)

the Lundquist number

S =
wave inertia

magnetic diffusion
=

ωL2

η
∼ 1018–1022 in RGB core [22, 16, 9], (6)

and the magneto-gravity ratio

Γ =
Lorentz force over IGW scales

wave inertia
=

B(µ0ρ0)
−1/2N

ω2L
. (7)

The value of Γ in RGB cores is not known a priori, and it is instead assumed that Γ ≲ 1 in
the forward modelling of RGB core waves [7]. This restriction ensures that the background
magnetic field lines are not so stiff that they cannot be bent by the IGWs excited at the
top of the domain.

The parameter values Fr = 0.025, S = 108, and Γ = 0.073 are employed in our numerical
simulation and the following analysis. The linear equations (Appendix A, eqs. 17,18) are
Fourier transformed in y and solved over the x-z plane using the Dedalus pseudospectral
code [3] with 2048 and 512 complex Fourier modes in x and z, respectively. Linear damping
layers at the top and bottom 7.5% of the domain prevent reflections.

3 Results and Asymptotic Analysis

The equilibrated pressure perturbation field in the initial value problem (IVP) described
above is plotted in figure 1(c) (a stretched aspect-ratio version of this plot is included in
figure 3c), and reveals the presence of multiple modes whose parity and structure vary with
depth.

Since these modes are difficult to discern from direct analysis of the full linear equa-
tions (3), we make a multiple-scales asymptotic reduction that takes advantage of the scale
separation between fast oscillations in the vertical direction and the slow variation of the
background magnetic field. To estimate how this anisotropy scales with the input parame-
ters, we consider the dispersion relation for pure IGWs:

ω =
N
√

k2x + k2y

k
≈

N
√

k2x + k2y

kz
if kz ≫

√
k2x + k2y. (8)

Then, we find that the ratio of vertical to horizontal lengths scale as

lz
L

∼ kx
kz

∼ ω

N
= Fr. (9)

Accordingly, we take Fr = ϵ as our small parameter with Γ = O(1) and S = O(ϵ−2).
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Employing a Wentzel–Kramers–Brillouin (WKB) approximation in the vertical direction
yields (to leading order) a generalized eigenvalue problem in x with eigenvalue k2z (kz is the
vertical wavenumber) and horizontal pressure eigenfunction p0 (see Appendix A for details):

k2z
N2

p0 + ∇̂ ·

(
∇̂p0

ω2 − v2Azk
2
z

)
= 0, (10)

where ∇̂ = ex∂x + eyiky is the transformed horizontal gradient operator and vAz(x, z) =
±(B0 · ez)/

√
µ0ρ0, is the Alfven wave speed. Though (10) is an eigenvalue problem in

x, there is a parametric dependence on z through vAz, which decays slowly with height.
Accordingly, the eigenfunctions p0 and eigenvalues kz vary slowly with z.

In (10), there is a singularity at ω2− v2Azk
2
z = 0 that cannot be removed for ky ̸= 0 (i.e.,

for “non-axisymmetric” modes) and that appears again in the polarization relation for the
“azimuthal” velocity eigenfunction:

v0 =
kyωp0

ρ0(ω2 − v2Azk
2
z)
. (11)

For ky ̸= 0, the “azimuthal” (y) flow is coupled to the “meridional” (x, z) flow and resonates
with the background magnetic field at critical “latitudes” xc where ω2 − v2Azk

2
z = 0. Since

vAz varies continuously with x, this condition may be satisfied for a continuous spectrum
of real vertical wavenumbers

|kz| ≥ kA(z) ≡ ωB−1√µ0ρ0 exp(2πz/L) = (ΓFrL)−1 exp(2πz/L), (12)

which varies with height. Figure 2(a) plots this continuous spectrum as a shaded gray region
in the space of wavenumbers kz and height z.

The non-resonant modes are found by solving the eigenvalue problem (10) in Dedalus
using 256 complex Fourier modes in x for 1024 evenly-spaced values of z ∈ [0, L/6]. We
find three propagating non-resonant waves with “dipolar” (nx = 1) structure: an IGW-like
wave with odd parity in pressure (‘IGW-1’), an IGW-like wave with even parity in pressure
(‘IGW-0’), and a slow-magnetosonic-like wave [13] with even parity in pressure (‘SM-0’).

Figure 2(a) plots the dispersion curves for IGW-1, IGW-0, and SM-0 in solid blue,
teal, and olive, respectively. The corresponding “azimuthal” velocity eigenfunctions v0 at
z/L = 0.09 are plotted in figure 2(b–d).

Though pure IGWs have negative group velocities for positive vertical wavenumber,
magnetic effects can produce turning points at which the direction of energy propagation
reverses. These effects are weak for the odd-parity IGW mode (IGW-1), which is anti-
phase with the vertical component of the background magnetic field. Consequently, IGW-1
(figure 2a, solid blue curve) propagates down until it reaches the continuum of resonant
Alfven waves at z/L = 0.044. In contrast, IGW-0 (solid teal curve), which is in-phase with
B0 ·ez, reaches a turning point at z/L = 0.085 and is reflected as a slow-magnetosonic wave
(SM-0), leaving a pair of evanescent tails for z/L < 0.085 (dotted teal curve). SM-0 (solid
olive curve) propagates upwards from the turning point, refracting to higher wavenumbers
until it reaches the Alfven wavenumber boundary, kz = kA (12) at z/L = 0.11. Comparing
figures 2(c) and (d) shows a horizontal sharpening as the wave approaches the resonant
Alfven boundary in wavenumber space.
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Figure 2: The wavenumbers and modes of the reduced dispersion relation (10). (a) The real part
of the vertical wavenumber kz versus height z for modes with nx = 0, 1, 2 wavelengths in x. The
values of kz for pure (non-magnetic) IGWs corresponding to each nx are plotted in gray dash-
dotted lines. Even and odd parity IGW-like branches of the dispersion relation (IGW-0 and IGW-
1) are plotted as blue and teal curves, respectively, while the even-parity SM branch (SM-0) is
plotted in olive green. The continuum of resonant Alfven waves is plotted as a gray region bounded
in wavenumber space by (12). (b-d) The horizontal structure of the IGW-1, IGW-0, and SM-0
modes, respectively, corresponding to the colored points in panel a. The real and imaginary parts
of the Cartesianized “azimuthal” velocity eigenfunction v0 are plotted as solid and dashed lines. (e)
Resonant Alfven eigenfunction resolved by adding magnetic diffusion (S = 108) to the eigenvalue
problem, corresponding to the gray point in panel a. An enlarged view shows peaks in v0 at the
critical “latitudes” (red lines) predicted by the ideal MHD theory.

Finally, the resonant Alfven modes may be resolved by regularizing the eigenvalue prob-
lem (10) with magnetic diffusion. Figure 2(e) shows an example found using Dedalus’
sparse eigenvalue solver with S = 108 and 16384 complex Fourier modes. Vertical red
lines illustrate the coincidence of peaks in v0 with the critical latitudes predicted by setting
ω2 − v2Azk

2
z = 0.

The theoretical results described above predict the locations (in z) of wave conversion
and possible interaction with the resonant Alfven continuum, which we can test on the full,
numerically integrated IVP. To do so, we obtain an amplitude equation (Appendix A, eq.
88) at the next order in ϵ and construct a WKB solution for the three nx = 1 modes (IGW-
1, IGW-0, SM-0) and their decaying evanescent tails. The overall (complex) amplitude, the
phase shift between IGW-0 and SM-0 modes, and the complex amplitude of the evanescent
modes are then fit to the equilibrated pressure field from the IVP at x/L = 0.33, while the
amplitudes of IGW-0 and SM-0 are assumed to be equal at the turning point. Furthermore,
the IGW-0 and IGW-1 amplitudes are held equal at the forcing height apart from a π/2
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Figure 3: (a,b) Vertical profiles of the pressure perturbation field from the numerical IVP (dashed
blue curve) and the WKB theory (solid red curve) at x/L = 0.33 and x/L = 0.75. The overall
amplitude, the phase shift between IGW-0 and SM-0 modes, and the complex amplitudes of the
evanescent modes in the WKB solution are fit to the IVP pressure field at x/L = 0.33, between z/L =
0.03 and z/L = 0.1375. The excellent agreement between IVP and WKB theory below the forcing
height (dotted line) and outside of the numerical damping layers (hatched regions) is maintained at
x/L = 0.75. The fit even persists across the turning point between IGW-0 and SM-0 branches (solid
black line), where the WKB amplitude function diverges. (c,d) Snapshot of the equilibrated pressure
perturbation field from the numerical IVP and plot of the WKB solution. Vertical dashed green
and purple lines at x/L = 0.33 and x/L = 0.75 correspond to the vertical profiles in panels a and b,
respectively. (e) The difference between IVP and WKB pressure perturbation fields, revealing the
emergence of large-scale vertically-decaying features from the locations at which IGW-1 and SM-0
branches intersect the Alfven wavenumber boundary (dash-dotted lines).

phase shift.
Figure 3 compares the numerical IVP solution with WKB theory. Panel (a) shows a

strong match between the vertical profiles of the IVP and WKB pressure fields at the fitting
“latitude”, x/L = 0.33. Large deviations occur only above the forcing height (dotted line)
and within the damping layers (hatched regions), as expected. The robust agreement at
x/L = 0.33 also holds e.g., at x/L = 0.75 (figure 3b) and indeed over the entire domain, as
can be seen by comparing figure 3(c) and (d). The difference between IVP and WKB fields
shown in figure 3(e) is small, but reveals large-scale, slowly-decaying features that appear
at the locations in z where the IGW-1 and SM-0 modes reach the Alfven wavenumber
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boundary (dash-dotted lines).
The difference between simulation and WKB theory is starker when comparing the

“azimuthal” velocity component, v. Figure 4 plots v from the IVP and v computed from
the WKB pressure solution using the polarization relation (11). The difference between IVP
and WKB, plotted in figure 4(e), reveals large-scale features emerging from z/L = 0.044 and
z/L = 0.11 (dash-dotted lines), where IGW-1 and SM-0 modes hit the Alfven wavenumber
boundary. The odd-parity features emerging from z/L = 0.044 sharpen as they propagate
upwards, leading to fine-scale features just below the forcing height (dotted line) in panel
(e). In contrast, the even-parity features emerging from z/L = 0.11 remain at large scales
up to the forcing height. The nature of both the odd- and even-parity features remains
puzzling, since the Alfven modes resolved by regularizing the reduced eigenvalue problem
are fine-scale, as in figure 2(e). Regardless, the results suggest that the Alfven continuum

Figure 4: Redux of figure 3 showing the Cartesianized “azimuthal” velocity perturbation v instead of
the pressure perturbation p. The WKB solution for v is computed directly from the WKB solution for
p shown in figure 3 using the polarization relation (11). The WKB solution for v in panels (a-b) does
not capture the sharp, high-wavenumber features in the numerical IVP solution. Plots of the field
over x, z in panels (c-d) reveal structures in the simulation that are lacking from the WKB theory.
Panel (e) plots the difference between IVP and WKB fields, revealing large-scale horizontal features
emerging from the heights at which the IGW-1 and SM-0 branches hit the Alfven wavenumber
boundary (dash-dotted lines). The odd-parity features emerging from z/L = 0.044 sharpen with
height, while the even-parity features emerging from z/L = 0.11 remain large-scale as they propagate
up to the forcing height (dotted line).
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has some effect on the odd-parity mode, since the fine-scale features observed in the IVP
are not present when ky = 0 (cf. Ref. [13]).

4 Discussion

Deep magnetic fields likely play a role in the suppression of dipole modes in asteroseismo-
logical observations of many RGB stars. As shown by Ref. [13], axisymmetric dipole modes
can be suppressed by the trapping of IGWs in the stably-stratified core via conversion to
SM waves.

Non-axisymmetry introduces fundamentally different physics by coupling azimuthal and
meridional motions. The associated effects on wave interactions are studied by numerically
evolving the full linear equations and comparing the result to a WKB solution, which takes
advantage of the scale separation induced by small Fr.

A reduced eigenvalue problem reveals a continuous spectrum of Alfven waves, which
resonate with the background magnetic field at critical latitudes. For ky = 4π, the Alfven
spectrum has no apparent effect on the conversion between the even parity IGW and SM
waves also found for ky = 0 [13]. However, the turning point between odd-parity IGW
and SM waves seen in the axisymmetric (reduced) eigenvalue problem vanishes in the non-
axisymmetric case. Instead, the odd IGW branch in the reduced dispersion relation is cut off
by the lower boundary of the continuous Alfven spectrum. In the numerical IVP, large-scale
features with odd parity emerge from this point of intersection and give rise to fine-scale
horizontal oscillations as they propagate upwards. Similarly large-scale features emerge from
the height at which the even-parity SM wave intersects the Alfven wavenumber boundary.
However, these even-parity features remain large-scale as they propagate upwards.

The nature of these odd- and even-parity features — presently unaccounted for by the
WKB solution — could have major implications for the trapping of IGWs and the “magnetic
greenhouse effect”. The even-parity features are of particular import; while the odd-parity
features would likely damp (viscously and ohmically) as they propagate upwards due to
their fine scales, the even-parity features would experience little damping due to their large
horizontal scales. If these even-parity features behave like SM waves and are similarly
bounded by a magnetic cutoff height, then a slightly weaker magnetic field (lower Γ) could
trap them within the core. However, if these features have altogether different character
and are able to escape the magnetized core, the magnetic greenhouse effect would be greatly
curtailed for nonaxisymmetric modes.

