
Preface

The 2022 GFD Program theme was Data-Driven GFD with Professors Peter Schmid of
King Abdullah University of Science and Technology (KAUST) and Laure Zanna of New
York University serving as principal lecturers. Together they introduced the masked audi-
ence in the re-opened cottage and on the better-ventilated porch to a fascinating mixture of
data-driven methods and their potential application to fluid mechanics in general and GFD
in particular. The first ten chapters of this volume document these lectures, each prepared
by teams of the summer’s GFD fellows. Due to Covid-related restrictions, there was space
for only eight fellows this summer, who were:

• Ludovico Giorgini, Stockholm University

• Sam Lewin, University of Cambridge

• Ruth Moorman, California Institute of Technology

• Kasturi Shah, Massachusetts Institute of Technology

• Iury Simoes-Sousa, University of Massachusetts Dartmouth

• Claire Valva, New York University

• Tilly Woods, University of Oxford

• Rui Yang, University of Twente

Their reports are included in this volume.
In 2022, the Sears Public Lecture was delivered by Professor Heidi Nepf of the Mas-

sachusetts Institute of Technology on the topic of “Coastal Vegetation and Coastal Flows:
Restoration, Climate Mitigation and Adaptation”. The topic was extremely well presented
by Heidi to a large and appreciative audience who learnt a lot about the fascinating inter-
actions between vegetation and fluid motions in the near-shore. Much animated discussion
followed in the evening afterwards outside Redfield Auditorium as refreshments were con-
sumed.

Stefan Llewellyn Smith and Colm-cille Caulfield acted as directors, and in spite of the
Covid-related challenges a large number of long-term staff members ensured that the fellows
never lacked for guidance. The seminar series was filled by a steady stream of visitors
talking about topics as diverse as flow structures affecting search and rescue to bubbles in
weightless water. Anders Jensen worked his usual magic in the Lab, dealing inventively
with squishy balls and recalcitrant currents. As ever, Janet Fields and Julie Hildebrandt
kept the program running smoothly behind the scenes, with their assistance (and limitless
patience) hugely appreciated by the directors.
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GFD 2022 Lecture 1: Review of Data Decomposition with Linear

Algebra

Peter Schmid; notes by Ruth Moorman and Ludovico Giorgini

1 Introduction

Not every evolution process can be modelled easily and successfully by deriving systems of equa-
tions from first principles. While we can model many observed phenomena within the field of
geophysical fluid dynamics (GFD) using quintessential processes with known governing equations
(e.g., advection, diffusion, dispersion, wave propagation, growth and decay of instabilities, cascades
of spatio-temporal scales, and so on), these are often insufficient or impractical. In such cases we
have to deduce either model equations or emerging coherent patterns, or a combination of both, by
processing observable data. Figure 1 provides a conceptual illustration of this process, highlighting
some of the types of information we may extract from data to guide our interpretation of the pro-
cesses and mechanisms governing a given system. The algorithms used to extract physically useful
information from data, as well as the application of these algorithms to GFD problems, are the
focus of this year’s lecture series.

Figure 1: A schema of the course rationale.

Lectures 1 to 3 will focus on dimensionality reduction, algorithms used to identify the “essence”
of our data by decomposing it into dominant structures that comprise the bulk of the variability
in the studied system. In Lectures 3 to 5 we move on to the practice of approximating dynamical
operators from data, using algorithms to help determine from data how systems propagate through
time. Later in the course we reframe these procedures as optimization problems in the presence of
uncertainty or in situations where external constraints on our solutions are desirable.
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2 Data Categorization

Many of the algorithms used in data decompositions assume certain characteristics of the input
data, and we need to be cognizant of these assumptions to ensure our processing and interpreta-
tions are appropriate.

The following data characteristics will be referenced throughout this course:

Stationarity and Homogeneity: Data is ‘stationary’ if its statistical moments are constant in time.
‘Non-stationary’ data has, by contrast, time-varying statistical moments. If the evolution direction
relevant for our analysis (see §3.1) is space, rather than time, we would equivalently describe our
data as ‘homogeneous’ or ‘inhomogeneous’ depending on the variability of its statistical moments
in space.

Ergodicity: Ergodocity refers to the equivalence of averaging operations in space and time. Tem-
porally averaging a time series of an ‘ergodic’ system should return the same result as spatially
averaging a snapshot of the system. In other words, the range of variability existing in time is
captured within a single snapshot. For example, a global Sea-Surface Temperature (SST) time
series may be ergodic, but a regional SST time series from the mid-latitudes would not, unless a
climatology is removed in a preprocessing step. Another way of conceptualizing ergodicity is to say
that an ergodic system visits all of its possible states, covering its entire phase space.

Multi-Scale: A ‘multiscale’ system contains processes at vastly different spatial or temporal scales.
One example would be systems with a slow hydrodynamics coupled to fast chemical reactions.

Structure: Structured data is a reference to the spatial configuration of the measurements com-
prising our data. ‘Structured’ data is defined on a regular lattice, with a uniform number of
nearest neighbors and clear directivity between the neighboring data points. For ‘unstructured’
data, neighborhoods of points and relational distances need to be defined explicitly, and are het-
erogeneous throughout the dataset.

Eulerian vs. Lagrangian Data: In fluid dynamics, we distinguish between Eulerian and Lagrangian
frames of reference, where the Eulerian frame adopts the viewpoint of a fixed-in-space control vol-
ume, while the Lagrangian frame follows particles along a trajectory. Algorithms for analyzing data
observed according to an Eulerian or Lagrangian perspective differ greatly.

3 Data Preprocessing

3.1 Constructing the data matrix

Throughout this lecture series we will consider data in the following form,

D =

 | | |
d1 d2 . . . dm

| | |

 ∈ Cn×m (1)

where
n = number of state vector components, and

m = number of data instances along the evolution direction.
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The di (i ∈ [1,m]) represent individual instances of data along its evolution direction. This
evolution direction may be time, such that the di represent spatial snapshots of a temporally evolv-
ing system, or space, such that the di represent the temporal or a mixed spatio-temporal snapshot
of the system at a fixed location in space along an evolution direction. Throughout this lecture
series we take the evolution direction to be time unless otherwise stated, however, the algorithms
presented here are general and may be used to analyse data with other evolution directions, in
which case the language and interpretation may differ somewhat but the algebra remains the same.

The di may be high dimensional, for example they may contain numerous observed quantities
(or ‘composite data’) in two or three spatial dimensions, however they must be stacked or vectorized
in a sorted manner in D such that each di is a state vector with n components. It is important
to respect the ordering in this flattening process; while there is flexibility in how to shape the
measurements into a one-dimensional array, the ordering has to be consistent from state vector to
state vector. If our data does not easily conform to this constraint (e.g., if our data is Lagrangian
and thus the position associated with each measurement evolves in time) we must attach a location
information to each state vector.

3.2 Centering and scaling the data matrix

It is often necessary to calibrate our data in various ways prior to decomposing it. Such calibrations
may be achieved via either post-multiplication or pre-multiplication of our data matrix D with some
preprocessing matrix P ,

D′ = DP D′ = PD.

Post-multiplication scales the data along the evolution direction. An important example of post-
multiplication is data centering or the removal of the mean value of each state vector component
along its evolution direction. This is implemented as,

D′ = DP, P = I − 1

m
11T (2)

where I is the identity matrix and 1 is a column vector of ones. Removal of the mean before data
decomposition can be important for reasons discussed in §5.

Pre-multipication scales the data within each state vector or snapshot. This is frequently used to
ensure that measured variables in composite data sets are not unduly prioritized by decomposition
algorithms due to their absolute magnitude. For example, aeroacoustic systems generate both
hydrodynamic and acoustic data, and the hydrodynamic variables are often substantially larger
in magnitude than the pressure readings representing the acoustic field. In the absence of scaling
during preprocessing, decompositions would typically overemphasize the hydrodynamic component
of the system and discount the acoustic processes. Rescaling permits a more even consideration of
these components.

Another instance of preprocessing is the expression of the data sequence in a reduced basis.
This expression is accomplished by a projection of the entire data set onto a subspace spanned by
the identified and user-supplied structures, and is implemented according to

D′ = PD, P = V V T (3)

where V represents the column space onto which we want to project. There are various options for
the structures included in V depending on the chosen method of scaling. For example, we may scale
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each variable such that it has zero mean and unit variance, match the minimum and maximum
values of each variable, set the median of the data to zero and constrain its interquartile range, and
so on.

4 Data Decompositions

In their most general form, decompositions of matrices are the equivalent of factorizations of num-
bers into more elementary components. Just as there are a great many ways of factorizing numbers,
there are as many ways of breaking apart a matrix into components, and each decomposition is
identified by the type of factors it produces. Most of the algorithms discussed in this series are
three-factor decompositions (§4.2), which are better suited to analysis, but for context we will start
by describing two-factor decompositions (§4.1), which are usually used for data management.

4.1 Two-factor decomposition

Two-factor decompositions take the general form,

D = AB, where A ∈ Cn×k and B ∈ Ck×m. (4)

Generally we have more information within each state vector than we have snapshots, i.e., n > m.
Given this, two special cases of interest involve setting k = m, which yields a ‘reduced’ decompo-
sition, and k = n which produces a ‘full’ decomposition. Reduced decompositions reorganize the
subspace spanned by the columns of D, whereas a full decomposition also describes the null-space
of D, i.e., the dynamics orthogonal to those contained in D.

In its general form the two-factor decomposition above is not useful, we need to impose a
constraint on the nature of A or B to extract a unique decomposition. One classic constraint is
to require that A is orthogonal. This produces the QR-decomposition, which breaks down D into
its orthonormal basis, Q, and an upper triangular matrix of coefficients in this basis, R. Another
example is to require that A is positive definite. This produces the polar decomposition, which
expresses D in terms analogous to the expression reiθ by breaking down D into a positive definite
matrix (equivalent to the radius r) and a rotation matrix (equivalent to the phase-part eiθ).

4.2 Three-factor decompositions

The general form of a three-factor decomposition is,

D = ABC, where A ∈ Cn×k, B ∈ Ck×k and C ∈ Ck×m, (5)

with n > m. Again, in this series we will focus on reduced decompositions (k = m), though full
decompositions (k = n) may be important in other contexts. The above decomposition is often
reformulated to stress that this three-factor decomposition is akin to an input-output analysis,

DC−1 = AB. (6)

This formulation clarifies that we are applying the data matrix D on an input basis C−1, resulting
in an output basis A multiplied by a deformation matrix B. It is important to note that all three-
factor decompositions assume stationary data (or homogeneous data, if the evolution direction is
space).
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the amplitudes (the ‘spectrum’), and the matrix C contains the evolution of a given mode in the
evolution direction (the ‘dynamics’). In the case of the SVD, this looks like,

D = U Σ V H

‘Data’ = ‘Modes’ ‘Spectrum’ ‘Dynamics’
(10)

or, pictorially,

︸ ︷︷ ︸
D

‘Data’
n×m

=

︸ ︷︷ ︸
U

‘Modes’
n×m


•

•
•

•
•


︸ ︷︷ ︸

Σ
‘Spectrum’

m×m

︸ ︷︷ ︸
V H

‘Dynamics’
m×m

(11)

for data containing m = 5 system snapshots and n > m measurements per snapshot. The SVD
algorithm will construct Σ such that the singular values σi are sorted according to descending mag-
nitude (i.e., σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0). The algorithm will also, by design, enforce that U and V
are orthogonal matrices, with orthonormalized columns.

We can visually break down (11) further to highlight that our data matrix D has been decom-
posed into a sum of m rank-1 matrices of the form uiσiv

H
i ,

︸ ︷︷ ︸
D

‘Data’
n×m

=

•
σ1 vH

1

u1︸ ︷︷ ︸
contribution from mode 1

+

•
σ2 vH

2

u2︸ ︷︷ ︸
contribution from mode 2

+...+

•
σm vH

m

um︸ ︷︷ ︸
contribution from mode m

. (12)

This formulation helps us see that the ui comprise a set of orthogonal structures or ‘modes’ that
each explain a decreasing portion (σi) of the spatio-temporal variability in our full data sequence.
The vi then contain the time evolution of the ith mode’s contribution to the full time series, or the
‘dynamics’ associated with that mode, expressed as a variation about its mean value σi.

The outcome of this decomposition is sensitive to our choices during data preprocessing. If
known structures with considerable power (e.g., time mean fields, linear trends, seasonal cycles)
are not removed from D prior to decomposition, these structures will likely make up the most
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GFD 2022 Lecture 2: Spatio-temporal Decomposition of Timeseries

Laure Zanna; notes by Sam Lewin and Kasturi Shah

”The most that can be expected from any model is it can supply a useful approximation to reality.
All models are wrong, some models are useful.”

- George E. P. Box (1987 & 2005)

”The purpose of models is not to fit the data but to sharpen the question.”
- Samuel Karlin (1983)

1 Motivation for Data-driven Climate Dynamics

Following the data decomposition from linear algebra in Lecture 1, we will consider three examples
from climate dynamics:

• Consider timeseries of sea surface temperatures over the globe in Figure 1a: what do we
notice? An immediately evident and predictable feature is the seasonal cycle. We also notice
regional features, such as the meanders of the Gulf Stream, or the growth of sea ice in polar
regions.

• Now, consider sea surface height maps with the mean removed in Figure 1b: what do we
notice? A striking feature are the equatorial waves, as well as mesoscale eddies at midlatitudes
in the Gulf Stream.

• Finally, consider paths of the Gulf Stream coloured by the kinetic energy at that point in
time and space calculated from geostrophic velocities in Figure 1c. What do we notice? The
kinetic energy increases as the Gulf Stream detaches and then decreases. Each year’s path and
meanders are distinct; when the Gulf Stream meanders a lot, it breaks a barrier to mixing.

These examples illustrate that we can deduce information and patterns from looking at data,
begging the question: how can we extract patterns and features from data in a robust way?

2 Principal Component Analysis

Principal Component Analysis (PCA) is the “bread and butter” of data-driven and machine- learn-
ing techniques. Invented in 1901 by Karl Pearson, it is a remarkable example of a robust and useful
technique that has withstood the test of time, despite some limitations. As discussed in Lecture
1, PCA requires stationary data to pick out patterns and features in the data set. PCA is helpful
to aggregate data, reduce redundancies and keep only ”useful” data, i.e., it is a dimensionality
reduction tool.
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Figure 1: Illustrative examples of climate dynamics as a motivation for pattern extraction-
based data-driven techniques. (a) A global map of sea surface temperatures in July 2002 from
Aqua/MODIS. (b) A global map of sea surface height anomalies from radar altimetry in October
1992. (c) Paths of the Gulf Stream calculated every two weeks from Aviso satellite altimetry data.
Each curve is a continuous contour of Absolute Dynamic Topography (ADT) colocated with the
maximum ADT gradient and coloured by the kinetic energy calculated from geostrophic velocities
[2].
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2.1 Fundamentals of Principal Component Analysis

Consider a dataset D,

Dn×m =

 d1 d2 . . . dm

 (1)

where spatial evolution is described by the rows and temporal evolution by the columns, such that
each column di represents a timeslice. We are looking for a set of orthogonal vectors uj that
describes the temporal variability of the system. These vectors from the matrix U ,

Un×n =

 u1 u2 . . . un

 . (2)

We now look for u1 that maximises the variability

m∑
k=1

(u1 · dk)
2. Here, u1 is generally similar to

the typical patterns of the columns dm of D. We then look for each subsequent eigenvector uj such

that the variability
m∑
k=1

(uj · dk)
2 is maximum and orthogonal to uj−1. In general, therefore, we are

looking for

max

[
1

m

m∑
k=1

(uj · dk)
2

]
= uT

j

1

m
DDTuj = uT

j Cuj , (3)

where the covariance matrix C is

C =
1

m
DDT , (4)

C is symmetric and each vector is orthogonal. Drawn schematically,

Cn×n =


 (5)

where the diagonal entries are the variance and the off-diagonal entries are the covariance, i.e.,
they describe how each point jointly varies with every other point. If C has a lot of off-diagonal
entries, this suggests a lot of the data is redundant (as they covary) and can be discarded.

We seek to maximize uT
j Cuj subject to the L2 norm of uj being 1, i.e., ||uj || = 1, using Lagrange

multipliers. We differentiate with respect to uj , which leads to

∂

∂uj

[
uT
j Cuj − λj(u

T
j uj − 1)

]
= 0 (6a)

and on taking the derivative,
2Cuj − 2λjuj = 0 (6b)

which is an eigenvalue problem
Cuj = λjuj (6c)
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where uj are the eigenvectors of C with eigenvalues λj . The eigenvalues λj indicate the amount of
variance contained by each mode. This fraction of the variance is given by

λj∑
j

λj

(7)

where
∑

j λj is the total variance, i.e., the trace of C.
Having now attained the spatial patterns, we turn our attention to the temporal evolution of

the eigenmodes, which we calculate by taking the projection of the patterns onto the data matrix,
such that

UT
n×nDn×m = Vn×m (8)

where vT
j gives the temporal evolution of the eigenvector uj .

In summary,
D = UV (9)

whereD is our dataset, U contains the spatial information and V contains the temporal information.
We conclude this section with a few important notes. First, everything depends on the data

matrix D one starts with. This begs the question of how to deal with missing data, a topic that
will be covered in a subsequent lecture. In general, however, if we have a lot of missing data, the
covariance matrix C can be degenerate or messy and while one could conduct a PCA analysis, the
results must be carefully interpreted. Second, the first eigenvector u1 will describe the maximum
temporal variance. Therefore, it is not essential to detrend the data, as the first eigenvector will
pick out said pattern. Third, the modes obtained from PCA are not the same as the modes of
the underlying dynamical system (see §2.4 for a cautionary tale). When dealing with a dynamical
system where the system’s modes propagate in both space and time, the PCA analysis can be
adapted to obtain the spatial propagation of the eigenmodes. For instance, one can choose the
evolution pathway as spatial (e.g., the direction of propagation of the Gulf Stream). Alternatively,
one can consider complex PCs where the imaginary part is the Hilbert transform. Otherwise, the
temporal modes from the PCA also dissipate which may indicate spatial variations.

2.2 Link to Singular Value Decomposition

We can use SVD algorithms to do PCA without the computational expense of having to explicitly
calculate the entire covariance matrix C, which could be very high-dimensional. To this end,
consider writing

dim n×m︷︸︸︷
D = U︸︷︷︸

n×n

n×m︷︸︸︷
Σ Ṽ T︸︷︷︸

m×m

(10)

Note that this is the full decomposition, which is the same as the reduced decomposition from the
previous lecture, except that

Σ =



σ1 0 · · · 0
0 σ2 . . . 0

0 0
. . .

...
0 · · · · · · σm
0 · · · · · · 0
...

...
...

...


, (11)
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3 Discussion

PCA is a powerful tool for dimensionality reduction, enabling efficient noise removal and compres-
sion of complex and high-dimensional datasets, as well as informative visualisation. The decom-
position D = UV allows us to construct reduced order linear ‘dynamical systems’ associated with
the temporal evolution of spatial modes (encoded in the rows of V ) which might provide useful
physical insight. However, as has been alluded to throughout, there are some limitations which are
summarized below.

• The underlying assumption of stationarity clearly restricts the sorts of datasets we can use
PCA on.

• We are assuming that the principle components are a linear combination of the original data,
which may be somewhat restrictive.

• The spatial modes that result from PCA are assumed to be orthogonal: this may not best
capture the variability.

• As discussed in §2.4, there is no general link between principal components and the eigen-
vectors of an appropriate corresponding linearised dynamical system. Even though we can
recover a reduced order linear dynamical system for the spatial modes, since these modes are
usually some complex combination of the original observables it is often difficult to interpret
what this system represents physically.

• Perhaps not necessarily a limitation, but it is worth noting that the data needs to be suffi-
ciently prepared for the algorithm to work as intended: for example, detrending, rescaling,
dealing with missing data points, removing outliers etc.
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GFD 2022 Lecture 3: Transfer Operator for Data Analysis (Part 1)

Peter Schmid; notes by Iury Simoes-Sousa and Tilly Woods

1 Introduction

This lecture comes in two parts. Firstly, we will look at ensemble averaging as a method for
extracting information from rare or intermittent events in a dataset. That will conclude the first
part of the lecture series on dimensionality reduction. We will then move on to the second part of
the lecture series, covering the approximation of dynamical operators from data. In this lecture,
we will focus on one such operator: the Koopman operator.

2 Ensemble Averaging

The following technique of ensemble averaging will be particularly useful for gaining insight into
data sets capturing rare or intermittent events, such as acoustic bursts in high speed jets [1] or
intermittent vortex shedding in the ocean. The correlation matrix in these cases is created by
taking the mean over statistically independent samples.

C = Ee[ d(x, t) d(x
′, t′) ] (1)

which Ee is the expected value over the product of independent realizations. Suppose we have some
spatio-temporally inhomogeneous data displayed in a matrix

D =

 | | ... |
d1 d2 ... dm

| | ... |

 , (2)

where each column is our set of data points at a given snapshot in time, with time evolving from
left to right.

Let’s assume we have rare events that are captured by a point in the space. We then assume that
each rare event is an independent sample delimited by a fixed window around the peaks (Figure 1).
Once we define the window length and select the samples, we embed the time dependence in a new
data matrix in the size of (l×n)×k, which l is the number of snapshots within each sample, n is the
number of spatial points and k is the number of samples. In other words, we stack in the vertical
each snapshot within the same sample (blue lines in Figure 1b) and stack in the horizontal each
event. Samples can overlap each other in time if we have events happening very close to each other,
but all windows must have the same number of snapshots and each window must only contain one
rare event.

D =

d(t1 −∆t) d(t2 −∆t) · · · d(tk −∆t)
...

... · · ·
...

d(t1 +∆t) d(t2 +∆t) · · · d(tk +∆t)

 , (3)
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Figure 1: Sampling method for the spatio-temporal EOF. The time window is defined based on the
characteristic time-scales of one of the timeseries, and the other data points are used to form the
correlation matrix.

Figure 2: Schematic representation of rare events in a 2D phase space.

The corresponding correlation matrix C = DDH averages over the samples and the resulting
EOFs have both a spatial and temporal structure. In other words, a single EOF is (l×n) long that
could be unstacked into l and n, thus having both a spatial and temporal structure.

We can understand this system as a Gaussian distribution (close to the median) in the 2D phase
space overlapped by some rare events that displace the mean (Figure 2). We basically kept and
rearranged each of the rare events into a new matrix to perform the EOF analysis.

The statistical independence is not the only way to define a sample within an arbitrary time-
series. We can also define the ensemble correlation matrix by taking the mean over samples that
satisfy an arbitrary condition H.

C = Ee[ d(x, t)d(x
′, t′) |H] (4)

This ensemble average method is extremely useful for extracting information about rare events,
which the signal would be masked using common SVD analysis.
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3 Summary of Dimensionality Reduction

This concludes the first part of the lecture series on dimensionality reduction, where the aim
has been to extract patterns from data by identifying the structures that contribute the greatest
variability to the system that generated the data. In other words, we have studied techniques for
finding and keeping only the most useful aspects of a dataset. The main technique for doing this is
Principle Component Analysis (PCA, Lecture 2) - also known by many other names (see Lecture
1) - which is basically a Singular Value Decomposition (SVD, Lecture 1). These powerful tools will
be used repeatedly in the remainder of the lecture course.

4 Transfer Operators: Koopman Operators

We now move on to the second part of the lecture series in which we focus on the approximation
of dynamical operators from data. Instead of factorising the data matrix D to get the patterns U ,
amplitudes Σ and dynamics V H, we can try to find a linear operator, called a transfer operator, to
map from one snapshot in time to another. There are two types of transfer operators:

• the Koopman (forward) operator maps from one snapshot to the next. (Where do we go to
next?)

• the Frobenius-Perron (backward) operator maps from one snapshot to the previous. (Where
did we come from?)

These two operators are adjoints (inverse) of one another.
In this lecture, we focus on the Koopman operator. We suppose there is a nonlinear map F

that maps the state vector di at one snapshot in time ti = i∆t to the state vector di+1 at the next
snapshot in time ti+1 = (i+ 1)∆t,

di+1 = F (di), (5)

where the state vectors are the columns of the data matrix D. To gain insight into the behaviour of
this nonlinear mapping, we would like to reduce the problem to a linear system that we can more
easily analyse. Traditionally, this has been done using the Poincaré method, which is to

1. Find the equilibrium states of the nonlinear system.

2. Linearise the system about the equilibrium states.

3. Analyse the linear dynamics (limit cycles, Poincaré maps, bifurcations etc.)

Koopman proposed an alternative approach centred around data rather than the nonlinear
mapping. The aim is to choose observables φ(d) (which are functions of the state variables) such
that the nonlinear dynamical system becomes linear when written in terms of the observables. The
Koopman method is to

1. embed the dynamical system high-dimensionally in an observable space, i.e., choose observ-
ables that linearise the system;

2. find the linear mapping between observables at one snapshot in time and the next;

3. analyse the linear mapping.
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That is, we want to find suitable observables φ(di) such that there is a linear operator K, called
the Koopman operator, satisfying

Kφ(di) = φ(di+1) = φ(F (di)). (6)

To make more sense of this abstract description of the Koopman method, we look at a couple of
examples. Firstly, an example of what we mean by an observable is the shadows created by shining a
light onto a three-dimensional object. By combining the shadows (observables) produced by shining
light from infinitely many angles around the object, we can reconstruct the full three-dimensional
object (nonlinear system).

A simple numerical example is the two-dimensional dynamical system

ẋ1 = µx1,

ẋ2 = λ(x2 − x21),
(7)

where µ and λ are constants. Here, we choose observables

φ1 = x1, φ2 = x2, φ3 = x21. (8)

This choice has been made so that the nonlinear system written in terms of these observables
becomes a linear system,

d

dt

φ1

φ2

φ3

 =

µ 0 0
0 λ −λ
0 0 2µ

φ1

φ2

φ3

 . (9)

Note that the cost of making our nonlinear system linear is an increase in the dimension of the
system. The philosophy of the Koopman method is that it is better to have a large linear system
than a small nonlinear system. In general, the linear system produced will be infinite-dimensional,
but there are numerical methods to pick a finite number of observables φi to approximate the
infinite linear system.

Our aim is to use the data we have available to reduce our nonlinear system to a linear system,
as in (6). There are two key questions that we need to answer in order to do this:

1. How do we pick the observables φ to make our nonlinear system linear?

2. How do we work out the linear Koopman operator K from our data?

We will focus on the first question first. One approach for finding suitable observables for a
dynamical system formed of polynomial terms is to use polynomials. This is refered to as Carleman
linearisation. The idea is to, for example, choose one observable to be a quadratic function if there
are quadratic terms in our nonlinear system. This gets rid of the quadratic terms, but might
introduce cubic terms in the evolution equation of the quadratic observable. Choosing a cubic
observable to remove the cubic terms might introduce quartic terms, and so on. Hence an issue
with the Carleman linearisation method is that it can lead to the observables outrunning the
observable space, giving a closure problem.

An alternative (better) approach which avoids the closure problem is to choose the observables
φ to be invariants of K, so that applying K to the observables keeps them in the observable space.
Therefore, we pick φ to be eigenfunctions of K:

KΦ = ΦΛ, (10)
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where Φ is a matrix whose columns are the eigenfunctions {ϕ1, ..., ϕm} of K and Λ is a is a diagonal
matrix of the eigenvalues {λ1, ..., λm} of K. At each snapshot in time, we calculate the value of the
observables at that snapshot from the data di at the snapshot, using the notation

φi = φ(di) (11)

for the value of the observables at snapshot i. Note that both φi and di are column vectors, with
φi (length ñ) being longer than di (length n) since we have more observables than original state
variables. Using (6) and (11), we can write our observables φi at each snapshot in time in terms of
the observables φ0 at time zero,

φi = φ(d0+i) = Kiφ(d0) = Kiφ0. (12)

We can then express the observables φ0 at time zero in terms of the basis formed of eigenfunctions
of K, writing

φ0 = Φξ, (13)

where ξ is an m× 1 column vector containing the coefficients of the observable in the terms of the
basis of eigenfunctions. Hence, substituting (13) into (12), we can express the observables at each
snapshot in time as

φi = KiΦξ = ΦΛiξ, (14)

for i = 0, 1, ...,m − 1, where the final equality comes from using the eigenequation (10). Next, we
use our observables to build a new ‘data matrix’, but with the columns being observables φi instead
of state vectors di. Call this new ñ ×m matrix D̃ to distinguish it from our original n ×m data
matrix D, where we define

D̃ =

 | | |
φ0 φ1 · · · φm−1

| | |

 (15)

which we can rewrite as, using (14),

D̃ = Φ[I Λ Λ2 ... Λm−1](I ⊗ ξ) = Φdiag(ξ)C, (16)

where I is the m×m identity matrix and

C =


λ0
1 λ1

1 λ2
1 · · · λm−1

1

λ0
2 λ1

2 λ2
2 · · · λm−1

2
...

...
...

. . .
...

λ0
m λ1

m λ2
m · · · λm−1

m

 (17)

is a Vandermonde matrix. By thinking of the eigenvalues λi as complex numbers of the form
λi = Reiθ, we can see that λ0

i , λ1
i , λ2

i ,... all represent the same complex frequency, with the
amplitude increasing (decreasing) along the row if |λi| > 0 (|λi| < 0).

To summarise the Koopman method so far, we have managed to decompose our ñ×m observ-
ables matrix D̃ into the product of the ñ×m eigenfunction matrix Φ, the m×m diagonal matrix
of eigenvalues Λ and the Vandermonde matrix C. However, we still do not know the values of Φ,
Λ or C - all we know is that D̃ can be written as a product of such matrices. There is not an
obvious way to calculate this factorisation from D̃, but we can make progress by using the fact
that Vandermonde matrices diagonalise companion matrices. Companion matrices are defined as
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square k×k matrices with all entries zero apart from having ones on the subdiagonal and non-zero
entries in the kth column,

S =


0 a1
1 0 a2

1 0 a3
. . .

. . .
...

1 ak

 , (18)

and they can be diagonalised by a Vandermonde matrix C as

S = C−1BC, (19)

where B is diagonal. Using this, and taking B = diag(ξ) as our diagonal matrix, we can rewrite
our decomposition of the observables matrix D̃ as

D̃ = Φdiag(ξ)C = ΦCS. (20)

Hence, an alternative way to factorise the observables matrix is as

D̃ = Φ′S, (21)

where Φ′ = Φξ. The factorisation is much more helpful because it is easy to understand the effect
of the companion matrix S. The subdiagonal ones in S tell us that post-multiplying by S shifts
the columns to the left by one. Therefore, we can infer what Φ′ must be, by noting that

 | | ... |
φ2 φ3 ... φm

| | ... |

 ≈

 | | ... |
φ1 φ2 ... φm−1

| | ... |



0 a1
1 0 a2

. . .
. . .

...
1 ak

 . (22)

Introducing the notation D̃i to mean the matrix formed of columns i through to i +m − 2 of D̃,
we can rewrite this as

KD̃1 = D̃2 ≈ D̃1S. (23)

Note that the final equality here is not exact. This is because φm is not one of the columns of D̃1,
so we approximate φm ≈ a1φ1 + ... + am−1φm−1 as a linear combination of the columns of D̃1,
where the coefficients ai are determined using a least-squares approximation.

Figure 3: Graphical representation of (23).

This tells us that the smaller (m−1)×(m−1) companion matrix S contains the same information
as the larger n × n Koopman operator K. Therefore, we can calculate S and recover all the
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information we need from S without ever having to calculate K. We can use the the observables
matrix D̃ to calculate S (in particular the unknown non-zero entries in the right-hand column) as

S = pinv(D̃1)D̃2, (24)

where pinv means the pseudo-inverse. That is, we can reconstruct S from the data. Then the
eigenvalues Λ of K are given by the eigenvalues of S, and the eigenfunction matrix Φ of K are
related to the eigenfunction matrix X of S by Φ = D̃1X.

4.1 Discussion

The Koopman method is the first technique we have looked at for using data to approximate the
dynamics of the studied system. The Koopman operator is an approximate linear map from one
snapshot in time to the next, which can give useful insight into the governing dynamics. However,
the linear nature means that the Koopman method will struggle to capture complicated nonlinear
dynamics.

The Koopman method is based around choosing observables such that the nonlinear dynamical
system becomes linear when expressed in terms of the observables. With regards to this, we are
yet to answer the following question:

How do we choose the observables? Note that all our analysis here has been done using the
matrix D̃ of observables φ, rather than the matrix D of data d. The transformation from data to
observables is an important step of the Koopman process since this is what makes the nonlinear
dynamical system describing the physical process linear. However, the question of how to choose
the suitable observables that will produce linear system still remains.

In practice, the observables are often chosen simply to be the data, so φ = d. If we have a
large enough number of data points (large enough n), we can have enough degrees of freedom that
using the data as the observables will produce a linear system by brute force. This is the case
provided that the number of data points n is significantly larger than the number of equations in
the dynamical system describing the physical process that our data has come from. (Note that we
will likely not know what these equations are.) However, the resulting observables matrix (equal
to the data matrix) will be large, making the computations costly. The cost is manageable if we
are looking at relatively short timescales with only a few snapshots in time (small m), but the cost
becomes too much for long timescales with lots of snapshots (large m). In this case, we need to
think carefully about what observables to choose to make a smaller linear system.
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GFD 2022 Lecture 4: Transfer Operators for Data Analysis —

Frobenius-Perron Operator (Part 2)

Peter Schmid; notes by Claire Valva and Rui Yang

1 Introduction

In this lecture, we continue the discussion on approximating of dynamical operators from data,
specifically the transfer operator. The transfer operator encodes information about an iterated
map and is frequently used to study the behavior of dynamical systems. In the previous lecture we
discussed the Koopman operator. Here we will discuss the Frobenius–Perron Operator.

In the following sections, we will describe the Frobenius–Perron operator, including methods of
approximation, information about the continuous (∆t → 0) limit of transfer operators, as well as
give examples of its use in fluid dynamics.

2 Frobenius–Perron Operator

The Frobenius-Perron operator P is a linear, infinite-dimensional representation of a finite-dimensional
dynamical system that describes the propagation of probability densities over one time step. It is
defined as ∫

A
Pfdµ =

∫
Φ−1(A)

fdµ, (1)

where µ denotes a probability measure, f a density of a random variables, and Φ the forward
mapping over one time step. The above expression thus expresses the propogation of the probability
density over one time step: the integrated density at the previous time step (right-hand term) is
equivalent to the integrated density propagated by P (left-hand term).

It is the adjoint (dual) of the Koopman operator K. The information contained in this transition
operator encapsulates a statistical description of the turbulent fluid motion, expressed as transition
probabilities from one state to another. This approach is also closely related to a probability density
analysis within a Fokker-Planck description of a dynamical system.

3 Ulam’s Method: Frobenius–Perron Operator Approximation

We now use this defnition to find an approximation of the operator P, the most popular approxi-
mation method is Ulam’s method, also called Ulam–Galerkin approximation.

Practically, when given a data matrix D (with size n × m where n is the spatial dimension
and m is the time), we will try to reduce the dimensionality of the phase space. The flow can be
embedded to a lower-dimensional phase space with basis mods, such as POD modes, onto which
the dynamic system is projected. For example, we apply SVD to the original data

D = UΣV H ≈ U [:, 1 : r]Σ[1 : r, 1 : r]V H [:, 1 : r], (2)
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Figure 1: The left Figure shows the phase space of the embedded attractor. The right Figure shows
a covering of boxes Bi which will be used to estimate the action of the dynamical system in those
cells Bi in which the attractor is embedded.

where r is the truncation number of the reduced dimension.
Then, we need to tessellate this phase space to estimate transition probabilities. A very simple

and efficient tiling of the region of the phase space is to use rectangular boxes and the counting
measure. More formally, denote the set of the box elements from tesselation by {B1, ..., Bk} and
write the indicator function for Bi as

IBi(x) =

{
1, if x ∈ Bi,

0, otherwise.
(3)

A Galerkin projection of P onto a subspace spanned by the indicator function is expressed by∫
IBjPIBidµ = µ(Φ−1(Bj) ∩Bi) where µ is the counting measure. (4)

The approximation P of the Frobenius–Perron operator P can be defined as

Pij =
µ(Φ−1(Bj) ∩Bi)

µ(Bi)
, i, j = 1, ..., k (5)

where k is the number of trajectory boxes. This expression gives Pij as the ratio of the number
of trajectory points previously (one time step earlier) in Bj , are now in Bi and the total number
of trajectory points in Bi. An illustration is plotted in Figure 1. The matrix P is referred to as
Ulam’s method [4].