Meanwhile, asteroseismological observations of RGB stars show comparable suppression
of both the axisymmetric and non-axisymmetric dipole modes [22]. Thus, the nature of
these even-parity features could determine whether an alternate “trapping” mechanism
for non-axisymmetric modes is needed to explain the data, which would have important
implications for the inference of deep magnetic field strength from asteroseismology.

Determining the nature of the upgoing large-scale features and the role of the continuous
Alfven spectrum is the subject of our ongoing work on this project.
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Appendix A Multiple-scales asymptotic analysis

A.1 Governing equations

The full magnetohydrodynamic (MHD) equations

ρ (∂tu+ u ·∇u) = −∇p− ρgez +
1

µ0
(∇×B)×B, (13a)

(13b)

(13c)

∂tρ+∇ · (ρu) = 0,

∂tB = ∇× (u×B) + η∇2B,

∇ ·B = 0, (13d)

govern the evolution of velocity u, pressure p, density ρ, and magnetic B fields in nonlinear,
compressible flows.

To study linear, incompressible MHD waves, we first make the following substitutions

u → δu, B → B0+δb, ρ → ρ0+δρ(z)+δ2ρ(x, z, t), p → δ−1p0+p+δp, g → δ−1g, (14)

where δ ≪ 1. At O(δ−1):
∂zP0 = −ρ0g. (15)

At O(1):
∂zP = −ρg, (16a)

∇ ·B0 = 0. (16b)

At O(δ):

ρ0∂tu+∇p = −gρez +
1

µ0
(∇× b)×B0 +

1

µ0
(∇×B0)× b (17a)

(17b)

(17c)

∇ · u = 0.

∂tb = ∇× (u×B0) + η∇2b.

∇ · b = 0. (17d)

At O(δ2):

∂tρ =
ρ0N

2

g
ez · u, (18)

where N2 = −gρ0
−1∂zρ. The linear equations (17, 18) form a closed system for the pertur-

bations and are known as the linearized magneto-Boussinesq equations [18].
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A.1.1 Energy equation

Thus far we have not specified the background magnetic field B0. By deriving the pertur-
bation energy equation, we show that B0 must satisfy ∇ ×B0 = 0 to prevent instability.
For this purpose, we neglect diffusion (η = 0) and take u·(17a)+p(17b)+ρg2/(ρ0N

2)(18):

∂t

(
ρ0

|u|2

2
+

g2

ρ0N2

ρ2

2

)
+∇ · (pu) = − 1

µ0
(u×B0) · (∇× b)− 1

µ0
(u× b) · (∇×B0) (19)

Now take b·(17c):

∂t
|b|2

2
= (u×B0) · (∇× b) +∇ · [(u×B0)× b] . (20)

Taking (19)+µ−1
0 (20) yields

∂t

(
ρ0

|u|2

2
+

g2

ρ0N2

ρ2

2
+

|b|2

2µ0

)
+∇·

[
pu+

1

µ0
b× (u×B0)

]
= − 1

µ0
(u×b)·(∇×B0). (21)

By integrating (21) over the domain, we can see that the wave energy (in the perturbations)
can grow if the right hand side does not vanish. That is, if the background magnetic field
has current J0 = µ−1

0 (∇×B0), the perturbations can couple to the background such that
they grow. To avoid instability, we set J0 = 0, yielding

∂t

(
ρ0

|u|2

2
+

g2

ρ0N2

ρ2

2
+

|b|2

2µ0

)
+∇ ·

[
pu+

1

µ0
b× (u×B0)

]
= 0. (22)

A.2 Nondimensionalization

Let u = uex + vey + wez, and restrict the background magnetic field to B0(x, z) =
B0,x(x, z)ex +B0,z(x, z)ez.

Nondimensionalize (16b),(17a), (17b), (17c), (17d), (18) using the wavelength of the
forcing L, the driving frequency ω, the background magnetic field scale B, the scale of the
Brunt-Vaisala frequency N , and the small vertical lengthscale lz = Lω/N . We scale the
independent variables as (x, y) = (Lx̃, Lỹ), z = lz z̃ = LZ̃, t = ω−1t̃. The background
fields are scaled as B0 = BṽA(x̃, Z̃) and N = N Ñ(Z̃). The perturbations are nondimen-
sionalized as uH = UũH(x̃, ỹ, z̃, t̃), w = U(lz/L)w̃(x̃, ỹ, z̃, t̃), bH = U√µ0ρ0b̃H(x̃, ỹ, z̃, t̃),

bz = U(lz/L)
√
µ0ρ0b̃z(x̃, ỹ, z̃, t̃), ρ = U(ρ0N/g)ρ̃(x̃, ỹ, z̃, t̃), and p = Uρ0ωLp̃(x̃, ỹ, z̃, t̃),

where U is an arbitrary amplitude with the dimensions of velocity.
Since our scalings our anisotropic, we will break our equations into horizontal and ver-

tical components. We will use the identities

[(∇× b)×B0]H = B0z(∂zbH −∇Hbz) + (∇H × bH)×B0xex, (23)

[(∇× b)×B0] · ez = B0x(∂xbz − ∂zbx) (24)

which assume that B0 · ey = 0.
Then after nondimensionalizing and dropping tildes, the linearized equations become

∇H · uH + ∂zw = 0 (25a)
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∂xvAx + ∂ZvAz = 0 (25b)

∇H · bH + ∂zbz = 0 (25c)

∂tuH +∇Hp = MAvAz(Fr
−1∂zbH − Fr∇Hbz) +MA(∇H × bH)× vAxex (25d)

Fr∂tw + Fr−1∂zp = −Fr−1ρ+MAvAx(Fr∂xbz − Fr−1∂zbx) (25e)

∂tbH = MA(Fr
−1vAz∂zuH − Frw∂ZvAxex) +MA (vA ·∇HuH − uH ·∇HvAxex)

+ S−1
(
Fr−2∂2

zbH +∇2
HbH

)
(25f)

Fr∂tbz = MA(vAz∂zw − u∂xvAz) +MAFr(vAx∂xw − w∂ZvAz)

+ FrS−1
(
Fr−2∂2

zbz +∇2
Hbz

)
(25g)

∂tρ = N2(Z)w, (25h)

where ∇H = ∇− ez∂z, vA = vAxex + vAzez, and

Fr =
lz
L

=
ω

N
, MA =

B(µ0ρ0)
−1/2

ωL
, S =

ωL2

η
. (26)

We are interested in driving frequencies ω that are much faster than the Alfven frequency
but much slower than the buoyancy frequency, i.e.,

B
L
√
µ0ρ0

≪ ω ≪ N , (27)

which corresponds nondimensionally to Fr ≪ 1, MA ≪ 1. Another restriction is that the
driving frequency should be greater than the magneto-gravity frequency [7], ωMG:

ω > ωMG ≡
(

B2N 2

L2µ0ρ0

)1/4

, (28)

or

Γ ≡ MA

Fr
=
(ωMG

ω

)2
< 1 (29)

Thus, we choose the distinguished limit Fr ∼ MA as Fr → 0. Accordingly, let Fr = ϵ and
MA = Γϵ with Γ = O(1). Additionally, let S−1 ≪ Fr such that we can neglect diffusion in
the following subsections. The dimensionless equations then become:

∇H · uH + ∂zw = 0 (30a)

∂tuH +∇Hp = ΓvAz(∂zbH − ϵ2∇Hbz) + ϵΓ(∇H × bH)× vAxex (30b)

ϵ∂tw + ϵ−1∂zp = −ϵ−1ρ+ ϵΓvAx(ϵ∂xbz − ϵ−1∂zbx) (30c)

∂tρ = N2(Z)w, (30d)

∂tbH = Γ(vAz∂zuH − ϵ2w∂ZvAxex) + ϵΓ (vAx∂xuH − u∂xvAxex) (30e)

∂tbz = Γ(vAz∂zw − u∂xvAz) + ϵΓ(vAx∂xw − w∂ZvAz) (30f)
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A.3 Reduced system

We assume that the background magnetic field and buoyancy frequency vary with Z = ϵz
and are 1-periodic in x, and we look for wave solutions with frequency ω and horizontal
wavenumber ky set by the driving.

Letting q =
[
u v w p ρ bx by bz

]T
, we make the expansion

q = ℜ{q̂(x, ϵz) exp(iΘ(ϵz)/ϵ) exp(ikyy − iωt)}, (31)

with
q̂ = A(ϵz)q0(x, ϵz) + ϵq1(x, ϵz) + ϵ2q2(x, ϵz) + ..., (32)

where we have used a WKB ansatz in the z direction. The elements of q0(x, ϵz) are eigen-
functions in x, the relative amplitudes of which vary with ϵz. An additional, overall de-
pendence of the leading order solution on ϵz is captured by A(ϵz). Thus, to construct the
leading order solution, we need to determine A(ϵz), q0(x), Θ(ϵz). We require that q0(x, ϵz)
is periodic such that q0(0, ϵz) = q0(1, ϵz), ∂xq0(0, ϵz) = ∂xq0(1, ϵz).

A.3.1 Dispersion relation

The relevant leading order equations can be written in vector form as

∇̂H · u0H + iΘ′w0 = 0, (33a)

−iωu0H + ∇̂Hp0 − iΓvAzΘ
′b0H = 0, (33b)

ρ0 + iΘ′p0 = 0, (33c)

−iωρ0 −N2w0 = 0, (33d)

−iωb0H − iΓΘ′vAzu0H = 0, (33e)

where ∇̂H = ex∂x + eyiky. Note that in these equations and in the following sections,
ρ0 refers to the leading order (dimensionless) density perturbation, not the (dimensional)
background density.

Note that the vertical component of the induction equation is not needed to close the
system of equations, and b0z is just determined diagnostically from b0H via Gauss’ law.
Though the vertical velocity is of the same order as the vertical magnetic field component,
w0 is coupled to ρ0 through the mass equation and does not drop out of the leading-order
system.

We can combine the system (33) to yield a single equation for p0. Taking iω(33c)+
(33d) yields

−ωΘ′p0 −N2w0 = 0 (34)

Then, take (33a)+iΘ′N−2(34):

∇̂H · u0H − iωΘ′2

N2
p0 = 0. (35)
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Now, take (ω2 − Γ2v2AzΘ
′2)−1[iω(33b)−iΓvAzΘ

′(33e)]:

u0H +
iω∇̂Hp0

ω2 − Γ2v2AzΘ
′2 = 0 (36)

Lastly, taking (iω)−1(∇̂H ·(36)−(35)) yields

Θ′2

N2
p0 + ∇̂H ·

(
∇̂Hp0

ω2 − Γ2v2AzΘ
′2

)
= 0. (37)

This is a generalized eigenvalue problem with eigenvalues k2z ≡ Θ′2 and eigenfunctions p0.
For the purpose of implementation, it is useful to retain the equations for u0 and v0 as well: ∂x iky −iωN−2k2z

(ω2 − Γ2k2zv
2
Az) 0 iω∂x

0 (ω2 − Γ2k2zv
2
Az) −ωky

u0v0
p0

 = 0 (38)

Note that kz is nondimensionalized by l−1
z such that if the vertical group velocity is defined

by

cgz =
∂ω

∂kz
, (39)

then cgz is nondimensionalized by ωlz in analogy with w.
Finally, it will be useful to find the adjoint of

LΘ′ [ · ] = Θ′2

N2
(·) + ∇̂H ·

(
∇̂H(·)

ω2 − Γ2v2AzΘ
′2

)
, (40)

which is the operator on the left-hand side of (37). We will use the properties∫ 1

0
g∗∇̂H · adx = −

∫ 1

0
(∇̂Hg)∗ · adx, (41)

∫ 1

0
c∇̂Hh · (∇̂Hg)∗dx = −

∫ 1

0
h
[
∇̂H · (c∗∇̂Hg)

]∗
dx, (42)

that hold for general vector a and scalar c, g, h fields that are periodic on x ∈ [0, 1]. We
find that

⟨g,LΘ′ [h]⟩ =
∫ 1

0
g∗

[
Θ′2

N2
h+ ∇̂H ·

(
∇̂Hh

ω2 − Γ2v2AzΘ
′2

)]
dx

=

∫ 1

0

[
Θ′2

N2
g∗h− ∇̂Hh

ω2 − Γ2v2AzΘ
′2 ·
(
∇̂Hg

)∗]
dx

=

∫ 1

0

[
(Θ′2)∗

N2
g + ∇̂H ·

(
∇̂Hg

ω2 − Γ2v2Az(Θ
′2)∗

)]∗
hdx

= ⟨L†
Θ′ [g], h⟩, (43)
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where

L†
Θ′ [ · ] =

(Θ′2)∗

N2
(·) + ∇̂H ·

(
∇̂H(·)

ω2 − Γ2v2Az(Θ
′2)∗

)
. (44)

We can show that if LΘ′ [p0] = 0, then L†
Θ′ [p∗0] = 0. Take the complex conjugate of (37):

0 = (LΘ′ [p0])
∗

=
(Θ′2)∗

N2
p∗0 +

[
∇̂H ·

(
∇̂Hp0

ω2 − Γ2v2AzΘ
′2

)]∗
=

(Θ′2)∗

N2
p∗0 +

[
∂x

(
∂xp0

ω2 − Γ2v2AzΘ
′2

)
+ iky

(
ikyp0

ω2 − Γ2v2AzΘ
′2

)]∗
=

(Θ′2)∗

N2
p∗0 + ∂x

(
∂xp

∗
0

ω2 − Γ2v2Az(Θ
′2)∗

)
− iky

(
−ikyp

∗
0

ω2 − Γ2v2Az(Θ
′2)∗

)
=

(Θ′2)∗

N2
p∗0 + ∇̂H ·

(
∇̂Hp∗0

ω2 − Γ2v2Az(Θ
′2)∗

)
= L†

Θ′ [p
∗
0] (45)

Finally, we note that the operator LΘ′ is self-adjoint (L†
Θ′ = LΘ′) if and only if Θ′2 ∈ R.