The approximation P denotes a Markov process and is row-stochastic, i.e. each row of P sums
to one, and λmax(P ) = 1. The diagonal of P denotes the resting probability for each state. High
resting probability will correspond to high persistence of a state in time. Correspondingly, a low
resting probability corresponds to a fairly unstable state. This method is often found to be suitable
to describe rare events and bimodal/multimodal states.

There are a few practical considerations including the box size: if the boxes are too big, detailed
information inside boxes will be lost. If the boxes are too small, there are few trajectory points in
the boxes, which makes the probabilities Pij less reliable to compute.
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Bi

Bj

Figure 2: An example drawing of the graph, where nodes are represented by the boxes Bi, and
edges are represented by the connections between two boxes Bi, Bj .

4 Graph Theoretic Algorithm: Community Clustering

The matrix P can also be interpreted as an adjacency matrix of a weighted directed graph, where
nodes are represented by the boxes Bi, and edges are represented by the connections between two
boxes Bi, Bj (see Figure 2). The transition probability Pij represents the weight on the edges.

This graph can be consolidated into communities of similar clusters. A community is defined as
a collection of nodes from the graph that shows strong intraconnectivity (inside the community) and
weak interconnectivity (between communities). Several algorithms exist for detecting communities,
one of which is referred to as modularity, defined as

Q =
1

k

∑
i,j

[
Pij −

kini koutj

k

]
δci,cj , (6)

where kini , koutj are the in and out-degrees of the nodes, ci the community i, δi,j the Kronecker
symbol. From this definition, we seek for a division of the graph into communities such that
maximizes Q. This optimization problem can be realized by using methods such that include a
greedy algorithm proposed by Leicht & Newman [1]. An example of the pattern of the transition
probability matrix is shown in Figure 3 and more details can be found in [3].

5 Continuous Limits

The continuous limit of Koopman K operator is

lim
t→0

Ktϕ− ϕ

t
= Lϕ (7)

dϕ(x)

dt
= ∇ϕ · dx

dt
= ∇ϕ · f , (8)

where f(x) = dx/dt and ϕ is an observable. Thus, we can obtain

L = ∇(·) · f , (9)

which is called Lie-operator.
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Figure 4: Dissipation as a function of time and the energy-dissipation phase-space trajectory
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GFD 2022 Lecture 5: Linear Inverse Modeling and Linear Response

Theory

Laure Zanna; notes by Ludovico Giorgini and Ruth Moorman

1 Introduction

In this lecture we continue to discuss methods of extracting dynamical operators from data. As
outlined in Lecture 3, we are seeking linear operators, called transfer operators, that map one
system snapshot to another, either forwards (Koopman operator) or backwards (Frobenius-Perron
operator) in time. Here we return our focus to forward propagating transfer operators or Koopman
operators.

The utility of identifying or approximating Koopman operators in GFD problems is significant;
they can be used pragmatically for forecasting, but they also have the potential of uncovering linear
dynamical modes imbedded in the system, a more rewarding but elusive target than the modes
of variability (essentially a time series of a pattern, sometimes without obvious physical meaning)
produced by PCA. However, the formalism underlying Koopman analysis requires us to significantly
increase the dimensionality of our system through the inclusion of a large number of observables φ.
In fact, we technically require infinite φ to approach the linear limit of a nonlinear system, though
very large finite φ suffice. In the methodologies introduced in Lecture 3, we generally take our data
as observables such that φ = d. As such, Koopman analysis requires very large amounts of data!
For some questions and some systems these data requirements are simply impractical and other,
less rigorous, methods of approximating transfer operators are called for. In the first part of this
lecture (§2) we discuss a popular alternative, a subset of Koopman analysis called Linear Inverse
Modeling (LIM). In the second part of the lecture (§3) we broaden some of the ideas introduced
with LIM to estimate the response of nonlinear systems to forcing.

2 Linear Inverse Modeling (LIM)

We consider a multiscale autonomous dynamical system whose state x, is described by

dx(t)

dt
= F

(
x(t)

)︸ ︷︷ ︸
nonlinear dynamics

+ σ︸︷︷︸
small noise

Gaussian︷︸︸︷
η(t) , (1)

where F imparts the full nonlinear dynamics on state vectors x(t), while ση(t), is zero mean
Gaussian noise η with amplitude σ, describing small perturbations imparted to the system. Usu-
ally, x(t) is taken as a reduced form the state of a high-dimensional system whose k first principal
components are retained (PCA, see Lecture 1), neglecting redundant higher order modes.
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We now separate timescales by studying the fluctuations of x around its time average x̄, such
that x′ = x− x̄ (1) will then approximately satisfy

dx′(t)

dt
= Bx′(t)︸ ︷︷ ︸

linearized dynamics

+ σ︸︷︷︸
small noise

Gaussian︷︸︸︷
η(t) , (2)

with B = ∂F
∂x

∣∣
x=x̄

is a linear operator. It is critical to note that in LIM we explicitly linearize our
system dynamics at this early stage and allow any nonlinearity to be subsumed into the noise term.
This is where we diverge from the more data-intensive Koopman analysis of previous lectures, which
attempts to approximate the nonlinear dynamics of the system via the retention of a large number
of observables, whereas in LIM we generally reduce our data with PCA at the outset but still
assume a linear operator B. The methodology is not completely removed from Koopman analysis
however, and may be interpreted as the limit of the Koopman operator to purely linear dynamics.

Say that we can observe x′(t) but want to forecast x′(t+ τ), i.e., propagate our system forward
in time. Integrating (2) from t to t+ τ gives

x′(t+ τ) = eBτx′(t) +

∫ t+τ

t
eB(τ−s)dW (s), (3)

with η(t) = dW
dt . The predicted state of the system at time t+ τ will simply be

x′(t+ τ) ≈ E[x′(t+ τ)|x′(t)] = eBτx′(t). (4)

To predict the future state of the system we need to construct B, the linear dynamics, from
data. To do this we note that the lagged covariance matrix of the system C(τ), can be estimated
as

C(τ) =
(
x′(t+ τ)

)(
x′(t)

)T
= eBτC(0), (5)

by right multiplying (4) by x′(t)T . Then we can simply recover B for a given τ as

B =
1

τ
log

[
C(τ)

C(0)

]
. (6)

In practice, we would want to investigate many choices of τ to improve our approximation of
B, e.g.,

B−1 = −
∫ ∞

0
C(τ)C(0)−1 dτ (7)

but if our assumptions in (2) are good B should be relatively insensitive to τ . Thus once we have
approximated B our assumption of the system linearity should permit forecasting at a range of
small propagation timescales. Note that subsuming all neglected nonlinear terms into the noise
term in (2) introduces an error that grows with the forecasting timescale such that the predictions
becomes less accurate for longer range forecasts. For this reason LIM is only appropriate for short
time forecasts. As noted previously, B can also be interrogated for physical insights as it may
contain information about the linear dynamical modes of the system operating on short timescales.

We can also back out σ in order to assess the degree to which our forecasts may diverge from
reality at long time by considering the second moment equation of our process

dC(0)

dt
= BC(0) + C(0)BT + σσT , (8)
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obtained by multiplying η = dx/dt−Bx(t) by its transpose. Since both B and σ are constant, we
obtain

σσT = −BC(0)− C(0)BT . (9)

If our studied system is well described by (2), then the outcome of LIM should (roughly) the
following characteristics:

• B should be independent of the chosen τ in (6),

• σσT (9) should be positive definite,

• system statistics are Gaussian, and

• our forecasts are generally “good” (my some fitness measure) but errors grow with increased
forecast time.

These criterion serve as good sanity checks for the applicability of LIM to a given problem.

Figure 1: Transient growth of a state vector comprised of two decaying eigenmodes.

Finally, we note that for the approximation in (2) to be valid, all the eigenvalues of B must be
negative. Thus, by construction, (2) forces any initial perturbation to relax exponentially toward
zero, i.e., a LIM-based propagator should never predict perturbation growth. However, transient
perturbation growth is possible even when all eigenmodes are decaying if such eigenmodes decay at
unequal rates. An example of this process in 2D is depicted in Figure 1 for a system with decaying
eigenvectors and eigenvalues ψ1,2 and λ1,2 where the second eigenmode decays at a greater rate than
the first, leading to transient growth of the state vector x′. We can extend this logic to determine
which initial conditions are precursors to large transient growth (i.e., most growing modes), however,
the procedure for doing this is not discussed in the lectures and readers are referred to the papers
discussed in (§2.1).
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2.1 Example: forecasting sea-surface temperature (SST) anomalies with LIM

There have been numerous LIM studies where PCs of SST anomalies have served at the state vec-
tors x′(t) in (2). An early example, from which much of the explanation above has been adapted,
is [1] wherein the time dependence of the first 15 PCs of Tropical Pacific SST was modeled by (2)
and the resulting B matrix was used to identify precursors to large ENSO events (Figure 2). A
more recent example also interrogating ENSO using LIM of Tropical SST anomalies is [2] which
extends this analysis to identify precursors to different flavors of ENSO (Figure 3). Whilst these
plots highlight results relating to maximal growth modes (not discussed explicitly in the lecture)
both studies present dynamical interpretations of the linear modes and assessments of the predictive
timescales associated with El Nino events.

Figure 2: (top) Initial SST perturbation pattern optimized to give maximum amplification of SST
anomalies at 7 months. (bottom) SST field resulting from the forward propagation (using LIM) of
this initial condition for 7 months. From [1].
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Figure 3: (left) Initial SST perturbations patterns found to give maximum amplification of SST
anomalies at 9 months to produce various ENSO patterns (right). L2, CP, and EP refer to norms
targeting canonical, central Pacific, and eastern Pacific flavors of ENSO. From [2].

3 Linear Response Theory

Let’s return to the dynamical system described in (1) with the addition of a small external forcing
perturbation δf

dx(t)

dt
= F

(
x(t)

)︸ ︷︷ ︸
nonlinear dynamics

+ σ︸︷︷︸
small noise

Gaussian︷︸︸︷
η(t) + δf︸︷︷︸

small forcing

. (10)

Here we will not assume the system is linear but will instead consider how the bulk statistics of
the full nonlinear system respond to a small force. Within this framing, we say that the original
unforced nonlinear dynamical system (1) is associated with some probability distribution function
(PDF) ρ, whilst the forced system (10) is associated with the PDF ρf .

The time evolution of the forced system PDF is described by the Fokker-Plank equation,

∂ρf
∂t

+∇ ·
(
(F + δf)ρf

)
= σ∇2ρf , (11)
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and similarly for ρ. We then define the mean state of the forced system as,

x̄f = lim
T→∞

∫ T

0
xf (t) dt =

∫
all

states

xf ρf (xf ) dxf (12)

and similarly for x̄.
Now the effect of the perturbation to the mean is expressed as

δx̄ = x̄f − x̄ ≈ Lδf (13)

where L is the linear response operator. Here we have not linearized the full system, but based on
the assumption of a small forcing we are linearizing the system response to δf .

Using a derivation based on the Fokker-Plank theory we can express L as,∫ τ

0

∫
all

states

x(t+ τ){A[x(t)]}Hρ dx dτ (14)

which is purely a function of the unforced system. We assume ρ is Gaussian and A = −1
ρ∇ρ, which

leads to

L =

∫ ∞

0
C(τ)C(0)−1 dτ, (15)

with C(τ) as the lagged covariance matrix of the unforced data. Despite the similarities with
linear inverse modelling, here we are exploring at the entire phase space (integrating over the whole
time for the entire state of the system) instead of single trajectories. In summary, if we know the
statistics of the unperturbed system, we can construct the linear-response operator that can be
used to estimate the time response of the system to a small perturbation.

Above, we consider the effect of a small perturbation on the mean of the system, but the same
can be done to other moments of the data, such as the standard deviation. To give some context,
let’s assume we have a forced Lorenz system given by

∂x

∂t
= −σx+ σy + f cos(θ), (16a)

∂y

∂t
= −x z + r x− y + f sin(θ), (16b)

∂z

∂t
= x y − b z, (16c)

if f is small enough, the variability of the system continues to project into the dominant modes
and the effect of the forcing on the statistics is predictable (Figure 4).

In Figure 4 we notice that the time spent by particles in each lobe changes with θ, but the
variability is along the same paths as the unperturbed solution. In other words, the addition of
forcing does not change the nature of permitted system solutions but does change the frequency
with which different solutions are occupied. While this method can be applied to large datasets to
investigate the effect of a small forcing into a climate dynamics, it is sensitive to the use of SVD for
dimension reduction (note how EOFs would be inappropriately applied to the bimodal distribution
in Figure 4).
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Figure 4: (left) Solution of unforced Lorenz system, the two main orthogonal modes of variability
and a schematic representation of a a forcing. (center) Solution of the forced Lorenz system for a
small f and different angles θ. (right) Time series of the forced Lorenz system for a small f and
different angles θ.
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GFD 2022 Lecture 6: Real Data and Optimisation

Peter Schmid; notes by Sam Lewin and Kasturi Shah

1 Formulating an Optimisation Problem

1.1 Introduction

Many decompositions of data-streams we have seen are solutions to an optimization problem,
subject to some constraints that enforce desired solution characteristics. For example, we can
frame SVD as the solution to the following optimisation task:

min
D̂

||D − D̂|| such that rank(D) ≤ r, (1)

for some user-specified rank r. In words, we are seeking a low-rank matrix D̂ that most closely
approximates our starting (potentially very high-dimensional) matrix D. We will get on to exactly
what we mean by ‘closely approximates’ (i.e., how we are defining the norm || · || for matrices) in
section §2.1. For interest, we note here the expected (but not necessarily obvious) result that the
‘best’ low-rank approximation for D is guaranteed to be obtained by SVD by the Eckard-Young
theorem.

Optimisation algorithms are an extremely flexible framework within which to work because
they can be easily modified when we want to impose constraints. In this lecture, we will introduce
how to formulate an optimisation problem for data analysis, discuss solution characteristics that
might be useful to have from a practical, physical or computational perspective, and explain how
to modify the optimisation algorithm to impose these constraints.

1.2 Cost functions

In general, the cost function (sometimes also called a loss function) refers to the object we are trying
to minimise, i.e., ||D − D̂|| above. Optimization algorithms give us flexibility in forcing solution
characteristics at the expense of computational convenience: we can impose additional constraints
by augmenting the cost function.

A cost function L can be thought of as being made up of three components:

L = data fidelity︸ ︷︷ ︸
matching term

+ λ1 solution characteristics︸ ︷︷ ︸
e.g. sparse/compact support/low rank

+ λ2 algorithmic convergence︸ ︷︷ ︸
convergence to solution, ’convexification’

(2)

Let us give a qualitative overview of each term in the above equation. The first term ensures the
solution stays ‘close’ to the original data (in terms of some appropriate norm). As we will explore
below, the second term can be used to shape the solution to fit desired characeteristics. However,
this can introduce problems in that it can give rise to a highly non-convex loss function, i.e., an L
that has many local minima and maxima that are not optimal (and may, in many cases, be very
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sub-optimal). This introduces the need for regularization, represented by the third term in the
equation, which essentially smooths things out to improve convergence. Note that by tuning the
free parameters λ1 and λ2 (which are often referred to as hyperparameters in the machine learning
community), we can adjust how strongly we want to enforce the constraints and regularization.

2 Constraints

Solution constraints are closely linked to the choice of norm: i.e., how we choose to define the ‘size’
of the objects we are considering and the ‘distance’ between them. It is worth pointing out that
many of the standard norms for vectors do not extend to matrices in an obvious fashion. Some
common choices of norm and their definition applied to matrices are outlined below.

2.1 Choice of norm

Name Notation Formula Notes

2-norm || ||2 = σmax The first singular value. It is energy-based, least
squares, defined for matrix and vectors.

Frobenius
norm

|| ||F rms(σ) =√
σ2
1 + σ2

2 + · · ·+ σ2
n

For matching arrays or matrices. Root-mean
squared, defined for matrices and vectors.

1-norm* || ||1 ||x||1 =|x1|+|x2| +
· · ·+|xm|

Enforces sparity. Defined for vectors. Can be

defined for max
(
|Dx|n
|x|n

)
.

0-norm* || ||0 Counts non-zero el-
ements of vector.

Measures cardinality.

Nuclear
norm

|| ||∗ = σ1+σ2+ · · ·+σm Computes the rank. Sum of the singular values of
the matrix.

TV norm || ||TV =||∇·||1 Measures the smoothness of the solution by calcu-
lating the gradient of the 1-norm. When the total
variation (TV) is low, the solution is smooth.

Huber
loss func-
tion

|| ||H Blend of 1-norm and 2-norm (see §2.4)

Hybrid
loss func-
tion

|| ||h Blend of 1-norm and 2-norm

* The 1-norm and 0-norm are considered“buddies.”The 1-norm is a proxy for sparsity. The 0-norm
is the true measure of sparsity, however, it is considered a little exotic and less frequently used.

Before proceeding with the discussion, there are two important messages to convey. First, a
judicious choice of norms is always wise. For instance, the L2 norm may not necessarily be the best
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choice. Second, adopting an optimization approach often yields the most insight.

2.2 Norms that promote sparsity

Sparsity generally assumes a parsimonious solution. It seeks to represent the solution in terms
of the minimal number of modes needed. For example, to find a dictionary of functions for the
solution, we want a minimal set to avoid overfitting the solution.

How then, does the L1 norm promote sparsity? The schematic in Figure 1 illustrates this.

Figure 1: A schematic illustration of how the L1 norm promotes sparsity, compared to the L2 norm.

For general p, Figure 2 indicates how the behaviour of || · ||p changes in limits of p.

Figure 2: Behaviour of the norms as p → 0 and p → ∞.
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2.3 The L1 optimisation problem

Consider a toy one-dimensional version,

ax− b+ c sign(x) = 0 (3)

where a ≥ 0 and c ≥ 0.
Case 1: x > 0

x =
b− c

a
, for b > c (4)

Case 2: x < 0

x =
b+ c

a
for b > −c (5)

Case 3: x = 0
−b− c ≥ 0 ≥ −b+ c for − c ≥ b ≥ c (6)

Constructing the full solution

x =
S(b, c)

a
(7)

where

S(x, λ) =


x− λ for x > λ

0 for − λ < x < λ

x+ λ for x < −λ.

(8)

S(x, λ) is known as the shrink function. It describes “soft thresholding” as it is set to zero between
−λ and +λ (Figure 3).

Figure 3: Sketch of shrink function S(x, λ) in (8).

2.4 The Huber norm

The Huber loss function gives robust statistics and is insensitive to outliers. It is defined as

||x||H,ϵ =


1

2
x2 if |x| ≤ ϵ, i.e., L2 norm

ϵ|x| − ϵ2

2
if |x| > ϵ, i.e., L1 norm.

(9)

The hybrid loss function is also a blend of the L1 and L2 norms,

||x||h,ϵ =
√
1 +

|x|2
ϵ2

− 1. (10)
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3 Examples

Two examples are presented that prudently choose norms to deal with two common issues encoun-
tered in real data: outlier removal and filling in missing data.

3.1 Identifying outliers

A simple example of where optimisation with a 2-norm can go wrong is linear regression in the
presence of outliers: since the error scales as a square, any outliers will have a strong influence on
the solution.

The best method for outlier removal is LS decomposition, where the low-rank component
searches for coherent patterns and the sparse component searches for outliers. Consider a ma-
trix D that we wish to decompose into two components, a low-rank component L and a component
containing sparse events, S, such that D = L+ S. To do so, we can write down the LS decompo-
sition,

min
L,S

||L||∗ + λ||S||1 (11)

and reformulate it as a constrained optimisation problem by applying the augmented Lagrange
multiplier method and formulating the Lagrangian functional,

L(L, S, Y, µ) =||L||∗+ λ︸︷︷︸
user defined

||S||1+
µ

2
||D − L− S||2F︸ ︷︷ ︸

convexity improves convergence

+ < Y,D − L− S >︸ ︷︷ ︸
inner matrix product improves behaviour

(12)
where Y is an adjoint matrix that enforces the minimization of D − L − S and the second term
is a penalty term controlled by the user-defined parameter µ. On doing the first variation of L
with respect to L, S, Y, µ, we obtain four equations for L, S, Y, µ, which we can solve sequentially.
Said differently, we do a component-by-component optimization of the Lagrangian functional, while
keeping the other components fixed. We eventually obtain the desired spliting D = L + S. The
component S can be safely discarded as it contains the outliers and localised disturbances. The
remaining data matrix L can be processed using your decomposition of choice, DMD, PCA, POD
etcetera.

3.2 The matrix completion problem

The matrix completion problem is a possible way to fill gaps in data. Consider, for example, a
satellite going off-line, the Halley Research Station on Brunt Iceshelf being moved due to the cracks
and chasms appearing on the iceshelf itself leading to gaps in the Halley ozone record, clouds
blocking features in observed data, etc. The question before us is: how do we fill in this data?

For instance, consider the matrix D with two missing data points, marked as x’s,

D =

1 2
x 6
2 x

 (13)

Without more information, it is impossible to fill in the missing data with guaranteed accurate
results. However, if we know that rank(D) = 1, then the completed matrix is clearly

D =

1 2
3 6
2 4

 (14)
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In general, we can fill the missing data if the rank of D is low, indeed, many data filling algorithms
fill missing data by minimizing the rank of the matrix.

The missing data problem is also known as the ‘Netflix problem,’ Netflix posed an open question
to the computer science community: given a sparsely filled matrix where the rows are users and
the columns movies they have liked/disliked on Netflix, can we fill in the missing data to evaluate
what each user’s ratings for each movie would be? In other words, how can we fill data in a matrix
under the premise that the matrix has low rank? This requires a projection onto the missing points,
to avoid overwriting the existing datapoints. Additionally, an algorithm can remove redundancies
by considering bulk features to improve predictability. For instance, aggregating data from users
displaying preferences to predict the preferences of the group, or similar types of movies.

Finally, we turn our attention to a more complex problem: filling in missing information from
a photograph. Here, the matrix entries represent the monochrome pixels of the photograph. The
algorithm is implemented in Python (code available in Appendix 3.2). As payback for a cheeky
remark earlier, Peter decided to remove pixels from a photograph of Colm and fill them in algo-
rithmically. Much hilarity ensued. The results speak for themselves in Figure 4.

Figure 4: [left] Colm, the original. [center] Colm gone missing. [right] Colm complete.
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Appendix A: Jupyter notebook for the matrix completion problem

This appendix provides code snippets for the matrix completion problem.

1 from math import sqrt

2 import numpy as np

3 from PIL import Image

4 import random

5 from matplotlib.pyplot import imshow ,figure

Listing 1: Importing python packages

1 def convert2BW(img_in):

2 im_file = Image.open(img_in) # open the image file

3 im_array = np.array(im_file.convert(’L’)) # convert to monochrome array

4 return im_array

5

6 def shrink(A,tau): # shrinkage operator

7 return np.sign(A)*np.maximum(abs(A)-tau ,0)

8

9 def softT0(A,tau): # soft thresholding (shrinkage on SVD)

10 U,S,Vh = np.linalg.svd(A,full_matrices=False)

11 return U@np.diag(shrink(S,tau))@Vh

Listing 2: Defining functions

1 def DataRecovery(D,mu,rho): # incomplete alternating Lagrangian method (IALM),

matrix completion

2 ep1 ,ep2 = 1e-8,1e-7 # thresholds

3 Dn = np.linalg.norm(D,’fro’)

4 P = (D==0).astype(float) # projector matrix

5 m,n = np.shape(D) # initialization

6 Y,Eold = np.zeros ((m,n)),np.zeros((m,n))

7

8 for i in range (1 ,1000): # iteration

9 A = softT0(D-Eold+Y/mu ,1/mu) # soft -threshold

10 Enew = P*(D-A+Y/mu) # project

11 Y += mu*(D-A-Enew)

12 resi = np.linalg.norm(D-A-Enew ,’fro’)/Dn # check residual and (maybe) exit

13 if (i%10==0): print(i,’ residual ’,resi)

14 if (resi < ep1): break

15 muf = np.linalg.norm((Enew -Eold),’fro’) # adjust mu-factor

16 if (min(mu,sqrt(mu))*(muf/Dn) < ep2): mu *= rho

17 Eold = np.copy(Enew) # update E and go back

18 return A,Enew

Listing 3: Incomplete alternating Lagrangian method (IALM) for matrix completion

1 C = convert2BW(’Colm.jpeg’) # read in data field

2 im_file1 = Image.fromarray(C) # convert back to image

3 figure(figsize = (80,8))

4 imshow(im_file1 ,cmap="gray")

5 print(np.linalg.matrix_rank(C))

Listing 4: Reading in the original image

1 m,n = np.shape(C) # rows ,columns

2 PP = np.ones_like(C)

3 k = 600

4 mm = random.sample(range (10,m-10),k)
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5 nn = random.sample(range (10,n-10),k)

6 for i,j in zip(mm,nn): PP[i-5:i+5,j-5:j+5] = 0

7 P = PP.astype(float)

8 Omega = np.count_nonzero(P) # number of non -zero elements

9 D = P*C # corrupted data matrix

10 fratio = float(Omega)/(m*n)

11 print(’fill ratio ’, fratio)

12

13 im_file2 = Image.fromarray(D)

14 figure(figsize = (80,8))

15 imshow(im_file2)

Listing 5: Artificially corrupting the original matrix

1 mu,rho = 1./np.linalg.norm(D,2) ,1.2172 + 1.8588* fratio # parameters

2 AA,EE = DataRecovery(D,mu,rho) # call IALM -

algorithm

3 print(’converged ’)

Listing 6: Run the matrix completion problem

Figure 5: Example output of code as it converges.

1 im_file3 = Image.fromarray(AA)

2 figure(figsize = (80,8))

3 imshow(im_file3)

Listing 7: Displaying the image with data filled in
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GFD 2022 Lecture 7: Bayesian and Markovian Approaches to Data

Analysis

Laure Zanna; notes by Iury Simoes-Sousa and Tilly Woods

1 Introduction

In this lecture, we shift our focus onto how to deal with uncertainty in data. Most of the methods
covered until now assume that the data is the ground truth, but in the real world we are always
dealing with error bars associated with the instrumentation, pre-assumptions around the data
sampling and numerics. The methods looked at here will enable us to take into account this
uncertainty.

2 Probabilistic graph models

Probabilistic graph models are a way to introduce something about ‘uncertainty’—something that
the methods we have looked at so far have not accounted for. This uncertainty could come from
the observations or from the model itself. There can be uncertainty associated with a model either
because we do not know an equation (e.g., the equation of state of the ocean is just a Taylor
expansion because we do not know what the full equation should be), or because the equations
result from some simplifying assumptions.

Probabilistic graph models can also help us deal with nonlinear interactions and mulitmodality,
unlike most of the models we have seen so far. For example, in climate, probabilistic graph models
enable us to come up with conditional probabilities of an event happening in response to multiple
drivers, rather than being restricted to considering a single forcing.

Example: Reanalysis and ensemble Kalman filter If we use time-dependent primitive equations
to produce an ensemble of model runs, the difference between the ensemble member will increase
over time due to the uncertainty associated with the model. By applying some observations that
we have, the ensemble members get brought closer together again (uncertainty is reduced). This
idea of using data to improve model predictions is called Kalman filtering. We will go into more
detail about these ideas later. Figure 1 shows this process applied to 20th century reanalysis, where
an atmospheric model is used to model sea surface pressure evolution through time. The different
lines are different ensemble members. The left panel shows the trajectories just before applying
observations. The trajectories are spread out, due to uncertainty introduced by the model. The
right panel shows how the trajectories are brought closer together when observations are applied.

Example: Multimodality Probabilistic graph models can capture situations which are multimodal,
such as the North Atlantic eddy-driven jets shown in Figure 2.
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Figure 1: 20th Century Reanalysis data showing sea surface pressure for different ensemble members
both before and after applying observations. (From this video: https://vimeo.com/178892173)

Figure 2: North Atlantic eddy-driven jet [3].
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2.1 Probability rules

The methods we will look at here will be based on the following simple probability rules. Let X,
Y be random variables. Then

• Sum rule
P (X) =

∑
Y

P (X,Y ), (1)

where P (X) is the marginal probability of random variable X and P (X,Y ) is the joint
probability.

• Product rule
P (X,Y ) = P (Y |X)P (X), (2)

where P (Y |X) is the conditional probability of Y given X.

• Symmetry
P (X,Y ) = P (Y,X). (3)

• Bayes’ theorem (/rule)

P (Y |X) =
P (X|Y )P (Y )

P (X)
=

P (X|Y )P (Y )∑
Y

(
P (Y |X)P (X)

) , (4)

where the second equality follows from the sum and product rules. Bayes’ theorem can be
understood as taking an initial guess (the prior P (Y )) for the probability distribution of Y ,
then bringing in some extra information/data (the likelihood P (X|Y ) to give an improved
guess of the probability distribution (the posterior P (Y |X), ie. the probability distribution
of Y given the extra information represented by X). This is the basis of probabilistic graph
models.

2.2 Directed graph models

Here we will consider acyclic directed graph models [2], where the nodes are variables (velocity,
sea surface temperature etc.) and the edges are direct influences. The edges are arrows, with the
direction showing the direction of influence (Figure 3). A key part of the directed graph model
is that we can get all the information about variable xi from the parents xparents without needing
to know anything about the previous ancestors xancestor. As shown in Figure 3, the parents are
the nodes from which direct arrows go to xi. We need only these direct influences to know the
information about xi, so xi is independent of xancestor given xparent.

Note that in this directed graph theory the graph cannot be cyclic.

2.3 Markov chains

A simple example of a directed graph is a Markov chain (Figure 4), which considers the evolution
of a variable over time, in discrete steps. Suppose we have variables x1, x2, ..., xN , where xn is the
value of a given variable (e.g., temperature) at time n. These variables could be scalars or state
vectors. In a Markov chain, the variable at time n depends only on the variable at time n − 1,
as demonstrated in Figure 4. By using our probability rules, the joint probability of having our
variables at each time being in a given state is

p(x1, x2, ..., xN ) = p(x1)
N∏

n=2

p(xn|xn−1). (5)
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Figure 3: An example of a directed graph.

Figure 4: Markov chain.

The p(x1) term comes from the fact that x1 has no parents, so is not influenced by any of the other
xn. All the other xn (n = 2, ..., N) depend on xn−1, leading to the conditional probability terms
p(xn|xn−1) in the product.

2.4 Hidden variable/latent variable

The basic Markov chain is very restrictive, making a lot of simplifying assumptions about the
dynamics of the system. The major assumption is that the variable (eg. temperature) at time n
is only influenced by the state of the variable at time n − 1. However, reality is often much more
complicated than this. To loosen the restriction and introduce some dependence on all past times,
we can use hidden/latent variables. These are variables that are not directly observed but are
inferred from a ‘mathematical’ model. The resulting model is called a hidden Markov model.

Instead of assuming that the observations xn follow a Markov process, we assume that the
hidden variables zn follow a Markov process, and that the observation xn and the hidden variable

Figure 5: Hidden Markov model. z1, ..., zN are the hidden variables, which follow a Markov process,
and x1, ..., xN are the observations.
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Figure 6: States of North Atlantic eddy-driven jet stream and the probability distributions of the
latitude anomaly of the jet in each of these states [1].

zn influence each other, as shown in Figure 5. Including these hidden variables means that we are
allowing observation xn to depend on more than just the observation xn−1 at the previous timestep.
Each zn, and hence xn, is influenced by all of x1, ..., xn−1, since all of these observations are fed
into the hidden variable Markov chain before step n.

At each time n, our hidden variable zn and observation xn could be in any one of a number
of ‘states’, corresponding to different states of the system. To clarify what we mean by this,
Figure 6 gives an example of the possible states of North Atlantic eddy-driven jet stream. The
system transitions between these states with certain probabilities (called transition probabilities -
discussed shortly).

To describe the hidden variables model mathematically, we would like to know the joint distri-
bution

p(x, z) = p(x1, ..., xN , z1, ..., zN ) = p(z1)
N∏

n=2

p(zn|zn−1)
N∏

m=1

p(xm|zm). (6)

To find the joint distribution, we need to know the following:

• Transition probabilities A, where Ajk = p(zn = k|zn−1 = j) is the probability that the latent
variable transitions from state j in one timestep to state k in the next timestep (see Figure 7).
We assume that the transition probabilities are the same of each n.

• Emission probabilities Φ, where Φjk = p(xm = k|zm = j), which tell us the probability of an
observable xm being in a certain state given given the state of its associated hidden variable
zm.

• Prior/marginal distributions Π, where Πk = p(z1 = k), i.e., the probability that our hidden
variable will be in a given state at the initial time.
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Figure 7: Transition probabilities Ajk between different states of the latent variable z, with three
states used here for illustrative purposes.

The transition probabilities A, emission probabilities Φ and prior distributions Π—which are
currently unknown—completely describe the statistics of the hidden variables. Hence, instead of
thinking of the joint distribution as a function of the observations and the hidden variables, we can
think of it as a function of the observations x and the parameters θ = {A,Φ,Π}: p(x, θ).

In theory, we now have all the pieces of the puzzle, but we still do not know the values of the
parameters θ. In order to calculate the full joint distribution p(x, θ), we need to find the set of
parameter values that will best fit the set of observations we have (given that we are assuming the
hidden variables follow a Markov process). We can carry out this optimisation to find p(x, θ) using
the expectation-maximisation algorithm, as follows:

1. Make an initial guess for the value of the parameters θguess = {Aguess,Φguess,Πguess}, informed
by any existing knowledge we have of the system. In practice, people usually try the algorithm
with a few different guesses to check that the result is not too sensitive to the guess and that
we do not get stuck in a local minimum.

2. Calculate the expected likelihood.

3. Use a Lagrange multiplier to find the optimum value of the parameter values.

This process is carried out recursively.
The above assumes that we have no knowledge of the hidden variables. However, in many

situations, we have some knowledge of the dynamics, for example the Navier-Stokes equation. This
knowledge tells us the transitions probabilities A, but there will still be some uncertainty associated
with it.

Even with some knowledge of the dynamics, we still need to run recursively through the al-
gorithm, which is effectively performing a discrete version of a Kalman filter: taking a weighted
average between the observations and what our model predicts. That is, the observations and our
knowledge of the dynamics are used in combination to give us the best prediction of the joint prob-
ability distribution we are looking for. Figure 8 demonstrates this weighting graphically. We can
use our model for the hidden variables to create a prediction (orange) based on a prior estimate
(white). The uncertainty in the model means that applying the model increases uncertainty, so the
prediction has greater uncertainty that the prior. To narrow the uncertainty, use the observations
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Figure 8: Demonstration of the hidden Markov model.

we have (purple), resulting in an optimised prediction (blue) which is a weighted average of the
model and the observations. We can choose what weighting to use depending on how much we
want to prioritise the observations vs. the model.

3 Summary

Uncertainty—whether that be uncertainty in the data or uncertainty in a model—can be taken
into account by using probabilistic graph theory, in particular Markov chains or hidden Markov
models. The key idea behind these methods is to use the data we have to maximise the likelihood
(the probability of the system being in a certain state given certain information/observations),
narrowing our uncertainty about what state the system is in. This can be done with no knowledge
of a model for the physical system of interest, but any model information we do have (e.g., knowing
the Navier-Stokes equations for a fluid) can be fed into the probabilistic graph model framework
to improve our predictions. That is, modelling and data can be combined to give us a better
understanding of the system than we would get by using either the model or data in isolation.
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GFD 2022 Lecture 8: Sparse Regression—Finding Equations From

Data

Laure Zanna; notes by Claire Valva and Rui Yang

1 Introduction

In this lecture, we apply some of the concepts of optimization and sparsity from the previous two
lectures to the pursuit of extracting dynamical operators from data. Instead of approximating large
dynamical operators from data — such as the Koopman operator (Lecture 3) or LIM (Lecture 5)
— we now want to derive sparse and (ideally) easily interpretable equations for the dynamics of
timeseries directly from data. This is ultimately motivated by the assumption that the physical
equations driving the systems we study are essentially given by the laws of physics and thus sparse.
We want to enforce sparsity to avoid overfitting data and instead use data to guide us towards
physics. Here we summarize two approaches, Sparse Linear Regression (§2) and Sparse Identifi-
cation of Non-Linear Dynamics (SINDy, §3), and provide an example of a third approach, Sparse
Bayesian Regression (§4).