A.3.2 Energy equation

The O(1) equations yield the eigenfunctions p0 and the vertical phase Θ(Z). For the
remaining piece of the solution, A(Z), we must proceed to the next order in ϵ. Before doing
so, it is instructive to analyze the energy equation, which constrains the magnitude of the
amplitude, |A|, but not its complex phase.

Nondimensionalizing (22) and dropping tildes yields

∂tE +∇H · F +
1

Fr
∂zFz = 0, (46)

where

E =
1

2
(uH · uH + Fr2w2) +

ρ2

2N2
+

1

2
(bH · bH + Fr2 b2z), (47)

F = p(uH + Frwez) + (bH + Frbzez)× [(uH + Frwez)× ΓFrvA], (48)

and
Fz = F · ez = Fr [pw − Γ(bH · uH)vAz + ΓFrbxvAxw] (49)

Integrate the (46) over x and y. The horizontal flux term will vanish (by periodicity),
yielding

∂t

∫ −π/ky

−π/ky

∫ 1

0
Edxdy +

1

Fr
∂z

∫ −π/ky

−π/ky

∫ 1

0
Fzdxdy = 0. (50)
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Now, substitute the wave ansatz (31):

1

2
∂t

∫ 1

0

(
ûH · û∗

H

2
+

ρ̂ρ̂∗

2N2
+

b̂H · b̂∗H
2

)
dx

+
1

2
∂z

∫ 1

0

[
ℜ{p̂∗ŵ} − ΓvAzℜ{b̂H · û∗

H}+ ΓFrvAxℜ{B̂xŵ
∗}
]
dx = 0. (51)

Now, let Fr = ϵ and let q̂ = Ã(ϵz, ϵt)q0(x, ϵz) + O(ϵ). Further, define a slow time T = ϵt.
Then, at O(ϵ),

∂T

(
ÃÃ∗

∫ 1

0
E0dx

)
+ ∂Z

(
ÃÃ∗

∫ 1

0
ℜ{F0}dx

)
= 0, (52)

where

E0 =
u0H · u∗

0H

2
+

ρ0ρ
∗
0

2N2
+

b0H · b∗0H
2

(53)

and
F0 = p∗0w0 − ΓvAzb0H · u∗

0H . (54)

Further, letting

E0 = ÃÃ∗
∫ 1

0
E0dx (55)

be the leading-order horizontally-averaged wave energy, we find that

∂T E0 + cgz∂ZE0 = −E0∂Zcgz. (56)

Thus, energy is transported vertically at the group velocity

cgz =

∫ 1
0 ℜ{F0}dx∫ 1

0 E0dx
. (57)

If the wave solution is equilibrated such that Ã = A(ϵz), then (52) reduces to

∂Z

(
AA∗

∫ 1

0
ℜ{F0}dx

)
= 0 (58)

Integrating with respect to Z yields

AA∗
∫ 1

0
ℜ{F0}dx = |C|2. (59)

Next, we can use the polarization relations to simplify F0. From (33), we find that

w0 = −ωΘ′

N2
p0 (60a)

u0H = − iω∇̂Hp0
ω2 − Γ2v2AzΘ

′2 , (60b)
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and

b0H = −ΓvAzΘ
′

ω
u0H . (60c)

Then we can rewrite F0 as

F0 = −ωΘ′

N2
p∗0p0 + Γ2v2AzΘ

′ω
∂xp

∗
0∂xp0 + k2yp

∗
0p0

(ω2 − Γ2v2AzΘ
′2)∗(ω2 − Γ2v2AzΘ

′2)
, (61)

or equivalently

F0 = −ωΘ′

N2
|p0|2 + Γ2v2AzΘ

′ω
|∇̂Hp0|2

|ω2 − Γ2v2AzΘ
′2|2

. (62)

Thus, (59) can be rearranged to give

|A|2 = |C|2∫ 1
0

(
−ωΘ′

N2 |p0|2 + Γ2v2AzΘ
′ω |∇̂Hp0|2

|ω2−Γ2v2AzΘ
′2|2

)
dx

(63)

where C is a constant. Note that so far we have only obtained the absolute value of the
complex amplitude |A|, the full amplitude A including the complex phase will be derived
in the following section.

A.3.3 Amplitude equation

The results from the energy equation will aid in the derivation of an amplitude equation
from the O(ϵ) system:

∇̂H · u1H + iΘ′w1 = −∂Z(Aw0), (64a)

−iωu1H + ∇̂Hp1 − i ΓvAzΘ
′b1H = ΓvAz∂Z(Ab0H) + Γ(∇̂H ×Ab0H)× vAxex, (64b)

ρ1 + iΘ′p1 = −∂Z(Ap0)− iΘ′ΓAvAxb0x, (64c)

−iωρ1 −N2w1 = 0, (64d)

−iωb1H − iΓΘ′vAzu1H = Γ [vAz∂Z(Au0H) + vAx∂x(Au0H)−Au0∂xvAxex] . (64e)

Combining these equations following the procedure detailed in §A.3.1 yields

iωΘ′2

N2
p1 + ∇̂H ·

(
iω∇̂Hp1

ω2 − Γ2Θ′2v2Az

)

= ∂Z(Aw0)−
ωΘ′

N2
∂Z(Ap0)−

iωΘ′2

N2
ΓAvAxb0x + ∇̂H ·

(
iωs

ω2 − Γ2Θ′2v2Az

)
, (65)

where

s = ΓvAz∂Z(Ab0H) + Γ(∇̂H ×Ab0H)× vAxex

− Γ2vAzΘ
′

ω
[vAz∂Z(Au0H) + vAx∂x(Au0H)−Au0∂xvAxex] . (66)

We can express this as
LΘ′ [p1] = f(A). (67)
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To obtain an equation for A, we can take the inner product of the equation above with
any element p̃0 of the cokernel of LΘ′ :

⟨p̃0,LΘ′ [p1]⟩ = ⟨p̃0, f⟩

⇒ ⟨L†
Θ′ [p̃0], p1⟩ = ⟨p̃0, f⟩

⇒ 0 = ⟨p̃0, f⟩, (68)

since L†
Θ′ [p̃0] = 0 by definition.

Now, using p̃0, define ũ0H , w̃0, and b̃0H such that

∇̂H · ũ0H + i(Θ′)∗w̃0 = 0, (69a)

−iωũ0H + ∇̂H p̃0 − i ΓvAz(Θ
′)∗b̃0H = 0, (69b)

ω(Θ′)∗p̃0 +N2w̃0 = 0, (69c)

iωb̃0H + iΓ(Θ′)∗vAzũ0H = 0, (69d)

The identities (69) will be useful for simplifying the solvability condition, 0 = ⟨p̃0, f⟩, which
can be written out as

0 =

∫ 1

0

[
p̃∗0∂Z(Aw0)− p̃∗0

ωΘ′

N2
∂Z(Ap0)− p̃∗0

iωΘ′2

N2
ΓAvAxb0x + p̃∗0∇̂H ·

(
iωs

ω2 − Γ2Θ′2v2Az

)]
dx.

(70)
Using the identity (41) (integrating by parts) yields

0 =

∫ 1

0

[
p̃∗0∂Z(Aw0)− p̃∗0

ωΘ′

N2
∂Z(Ap0)− p̃∗0

iωΘ′2

N2
ΓAvAxb0x − (∇̂H p̃0)

∗ ·
(

iωs

ω2 − Γ2Θ′2v2Az

)]
dx.

(71)
Since ũ∗

0H = iω(∇̂H p̃0)
∗/(ω2 − Γ2v2AzΘ

′2) and w̃∗
0 = −p̃∗0ωΘ

′/N2,

0 =

∫ 1

0

[
p̃∗0∂Z(Aw0) + w̃∗

0∂Z(Ap0) + w̃∗
0iΘ

′ΓAvAxb0x − ũ∗
0H · s

]
dx (72)

Now, we can simplify ũ∗
0H ·s using the relations b̃

∗
0H = −ΓvAzΘ

′ũ∗
0H/ω and Γ(∇̂H×Ab0H)×

vAxex = ΓvAxA(∂xb0y − ikyb0x)ey:

ũ∗
0H · s = ΓvAz[ũ

∗
0H · ∂Z(Ab0H)− 1

ω
ΓvAzΘ

′ũ∗
0H · ∂Z(Au0H)]

− 1

ω
Γ2vAzΘ

′ũ∗
0H · [vAx∂x(Au0H)−Au0∂xvAxex] + ũ∗

0H · [Γ(∇̂H ×Ab0H)× vAxex]

= ΓvAz

[
ũ∗
0H · ∂Z(Ab0H) + b̃

∗
0H · ∂Z(Au0H)

]
+ Γb̃

∗
0H · [vAx∂x(Au0H)−Au0∂xvAxex]

+ ṽ∗0ΓvAxA(∂xb0y − ikyb0x)

= ΓvAz

[
ũ∗
0H · ∂Z(Ab0H) + b̃

∗
0H · ∂Z(Au0H)

]
− ΓAb̃∗0xu0∂xvAx

+ ΓAvAx(b̃
∗
0y∂xv0 + ṽ∗0∂xb0y) + ΓAvAxb̃

∗
0x∂xu0 − iΓAvAxṽ

∗
0kyb0x.

(73)
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From Gauss’ law ∂xvAx = −∂ZvAz, and thus

ũ∗
0H · s = ΓvAz

[
ũ∗
0H · ∂Z(Ab0H) + b̃

∗
0H · ∂Z(Au0H)

]
+ ΓAb̃∗0xu0∂ZvAz

+ ΓAvAx(b̃
∗
0y∂xv0 + ṽ∗0∂xb0y) + ΓAvAxb̃

∗
0x∂xu0 − iΓAvAxṽ

∗
0kyb0x. (74)

Add and subtract ΓAb̃∗0yv0∂xvAx and use ∂xvAx = −∂ZvAz again:

ũ∗
0H · s = ΓvAz

[
ũ∗
0H · ∂Z(Ab0H) + b̃

∗
0H · ∂Z(Au0H)

]
+ ΓAb̃∗0xu0∂ZvAz − ΓAb̃∗0yv0∂xvAx

+ ΓAvAx(b̃
∗
0y∂xv0 + ṽ∗0∂xb0y) + ΓAb̃∗0yv0∂xvAx + ΓAvAxb̃

∗
0x∂xu0 − iΓAvAxṽ

∗
0kyb0x

= ΓvAz

[
ũ∗
0H · ∂Z(Ab0H) + b̃

∗
0H · ∂Z(Au0H)

]
+ ΓAb̃

∗
0H · u0H∂ZvAz

+ ΓAvAx(b̃
∗
0y∂xv0 + ṽ∗0∂xb0y) + ΓAb̃∗0yv0∂xvAx + ΓAvAxb̃

∗
0x∂xu0 − iΓAvAxṽ

∗
0kyb0x.

(75)

Then,

0 =

∫ 1

0

{
p̃∗0∂Z(Aw0) + w̃∗

0∂Z(Ap0) + w̃∗
0iΘ

′ΓAvAxb0x

− ΓvAz

[
ũ∗
0H · ∂Z(Ab0H) + b̃

∗
0H · ∂Z(Au0H)

]
− ΓAb̃

∗
0H · u0H∂ZvAz

− ΓAvAx(b̃
∗
0y∂xv0 + ṽ∗0∂xb0y)− ΓAb̃∗0yv0∂xvAx − ΓAvAxb̃

∗
0x∂xu0 + iΓAvAxṽ

∗
0kyb0x

}
dx

(76)

Now, use iΘ′w̃∗
0 = ∂xũ

∗
0 − ikyṽ

∗
0:

0 =

∫ 1

0

{
p̃∗0∂Z(Aw0) + w̃∗

0∂Z(Ap0) + (∂xũ
∗
0 − ikyṽ

∗
0)ΓAvAxb0x

− ΓvAz

[
ũ∗
0H · ∂Z(Ab0H) + b̃

∗
0H · ∂Z(Au0H)

]
− ΓAb̃

∗
0H · u0H∂ZvAz

− ΓAvAx(b̃
∗
0y∂xv0 + ṽ∗0∂xb0y)− ΓAb̃∗0yv0∂xvAx − ΓAvAxb̃

∗
0x∂xu0 + iΓAvAxṽ

∗
0kyb0x

}
dx

=

∫ 1

0

{
p̃∗0∂Z(Aw0) + w̃∗

0∂Z(Ap0) + ΓAvAx(b0x∂xũ
∗
0 − b̃∗0x∂xu0)

− ΓvAz

[
ũ∗
0H · ∂Z(Ab0H) + b̃

∗
0H · ∂Z(Au0H)

]
− ΓAb̃

∗
0H · u0H∂ZvAz

− ΓAvAx(b̃
∗
0y∂xv0 + ṽ∗0∂xb0y)− ΓAb̃∗0yv0∂xvAx

}
dx.

(77)

Next, we shall put the amplitude equation in the form α(Z)dAdZ + β(Z)A(Z) = 0. We find
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that

0 =

∫ 1

0

{
(p̃∗0w0 + w̃∗

0p0)
dA

dZ
+ (p̃∗0∂Zw0 + w̃∗

0∂Zp0)A+ ΓvAx(b0x∂xũ
∗
0 − b̃∗0x∂xu0)A

− ΓvAz

(
ũ∗
0H · b0H + b̃

∗
0H · u0H

) dA

dZ
− ΓvAz

(
ũ∗
0H · ∂Zb0H + b̃

∗
0H · ∂Zu0H

)
A

− Γ(b̃
∗
0H · u0H∂ZvAz)A− ΓvAx(b̃

∗
0y∂xv0 + ṽ∗0∂xb0y)A− Γ(b̃∗0yv0∂xvAx)A

}
dx.

(78)
We will use the following identities to transform the terms in front of dA/dZ:

p̃∗0w0 + w̃∗
0p0 = p̃∗0w0 −

(
ωΘ′

N2
p̃∗0

)(
− N2

ωΘ′w0

)
= 2p̃∗0w0, (79a)

b̃
∗
0H ·u0H + ũ∗

0H ·b0H = b̃
∗
0H ·u0H −

(
ω

ΓvAzΘ′ b̃
∗
0H

)
·
(
−ΓvAzΘ

′

ω
u0H

)
= 2b̃

∗
0H ·u0H . (79b)

Then,

0 =

[
2

∫ 1

0

(
p̃∗0w0 − ΓvAzb̃

∗
0H · u0H

)
dx

]
dA

dZ

+

[∫ 1

0

(
p̃∗0∂Zw0 + w̃∗

0∂Zp0 + ΓvAx(b0x∂xũ
∗
0 − b̃∗0x∂xu0)− ΓvAz

(
ũ∗
0H · ∂Zb0H + b̃

∗
0H · ∂Zu0H

)
− Γb̃

∗
0H · u0H∂ZvAz − ΓvAx(b̃

∗
0y∂xv0 + ṽ∗0∂xb0y)− Γb̃∗0yv0∂xvAx

)
dx

]
A

(80)
We can simplify the second term using the following identities:

p̃∗0∂Zw0 + w̃∗
0∂Zp0 = ∂Z(p̃

∗
0w0) + (w̃∗

0∂Zp0 − w0∂Z p̃
∗
0), (81a)

−ΓvAx(b̃
∗
0y∂xv0+ṽ∗0∂xb0y)−Γb̃∗0yv0∂xvAx = ΓvAx(v0∂xb̃

∗
0y−ṽ∗0∂xb0y)−∂x(ΓvAxb̃

∗
0yv0), (81b)

− ΓvAz(ũ
∗
0H · ∂Zb0H + b̃

∗
0H · ∂Zu0H)− Γb̃

∗
0H · u0H∂ZvAz

= −Γ∂Z(vAzb̃
∗
0H · u0H) + ΓvAz(u0H · ∂Z b̃

∗
0H − ũ∗

0H · ∂Zb0H), (81c)

so that

0 =

[
2

∫ 1

0

(
p̃∗0w0 − ΓvAzb̃

∗
0H · u0H

)
dx

]
dA

dZ
+

[∫ 1

0

{
∂Z

(
p̃∗0w0 − ΓvAzb̃

∗
0H · u0H

)
+ (w̃∗

0∂Zp0 − w0∂Z p̃
∗
0) + ΓvAz(u0H · ∂Z b̃

∗
0H − ũ∗

0H · ∂Zb0H)

+ ΓvAx(b0x∂xũ
∗
0 − b̃∗0x∂xu0) + ΓvAx(v0∂xb̃

∗
0y − ṽ∗0∂xb0y)

}
dx

]
A, (82)
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where the term −∂x(ΓvAxb̃
∗
0yv0) introduced using identity (81b) vanishes upon integration.

Now since L†
Θ′ [p∗0] = 0, we can simplify (82) further by letting p̃0 = p∗0. In this case, it

follows from the polarization relations that

w̃∗
0 = −ωΘ′

N2
p̃∗0 = −ωΘ′

N2
p0 = w0, (83a)

ũ∗0 =
iω∂xp̃

∗
0

ω2 − Γ2v2AzΘ
′2 =

iω∂xp0
ω2 − Γ2v2AzΘ

′2 = −u0, (83b)

ṽ∗0 =
iω(−ikyp̃

∗
0)

ω2 − Γ2v2AzΘ
′2 = − iω(ikyp0)

ω2 − Γ2v2AzΘ
′2 = v0, (83c)

b̃∗0x = −ΓvAzΘ
′

ω
ũ∗0 =

ΓvAzΘ
′

ω
u0 = −b0x, (83d)

b̃∗0y = −ΓvAzΘ
′

ω
ṽ∗0 = −ΓvAzΘ

′

ω
v0 = b0y. (83e)

The terms in the second integral in (82) simplify:

w̃∗
0∂Zp0 − w0∂Z p̃

∗
0 = w0∂Zp0 − w0∂Zp0 = 0, (84a)

u0H · ∂Z b̃
∗
0H − ũ∗

0H · ∂Zb0H = ũ∗0∂Zb0x + ṽ∗0∂Zb0y − u0∂Z b̃
∗
0x − v0∂Z b̃

∗
0y

= −u0∂Zb0x + v0∂Zb0y − u0∂Z(−b0x)− v0∂Zb0y

= 0, (84b)

b0x∂xũ
∗
0 − b̃∗0x∂xu0 = −b0x∂xu0 − b0x∂x(−u0) = 0, (84c)

v0∂xb̃
∗
0y − ṽ∗0∂xb0y = v0∂xb0y − v0∂xb0y = 0, (84d)

leaving

0 =

[
2

∫ 1

0

(
p̃∗0w0 − ΓvAzb̃

∗
0H · u0H

)
dx

]
dA

dZ
+

[∫ 1

0
∂Z

(
p̃∗0w0 − ΓvAzb̃

∗
0H · u0Hdx

)]
A.

(85)
Alternatively, we may write this as

0 = 2

(∫ 1

0
Fdx

)
dA

dZ
+ ∂Z

(∫ 1

0
Fdx

)
A, (86)

where
F = p0w0 + ΓvAz(b0xu0 − b0yv0). (87)

Then, the amplitude is given by

A(Z) =

(∫ 1

0
Fdx

)−1/2

(88)

up to a multiplicative constant.
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A Little Goes a Long Way: Dismantling Weakly Nonlinear,
Non-normal Dynamical Systems

Matthew McCormack

August 22, 2024

1 Introduction

Linear stability analysis is a fundamental tool in the analysis of nonlinear dynamical sys-
tems that determines the stability of a given solution to infinitesimal perturbations. In
the presence of a linear instability, traditional weakly nonlinear theory may then be used
to perturbatively examine non-trivial dynamics near the point of the instability into the
nonlinear regime at finite amplitude, using the distance to the point of the linear instability
in parameter space as a small parameter in an asymptotic expansion. This methodology
has seen significant success in fluid dynamics and has been widely used in the sciences and
engineering. However, in recent years, it has become apparent that transitions to non-trivial
nonlinear solutions may be observed at parameter values far below those predicted by lin-
ear stability theory. This is perhaps most famously observed when studying the stability
of the laminar profile in a variety of wall-bounded parallel shear flows, where the initial
stages of the transition to turbulence are observed far beneath the threshold for a linear
instability or even in cases where the laminar flow is linearly stable for all values of the
Reynolds number [1, 9–12]. In these flows, the transition has been firmly associated with
nonlinear dynamical systems theory, especially for spatially confined systems where the ef-
fects of spatio-temporal intermittency may be ignored [3]. In this framework, the initial
stages of the transition can be understood in the context of the state-space structure of the
system by studying the various bifurcations that occur as the Reynolds number (or some
other relevant parameter) is varied. The near onset behaviour can be broadly characterised
into two classes: supercritical and subcritical transitions.

In the case of a supercritical transition (see figure 1(a)), the base state becomes linearly
unstable at a critical parameter value and a branch (or branches) of stable solutions bifur-
cates directly from this bifurcation point, existing at parameter values above the threshold
for a linear instability (as in a supercritical pitchfork bifurcation for example). This de-
fines a precise point in parameter space where the transition takes place and no bistability
or hysteresis is observed; that is, different behaviour is not observed depending on the
initial conditions or the direction the transition point is approached in parameter space.
Examples of such systems are classical Rayleigh-B´enard convection [5, 15] and co-
rotating Taylor-Couette flow [6, 19], which are well suited to traditional weakly
nonlinear theory since the distance to the transition point and thus, an appropriate small
parameter, is well defined [7, 14, 17, 18, 22].
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Figure 1: Sketches of various (a) supercritical and (b–c) subcritical transitions showing
a general amplitude of the solution A as a function of a bifurcation parameter µ, with
the base (laminar) solution at A = 0. Solid lines represent stable solutions, dashed lines
represent unstable solutions, and markers denote bifurcation points. The subcritical region
of parameter space where non-trivial solutions exist beneath the linear instability of the
base state is shaded in grey.

In subcritical transitions, however, a different phenomenology is observed which may or
may not result from a linear instability of the base state. For example in figure 1(b), the
base state bifurcates subcritically, becoming unstable and producing a branch of unstable
solutions of growing amplitude with decreasing parameter value µ. This branch then un-
dergoes a saddle node bifurcation producing a branch of large amplitude stable solutions.
Another example of a subcritical transition is shown in figure 1(c); in this case, the base
state is linearly stable for all values of the parameter µ. Here, a saddle-node bifurcation
produces a stable/unstable pair of solutions that are disconnected from the branch of the
base state. In both examples, the transition may occur subcritically for parameter val-
ues in the grey-shaded region if the solution is given a sufficiently large perturbation in
amplitude to push the state above the unstable branch. In these examples, the utility of
applying traditional weakly nonlinear theory is severely limited. For the case sketched in
figure 1(b), an expansion near the bifurcation point of the base state can be constructed,
however, information about the saddle node bifurcation and large-amplitude stable solution
is unlikely to be captured by such a local expansion, even if higher order terms are included
due to the likelihood that these often occur far away from the bifurcation point [4]. Indeed,
in the case sketched in figure (c) where no bifurcation of the base state occurs, it is not
possible to consider such an expansion as no formal small parameter exists in the sense of
the traditional weakly nonlinear theory.

Nevertheless, there is a need to construct a weakly nonlinear theory for these types of
subcritical transitions, which are important in a wide variety of physical systems. Current
methods often rely on a numerical treatment of the problem, ad-hoc modelling or projection
of the equations onto an ad-hoc truncated basis. Clearly, it would be valuable to have a
formal way of investigating these systems that arise directly from the equations of motion.

In this work, we restrict ourselves to a certain class of dynamical systems; namely, one
for which the linearised operator about the base state is highly non-normal [20]. A bounded
linear operator L : X → Y , where X and Y are inner product spaces, is non-normal if it
does not commute with its adjoint operator L†, i.e., L†L ̸= LL†. Here the adjoint operator
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is a linear operator L† : Y → X, such that for all x ∈ X and y ∈ Y ,

⟨Lx, y⟩Y = ⟨x,L†y⟩X , (1)

where ⟨·, ·⟩ denotes the inner product on the corresponding space. If L = L† and X = Y ,
the operator is called self-adjoint. Thus, trivially, a linear operator is necessarily normal
if it is self-adjoint, although the converse need not be true. Self-adjoint operators enjoy
a number of nice properties. Firstly, the spectrum of a self-adjoint operator is real, and
the corresponding eigenfunctions/eigenvectors are orthogonal. This is important in the
context of our linear stability analysis: if the linearised operator about the base solution
L is self-adjoint (and thus normal), and the eigenvalues of L all have a negative real part,
then infinitesimal perturbations to the base state will decay monotonically. However, if the
linearised operator is not self-adjoint, the eigenfunctions/eigenvectors may not be orthogonal
and perturbations to the base state may grow transiently before they decay back to the
base state in the linearised dynamics [16]. In this sense, the non-normality of the linearised
system is important to consider when assessing the stability of the base state to finite
amplitude perturbations, since even small disturbances can experience strong transient
growth due to the non-normality. In turn, strong transient growth may be sufficient to
enable the solution to grow into a nonlinear regime where the trajectory may then grow
or decay due to the nonlinear effects. In the context of our original nonlinear initial value
problem, non-normality provides a mechanism that may have a significant effect on the
geometry of the separatrix dividing the basins of attraction of various stable states and can
promote subcritical transitions. It is well established that non-normality is often observed
in linearised versions of the Navier-Stokes equations, and may play a significant role in
subcritical transitions in various parallel shear flows.

Strong non-normality has recently been utilised by Ducimetière et al. [8] to perform
weakly nonlinear analysis of linearly stable systems. In contrast to traditional weakly
nonlinear theory, the small parameter used in their analysis is the inverse of the optimal
gain in the linearised system. The solutions of the resulting amplitude equation agreed
reasonably well with solutions to the full nonlinear system, and reasonable estimates for
the critical forcing amplitudes needed to observe a transition to a non-trivial nonlinear
state were obtained. Although this study is pioneering in the utilisation of a different
small parameter to extend traditional weakly nonlinear theory to linearly stable non-normal
systems, the work nevertheless left a number of questions unanswered. In particular, it is
not clear whether the inverse optimal gain is truly a formal small parameter and, if so,
what the associated limit process is. Additionally, some of the coefficients in the amplitude
equation were observed to exhibit a different asymptotic scaling to the assumed scaling when
the amplitude equation was being balanced, resulting in a formally inconsistent equation.
Consequently, the resulting system has no variation on the slow time scale and the stability
of solutions could not be formally assessed. Finally, the methodology tied itself closely
to traditional weakly nonlinear theory by artificially perturbing operators to render them
singular so that the Fredholm alternative could be invoked in the derivation of the amplitude
equation [7, 8]. However, these operators are not singular due to the linear stability of the
system.

In this work, we wish to extend the ideas of Ducimetière et al. [8] to develop a new
methodology that emphasises formal asymptotic consistency. We begin in §2 by outlining

397



our approach in a general setting and then perform the asymptotic reduction for a model
problem in §3, the results of which are outlined in §4. Conclusions are presented in §5.