2 Sparse Linear Regression

Suppose we have some m×n data matrix D with columns dj (and entries dji), where each column
is our set of data points at a given snapshot in time, with time evolving from left to right. In sparse
linear regression, we are aiming for the best prediction ŷi of the ‘truth’ yi from the choice of βj ,
given the data matrix D, using minimal nonzero βj for the following problem:

ŷi = β0 +

p∑
j=n

βjdji

To find βj , the most obvious choice would be to minimize the error function ϵ(βk) = ŷi − β0 −∑p
j=n βjxji in the ℓ2 sense (the least squares error). However, the ℓ2 norm does not promote sparsity,

leading to the common usage of the following two loss functions for βk do prioritize sparsity:

• Ridge regression is essentially an ℓ2 minimization with an ℓ2 penalty on βk with tuning
parameter λ > 0.

min

 m∑
i=1

(ŷi − β0 −
n∑

j=1

βjxji

2

+ λ
n∑

i=1

β2
i


• LASSO (Least Absolute Shrinkage and Selection Operator) is similar, but the penalty on βk
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Figure 1: Example LASSO and ridge regression results for the following minimal problem. Let
n = m and suppose that X is the identity matrix and β0 = 0. Then for ridge regression, we will
find that βj = yi

1+λ , and for LASSO we get that βj = yi − λ/2 if yj > λ/2, βj = yi + λ/2 if
yj < −λ/2, and 0 if |yi| ≤ λ/2.

will be an ℓ1 penalty.

min

 m∑
i=1

(ŷi − β0 −
n∑

j=1

βjxji

2

+ λ

n∑
i=1

|βi|


This norm is also sometimes referred to as ‘soft-threshholding’.

3 Sparse Identification of Nonlinear Dynamics (SINDy)

The starting assumption of SINDy is that we are trying to understand some nonlinear dynamical
system dx

dt = M(x), which can be represented by a finite sum of functions φk that depend on x,
i.e., we have:

dx

dt
= M(x) ≈

p∑
k=1

φk(x)gk

where gk are weighting parameters.
We again will have m×n data matrix D with columns dj , where each column is our set of data

points at a given snapshot in time, with time evolving from left to right. From this, we will want
to construct an m × n data matrix Ḋ that is an approximation of the temporal derivatives of D,
i.e., ḋji = ẋi(tj). We will also construct a function library of φk which depend on the data, i.e., we
may have that φk = x2j or φk = cos(xj). We will assume that we have p functions in our library.
We will then solve the following problem for the vector G, which is the weighting matrix of ϕk:

Ḋ = Φ(D)G =


ϕ1(d1) ϕ2(d1) . . . ϕp(d1)
ϕ1(d2) ϕ2(d2) . . . . . .
. . . . . . . . . . . .

ϕ1(dm) ϕ2(dm) . . . ϕp(dm)


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In general, when solving for an optimal G, we will want G to be optimally sparse, usually, the
loss function of G will try to minimize Φ(D)G− Ḋ in the ℓ2 sense with some sort of penalty on G
(such as ℓ1) and we can also add additional limitations of G. (SINDy, as implemented in [2] has its
own optimization routines that use an expectation-maximization type algorithm.)

See [2, 3] for further examples and explanation, and [5] for an expansion of SINDy to spatial
derivatives.

4 Relevance Vector Machines (RVMs)

We will consider an example of the usage of RVM (or iterative sparse Bayesian regression) in hunting
for a mesoscale eddy closure.1.

4.1 Mesoscale eddy closures

Consider x-component of the momentum equation in 2 dimensions with velocity u = (u, v), dissi-
pation D, and a forcing term F̃ = − 1

ρ0
∂xp+ Fx:

∂tu+ u · ∇u− fv = F̃ +D

A high resolution model of this system (integrating on small scales) will be able to resolve the
energy that comes from small scale eddies, however, in climate models we are often working on a
much larger grid. To translate from small-scale grids to larger scale grids, the ideal “coarsened”
equation (where (·) denotes some average) should look like:

∂tu+ u · ∇u = F̃ +D

However, the larger grid models will instead be computing:

∂tu+ u · ∇u = F̃ +D + Sx

where Sx, which is used to compensate for the fact that in general u · ∇u ̸= u · ∇u. The closure
term Sx = Sx(u, κ) should depend only on the averaged velocity field u and some parameter κ, and
in general, we aim to find some closed from Ŝx that is as close as possible to the “perfect” closure
Sx = u · ∇u− u · ∇u.

4.2 RVM usage in mesoscale eddy closures

In [7], Zanna and Bolton use relevance vector machines to seek an eddy closure term of the form
Ŝx =

∑
k ϕk(u)gk from a library of functions ϕk with weights gk using RVMs (see Figure 1). In this

case, the expression from the RVM procedure explained 70% of the variance of the “perfect” closure
Sx and extracted the symmetric stress tensor as well as shearing and stretching deformation terms
with no a priori knowledge of the relevant physics.

In this example, as well as others, the closures found using the RVM procedure can be interpreted
in terms of the expected physics: see [4] for nonlinear gradient models of turbulence or [1] for
deformation based-parameterizations.

1An explanation of the RVM algorithm was skipped during this lecture in the interest of time. Some helpful
references may include [6, 8].
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Figure 2: Outline of usage of relevance vector machines (RVMs) to find mesoscale eddy closures,
as in [7].
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GFD 2022 Lecture 9: Sparse Data Reconstruction and Increasing

Predictability

Peter Schmid; notes by Ludovico Giorgini, Sam Lewin, Ruth Moorman, Kasturi Shah

1 Introduction

Here we cover two distinct topics building on the concepts of sparsity and forecasting introduced in
previous lectures. We start with an inversion of our paradigm of sparsity in data driven methods
through a discussion of Compressed Sensing (§2). Whilst the procedures outlined in Lecture 8
seek sparser, and thus in some sense more ‘physical’, dynamical operators from data, Compressed
Sensing exploits the underlying sparsity of physics to reproduce signals from coarse sampling. The
second part of this lecture (§3) revisits the idea of forecasting systems using forward dynamical
operators (e.g., LIM and Koopman operators). We interrogate the causes of drift when using such
operators to project system behavior forward in time and seek possible remedies for said drift. In
other words, we ask the question: how should we truncate our dynamical system when generating
forecasts and what are the effects of those truncation choices on predictability?

2 Compressed Sensing

The Nyquist-Shannon sampling theorem states that a signal must be sampled at at least twice
its highest frequency for it to be uniquely and exactly reconstructed. Compressed sensing is a
signal processing technique for acquiring and reconstructing a signal using fewer samples than the
Nyquist-Shannon sampling theorem requires, if certain information regarding the signals sparsity
is known.

The essential concept is as follows. Say we have a signal length N that is sparse in, for example,
the Fourier basis such that it is well characterized by only k ≪ N frequencies. One way we could
exploit this sparsity would be to conduct a Fourier transformation of the data and then discard all
but the k dominant frequencies. If k is small (i.e., the signal is sparse), this seems quite wasteful,
since it requires discarding the vast majority of the generated frequencies. Compressed sensing
asks the question: can we use our knowledge of a systems sparsity in a certain basis to avoid such
procedural waste? This would allow us to avoid sampling unnecessarily fine sampling of signals
and reconstruct signals from coarse sampling.

Now for the mathematical derivation. Let’s consider a signal x ∈ RN , which is k−sparse in
a basis Ψ ∈ RN×N . For simplicity, we will consider a signal x that is already k-sparse and then
Ψ = I. We want to reconstruct this signal from y ∈ RM , a dense vector of randomly sampled
observables with k ≤ M and M ≪ N . The two vectors x and y are related by the sampling matrix
Φ ∈ RN×M as

y = Φx. (1)
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Since there are k non zero elements in x, rank(Φ) ≥ k. We don’t know,however, where these non-
zero elements are located, and we have to then choose Φ such that this condition is guaranteed for
any arbitrary k-sparse vector. This is obtained by imposing that any submatrix Φ̃ ∈ Rk×M of Φ
has full rank. A wide range of random matrices satisfy this condition, for example, those generated
from i.i.d. Gaussian distribution, Bernoulli distribution, subsamples FFT, etc.

Since M < N , the linear system in (1) is underdetermined and in order to solve it we have to
impose a constraint which, in this case, is the sparsity of x. We then chose x as the vector, which
minimizes the following loss function

||Φx− y||2 + λ||x||0. (2)

Minimizing the loss function with an l0 norm is an NP-complex problem that is extremely hard to
solve. The l0 norm can be substituted by the l1 norm at the price of increasing the minimum size
of y, N = O(k log(N/k)) which remains much smaller than N . We have to compute

min
x

[
||Φx− y||2 + λxTWx

]
, (3)

with W = diag
(

1
|x|

)
≃ diag

(
|x|

x2+ϵ2

)
, which allowed to write the l1 norm as a l2 norm. The loss

function can be minimized over x iteratively

W k = diag

(
|xk|

(xk)2 + ϵ2

)
xk+1 = (W k)−1ΦT (ΦW kΦT )−1ΦT y,

(4)

and the searched sparse vector x is recovered.

3 Increasing Predictability

During this lecture series, we have spent much of our time seeking reduced order descriptions of
high-dimensional dynamical systems. But it is worth considering what happens when we try and
make future forecasts using these simplified models. One of the primary issues is that errors arising
from the reduction of dimensionality will be propagated forward in time, leading to ‘drift’ away
from the true trend and possibly even instability and blow-up.

To this end, consider a data-matrix D whose rows represent the temporal evolution of measure-
ments of a particular observable. We can perform an SVD:

dim n×m︷︸︸︷
D = U︸︷︷︸

n×m

m×m︷︸︸︷
Σ Ṽ T︸︷︷︸

m×m

(5)

in the usual manner. A reduced order description of the system is obtained as usual by truncating,
or choosing the first r principal components, in which case Σ becomes an r× r matrix and we only
retain the first r columns of U : let us denote the truncated principal components matrix

Utrunc =

 u1 u2 . . . ur

 , (6)

where the ui are the principal components. Any state vector x (note this does not necessarily have
to one of the observed state vectors in D!) can be approximated by some linear combination of
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the principal components: x = Utrunca
T for some vector of coefficients a. Suppose our dynamical

system evolves according to the equation

dx

dt
= f(x). (7)

Then we have approximately
daT

dt
≈ UT

truncf(Utrunca
T ). (8)

Even if we know the vector field f exactly, the fact that it is acting on the approximation Utrunca
T

means that truncation errors will inevitably be propagated forward in time. When the columns of D
represent gridded observations, we can think of the truncation procedure as essentially picking out
the dominant large scale features of the system and removing the smaller scale behaviour. In many
physical systems, energy is typically cascaded from the large scales to the small scales. However,
if we cut-off these scales then this can result in a build up of energy at the cut-off point which
can eventually feed back and cause the system to follow a different trajectory, or even destabilize
completely. Below, we discuss residualisation, a method for handling the error, or residual, that
is propagated through the system. We also introduce a practical method for approximating these
higher order error terms know as time-delay embedding.

3.1 Residualisation

Consider the linear dynamical system,

d

dt

(
x1
x2

)
=

(
A11 A12

A21 A22

)(
x1
x2

)
(9)

where x1 represents retained structures and x2 represents removed structures. The question before
us now is whether we can write a dynamical system that is truncated in x1 only, such that

dx1
dt

= A11x1. (10)

To do so, we introduce a memory term. Said differently, we move from the differential equation
above to the integrodifferential equation,

dx1
dt

= A11x1 +

∫ t

0
A12e

(t−τ)A22A21x1(τ)dτ. (11)

The inclusion of the memory term means that the integrodifferential equation is not an approxima-
tion and is an exact solution to (9). The components of the memory integral can be pieced apart
as follows,

∫ t

0

big to small︷︸︸︷
A12 e

big to big︷ ︸︸ ︷
(t− τ)A22︸ ︷︷ ︸

dynamics of small scales

small to big︷ ︸︸ ︷
A21 x1(τ)︸ ︷︷ ︸

small scales︸ ︷︷ ︸
effect of large scales on small scales︸ ︷︷ ︸

propagate small scales︸ ︷︷ ︸
bring the effect of the small scales to the large scales

dτ =

∫ t

0
k(t− τ)x1(τ)dτ (12)

where k(t − τ) =
∑

k1(t)k2(τ). There are several ways to obtain the k’s, including by derivation,
by approximation, by identification from data, or by machine learning.

A few extensions of the memory integral are worth mentioning:
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• Noise and the fluctuation dissipation theorem

Consider the noisy linear dynamical system,

d

dt

(
x1
x2

)
=

(
A11 A12

A21 A22

)(
x1
x2

)
+

(
η1
η2

)
, (13)

the differential equation in (10) becomes

dx1
dt

= A11x1 + η1. (14)

On incorporating noise into the integrodifferential equation, we obtain

dx1
dt

= A11x1 +

∫ t

0
A12e

(t−τ)A22+η2A21x1(τ)dτ. (15)

Therefore, η2 “adds” to the noise η1, and we recover the fluctuation dissipation theorem.

• Memory integral using quantum mechanics

The memory integral can be placed in the context of the very famous paper by Weyl & Feyn-
man, which expressed the memory integral using a forward and backward Fourier transform.
This essentially involves changing the limits of the integral to be ±∞; Weyl & Feynman also
applied an absorbing boundary condition at ±∞. The integrand then has the form

e−ikyP (k)eikxdxdy, (16)

where P (k) is the “symbol” of our dynamical system and and the above expression is a
representation of the Weyl operator.

A parting note on matrix partitioning. The partitioning of a matrix A into components A11,
A12, A21, and A22 can be used to eliminate certain parts of the matrix and is a useful tool. For
instance, suppose we want to eliminate A12, A21, and A22. Assuming we know the relationship
between x1 and x2, we can define the Schur component, S, as follows,

S = A11 −A12A
−1
22 A21. (17)

Hence, the Schur component partitions the matrix by lumping A12, A21, and A22 onto A11.

3.2 Time-delay embedding

Consider again equation (11). Since x1 is just a truncation of the state vector, we can identify
it with the vector a as in equation (6). Then, if we discretize the dynamical system in time
{a1,a2, . . .}, perhaps the simplest way to incorporate the memory term in equation (11) is to write
it component-wise as

at+1i = µati + λat−1i + . . .+ residual, (18)

where the residual represents the deviation from the true solution. The goal is then to find a
relationship between the state vector at+1 at timestep t+ 1 and the previous timesteps.

To proceed, we start as usual with the data matrix

Dn×m =

 d1 d2 . . . dm

 , (19)
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where the columns represent the state vectors and the rows represent their evolution in time. We
can form a new matrix by stacking columns 1 to m − 2 on top of columns 2 to m − 1, on top of
columns 3 to m:

D′
3n×(m−2) =



d1 d2 . . . dm−2

d2 d3 . . . dm−1

d3 d4 . . . dm


. (20)

This procedure is called time-delay embedding and the matrix D′ is, by construction, a Hankel
matrix, in this case with embedding number 3. We denoteD′ = Hank3(D). Such methods date back
to the classical work of Ruelle & Takens [2] and are sometimes called Ruelle-Takens embeddings.
Larger embedding numbers r can be used by stacking m − r columns sequentially in the obvious
manner analagous to the above, though the scale of the problem becomes large very quickly. We
note that there are various ways to handle this, either by using computational algorithms that
are parallelized to run on multiple processors simultaneously, or by some efficient and dynamics-
preserving compression of the Hankel matrix D′ using methods such as locality sensitive hashing
(see e.g., [1]).

Why have we done this? Remember from lecture 3 that we can use Koopman methods to find
a linear map from column to column of a given data matrix, i.e., dt 7→ dt+1. With our time-delay
embedded matrix, the same procedure simultaneously gives us linear maps dt → dt+1, dt+1 7→ dt+2

and dt+2 7→ dt+3. Thus, we end up with a way of writing dt+3i = R3idt+2i + R2idt+1i + R1idti as
desired, where the Rki are the eigenvalues of the Koopman operator matrix, or equivalently the
relevant companion matrix S computed using the procedure outlined in lecture 3. This method is
sometimes described as ‘higher order Koopman.’

3.3 Discussion

Time-delay embedding can be especially effective when we have a long time history of measurements,
but only a few observables or measurement points. This means that the data matrix D is long and
skinny, that is, n ≪ m. In a Koopman setting, the system is decomposed into single frequency
modes. However, the captured frequencies will be limited by the fact thatD is low rank: Rank(D) ≤
n ≪ m. The higher order Koopman approach using a Hankel matrix consisting of stacked columns
of D is often found to be very effective for capturing higher frequency dynamics in the system with
limited measurement points.

Finally, we point out that the above method of residualisation was strictly only applicable for
linear dynamical systems described by (9). The general approach for nonlinear dynamical systems
involves computing a Liouville operator for the system with is associated with the matrix A: such
methods are part of the so-called ‘Mori-Zwanzig formalism’ [3].
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GFD 2022 Lecture 10: Machine Learning Tools

Laure Zanna; notes by Iury Simoes-Sousa, Claire Valva, Tilly Woods, and Rui Yang

1 Introduction

In this lecture, we discuss machine learning tools. We include a basic overview of neural networks
as well as brief mentions of other methods and examples. As motivation, we will return to the
mesoscale eddy closure problem — for an explanation of this idea, see 3.1 in lecture 8. For this
problem and in general, we are looking for a sparse representation of the system that is both
generalizable and interpretable. We then ask if machine learning can capture what we have lost by
in decreasing spatial resolution in the eddy closure problem (see 3).

2 The (in)Famous Neural Network

One of the methods that has been increasingly used to find sparse representations of many systems
is the (in)famous neural network, that has been used in fields including computer vision, fraud
detection, customer recommendation engines etc.

2.1 A basic overview of a single-layer neural networks

Starting from the fact that the main goal with this lecture is to show the whole picture and basic
concepts of what a neural network is, we can start with the following representation of a single-layer
neural network:

ŷ = z = G

(
n∑

i=1

wixi

)
︸ ︷︷ ︸

σ

, (1)

where ŷ is the prediction, (which in a single layer network is equivalent to z, the result from the
single neural network layer), xi are the input (state variables), wi are the weights for the summation
and G is the activation function. Several common activation functions are:

• G(σ) = a σ Linear,

• G(σ) = sign(σ) Step function (classification),

• G(σ) = (1 + e−σ)−1 Sigmoid,

• G(σ) = max(0, σ) ReLU (Rectified Linear Unit).

60



(a) G(σ) = a σ (b) G(σ) = sign(σ) (c) G(σ) = (1 + e−σ)−1

Figure 1: Graphical representation of different choice of activation functions for different problems.

For the linear activation function we recall the simple regression problem, graphically repre-
sented as in Figure 1a. The choice of the activation function can determine the type of problem.
For a classification problem, one may use a step function (Figure 1b). Alternatively a sigmoid
function allow a nonlinear classification as those similar to what is represented in Figure 1c.

In another words, the single-layer neural network has an output that will be an activation
function applied to the sum of all inputs under tuned weights. We can represent this graphically
as in Figure 2.

Figure 2: Graphical representation of a one-layer neural network.

2.2 Multi-layer neural networks

Partially owing to their simplicity, single-layer neural networks do not always capture the nonlinear
dynamics of the system. More often, multilayered neural networks are employed, expressed as:

ŷi = G

 d∑
j=1

zjw
(z)
j,i

 ,

zi =
m∑
j=1

wj,ixj ,

(2)

where ŷi are the predictions, zi are the results the nodes (“neurons”) from each hidden layer, m
is the number of hidden layers and d is the number of nodes in the hidden layers (kept constant
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here). In this case, we use the same activation function for all layers, for the sake of simplicity. We
graphically represent a multi-layer network with these objects in Figure 3.

Figure 3: Graphical representation of a multi-layer neural network with the same input and output
dimension.

We note that the same method could also be used for the purposes of a reconstruction problem,
where the input and output dimension are not the same (despite it being the same in the figure).

Once we construct this “machine”, the weighting for the best prediction must be determined.
There are many methods for this optimization problem, but the most common is the gradient
descent applied to minimize a loss function (L), expressed by the mean squared error of predicted
output values compared to the true value.

L(y, ŷ) =
∑
i

(yi − ŷi)
2 (3)

3 Mesoscale Eddy Parameterization Examples

Recall that in the eddy parameterization problem, we are looking for a way to low-resolution model
output to “match” high resolution model output. Given the momentum equation in 2 dimensions
with velocity u = (u, v), dissipation D, and a forcing term F̃ :

∂tu+ u · ∇u− fv = F̃ +D

When we decrease the resolution of the model the ideal “coarsened” equation (where (·) denotes
some average) should look like:

∂tu+ u · ∇u = F̃ +D

However, the larger grid models will instead be computing:

∂tu+ u · ∇u = F̃ +D + Sx

where Sx which is used to compensate for the fact that in general u · ∇u ̸= u · ∇u. As such, the
“perfect” closure would be Sx = u · ∇u− u · ∇u.

Comparison of physics- and neural network-based parameterizations In [5], the authors compare
physics- and neural network-based parameterizations of subgrid-scale processes in ocean models.
In figure 5, we see that the low-resolution model (grey line) did not achieve the wanted energy
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spectra, while the machine-learning methods did. However, one should note that the neural-net
parameterization was not entirely necessary as the physics-based parameterization (BSCAT) worked
just as well. The BSCAT parameterization from [3] writes the closure term as a function of eddy
energy q, S(q) = −ν∆q, which can be thought of as essentially adding energy backscatter.

Stochastic eddy parameterization In an alternative approach, a stochastic parameterization using
a convolutional neural network has been proposed [2]. In this work, Guillaumin and Zanna pro-
pose a closure that is stochastic, and try to learn a closure in the form of a Gaussian probability
distribution:

u → G(u|u, q;µ, σ), where µ is the mean, and σ is the standard deviation.

The authors trained the model on surface velocity data from a pi-control GFDL global climate
model, and found predictions to perform fairly well 4. This parameterization generalized to gen-
eralize to other climate scenarios (such as increased CO2) relatively well. However, the model
does not predict areas with sea ice reliably — which is a sensible result as a model cannot learn
what it was not shown. Recently, Zanna and collaborators (Pavel Perezhongin and Cheng Zhang)
have begun to try to implement this stochastic closure “online” with the Modular Ocean Model 6
(MOM6) but there are issues that include numerics/stability, coupling, and tuning. (This points
to some clear advantages of symbolic-regression that include ease of implementation without any
clear performance disadvantages as compared to convolutional neural networks [6].)

4 Other Tools of Interest

Briefly, two other machine learning tools of interest (among many) were mentioned.

Physics-informed neural networks (PINNs) PINNs are neural networks that are trained to solve
supervised learning tasks while respecting any given laws of physics described by general nonlinear
partial differential equations, and was initially described by [4]. A key component of PINNs are
that the algorithm seeks to minimize two different loss functions: one of which minimizes the error
in the prediction (the standard idea of a loss function) and the other that penalizes predictions
that do not satisfy a given governing equation. This algorithm appears to both learn predictions
relatively well as well as generalize decently.

Genetic programming The idea of genetic programming (a commonly used implementation of
which is gplearn [1]) uses a similar approach to library-based symbolic regression like SINDy. From
the documentation: “The algorithm begings by building a population of naive random formulas to
represent a relationship between known independent variables and their dependent variable targets
in order to predict new data. Each successive generation of programs is then evolved from the
one that came before it by selecting the fittest individuals from the population to undergo genetic
operations.” Two other notable details that differentiate genetic programming from SINDY are
that spatial derivatives are available and there can be human intervention at each successive stage
of the algorithm.
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Figure 4: Time series comparison of the zonal component of the subgrid momentum forcing at (a)
a location dominated by turbulent behavior and (b) a more quiescent location for 300 days: true
forcing (solid blue), mean of the predicted forcing (orange), and 95% confidence interval (green).
(Figure from [2].)
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Figure 5: Power spectrum comparison for the eddy-closure problem between physics-based param-
eterizations (BSCAT) and machine learning parameterizations (FCNN and Hybrid Symbolic) from
[5].
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Continental Shelf Waves Around a Pseudo-Iceland

Ruth Moorman

1 Introduction

Oscillations at frequencies lower than the inertial frequency, with periods of a few days 
to weeks, are a prominent feature of coastal seas the world over. These oscillations alter 
coastal conditions and may contribute to mixing and the exchange of tracers between shelf 
seas and the open ocean [11]. In high latitude oceans specifically, subinertial coastal waves 
have been noted as a potential driver influencing the overflow of dense waters from shelf seas 
into the abyssal ocean and the exposure of marine terminating glaciers to ocean heat via 
the lifting and lowering of thermoclines [7, 8, 22]. In general, improving our understanding 
of these subinertial coastal oscillations will assist both their characterization as potential 
drivers of coastal conditions in themselves, and aid their identification and removal from 
observations when they pose a potential aliasing effect.

Recently, Gelderloos et al. (2021) [7] identified and characterized low frequency 
coastal waves propagating along the Southeast Greenland shelf in a general circulation 
model. A feature of their simulations that they noted but did not study was the 
propagation of subinertial waves around Iceland (Figure 1). Wave modes propagating 
around the island are set by the circumference of the island, with the lowest alongshore 
mode (and most prominent mode visible in Figure 1) fitting exactly once into its 
circumference. Subinertial waves are also evident propagating away from the island 
along the mid-Atlantic and Greenland-Scotland ridges. We posit that the presence of 
these sizable ridges abutting the continental slope may scatter or otherwise deflect the 
energy of some wave modes away from the island, whilst others may remain bound to the 
island and exhibit a resonance.

The purpose of this work is to interrogate, using the most straightforward model pos-
sible, the effect of ridges abutting islands on an island’s subinertial wave field. We seek to 
understand which modes can resonate around an Iceland-like island and which may be influ-
enced by the presence of intersecting ridges. The selected “continental shelf wave” (CSW) 
model for coastally trapped subinertial waves, derived in Section 2, is linear, inviscid, and 
barotropic, yet nonetheless presents challenges. In particular, no universal dispersion rela-
tion exists for CSWs over arbitrary topography [9] and the few analytical solutions found 
to date apply to highly idealized topographies [3, 5, 13, 21, for example]. Thus, numerical 
methods are generally required to study CSWs under more realistic conditions. Prior to the 
last decade, these numerical methods involved iteratively searching for propagating modes 
within the 2D dispersion relation parameter space [1, 2, 10], a relatively time-consuming
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Figure 1: (upper) Snapshots of sea-surface height (SSH) anomalies along the coasts of Ice-
land and Greenland from simulations described in Gelderloos et al (2021) [7]. SSH anomalies
have been band-pass filtered with a 5-day upper and 18 day lower frequency cutoff to isolate
a subset of subinertial signals. (lower) Map showing the bathymetry surrounding Iceland
[6]. Pink contours are the 250 m, 500 m and 1000 m isobaths. Black arrows schematically
represent the direction of subinertial waves propagating around the Iceland continental slope
and along the mid-Altantic (southwest to northeast) and Greenland-Scotland (southeast to
northwest) ridges, as identified from the simulations in [7].

procedure with limited accuracy. More recently, Kaoullas and Johnson (2010) [13] demon-
strated how spectral numerical schemes may be used to accurately and efficiently compute
dispersion relations for CSWs over complex bathymetry without searching by reducing the
system to a linear eigenvalue problem. Such methods have since been applied to coastal
wave problems of increasing complexity [12, 18, 19, 20, for example] though simpler, ana-
lytically tractable problems can still be useful due to their easy interpretability. Here we
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employ a combination of analytical and spectral methods.

The geometry considered in this study, reminiscent of Iceland, is an axisymmetric is-
land surrounded by a continental shelf that is intersected by a ridge. We initially consider
these structures separately, by analytically obtaining eigenmodes and dispersion relations
for CSWs around an axisymmetric island (Section 3) and along an infinite ridge (Section
4). We then use insights from these simpler, analytically tractable geometries to guide
the formulation of the combined geometry as a coupled 2D eigenvalue problem (Section 5).
Eigenmodes of CSWs around an island abutted by a ridge are then sought numerically using
spectral methods, and the influence of ridges on subinertial waves trapped around islands
is assessed. Although we motivate this work with the specific setting of Iceland, the results
will be widely applicable to many coastal oceans by bringing us closer to an understanding
of how alongshore asymmetries influence resonant coastal waves.

2 Linear Continental Shelf Wave (CSW) Theory

Following Buchwald and Adams (1968) [3] and Huthnance (1975) [9] among others, we start
with the linearized rotating shallow water equations on an f -plane

∂u

∂t
+ u · ∇u− k̂× u = −∇h′ (1)

D2∂h
′

∂t
+∇ · (hu) = 0 (2)

where u(x, y, t) is the horizontal velocity field, h(x, y) is the mean fluid depth, and h′(x, y, t)
is the free surface displacement. Here the quantities u, t, x, h, and h′ have been non-
dimensionalized by the scales U , f−1, L, H, and fUL/g, respectively, such that the non-
dimensional parameter

D2 ≡ f2L2

gH
(3)

compares the continental slope breadth scale L (note this is the breadth of the sloping
boundary of the continental shelf, not the continental shelf itself) to the Rossby radius of
deformation for barotropic flow

√
gH/f .

In the presence of a coastal boundary and a continental shelf of non-uniform depth, the
system defined by (1) and (2) can produce three types of waves that make up the barotropic
subset of the more general class of “coastal trapped waves” (CTWs) [3, 9, 15]. The first
are “edge waves”, an infinite discrete set of high frequency (ω > f) waves trapped near
the coast by refraction. The dominant restoring force of these waves is gravity and they
resemble rotating shallow water waves propagating in either direction along the coast. At
very low wavenumbers the trapping mechanism breaks down and these waves become ‘leaky’
Poincairé waves. The second type are “continental shelf waves” (CSWs), an infinite discrete
set of low frequency (ω < f) waves originally formalized by Robinson (1964) [17] to describe
observations off the Australian east coast. The dominant restoring force for these waves is
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the conservation of potential vorticity, making them topographic Rossby waves that prop-
agate along coastlines in a ‘right-bound’ sense (i.e. with the coastline or shallower water
to the right). The third and final type is a singular non-dispersive Kelvin wave which is
similarly right-bounded and is restored by the Earth’s rotation. These three wave types are
typical of ‘trapped’ waves generally and are analogous, for example, to the inertia-gravity
waves, Rossby waves, and Kelvin wave sustained within the equatorial waveguide. Here
variations in topography, rather than planetary β, provide the waveguide.

Since we are specifically targeting subinertial (ω < f) oscillations around Iceland, we
now scale (1) and (2) to isolate CSWs from the other two supported wave types. This
may be achieved by assuming the non-dimensional parameter D2 is negligible, i.e. that the
horizontal lengthscale of the slope is much smaller than the Rossby radius of deformation
[3, 9]. Through (2) we can see that this is equivalent to taking the ‘rigid-lid’ limit of the
system where the free surface displacement h′ has no time dependence. This approximation
is justified for the Icelandic continental margin, among other continental margins, where
the slope breadth is O(10 km) and the Rossby deformation radius is O(100 − 1000 km)
and is perhaps even more appropriate in these high latitude regions where winter sea-ice
cover impedes vertical free surface motion. Invoking this limit and cross differentiating (1)
reduces our system to

∂ζ

∂t
+ f∇ · u = 0 (4)

∇ · (hu) = 0 (5)

where ζ = (∂xv − ∂yu) is the relative vorticity of the flow. Equation (5) suggests a stream-
function of the form

hu = −∂Ψ

∂y
, hv =

∂Ψ

∂x
(6)

which, when substituted into (4) returns the following topographic Rossby wave equation
for barotropic CSWs,

∇ ·
(1
h
∇∂Ψ

∂t

)
+ f k̂ · ∇Ψ×∇

(1
h

)
= 0. (7)

In this work we’ll be seeking propagating wave solutions to (7) of the form

Ψ(x, y, t) = ℜ{Φ(x, y) exp(−iωft)} (8)

where Φ(x, y) is the spatial structure of the wave and ω (which has been non-dimensionalized
by f) is its propagating frequency. Substituting (8) into (7) provides the expression

1

h
∇2Φ+∇

(1
h

)
· ∇Φ+

i

ω
k̂ ·

(
∇Φ×∇

(1
h

))
= 0 (9)

which produces CSWs when combined with the following boundary conditions

Φ = 0 at the coast (10)

Φ → 0 at large distance.

The system defined by (9) and (10) is the foundation for all problems considered in this
study.
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3 An Axisymmetric Island

Consider a circular island of radius r = Ri (Ri < 1) with a continental slope extending from
a vertical wall at the coast to r = 1 (see Figure 2). Let the fluid depth over the slope be
given by the polynomial expression

h(r) =

{
r2α Ri ≤ r ≤ 1 (slope)

1 r > 1 (far field)
(11)

a geometry similar to that studied in [21] but translated from a rectilinear coast to a circular
island. A simple concave downwards continental slope could, for example, be represented
by a choice of α = 1. The fluid depth is minimized at the coast at h(Ri) = R2α

i . Thus, for
an island with a continental shelf depth h0, we take α = ln(h0/H)/2 ln(Ri) where H is the
far field depth. Note that we are only representing the continental shelf margin with this
geometry, and that any extended shallow shelf region should be conceptualized as within the
bounds of the island. This choice is made to avoid enforcing our assumption that D2 ≪ 1
(Section 2) to the wide, shallow inner shelf region where it less applicable [5].

Whilst the simple choice of α = 1 is frequently utilized in this study, the bathymetry
surrounding Iceland (Figure 1) is better captured by values of h0/H ∼ 250/1000 = 0.25
and Ri close to 1, since the breadth of the continental slope is small relative to the com-
bined radius of the island and shelf region. These values suggest a larger α would be more
appropriate when comparing analytical results to observations.

Figure 2: Geometry of the axisymmetric island problem. Dashed line represents the fluid
surface and solid lines represent the bathymetry. The system is defined in polar coordinates
(r, θ) with Cartisian horizontal coordinates (x, y) and the vertical coordinate (z), which
collapses due to the barotropic nature of the problem, shown for reference.
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Substituting this slope bathymetry for h(r) in (9) (making appropriate adjustments for
the shift to polar coordinates), and seeking solutions of the form

Φ(r, θ) = Fn(r) exp(inθ) (12)

gives the Euler equation

r2F
′′
n + r(1− 2α)F ′

n − (n2 + 2nα/ω)Fn = 0, Ri ≤ r ≤ 1. (13)

The general solution to (13) takes the form

Fn(r) = Arλ1 +Brλ2 , λ1,2 = α±
√

α2 + n2 + 2nα/ω (14)

where A and B are undetermined constants and λ1,2 are roots of the auxiliary equation of
the Euler equation (13).

Substituting the far field, constant bathymetry for h(r) in (9) then provides the con-
straint that

∇2Φ = 0, r ≥ 1 (15)

which has general solution of the form

Fn(r) = Crλ3 +Drλ4 , λ3,4 = ±n. (16)

We’re interested in wave solutions that decay away from the coast, see (10), and thus set
C = 0. This implies Fn(r) ∝ r−n, r ≥ 1 which may be rephrased as the constraint

F
′
n(r) + nFn(r) = 0, r ≥ 1. (17)

Enforcing continuity of (17) at r = 1 provides a boundary condition on (13)

F
′
n(1) + nFn(1) = 0, (18)

and a second boundary condition is obtained by requiring that the solution goes to zero at
the coast

Fn(Ri) = 0. (19)

The boundary conditions (18) and (19), combined with the general solution form (14),
provide the system (

Rλ1
i Rλ2

i

λ1 + n λ2 + n

)(
A
B

)
= 0. (20)

This possesses non-trivial solutions if the determinant of the coefficient matrix of (20)
(Misland, hereafter) vanishes, leading to the dispersion relation

det(Misland) = Rλ1
i (λ2 + n)−Rλ2

i (λ1 + n) = 0, (21)
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with λ1,2 determined as functions of ω by (14). For a given azimuthal wavenumber n, solv-
ing (21) numerically provides a discrete set of frequencies ωn,m, m = 1, 2, . . . .

Equation (21) may be manipulated into a more tractable form that permits numerical
determination of arbitrarily many roots ωn,m for a given azimuthal wavenumber n. We
consider only spatially oscillatory solutions where

λ1,2 = α± iγ, γ =
√

−α2 − n2 − 2nα/ω ∈ R (22)

such that

ω = − 2nα

γ2 + n2 + α2
. (23)

Substituting for λ1,2 in (21) and rearranging provides

exp
(
2iγ ln(Ri)

)
=

α+ n+ iγ

α+ n− iγ
. (24)

Noting that arg z = ϕ where z = r exp(iϕ) allows us to express the above as

γ ln(Ri) = arg(α+ n+ iγ), (25)

which, given arg(x+ iy) = arctan(y/x), simplifies to

tan γ̃ =
γ̃

(α+ n) ln(Ri)
(26)

Figure 3: Dispersion relation for continental shelf waves around an axisymmetric island
defined by (11) with Ri = 0.5 and α = 1. Note n and m refer to the azimuthal and radial
wavenumbers, respectively, and ω is non-dimensionalized by the Coriolis frequency f .
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where γ̃ = γ ln(Ri). Numerical determination of arbitrarily many roots of (26) is straight-
forward since a straight line intersects a tangent function exactly once within each interval
γ̃ ∈ (π/2 + j, 3π/2 + j), j = 0, 1, 2, . . . . The roots of (26), γ̃n,m, are then translated into
frequencies ωn,m through (23). Note roots of (26) are sought only where γ̃ > 0 in order
to satisfy (22). Similar methods of finding arbitrarily many roots to CSW equations are
employed by [13].

Figure 4: Spatial structure of continental shelf waves sustained around an axisymmetric
island defined by (11) with Ri = 0.5 and α = 1. Waveforms associated with n = 1, 2 and
m = 1, 2 shown. Solid and dashed red lines represent the coastline (r = Ri) and slope
boundary (r = 1), respectively. Black arrow in the first panel indicates direction of wave
propagation.
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The resulting ωn,m are negative for k > 0 and positive for k < 0, corresponding to
clockwise or ‘right-bound’ propagation in this problem geometry. These ωn,m form a dis-
persion relation (Figure 3) with a structure typical of Rossby waves but discretized in both
azimuthal (n) and radial (m) wavenumbers. For any given azimuthal wavenumber n, the
greatest frequencies are associated with the m = 1 wave, with frequencies decreasing in
magnitude monotonically with increasing m. All sustained frequencies are subinertial (ω
has been non-dimensionalized by f), as expected. Decreasing the shelf depth h0 via α
pushes the maximum magnitude frequency towards the inertial limit whilst increasing the
shelf steepness via α (while keeping h0 fixed) changes the shape of the dispersion relation
such that the maximum magnitude frequency is associated with a larger n and more modes
lie close to the maximum magnitude frequency. Note we find the minimum shelf depth
rather than the slope steepness determines the maximum supported frequency, in contrast
to [21].

Once the frequencies ωn,m are generated, we may determine their associated waveforms
Φ(r, θ) via (12), (14), and (20) (up to a free parameter). Figure 4 shows the spatial structure
Φ(r, θ) of propagating waves with n = 1, 2 and m = 1, 2. Finally, these results were
confirmed numerically using Dedalus v3 [4] spectral solvers by constructing a 1D eigenvalue
problem out of (13), (18), and (19) and discretizing the r coordinate in a Chebyshev basis.

4 An Infinite Ridge

Now consider a rectilinear ridge extending to infinity along the x-axis with profile a function
of y alone (see Figure 5). Let the ridge be symmetric about y = 0 with half-width W and
the fluid depth described by

h(y) =

{
exp

(
2b(|y| −W )

)
|y| ≤ W (ridge)

1 |y| > W (far field).
(27)

The fluid depth is minimized at the peak of the ridge h(0) = exp(−2bW ). Thus, for
a ridge with minimum fluid depth h0 we take b = − ln(h0/H)/2W where H is the far
field depth. When considering the Greenland-Scotland ridge abutting Iceland, for example,
we have h0/H ∼ 500/1000 = 0.5, and a ridge halfwidth W ∼ 100km implying a very
small b. However, for simplicity we will assume a value of b = 0.5 in this section. Note
that the extension to non-symmetric profiles is immediate with the sole requirement that
b+W+ = b−W− where b± and W± are the values of b and W in y > 0 and y < 0.

Substituting this ridge bathymetry for h(y) in (9), and seeking solutions of the form

Φ(x, y) = Gk(y) exp(ikx) (28)

bring us to

G
′′
k − 2bG

′
k −

(
k2 − 2bk

ω

)
Gk = 0, 0 < y ≤ W (29)

G
′′
k + 2bG

′
k −

(
k2 +

2bk

ω

)
Gk = 0, −W ≤ y < 0
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Figure 5: Geometry of the infinite ridge problem. Dashed line represents the fluid surface
and solid lines represent the bathymetry. The system is defined in Cartisian horizontal
coordinates (x, y) with the vertical coordinate (z), which collapses due to the barotropic
nature of the problem, shown for reference.

The general solutions of which take the form

Gk(y) = P exp(λ1y) +Q exp(λ2y), 0 < y ≤ W (30)

Gk(y) = R exp(λ3y) + S exp(λ4y), −W ≤ y < 0

where P,Q,R and S are undetermined constants and λ1,2 and λ3,4 are roots of the auxiliary
equations of (29),

λ1,2 = b±
√

b2 + k2 − 2bk/ω, λ3,4 = −b±
√
b2 + k2 + 2bk/ω. (31)

Similarly to the axisymmetric island case, taking the decaying solution to the far field
system requires Gk(y) ∝ e−|k||y|, |y| ≥ W which may be rephrased as the constraint

G
′
k + |k|Gk = 0, y ≥ W (32)

G
′
k − |k|Gk = 0, y ≤ −W.

Enforcing continuity at |y| = W provides the following boundary conditions,

G
′
k(W ) + |k|Gk(W ) = 0 (33)

G
′
k(−W )− |k|Gk(−W ) = 0. (34)

Two additional constraints arise from enforcing continuity of Gk and G
′
k across y = 0,

Gk(0
+) = Gk(0

−) (35)

G
′
k(0

+) = G
′
k(0

−). (36)
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Together, the boundary conditions (33)-(36) along with the general solution form (30)
provide the system of equations

eλ1W (λ1 + |k|) eλ2W (λ2 + |k|) 0 0
0 0 e−λ3W (λ3 − |k|) e−λ4W (λ4 − |k|)
1 1 −1 −1
λ1 λ2 −λ3 −λ4



P
Q
R
S

 = 0 (37)

which has non-trivial solutions when the determinant of the coefficient matrix of (37)
(Mridge, hereafter) is zero,

det(Mridge) = 0. (38)

As in the axisymmetric island problem, we manipulate (38) into a form that permits
easy numerical determination of arbitrarily many roots. Once again, we are only interested
in spatially oscillatory solutions, though in this case solutions may be oscillatory in either
the y > 0 domain

λ1,2 = b± i
√

−b2 − k2 + 2bk/ω, λ3,4 = −b±
√

b2 + k2 + 2bk/ω (39)

for 0 < ω <
2bk

b2 + k2
, and k > 0

or the y < 0 domain

λ1,2 = b±
√

b2 + k2 − 2bk/ω, λ3,4 = −b± i
√

−b2 − k2 − 2bk/ω (40)

for − 2bk

b2 + k2
< ω < 0, and k > 0.

Substituting (39) into (38) and manipulating into a tangent function provides

tan γ̃ = (41)

γ̃

W

eWζ(−b− |k| − ζ)(−b+ |k|+ ζ)− e−Wζ(−b− |k|+ ζ)(−b+ |k| − ζ)

eWy(−b− |k| − ζ)( γ̃2

W 2 + (b+ |k|)(2b− ζ))− e−Wζ(−b− |k|+ ζ)( γ̃2

W 2 + (b+ |k|)(2b+ ζ))

where

γ̃ = Wγ = W
√

−b2 − k2 + 2bk/ω, ζ =
√
b2 + k2 + 2bk/ω =

√
2b2 + 2k2 + γ̃2/W 2.

The roots of (41), γ̃m, for a given along slope wavenumber k and bathymetry parameters b
and W provide the frequencies ωk,m of waves propagating along the y > 0 side of the ridge
with cross slope wavenumbers m = 1, 2, 3, . . .

ω+
k,m =

2bk

γ̃2m/W 2 + b2 + k2
. (42)
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The largest magnitude ωk,m for a given k is associated with the m = 1 wave, the next
largest with the m = 2 wave, and so on. Unlike in the axisymmetric island case, the right
hand side of (41) is not a straight line but takes the form of 1/γ̃. As such, the numerical root
finding procedure should seek two roots in the interval γ̃ ∈ (π/2+j, 3π/2+j), j = 0, 1, 2, . . .
within which the denominator of (41) goes to zero. This is on account of the discontinuity
and associated sign change in the left hand side of (41) permitting an intersection with
tan γ̃ in both the positive and negative lobes of tan γ̃.

The symmetries of the problem are such that the oscillating solutions in the y < 0
domain (obtained by substituting (40) into (38) and numerically determining roots to a
tangent expression, as above) are found to be

ω−
k,m = −ω+

k,m. (43)

This indicates that perturbations at a given frequency ωk,m will generate waves propagating
in the positive x direction on the y > 0 side of the ridge and in the negative x direction on
the y < 0 side of the ridge, in line with our expectation of ‘right-bound’ wave propagation.
Note that if we take k < 0 the sign of the resulting roots flip such that right bounded prop-
agation is retained. The numerically determined ωk,m form a dispersion relation (Figure 6)
with a typical Rossby wave structure. The infinite nature of the ridge considered permits a
continuous dispersion relation with respect to k. Once again, all sustained frequencies are
subinertial (ω has been non-dimensionalized by f) and decreasing the water depth over the
peak of the ridge h0 via b acts to increase the magnitude of sustained frequencies towards
the inertial limit.

Figure 6: Dispersion relation for topographic Rossby waves along an infinite ridge defined
by (27) with W = 1 and b = 0.5. Note k and m refer to the along slope and cross slope
wavenumbers, respectively, and ω is non-dimensionalized by the Coriolis frequency f .
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Figure 7: Spatial structure of topographic Rossby waves sustained along an infinite ridge
defined by (27) with W = 1 and b = 0.5. Waveforms associated with k = 1, 2 and m = 1, 2
shown. Waveforms shown are a linear combination of modes associated with two roots ω±

k,m

which have mirrored structures across y = 0 and propagate in opposing directions as right
bound waves.Solid and dashed red lines represent the peak of the ridge (y = 0) and slope
boundary (y = ±W ), respectively. Black arrows in the first panel indicate direction of wave
propagation.

Once the frequencies ωk,m are generated, we may determine their associated waveforms
Φ(x, y) via (28), (30), and (37) (up to a free parameter). Figure 7 shows the spatial structure
Φ(x, y) of propagating waves with k = 1, 2 and m = 1, 2. Solutions associated with ω+

k,m

and ω−
k,m are linearly combined to show symmetrical pairs of waves propagating with the

same frequency along either side of the ridge. Again, these results were replicated using
Dedalus v3 [4] spectral solvers by constructing a 1D eigenvalue problem out of (29), (33),
and (34) and discretizing the y coordinate in a Chebyshev basis.
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the ridge long but finite, enforcing that it decays exponentially after some radius Rs ≫ 1
according to a steepness parameter s

hridge(r, θ) = exp(2b(|π − θ| −W )) exp(s(r −Rs)), Rs ≤ r ≤ Ro (45)

where s is chosen such that h(Ro, θ) = 1∀θ. This geometry is sketched in Figure 8.

Within the Dedalus v3 framework r and θ are discretized with 64 Chebyshev points
and 64 Complex Fourier points, respectively (schematically represented in Figure 8). A
2D eigenvalue problem is then constructed of (9) with a Dirichlet boundary condition set-
ting Φ = 0 at Ri and a Dirichlet to Neumann boundary condition enforcing the decaying
solution of ∇2Φ = 0 at Ro. Boundary conditions are imposed using the generalized tau
method [4, 16]. Due to poor scaling of the 2D eigenvalue problem (required storage and
computation time scales like (Nθ ·Nr)

3 where Na is the number of points in the a dimension)
all experiments presented here are computed on a 64 × 64 grid, though greater resolution
may be attained at some expense. We set α = 1 and Ri = 0.5 in all experiments, giving a
continental shelf height of 1−R2α

i = 0.75. The ridge bathymetry parameter b is set to

b = − ln(1− 0.75frac)/2W (46)

where frac is the maximum height of the ridge as a fraction of the shelf height. Values of
frac = 0.3, 0.5, 0.7 are tested and 8 repetitions are run for each value of frac. Ro, Rs, W and
s are varied between repetitions. Parameter choices are summarized in Table 1. Note that
the island in this combined configuration is identical to the island considered in Section 3
but that the ridge has been modified from Section 4 in three significant ways (i) the ridge
is now finite in extent, (ii) the ridge halfwidth now increases with r, and (iii) the ridge now
sits in a periodic domain.

α Ri frac Ro, s Rs W

1 0.5 0.3, 0.5, 0.7 {17, 0.2}, {20, 0.1} 12, 14 π/5, π/6

Table 1: Summary of parameters tested in the combined island and ridge problem.

Informed by the results of Sections 3 and 4, we expect the island in this problem to sup-
port trapped CSWs at a discrete set of frequencies, whilst the ridge, if made long enough
to be well approximated by the infinite problem, should support CSWs at a continuum of
frequencies up to a maximum ωridge. A predicted value for ωridge can be estimated from
the dispersion relation of an infinite ridge given its height (Section 4). We anticipate the
eigenvalues of the 2D combined problem will produce a dispersion relation similar to Fig-
ure 3 but that eigenmodes associated with frequencies smaller than ωridge will show waves
propagating along the abutting ridge, whilst eigenmodes associated with frequencies larger
than ωridge will be contained to the island slope (Figure 9).
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The full solution to the coupled 2D system comprises O(Nr × Nθ) eigenvalues (here
4224, with additional terms arising from the tau method, [4, 16]) and associated eigen-
modes. Sorting resolved from unresolved eigenvalues and characterizing their associated
eigenmodes, including identifying the azimuthal (n) and radial (m) wavenumbers of waves
around the island and determining whether a wave is present along the ridge, is a non-
trivial exercise. We take a targeted approach and use a sparse solver inbuilt in Dedalus
v3 [4] to seek only 40 eigenvalues in the neighbourhood of ω = −0.3, a value close to the
expected maximum frequency around the island. The eigenmodes are then sorted by |ω|
and waveforms are plotted and visually inspected to identify island wavenumbers and deter-
mine whether a wave is present on the ridge (see Figure 10 for examples). Note that waves
propagating along the ridge need not match the wavelengths of modes trapped around
the island, which would result in a single wave propagating around the whole combined
structure, instead we generally see island modes acting as a wavemaker for ridge modes of
the same frequency but different wavelengths. Further it may be noted that the problem
does not produce eigenmodes that exist solely on the ridge. The ridge acts to modify the
eigenmodes of the symmetric island problem but does not introduce new eigenmodes with
frequencies between the frequencies sustained around the island.

The results of the manual classification are presented in Figure 11. Generally island
modes up to {n,m} = {15, 1} or approximately ωn,m = −0.11 were easily characterized

Figure 9: Predicted behaviour of the combined island and ridge problem. (left) Dispersion
relation for continental shelf waves around an axisymmetric island (as in Figure 3) overlaid
with the maximum (in terms of magnitude) frequencies predicted to propagate along infinite
ridges of height 0.3 (green), 0.5 (blue), and 0.7 (red) times the island continental shelf height.
(right) Anticipated behaviour of island wave modes with frequency larger (top) and smaller
(bottom) in magnitude than the maximum frequency sustained by the ridge.
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by eye (e.g. Figure 10), though removing the mean Φ(r) structure, which often contained
n = 0 signals that do not decay with r, aided classification. In some cases it was difficult
to discern whether signals over the ridge were associated with a long wave CSW traveling
along the ridge or a low mode structure associated primarily with the terminus of the ridge,
these ambiguous cases are noted in Figure 11. Some eigenmodes contained mixed island
waveforms where their associated frequencies were similar, in particular {n,m} = {5, 1}
and {2, 1} generally appeared in the same eigenmode. Figure 11 supports the hypothesis
that CSWs around an island abutted by a ridge change their behavior abruptly across a
threshold frequency, determined by the maximum frequency of propagating ridge CSWs.
Crucially, almost all eigenmodes associated with frequencies below ωridge clearly displayed
waves along the ridge, suggesting the chosen ridge geometry supports a sufficiently conti-
nus spectra of waves to be well approximated by the simpler infinite ridge case. However,

Figure 10: Example eigenmodes of the numerical 2D system categorized as (upper) island
only modes (ωn=6,m=1 = −0.2256 shown), and (lower) island and ridge modes (ωn=10,m=2 =
−0.1152 shown). Panels show Φ(r, θ) over the full domain (left), and a zoomed subset of
the domain to assist identification of island wave numbers (center). Black contour shows
the boundary of the region with varying bathymetry. Examples taken from the frac = 0.5
experiments. The mean Φ(r) (averaged over θ) has been removed to filter out the n = 0
mode, which is not constrained to decay with r in the numerical problem.
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Figure 11: Manual categorization of eigenmodes into island only (magenta circles), island
and ridge (cyan circles) and ambiguous (black crosses) modes. Computed eigenmodes as-
sociated with frequencies lower (in magnitude) than approximately ω = 0.1 are not shown
due to increasing difficulty of identifying n and m values as they become poorly resolved.
Illustrations on the lower right visualise the difference between waves that do (magenta)
and do not (cyan) propagate along the ridge.

Figure 11 suggests the analytical ωridge may systematically underestimate the magnitude of
this threshold as ridge waves were associated with frequencies greater than ωridge in both
the frac = 0.5 and frac = 0.7 cases.

As a secondary, more quantitative, indicator of whether a given island mode is associated
with a wave along the ridge, we compute the kinetic energy of the wave field

KE = ∇Φ · ∇Φ∗ (47)

where { }∗ indicates the complex conjugate, and compare the total KE on the ridge to
the total KE off the ridge between r = 1 and r = Rs. The percentage of KE concen-
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trated over the ridge increases as frequency decreases (Figure 12) and, by extension, as
island and ridge wavenumbers increase. Modes with frequency ω < ωridge have, on aver-
age, 82%(±12%) of KE between r = 1 and r = Rs on the ridge, while for modes with
frequency ω > ωridge have 47%(±16%) of KE on the ridge. The transition across ωridge is
not abrupt, possibly associated with ambiguous modes near the transition and the potential
systematic underestimation of ωridge. However, the concentration of kinetic energy on the
ridge at lower frequencies generally supports their classification as ridge modes in Figure 11.

Figure 12: Kinetic energy (47) over the ridge between r = 1 and r = Rs as a fraction of the
total kinetic energy in that radial band for the first 40 eigenvalues of our system. Frequencies
are expressed relative to the analytically predicted maximum frequency permitted on each
ridge.

As a final note on the effect of bathymetric parameters, the bathymetry around Iceland
(Figure 1) suggests a normalized shelf depth of ∼ 0.25, a normalized ridge depth of ∼ 0.5
(i.e. frac ∼ 0.5), with Ri close to 1. We noted in Section 3 that increasing α whilst
holding h0 constant (an effect of increasing Ri) acts to pull the frequency of island modes
upwards towards the maximum magnitude frequency sustained by the island. Thus, we
would expect more island modes above ωridge in a system with more Iceland-like parameter
choices (Figure 13).

6 Discussion

Based on the eigenvalue problems considered, we find that a symmetric island can sus-
tain only a discrete set of trapped barotropic CSWs with alongshore wavenumbers that fit
precisely into the island circumference, thus exhibiting a resonance (Section 3). By con-
trast, infinite ridges may sustain CSWs at a continuum of frequencies below some maximum
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Figure 13: Effect of increasing Ri whilst holding the shelf depth constant, thus making the
island shelf more narrow and steep, on the island dispersion relation. Here frac = 0.5, the
minimum shelf depth is set to h0/H = 0.25, and α is determined as a function of h0/H and
Ri.

value (Section 4). When the continental slope of an island is intersected by a marine ridge
with a maximum height less than the island’s shelf height, island modes that oscillate at
frequencies below the maximum frequency sustained along the ridge act as a wavemaker,
generating waves that propagate along the ridge (Section 5). This anticipated behavior is
well supported by numerical results, though further investigation is required to understand
why waves are supported along the ridge at slightly higher frequencies than the analytical
problem suggests possible.

If the intersecting ridge were truly infinite, we would expect these ridge waves to extract
all available energy from their associated island modes and propagate said energy into the
far field, such that lower frequency modes drop out of the island wavefield. In this case,
only a handful of island modes above a threshold frequency would be truly trapped, poten-
tially rendering them easier to identify in observations and general circulation models. In
our numerical eigenvalue problem (Section 5) we are confined to studying a long but finite
intersecting ridge. Due to its finite extent, along ridge waves propagate around the ridge
and back towards the island, returning energy to associated island modes such that these
modes do not fall out of the eigenvalue problem. An obvious next step would be reformulate
our eigenvalue problem as a time dependent, forced (e.g. by broadband Ekman pumping)
model with viscous dissipation, and assess whether or not along ridge waves interrupt the
resonance of and extract energy from low frequency island trapped modes, reducing their
prominence in frequency spectra.

At this stage, it remains unclear whether the intuition gained from considering an in-
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finite ridge translates well to the real geometry of Iceland, where abutting marine ridges
are finite. The current interpretation positions the trapped island modes as wavemakers for
along ridge waves that may divert energy away from the island. It is possible that the real
system behaves more like a convolution of two island-like continental margins of different
heights, each with discrete dispersion relations, than an infinite ridge with a continuous
spectra abutting a symmetric island with a discrete spectra. In this case we might expect
modes present on the ‘ridges’ to be constrained to fit precisely into the perimeter of the
combined island-ridge structure, whilst that does not appear to be a constraint in the geom-
etry considered here. Exploring this possibility by considering shorter ridge lengths within
the current framework may be illustrative, and eventually spectra from observations and
general circulation models may be compared to end member results of the two geometries.

It should be noted the CSW equations used throughout this study approximate the
coastal oceans as inviscid and barotropic (Section 2). Including viscous dissipation may
be feasible in the numerical problem [18], however including stratification would inflate the
system to a 3D eigenvalue problem, a considerable increase in computational complexity.
Both the inviscid and barotropic assumptions might be expected to fail in certain circum-
stances such as when strong currents pass sharp capes or when the coastal flow is strongly
stratified. However, for small amplitude CSWs in quiescent flow along smoothly varying
coastlines, viscous separation is negligible. Further, most CTW disturbance energy is con-
centrated in the modes with the least vertical structure, which are well described by the
purely barotropic constant density model [14]. Nonetheless, the results presented here may
be incomplete on account of these omissions. The inclusion of stratification, for example,
is expected to increase the magnitude of supported CSW frequencies [10].

7 Conclusion

Motivated by the setting of Iceland, we investigated the effect of abutting marine ridges
on the infinite discrete set of subinertial barotropic coastal trapped waves expected to
resonate around islands. We utilized analytically derived dispersion relations for CSWs
along simple geometries to inform our approach to the more complex 2D numerical problem,
which was solved using spectral methods. This hierarchical approach substantially aided
the interpretation of large, complex 2D eigenvalue problem output. Whilst the geometry
considered is highly idealized relative to the bathymetry surrounding Iceland and the CSW
model used makes a number of simplifying assumptions, our results suggest a potential
mechanism for scattering low frequency CSWs away from Iceland-like islands. This may
simplify the subinertial wave field around islands and reduce the number of resonant island
trapped wave frequencies to be sought in observed spectra from infinitely many to a handful.
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Theory and Experiments on Deformable Porous Media: Wave

Damping and Constitutive Relations

Tilly Woods

1 Introduction

A hydrogel is a soft, poroelastic material formed of a mixture of polymer chains and water
molecules. A typical hydrogel starts off as a small (e.g., 1mm diameter), dry, solid bead,
forming a network of cross-linked polymer chains. When placed in water, this bead absorbs
water and swells, increasing its volume up to about 100 times. The result is a larger, soft,
squishy bead referred to as a hydrogel. When a swollen hydrogel is left out in the air, it
will gradually deswell, ejecting water and shrinking in size ([2]).

Hydrogels have many applications, due to their soft and absorbent properties, for exam-
ple in contact lenses, nappies and wound dressings. They can also be used as a slow release
of water for plants, and for biomedical applications such as tissue engineering (e.g., [1, 5]).

Another use for hydrogels is to form a laboratory model of a deformable porous medium,
to improve understanding of real-world materials. We will focus on two-phase deformable
porous media - a mixture of solid and fluid in which the solid structure can deform, for
example seabed sediment or a saturated sponge. In a laboratory, a simple way to produce
a two-phase deformable porous medium is to mix swollen hydrogels with water, creating a
‘pack’ of hydrogels. In this setup, the hydrogels are treated as the solid grains (ignoring the
fact that they themselves are formed of a mixture of solid and water), and the water is the
liquid.

In this work, we first, in section 2, consider the observed phenomenon that the presence
of a layer of floating particles causes water waves to come to rest in finite time rather than
decaying exponentially (e.g., [15, 16]). We observe this behaviour experimentally, using
hydrogels as the floating particles, and attempt to capture the same results theoretically by
modelling the layer of floating particles as a two-phase deformable porous medium.

In section 3, we turn to understanding the properties of a pack of hydrogels themselves.
A crucial part of writing down a theoretical model for a deformable material, such as that
in section 2, is a constitutive relation, which give us information about how the material de-
forms. That is, it gives a relationship between the material stresses and strains/strain rates,
and depends on the specific material being used. Here, we carry out some one-dimensional
compression experiments to test the suitability of the particular one-dimensional elastovis-
coplastic constitutive relation proposed by [14] for a pack of hydrogels. Along the way,
we encounter some interesting behaviour suggesting the potential degradation of hydrogels
under repeated loadings.
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2 ‘Sloshing’ - Damping of Water Waves in Finite Time in the
Presence of a Floating Particle Layer

Incoming ocean waves can cause the break up of sea ice around the poles. Waves can
propagate hundreds of kilometres through the marginal ice zone (MIZ), causing break-up of
the ice floes forming it. Smaller ice floes get more easily carried around by ocean currents,
exposing more ocean to the atmosphere, leading to more heat exchange and increased ice
melt ([7]).

To better understand the break up and loss of sea ice, we need to understand how
far ocean waves propagate through sea ice. It has been previously assumed that decay is
exponential, as is the case for the decay of waves with no floating particles/ice. However,
it has more recently been suggested that observations suggest decay is in finite time (e.g.,
[15]). An everyday example of this is the way in which waves in a cup of water come to a
rapid stop when there are ice cubes on top.

Carrying out lab experiments with floating ice is complicated by the fact that ice melts.
A simplification is to use floating particles, such as hydrogels, which do not undergo phase
change. This is reasonable because the melting of sea ice is unlikely to be important over
the wave damping timescales. For example, [16] carried out experiments using hydrogels.
These were floated on saltwater in a rectangular tank. Standing waves were then created by
lifting and dropping one corner of the tank. Measuring the decay of amplitude of standing
waves in time is easier than measuring the decay of propagating waves in space. These
experiments showed that the waves, when a floating hydrogel layer was present, decayed in
a finite time.

In addition to capturing the finite-time decay experimentally, it is desirable to develop a
theoretical framework that can help us explain why the presence of a floating layer changes
the rate at which the waves decay. Using a discrete model for the floating particles would
be challenging. An easier approach would be to use a continuum model. However, the
experiments carried out by [16] used a small number of layers of ‘large’ hydrogel particles
(0.8-1.6 cm diameter), making a continuum approximation questionable. Therefore, we
carried out experiments very similar to those done by [16] but with a larger number of layers
of smaller hydrogels particles (7.0-7.5 mm), so the floating layer can slightly more reasonably
be thought of as a continuum. We found that our experimental setup with smaller hydrogel
particles still exhibits finite-time decay of waves, suggesting that a continuum two-phase
model might be able to capture the behaviour too.

2.1 Experiments

The experimental setup is shown in Figure 1. Seawater of density 1.022 g/cm3 was used
to fill a rectangular tank of base 18.1× 23.9 cm. A small amount of dish liquid was added
to reduce surface tension, and green food colouring was added to make the water surface
easier to identify. One thousand g of swollen hydrogels (a ratio 19:1 of clear to orange) of
diameter ∼ 7.0 − 7.5 mm were added to the saltwater such that the total depth was 20
cm. The hydrogels were swollen in fresh water so had density close to fresh water (∼ 1.009
g/cm3 for the clear, ∼ 1.011 g/cm3 for the orange), meaning that they formed a floating
layer on top of the denser seawater. This layer was about 3.5 cm thick and was formed of
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Figure 1: Setup for the ‘sloshing’ experiments.

Figure 2: Snapshots of a ‘sloshing’ experiment taken every 0.125 s starting about 1 s after
the tank had been clamping in place. The snapshots are labelled in order from 1 to 6.

Figure 3: Snapshots taken at the start and end of a ‘sloshing’ experiment: as the standing
wave has just been set up (the same as panel 1 from Figure 2) and once the wave amplitude
has decayed to zero.
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Figure 8: Setup for ‘sloshing’ theory.

2.2.1 Water layer equations

Assuming that the water layer 0 < z < h(x, t) is incompressible, the layer is governed by
the incompressible Navier Stokes equations

∇ · u = 0, (3)

ρf

(
∂u

∂t
+ u · ∇u

)
= −∇p̃− ρfgez, (4)

where u = (u,w) is the velocity in the water layer, p̃ is the pressure in the water layer, g
is the acceleration due to gravity, ρf is the density of water, and ez is the upward vertical
unit vector.

2.2.2 Two-phase region equations

The two-phase region is composed of a fluid phase (water) of density ρf and velocity uf =
(uf , wf ), and a solid phase of density ρs and velocity us = (us, ws). The porosity ϕ is the
volume fraction of fluid, with the solid fraction being Φ = 1− ϕ. The pressure of the fluid
(the pore pressure) is p.

The mass conservation equations for the fluid and solid phases are

ϕt +
(
ϕuf

)
x
+
(
ϕwf

)
z
= 0, (5)

(1− ϕ)t +
(
(1− ϕ)us

)
x
+
(
(1− ϕ)ws

)
z
= 0, (6)

respectively. The flux of the fluid relative to the solid is given by Darcy’s law,

ϕ(uf − us) = −k

µ
px, (7)

ϕ(wf − ws) = −k

µ

(
pz + ρfg

)
, (8)

where k is the permeability and µ is the fluid viscosity. The bulk momentum conservation
equations are (

ρub
)
t
+
(
ρu2b
)
x
+
(
ρwbub

)
z
=
(
σxx − p

)
x
+
(
σxz
)
z
, (9)
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(
ρwb

)
t
+
(
ρubwb

)
x
+
(
ρw2

b

)
z
=
(
σzz − p

)
z
+
(
σxz
)
x
− ρg, (10)

where σ is the solid effective stress tensor, which can be decomposed as σ = −PeI + τ ,
where Pe is the effective solid stress and τ is the (traceless) deviatoric stress tensor. We
have also introduced the bulk density

ρ = ρfϕ+ ϕs(1− ϕ) (11)

and the bulk velocity vb = (ub, vb), which satisfies

ρvb = ρfϕvf + ρs(1− ϕ)vs. (12)

Note that the bulk density and velocity satisfy the bulk mass conservation equation

ρt +
(
ρub
)
x
+
(
ρwb

)
z
= 0. (13)

2.2.3 Boundary conditions

The top surface z = s(x, t) = h(x, t) + d(x, t) is a common surface for both the fluid and
the solid, so we have the two kinematic conditions

st + ufsx = wf at z = s, (14)

st + ussx = ws at z = s. (15)

The surface is also stress-free, so(
σ − pI

)
n = 0 at z = s, (16)

where

n =
(−sx, 1)√
s2x + 1

(17)

is the outward unit normal to the surface z = s. In components, the stress-free condition
can be written as

σxz − sx(σxx − p) = 0 at z = s, (18)

σzz − p− sxσxz = 0 at z = s. (19)

In addition to the four boundary conditions (14), (15), (18), (19), we also need an additional
stress to be exerted on each phase to ensure that z = s remains a shared material surface
for both phases. For example, capillary forces to resist the solid grains (e.g., hydrogels)
dropping below the water surface, or the localised body force of gravity to resist grains
emerging above the water surface. Whatever the condition is, it means that we cannot
impose any other stress conditions, in particular, we cannot impose that the pore pressure
p is atmospheric.

The lower surface z = h(x, t) of the two-phase region is the interface between the two-
phase region and the water-only region, and is a material surface for the solid but not the
fluid. Water can flow into and out of the porous material. The kinematic condition for the
solid is

ht + ushx = ws at z = h. (20)
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We also have continuity of pressure,

p = p̃ = P (x, t) at z = h, (21)

where, P (x, t) is the shared value of the pore pressure p and the water pressure p̃ at the
interface. We also require conditions for the flux of mass and momentum across the interface,
which arise due to the flow of water across the interface. These come in the form of jump
conditions given by [4]. Firstly, there must be no jump in normal mass flux relative to the
interface z = h, i.e., [

ρ(vb − vi)
]
z=h+ · n =

[
ρ(vb − vi)

]
z=h− · n, (22)

where

n =
(−hx, 1)√
h2x + 1

(23)

is the upward unit normal to z = h, and

vi = (0, ht) (24)

is the velocity of the interface. By using the kinematic condition (20), the mass flux condi-
tion simplifies to

ϕ
(
wf − ufhx − ht

)
= w − uhx − ht at z = h. (25)

Similarly, the jump condition for the momentum given by [4] is[
ρvb(vb − vi) + σ − pI

]
z=h+ · n =

[
ρfv(v − vi)− p̃I

]
z=h+ · n, (26)

which simplifies to

ρfϕ
(
wf − ufhx − ht

)
(vb − v) + σ(−hx, 1) = 0 at z = h, (27)

by using the kinematic condition (20) and mass flux condition (25).The condition (27) says
that when there is a flux of water ϕ(wf−ufhx−ht) into the porous medium, the momentum
excess or deficit ρf (vb − v) exerts a force on the solid. In components,

σxz − hxσxx + ρfϕ(wf − ufhx − ht)(ub − u) = 0 at z = h, (28)

σzz − hxσxz + ρfϕ(wf − ufhx − ht)(wb − w) = 0 at z = h. (29)

2.2.4 Shallow water equations

To simplify the problem in the water layer, we assume that the water layer is relatively shal-
low (H ≪ L), and hence use the shallow water approximation, in which vertical derivatives
are larger than horizontal derivatives (∂/∂z ≫ ∂/∂x) and vertical velocities are smaller than
horizontal velocities (w ≪ u). It is also assumed that the the horizontal velocity u = u(x, t)
is independent of z. The shallow-water water pressure p̃ is hydrostatic,

p̃(x, t) = ρfg(h− z) + P (x, t), (30)
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and the horizontal component of the momentum equation (4) becomes

ρf
(
ut + uux

)
= −ρfghx − Px. (31)

Depth-integrating the continuity equation (3) and using that there is no vertical velocity at
z = 0 gives

ht +
(
hu
)
x
= −w|z=h. (32)

We also assume that the two-phase layer is shallow (D << L), but we do not make any
assumptions about the relative thicknesses of the two layers.

2.2.5 Membrane model

The two-phase equations can be simplified by making a further approximation. We choose
to take the membrane limit, but note that this is just one possible approximation (with
others including the bending limit, for example). The membrane limit can be thought of as
the two-phase layer stretching horizontally and thinning vertically. The layer is dominated
by extensional (rather than shear) stresses. We assume that horizontal speeds can be much
greater than vertical ones, and vertical derivatives are greater than horizontal ones. This
leads to an imbalance in the two components (7) and (8) of Darcy’s law. To respect both the
derivative and velocity assumptions, only one of the two components can balance. There
are two options:

• Version 1: horizontal components balance, giving

ϕ(uf − us) = −k

µ
px, (33)

0 = −k

µ

(
pz + ρfg

)
, (34)

i.e., there is Darcy flow horizontally and the pore pressure is hydrostatic.