2 General System

We consider a system described by a state vector q̃ ∈ X which is first decomposed into an
equilibrium (laminar) solution of interest q0 and the fluctuations about this state q as

q̃(x, t) = q0(x) + q(x, t). (2)

We then consider the following harmonically forced nonlinear dynamical system for the
fluctuations

∂tq = Lµq +N (q, q) + δ(f̂eiωt + c.c.), (3)

where Lµ is a linear operator which depends on a parameter µ (the Reynolds number
for example), N is a quadratic nonlinear operator, ω is the frequency of the forcing, and
c.c. denotes complex conjugate. By imposing that ∥f̂∥ = 1, the amplitude of the forcing
is modulated by the parameter δ. By construction, equation (3) admits the equilibrium
solution q0 when q = 0 with δ = 0.

In this work, we are interested in the dynamics of equation (3) close to this equilibrium
point at a parameter value µ when the linearisation of equation (3) about q = 0 is stable in
the unforced system (δ = 0), and the operator Lµ is highly non-normal. In this sense, we
wish to understand the weakly non-linear dynamics sustained by a small harmonic forcing,
where the dynamical response may indeed be much greater than the magnitude of the
forcing due to the large non-normality of the system.

2.1 The linearised system and resolvent analysis

We first analyse the linearisation of equation (3) about the q = 0 equilibrium point

∂tq = Lµq + δ(f̂eiωt + c.c.). (4)

We are considering choices of parameters µ for which the q = 0 equilibrium point is linearly
stable, i.e., the spectrum of Lµ lies on the left-hand side of the complex plane, and unforced
frequencies are expected to decay as t → ∞. Thus, we Fourier-decompose the response
q = q̂eiωt+ c.c.. Using this ansatz in equation (4), we can map the Fourier coefficient of the
forcing f̂ onto the associated Fourier coefficient of the response through a linear operator
R known as the Resolvent operator

q̂ = (iωI − Lµ)
−1δf̂ = Rδf̂ , (5)

where I is the identity. Doing so has transformed the linear differential equation into an
algebraic problem, allowing us to understand the linear response of the system by analysing
the linear operator R. Since we are typically interested in finite-dimensional problems, (i.e.,
X = Rn say), either coming from systems of ordinary differential equations or spatially
discretised partial differential equations, the operator R is a matrix and can be analysed
using tools from linear algebra. It is common in this setting to consider the singular value
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decomposition (or the Schmidt decomposition in the infinite dimensional case) of R(ω) for
a given frequency ω

R = UΣV H , (6)

where Σ is a diagonal matrix whose entries Σjj = σj where σ1 ≥ σ2 ≥ · · · ≥ 0 are referred to
as the singular values, U and V are unitary matrices whose jth columns are referred to as the
jth left and right singular vectors, respectively, and (·)H denotes the Hermitian (conjugate)
transpose. Since U and V are unitary, their columns form an orthonormal basis with respect
to the Hermitian inner product ⟨z,w⟩ =

∑
i ziw

∗
i for two complex vectors z and w, where

(·)∗ denotes complex conjugation. The singular value decomposition naturally decomposes
the resolvent operator into a set of forcing structures encoded in the columns of V and
the associated response in the columns of U , where the associated singular values describe
the magnitude of this transformation. By ordering the singular values, forcing structures
can thus be ranked by the magnitude of their associated response. Furthermore, the largest
singular value represents the maximum gain achievable by a given linear operator, and thus,
the leading left and right singular vectors represent the optimal forcing for the system and
the associated response, respectively.

2.2 Defining weak nonlinearity

We wish to construct a weakly nonlinear expansion of equation (3) about the stable equi-
librium point q = 0. In traditional weakly nonlinear theory, one uses the distance from a
bifurcation point µ− µc as a small parameter. However, since our system is linearly stable
for the range of parameter values considered, no local bifurcation occurs, and thus, µc is
not defined. Instead, we restrict ourselves to systems which possess strong non-normality.
In such a system, we expect the leading singular value of the resolvent operator to be large,
(i.e., σ1 ≫ 1) since small disturbances should be amplified greatly due to the non-normality.
To study the simplest conceivable scenario, we shall assume that as the control parameter
µ → µ∗ where µ∗ is some value of the control parameter, the leading singular value σ1 → ∞,
while the other singular values σj = O(1) for j ̸= 1. In this sense, we might anticipate a
limiting procedure whereby the gain σ1 → ∞ as the Reynolds number Re → ∞ in a Cou-
ette or pipe flow, for example. In this case, we may formally introduce an asymptotic small
parameter ε ≡ 1/σ1 which we shall use to order an asymptotic expansion.

Furthermore, we can use the linearised system to anticipate the relative size of the
response associated with each of the singular values. Examining equation (5), we can
expect that the optimal response of the system associated with the leading singular value is
of order δ/ε, whereas sub-optimal responses associated with the remaining singular values
is of order δ. We thus define the weakly nonlinear regime as one where δ/ε ≪ 1.

2.3 Weakly nonlinear expansion

We now return to our original forced nonlinear problem

∂tq = Lµq +N (q, q) + δ(f̂eiωt + c.c.), (7)

and introduce a slow time T ≡ ∆t as part of a multiple time-scale asymptotic expansion,
where ∆ is a currently unspecified small parameter. Heuristically, in the weakly nonlinear
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regime, we anticipate a harmonic response on the original fast time scale, with the fast-
time averaged amplitude of the solution evolving on the slow time scale T . We thus take
∂t 7→ ∂t + ∆∂T , and make the following ansatz for the evolution of the state vector by
Fourier-decomposing over the fast time:

q(x, t, T ) =
∑
n

q̂n(x, T )e
inωt, n ∈ Z. (8)

Substituting this ansatz into equation (7) and taking the L2 inner product with respect to
each Fourier mode separates the problem into a system of differential equations. At each
frequency n we have

∆∂T q̂n + (inωI − Lµ)q̂n =
{
N (q, q)

}
n
+ δf̂δ±1,n, (9)

where {·}n denotes projection onto the frequency n and δi,j denotes the Kronecker delta.
Noting the presence of the inverse resolvent operator in the linear part of the equation,
we perform a singular value decomposition for each n as Rn = (inωI − L)−1 = UnΣnV

H
n .

We further introduce the notation that the leading singular value for each n is given as
σ+
n , with associated left and right singular vectors given by Ûn and V̂ n, respectively. The

remaining sub-dominant singular values are denoted by σ
(j)
n , which have associated left and

right singular vectors given by u
(j)
n and v

(j)
n .

We proceed by projecting equation (9) onto the optimal forcing shape given by V̂ n using
the Hermitian inner product

V̂
H
n

(
∆∂T q̂n + (inωI − L)q̂n

)
= V̂

H
n

({
N (q, q)

}
n
+ δf̂δ±1,n

)
, (10)

which extracts the optimal forcing profile from the applied harmonic forcing. We then
expand q̂n in the orthonormal basis spanned by the left singular vectors associated with
the response at each n as

q̂n(T ) = an(T )Ûn +
∑
j

b(j)n (T )u(j)
n . (11)

The general philosophy here is that, due to the strong non-normality, the dominant response
of the system ought to be encoded in the coefficients an while the projection of the solution
onto the sub-dominant response vectors will be small. We would thus like to perform
a Galerkin projection onto the dominant modes utilising the orthogonality of the basis.
However, we would like to do so in a formally justified way by insisting on asymptotic
consistency as ε → 0.

The choice to expand the state vector q̂n(T ) in the basis spanned by left singular vectors
at each n is motivated by the great simplification of the linear term on the left-hand side
of equation (10), where the orthogonality of the bases can be utilised. More precisely, we
have

V̂
H
n (inωI − L)q̂n = (σ+

n )
−1(V̂

H
n V̂ n)(Û

H
n q̂n) +

∑
j

(σ(j)
n )−1(V̂

H
n v(j)

n )(u(j)H
n q̂n)

= (σ+
n )

−1an; (12)
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thus, the linear term only depends on the leading singular vector σ+
n and the amplitude

associated with this mode an. Our system of equations is thus simplified to

∆∂T (V̂
H
n q̂n) + (σ+

n )
−1an = V̂

H
n

({
N (q, q)

}
n

)
+ δ
(
V̂

H
n f̂
)
δ±1,n. (13)

To achieve a formally justified asymptotic reduction of this system for a given problem, we
must consider the scaling of each of the remaining terms with our defined small parameter ε

for each n. For example, we may anticipate that the projection of the forcing term V̂
H
n f̂ ∼ 1,

expecting otherwise only for pathological choices of forcing f̂ . However, it is not clear how
other terms scale for a general system, particularly the nonlinear terms, which include many
interactions between three different basis sets for a general quadratic nonlinearity at each
n. We thus hope to build intuition for this type of asymptotic reduction by considering
simple model problems that capture essential features of fluid dynamics systems to which
we ultimately aim to apply this new formalism.

3 A Model Problem

We consider the following two-dimensional harmonically forced ODE system which evolves
the state q = (v, η)T according to

d

dt

(
v
η

)
=

(
−λ 0
1 −bλ

)(
v
η

)
+

(
η2

−vη

)
+ δ(f̂eiωt + c.c.). (14)

The linear operator in this equation is inspired by the Orr–Sommerfeld-Squire system, i.e.,
the Navier-Stokes equations for a parallel shear flow linearised about a basic flow which
only varies in the wall-normal direction, and is known to be non-normal. In this context, v
and η loosely correspond to the Fourier coefficients of the wall-normal velocity and vorticity
perturbations, respectively, and the parameter λ can be interpreted as an inverse Reynolds
number: λ = 1/Re. This linear term is supplemented with a quadratic nonlinearity, chosen
to replicate the unforced ODE system studied by Trefethen et al. [21]. This and a class of
similar ODE systems, all containing variants of the same non-normal linear operator used
here, have been widely employed to study non-normal growth and its role in the transition to
turbulence in shear flows [2,13,21]. This system is thus well suited to testing our asymptotic
reduction methodology. In the remainder of this work, we choose a sinusoidal forcing sin(ωt)
and thus, f̂ = −i(1/2, 1/2)T .

3.1 Characterisation of the unforced system

Equation (14) with δ = 0 admits three equilibrium solutions

q0 =

(
0
0

)
, q± =

(
(1±

√
1− 4bλ2)2/4λ

(1±
√
1− 4bλ2)/2

)
. (15)

Linearising about the “laminar” base state q0 yields the following linear system

d

dt

(
v
η

)
=

(
−λ 0
1 −bλ

)(
v
η

)
= Lλq. (16)
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Figure 2: Sketch of the phase portraits with b > 1 for (a) the unforced linearised system
showing the two stable eigendirections E1 (purple) and E2 (green), and (b) the unforced full
nonlinear system showing the separatrix (red) defining the basin of attraction for the two
stable equilibria q0 and q+, and the heteroclitic orbits between the fixed points (black/blue).

A simple calculation firstly shows that Lλ is indeed non-normal

L†
λLλ =

(
−λ 1
0 −bλ

)(
−λ 0
1 −bλ

)
=

(
1 + λ2 −bλ
−bλ b2λ2

)
̸= LλL†

λ =

(
−λ 0
1 −bλ

)(
−λ 1
0 −bλ

)
=

(
λ2 −λ
−λ 1 + b2λ2

)
,

and that the base state is linearly stable for all values of λ > 0. Further computation shows
that Lλ has eigenvectors

E1 =

(
0
1

)
, E2 =

(
1
1

λ(b−1)

)
, (17)

which correspond to the eigenvalues −bλ and −λ, respectively, and thus, the eigenvectors
become more aligned as λ → 0, (i.e. ,Re → ∞), giving rise to large transient growth1. This
transient growth can be observed in the sketch of the phase portrait of the linearised system
in figure 2(a), where the norm of many trajectories grows initially before being attracted
back to the stable equilibrium.

The introduction of the nonlinear terms introduces additional equilibrium states q±.
For the range of λ we shall consider, the equilibrium state q+ is a stable equilibrium point,
and the equilibrium q− is a saddle point which defines a separatrix between the two stable
equilibria, sketched in the phase portrait in red in figure 2(b). Due to the simplicity of our
system, we can compute a full phase portrait of the dynamics, which is shown in figure 2(b).
In the following sections, we will refer to the solution q+ as the fully nonlinear solution or
state.

1Here we note that L is not diagonalisable for b = 1, however L is still non-normal and displays transient
growth.
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3.2 Singular values: do we really have a small parameter?

In the outline of our general method, we have assumed in §2.2 that we have a small parameter
defined to be the inverse of the gain, i.e., the leading singular value of the resolvent operator,
ε ≡ 1/σ1, where ε → 0 as our control parameter µ approaches some particular value µ → µ∗.
Here, we investigate the behaviour of ε as λ → 0 (Re → ∞).

We begin by constructing the resolvent operator R(inω) = (inωI−Lλ)
−1, and calculate

its two singular values σ±
n which are calculated as the square root of the eigenvalues of RHR

as

σ±
n =

√
Sn ±

√
S2
n −Qn. (18)

For compactness of notation, we define the coefficients Sn, Qn ∈ R as 2Sn = |αn|2 +
|αn|2|βn|2 + |βn|2 and Qn = |αn|2|βn|2, which themselves depend on αn, βn ∈ C, with
αn = (inω + λ)−1 and βn = (inω + bλ)−1.

We now examine the behaviour of σ±
1 as λ → 0. Assuming that |α1|, |β1| ≫ 1, we find

that

σ+
1 ≈

√
1

ω4 + (1 + b2)ω2λ2 + b2λ4
, (19)

meaning the asymptotic behaviour of ε ≡ 1/σ+
1 depends not only on the control parameter

λ, but also the frequency of the harmonic forcing ω. The dependence of ω on σ+
1 primarily

depends on how ω compares to λ since b = O(1). Thus, we simplify the analysis by letting
ω = ω(λ). Letting ω ∼ λα, we observe three different behaviours for the leading singular
value depending on the value of α:

σ+
1 = O(1), α = 0,

σ+
1 = O(λ−2α), 0 < α < 1,

σ+
1 = O(λ−2), α ≥ 1.

(20)

Thus, if we allow the frequency of the forcing ω ∼ 1, we do not have a well-defined small
parameter. However, if we choose the exponent α > 0, then ε → 0 as λ → 0, and we can
construct an asymptotic expansion using ε as a small parameter.

A secondary assumption specified in §2.2, is that subdominant singular values of the
resolvent operator are bounded in the same limiting process (λ → 0). In this case we can
examine the behaviour of σ−

1 by constructing a Puiseux series expansion for S1, Q1 ≫ 1,
which to leading order is

σ−
1 =

√
Q1

2S1
+O(S

−5/2
1 Q

3/2
1 ), (21)

which shows that σ−
1 → 1 as λ → 0, confirming that σ−

1 = O(1) as required.
Thus, we may now construct an asymptotic expansion for this problem as described in

§2.3 provided that we choose the forcing frequency ω ∼ λα with α > 0.

3.3 Singular vectors and nonlinear term

Our method relies on understanding the scaling of various terms involving the singular
vectors of the resolvent operator, and we thus proceed by calculating them directly. The
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right singular vectors of R(inω) are calculated as the right eigenvectors of RHR, which in
the notation of §3.2 are

V̂ n = C+
n

(
1

αn|βn|2 (Sn +
√
S2
n −Qn − |βn|2)

1

)
, (22)

v̂(2)
n = C−

n

(
1

αn|βn|2 (Sn −
√
S2
n −Qn − |βn|2)

1

)
, (23)

where the coefficients C±
n ensure that the singular vectors have unit norm, that is

C±
n =

(
1 +

1

|αn|2|βn|4
(
Sn ±

√
S2
n −Qn − |βn|2

)2)−1/2

. (24)

The corresponding left singular vectors can then be written as

Ûn =
1

σ+
1

(
αn 0

αnβn βn

)
V̂ n, (25)

û(2)
n =

1

σ−
1

(
αn 0

αnβn βn

)
v̂(2)
n . (26)

In the context of our asymptotic reduction, we have expanded the Fourier coefficients of
the state vector in terms of the left singular vectors, here as

q̂n(T ) = an(T )Ûn + b(2)n (T )û(2)
n . (27)

Inserting this representation into our system of equations for each n yields

∆∂T (V̂
H
n q̂n) + (σ+

n )
−1an = V̂

H
n

({
N (q, q)

}
n

)
+ δ
(
V̂

H
n f̂
)
δ±1,n. (28)

For our model problem, the nonlinear term is written as

N (q, q) =

(
η2

−vη

)
=

(
0 1
−1 0

)
(e2 · q) q, (29)

where e2 = (0, 1). Thus, the projected nonlinear term has the form

V̂
H
n

{
N (q, q)

}
n
= V̂

H
n

(
0 1
−1 0

)∑
k

(
an−kak(e2 · Ûn−k)Ûk + akb

(2)
n−k(e2 · u

(2)
n−k)Ûk

+an−kb
(2)
k (e2 · Ûn−k)u

(2)
k + b

(2)
n−kb

(2)
k (e2 · u(2)

n−k)u
(2)
k

)
. (30)

It is now crucial to determine which terms are asymptotically dominant as λ → 0, in addition

to determining the asymptotic fate of other terms such as the inner products V̂
H
n Ûn and

V̂
H
n û

(2)
n in equation (28). Notably, all of these terms contain a dependence on the forcing

frequency ω. Here, we focus on two cases determined from the behaviour of the leading
singular values (see equation (20)): namely ω ∼ λ, and ω ∼ λα for 0 < α < 1.
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3.4 Asymptotic reduction when ω = O(λ)

We shall first consider the case when ω ∼ λ since it is the simplest algebraically as the real
and imaginary parts of αn and βn each scale in the same way for this case.

Recalling that our small parameter is defined as ε ≡ 1/σ+
1 , and examining the form of

the leading singular value for each n (equation (18)), one observes that

σ+
n ∼ 1/ε. (31)

Further, one can examine the inner products that appear in the slow time derivative of
equation (28), and see that

V̂
H
n Ûn = O(ε1/2), V̂

H
n u(2)

n = O(1). (32)

Notably, we see that the projection onto the subdominant response vector u
(2)
n is asymp-

totically larger than the projection onto Ûn. However, the coefficient b
(2)
n is seen from the

linear analysis to be of size ε smaller than the leading coefficient an and thus, the dominant

term in the time derivative will be anV̂
H
n Ûn.

We now turn our attention to the projection of the nonlinear terms. After lengthy
evaluation of interactions of wavenumbers n, k, ℓ ∈ Z, we find the following scaling of the
four nonlinear terms

V̂
H
n

(
0 1
−1 0

)
(e2 · Ûk)Û ℓ = O(1), (33)

V̂
H
n

(
0 1
−1 0

)
(e2 · u(2)

k )Û ℓ = O(ε1/2), (34)

V̂
H
n

(
0 1
−1 0

)
(e2 · Ûk)u

(2)
ℓ = O(ε1/2), (35)

V̂
H
n

(
0 1
−1 0

)
(e2 · u(2)

k )u
(2)
ℓ = O(ε). (36)

Consequently, as ε → 0, only the nonlinear interactions between the leading singular vectors
appear at leading order in equation (28). We additionally confirm that the projection of
the forcing is

V̂
H
n f̂ = O(1). (37)

Having found the scaling of each of the terms in equation (28), we must now find the choice
of free parameters to make this equation balance non-trivially. The terms that may appear
at leading order from the above analysis are

∆∂Tan(V̂
H
n Ûn)+(σ+

n )
−1an = V̂

H
n

(
0 1
−1 0

)∑
k

an−kak(e2 ·Ûn−k)Ûk+δ
(
V̂

H
n f̂
)
δ±1,n+· · · ,

(38)
which scales as

∆anε
1/2 + εan −

∑
k

an−kak = O(δδ±1,n). (39)
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3.4.1 Balancing the ω = O(λ) amplitude equation

We first consider the scaling of the n = 1 equation

n = 1 : ∆a1ε
1/2 + εa1 −

∑
k

a1−kak = O(δ). (40)

An asymptotic balance between the linear term εa1 and δ sets a1 ∼ δ/ε, as anticipated from
the linear analysis (§2.2). Further, we consider a nonlinear interaction between the mean
a0 and the n = 1 mode a1 at this order, thus introducing a feedback from the mean, which
sets the amplitude of a0 as a0δ/ε ∼ δ, giving a0 ∼ ε.

Turning our attention to the scaling of the n = 0 equation

n = 0 : ∆a0ε
1/2 + εa0 = O

(∑
k

a−kak
)
, (41)

we may now set the amplitude of a1 and δ. Since the amplitude of a0 ∼ ε, introducing a
nontrivial nonlinearity in this equation due to a k = 1 nonlinear feedback sets the amplitude
of a1 through a1a−1 ∼ (δ/ε)2 ∼ ε2, giving δ ∼ ε2, and thus, a1 ∼ ε. We may now
additionally see that ∆ must be set as ∆ ∼ ε1/2 if it is to be included at leading order.
However, we must now compare this to the fast time set by the forcing frequency ω to check
if we indeed have time-scale separation. From equation (20), ω ∼ λ ∼ ε1/2, and thus the
purported slow-time variation occurs on the same scale as the fast time variation, and thus,
formally there is no time-scale separation.

Returning to the n = 1 equation, we may additionally anticipate a k = 2 interaction
which sets a2 ∼ ε. If we do not include this interaction and assume that a2 is asymptotically
smaller than the other modes, we would see a violation of asymptotic consistency at the n =
2 equation, since a nonlinear interaction between a1a1 would be asymptotically larger than
the remaining terms. In a similar way, considering scaling of the equations at successively
higher n ̸= ±1,

n ̸= ±1 : εan = O
(∑

k

an−kak
)
, (42)

we see from the k = 1 nonlinear interaction, we must inductively set the amplitude an ∼ ε.
Otherwise, the nonlinear feedback would be asymptotically larger than any other term.

In conclusion, we find that the only asymptotically consistent choice of scaling of an, ∆
and δ for ω = O(λ) is:

• All amplitudes have the same asymptotic size an = O(ε) for n ∈ Z,

• The forcing amplitude depends on ε as δ = O(ε2),

• The slow-time scale ∆ = O(ε1/2) = O(ω) which implies that no time-scale separation
exists.

We may now proceed to write down our system of amplitude equations. Setting an ≡ εAn

and δ ≡ δF ε
2, we obtain the following system of nonlinear algebraic equations for the

amplitudes An as ε → 0:

γnAn +
∑
k

µn,kAn−kAk + δF νnδ±1,n = 0, (43)
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where the coefficients,

γn =
−1

εσ+
n
, µn,k = V̂

H
n

(
0 1
−1 0

)∑
k

(e2 · Ûn−k)Ûk, νn = V̂
H
n f̂ , (44)

only depend on the leading singular values and vectors of the resolvent operator at each n,
and crucially, are independent of ε as ε → 0.

After obtaining the amplitudes, the full solution in terms of the original variables is
reconstructed as

q =

(
v
η

)
=
∑
n

εAnÛne
inωt. (45)

Although it is perhaps disappointing that we must retain the amplitude An associated with
each frequency ωn = nω to ensure asymptotic consistency, the nonlinearity in the original
problem has been greatly simplified as we have shown that it depends only on the interaction
between the leading singular vectors as ε → 0. Further, in practice the amplitudes are seen
to decay algebraically with n and good agreement with the exact solutions can typically be
obtained with only a few modes. The lack of slow time in the amplitude system removes
a formal notion of stability of the solutions in the context of the amplitude equations
themselves, also found in Ref. [8]. Crucially, however, the attractor of the system may still
be captured by the amplitude system, allowing the long-time behaviour of the system to
be quantified. In this case, our asymptotic reduction restricts the obtained solutions to
equilibria or periodic orbits.

3.5 Asymptotic reduction when ω = O(λα) with 0 < α < 1

We now turn our attention to the 0 < α < 1 case. This dependence on α introduces further
complexity into the scaling of the various terms in equation (28), primarily because the real
and imaginary parts of αn = (inω+λ)−1 and βn = (inω+bλ)−1 scale differently. Regardless,
it is possible to obtain the following results for the scaling of the various relevant terms with
ε ≡ 1/σ+

1 . We note that we now must separately consider the scalings for n = 0 and n ̸= 0.
In particular, the leading singular value for each n now scales as

σ+
n ∼

{
ε−1, n ̸= 0

ε−1/α, n = 0
, (46)

the projection onto the leading singular vector is

V̂
H
n Ûn ∼

{
ε1/2α + iε1/2, n ̸= 0

ε1/2α, n = 0
, (47)

and the projection onto the subdominant singular vector is

V̂
H
n u(2)

n ∼

{
ε1/2α−1/2 + i, n ̸= 0

1, n = 0
. (48)

Similar to the ω = O(λ) case, we see that the projection onto the subdominant response

vector u
(2)
n is again asymptotically larger than the projection onto V̂ n. However, the b

(2)
n
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coefficient is seen to be smaller than an by a factor of ε for n ̸= 0 and ε1/α for n = 0, and

thus, the dominant time derivative term remains anV̂
H
n Ûn for all n.

For the projection of the nonlinear terms, the interaction of the leading singular vec-
tors is seen to be asymptotically larger than the other interactions, and in this case for
wavenumbers n, k, ℓ ∈ Z scales as

V̂
H
n

(
0 1
−1 0

)
(e2 · Ûk)Û ℓ ∼


1, n = k = ℓ = 0

1 + iε1/2α+1/2 k + ℓ = 0

1 + iε1/2α−1/2, otherwise

. (49)

This results in two separate cases for the scaling of terms that can appear at leading order
in equation (28)

n = 0 : ∆a0ε
1/2α + ε1/αa0 = O

(∑
k

a−kak
)
, (50)

n ̸= 0 : ∆anε
1/2α + εan −

∑
k

an−kak = O(δδ±1,n). (51)

3.5.1 Balancing the ω = O(λα) amplitude equation

We first consider the n = 1 equation and again note that a1 ∼ δ/ε is needed to balance the
linear and forcing terms. We then turn our attention to the n = 0 equation

n = 0 : ∆a0ε
1/2α + ε1/αa0 = O

(∑
k

a−kak
)
, (52)

observing that a nonlinear self-interaction of the mean mode appearing at the same order
as the linear term must set ε1/αa0 ∼ a0a0, and thus a0 ∼ ε1/α. We would additionally
anticipate that the forced mode should modify the mean of the solution through a nonlinear
interaction with the a1 mode. Thus, we expect that a0a0 ∼ a−1a1 ∼ δ2/ε2, giving δ ∼
ε1+1/α, which subsequently sets the size of a1 as a1 ∼ ε1/α. We may also now obtain the
scaling of the slow time, since ∆a0ε

1/2α ∼ ε2/α, giving ∆ ∼ ε1/2α. Noting that ω ∼ λα ∼
ε1/2, we now see that we have a well-defined slow time for 0 < α < 1 since then ∆ ≪ ω.