• Version 2: vertical components balance, giving

ϕ(uf − us) = 0, (35)

ϕ(wf − ws) = −k

µ

(
pz + ρfg

)
, (36)

i.e., there is no slip between the solid and the fluid, and there is Darcy flow in the
vertical.

In what follows, we will use version 1.
For slippery particles (like hydrogels), we expect there to be little shear or shear stress

(i.e., |σxz| ≪ |σxx|, |σzz|) and the normal effective stresses to be dominated by the effective
pressure (i.e., σxx ∼ σzz ∼ −Pe). The bulk momentum equations (9) and (10) become(

ρub
)
t
+
(
ρu2b
)
x
+
(
ρwbub

)
z
= −

(
Pe + p

)
x
+
(
σxz
)
z
, (37)

0 = −
(
Pe + p

)
z
− ρg. (38)
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The stress conditions (18), (19), (28) and (29) become

σxz + sx(Pe + p) = 0 at z = s, (39)

−Pe − p = 0 at z = s, (40)

σxz + hxPe + ρfϕ(wf − ufhx − ht)(ub − u) = 0 at z = h, (41)

−Pe = 0 at z = h. (42)

To close the problem, we need a constitutive law for the solid effective stress Pe. A
simple case is to take

Pe = Pe(ϕ) = m(ϕg − ϕ), (43)

for ϕ < ϕg, based on the yield stress used by [13] for suspensions of cellulose fibres in water.
Here ϕg is the value of the porosity at the ‘gel point’, that is, the porosity at which there
is no stress on the solid (Pe(ϕg) = 0). We can simplify the equations further by depth-
integrating and assuming that the density difference ρf − ρs is small. Substituting (43)
into the vertical momentum equation (38) and using vertical Darcy’s law (34) leads to an
equation for the porosity ϕ,

mϕz = −(ρf − ρs)(1− ϕ)g. (44)

Integrating, using the no-stress condition that ϕ = ϕg at z = h, gives

ϕ = 1− (1− ϕg)e
Γ(z−h) ≈ ϕg − (1− ϕg)Γ(z − h), (45)

for small density differences ρf − ρs, where

Γ =
(ρf − ρs)g

m
. (46)

The vertical Darcy’s law (34) tells us that the pore pressure is hydrostatic,

p = P (x, t) + ρfg(z − h). (47)

Integrating the vertical bulk momentum equation (38) gives

Pe + p =

∫ s

z
ρgdz. (48)

Evaluating this at z = h tells us the shared value of the pressure at the interface,

P (x, t) =

(
ρf ϕ̄+ ρs(1− ϕ̄)

)
gd, (49)

where

ϕ̄ =
1

d

∫ s

h
ϕdz = 1− (1− ϕg)

eΓd − 1

Γd
≈ ϕg −

1

2
(1− ϕg)Γd (50)

is the depth-integrated porosity over the two-phase region, with the approximation being
for small density differences.
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We can simplify the form of the horizontal solid velocity us by enforcing that the shear
stress is small (|σxz| ≪ |σxx|). Let ϵ = D/L, which we are assuming to be small. It is
reasonable to expect that the shear strain rate γ̇xz =

1
ϵusz+ ϵwsx should be small compared

to the normal strain rate γ̇xx = 2usx when |σxz| ≪ |σxx|. We can make the shear strain
rate small by enforcing that usz = 0, i.e., that us is independent of z, us ≈ Us(x, t). Using
this assumption, the horizontal Darcy’s law (33) tells us

ϕuf ≈ ϕUs −
k

µ

(
Px − ρfghx

)
. (51)

Finally, depth-integrating the mass and momentum conservation equations (5), (6) and (37)
gives (

ϕ̄d
)
t
+
(
ϕ̄dUs −

k

µ

(
Px − ρfghx

)
d
)
x
− ht − (hu)x = 0, (52)(

(1− ϕ̄)d
)
t
+
(
(1− ϕ̄)Usd

)
x
= 0, (53)[

ρf

(
ϕ̄Usd−

k

µ

(
Px − ρfghx

)
d
)
+ ρs(1− ϕ̄)Usd

]
t

+

[(
ρf ϕ̄+ ρs(1− ϕ̄)

)
U2
s d+

ρfk

µ
(Px − ρfghx)

(∫ s

h

1

ρfϕ+ ρs(1− ϕ)
dz − 2Usd

)]
x

+
[
ρwbub

]s
z=h

= −
[
md(ϕg − ϕ̄) + Pd+

1

2
ρfgd

2

]
x

+
[
σxz
]s
z=h

(54)

By substituting (49) for P (x, t), (45) for ϕ and (50) for ϕ̄ into (52), (53) and (54), apply-
ing the boundary conditions and invoking the small density difference approximation (i.e.,
assuming Γ is small), we can reduce (31), (52), (53) and (54) to four equations for u, h, d
and Us, giving us a closed system.

2.2.6 Method for understanding the finite-time decay theoretically

We hope that our relatively simple system of equations will provide us with a way to
understand the finite-time decay of water waves under a layer of floating particles observed
in experiments. Although not done yet, the future steps to take will be outlined here.

Firstly, our theoretical model can be used to look at shallow water waves, relevant to the
sloshing water wave problem. Our main aim is to capture the decay rate of the amplitude
of these waves. This can be done by formulating an energy equation from our system
of equations (without having to solve the equations). Each term in the energy equation
will look like some power of the wave amplitude A. If we were to consider the water-only
problem without the floating two-phase layer, we would get an energy equation that looks
something like

d

dt
A2 = −αA2, (55)

which tells us that the amplitude decays like A2 ∼ e−αt. We hope that the energy formula-
tion from our two-phase floating layer problem will lead to there being an additional term
in the right-hand side with a smaller power of A that will dominate for smaller amplitudes.
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In particular, the presence of a term of the form A(2q−1)/2 will lead to the amplitude be-
having like A ∼ (ts − t)q for small enough amplitudes, which is the behaviour observed in
the experiments. The extra term in the energy equation will come from dissipation terms
due to the presence of the floating layer. Carrying out the analysis will enable us to say
which dissipative processes in particular are causing this presence of the term in the energy
equation which leads to the damping of waves in finite time.

3 One-dimensional Constitutive Relation and Compressions

3.1 Constitutive relation model

When modelling a saturated pack of hydrogels, we need a constitutive law to close the
system. The constitutive law gives a relationship between the stress σ and the strain
e and or strain rates ė. The traditional description of a deformable porous medium is
poroelasticity ([3]). This assumes that deformation is purely elastic. However, experiments
looking at flow-driven deformation of a pack of hydrogels suggest that (1) the timescales
suggested by an elastic model are too short, suggesting there is also a viscous component of
the deformation ([6]), and that (2) particle rearrangement (irreversible, plastic deformation)
also plays a role ([9]). Motivated by this, one proposed one-dimensional constitutive relation
for a saturated pack of hydrogels is the elastoviscoplastic relation for the effective solid stress
(compressive) Pe suggested by [14]:

1

ε(Φ)

dPe

dt
+

1

Λ(Φ)
max

(
0,

|Pe| − Py(Φ)

|Pe|

)
Pe = −ė, (56)

where ė is the strain rate (tensile), ε(Φ) is the bulk (elastic) modulus, Λ(Φ) is the bulk
viscosity and Py(Φ) is the compressive, plastic yield stress. The material deforms purely
elastically when |Pe| < Py (the material is unyielded). When |Pe| > Py (the material is
yielded), there is rate-dependent plastic deformation too. The strain rate ė comes from
how we deform the material (how the surface height h changes in the one-dimensional setup
shown in Figure 9), and can be expressed as

ė =
ḣ

h
, (57)

where h is the thickness of the hydrogel layer. The strain rate can also be expressed in
terms of the solid fraction Φ = 1− ϕ by deriving a relationship between h and Φ from the
global one-dimensional solid mass conservation equation. Since the solid fraction is uniform
under mechanical compression (e.g., [12]), Φ is independent of z. Hence, the global solid
mass conservation is simply

hΦ = h0Φ0, (58)

where h0 and Φ0 are the initial layer thickness and solid fraction, respectively. Using this
relationship, the strain rate in terms of the solid fraction Φ is

ė =
ḣ

h
= − Φ̇

Φ
. (59)
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Figure 9: The experimental setup for the compression tests. The red dashed line is an
illustration of the starting position of the bottom of the plunger (referred to as the origin,
13.1 cm above the base of the tank). x is the distance of the plunger below the origin. h is
the thickness of the hydrogel layer.

For a given deformation, the change in the layer thickness is controlled and known, and
hence so is the strain rate ė. On the other hand, ε(Φ), Λ(Φ) and Py(Φ) are unknown
parametric functions of the solid fraction Φ (or equivalently the porosity ϕ) which must be
determined empirically. This can be done by carrying out suitable compression tests which
isolate elastic, rate dependent and plastic behaviour to calculate ε, Λ and Py, respectively.

3.2 Compression tests

In this section, we will describe the experimental setup used to fit the parametric functions
in the elastoviscoplastic constitutive relation. However, before turning to the experimental
protocols used to extract the parametric functions, we first use the same setup (described
below) to carry out some simple one-dimensional compression tests to assess the repro-
ducibility of our experiments. The aim was to see if repeating the same experiment leads
to the same results and whether there is a dependence on the speed at which the hydrogels
are compressed. We will come back to the constitutive relation in section 3.3.

The setup for the compression tests is shown in Figure 9. We put a saturated mixture of
hydrogels and water into a cylindrical tank of 24.0 cm diameter. The pack of hydrogels was
compressed from above by a plunger: a disc of diameter slightly smaller than the tank. The
disc had holes smaller than the diameter of the hydrogels drilled into it. The holes and the
gap around the edge act to reduce the resistance of the plunger moving through the water,
by letting through water but not hydrogels. The plunger was linked to a stepper motor
that could be controlled by a computer, allowing speeds as low as 0.01 mm/s. The tank
was placed on top of some weighing scales to allow the load to be measured as the hydrogel
pack was compressed by the action of the stepper motor. The scales output readings to the
computer every 0.1 s, and had precision of 0.1 g. The load (Pa) is calculated from the mass
M (kg) as load = Mg/A, where g = 9.81 m/s2 is acceleration due to gravity and A = πr2

is the area of the base of the tank (m2), with r = 0.12 m being the radius.
Various batches of hydrogels were used for the compression tests: batches 3, 5 and 6.

All are composed of approximately 3450 g of swollen hydrogels of diameter ∼ 7.0 − 7.5
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mm (∼ 3280 g clear, ∼ 170 g orange) mixed with 3000 g fresh water. The hydrogels are
the same type used in section 2.1. Calculating the mass of the drained, swollen hydrogels
accurately is challenging because it is very difficult to ensure that all the water has been
drained away, introducing considerable error.

All the compression tests started with the plunger submerged in the water but not
touching the hydrogels, at a height of 13.1 cm above the bottom of the tank. This position
will be referred to as the origin, with x being the distance of the plunger below the origin.
As a note, before the plunger makes contact with the hydrogels, the load looks to increase
linearly at a slow rate. This is due to more of the plunger becoming submerged, which
raises the water level and hence the centre of mass of the setup on the scales. This in turn
slightly increases the load. We have verified that the same linear increase in load is observed
when the experiment is repeated with only water, no hydrogels. In all of the compression
test plots shown, the water-only load has been subtracted from the load measured in the
compression tests.

In the tests with hydrogel batch 3 (see Figure 10), the plunger was then lowered by 20
mm at a fixed speed of 0.1 mm/s, then held in place for 40 seconds before the load was
released. Between experiments, the setup was reset by raising the plunger out of the tank,
inserting one end of some plastic tubing into the hydrogel pack and blowing air through it
to mix up the hydrogels using the resulting bubble motion. The plunger was then lowered
to the origin and the hydrogels setup was allowed to settle for 5 minutes (until the reading
on the scales stabilised). Once stabilised, the scales were tared and the next compression
test commenced. The experiments were carried out at roughly the same temperature to
ensure the results were not affected by any temperature dependence.

Figure 10 shows the load against position of the plunger below the origin for the batch
3 compression tests described above. Twenty different runs are shown, labelled in the
order they were carried out. We see from this that there is a general trend of the load
decreasing as more runs are carried out. The fact that the hydrogel pack is mixed up
between successive runs rules out that the particles are getting more and more tightly
packed (due to particle rearrangements) each run. An alternative explanation could be that
water is being squeezed out the of the hydrogels when they are under load, and that the
hydrogels do not have enough time to fully reswell between runs. However, the decreasing
trend persists even when the hydrogels are left for multiple days to recover between runs
(5 days between solid and dashed lines and 2 between dashed and dotted in Figure 10),
which should be plenty of time. Therefore, we propose that this decreasing trend could be
due to the hydrogels becoming permanently damaged by the applied loads. In particular,
we suggest that the polymer chains forming the solid skeleton of the hydrogels are being
damaged. Some hydrogels are designed to degrade in this way, for example for use in
biomedical applications. The polymer chains or cross-links between them in such hydrogels
break down under certain conditions, such as the presence of certain chemicals (e.g., [11]).
The polymer chains themselves can also be chosen to influence the degradation ([8]).

If the hydrogels are getting damaged by loading, it could be that applying a lower load
would prevent this damage. To investigate this, we carried out some compression tests at
a lower load with a new batch of hydrogels (batch 5). The results are shown in Figure 11.
The compressions were the same as for batch 3, but with the plunger only being lowered
by 15 mm, not 20 mm. Also, the load was not held before being released for the first 5
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compression tests. Figure 13 shows the maximum load (red stars) reached in 19 back-to-
back compressions where the plunger was lowered by 20 mm. The load decreases over runs,
looking like it might be stabilising as more runs are carried out. The reason for the decrease
in load in the back-to-back runs is the hydrogels becoming more and more tightly packed
each run, due to irreversible particle rearrangements. The grey line in Figure 13 comes from
fitting a straight line to the log-log plot (right panel). This suggests that the maximum
load decreases like (number of runs)−0.14.

3.3 Determining Py, ε and Λ

We now move on to look at how more complicated protocols of loading and unloading, rather
than just simple compressions, can be used to determine the functions Py(Φ), ε(Φ) and Λ(Φ)
in the elastoviscoplastic constitutive law (56). However, we should treat these results with
caution; our compression tests suggest that repeated loading changes the material properties
of the hydrogel pack, so the functions we find are likely to be different for the same batch
of hydrogels after repeated loadings.

Firstly, we focus on Py. Under compression, the maximum term in the elastoviscoplastic
relation (56) is

(
Pe − Py(Φ)

)
/Λ. If we also consider quasi-steady compressions, the dPe/dt

and ė terms are small and can be neglected, so the constitutive relation becomes

Pe = Py(Φ), (60)

that is, the material follows the yield stress curve. Hence, the load curve that results from
quasi-steady compressions (like those studied in section 3.2) gives us the yield function
Py(Φ). Figure 14 shows an example experimental Py, with fits (by eye) for smaller and
larger Φ shown in black and red. These suggest that Py(Φ) ∼ (Φ− 0.6) for smaller Φ and
Py(Φ) ∼ (Φ− 0.6)5 for larger Φ.

To determine the elastic modulus ε, we consider quasi-steady unloadings: we carry out
quasi-steady loading, as for finding Py, but unload and reload by small amounts along the
way, as shown in Figure 15. During the unloading sections, the effective stress Pe drops
below the yield stress and the material reverts to being unyielded, exhibiting purely elastic
behaviour. The constitutive law (56) becomes

dPe

dt
= −ε(Φ)ė. (61)

Using the expression (59) for the strain rate in terms of the solid fraction, this can be
rewritten as

ε =
dPe

dΦ
Φ. (62)

Hence, the bulk elastic modulus ε can be calculated from the slope of the unloading sections
of the quasi-steady load curve. Carrying out small unloadings at several different values of
solid fraction allows the function ε(Φ) to be reconstructed. For the example in Figure 15,
the rough fit we find in ε(Φ) = 335(Φ− 0.635) kPa.

The bulk viscosity Λ is associated with rate-dependent deformation. Therefore quasi-
steady loading will not allow us to extract Λ. One method to include rate dependence is to
consider a ‘step change’: quickly compress the material by a small amount then hold the
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4 Conclusion

This work has been centered around the use of a pack of hydrogels saturated in water as a
model for a two-phase deformable porous media, and how this can help form a link between
observations, experiments and theory.

Firstly, we studied the observed finite-time decay of water waves under a layer of floating
particles. We carried out experiments using hydrogels as the floating particles (based on
experiments by [16]) and reproduced the finite-time decay rate found by [16]. Informed by
these experimental results, we developed a theoretical framework to try and capture the
finite time wave damping, modelling the floating layer as a two-phase deformable porous
material and taking the membrane limit. It is hoped that this framework will enable us to
write down an energy equation that will demonstrate the finite-time decay found in exper-
iments and allow us to attribute this behaviour to certain physical dissipative processes.

In the second part of this work, we carried out one-dimensional compression tests on a
saturated pack of hydrogels, motivated by assessing the applicability of the one-dimensional
elastoviscoplastic constitutive relation proposed by [14]. Our aim was to use appropriate
loading and unloading protocols to fit the parametric functions in the elastoviscoplastic
model. However, when carrying out simple compression tests to assess reproducibility, we
found that the load seems to decrease across repeated compressions, suggesting that the
hydrogels are being irreversibly damaged by the load. It was unclear whether or not lower
loads led to the same affect. Either way, it makes it difficult to say anything concrete about
the properties of the hydrogel pack, given that the tests used to determine the properties
seem to cause the properties themselves to change.
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Understanding Weakly Nonlinear Wave Interaction Using

Dynamic Mode Decomposition

Claire Valva

Koopman operator formalism allows the linear dissection of nonlinear dynamical systems
into coherent structures with characteristic evolution frequencies via the translation from
state variables to an embedding of the state variable into an infinite space of observables
[4]. Dynamic mode decomposition (DMD) provides approximate information about the
spectrum of the Koopman operator via a straightforward algorithm (A.1). Similar to the
decomposition that Koopman operators provide, DMD is a modal decomposition, where a
high dimensional spatiotemporal signal is decomposed into dynamic elements: correspond-
ing spatial modes, scalar amplitudes, and temporal signals that can be recovered with linear
superposition.

Uses of DMD and related algorithms [20, 10, 19, 21] have been very sucessful in analysing
both experimental and observational data. The algorithm has been used to significant
success in a variety of applications including experimental fluid dynamics and climate science
[22, 12, 9]. DMD is particularly effective in the analysis of flows where the evolution of
observables is controlled by a small number of dynamic processes.

To our knowledge, weakly nonlinearly interacting waves have not yet been studied with
DMD. We anticipate that DMD will be an effective way to analyze nonlinear wave inter-
action, particularly when we are interested in the interaction between a small number of
waves. Linear wave interaction can be completely explained by DMD due to the construc-
tion of the algorithm; by necessity, nonlinear wave interaction will be harder to understand,
particularly if the interaction is between waves of incommensurate frequencies. It will be
useful to detect and quantify nonlinear interaction from the results of dynamical mode de-
composition, but translating these qualities from linear dynamic components is nontrivial.

In this study, we will discuss a framework to analyze weakly nonlinear waves with DMD
using the Korteweg-de Vries (KdV) equation as a simple test case. We will give an overview
on the relevant equations and algorithms (section 1); discuss theoretical expectations and
difficulties for interpreting DMD results (section 2); test these ideas on numerical simula-
tions of KdV with varying amounts of expected nonlinearity (section 3); and discuss avenues
to expand and improve upon these ideas (section 4).
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conserved quantity of some kind. We would like to be able to write down the characteristic
frequencies and spatial wavenumbers of the system as well as detect the relative impacts
of linear and nonlinear interaction. We will discuss methods to achieve two primary goals:
characteristic frequency estimation, then the use of these frequencies combined with DMD
results to write down the terms of the θ function for KdV.

2.1 Frequency Estimation

We will first consider an extremely simple dynamical system (7), which characteristic fre-
quencies ωs and ωf with Ms and Mf respective harmonics.

x =

Ms∑
j=1

(
a

j!
cos(j · ωst))(1 +

Mf∑
k=1

(
A

k!
(cos(k · ωf t)))

y =

Ms∑
j=1

(
a

j!
cos(j · ωst))(1 +

Mf∑
k=1

(
A

k!
(sin(k · ωf t))) (7)

z =

Ms∑
j=1

(
a

j!
sin(j · ωst))

If Ms = Mf = 1, we can easily rewrite the above (with the use of a few trig) to get a
linear system with frequencies ωs + ωf , ωs − ωf , and ωs. Give sufficient data, DMD should
also capture all 3 frequencies. Similarly, for larger Ms and Mf we get many more integer
linear combinations of ωs and ωf that we expect to be captured by DMD1. Despite the
many eigenvalues of the system, it is parameterized by two fundamental frequencies ωs and
ωf that generate a lattice of eigenvalues.We will seek ways to identify the two (or more)
frequencies that generate an eigenvalue lattice given by DMD results.

2.1.1 Differentiating eigenfrequencies when N = 2

We will discuss two methods to identify the generating frequencies from DMD results when
we think there are two generating frequencies: the first of which uses the “eigenfrequency
island” pattern of the eigenvalue lattice (which occurs when the number of resolved eigenfre-
quencies is relatively small) and the second of which poses an iterative optimization problem
that is partially with an integer minimization algorithm called PSLQ. Ideally, not only do
we want to identify ωs and ωf , but for every sufficiently well-resolved λk which is an eigen-
frequency output of DMD, we would like to find Mf and Ms such that λk = Mfωf +Msωs.

(It is significantly more trivial to identify the wanted frequency when N = 1. One
possibility to estimate the wanted frequency is to take the difference of eigenvalues from
one another. This idea and uses of it are discussed in depth for finding periodic orbits in
turbulent flows in [16]).

1This discussion should be reminiscent of the eigenvalue lattice that is generated by the Koopman operator
discussed in 1.1.
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exponential of u and then apply the inverse Laplacian operator in Fourier space. We process 
50 time units of data with the DMD algorithm and the number of required delays vary with 
the initial conditions (generally more delays in the case where initial conditions have larger 
amplitudes).

In order to choose the well-resolved DMD modes needed to compute the 

coefficients of DMD, we use the dispersion relation for linearized KdV (ω = −k3) and 
the “eigenfrequency island” method to inform initial guesses as to the generating 
frequencies and the integer coefficients between each mode. We found that the 
computation of eigenfrequencies, corre-sponding spatial wavenumbers, and coefficients 
of B are fairly robust to the choice of modes (i.e. the λj, kj, and aj for each mode) 
required to compute B and as such, we will only discuss results from one selection of 
modes for each initial condition (1 mode when N = 1, 3 modes when N = 2). A 
sample selection of 3 well-resolved modes is shown in figure 2, where both the 
wavenumbers and frequencies are reasonable given the linear dispersion relation. Also, 
the computed frequencies and wavenumbers correspond the the same integer linear 
combinations of the generating frequencies and wavenumbers.

We compare the theta function reconstruction and original KdV time series by 
com-puting various statistics (mean, variance, maximum, and minimum) using a series 
length corresponding to 50 time units with the same temporal spacing. The θ function 
is repre-sented as a partial series where the summation (the range of m in 6) goes up 
to 8 terms, in which the summation of more terms will have a magnitude less than 
machine precision.

3.1 Data reconstruction from DMD when N = 1

We first attempt to reconstruct numerical solutions of KdV using a θ function representation 
with N = 1 degrees of freedom for initial conditions with varying amplitudes. In all 
of these experiments, the initial conditions are of the form u(x, 0) = A cos(3x) for 
some amplitude A. When A is very small, we expect solutions to behave as a 
traveling wave that satisfies ut − uxxx = 0, and as such, we expect the dispersion 

relation to behave as in the linear limit with a frequency of 33 = 27 and a spatial 
wavenumber of 3. When A becomes larger the linear theory will no longer be 
accurate. As A grows significantly (∼ O(1)), we would expect that that the theta 
function for one degree of freedom will no longer lead to a good approximation of the 
system.

As expected, when the amplitude of the initial condition is very small (A = −4e
− 5), the linear limit appears to apply quite well. The estimated frequency of the 
system was ω = 26.9999 ≈ 27 and the spatial mode was wavenumber 3. Additionally, 
the measured statistics of the original and reconstructed data are near identical (see 
table 1).

When the amplitude is increased, the linear limit becomes a less and less accurate 
guess. The increasing amplitude corresponded with a slowing of the flow, where the 
frequency that was ω = 27 when A = −4e− 5 slowing to ω < 20 for A of order 1. 
Figure 3 shows both a slowing down as well as DMD resolving additional harmonics 
of the generating frequency. When A = −4e − 5, the solution can be nearly 
completely explained by a single traveling wave, leading to one dominant DMD 
eigenfrequency in contrast to the larger amplitude cases. Here, the solution can no 
longer be explained by a single traveling wave and the interaction weakly nonlinear 
interaction between waves requires more DMD modes to be accurately explained.
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Figure 3: Comparison of eigenfrequencies obtained from DMD for KdV data with initial
condition of the form u(x, 0) = A cos(3x) where the amplitude A varies. eigenfrequencies
less than 150 and real part with magnitude less than 1 are plotted. All eigenfrequencies
obtained from DMD analysis for 50 time units and 5 delays. With increasing amplitude,
the generating frequency slows from the linear limit of 27 oscillations per time unit to
approximately 20 oscillations per time unit.

We find that the one degree of freedom approximation performs fairly well for an ampli-
tude A = −4e−1, where the reconstructed and original data have nearly identical variances
and extrema that barely differ (table 1) and are visually indistinguishable (figure 4). How-
ever, when A ∼ O(1), the approximation has both less variance than the original data and
does not achieve the same maxima. Visually this difference is also evident as some of the
fine scale details of the original solution are missing (figure 5), however the reconstruction
maintains the large scale attributes of the solution in both the dominant spatial wavenumber
and frequency.

Ultimately, in this case, using DMD to reconstruct solutions of KdV for an initial con-
dition with one wave mode is fairly successful method. The reconstructed solutions of the
theta function form are near perfect for flows of small amplitudes. For larger amplitudes, the
theta function captures the dominant features but misses small scale details. It is likely that
a theta function approximation with N > 1 could improve the accuracy of reconstructions
with larger amplitudes.
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3.2 Data reconstruction and wave interaction from DMD when N = 2

We can repeat the above analysis for solutions of KdV with initial conditions of the form
u(x, 0) = A1 cos(3x) + A2 cos(5x). In this case, we will reconstruct these solutions with a
theta function with N = 2 degrees of freedom. We anticipate some of the same patterns
as in the previous discussion: small A1, A2 will correspond with the propagation of two
traveling waves and the dispersion relation ω = −k3 (we will see ω = 27, 125 and k = 3, 5);
the flow slowing as amplitudes increase; as well as the reconstructed decaying in accuracy
as the amplitudes of the initial conditions increase.

One can reference table 2 to see that the same trends from the N = 1 case have
carried to the N = 2 case. When A1 and A2 are very small, the expected frequencies from
the linearized KdV dispersion relation match the frequencies identified by DMD and the
reconstructed solution captures the original solution well (figure 6). As the amplitude A1

and A2 of each wave grows, the generating frequency corresponding to that wave decreases.
Additionally, as in the N = 1 case, when the amplitudes grow to about order 1, the

reconstructed data series no longer is able to completely capture the variance or the extrema
of the solution. The statistics as well as the visual comparison of these solutions appears
more evident than in the previous discussion. Figures 7 and 8 both show results where
either A1 or A2 are large. For both cases, we are unable to fully resolve all of the large scale
details, even if the dominant two wavenumber and frequency pairs appear to be consistent
between the original and constructed data.

initial condition estimated ω mean variance max min

θ 1.01e+00 2.28e-02 1.25e+00 7.97e-01
original data

u 4.15e-15 7.98e+00 5.60e+00 -3.96e+00
θ 1.00e+00 2.27e-02 1.21e+00 7.87e-01

-4.00e+00cos(3x)
reconstructed 19.5873

u -3.33e-19 7.85e+00 4.84e+00 -3.17e+00
θ 1.00e+00 6.03e-03 1.12e+00 8.92e-01

original data
u 3.57e-17 2.00e+00 2.43e+00 -1.99e+00
θ 1.00e+00 6.03e-03 1.11e+00 8.90e-01

-2.00e+00cos(3x)
reconstructed 25.0412

u -5.00e-20 1.99e+00 2.22e+00 -1.78e+00
θ 1.00e+00 2.47e-04 1.02e+00 9.78e-01

original data
u 1.54e-16 8.00e-02 4.18e-01 -4.00e-01
θ 1.00e+00 2.47e-04 1.02e+00 9.78e-01

-4.00e-01cos(3x)
reconstructed 26.9200

u -2.53e-20 8.00e-02 4.09e-01 -3.91e-01
θ 1.00e+00 2.47e-12 1.00e+00 1.00e+00

original data
u -5.73e-20 8.00e-10 4.00e-05 -4.00e-05
θ 1.00e+00 2.47e-12 1.00e+00 1.00e+00

-4.00e-05cos(3x)
reconstructed 26.9999

u 3.90e-24 8.00e-10 4.00e-05 -4.00e-05

Table 1: Comparison of numerical simulation of KdV and reconstruction via θ function
with initial conditions of the form u(x, 0) = A cos(3x). As the amplitude A of the initial
condition increases, the generating frequency decreases (column labeled estimated ω) and
the reconstructed data performs worse, indicating that as the nonlinearity of the solution
increases that N = 1 degrees of freedom is no longer a good assumption.
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Figure 4: Comparison of original and reconstructed KdV using the θ function reconstruction
for initial condition u(x, 0) = −0.4 cos(3x).

initial condition est. ω1 est. ω2 B1,1 B1,2 B2,2 mean var max min

θ 1.15e+00 4.59e-01 5.00e+00 3.13e-01
original data

u 3.60e-15 1.97e+01 1.23e+01 -8.96e+00
θ 1.00e+00 2.29e-02 1.36e+00 7.93e-01

-4.00e+00*cos(3x)-5.00e+00*cos(5x)
reconstructed 17.846 117.406 -5.07161 -2.02409 -5.57401

u 4.16e-19 2.28e+01 1.04e+01 -7.21e+00
θ 1.01e+00 2.57e-02 1.44e+00 7.41e-01

original data
u -5.43e-15 8.10e+00 6.21e+00 -4.58e+00
θ 1.00e+00 2.30e-02 1.24e+00 7.83e-01

-4.00e+00*cos(3x)-5.00e-01*cos(5x)
reconstructed 19.562 124.323 -4.47107 -2.51939 -10.5794

u 2.78e-20 8.04e+00 5.34e+00 -3.63e+00
θ 1.00e+00 3.00e-04 1.04e+00 9.68e-01

original data
u 1.14e-16 2.05e-01 9.41e-01 -9.14e-01
θ 1.00e+00 2.98e-04 1.03e+00 9.70e-01

-4.00e-01*cos(3x)-5.00e-01*cos(5x)
reconstructed 26.920 124.919 -8.9999 -2.77186 -10.5993

u -1.39e-20 2.04e-01 9.12e-01 -8.84e-01
θ 1.00e+00 2.47e-04 1.02e+00 9.78e-01

original data
u -1.02e-16 8.00e-02 4.18e-01 -4.00e-01
θ 1.00e+00 2.47e-04 1.02e+00 9.78e-01

-4.00e-01*cos(3x)-5.00e-05*cos(5x)
reconstructed 26.920 124.993 -9.00062 -2.77019 -29.0206

u 3.78e-20 8.00e-02 4.09e-01 -3.91e-01
θ 1.00e+00 2.97e-12 1.00e+00 1.00e+00

original data
u -1.05e-19 2.05e-09 8.99e-05 -8.99e-05
θ 1.00e+00 2.97e-12 1.00e+00 1.00e+00

-4.00e-05*cos(3x)-5.00e-05*cos(5x)
reconstructed 27.000 124.994 -27.4203 -2.77051 -29.0194

u -1.02e-24 2.05e-09 8.99e-05 -8.99e-05

Table 2: Comparison of numerical simulation of KdV and reconstruction via θ function with
an initial condition of the form u(x, 0) = A1 cos(3x) +A2 cos(5x). As the amplitude of the
initial condition increases, the generating frequency decreases (column labeled estimated ωi)
and the reconstructed data performs worse. This indicates that with increasing amounts
of nonlinear interaction the theta function approximation with 2 degrees of freedom is no
longer valid. Note also that as the magnitude of both initial conditions increases, the relative
influence of nonlinear interaction increases, which we can see as the relative value of B1,2

increases in comparison to B1,1 and B2,2.
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Figure 5: Comparison of original and reconstructed KdV using the θ function reconstruction
for initial condition u(x, 0) = −4 cos(3x).

Figure 6: Comparison of original and reconstructed KdV using the θ function reconstruction
for initial condition u(x, 0) = −0.4 cos(3x)− 0.5 cos(5x).

Despite the ability to capture all of the large scale details of the system, the theta func-
tion formulation with more than 1 degree of freedom allows us to quantify the amount of
nonlinear interaction between different wave modes. We were able to compute the coeffi-
cients of the interaction matrix B for all of the experiments described in this section (table
2). The magnitude of the linear interaction coefficients B1,1 and B2,2 decrease as A1 and
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Figure 7: Comparison of original and reconstructed KdV using the θ function reconstruction
for initial condition u(x, 0) = −4 cos(3x)− 0.5 cos(5x).

Figure 8: Comparison of original and reconstructed KdV using the θ function reconstruction
for initial condition u(x, 0) = −4 cos(3x)− 5 cos(5x).

A2 increase, which matches expectations as B1,1 and B2,2 are inversely correlated to the
magnitude of the solution as these coefficients (eq 6). However, B1,2 is positively correlated
to the magnitude of the nonlinear interacts to the solution as the B1,2 can be multiplied
by a negative term in the exponential. As expected from theory, we found that as the
amplitude of the initial condition increased, the magnitude of the nonlinear interaction B1,2
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A Appendix

A.1 Full DMD algorithm

Given some dynamical system {vj}j , DMD seeks to find a linear function A such that
vj+1 = Avj . Let V be the N ×M data matrix where vj are the columns of V . The base
DMD algorithm approximates A such that:

V2 ≈ AV1

where V1, V2 is are (N − 1) × M matrices such that V1 = [v1,v2, . . . ,vN ] and V2 =
[v2,v3, . . . ,vN ].

Base algorithm The base DMD algorithm computes A as follows [4]:

1. Take the singular value decomposition (SVD) of V , i.e.

V1 = Y ΣX∗ (12)

2. Compute A with the pseudoinverse of V1:

A = V2XΣ−1Y ∗ (13)

One can also (often more efficiently) compute Ã which is an r × r projection of the
matrix A onto principal orthogonal decomposition modes, where r is the rank of the
reduced SVD approximation of V2.

Ã = Y ∗aY = Y ∗V2XΣ−1 (14)

3. Compute the eigendecomposition of Ã to get:

ÃW = WΛ (15)

where Λ is a diagonal matrix containing the eigenvalues of A which are λk and the
columns of W are the eigenvectors. We can find the matrix U of eigenvectors of A
(which are the spatial modes uk of DMD) with

U = V2XΣ−1W (16)

We can recompute the approximate solution v(t) as:

v(t) ≈
r∑
k

uk exp(ωkt)bk, ωk =
lnλk

∆t
(17)

where bk is the initial amplitude of each mode. (The vector b which contains all bk is often
computed via psuedoinverse as b = Φ†v1). In all of the numerical experiments of this work,
we choose r to be M , the size of the spatial dimension.
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Delay Embedding We add delay embedding to previous procedure by writing down a
new data matrix from the dynamical system {vj}j . For d delays, the new data matrix
V

′
is of size (N − d) × (d + 1)M and is written so that the jth column v

′
j of V

′
is v

′
j =

(vj ,vj+1, . . . ,vj+d. We then proceed as in the base algorithm substituting V
′
for V when

required.

A.2 Connection to invariant 2-tori

The initial motivation for this project was to be able to use DMD to generate good guesses
for invariant 2-tori in systems with chaotic dynamics. Studying unstable fixed points and
periodic orbits is a known approach to understand chaotic dynamics. As with unstable
periodic orbits, we expect that unstable 2-tori are generic in nonlinear dissipative systems
[18].