We have established that a0 ∼ a1 ∼ ε1/α, however, we must now quantify the size of the
amplitudes for |n| > 1. Considering the n = 2 equation, we have

n = 2 : ∆a2ε
1/2α + εa2 = O

(∑
k

a2−kak
)
. (53)

To maintain asymptotic consistency, we must set the size of a2 by balancing the linear
term εa2 with the k = 1 interaction. This gives that εa2 ∼ a1a1 ∼ ε2/α, and thus a2 ∼
ε2/α−1. We note that the time derivative term here is now asymptotically smaller than the
aforementioned terms at n = 2 as well as a k = 0 nonlinear interaction, and thus, proceeding
in a different manner leads to asymptotic inconsistency. Similarly, now considering higher
values of n, we have

n > 2 : ∆anε
1/2α + εan = O

(∑
k

an−kak
)
. (54)
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Considering the k = 1 nonlinear interaction and balancing it with the linear term gives
εan ∼ an−1a1, meaning that an ∼ an−1ε

1/α−1, and since 0 < α < 1, we have that 1/α−1 >
0. Thus, we may say inductively that an ≪ an−1 for n > 1.

In conclusion, for ω ∼ λα with 0 < λ < 1, the only asymptotically consistent choice of
each an, ∆ and δ are:

• The amplitudes for n = {0,±1} have the same asymptotic size a0 ∼ a±1 = O(ε1/α),

• The amplitudes for |n| > 1 are asymptotically smaller with a±1 ≫ a±2 ≫ a±3 ≫ · · ·
with the relation a|n| ∼ a|n|−1ε

1/α−1 for |n| > 1,

• The forcing amplitude depends on ε as δ = O(ε1+1/α),

• The slow time-scale ∆ = O(ε1/2α) ≪ ω = O(ε1/2), meaning that we indeed have time
scale separation.

Knowing the scaling of the various quantities, we may now proceed to write the amplitude
equation. For n = 1, at leading order as ε → 0 only contributions from the linear term and
the forcing survive, enabling the amplitude a1 to be solved for directly as

(σ+
1 )

−1a1 = δ(V̂
H
1 f̂) ⇒ a1 = δσ+

1 (V̂
H
1 f̂). (55)

For the n = 0 equation, the linear response, slow time derivative terms, and nonlinear
interactions for k = {0,±1} dominate as ε → 0. Substituting the solved values for a±1

yields

∆∂Ta0(V̂
H
0 Û0) + (σ+

0 )
−1a0 = µ0,0a

2
0 + 2Re{µ0,1}|a1|2, (56)

where again we use the notation

µn,k = V̂
H
n

(
0 1
−1 0

)∑
k

(e2 · Ûn−k)Ûk, (57)

and Re{·} denotes the real part of the given quantity.
Rescaling the amplitude a0 = ε1/αA0, we may rewrite this equation more simply as

Ȧ0 = ηA0 + νA2
0 + F, (58)

where ˙(·) denotes the slow-time derivative, and the coefficients

η =
−(σ+

0 )
−1

ε1/2α(V̂
H
0 Û0)

, ν =
µ0,0ε

1/2α

(V̂
H
0 Û0)

, F =
2Re{µ0,1}|a1|2

ε3/2α(V̂
H
0 Û0)

, (59)

only depend on the leading singular values and vectors for n = {0,±1}, and crucially remain
O(1) as ε → 0. Further, we have reduced our system to a single scalar amplitude equation
while retaining time-scale separation. This reduction enables us to readily compute time-
evolving solutions to the original system and to formally assess their stability. The solution
in the original variables can then be reconstructed as

q =

(
v
η

)
∼ ε1/αA0(T )Û0 + (δσ+

1 (V̂
H
1 f̂)Û1e

iωt + c.c.). (60)
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4 Results for the Model Problem

4.1 System of amplitude equations when ω = O(λ)

In the regime when the forcing frequency ω = O(λ), the long-time response of the system
(equation (14)) asymptotically reduces to a system of nonlinear algebraic equations for am-
plitudes An with n ∈ Z (equation (43)) for large values of the inverse Reynolds number λ..
Although all of the amplitudes appear at the same asymptotic order and are nonlinearly
coupled, we anticipate that there will be a decay in the amplitude of the solution with
increased frequency. To this end, we investigate the spectral properties of the fully nonlin-
ear solutions. A time-series, computed using the ode15s solver in MATLAB with a relative
tolerance of 10−16, is shown in figure 3(a), and the corresponding power spectral density of
the time-series once it has reached the statistically steady state is shown in figure 3(b). We
observe that the largest response of the system occurs at the frequency of the forcing which
is shown in grey in figure 3(b), and even in this fully nonlinear state, the contribution to the
solution at each harmonic of the forced frequency clearly decays with increased frequency.
This scenario is typical across all of the parameter space tested (not shown), and thus, we
anticipate that we will be able to truncate the system of nonlinear equations (equation (43))
at a finite frequency to a high level of accuracy. In the test cases we have considered, the
system may be severely truncated, with only modes |n| ≲ 3 being needed to obtain good
agreement with the fully nonlinear solution.

With the understanding that we may truncate the nonlinear system of algebraic equa-
tions (43) while retaining a good numerical accuracy, we now seek to understand the solu-
tions to this system. Generally, it is not possible to make statements about the solutions to
this nonlinear algebraic system for an arbitrary choice of parameters. Thus, we investigate
this system numerically for various specific choices of parameter values using the fsolve

function in MATLAB with a relative tolerance of 10−14. The solution branches found numer-

Figure 3: (a) Evolution of the state vector norm from the forced fully nonlinear system
(Eq. (14)) with λ = 10−2, ω = 10λ, δ = 3 from a (0, 0) initial condition as a function
of time normalised by the forcing period. The inset shows a smaller segment of the time
series. (b) The power spectral density of the solution is shown as a function of the frequency
normalised by the forcing period. The directly forced frequency is shown by the grey line.
The spectral density clearly decays for higher harmonics in the fully nonlinear solution.
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Figure 4: (a) Bifurcation diagram showing solutions of the system of amplitude equations
(Eq. (43)) distinguished by the l2 norm of the amplitude coefficients as a function of the
forcing amplitude δF with λ = 10−4, ω = λ, b = 1. Solid lines denote stable solutions, and
dotted lines represent saddle/unstable solutions. (b) Same bifurcation diagram for larger
values of δF . (c) The real part of the leading eigenvalue of the Jacobian matrix J of equation
(43) linearised about the corresponding solution.

ically for λ = 10−4, ω = λ, b = 1, and 0 ≤ δF ≤ 10 are shown in the bifurcation diagrams
as a function of the forcing parameter δF in figure 4(a–b), and were obtained with a brute
force search due to the simplicity of the system,. Although the stability of such solutions
on the slow time scale may not be assessed formally (§3.4.1), we anticipate that we may be
able to re-expand near the solution itself and thus consider the spectrum of the Jacobian
of equation (43) to assess stability.

We observe in figure 4(a) that a stable branch of solutions (solid blue line), correspond-
ing to a limit cycle in the original variables q, emerges from the q = (0, 0) point as the
forcing δF is increased from zero. Thus, the stable solution begins to move away from the
origin, reaching a finite amplitude in response to the external forcing. Additionally, we
observe a saddle point (dotted blue line) with one unstable direction, corresponding to an
unstable periodic orbit (UPO) in the original variables, emerging from the saddle point
in the unforced system in equation (14). As the forcing is increased, these two solutions
approach each other, bifurcating at δF,c ≈ 1.62, which results in a single saddle point with
broken symmetry in the An coefficients compared to the two solutions beneath the bifur-
cation point. At higher amplitudes and forcing values, a number of different solutions have
been found (fig. 4(b)), and are all of saddle type, thus representing unstable periodic orbits
in the original variables. At low values of δF , all of these solutions are observed to have large
amplitudes in the An coefficients, and thus are not relevant in the context of our asymptotic
reduction which assumes that An = O(1).

Consequently, as we increase the level of forcing in our system, starting from the “laminar
solution”, we see sustained stable periodic solutions which grow in amplitude in response
to the harmonic forcing. As the strength of the forcing is increased, the limit cycle and
UPO (beneath the bifurcation point in figure 4(a)) eventually collide, producing a UPO
with broken symmetry above a critical point (at δF,c ≈ 1.62 at these parameter values)
and no stable solutions exist in the amplitude system. Thus, we anticipate that in the
full nonlinear system, solutions from all initial conditions above this critical threshold will
transition, growing into the fully nonlinear state. Although it is likely that details of the
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Figure 5: (a) Bifurcation diagram computed from the amplitude system (Eq. (43)) showing
the magnitude of the mean amplitude A0 as a function of the forcing amplitude δF with
λ = 10−4, ω = λ, b = 1. Stable solutions are shown with solid lines, and unstable/saddle
solutions are shown with dotted lines. The black marker shows the saddle-node bifurcation
point. (b) Branch of stable solutions computed from the fully nonlinear system (Eq. (14))
shown by red markers on the same bifurcation diagram.

bifurcation scenario and the number of branches of UPOs may change with varied values of
the system parameters, our tests indicate that the overall qualitative picture of the transition
remains broadly similar.

We now turn our attention to comparing the solutions on the stable branch of the system
of amplitude equations to the solutions of the full nonlinear system (equation (14)). We
first compare the mean of the solution of the full nonlinear system to that of the amplitude
equations through the magnitude of the mean amplitude A0, shown in figure 5 for λ = 10−4,
ω = λ, b = 1, observing excellent agreement. We additionally see excellent agreement in
the forcing amplitude for which the stable branch loses stability. The bifurcation point for
these parameter values in the amplitude system (equation (14)) occurs at δF,c ≈ 1.61937 and
the corresponding critical forcing amplitude in the full nonlinear system is δF,c ≈ 1.61965,
giving a relative error of order 10−4. Thus, the amplitude equations can accurately predict
the critical forcing value for which the forced “laminar” state exists, and hence, transitions
to the fully nonlinear state.

To compare the temporal dynamics, we show a time-series with λ = 10−5, ω = 3λ, b = 1,
δF = 5 in figure 6. The full nonlinear system (equation (14)) is initialised from a (0, 0) initial
condition. The solution undergoes an initial transient before being attracted to a limit cycle
solution shown in grey in figure 6. The components of q = (v, η) are shown in figure 6(a–b)
normalised by the long-time average ⟨·⟩t of ∥q∥2, denoted as q∗ = (v∗, η∗) = q/⟨∥q∥2⟩t.
A phase portrait of the trajectory is shown in figure 6(c). This fully nonlinear solution in
grey is compared to the limit cycle solution of the asymptotically reduced system (equation
(43)) shown in red, where the solution in the original coordinates is reconstructed using
equation (45). We observe excellent agreement between the two systems once the fully
nonlinear solution has relaxed to the limit cycle, suggesting that the long-time behaviour of
the asymptotically reduced system captures the true behaviour well, and thus, the attractor
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Figure 6: (a, b) Components of q∗ = (v∗, η∗) = q/⟨∥q∥2⟩t as a function of time normalised
by the forcing period for the fully nonlinear solution (grey) and the solution of the amplitude
system (Eq. (43)) (red) for λ = 10−5, ω = 3λ, b = 1, δF = 5. The black line shows the
applied harmonic forcing as a function of time. (c) Phase portrait of the solutions showing
the fully nonlinear solution relaxing to the limit cycle captured by the amplitude system.

of the system has been accurately obtained. These results are representative of our tests
across a wide range of parameters beneath the critical forcing threshold that results in a
transition to the fully nonlinear state of the original nonlinear system.

4.2 Amplitude equation when ω = O(λα) with 0 < α < 1

In the regime when the forcing frequency ω = O(λα) with 0 < α < 1, we obtained an
asymptotically reduced differential equation (58) that determines the evolution of the mean
amplitude of the solution A0 as a function of the slow time T . The coefficients in this
single, scalar amplitude equation only depend on the leading singular values and vectors for
n = {0,±1}; F may be interpreted as a proxy for the forcing, which is modulated by the
nonlinear interaction of the mean and n = 1 singular vectors and does not evolve in time.

This amplitude equation is simpler than the system of nonlinear equations obtained
in the case of ω = O(λ) (equation (43)) and is amenable to an analytic treatment. To
investigate the qualitative dynamics of this amplitude equation, we first note that the
equilibrium solutions are given by

A±
0 =

−η ±
√

η2 − 4νF

2ν
, (61)

meaning that two equilibria exist when η2 > 4νF and no equilibria exist when η2 < 4νF .
Thus, at a critical value of the forcing Fc, we observe a saddle-node bifurcation occurring
at

Fc =
η2

4ν
, (62)

which can be directly related to the magnitude of the original applied forcing δ by manip-
ulation of the coefficients in equation (59) and the expression for the coefficient a1 given in
equation (55). Expressing the forcing amplitude in terms of a rescaled order-one parameter
δF as δ = δF ε

1+1/α, the critical forcing for the saddle-node bifurcation may be written
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Figure 7: Sketch of bifurcation diagram for the amplitude equation (Eq. (58)) showing the
saddle-node bifurcation occurring at a critical value of the forcing Fc. Solid lines denote
stable solutions, and dashed lines denote unstable solutions.

explicitly from the amplitude equation as

δF,c =

√√√√ −µ0,0 σ
+
0

8 ε2−1/α (σ+
1 )

2Re{µ0,1} |V̂
H
1 f̂ |2

. (63)

We may assess the linear stability of these two equilibrium points by perturbing the
equilibrium solutions as A0 = A±

0 +A′
0 and collecting terms at linear order:

Ȧ′
0 = ±

√
η2 − 4νFA′

0 +O(A′
0
2
). (64)

Thus, when F < Fc, A
+
0 is linearly unstable and A−

0 is linearly stable. A sketch of the
bifurcation diagram for this system is shown in figure 7.

Notably, we have obtained a different normal form than the weakly nonlinear analysis
of Ducimetière et al. [8], where they obtained a perturbed subcritical pitchfork bifurcation,
(i.e., a pitchfork with a constant term related to the forcing that breaks the reflection
symmetry of the amplitude). This leads to a somewhat similar bifurcation scenario featuring
a saddle-node bifurcation, but this normal form additionally produces an unstable branch
which plays no physical role in the transition (see figure 10(b) in [8]). This, combined with
the asymptotic inconsistencies in [8] suggests that an incorrect normal form was obtained
in this work which eliminated the most relevant nonlinearity, (i.e., the quadratic term we
observe here). This is further supported by the very large coefficient obtained for the cubic
term (see table 2 and related discussion in [8]) which is 4 orders of magnitude larger than
the coefficient of the time derivative term, for example.

Importantly, similarly to the results obtained numerically for the ω = O(λ) system of
equations (see fig. 4 and the accompanying discussion in §4.1), this bifurcation structure
may be interpreted physically in the context of the model problem. When no forcing is
applied to the system, the “laminar” solution q = 0 is linearly stable, corresponding to
a mean amplitude A0 = 0, which is observed on the linearly stable A−

0 branch. As the
forcing amplitude is increased, the mean of the linearly stable solution grows away from the
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Figure 8: (a) Bifurcation diagram computed from the amplitude equation (Eq. (58)) with
λ = 10−4, ω = λ1/2, b = 1. Stable solutions are shown with solid lines, and unstable/saddle
solutions are shown with dotted lines. The black marker shows the saddle-node bifurcation
point. (b) Branch of stable solutions computed from the fully nonlinear system (Eq. (14))
shown in mean by red markers on the same bifurcation diagram.

q = 0 point, following the A−
0 branch. However, if the “laminar” solution is perturbed with

sufficient amplitude to push the initial condition above the linearly unstable A+
0 branch, the

solution from the amplitude equation grows without bound into the fully nonlinear regime.
As the forcing is increased, an increasingly smaller amplitude is required to push the solution
beyond this separatrix, until at the critical forcing amplitude Fc the two equilibria annihilate
each other in the saddle-node bifurcation and trajectories from all initial conditions grow
into the fully nonlinear regime. In the context of the forced fully nonlinear system, this
corresponds to a saddle-node bifurcation of the limit cycle and unstable periodic orbit,
leaving all trajectories in the phase portrait to be attracted to the upper branch fully
nonlinear solution, as sketched in figure 2(b).

To quantitatively test this picture of the transition, we first compare the mean of the
linearly stable A−

0 solution to that of the full numerical solution of equation (14) at λ = 10−4,
ω = λ1/2, b = 1 for a range of forcing values beneath the critical threshold δF,c. In figure
8(a), we first show the bifurcation diagram computed from the predictions of the amplitude
equation (58) for the given parameter values. In figure 8(b), we now overlay the mean
of solutions from the full nonlinear system (equation (14)) using red markers. Excellent
agreement with the model is evident. Furthermore, the critical forcing value for the saddle-
node bifurcation point, which was calculated to be δF,c = 0.707072 from the amplitude
equation (using equation (63)) agrees nearly exactly with the value calculated from the full
nonlinear system (equation (14)), δF,c = 0.70711, giving a relative error of order 10−5.

We now turn our attention from the equilibrium solutions of the amplitude equation
to the transient slow-time dynamics, noting that the amplitude equation (equation (58))
is a Riccati equation with constant coefficients. Since this equation is separable, we may
separate and directly integrate both sides of the equation with respect to time. Doing so

415



yields the following general solution to the problem

A0(T ) =

√
4Fν − η2 tan

(
1
2

√
4Fν − η2(T − C)

)
− η

2ν
, (65)

where C is the constant of integration and is set by the initial condition A0(0) as

C =
2√

4Fν − η2
arctan

(
2νA0(0) + η√

4Fν − η2

)
. (66)

We reconstruct the full solution from the amplitude solution using equation (60) and com-
pare it in figure 9 to the fully nonlinear solution using q = 0 as the initial condition. In
figure 9(a), we first show the evolution of the mean mode as a function of the original
time variable (fast time t) normalised by the forcing period, revealing a clear monotonic
evolution. In figures 9(b–d), we compare the evolution of the solution of the amplitude
equation (58) to the solution from the full nonlinear system (14) over various time inter-
vals. In the initial stages of the evolution (fig. 9(c)), the mean of both solutions grows in

Figure 9: Comparison of the results from the fully nonlinear system (grey) and the solution
from the amplitude equation (Eq. (58)) (red) with λ = 10−4, ω = λ1/2, b = 1, δF = 0.6. The
initial condition is the same in both cases and is taken from a simulation of the fully nonlinear
system at lower δF . (a) Evolution of the mean amplitude A0 for the amplitude equation
(Eq. (58)) as a function of time normalised by the forcing period. (b–d) η∗ = (q ·e2)/⟨∥q∥2⟩t
shown over the various time intervals indicated, with the applied harmonic forcing shown
in black. (e, f) Phase portraits of the solutions constructed through the components of
q∗ = (v∗, η∗) = q/⟨∥q∥2⟩t for (e) the full time series and (f) ωt/2π ≥ 500.
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time. However, the fully nonlinear solution (grey) is seen to grow faster than that of the
amplitude equation solution (red). The fully nonlinear solution reaches a maximal value at
approximately 30 forcing periods before decaying back down to a stable periodic solution
(see the grey solution envelope in fig. 9(b)). This behaviour falls outside of the scope of
the 1-dimensional amplitude equation, which can only capture monotonic dynamics due to
the asymptotic reduction. Indeed, the fully nonlinear solution in general appears to exhibit
non-monotonic behaviour in this regime, and in fact, exhibits growth of the solution mean
on the fast time scale for many initial conditions. Growth on the fast time scale falls outside
of the scope of the present asymptotic reduction due to the ansatz made in equation (8),
which assumed periodic response on the fast time scale.

Nevertheless, the long-time behaviour of the fully nonlinear solution is captured by the
amplitude equation, as can be seen in the time series in figure 9(d), and the phase portrait
showing trajectories of the statistically steady state in figure 9(f). This excellent agreement
in the long-time behaviour of solutions has been observed over a wide range of parameter
choices tested (not shown).

Although the initial “fast” transience is not captured well, the amplitude equation is still
able to capture the dynamics of the full nonlinear solutions well if initialised appropriately.
To illustrate this in figure 10, the initial condition of the amplitude equation is adjusted to
that of the solution of the fully nonlinear system after 40 forcing periods (after the maxima
of the time series at 30 forcing periods). The evolution of the amplitude equation from this
contrived initial condition is shown in figure 10 for different parts of the time series in figures
10(a–b). We see good agreement between the slow-time evolution of the amplitude equation
and the full nonlinear solution as it relaxes to the limit cycle which attracts trajectories as
t → ∞.

5 Conclusions

In this work, we have developed an asymptotically consistent, weakly nonlinear theory for
systems that fall outside the scope of traditional weakly nonlinear analysis, where the base
state of the system does not (necessarily) undergo a linear instability. This reduction is
achieved under the assumption that the system is highly non-normal and subjected to har-
monic forcing on a fast time scale. The former assumption is typical of the Navier-Stokes
equations, as well as many other differential equations across science and engineering. In-
deed, the method we have developed is well-suited for investigating systems such as parallel
shear flows, where the transition to fully nonlinear states occurs subcritically through finite-
amplitude perturbations of a linearly stable base state, and where the linearisation of the
system about this base state is known to be highly non-normal. We have applied this
methodology to a system of nonlinear ordinary differential equations (ODEs) inspired by
the classical Orr–Sommerfeld-Squire system for parallel shear flows, noting that the asymp-
totic reduction depends on the prescribed relationship between the forcing frequency ω and
the Reynolds number Re = λ−1. In particular, we discussed the asymptotic reduction of
the system in two distinct regimes: ω = O(λ) and ω = O(λα) with 0 < α < 1, noting that
the small parameter ε (the inverse maximum gain) is bounded from below for all values of
Re if ω = O(1).

For the ω = O(λ) case, the nonlinear ODE reduces to a system of coupled nonlinear
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equations for the solution amplitude at integer multiples of the forcing frequency An. Al-
though formally each An appears at the same asymptotic order, we observe in practice
that the amplitudes decay algebraically with increased n and that only a few amplitudes
are needed to approximate the true solution with good accuracy. The resulting nonlinear
system has been investigated for several test cases, yielding similar qualitative results across
different choices of control parameters. As the forcing amplitude is increased, a limit cycle
solution is born from the “laminar” (0, 0) equilibrium point and is the only stable branch
of solutions observed in the system. We investigate the dynamics of these solutions, ob-
serving excellent quantitative agreement between the asymptotically reduced solutions and
the long-time behaviour of the full nonlinear solutions at a range of parameter values. Ad-
ditionally, an unstable periodic orbit (UPO) is born from the saddle point in the unforced
system, and this branch of solutions moves closer to the branch of limit cycles until they
collide, bifurcating into a UPO with broken symmetry at a critical forcing value. For forcing
amplitudes higher than this critical value, no stable solutions exist, and a transition to the
full nonlinear state is anticipated. The critical forcing threshold compares excellently to the
full nonlinear system, with a relative error of order 10−4.

For the ω = O(λα) case with 0 < α < 1, we find that the full nonlinear system reduces
to a scalar nonlinear ODE that retains dynamics on the slow time scale. This reduced
equation can be solved analytically, and we show that the system undergoes a saddle-node
bifurcation at a determined critical forcing amplitude. Similar to the ω = O(λ) case, when

Figure 10: Evolution of η∗ = (q · e2)/⟨∥q∥2⟩t shown for different time intervals from the
fully nonlinear system (grey) and the amplitude equation (Eq. (58)) (red) with λ = 10−4,
ω = λ1/2, b = 1, δF = 0.6. The initial condition for the amplitude equation has now been
adjusted to match the fully nonlinear solution at ωt/2π = 40. In both figures, the applied
harmonic forcing is shown as a function of time by the black line.
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the forcing amplitude is increased, a limit cycle is born from the “laminar” (0, 0) equilibrium
point, and a UPO is born from the saddle point in the unforced system. These solutions
again collide at a critical forcing amplitude, but now annihilate each other in a saddle-node
bifurcation. For forcing amplitudes above this bifurcation point, solutions grow without
bound for all initial conditions and thus will grow into the fully nonlinear regime. The
critical forcing amplitude, calculated explicitly from the amplitude equation, agrees with
the value computed from the full nonlinear system to within a relative error of order 10−5.
In all cases, the attractor of the system is excellently captured by the amplitude equation.
In many cases, where the full nonlinear system exhibits monotonic behaviour on the slow
time scale, the temporal dynamics of the system are obtained with good accuracy. However,
in some cases, we observe growth on the fast time scale, which is beyond the reach of the
current method, necessarily constrained to monotonic slow-time dynamics.

In both cases, the general qualitative structure of the reduced systems can be inter-
preted physically within the context of the problem. As the forcing amplitude is increased,
the stable “laminar” solution moves from its original point with increased amplitude due
to the applied forcing. We note here that due to the large non-normality of the system, the
amplitude of the response is orders of magnitude larger than that of the applied forcing.
Similarly, an unstable periodic solution emerges from the saddle point, which defines the
separatrix in the original unforced problem, and moves increasingly closer to the stable
solution. Thus, as the forcing is increased, an ever smaller initial disturbance to the “lami-
nar” solution is required to push the solution past the separatrix and drive a transition to
the fully nonlinear state. As the forcing increases further, a critical threshold is reached
where these stable and unstable solutions collide, bifurcating such that no stable solutions
remain. Thus, above this critical forcing amplitude, the solutions from all initial conditions
are attracted to the fully nonlinear state.

Although neither reduced system captures the fast-time growth observed in some full
nonlinear solutions (which remains an open challenge), the scalar amplitude equation does
capture slow time scale monotonic dynamics well, and both reduced systems display ex-
cellent agreement with the long-time behaviour of the full nonlinear system. Thus, this
formalism may be useful in a wide range of potential applications where the long-time
behaviour or slow-time scale dynamics (perhaps even with the amplitude of the forcing
varying in slow-time) is of interest in highly non-normal dynamical systems. Additionally,
the calculation of the critical forcing amplitude for the elimination of a stable “laminar”
state is made significantly simpler in the reduced systems, and can even be written explicitly
for the scalar amplitude equation. Although the asymptotic reduction for the particular
nonlinear ODE we investigate here is modest, given the small size of the original system,
we anticipate a significantly larger reduction in the number of degrees of freedom would be
achieved for the case of a PDE satisfying the assumptions of our derivation. In particular,
the dynamics would still reduce to a single or very small number of modes, leading to a far
more significant reduction.

Critically, by emphasising asymptotic consistency in our method, we have obtained a
different amplitude equation than the weakly nonlinear analysis of Ducimetière et al. [8] for
a similar system. This suggests that asymptotic consistency is crucial to obtain the correct
nonlinearities and thus, the correct normal form for the bifurcation. Here, the quadratic
terms we obtain, which were eliminated by the method of [8], capture the behaviour of the
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full system in the weakly nonlinear regime with excellent agreement, and are responsible
for the nonlinear behaviour that destroys the stable laminar solution when the amplitude
of the applied forcing is increased. In our approach, the cubic nonlinearity obtained by [8]
is asymptotically smaller than the terms appearing in our amplitude equation. The correct
role of the cubic term should be to stabilise the growth into the fully nonlinear regime
and thereby capture the fully nonlinear (stable upper branch) solution q+. Thus, for our
model system, empirically we would expect the coefficient of the cubic term to behave as
∼ ε1/α ∼ λ2. It is yet to be seen if this may be obtained formally by going to higher
asymptotic order in our approach.
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