Previously, Page and Kerswell [16] found that DMD applied to turbulent flows can be
used to make guesses as to periodic orbits using a time series of length less than one 3rd of
the full period. Ideally, we would like to be able to extend this result to invariant 2-tori in
turbulence which requires accurate guesses as to the two generating frequencies of a given
tori. Given further work on estimating the relative amplitudes of each mode associated
with the generating frequencies, we anticipate that these results (particularly in subsection
2.1) could be useful in identifying and characterizing invariant 2 tori in chaotic systems.
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Equatorial Ocean Dynamics on Enceladus Driven by Ice

Topography

Rui Yang

1 Introduction

Enceladus is a small moon of Saturn, with a radius of around 250 km. Despite its small size,
libration motion [45] and the jet sprays over the south pole [35, 12, 43, 16] indicates that
Enceladus still retains a global surface ocean that is 40 km deep on average. Particles and
gases sampled from these jets indicate the presence of hydrogen [47], organic matter [37],
silica nanoparticles [13] and a modestly alkaline environment [10], all suggestive of potential
to host life [47, 9, 44, 30].

The energy source to sustain the ocean is most likely to be related to tidal dissipation
generated in the ice shell [2, 42, 32, 34], ocean [25] and inner core [4, 27]. Provided the
global heat budget is in balance, ocean circulations and eddies can still alter the shape
of the ice shell by redistributing heat across different latitudes and longitudes. Since the
freezing water under thick ice (high pressure) tends to be colder than that under thin ice
(low pressure), ocean mixing driven by the ice thickness variation will tend to converge heat
toward the thick ice regions, causing ice to melt. In addition, ice flow driven by pressure
gradient [1, 21] will further flatten the ice shell; the conductive heat loss is more efficient
over the thin ice regions due to the weakened insulation effect. All these processes tend to
remove the ice thickness variation, yet, outstanding ice topography is found on Enceladus
[11]. Inhomogeneous tidal dissipation and the ice rheology effect have been proposed as
mechanism to sustain the observed ice geometry [11, 2, 21, 23]. However, even with that,
the ocean heat transport (OHT) cannot be arbitrarily strong: if the convergence of OHT
toward the thick ice regions exceeds the heat conduction through the ice shell, heat will
inevitably accumulate and ice will inevitably melt, because tidal dissipation cannot be
negative [23].

Another reason to study the overturning circulation and eddies in the ocean is because
they govern the tracer transport, which may in turn affect the composition and properties
of the ejecta. In fact, the size of silica nanoparticles collected from the ejecta has been used
to estimate the transport timescale and the ocean salinity [14]. Soaked in the seawater, the
silica nanoparticles will grow as being transported from the seafloor to the surface. If the
transport takes too long or the ocean is too salty, the size of the particles would be greater
than what is measured.

The ice thickness gradient may play a key role in driving the overturning circulations
and eddies in Enceladus’ ocean, because the meridional temperature gradient under the ice
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due to the freezing point suppression by pressure is likely to be one order of magnitude
larger than the vertical temperature gradient induced by a 40 mW/m2 bottom heating
[23], according to the inviscous scaling [6]. With equatorial water colder than the polar
water due to the different pressure under the ice, sinking motion occurs in low latitudes.
However, the ocean would circulate in the opposite direction if the ocean is salty enough
[23]. This peculiar behavior stems from the anomalous expansion of fresh water near freezing
point being suppressed by salinity. Vertical diffusion and buoyancy fluxes across the top and
bottom boundaries 1 provides the necessary energy to balance dissipation in the interior and
the frictious layers [18]. As a result, the meridional ocean circulation and the heat/tracer
transport are strongly affected by the ocean salinity [23], core-shell heat partition [23]
and the ocean diffusivity and viscosity [22, 20] – none of these factors is well constrained
[36, 17, 14, 46, 4].

Previous studies on Enceladus ocean circulation either assumes a flat ice shell [40, 41]
or a zonally symmetric one [23, 22, 20], ignoring the zonal ice thickness variations on
Enceladus [11]. The zonal thickness variation is particularly prominent near the equator
dominated by a wavenumber-2 mode. Such ice thickness variation will induce temperature
and salinity gradients along the zonal direction, driving circulation swirling in the equatorial
plane. In this work, we will focus on the region outside the tangent cylinder (TC) as
marked in Fig.1. This region is unique in a way that the planetary rotation doesn’t directly
interfere with such a circulation except keeping the flow 2D, i.e., uniform along the rotation
axis which is perpendicular to the circulation plane. These features are not expected for
meridional circulation because meridional flow is strongly inhibited by rotation away from
rough boundaries. The atmospheric walker circulation on earth driven by zonal temperature
gradients at the sea surface [26, 7] may be a better analogue. However, unlike Enceladus
ocean, the earth atmosphere is extremely thin compared to the planetary size. Vertical
motion needs to be orders of magnitude smaller than the horizontal motion if mass continuity
is to be satisfied. As a result, the vertical motion does not even show up in the lowest-order
momentum equation [7], excluding the dynamics of the swirl motion we would like to study.
Given these differences, we are compelled to reconsider the dominant balance in momentum
and buoyancy. This work will focus on the low salinity scenarios, in which ocean is stably
stratifed near the equator as dense warm water sinks from the poles and slides equatorward
in the lower part of the ocean [23]. Understanding high salinity scenarios will require a
different framework involving convective instability; this is out of our scope here.

2 Methods

2.1 Theoretical model

Here, a simplified model is used to understand how ice topography drives ocean flows. We
start from the linear solution and then discuss the higher order corrections.

1The buoyancy flux from the ice produces (consumes) energy at low (high) salinity. The bottom heat
flux produces (consumes) energy at high (low) salinity.
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Figure 1: (a) Illustration of 3D spherical shell in Cartesian coordinate. The red shade
region represents the equatorial region we are focusing on. (b) Illustration of the simplified
rectangular setup of the equatorial region.

2.1.1 Simplified model equation

As sketched in figure 1(a), we consider the spherical shell geometry for Encedalus in the
local Cartesian coordinate, where x is the longitude at the equator (positive towards west),
y the radius (points outward radially), and z the rotation axis. The governing equations
are

D

Dt
u− fv = − ∂

∂x
p+ ν∇2u (1)

D

Dt
v + fu = − ∂

∂y
p+ b+ ν∇2v (2)

0 = − ∂

∂z
p (3)

D

Dt
b = κ∇2b (4)

where u, v, w are the zonal, radial, and vertical (rotation axis) velocity, respectively, p the
pressure, b the buoyancy, f the Coriolis force, κ the thermal diffusivity, and ν the kinematic
viscosity.

The vorticity equation along z can be derived by taking x-derivative of the v-momentum
equation minus the y-derivative of the u-momentum equation.

∂

∂t
ζ + u · ∇ζ = −(f + ζ)

∂w

∂z
+
∂b

∂x
+ ν∇2ζ, (5)

where ζ = ∂v
∂x −

∂u
∂y .

According to the Taylor-Proudman theorem, rotation-dominant, inviscid, imcompress-
ible fluid has u and v invariant along the rotating axis z. As the swirl motion approaches
the top and bottom boundaries in z, the flow needs to be parallel to the tilted boundaries,

w(±h/2) = ±v ∂
∂y

h

2
⇒ ∂

∂z
w = v

1

h

∂

∂y
h ≡ 1

f
βv. (6)
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This boundary condition allows us to replace the w in Eq.5 with v. Assuming a small
Rossby number, which is true when the resultant swirl is much smaller than the planetary
rotation f , we finally obtain

∂

∂t
ζ + u · ∇ζ = −(f + ζ)

∂w

∂z
+
∂b

∂x
+ ν∇2ζ

= (1 + ζ/f)βv +
∂b

∂x
+ ν∇2ζ

' βv +
∂b

∂x
+ ν∇2ζ.

(7)

Again, because the equatorial swirl flow is mostly 2D, we can introduce a stream function
ψ′ to represent the flow field,

u = −∂ψ
∂y

, v =
∂ψ

∂x
⇒ ζ = ∇2ψ (8)

If we further ignore the curvature effects, the 2D annulus can be converted to a rect-
angular shape, as illustrated by figure 1(b). To account for the stratification induced by
meridional circulation [23, 22, 20] and the thermal wind induced by the meridional den-
sity gradient, the total buoyancy and streamfunction contains the background state and
perturbation,

= −Uy + ′ (9)

b = N2y + b′ (10)

The background state is diagnosed from 3D MITgcm simulations, whose setup is summa-
rized in section 3.1. The final governing equations for the equatorial flow are

∂ζ

∂t
+ J(ψ′ − Uy, ζ) = β

∂ψ′

∂x
+
∂b′

∂x
+ ν∇2ζ (11)

ζ = ∇2ψ′ (12)

∂b′

∂t
+ J(ψ′ − Uy, b′ +N2y) = κ∇2b′ (13)

Without losing generality, we consider a sinusoidal ice topography at the ocean-ice
interface. The impacts on the ocean underneath is two-fold. On one hand, the freezing
point of ice Tf depends on pressure p = ρgh(x), where h(x) is the thickness of ice along x,
so the surface buoyancy anomaly should be relaxed toward b0 = αTfg, which corresponds
to the freezing point. On the other hand, flow needs to follow the topography. Assuming
the topography is sufficiently small, the boundary conditions at y = 0, H can be written as

′ = Uh cos(kx), y = 0
′ = 0, y = −H
ζ = 0, y = 0

ζ = 0, y = −H
κ∂yb

′ = −γT (b− αg · Chρgh cos(kx)), y = 0

∂yb
′ = 0, y = −H

(14)
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Here, we set the tracer mixing coefficient γT = 10−5 m/s, and the ice topography amplitude
h = 1 km. The changing rate of freezing point with pressure Ch ≈ 7.8× 10−8 K ·m−1s−2,
reference density ρ = 103 kg/m3, surface gravity on Enceladus g = 0.1 m/s2, ocean depth
H = 40 km. Physical constants are summarized in Table 1. We set no flux boundary
conditions at the bottom boundary and periodic in the horizontal direction.

To investigate the flow dynamics in more details. Next, we consider to do the order
expansion to the full equations. We start from the lowest order equation, i.e. linearizaed
equation.

2.1.2 Linearized equations

Given h is sufficiently small, the lowest order equation only contains linear terms. We
pursue a steady state solution forced by the ice topography forcing (Eq.14) by dropping the
time-derivatives,

U
∂ζ

∂x
= β

∂ψ′

∂x
+
∂b′

∂x
+ ν∇2ζ (15)

∇2ψ′ = ζ (16)

U
∂b′

∂x
+N2∂ψ

′

∂x
= κ∇2b′ (17)

Substituting the following solution ansatz for b′, ψ′, and ζ,

b′ =
6∑

n=1

Ane
snyeikx (18)

ψ′ =
6∑

n=1

Bne
snyeikx (19)

ζ =

6∑
n=1

Cne
snyeikx (20)

into equations 15-17, we have

ikUCn − ikβBn − ikAn − ν(s2n − k2)Cn = 0, (21)

(s2n − k2)Bn − Cn = 0, (22)

ikUAn + ikN2Bn − κ(s2n − k2)An = 0. (23)

After replacing Bn and Cn with An, we obtain a 6-order equation for the modes sn

[iνκp3 + kU(ν + κ)p2 − (kκβ + ik2U2)p+ ik2(Uβ −N2)]An = 0 (24)

with p = s2n − k2, and also the relation between An, Bn and An, Cn

Bn = −kU + iκp

kN2
An (25)

Cn = −kU + iκp

kN2
pAn (26)

Then substitute 18-20 into the boundary conditions 14, we can solve the solution of An,
Bn, and Cn from a linear equation set.
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2.1.3 Higher order equations

After keeping the lowest order equations, now we pursue the second order correction. The
dropped nonlinear advection terms in the lowest order equation (Eq.15-17) will lead to
corrections in the next order. Here we expand ψ′, ζ, b based on ε as

′ = ′
0 + εψ′1 + ε2ψ′2 + ... (27)

ζ = ζ0 + εζ1 + ε2ζ2 + .. (28)

b = b0 + εb1 + ε2b2 + ... (29)

Solving the governing full equations with the solution above, one can obtain the solutions
for higher orders. The magnitudes of the higher order results are found to be two orders
smaller than the 0th order result so we neglect them. More details of the derivations of
high-order equations are shown in Appendix.

2.2 Heat budget, flow penetration depth, and tracer transport timescale

From the linear solution, we can estimate the quantities we are interested in, i.e. the heat
fluxes H, which measures the heat fluxes from the ocean into ice crust, flow penetration
depth h0, which measures how deep the topography-driven flow penetrates downward into
the deeper ocean, and tracer transport time scale t0, which measure how long does tracer
transport from the bottom boundary (sea floor) to the top boundary (sea surface).

Since we impose a no-flux boundary condition at the bottom boundary, the main heat
fluxes in the ocean include the horizontal heat flux in the interior Hi and the heat flux at
the top boundary Ht, which need to be balanced with each other to close the heat budget.
The expressions for Hi and Ht are

Hi(x) =
ρCp

αg

d

dx

∫ 0

−H
(u+ U)(b′ +N2y)dy (30)

Ht(x) =
ρCp

αg
κb′y

∣∣∣∣
y=0

(31)

where Cp is the specific heat capacity of water.
The flow penetration depth h0 measures how deep the flow can penetrate downward

when the interior is stably stratified, which can indicate the transport efficiency of tracers.
We define h0 as the height where the velocity decays to 10% of the max velocity at the top
boundary.

u(y = h0) = 0.1uy=0 ⇒ h0 =
1

log(e(sn)min)
(32)

where u is the x-averaged profile of |u|.
The tracer transport timescale t0 measures the time needed for passive tracers to move

from the bottom to the top boundary, which can be compared to the estimation based on
silica nanoparticles [14]. Here, t0 is estimated by the vertical integral of inversed vertical
velocity

t0 =

∫ 0

−H

dy

v
(33)
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Figure 2: (a) Flow pattern of the linear solution from the model, with the temperature
field in shading and velocity u, v in arrows. (b) The flow pattern of the 3D simulation
from MITgcm, with the temperature field in shading and velocity u, v in arrows. The white
region represents the ice topography.

3 Results

In this part, we will consider the ocean pattern and our interested quantities in fresh/salty
water and with/without ice topography effect.

3.1 Configuration of 3D simulation.

To ensure that the simplified theoretical model captures the key dynamics and to obtain
the background stratification N2 and zonal flow U , we set up a 3D global ocean circulation
model using the Massachusetts Institute of Technology OGCM (MITgcm [31, 28]). The
model configuration is almost the same as the one used in Kang et al. 2022 [23], except
that the zonal dimension is considered, for it is necessary to this work. Here we will briefly
review how the boundary conditions are set up and the reasoning behind them. For more
detailed model description, readers are referred to the “Materials & Methods” section in
Kang et al. 2022 [23]. The parameters used in the model is summarized in Table.1.

In our model, the ocean is covered by an ice topography that resembles that of the
present-day Enceladus [11] (see Fig.XY), which is assumed to be sustained against the ice
flow by a prescribed freezing/melting q (see Fig.XY), regardless of the ice shell’s heat budget.
Unsurprisingly, q is generally in phase with the ice thickness H, because ice topography can
be sustained only if the thick ice is freezing and the thin ice is melting. By prescribing q, we
guarantee the ice shell to be in mass balance and, furthermore, cut off the positive feedback
loop between the ocean heat transport and the ice freezing/melting rates, thus preventing
the simulated circulation from seeking a completely new state.

At the water-ice interface, a downward salinity flux S0q is imposed to represent the brine
rejection and freshwater production associated with freezing/melting, where S0 = 4 psu is
the assumed ocean salinity. Meanwhile, the ocean temperature there is restored toward the
local freezing point. Thus, the ocean will deposit heat to the ice when its temperature is
slightly higher than the freezing point, and vice versa. Since the water tends to be colder
under thicker ice, heat tends to be converged and deposited to the thick-ice regions. In order
for the heat budget of the ice to close, this ocean-ice heat exchange Hocn, together with
the tidal heat produced in the ice Hice and the latent heat released Hlatent (Hlatent = ρLfq,
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where ρ and Lf are the density and fusion energy of ice) should balance the conductive heat
loss through the ice shell Hcond

Hocn = Hcond −Hice −Hlatent. (34)

Among these terms, Hice is always non-negative and Hlatent is positive under thick ice,
which requires the magnitude of Hocn to be no greater than Hcond. The conductive heat
loss rate through a 30 km ice shell is around 30 mW/m2 [23], setting an upper limit of Hocn

if the ice shell is in equilibrium state.
The ocean-ice interaction takes tens of thousands of simulated years to fully equilibrate.

To keep the computational cost manageable, we are forced to choose a rather coarse reso-
lution: the globe is divided into 6 faces, each of which has 32×32 grids to resolve. There
are totally 70 layers in the vertical direction (the y direction in theoretical model setup),
unevenly distributed to better resolve the dynamics near the surface. The layer thickness
increases from less than 500 m near the surface to 1600 m toward the bottom. At this
resolution, we cannot resolve convection or baroclinic eddies, because the convective cone
scaling is less than 1 km [19] and the Rhines’ scale is only a few kilometers [20]. The cross-
isopycnal transport by convection is parameterized by setting vertical diffusivity to a much
larger value in regions with unstable stratification. The baroclinic eddies are parameter-
ized by the Gent-McWilliams (GM) scheme [39, 8], a widely-used approach to parameterize
the associated eddy-induced circulation and mixing of tracers along isopycnal surfaces in
modeling Earth’s ocean. Parameters used in these schemes are in Table.1.

3.2 Configuration of 2D simulations.

We solve the 2D simplified model equations (Eq. 11-13) with the boundary conditions
(Eq. 14) by the spectral PDE solver Dedalus [3]. We impose the background stratification
N2, zonal flow speed U , and topography amplitude h, obtained from the 3D simulation. The
basic values for the parameters used is summarized in Table 1. Note that the actual ν and
κ are much smaller (∼ 10−6) in Enceladus’ ocean. Due to the limitation of computation
power, we choose larger ν and κ and fix the Prandtl number Pr = ν/κ = 1. Different
situations are considered, including with/without topography effect and fresh/salty water.
The dependence of density ρ on temperature T and salinity S (equation of state) is expressed
as follows

ρ(θ, S) = ρ0 (1− αT (θ − θ0) + βS (S − S0)) (35)

3.3 Flow pattern with fresh water

Assume the water is fresh and neglect the ice topography effect, i.e. h(x) = 0, the top
boundary condition becomes b′ = 0, ψ′ = 0. In this situation, the flow is completely stably
stratified with a background zonal flow. It means that the tracers cannot be transported by
vertical velocity but only by pure diffusion (t0 →∞). Thus this is not a possible condition
for the Enceladus ocean.

Then we consider the ice topography effect with h(x) = 1 km, and other main parameters
are ν = 60m2/s, κ = 10−4 m2/s, U = 10−3 m/s, N2 = 10−11 s−2, same as those in the 3D
simulation. The result from the linear solution is shown in figure 2(a). One can see that
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Symbol Name Definition/Value

Enceladus parameters

a radius 252 km
D global mean ocean depth 40 km: ref [11]
Ω rotation rate 5.307×10−5 s−1

g0 surface gravity 0.113 m/s2

T̄s mean surface temperature 59K

Physical constants

Lf fusion energy of ice 334000 J/kg
Cp heat capacity of water 4000 J/kg/K
Ch melting point suppression rate with pressure 7.61× 10−4 K/dbar
ρi density of ice 917 kg/m3

ρw density of the ocean Eq. 35
α thermal expansion coeff. 10−5/K
β haline contraction coeff. 7.82×10−4/psu [29]
κ0 conductivity coeff. of ice 651 W/m: ref [33]
ηm ice viscosity at freezing point 1014 Ps·s

Default parameters in the ocean model

νh, νv horizontal/vertical viscosity 20 m2/s
ν̃h, ν̃v bi-harmonic hyperviscosity 107 m4/s
κh, κv horizontal/vertical diffusivity 0.001 m2/s
κconv convective mixing rate 3 m2/s
αGM the universal constant used in GM scheme 0.015
lGM the mixing length scale used in GM scheme 3 km
SGM the maximum slope before clipping 0.2
(γT , γS , γM ) water-ice exchange coeff. for T, S & momentum (10−5, 10−5, 10−4) m/s

Default parameters in the 2D numerical simulations
h amplitude of ice topography 1 km
ν ocean viscosity 0.1 m2/s
κ ocean thermal diffusivity 0.1 m2/s
U equatorial zonal flow speed 0.001 m/s
N2 stable stratification 10−11 s−2

Table 1: Parameters used in our study.
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Figure 3: (a) Heat map of heat flux magnitude (b) Flow penetration depth (c) Tracer
transport timescale from linear solutions as a function of ν and κ. The dashed lines are
contour lines with the value as black numbers.

the flow pattern is mainly driven by the top topography: a wavy flow pattern along the
longitude direction near the top boundary and decays as depth increases. The temperature
near the top boundary is also governed by the pressure-dependent freezing point, which
follows the topography. In figure 2(b), we plot the result from the MITgcm with the same
parameters. One can see that the linear solution from our model shows a good agreement
with that from the MITgcm.

3.3.1 Effect of parameters

Then we explore the effect of parameters on the penetration depth h0, transport timescale
t0, and heat flux H.

In figure 3, we show how ν and κ affect these quantities. In figure 3(a), we plot the
heat flux magnitude as a function of ν and κ. The magnitude is calculated as the real part
of the magnitude of Hi(x) from equation 30. One can see that the heat flux magnitude
increases as κ increases, and decreases as ν increases. It is because that large κ means
stronger heat diffusion and flow, which enhances the heat transport, while ν hardly affects
the heat flux at small κ, since velocity is following the temperature contours. In figure 3(b),
h0 increases as κ and ν increases, because of the thicker boundary layer at large κ and ν
help flow penetrate downward. This can be seen from the flow pattern in figure 4(a) (for
ν = κ = 1 m2/s) and 4(c) (for ν = κ = 0.1 m2/s). In figure 3(c), t0 decreases as κ and
ν increases, opposite to the trend of h0, since larger h0 means stronger vertical mixing, so
that smaller transport timescale t0. In figure 4(b) and 4(d), we plot the linear solution with
the same parameters as the full solution in figure 4(a) and 4(c). From these plots, we show
that the linear solutions can estimate the full solution well.

The same analysis is also conducted for varying zonal speed U and stratification N .
In figure 5(a), the heat flux increases as N increases and decreases as U increases. In
figure 5(b), h0 increases as U increases or N decreases, since stronger zonal flow or weaker
stratification both help flow penetrate downward. In figure 5(c), t0 shows an opposite trend
as h0. Then we compared the flow pattern at U = 10−3 m/s, N = 10−4 s−2 (figure 6(a)) and
U = 10−2 m/s, N = 10−5.5 s−2 (figure 6(c)). In the former case, topography-driven flow
is confined only near the top boundary due to strong stratification, while in the latter case
with weaker stratification and stronger zonal speed, flow penetrates directly to the bottom
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Figure 4: (a) Full solution result and (b) linear solution result with ν = κ = 1 m2/s, with
buoyancy b′ in shading and velocity u,w in arrows. (c) Full solution result and (d) linear
solution result with ν = κ = 0.1 m2/s.

boundary. The corresponding linear solutions are shown in figure 6(b) and 6(d), which are
basically same as the full solution. Only when U is large, the nonlinear terms affect the
buoyancy field (asymmetric between positive and negative buoyancy pattern) near the top
boundary.

3.4 Ocean dynamics with salty water

Now we consider salty water. The realistic effect of salinity on ocean dynamics is com-
plicated: salinity results in double-diffusive convection [15, 38, 5] because salinity has 100
smaller diffusivity than temperature. Also, salinity affects the anomalous density maxi-
mum of water and the freezing point of ice. Here, we simplify the effect of salinity by only

Figure 5: (a) Heat map of heat flux magnitude (b) Flow penetration depth (c) Tracer
transport timescale from linear solutions as a function of U and N . The dashed lines are
contour lines with the value as black numbers.
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Figure 6: (a) Full solution result and (b) linear solution result with U = 10−3 m/s, N =
10−4 s−2, with buoyancy b′ in shading and velocity u,w in arrows. (c) Full solution result
and (d) linear solution result with U = 10−2 m/s, N = 10−5.5 s−2.

considering the effective thermal expansion coefficient α as a function of salinity S. We
set α = 10−4 K−1 for salty water, which means the flow becomes unstably stratified and
convection dominates the flow. We conduct simulation by spectral PDE solver - Dedalus
[3] with a resolution of 2048× 256. The control parameters are kept the same as in table 1.

First, we neglect the topography effect (h(x) = 0). The simulation results are shown
in figure 7. As expected, the ocean stratification becomes unstable and convective flow
dominates. Small-scale plumes emerge near the boundary and gradually dissipated towards
the interior. The missing of large-scale circulation and plumes is due to the topographic β
effect from equation 11-13. The magnitude of vertical velocity is ∼ 10−3 m/s, which is three
orders larger than the results with fresh water. Therefore, in salty water, the convective
flow will significantly enhance the ocean mixing and heat and mass transport.

Then, we consider the topography effect (h(x) = 1 km). The simulation results are
shown in figure 8. With topography, the flow becomes spatially non-uniform due to the
buoyancy variation at the top boundary. The flow is unstably stratified in the cold water
(thick ice) region (middle part) while stably stratified in the warm water (thin ice) region
(left and right part). The drifting of the convective plumes towards the west is due to the β
term in equation 11-13. The maximum velocity magnitude shown in figure 8 is 5×10−3 m/s,
even larger than the result without topography, which means the vertical transport can be
more efficient but space-dependent.

Here we give a summary of this section. We investigated the effect of topography and
salinity on the Enceladus ocean flow pattern. In fresh water, the flow is mainly driven by
the top topography while stably stratified in the interior. We derived the linear solution and
studied how the parameters (ν, κ, U,N) affect the heat flux, flow penetration depth, and
vertical transport time scale. In salty water, the flow becomes convectively unstable and
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Figure 7: (a) Instantaneous temperature field with salty water after running for ∼ 10 year,
and no topography at top boundary. (b) Corresponding instantaneous vertical velocity
field.

Figure 8: (a) Instantaneous temperature field with salty water after running for ∼ 10 year,
and with topography at top boundary. (b) Corresponding instantaneous vertical velocity
field.

turbulent. Small-scale plumes emerge, which enhance ocean mixing and tracer transport
efficiency. In salty water, topography results in a spatial non-uniform flow pattern - unstably
stratified in thicker ice and stably stratified in thinner ice, which could be important for
the distribution of tracers.

4 Discussion

In this section, we will study the heat budget and tracer transport with fresh water and
salty water, which can be used as two constraints on the salinity in the Enceladus ocean.

4.1 Heat budget constraint of salinity

To ensure the ice topography can be sustained, the total heat budget for ice needs to be
closed [21, 23]:

Htidal +Hocean +Hlatent −Hcond = 0, (36)

144



Figure 9: Time averaged heat fluxes along zonal direction for (a) fresh water and (b) salty
water. The blue and red solid lines represent the interior heat flux and top boundary heat
flux, respectively. The dashed line represents the shape of the topography. The gray area
represents the value of heat loss from the conduction of ice.

where Htidal is the tidal dissipation heating, Hocean is the ocean heat flux into ice, Hlatent

is the heat flux due to latent heat considering ice flow, and Hcond is the conductive heat
loss from the outer surface of the ice. This relation means that Hocean < Hcond, otherwise
the ice will keep melting due to a larger heat influx than outflux. Hcond is known as around
20 mW/m2 from previous studies [23]. By comparing Hocean from our simulations with
Hcond, we can see if the heat budget can be closed.

There are two ways to compute Hocean. One is to directly diagnose the heat flux at the
top (denoted as Ht, equation 31), and the other is to calculate the heat convergence in the
interior plus the bottom heat flux (denoted as Hi, equation 30). After the ocean reaches
equilibrium, the two estimates should give the same answer.

Hocean(x) = Hi(x) = Ht(x) (37)

We calculated time-averaged Ht(x) and Hi(x), and plot them for the case with fresh water
in figure 9(a) and with salty water in figure 9(b). From the results, we see that the sim-
ulations have reached an equilibrium state since Ht(x) approximately matches with Hi(x)
for both fresh water and salty water. However, the ocean heat flux for both freshwater
(∼ 500 mW/m2) and salty water (∼ 200 mW/m2) are much larger than the conductive
heat loss (∼ 20 mW/m2), which means in both cases the ice topography cannot be sus-
tained but will keep melting due to larger heat influx from the ocean. Therefore, from the
constraint of heat budget, we think that the salinity of the Enceladus ocean should be in an
intermediate range, which means that the effective thermal expansion coefficient α would
be close to 0, thus the ocean flow will be less convective and less heat flux will be generated
from the ocean.
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Figure 10: The instantaneous (a) buoyancy field, (b) velocity field, and (c) tracer concen-
tration field at ∼ 30 years for fresh water. (d) The vertical profile of tracer concentration
at different times for freshwater. The dashed line shows the initial height of the tracer.

4.2 Tracer transport constraint of salinity

Another constraint of salinity is the tracer transport time scale. From the detected size of
silica nanoparticles from the spray and the growth rate expected from Ostwald ripening,
the vertical transport time scale has been estimated to be at most several years [14]. Here
we estimate the vertical transport time scale t0 by adding passive tracers into the bottom
layer after the flow reaches the equilibrium state. The initial concentration of the tracer
is restored to 1 at the bottom of the model. After 20-40 years, the tracer distributions
and concentration profiles are shown in figure 10 and 11 for both fresh water and salty
water. In freshwater, due to the stable stratification in the interior, the tracers are hardly
transported by the flow but only by pure diffusion, see the flow and concentration snapshots
in figure 10(a) and the concentration field in 10(b). Based on the velocity magnitude
∼ 10−6 m/s, the time needed to transport the tracers to the top is ∼ 103 years. which is
much larger than the expectation from [14].

While in salty water, stronger convection flow (∼ 10−3 m/s) more efficiently transports
tracers from the bottom to the top compared to in fresh water, estimated as ∼ 1 year
from the velocity magnitude. The enhancement of tracer transport can be observed from
the concentration field in figure 11(a), where turbulent flow carries tracers upward. From
the concentration profile shown in figure 11(d), the tracers can reach the top boundary in
20 years. The measured time from the profile is larger than the estimated ∼ 1 year from
the velocity magnitude since that tracers also move horizontally from the thick ice region
to the thin ice region, which increases the total transport time scale. Therefore, from the
constraint of the tracer transport time scale, the salinity of the Enceladus ocean should
be even higher than the value we applied in our simulation so that the time scale can be
even smaller. Higher salinity (larger α(S)) results in more unstably stratification, stronger
convective flow can transport tracers more efficiently.

Based on the constraint from heat budget and tracer transport, we get two different
ranges of reasonable salinity for the Enceladus ocean without overlapping. To close the
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Figure 11: The instantaneous (a) buoyancy field, (b) velocity field, and (c) tracer concen-
tration field at ∼ 40 years for salty water. (d) The vertical profile of tracer concentration
at different times. The dashed line shows the initial height of the tracer.

heat budget, the salinity should be intermediate so that heat flux from the ocean is small
enough to balance with the conductive heat loss. While to satisfy the tracer transport time
scale, the salinity should be high enough to efficiently transport the tracers in years. There
are many possible reasons to explain this inconsistency:

First, in our model, we assumed two-dimensional flow due to fast rotation, and only
equatorial flow is considered. However, the meridional circulation might also play an im-
portant role in the equatorial flow. [21]

Second, our choice of ν = κ = 0.1 is limited by the computation power. The realistic
values of ν and κ are ∼ 10−6. From our results of linear solution in figure 3(a), decreasing
ν and κ will decrease the ocean heat flux. Thus the realistic ocean heat flux could be able
to balance with the conductive heat loss.

Third, our consideration of salinity is simplified, while the actual salinity effect could
be more complicated [38, 5].

Last but not least, we ignored the non-uniform boundary conditions at the seafloor of
Enceladus, such as rough topography, localized heating, and vent or volcanic eruptions [24].
These factors could enhance the mixing at the bottom and drive tracers towards the surface
in a short time.

5 Conclusion

In conclusion, we theoretically and numerically investigated the equatorial flow of the Ence-
ladus ocean with the ice topography. The key question motivating our study is what are
the conditions most likely on Enceladus?

To answer it, we build a simplified 2D model to describe the equatorial flow. Based on
the linear solution, we investigated the effect of system parameters (ν, κ, U,N) on the heat
budget, flow penetration depth, and tracer transport time scale. We further run simulations
for salty water and also add passive tracers to study the transport time scale in salty water.
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Different ocean flow patterns are observed for fresh water and salty water. In fresh water,
the flow is mainly driven by the ice topography at the top boundary and decays downward
due to the stable stratification. In salty water, the flow is globally convective due to unstable
stratification. Topography-induced buoyancy variation at the top boundary also results in
spatially non-uniform flows.

We investigated how heat budget and tracer transport time scale constraint the salinity
of the Enceladus ocean, which is inconsistent with each other from our results. Many
processes are absent from our study, and we give some possible reasons to explain this
discrepancy. However, more work is needed to fill the gap between these two constraints.
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Appendix - Higher order expansion

Following the linear solution, we continue to expand to the first order. We have first-order
equations

U
∂ζ1
∂x

= β
∂ψ′1
∂x

+
∂b′1
∂x

+ ν∇2ζ1 + J(ψ′0, ζ0)

∇2ψ′1 = ζ1

U
∂b′1
∂x

+N2∂ψ
′
1

∂x
= κ∇2b′1 + J(ψ′0, b

′
0)

(38)

with the boundary conditions

b′1 = 0, y = 0

b′1y = 0, y = −H
ψ′1 = 0, y = −H, 0
′
1yy = 0, y = −H, 0

(39)
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The Jacobian matrixes give

J(ψ′0, b
′
0) =

∂ψ′0
∂x

∂b′0
∂y
− ∂ψ′0

∂y

∂b′0
∂x

=

[
ik
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ne

snyeikx − ik
6∑

n=1
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ne

s̃nye−ikx

][
6∑

n=1

snA
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ne

snyeikx +
6∑
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s̃nÃ
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s̃nye−ikx

]

−

[
6∑

n=1

snB
0
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snyeikx +
6∑

n=1

s̃nB̃
0
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s̃nye−ikx

][
6∑

n=1
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snyeikx −
6∑

n=1

ikÃ0
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]

=
6∑
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6∑
m=1
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+,n,me

(sn+sm)ye2ikx +
6∑
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6∑
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o,n,me

(sn+s̃m)y +
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D1
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(40)

D1
+,n,m = ik(smA

0
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0
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0
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0
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mB̃
0
n − s̃nÃ0
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(41)

J(ψ′0, ζ0) =
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We set
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Substitute to 38, we obtain

2ikUC1
+,n,m − 2ikβB1
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(45)

From these relations, we can solve out A1
∗,n,m, B1

∗,n,m, and C1
∗,n,m.

s+,n, s−,n, FAn(y), FBn(y), and FCn(y) can be obtained by substituting the solution
into governing equation.

Finally by satisfying the solution 44 with the boundary conditions in 39, we can obtain
A1
∗,n, B1

∗,n and C1
∗,n. So that we obtain b′1, ψ

′
1, and ζ1.

Following the same way, one can derive the second order equation and solve out b′2, ψ
′
2,

and ζ2, and so on. In figure 5, we present the result of each order solution and summation
of them. One can see that the second-order solution is already two orders smaller than the
linear solution.
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Figure 12: Temperature field from the solution of different orders. (a) 0th order (linear)
solution. (b) 1st order solution. (c) 2nd order solution. (d) The summation of 0th to 2nd
order solutions.
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A. Juhász, N. Altobelli, K. Suzuki, Y. Masaki, et al., Ongoing hydrothermal
activities within enceladus, Nature, 519 (2015), pp. 207–210.

[14] , Ongoing hydrothermal activities within enceladus, Nature, 519 (2015), pp. 207–
210.

[15] H. E. Huppert and J. S. Turner, Double-diffusive convection, J. Fluid Mech., 106
(1981), pp. 299–329.

152



[16] L. Iess, D. J. Stevenson, M. Parisi, D. Hemingway, R. A. Jacobson, J. I. Lu-
nine, F. Nimmo, J. W. Armstrong, S. W. Asmar, M. Ducci, and P. Tortora,
The Gravity Field and Interior Structure of Enceladus, Science, 344 (2014), pp. 78–80.

[17] A. P. Ingersoll and M. Nakajima, Controlled boiling on enceladus. 2. model of
the liquid-filled cracks, Icarus, 272 (2016), pp. 319–326.

[18] M. F. Jansen, W. Kang, and E. Kite, Energetics govern ocean circulation on icy
ocean worlds, 2022.

[19] H. Jones and J. Marshall, Convection with Rotation in a Neutral Ocean: A Study
of Open-Ocean Deep Convection, J. Phys. Oceanogr., 23 (1993), pp. 1009–1039.

[20] W. Kang, Different ice-shell geometries on europa and enceladus due to their different
sizes: Impacts of ocean heat transport, The Astrophysical Journal, 934 (2022), p. 116.

[21] W. Kang and G. Flierl, Spontaneous formation of geysers at only one pole on
enceladus’s ice shell, Proc. Natl. Acad. Sci. U.S.A., 117 (2020), pp. 14764–14768.

[22] W. Kang and M. Jansen, On icy ocean worlds, size controls ice shell geometry, ApJ,
accepted, (2022).

[23] W. Kang, T. Mittal, S. Bire, J.-M. Campin, and J. Marshall, How does
salinity shape ocean circulation and ice geometry on enceladus and other icy satellites?,
Sci. Adv., 8 (2022), p. eabm4665.

[24] J. S. Kargel and S. Pozio, The volcanic and tectonic history of enceladus, Icarus,
119 (1996), pp. 385–404.

[25] E. S. Kite and A. M. Rubin, Sustained eruptions on enceladus explained by turbu-
lent dissipation in tiger stripes, Proceedings of the National Academy of Sciences, 113
(2016), pp. 3972–3975.

[26] K. Lau and S. Yang, Walker circulation, Encyclopedia of atmospheric sciences, 2505
(2003), p. 2510.

[27] Y. Liao, F. Nimmo, and J. A. Neufeld, Heat production and tidally driven fluid
flow in the permeable core of enceladus, Journal of Geophysical Research: Planets, 125
(2020), p. e2019JE006209.

[28] J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey, A finite-
volume, incompressible Navier Stokes model for studies of the ocean on parallel com-
puters, J. Geophys. Res., 102 (1997), pp. 5,753–5,766.

[29] T. J. McDougall and P. M. Barker, Getting started with teos-10 and the gibbs
seawater (gsw) oceanographic toolbox, SCOR/IAPSO WG, 127 (2011), pp. 1–28.

[30] C. McKay, A. Davila, C. Glein, K. Hand, and A. Stockton, Enceladus as-
trobiology, habitability, and the origin of life, Enceladus and the Icy Moons of Saturn;
Schenk, PM, Clark, RN, Howett, CJA, Verbiscer, AJ, Waite, JH, Eds, (2018), pp. 437–
452.

153



[31] MITgcm-group, MITgcm User Manual, online documen-
tation, MIT/EAPS, Cambridge, MA 02139, USA, 2010.
http://mitgcm.org/public/r2 manual/latest/online documents/manual.html.

[32] F. Nimmo, J. Spencer, R. Pappalardo, and M. Mullen, Shear heating as the
origin of the plumes and heat flux on enceladus, Nature, 447 (2007), pp. 289–291.

[33] V. Petrenko and R. Whitworth, Physics of Ice, OUP Oxford, 1999.
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Stochasticity of Turbulence Closures
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1 Motivation

Turbulence is a fascinating natural phenomenon that is characterized by its chaotic behavior. It is
a product of the nonlinear dynamics of fluid motion across scales, which causes the merging and
splitting of fluid vortices and leads to a cascade of energy towards smaller scales until dissipation
occurs. Visualizing the turbulence cascade helps to understand how different scales of motion
interact with each other, which is a critical aspect of turbulence. However, simulating turbulence
accurately is challenging because it requires solving the equations of motion across all scales, the
so-called Direct Numerical Simulations (DNS). The expectation expressed in the early 70s about
DNS was that it was a promising approach for studying the large-scale features of turbulence
[12]. The idea was to use DNS to simulate the entire range of scales of the turbulence, without
the need for a subgrid-scale model. Despite the wide application of DNS over the years, it still
remains computationally expensive, and the computational cost grows rapidly with the size of the
domain, which limits its applicability to larger-scale problems. Therefore, for most atmospheric
and oceanography questions, DNS is not practical, and instead, models are run on large grid boxes
with most of the turbulence parameterized by closures [9, 11, 4].

Parameterizations, or subgrid-scale models, are an essential tool for simulating turbulence in
coarser grids. They allow us to account for the effects of the unresolved scales on the resolved scales
by approximating the interactions that take place at those smaller scales. The closure models are
usually based on physical principles and aim to reproduce the effects of the unresolved scales on
the resolved scales accurately. These models have been developed and improved over the years, and
they are an essential part of most numerical models used in atmospheric and oceanic simulations
[4].

In atmospheric sciences and oceanography, turbulence parameterizations are especially impor-
tant as they are an essential tool for representing the effect of subgrid scales on mixing. For instance,
the mixing of water masses is a crucial process that affects the ocean’s temperature, salinity, and
density structure, which, in turn, can influence ocean circulation and climate [6]. Therefore, accu-
rate representation of turbulent mixing in ocean models is essential for understanding and predicting
the behavior of the ocean [4].

2 Introduction

The Navier-Stokes equations describe the motion of fluids and provide a mathematical framework
for analyzing their behavior. One of the most challenging aspects of the Navier-Stokes equation is
its non-linearity, which represents the interactions between fluid particles and can cause turbulence
and chaotic behavior. For most of the ocean scales, for example, we can assume that the fluid is
incompressible (∇ · u = 0) and the momentum conservation from Navier-Stokes is expressed as:
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Tendency︷︸︸︷
∂tu = −u · ∇u︸ ︷︷ ︸

Advection

−
Pressure︷ ︸︸ ︷
(1/ρ0)∇p+ ν∇2u︸ ︷︷ ︸

Friction

+

Gravity︷︸︸︷
ρ′g + Fu︸︷︷︸

Forcing

, (1)

Here, ∂tu represents the time derivative of the fluid velocity vector u, also known as the tendency
term. u ·∇u, represents the effect of the fluid’s motion on itself. The term (1/ρ0)∇p represents the
gradient of pressure within the fluid and ν∇2u, known as friction, represents the fluid’s internal
resistance to motion, where ν is the kinematic viscosity coefficient. The term ρ′g represents the
effect of gravitational force on the fluid, where ρ is the fluid density, and g is the acceleration due
to gravity. Lastly, Fu represents any external forcing acting on the fluid.

Assuming that the external forcing is linear, all terms in the equation are linear except for the
advection term. This term represents the interaction between different scales of motion, which
is responsible for turbulence. The nonlinear nature of this term makes it extremely difficult to
properly resolve the discrete version of the equation in coarser grids, such as those used in Large
Eddy Simulations (LES). As previously explained, parameterizations of the subgrid-stress are then
needed to accurately account for the effects of the unresolved scales on the resolved scales. These
parameterizations express the effect of the smaller and unresolved scales on the larger scales because
the advection term cannot be accurately calculated at the LES resolution.

Stepping back to a more general mathematical description, we can simplify by starting with a
DNS model in the form of

∂tX = L · X +N (X ), (2)

where all linear terms are expressed by L and the nonlinear term is in N . The state variable is
expressed by X . If we filter and coarse-grain in space to some larger scale (·), we obtain

∂tX = L · X +N (X ). (3)

The commonly-used filters in LES are convolution linear operators (e.g. Gaussian filter) and
thus, they commute with differentiation. Based on that, we can replace all averages over linear
terms in Equation 3 by the linear operators applied to the coarse-grained (LES) fields:

∂tX = L · X +N (X ). (4)

We recall that the main idea in this process is to find an equation that depends on X only, which
are the coarse-resolution fields. If we sum and subtract an arbitrary nonlinear function applied to
the coarse-grained field, we obtain

∂tX = L · X + G(X ) +N (X )− G(X ), (5)

which can be approximated to the closure form of

∂tX − L · X = G(X ) + CG(X ), (6)

where CG(X ) is the closure that depends on G and parameterize N (X )−G(X ). There are two main
choices for G(X ):
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“Implicitly filtered closure”
G(X ) = N (X )

For this option, we apply the filter only to X and not to N (X ). This is easier to do, but the
problem is that the nonlinear operator may leak energy to larger wavenumbers (eikxeikx = ei2kx),
that will simply cut off by the limited resolution of the LES.

“Explicitly filtered closure”
G(X ) = N (X )

For this option we apply the filter twice. First to X and then to N (X ), that guarantees that we
have the same number of wavenumbers for all terms in the LES equation (Equation 6)

The implicit representation assumes that the product of the filtered fields constrain the energy
at the resolved scales, which is not necessarily true. So for the explicit representation, we filter
not only the fields but also the nonlinear term derived from the filtered fields, which guarantees
that the closure model would train with the solution and subgrid stress constrained at the resolved
scales.

The argument around the explicit representation can be explained by using the pure spectral
method. Let us suppose we have some nonlinear term as fg, for k = N/2 in Fourier basis

f
(
N
2

)
g
(
N
2

)
⇒

(
f̂ ei

N
2 x

) (
ĝei

N
2 x

)
= f̂ ĝeiNx, (7)

which means that the nonlinear terms leak energy to k = N , which is not resolved by our system.
We here chose to approximate functions between −N/2 and N/2.

-N/2 N/2 N

Now, in the context of fluids, the low-pass filtered Navier-Stokes equation with turbulence
closure is frequently called Large-Eddy Simulation (LES). In that case

N (X ) = ∇ · (u⊗ u), (8)

which means that,

C(X ) ≈ N (X )−N (X ) = ∇ · (u⊗ u)−∇ · (u⊗ u), (9)

that can be simplified to

C(X ) ≈ ∇ · (u⊗ u− u⊗ u)︸ ︷︷ ︸
τs

, for implicitly filtered (10a)

and
C(X ) ≈ ∇ · (u⊗ u− u⊗ u)︸ ︷︷ ︸

τs

, for explicitly filtered. (10b)

τs is the subgrid-scale stress tensor, which is symmetric and defined by
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τ3Ds =

τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

 . (11)

Variables in scientific processes can be classified into two main categories: deterministic and
stochastic. The fundamental difference between these two types of variables lies in the predictability
of their outcomes. In deterministic processes, there is only one possible outcome for a given set of
initial conditions. The outcome is entirely determined by the rules that govern the system. On the
other hand, in stochastic processes, the outcome is not predetermined, and it can be influenced by
random factors.

Stochastic processes are characterized by their probability distribution, which describes the
likelihood of different outcomes occurring. In other words, the distribution tells us how often each
outcome is expected to occur. The concept of stochasticity is related to the chaotic nature of some
systems. A system is considered chaotic if nearby solutions to the system’s equations diverge due to
numerical noise. In other words, small changes in the initial conditions can lead to vastly different
outcomes.

For LES, most of the available turbulence closures are deterministic and physics-based expressing
the subgrid stresses by an extra diffusivity [6], with

C(u) ≈ ∇ · (νt∇u), (12)

which means that for the same coarse-resolution velocity field (u), the closure will always re-
turn the same extra diffusivity field (νt). Some of these models that follow this approach are the
Smagorinsky-Lilly model [10, 14], the Dynamic Smagorinsky model [5] and Anisotropic Minimum
Dissipation model [15, 16]. One of the drawbacks of using those models is that they do not represent
the backscatter and tend to be too diffusive [7].

More recently, there are efforts in representing turbulence closures using machine learning meth-
ods. A recently published paper shows that deep learning methods can correctly represent the
backscatter, and that the closure model can be adapted for different Reynolds numbers by using
transfer learning [7]. For small LES cutoff (LES ≤ 8DNS), another recent study has shown that
we can recover N (X ) from X and the closure CG can directly estimate N (X ) [1], but for larger
coarse-grainings (akin to ocean and atmospheric simulations) or larger Reynolds number simu-
lations (which lead to longer enstrophy/direct cascade), we expect that the closure stops being
deterministic and becomes stochastic, which means we can no longer recover X from X . In other
words, there are many X that can generate the same X . The stochastic approach for the turbulent
closure model has recently been employed to parameterize oceanic momentum forcing [8]. However,
it is still open as to whether and how the transition between deterministic and stochastic closure
is made.

Thus, this paper aims to answer the following scientific questions:

• How different are subgrid stresses from different nearby turbulent solutions?

• How fast do nearby coarse-grained solutions diverge?

• How quickly do the subgrid stresses decorrelate compared to the LES timestep?
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3 Experimental Setup and Computer Resources

As Equation 11 shows, the subgrid stress is quite complex and multidimensional. Following the
top-down modeling approach, we will simplify the problem by considering a 2D turbulent and
incompressible flow u(x, t) = [u(x, t), v(x, t)] defined by

∂tu = −u · ∇u− (1/ρ0)∇p+ ν∇2u− αu+ Fu, (13)

where Fu is a forcing term and α is a linear drag [2]. This linear drag comes from the 3D world that
is not being solved and removes energy at large scales, which is being accumulated by the inverse
energy cascade.

We can simplify by introducing a stream function u = [∂yψ,−∂xψ] and rewrite equation 13 for
the vorticity field, that in 2D, will be a scalar ω = ∇× u:

∂tω = −J(ω, ψ) + ν∇2ω − αω + F (14)

where J(ω, ψ) = ∂xω∂yψ − ∂yω∂xψ = u · ∇ω (advection of vorticity) and F = ∇× Fu.
We use the Dedalus package [3] to solve the system of differential equations on a doubly periodic

square domain with 4096 points on each side. Then we apply a stochastic Gaussian forcing centered
at k=32, with width of 2 and random phase to the model. The viscosity and linear drag were chosen
to fit the power spectrum within the wave numbers solved by the model. We use adaptive time
stepping for the simulations, always keeping the CFL condition stable.

The computational resources used by this project were a separate challenge. We ran each pair
of simulations on MIT’s Supercloud machine [13] using 16 nodes and 768 cores. This added up to
a total of 200,000 CPU hours, including simulations and the analyzes.

The primary challenge of this project is the huge amount of data generated by the DNS simu-
lations. The simulations generated a massive amount of data due to the high temporal resolution
and domain size. To handle the data efficiently, we used various Python packages, including xar-
ray. These packages helped us work with labeled, multi-dimensional arrays and allowed us to
handle large volumes of data through parallelized computing. We also used xhistogram to group
wavenumber bins of computed correlations, which required significant computational resources in
our case.

Despite having access to the vast resources from MIT Supercloud, we still had to spend a lot
of time testing different methods of chunking the data to optimize the simulations and analyses
in parallel. This involved experimenting with different ways of allocating memory resources and
balancing the computational load. We explored various chunk sizes, overlapping chunks, and par-
allelization strategies to speed up the analyses. Additionally, we had to consider the significant
memory usage and storage requirements of the data. Managing the large volume of data gener-
ated from the simulations was a crucial aspect of this study that required us to develop efficient
workflows and data handling techniques.

4 Simulation Spin-up

We start the simulation at rest. Thus, we expect the direct and inverse energy cascades to distribute
at different scales the energy fed at the forcing wavenumber. The steady state is reached when the
energy spectrum no longer changes, i.e., when the energy introduced by the forcing is entirely
dissipated at smaller scales through viscosity and at larger scales through linear drag (Figure 1).

The direct cascade stabilizes first and is commonly called the enstrophy (⟨ω2⟩/2) cascade, be-
cause the enstrophy is concentrated at smaller scales. The reverse cascade transfers energy to
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Figure 1: Spin-up time series of kinetic energy (A) and enstrophy (B). Colored vertical dashed lines
mark the snapshots used to present the energy spectrum in C. D and E depict vorticity snapshots
for t=0.2 and 10, respectively.

larger, more energetic scales that are finally drained by the linear drag added to the system. We
verify the steady state of the inverse cascade through the time series of the kinetic energy (⟨u2⟩/2)
of the domain. ⟨·⟩ denotes a horizontal average of the quantity.

Based on these characteristics of the turbulent process, we observe that the direct cascade
stabilizes around t=2, and the inverse one takes longer, having the entire spectrum steady after
t=10. (The time here is non-dimensional and depends on the injection rate at the forcing scale.)
The steady state and turbulence become evident when looking at two vorticity snapshots (Figure 1),
one at t=0 with most of the energy clearly at the forcing scale and another at t=10 where a myriad
of scales are observed in a more physically-structured flow. Starting at t=10 we then run the sets
of simulations that are analyzed in later sections.

To investigate decorrelation at different spatial scales, we compute the autocorrelation (C) of
the Fourier coefficients (fk) of the solution and performed radial averages for ∆k=2 bins.

C(kx, ky, τ) = F−1
τ {Ft{f(kx, ky, t)} · Ft{f(kx, ky, t)}∗}, (15a)

and

C(k, τ) =
1

N

N∑
i=1

C(kix, k
i
y, τ), for all

∣∣∣√(kix)
2 + (kiy)

2 − k
∣∣∣ < ∆k. (15b)

The autocorrelation was performed using Fast Fourier Transform (FFT, hereafter F) to speed up
the calculation and reduce computational bottlenecks. We observe that the decorrelation time
scale is shorter than the time scale of the CFL condition at all wave numbers, which means that
features at all spatial scales decorrelate more slowly than can be resolved in a low-resolution model
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Figure 2: Autocorrelation of streamfunction as a function of wavenumber and time lag for the
noise-free solution. Vertical dashed line marks the forcing wavenumber.

(Figure 2). The time scale of the CFL condition is T = (k
√
2E)−1, E being the average kinetic

energy of the system (≈1.6) and k the wavenumber.

5 Nearby Solutions

After the simulation spin-up, we added noise so that we have nearby solutions that diverge over
time. To do this, we run sets of simulations for another t=3 adding white noise to them. We test
noise varying for each simulation between 10−10 and 10−4, but keep 10−7 and 10−6 for the following
analyses (Figure 3). The value of the added noise was chosen so that it would only affect scales
smaller than the forcing scale. In other words, the noise is in the inertial sub-range.

To track the divergence of nearby simulations, we computed the normalized error in the noise-
added simulations with respect to the noiseless simulation as follows:

Ei =
|ψ0 − ψi|

|ψ0|
. (16)

where ψ0 and ψi are the spectral coefficients of the noise-free and noise-added simulations, respec-
tively.

The evolution of the normalized error at different scales shows that there are two different time
scales for the propagation of noise at different scales (Figure 4). The shortest scale lasts only t=0.2
and concerns the time it takes for the noise to change to smaller scales, that is, to travel down
the direct cascade of turbulence. The second time scale is longer and is about the backscatter,
causing the noise to follow the reverse turbulence cascade and alter larger scales. The error is
calculated from the amplitude of the difference between the spectral coefficients of the solution
without noise and the solution with noise, and is normalized by the amplitude of the coefficients
of the solution without noise. After calculating the error, we perform box averaging to transform
from the horizontal vector wave number to the isotropic wave number. In other words, we radially
average the error in the wave number plane for dk=2.
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Figure 3: Initial energy spectrum for noise-added simulations. White noise is added at different
levels, but we keep 10−7 and 10−6 for further analyses.

Figure 4: Spectral coefficients error between noise-added and noise-free simulations as a function of
wavenumber and time (upper panels). The error is normalized by the amplitude of the coefficients
in the noise-free simulation. Energy spectrum (pink line) and spectrum of difference evolution for
each ∆t=0.27 (gray scale). Left panels for noise=10−7 and right panels for noise=10−6. Vertical
dashed line marks the forcing wavenumber.
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Figure 5: Filtered fields for vorticity (top), implicitly (middle) and explicitly (bottom) filtered
subgrid stress. The standard deviation of the filter increases from left to right (σ = 64, 128 and
256)

The difference spectrum shows that, as expected, initially the noisy simulation differs only by
white noise. Quickly the differences reach the level of the spectrum for features smaller than the
scale of the noise. More slowly, the backscatter accounts for larger features, taking approximately
t=2 for the differences to reach the spectrum level.

To analyze the sub-grid stress for LES, we filtered the data using a cutoff of k=512. The filter
is defined by a Gaussian function with different standard deviations (σ = 64, 128 and 256):

f̂k = e−k2/2σ2
. (17)

The larger the deviation, the less information will be filtered out. We then apply these filters to the
solutions of the equations at different noise levels to check the differences with respect to subgrid
stress.

Since the definition of subgrid stress depends on the filter applied (top bars in Equation 3) the
stress fields differ for each sigma used. We observe that the field is smoother and larger in scale
for filters with smaller deviations. The reverse is also true for larger deviations, with more complex
fields with more variance at smaller scales.

The evolution of the vorticity and subgrid stress fields demonstrate an apparent separation of
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Figure 6: Autocorrelation of streamfunction as a function of wavenumber and time lag for for
implicitly (left) and explicitly (right) filtered subgrid stress (σ = 128) of the noise-free simulation.
Vertical dashed line marks the forcing wavenumber.

scales. In other words, we can observe from the video 1 that the time scale at which the subgrid
stress diverges in close simulations is different from the time scale at which the solutions (vorticity
field) diverge (pause video for simulation t=1 and check that vorticity fields are more similar
between noise=0 and 10−7 than subgrid stresses.) This apparent separation of scales does not
seem to depend on the type of filter used, that is, the apparent time scale at which the subgrid
stress diverges between nearby simulations is indistinguishable between the implicit or explicit filter.
Both exhibit decorrelation scaling larger than the CFL time scale for most spatial scales, with the
exception of k<10, when the decorrelation scaling becomes constant and independent of k. This
pattern is probably associated with very little energy at large scales for subgrid stress. Despite
the similarities between implicit and explicit filter, the decorrelation scale of the subgrid stress is
slightly smaller for the explicit filter.

The filters had a minimal effect on the current function fields, but as expected, the effect
increased with the order of the derivatives, particularly for vorticity fields. When examining the
subgrid stress spectrum, it was found that the patterns varied based on the filter width, with
distinct differences observed for implicit and explicit filters. Specifically, larger standard deviations
were associated with larger energy peaks in explicit filters, while smaller energy peaks were found
in implicit filters. This intriguing relationship between peak energy and filter width in explicit and
implicit filtering warrants further investigation in future studies. Overall, these findings highlight
the importance of carefully considering filter choice and width, particularly when investigating the
effects of subgrid stress on larger scales.

To quantitatively investigate the apparent scaling separation observed in the video, we calculate
the evolution of the Root Mean Squared Error (RMSE) of different variables at noise levels and
filter widths.The error is scaled by the maximum error from the end of the time series. The time
scale it takes for RMSE to reach O(1) for the streamfunction is larger than for the subgrid stress,
but in any case, by the time the subgrid stress diverges completely, the vorticity fields have reached
50% of the maximum error (Figure 8). This makes it clear that the scaling separation, although it
exists, is not fully defined for this problem.

1video only viewable in oneline version of paper
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Figure 7: Unfiltered (black) and filtered (colors) spectra for streamfunction, kinetic energy, vorticity
and subgrid stresses (implicitly filtered in solid and explicitly filtered in dashed lines). σ = 64 (pink),
128 (orange) and 256 (blue). Vertical gray line marks the forcing wavenumber.

Figure 8: Timeseries and Lyapunov Exponent for the Root mean squared error (RMSE) of velocity
(A,B). RMSE of implicitly (C,D) and explicitly (E,F) filtered subgrid stresses as a function of the
RMSE of vorticity.
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We also measured the rate of divergence between nearby solutions assuming an exponential
character on the RMSE ≈ et/λ, where λ is the Lyapunov Exponent. Lyapunov Exponents are a
fundamental concept in chaos theory, used to measure the rate of divergence of nearby trajectories in
a dynamical system, which provides a quantitative measure of the unpredictability and complexity
of a system.

The exponential character of the RMSE of the velocity fields has a Lyapunov exponent of
0.18/0.19 (Figure 8), considerably larger than the decorrelation or CFL time scale for virtually any
spatial scale, which means that not only is the separation of scales unclear, but a possible LES
solution would have enough temporal resolution to capture the divergence.

6 Conclusions and Future Work

Our results suggest that DNS solutions for two-dimensional turbulence are chaotic, as numerically
similar solutions diverge, but the LES perspective of this problem is not strongly stochastic. We
now list the scientific questions presented in the introduction section with their respective answers:

• How different are subgrid stresses from different nearby turbulent solutions?
We could not find a case in which numerically nearby solutions had completely different subgrid
stress fields.

• How fast do nearby coarse-grained solutions diverge?
The Lyapunov exponent of the RMSE of the velocity fields is about 0.18/0.19 time units.

• How quickly do the subgrid stresses decorrelate compared to the LES timestep?
For most of the scales, both implicit and explicit subgrid stress fields decorrelate slower than
the CFL time scale.

However, this conclusion was based on testing a limited range of flow problems, and it is not yet
clear whether it holds true for larger domains with longer turbulence cascades (i.e., higher Reynolds
numbers). As the Reynolds number increases, the range of scales involved in the turbulence cascade
becomes larger, which could lead to more separation between the large and small scales. This, in
turn, could potentially lead to increased stochasticity in the LES turbulence closure. Additionally,
at higher Reynolds numbers, the larger scales might interact with a greater number of smaller
scales, making the overall dynamics more complex and harder to predict.

We initially hypothesized that explicit filtering would result in smoother subgrid stress fields,
as compared to the implicit method. However, our findings suggest otherwise, as the subgrid stress
fields obtained using explicit filtering were actually more noisy than those obtained using implicit
filtering (Figure 5). This unexpected result raises questions about the impact of filtering method
choice on the accuracy of turbulence closures. Our future work will focus on exploring this issue
in more detail. We aim to investigate the sources of noise in the explicit filtering approach and
provide insight into the best practices for choosing a filtering method that optimizes the accuracy
of turbulence closures.

In addition to these challenges, it is also important to consider the impact of three-dimensional
effects on the stochasticity of LES models. Our study focused on two-dimensional turbulence, but
many practical applications, such as small-scale atmospheric and oceanic modeling, involve three-
dimensional flows. In these cases, the interactions between the large and small scales are even more
complex, and the separation of scales could present different results to those discussed in this study.
Understanding the behavior of LES models in 3D turbulence are crucial for accurately simulating
many real-world problems.
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Finally, it is essential to explore how sensitive the results presented in LES are to different
types of dynamical problems. For example, the quasi-geostrophic approximation is a widely used
simplification in some large-scale atmospheric and oceanic problems and it assumes the flow is
nearly two-dimensional due to the effect of rotation. It is possible that the accuracy of subgrid-
scale modeling could vary depending on the type of flow problem being studied and we believe that
the tools developed in this project can be used for further investigations.

In summary, there are still many open questions and challenges related to this study, including
the sensitivity of the results to different types of dynamical problems and geometry, the choice
of filtering method, and the potential for increased stochasticity at higher Reynolds numbers.
Addressing these challenges will be critical for developing more accurate and efficient LES models
and understanding the stochastic nature of turbulence closures.

Data Availability Statement

We are committed to the principles of open science and believe that research should be accessible
and transparent. As such, all of the code used for modeling, analysis, and plotting in this study
has been made publicly available on Github (https://github.com/iuryt/stochastic_closures).
We support open-source projects and believe that sharing code and data is an important step
towards advancing scientific knowledge.
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Statistical Analysis of Multidimensional Dynamical Systems

Ludovico Theo Giorgini

Introduction

In this work we will study the temporal evolution of an autonomous continuous-time dy-
namical system of the form

ẋ(t) = F (x(t)), (1)

where x : [0, T ] → RD, T > 0 is the state of the system and F : RD → RD a determin-
istic force field. We point out that this representation can be extended to non-autonomous
dynamical systems by increasing the dimension and it can take into account multi-scale
characteristics by rescaling each variable according to the time-scale τi on which the dy-
namics are realised xi(t/τi) → yi(t) ∀i ∈ [1, D].

In many cases the number of snapshots of the dynamical system and their size make its
study impractical, hence the need for building a coarse-grained model able to maintain the
statistical and dynamical features of the original one (see for an example of clusterization
of a multidimensional dynamical system Fig. (1)).

This coarse-grained model is constructed by defining a distance d between snapshots
and clusterizing them according to it. In this way, we map snapshots close in space to the
same cluster and the original multi-dimensional time series reduces to a one-dimensional
one. The choice of the distance and the number of clusters N is not defined a priori and
strongly depends on the system under study and on the physical quantities of interest.

The dimensionality reduction makes our coarse-grained system stochastic to take into
account the information loss of the precise trajectory followed by the system in the phase
space, and a probablistic approach becomes necessary to study its dynamics.

The temporal evolution of our coarse-grained system is described by the following
Markov process

Xn+1 = S(Xn) = s(Xn) +W (Xn), (2)

where X : [0, T ] → RNm
, T > 0 is the state of the system embedded in a delay embedding

of size m and s : RNm → RNm
and W : RNm → RNm

are respectively deterministic
and stochastic force fields. The amplitude of the stochastic force field can be reduced by
increasing the values of N and m. From now on we will consider m = 1, the generalization
of our results to arbitrary values of m is straightforward.

The forward evolution of the probability distribution function (PDF) ρ associated to
the coarse-grained system’s state is described by the following Fokker-Plank equation
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Figure 1: Example of clusterization using the Kuramoto–Sivashinsky equation solved on a
lattice of size L = 34. The numerical solution of the equation is shown on the right column,
while the center and left columns show the snapshots corresponding to the black horizontal
line printed above the numerical solution (red curves) and the center of the cluster that the
kmeans algorithm assigned to each snapshots (blue curves).
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∂tρ = LFPρ, (3)

and by its discrete counterpart

ρt+∆t = P∆tρt, (4)

where LFP is the Fokker-Plank operator and P∆t the Perron-Frobenius operator or the
transition matrix for a time step ∆t.

In the limit ∆t→ 0, Eq. (4) becomes

lim
∆t→0

ρt+∆t = (I +Q∆t)ρt, (5)

taking the continuous limit

ρ̇ = Qρ, (6)

and then we obtain a forward evolution equation for ρ discrete in space and continuous
in time

ρt = eQ(t−s)ρs = P t−sρs, (7)

with t > s.
The matrix Q can be constructed [1] from the coarse-grained data by noticing that,

since we are assuming the Markov property for our system, its sojourn times in each cluster
are independent and exponentially distributed with rate ri = 1/τi ∀i ∈ [1, N ] with τi the
mean sojourn time in cluster i. Therefore, we can write

lim
∆t→0

1− P∆t
ii

∆t
= lim

∆t→0

Pr(τi < ∆t)

∆t
= ri = −Qii,

lim
∆t→0

P∆t
ij

∆t
= lim

∆t→0

1− P∆t
ii

∆t

P∆t
ij∑

j ̸=i P
∆t
ij

= ri
P∆t
ij∑

j ̸=i P
∆t
ij

= Qij .

(8)

An improved algorithm to construct the transition rate matrix

Even if for an autonomous Markov process Q doesn’t depend on time, the fact that we
constructed this matrix using statistics of the system at infinitesimal time scales often
introduces errors which become relevant when we want to compute statistical properties of
the system at larger time scales. In the following we propose a method to overcome this
problem by correcting the values of Q using information of the system behaviour on larger
time scales.

Let’s assume that the correct matrix Qpert is similar to the matrix Q that we constructed
before. This means that we can obtain Qpert by adding a perturbation to Q, Qpert −Q =
δQ = gQ′ with Q′

ij = O(1) and g ≪ 1. We can then write the eigenvalue equation for Qpert

as
(Q+ gQ′)(ϕi0 + gϕi1) = (λi0 + gλi1)(ϕ

i
0 + gϕi1), (9)

which becomes, taking only the O(g) terms

Q′ϕi0 +Qϕi1 = λi0ϕ
i
1 + λi1ϕ

i
0. (10)
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Multiplying on the left by the transpose of the unperturbed left eigenfunction of Q,
(ψi

0)
T , we get

Q′ϕi0 = λi1ϕ
i
0, (11)

where we used the fact that the unperturbed left eigenfunctions of Q are orthogonal to the
unperturbed right eigenfunctions and then, since the perturbed right eigenfunction can be
written as a linear combination of the unperturbed right eigenfunctions, the second term
in the l.h.s. of Eq. (10) cancels with the first one on the r.h.s. after the multiplication on
the left by (ψi

0)
T . We can then write the perturbation δQ in function of the unperturbed

eigenfunctions of Q and the perturbed eigenvalues as

δQ =
∑
i

δλiϕi0(ψ
i
0)

T , (12)

with δλi = gλi1.
In order to obtain δλi we construct a D-dimensional time series from the coarse grained

one by associating to each value Xn a D-dimensional vector containing in each element
the Xnth value of the unperturbed left eigenfunction of Q, that is, we perform the map
Xn → ψi

Xn
= Y i

n ∀i, where we dropped the 0 in the subscript of ψi.

The correlation function for Ỹ i = Y i − ⟨Y i⟩ becomes

CỸ i(τ) =
(ψi)Tdiag(ϕ1)[(ψ

i)T (P τ − diag(ϕ1))]
T

(ψi)Tdiag(ϕ1)ψi

=
(ψi)Tdiag(ϕ1)

[
(ψi)T

(∑
k ̸=1 e

(λi
0+gλi

1)τϕk(ψk)T
)]T

(ψi)Tdiag(ϕ1)ψi

=
e(λ

i
0+gλi

1)τ (ψi)Tdiag(ϕ1)ψ
i

(ψi)Tdiag(ϕ1)ψi
= e(λ

i
0+gλi

1)τ .

(13)

We compute the correlation function from the data for each values of i and we obtain each
time λi0+ gλ

i
1 from a least square fit. Computing the difference between each exponent and

λi0 we estimate δλi.
The correlation function of the coarse-grained time series X̃ = X − ⟨X⟩ becomes

CC(τ) =
CTdiag(ϕ1)

[
CT
(∑

k ̸=1 e
λiτϕk(ψk)T

)]T
CTdiag(ϕ1)C

, (14)

where C is a vector containing the centers of the clusters and the λks are the eigenvalues
of Qtrue.

In Fig (2) we reported the comparison between the correlation function of the coarse-
grained data of the Kuramoto-Shivashinsky model with that one estimated from Q and
Qtrue. Different distances were used to construct the coarse-grained time series, while the
number of cluster has been kept fixed N = 20. We can notice a remarkable improvement
in the correlation function obtained using the eigenvalues and eigenfunctions of Qpert with
respect to ones that Q. Same result can also be observed in Fig. (3) for Lorenz 63.
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Figure 2: Comparison between the correlation function obtained from the coarse-grained
data and one that is estimated from Q and Qtrue (in the figures Qpert). We used the L2
and L infinity norm to define the distances over the states and their power-spectra.
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Figure 3: Correlation functions (second row) and diagonal element of the Perron-Frobenious
operator (P t

ii, third row) for the coarse-grained Lorenz 63 using 6 (first column) and 12
(second column) clusters. We compared these quantities obtained from the coarse-grained
time series (blue curves) with those of ones obtained using Q from Eq. (8) (orange curve)
and Qpert from our method (green curves).
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Leicht-Newman algorithm for Markov processes

Before we clusterized the snapshots of the system according to their distance in space. We
can introduce a further clusterization to group together clusters close in time, that is to split
the clusters into communities of connected elements which give us important information
about the sojourn time of the system in each region of the phase-space and, as we will see
later, about the transition from deterministic to chaotic regimes and vice versa.

To this end, we propose a modification of the directional Leicht-Newman algorithm [2],
which consists in dividing a network of size N recursively into two communities. Each
vertex i is labeled by si = ±1 depending on which community it has been assigned and the
values of si are chosen in order to minimize the modularity parameter

Q =
1

2N

∑
ij

[
Aij −

kini k
out
j

N

]
(sisj + 1) =

1

2N

∑
ij

siBijsj , (15)

with A the adjacency matrix, kini k
out
j the in- and out- degrees of the vertices, and Bij the

modularity matrix

Bij =
1

N

(
Aij −

kini k
out
j

N

)
. (16)

In our case we consider a network withN vertices andm edges, each of them representing
a transition probability of 1/m. We can write

Bt
ij =

1

mN

(
#ij −

#out
i #in

j

mN

)
=

1

N

(
#ij

m
− 1

N

#out
i

m

#in
j

m

)
(17)

By taking the limit m→ 0 we obtain

Bt
ij = P t

ij −
1− P t

ii

N

(∑
k

P t
kj

)
. (18)

We have then to minimize the modularity parameter obtained using the modularity matrix
defined before.

In Fig. (4 left panel) we plotted X(t) t ∈ [1, 2000] for the Kuramoto-Shivashinsky
model together with the value of s assigned to each X. In this case the clusterization has
been performed using L2 norm on the power spectra of the snapshots. We can notice how
our modified algorithm is able to correctly distinguish between states that exhibit chaotic
behaviour from states where the system’s behaviour is deterministic. In Fig. (4 right panel)
we plotted the two dimensional time series obtained evolving a Browninan motion with noise
amplitude σ = 0.75 inside the potential

U(x, y) = (x− 1)2(x+ 1)2(x2) + (y − 1)2(y + 1)2 (19)

together with its clusterization obtained from our version of the Leicht-Newmann algorithm.
We can notice how on short time scales the algorithm produces six different clusters coincid-
ing with the six minima of the potentials; for time scales longer than the first passage time
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Figure 4: Time behaviour of the coarse grained time series X (red curve) and of the com-
munity to which each element of the time series is assigned (blue curve) using the modified
version of the Leicht-Newman algorithm for the Kuramoto-Shivashinsky model.

between adjacent minima on the y-axis they become indistinguishable and three clusters are
obtained. For time scales even longer than the mean first passage time between minima on
the x-axis the algorithm produces only one cluster. This algorithm can also be generalized
to other dynamical systems (see Fig. (5)).

From the transition matrix to the deterministic dynamics

We have seen how a dynamical system can be characterised by a deterministic (and stochas-
tic) force field or by a transition matrix. The former is able to correctly reproduce the
system’s dynamics and evolve it forward in time in order to obtain reliable forecast, but
it is extremely difficult to reconstruct, in particular if the system under study is highly
non-linear. The latter, instead, can be easily estimated from the coarse-grained model as
we described before and it is able to reproduce the main equilibrium and dynamical and
equilibrium features of the system, but completely lacks any predictive performances. In
the following we propose a method to combine them in order to use the knowledge of the
transition matrix to put some constraints over the force fields which will facilitate their es-
timation and, moreover, it will force them to generate a time series with the same statistical
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Figure 5: Clusterization using the modified version of the Leicht-Newmann algorithm for
the 2D system of Eq. (19) (left panels, from top to bottom t = 5, 50, 1500) for the Chua
circuit (centers panels, from top to bottom t = 5, 50, 500) and for Lorenz 63 (right panels,
from top to bottom t = 5, 50, 100).
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and dynamical behaviour of the real one.
Using a time-discretized version of Eq. (1), xn+1 = f(xn), and the conservation of

probability, we can write the probability for the system to be in a region of the phase-space
Σ after n+ 1 time steps as∫

Σ
ρn+1(x)dx =

M∑
k=1

∫
Σk=f−1

k (Σ)
ρn(x)dx =

M∑
k=1

∫
Σ

ρn(f
−1
j (y))

|J(f−1
j (y))|

dy, (20)

where we summed over all the M preimages of x = f−1
k (y) under f and J is the Jacobian

determinant of the transformation. Eq. (20) becomes

ρn+1(x) =
M∑
k=1

ρn(f
−1
k (x))

|J(f−1
k (x))|

. (21)

On the coarse-grained system the previous equation becomes

ρin+1 =
M∑
k=1

1

|J(f−1
k (Ci))|

N∑
j=1

pik(j)ρ
j
n

=
N∑
j=1

(
M∑
k=1

1

|J(f−1
k (Ci))|

pik(j)

)
ρjn

=
N∑
j=1

Pijρ
j
n

(22)

with Ci the center of the ith cluster and pik(j) the probability for the preimmage f−1
k (Ci) of

being mapped in cluster j. We assumed that the preimages of all the points in the phase-
space mapped into the ith cluster are in a neighborhood of the C̃js, defined as the centers of
the M preimages of each cluster obtained taking the limit N → ∞. If the system is instead
stochastic, this assumption is modified by saying that the probability for a preimages not
being in a neighborhood of one of the C̃js is negligible.

We can then write the following relation between the deterministic forcing f and the
Perron-Frobenious operator

Pij =
M∑
k=1

1

|J(f−1
k (Ci))|

pik(j). (23)

We can notice that if k = 1, pi(j) coincides with the transpose of the adjoint of the Perron-
Frobenious operator (the Koopman operator). In this case the Jacobian determinant can
be estimated directly from the transition matrix. If k > 0 we define

Ai =

N∑
j=1

Pij =

M∑
k=1

1

|J(f−1
k (Ci))|

N∑
j=1

pik(j) =
M∑
k=1

1

|J(f−1
k (Ci))|

, (24)

and

Bj = maxiPij = maxi

M∑
k=1

1

|J(f−1
k (Ci))|

pik(j) ≤
1

|J(Cj)|
. (25)
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While the first relationship is not affected by noise, increasing the noise magnitude will
determine an increase in the standard deviation of the pik(j)s, lowering in this case their
maximum value. If f−1 is not constant, there will be some regions of the image mapped
in a smaller region of the preimage and vice versa. Therefore, by artificially adding white
noise to the system, since the number of clusters is finite, we will observe that some of the
Bjs will remain unchanged, while others will be affected. Bj can be extrapolated from the
the values that are not changed by noise. In these cases Bj ≃ 1

|J(Cj)| and the Jacobian

determinant can be obtained.
We have then found the searched relationship between the forcing f and the Perron-

Frobenious operator.
In the following we apply the method described above to different one-dimensional

dynamical systems and in each of them we will study the effect of adding white noise
in the determination of the functions Ai, Bj .

We consider the Ulam map
xn+1 = 1− 2x2n, (26)

defined on the phase space xn ∈ [−1, 1] ∀n. We have

ρn+1(Ci) =
1

4

(
2

1− Ci

) 1
2

[
ρn

((
1− Ci

2

) 1
2

)
+ ρn

(
−
(
1− Ci

2

) 1
2

)]
(27)

and then ∑
k

1

|J(f−1
k (Ci))|

=

√
2

2

(
1

1− Ci

) 1
2

(28)

and
1

|J(Cj)|
=

1

4|Cj |
. (29)

We study a stochastic version of the Ulam map obtained by adding at each time step a
Gaussian random number ξn with zero mean and variance σ. Since the process is defined
in the closed interval [−1, 1], the values of ξn that bring the system outside the interval
are discarded. We integrated the system numerically, we clusterized it, we constructed the
Perron-Frobenius operator from the trajectory and then the functions Ai and Bj .

From a least square fit of Ai and Bj we can estimate Eqs. (28, 41) and the Jacobian
determinant (or the derivative of f(x) as in the one-dimensional case we are considering).

The same procedure has been applied also for the continued fraction map and the cusp
map. For the former we have

f(x) =
1

x
−
⌊
1

x

⌋
(30)

defined on the phase space xn ∈ [0, 1] ∀n,

ρn+1(Ci) =
∞∑
k=1

1

(k + Ci)2
ρn

(
1

Ci + k

)
, (31)

∑
k

1

|J(f−1
k (Ci))|

= Ψ1(1 + Ci) (32)
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and
1

|J(Cj)|
= C2

j , (33)

with Ψm(x) the polygamma function of order m and ⌊x⌋ the integer part of x.
For the latter we have

f(x) = 1− 2|x|
1
2 (34)

defined on the phase space xn ∈ [−1, 1] ∀n,

ρn+1(Ci) =
1− Ci

2

[
ρn

(
(1− Ci)

2

4

)
+ ρn

(
−(1− Ci)

2

2

)]
(35)

∑
k

1

|J(f−1
k (Ci))|

= 1 + Ci (36)

and
1

|J(Cj)|
=
√
|Cj |. (37)

Finally, we consider the logistic map

xn+1 = rxn(1− xn), (38)

for r > 0. We have

ρn+1(Ci) =
1√

r2 − 4rCi

ρn

(√
r2 − 4rCi

2r

)
+

1√
r2 − 4rCi

ρn

(
−
√
r2 − 4rCi

2r

) (39)

and then ∑
k

1

|J(f−1
k (Ci))|

=
2√

r2 − 4rCi

(40)

and
1

|J(Cj)|
=

1

|r(1− 2Cj)|
. (41)

In Fig.(6) we plotted the functions Ai and Bj for each map together with their analytical
estimations reported in Eqs. (28, 41, 32, 33, 36, 37). We used different noise amplitudes and
we can observe how, in all the cases, the function Ai correctly reproduces its expected value
in the zero noise limit. The function Bj instead is deeply affected by noise, underestimating
the value of the Jacobian determinant when the noise amplitude is increased. In this case we
can notice that for come values of Cj Bj is less affected by noise than others, these values
corresponds to regions where the preimages are denser than the corresponding images.
These regions can be identified by adding artificial noise to the system and identifying the
values of Bj less sensible to noise and perform the fit over those.

Using the method described above, We showed how to reconstruct the equation govern-
ing the dynamics of the system from the Perron-Frobenious operator for a one-dimensional
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Figure 6: Plot of Ai and Bj (top and bottom rows, respectively) together with their analyt-
ical estimation (yellow lines) for the tree different maps studied (from left to right, Ulam,
continued fraction and cusp maps). Different values of the noise amplitude have been used
σ = 0, 0.02, 0.05, 0.1 (blue, orange, green and purple lines, respectively).

process. For more complex multi-dimensional systems it will be impossible; however, by
using the relationship between the matrix elements of P and f , one can have a reliable
estimation of the first order partial derivatives of f which are useful constraints that can
be used to reconstruct f from a time series.

We used this method to reconstruct the logistic map with parameter r = 4 from data.
We determined the Jacobian determinant from the Perron-Frobenious operator and we
used this information to train a neural network imposing that the hidden state Jacobian
determinant agrees with the one obtained from the Perron-Frobenious operator. From Fig.
(8) we can notice that the hidden state of the neural network is able to correctly reproduce
the map and the statistics of its time series.
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Figure 7: Same as Fig. (6) but for the logistic map for different values of r = 3.7, 3.8, 3.9, 4
(red, blue, green and orange curves, respectively).
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Figure 8: From left to right and top to bottom: Panel 1: reconstruction of the logistic
map (blue dashed curve) and its Jacobian determinant (red dashed curve) using a neural
network (solid lines), Panel 2: sample of the logistic map evolved using Eq. (38) and a
neural network (red and blue curve, respectively), Panel 3,4: p.d.f.s of the trajectories of
the previous panel.
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Appendix

Here we present the dynamical systems we referred in the manuscript

The Kuramoto–Sivashinsky equation

ut + uxx + uxxxx +
1

2
u2x = 0. (42)

Lorenz 63 system

ẋ = σ(y − x)

ẏ = −xz + ρx− y

ż = xy − βz

(43)

with σ = 10, ρ = 28 and β = 8/3.

Chua system

ẋ = a[y − h(x)]

ẏ = x− y + z

ż = by

(44)

where

h(x) = m1x+
1

2
(m0 −m1)(|x+ 1| − |x− 1|) (45)

with a = 15.6, 25.58, m0 = −8/7 and m1 = −5/7.
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Experiments on the Instability of Buoyancy-driven Coastal

Currents

Sam Lewin

1 Introduction

In a rotating flow with a lateral boundary, such as a coastline in the ocean, the associated
no-flux boundary condition removes the component of the Coriolis force parallel to the
boundary, thus favouring the along-boundary spread of fluid. Coriolis forces deflect such
‘coastal currents’ to flow with the boundary on their right in the Northern hemisphere
(equivalently on the left in the Southern hemisphere). A common driving force for coastal
currents is the buoyancy force arising from the difference in density between two water
masses, which occurs naturally when a freshwater river runs out into the ocean. Classical
examples include the Leeuwin Current [16], the Chesapeake Bay Outflow [14], the Norwegian
Coastal Current [12] and the East Greenland Current [21]. The evolution of buoyancy-driven
coastal currents has been studied extensively over the last 45 years through a combination
of theoretical, experimental and numerical studies. Of particular interest is the tendency
of these currents to become unstable to wave-like disturbances, which may grow to form
meanders and sometimes detaching eddies.

Describing buoyant outflows in full generality is difficult because the dynamics are highly
varied near the source [11] and nose [6] of the current. Moreover, the behaviour of the
buoyant fluid is strongly dependent on how it interacts with sloping bottom bathymetry
[23, 15]. To simplify matters, it is common to focus on a region downstream of the source
and upstream of the nose where the current is assumed to be steady and geostrophically
balanced. Although the assumption that such a region exists at all is questionable [4], it
provides a natural starting point for a theoretical stability analysis of the flow.

Buoyant coastal currents above a finite-depth ambient fluid are unstable to both baro-
clinic and barotropic instability, with the dominant mode depending on the parameter
γ = h1/h2, which measures the ratio of the maximum depth of the current h1 to the depth
of the ambient fluid h2 [8]. The case of a flat bottom was first studied experimentally
by Griffiths & Linden [7] (hereafter GL81), who showed that a purely baroclinic two-layer
quasi-geostrophic model (i.e. neglecting the lateral density front where the buoyant current
outcrops at the surface) captured the essential features of the primary linear instability
reasonably well for 0.07 ≤ γ ≤ 1. The surprising effectiveness of the quasi-geostrophic ap-
proximation in this context can also be verified theoretically by comparison with a shallow
water model which captures the outcropping front [1]. Though we will not consider it here,
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we note that later work has demonstrated that instability may be significantly modified by
variable bathymetry [2, 22, 19].

A sufficient condition for the baroclinic instability of a buoyant gravity current in
geostrophic balance is that the lateral width of the current w0 be suitably wide relative
to the Rossby radius of deformation LR =

√
g′h1/f , where g

′ is the reduced gravity and f
is the Coriolis parameter which is taken to be constant, whilst the depth ratio γ must also
be suitably large. The measured properties of the instability, such as its wavelength and
propagation velocity, are therefore expected to be a function of the parameter F = w2

0/L
2
R

(which is often referred to as the Froude number in the literature, but might more ap-
propriately be considered as an inverse Burger number [3]), as well as the parameter γ.
However, there is an implicit assumption that the geostrophically balanced current evolves
to be sufficiently wide in the first place. Indeed, experimental set-ups are often controlled
so that the outflow current is either widening continuously [7, 2] (achieved by use of a ring
source), or starts off in a supercritically wide state [9] (achieved by dam-break). This has
the advantage of greater control over the experimental parameters important for instability,
but it is doubtful as to whether such flow states can be accessed by real river plumes.

Modelling the river outflow as a point source at the boundary, Thomas & Linden [20]
(hereafter TL07) derive an analytical solution predicting that the steady current evolves
to have F = 2, a value that corresponds to stability or unresolvably long waves in the
majority of existing experimental set-ups. Though this model is built on several highly
simplifying assumptions (which will be discussed later), it nonetheless raises the question:
under what conditions, if any, can we expect realistic river outflows (i.e. those that emerge
from a localised source) to evolve to become sufficiently wide to be unstable to baroclinic
instability?

To attempt to answer this question, we perform laboratory experiments in a cylindrical
rotating tank with the buoyant gravity current produced by a small source at the boundary
so that its width and depth adjust freely according to the source flux Q, the initial depth
of the ambient fluid H, and the parameters g′ and f . In agreement with TL07, we find
that, for small values of the depth ratio γ, the current never becomes sufficiently wide to be
reliably unstable. To access regimes of instability, we find it is necessary to greatly increase
γ by reducing the depth of the bottom layer, to the point where it becomes important to
consider the flow generated in this layer from the displacement by the buoyant current.
This means that the instability accesses a very different regime of parameter space to most
existing experimental studies, characterised by small Froude number F and large depth
ratio γ.

We also present some qualitative results regarding the modification of the instability by
wavy lateral boundaries, as might arise in the ocean in the form of bays, headlands and
other coastal features. In the case of a sinusoidal boundary with characteristic wavelength
Λ, it is natural to expect that the behaviour of a growing instability of wavelength λ may
be different depending on the ratio λ/Λ. In the case λ/Λ ≪ 1 or λ/Λ ≫ 1 , the instability
is unlikely to ‘feel’ the influence of the boundary. When λ ∼ Λ, however, we might expect
the possibility of resonance.
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Figure 1: Schematic illustrating the theoretical model of the current used (placeholder from
TL07).

2 Theory

We neglect the curvature of the cylindrical tank wall and model the flow as an inviscid
current of density ρ1 flowing steadily and uniformly along a wall at y = 0, with velocity
u1 = (u1(y, z), 0, 0) in the along-wall x-direction and depth h1(y). The density, velocity
and depth of the fluid underneath are similarly then ρ2, u2 = (u2(y, z), 0, 0) and h2(y). The
system is assumed to be rotating about the z-axis with constant angular velocity Ω = f/2.
Reduced gravity is defined as g′ = 2g(ρ2− ρ1)/(ρ2+ ρ1), where g is the regular acceleration
due to gravity. In the absence of the buoyant current, the ambient height of the bottom
fluid is denoted H. We assume a rigid lid, that is, that the displacement of the free surface
is small relative to h1(y), so that we can write h2(y) = H−h1(y). The depth of the current
is defined to be h0 = h1(0) i.e. the depth at the wall, whilst the width of the current w0

is defined by the ‘outcropping’ boundary condition h1(w0) = 0. The (upper layer) Rossby
radius associated with the current, the corresponding Froude number F , and the layer depth
ratio γ are then defined as

LR =

√
g′h0
f

, F =

(
w0

LR

)2

, γ =
h0

H − h0
. (1)

Flow is assumed to originate from a point source far upstream with volume flux Q.

2.1 A quasi-geostrophic model for instability

To conduct a stability analysis, GL81 further simplify the flow geometry, constraining the
flow to a channel of width w0. The outcropping front is neglected so that the density
interface intersects y = w0 at some finite height, and the velocities u1 = U1, u2 = U2 are
assumed to be constant, giving rise to a vertical shear U = U2 − U1. The equilibrium
heights of each layer are h1 = h0 and h2 = H−h0. In the quasi-geostrophic approximation,
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perturbations to the interface are included as terms in the total streamfunction for the
velocities: hi(x, y, t) = (g′/f)ψi(x, y, t), where

ψi = φi + ϕi(x, y, t), φi = −Uiy. (2)

The linearised equations for the perturbation streamfunctions ϕi(x, y, t) are (see e.g. [17])(
∂

∂t
+ U1

∂

∂x

)[
∇2ϕ1 − F (ϕ1 − ϕ2)

]
+ FU

∂ϕ1
∂x

= −r
2
∇2ϕ1, (3)(

∂

∂t
+ U2

∂

∂x

)[
∇2ϕ2 − γF (ϕ2 − ϕ1)

]
− γFU

∂ϕ2
∂x

= −γr
2
∇2ϕ2. (4)

The terms on the right hand side describe friction due to the horizontal top, bottom and
interfacial boundaries in the case where interfacial friction dominates, where the constant
r can be written in terms of an upper layer Ekman number (see GL81 for details).

By seeking solutions of the form ϕi = Ai exp [ik(x− ct)] cos(ℓy) and substituting into
the linearised equations, it is possible to determine Im(c) = g(k, ℓ). The calculations are
detailed in GL81; here, it suffices to say that viscosity introduces a minimum shear U that
must be exceeded in order for instability to exist, i.e. g(k, ℓ) > 0. Provided U is sufficiently
large, there is then a finite band of wavenumbers K =

√
k2 + ℓ2 for which instability is

possible. Within this band, the most unstable mode mink,ℓ g(k, l) has ℓ = ℓm = π/2 and
the corresponding k = km is given by k2m = K2

m − ℓ2m, where

Km = argminK
γσ(K)K2

4γ(K2 − ℓ2m)G(K)
, (5)

G(K) = γ(K2 + F (γ + 1))(F +K2)2 − (K2 + 2γF )(F +K2)
√
σ(K) + Fσ(K), (6)

σ(K) = (K2 + γF )2 + γ2(K2 + F )2 + 2γ(K2 + F )(K2 + γF ). (7)

Note the quoted formula for Km is incorrect in the original GL81 text: the above is the
corrected version. In theory, for a steady current of depth h0 and width w0, we can determine
F and γ via (1) and hence the expected wavelength Km of instability.

2.2 An inviscid model for the current

A natural way to think about the inviscid problem is in terms of potential vorticity (PV)
in the upper and lower layer, defined as qi(y) = (f + ζi(y))/hi(y), where ζi = −∂ui/∂y is
the vertical vorticity. It is quite common (see e.g. TL07) to assume that the PV of the
discharging upper layer is vanishingly small. In the experimental set-up (described below),
this is partially justified by the fact that the discharging buoyant fluid originates from a
deeper reservoir. In the ocean, currents may ‘lift-off’ the base of the source channel as the
river discharges and reduces in depth, thus again falling roughly in line with the assumption.
However, we stress that the validty of this assumption is at best highly questionable and
we consider it as a starting point for the sake of simplicity. A treatment of non-vanishing
PV in the upper layer can be found in [4] for the case where the lower layer is inactive. The
case for an active lower layer is left as an important consideration for future study.
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As the buoyant fluid enters and displaces the ambient denser fluid, its effective height
decreases (assuming a deep upstream reservoir) and hence an anticyclonic flow in the pos-
itive x direction is established to maintain zero PV. Similarly, the height of the displaced
lower layer decreases from its initial height H which also generates an anticyclonic flow to
conserve PV. The relative vertical shear between the two layers gives rise to the possibility
of instability as described in §2.1. Precisely, conservation of PV qi in the upper and lower
layer gives us

q1 =
f − ∂u1/∂y

h1
= 0, q2 =

f − ∂u2/∂y

H − h1
=

f

H
, (8)

Hence, we have that u1(y) = −fy + u1(0). Appealing to the fact that the velocity perpen-
dicular to the wall is zero and h = h(y), it follows from the shallow water equations that
Du/Dt = 0, i.e., the velocity of the current does not change following the flow. For a point
source, the velocity parallel to the wall is zero at the source and hence u1(0) = 0.

We assume the Margules equations govern the evolution of the front, that is, the slope
of the density interface is balanced by the difference in velocity between the layers:

f(u1 − u2) = g′
dh

dy
. (9)

Taking a partial derivative with respect to y and substituting in from (8), we find h satisfies
the following second order ordinary differential equation:

∂2h

∂y2
=

f2

g′H
h− f2

g′
. (10)

We have the outcropping boundary condition h(w0) = 0. For another boundary condition,
we note by continuity that u2(w0) = 0 since there is no upper layer beyond y = w0. Since
u1(w0) = −fw0, (9) then gives the boundary condition h′(w0) = −f2w0/g

′. If we define
µ2 = f2/(g′H), the solution to (10) is

h(y) = H [1− cosh(µ(y − w0))− µw0 sinh(µ(y − w0))] . (11)

Finally, the current width w0 is determined by the condition that the volume flux in the
current is constant: ∫ w0

0
uh(y) dy = Q. (12)

Note that we can expand in powers of µ to find

h(y) = h(0)− H

2
µ2(y − w0)

2 −Hµ2w0(y − w0) +O(Hµ3) = h0 −
f2

2g′
y2 +O(

1

H
), (13)

so that h(y) tends towards the parabolic profile found by TL07 in the limit as H → ∞. Note
that, as H decreases, the solution (11) becomes invalid when h(0) > H: at this point the
current becomes attached to the bottom. We note that it is expected that the solution will
likely be inaccurate before this situation occurs due to frictional effects, where the height
of the bottom layer is similar to the height of the bottom boundary layer.

The profile (11) is plotted in figure 2a) for a range of values of the ambient lower layer
height H, at nominal values of the parameters f , g′ and Q. The primary effect of an active
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Figure 4: The experimental set-up (from TL07).

fluid to become concave and thus the height at the boundary to increase slightly; this ‘true
height’ was the height recorded and was measured using a ruler attached to the side of the
tank). Buoyant water of density ρ1 - which was a mixture of salt water and fresh water - was
injected with constant flux Q at the surface of the ambient using a metal pipe with a radius
pf approximately 1 cm, which was attached to the side of the tank. The buoyant water was
dyed red with a concentration of approximately 1ml l−1. The source pipe was connected to
a large bucket that acted as the reservoir of buoyant water. A small piece of porous foam
was placed around the end of the pipe to minimise mixing of the outflowing buoyant fluid
with the ambient as it emerged. The source was turned on once the ambient salt water had
reached solid body rotation; this took around 30 minutes. The current would then travel
around the boundary of the tank in an anticlockwise direction, and the experiments were
stopped when the nose of the current had travelled all the way around back to the source.

The evolution of the emerging dyed current was viewed from above and from the side
using co-rotating cameras that took one picture each second. The camera viewing the side
of the tank was placed to view the current just downstream of the source, where instability
was generally first viewed to occur in those experiments that became unstable, and a ruler
was placed in the shot as a reference for measuring the depth of the current. Post-processing
was used to add a ruler to the shots from the camera above, which was possible knowing
the width of the tank. To improve visualisation, the tank was lit from underneath using a
uniform light source. Another method for enhancing visualisation was to very slowly inject
a thin stream of blue dye at the surface using a syringe just downstream of the source.
This dye would then be passively advected with the current and capture the motion of
the instability. The wavelength of instability when it appeared was measured by averaging
the number of instabilities (counted by eye) over the total distance they occupied around
the circumference of the tank. Using the images available, it was possible to calculate, for
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Figure 5: Example post-processed images demonstrating how various properties of the
current and instability were measured. The left panel is a picture taken from above where
the green rulers are added in post-processing so that the gap between each small tick
represents 1cm. The right panel is a picture taken from the side-mounted camera measuring
the depth of the current just downstream of the source.

example, the width of the current, the depth of the current at a single location close to the
source downstream, the propagation velocity of the nose of the current and the wavelength
of and propagation speed of instability. Figure 5 illustrates how some of these measurements
were made in practise using the post-processed images.

One prominent difficulty was the tendency of the current to form a recirculating ‘bulge’
region near the source, as is typical in experiments (e.g. [10]) and indeed many realistic
river outflows [11]. The problem with this feature for our purposes is that it reduces the
effective flux of fluid into the geostrophic part of the current downstream in a manner that
is hard to predict, thus making it difficult to test our theory which relies on a constant,
known current flux. To mitigate this issue, a plexiglass barrier was placed around the source
to prevent the bulge and force the flow along the wall, as in [19]. However, a caveat of this
approach was then that the width of the current emerging at the edge of the barrier was
determined by the width of the barrier. Hence, if the barrier was sufficiently far from the
edge of the tank, the current could be supercritically wide and become unstable without,
in theory, freely geostrophically adjusting. Thus, the width of the barrier Wsource became
an additional parameter in the experiments.

The data from a total of 45 experiments are used in the following analyses. Of these, 12
had a wavy lateral boundary (discussed below) and 33 had a smooth boundary. The range
of parameters used in the experiments are shown in table 1.
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Parameter Value

f 1.5 - 3.5 s−1

g′ 3 - 10 cm s−2

Q 10 cm3 s−1

H 3 - 22 cm
Wsource 1 - 5 cm

Table 1: The range of parameter values used in the experiments.

Figure 6: A picture of the wavy boundary, which consisted of a flexible sheet of smoothly
corrugated plastic wrapped in a circle. This could be placed snugly inside the cylindrical
tank. The source pump was attached to the smooth transparent plexiglass part of the wall,
which can be seen in the photo.

3.1 Wavy wall experiments

A wavy lateral boundary was introduced using a sheet of smooth, roughly sinusoidally
corrugated piece of plastic which wrapped around the inside of the vertical walls of the
tank. The wavelength of the lateral topography was λtopo = 7 cm and the amplitude was
atopo = 0.7 cm. A photo of the equipment used is shown in figure 6. Since we were limited
to this one combination of λtopo and atopo, the ratio λ/λtopo was modified exclusively using
the parameters of the current to control the wavelength of the instability λ. Additionally,
the topography was opaque meaning the height could not be measured using the side-on
camera, hence the height of the current from an equivalent smooth-wall experiment was
used. The topography was designed to be smooth around the source so that the current
could be properly established before impinging on the lateral topography.
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4 Results

4.1 Qualitative description of the smooth wall current

Figure 7 shows the evolution of a typical buoyant gravity current for a deeper ambient
layer depth. The behaviour is very similar to the currents of TL07, with the depth and
width of the current decreasing towards the nose and being widest near the source. In the
region immediately downstream of the source, the width and height of the current adjust
to remain roughly constant, suggesting that geostrophic balance is achieved. We will not
consider in detail the thinner, shallower region closer to the nose since frictional effects are
probably more important here: in particular we note a surface Ekman layer becomes visible
at later times, as is seen by the weaker dye concentrations at the edge of the current further
downstream. Some non-uniformities in the current emerge from the source region, which
grow into slight meanders, as can be seen at t = 180s. However, these never develop into the
well-formed anticyclonic bulges observed in GL81, and they emerge directly from the source
rather than from the geostrophic region downstream, a behaviour that is not included in
our model. Certainly, there is no consistent way to measure a wavelength and so we classify
this flow as stable. There are several other experiments that behave very similarly, all with
larger values of the ambient depth H.

Figure 8 shows the evolution of typical current above a shallower bottom layer. Even
with the barrier, these experiments typically develop a ‘bulge’ region as they emerge, as is
seen in the top left panel. This bulge circulates anticyclonically and eventually detaches,
forming a large eddy which continues to grow and whose evolution can be clearly seen in
the panels. However, this behaviour is transient and eventually a steady current width and
depth are achieved downstream of the source, as can be seen in the bottom two panels.
Clear waves of instability can be seen emerging at around the 12 o’clock position in the
bottom two panels, which then propagate downstream. The width of the current is very
similar to the equivalent current in figure 7 which has a larger H and hence smaller γ. The
qualitative behaviour of the unstable current in figure 8 versus the stable current in figure
7 is consistent with the theoretical analysis of §2, which predicts that the key mechanism
causing geostrophic ‘point source’ currents to go unstable is an increase in depth ratio γ,

4.2 Comparison with theory

4.2.1 Current shape

We compare the measured height of each current with the theoretical model (11) from
§2, plotting the values against the ambient depth H in figure 9. Note that we cannot have
h0 > H: when H < H∗, where recall H∗ is such that h0(H

∗) = H∗, the model is adjusted so
that h0(H) = H. To collapse the data, values are non-dimensionalised by ĥ = (2Qf/g′)1/2

i.e. the classical geostrophic prediction. There is an indication of an increasing trend in
h0 as H decreases, though the scatter is significant. There appears to be a systematic bias
away from the geostrophic prediction ĥ, even for deeper ambient layers. The source of this
bias was not clear. It could be caused by the fact that some fluid leaks backwards from
the source and escapes around the rear of the barrier, reducing the effective flux into the
current and hence its depth. In the case of a deep and inactive ambient fluid, breaking
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Figure 7: Sequence of snapshots showing the evolution of a typical stable buoyant current,
with times shown in the top left corner of each picture. Parameters for this experiment were
f = 2.5s−1, g = 4.99cm s−2, Q = 10cm3s−1, H = 20.9cm, Wsource = 3cm. The measured
depth of the current at the wall was h0 = 2.8cm giving a value of γ = 0.14.
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Figure 8: Sequence of snapshots showing the evolution of a typical unstable buoyant current,
with times shown in the top left corner of each picture. Parameters for this experiment were
f = 2.5s−1, g = 4.71cm s−2, Q = 10cm3s−1, H = 5.93cm, Wsource = 3cm. The measured
depth of the current at the wall was h0 = 3.0cm giving a value of γ = 0.51.
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Figure 12: Post-processed images from above of the circled experiments in figure 11(a). (a)
Experiment with f = 3.5s−1, g = 5.13cm s−2, Q = 10cm3s−1, H = 6.8cm, Wsource = 5cm,
with corresponding F = 15.6 and γ = 0.8. (b) Experiment with f = 2.5s−1, g = 9.36cm s−2,
Q = 10cm3s−1, H = 3.9cm, Wsource = 2.5cm, with corresponding F = 1.7 and γ = 1.8.

km is determined using (5), whilst the latter has λ/w0 = 2πF−1/2γ−1/4. We compute
the non-dimensional wavelength of instability for each current that becomes unstable in
our experiments, plotting the results against the corresponding value of F = (w0/LR)

2

in figure 11a). Also included are the marginal and supercritical instability curves from
figure 3. We first note that practically all of our experiments fall outside the range of
ring source experiments performed by GL81, which are shown in figure 3. This highlights
the fact that the point source currents are indeed in a very different regime due to their
limited width. It is worth pointing out however that, due to the measured width being
consistently larger than the theoretical predicted width, the predicted value of F = 2 is
exceeded in most experiments and hence marginal instability with measurable wavelength
is still possible. Indeed, we see that the experimental points are a good fit with the marginal
instability curves. Additionally, there is a clear dependence of the location of the instability
in parameter space on the depth ratio γ, a feature which has not been observed previously.

We also compare the location in parameter space to the instability curves for supercrit-
ical instability shown by the dashed lines in figure 11a). To get a quantitative measure of
which instability is more relevant, given the measured value of γ and F for each point, we
compute the predicted value of (non-dimensional) instability wavelength λ̂super and λ̂marg

for the supercritical and marginal instabilities and calculate the difference from the mea-
sured value λ̂ = λ/w0. The errors are shown in figure 11(b), where it can be seen that
the majority of points lie closer to the marginal instability curve than the supercritical
instability curve, suggesting that this is the dominant mechanism for instability.

There are two notable exceptions for which the supercritical instability prediction is very
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accurate: these points are circled in black in figure 11(a). Pictures from the corresponding
experiments are shown in figure 12. Figure 12(a) shows the experiment corresponding to
the right circled point with F = 15.6, γ = 0.8, λ/w0 = 3.9, which had a marginal error
of 0.8. This experiment had a wide source barrier Wsource/w0 = 3.9 meaning the current
emerging was supercritically wide, and instability can be seen emerging directly downstream
of the barrier. Interestingly, the left circled point, which corresponds to an experiment with
F = 1.7, γ = 1.8 and λ/w0 = 4 shows a very different scenario, as seen in figure 12(b).
This experiment had a narrow source barrier Wsource = 1.3, so that large γ is the driver
of instability. It appears that in this scenario, supercritical instability is the dominant
mechanism. The instability forms further downstream of the source than in figure 12(a),
and there is evidence of unsteady, small scale fluid motions at the edge of the current near
the source. Interestingly, even though the geostrophic width of the current emerging from
the source is narrower, the instabilities grow nonlinearly to a much greater amplitude and
as a result more lateral mixing takes place.

In order for both of the currents in figure 12 to be supercritically unstable, the shear
at the density interface must be sufficiently large. According to the geostrophic theory,
the velocity of the upper layer at the interface is u1(w0) = −fw0, so that the shear can
be expected to be larger for wider currents. This may explain the strongly supercritical
behaviour of the current in figure 12(a). For the current in figure 12(b), which is very
narrow, we propose that there is an additional ageostrophic component of the velocity of
the current emerging from the narrow source, which occurs due to an equivalent volume
flux over a smaller area. Indeed, the small scale perturbations to the interface near the
source may be due to barotropic instability growing in a region of high shear.

4.3 Current over a wavy boundary

Figure 13 shows the qualitative behaviour of instability for a wavy lateral boundary and a
smooth wall in a parameter regime where λtopo/λ ≈ 0.5 for the smooth wall. As can be
seen, there is very little observable difference between the two experiments: both have an
initial transient instability that grows to a larger amplitude as was discussed above and
in both cases the current reaches a roughly steady regime, becoming unstable downstream
of the source. The wavelength of the instability is practically identical between the two
experiments, despite the wavelength of the topography being half of the wavelength of
instability. The nonlinear evolution of instability is also similar, with the anticyclonic
waves growing to similar amplitudes for both the smooth and wavy walls. We found the
qualitative differences between smooth and wavy wall experiments to be very small for all
of the parameter choices presented here.

To investigate whether there is a quantitative difference between the wavy boundary ex-
periments and the smooth boundary experiments, figure 14 shows the predicted wavelength
of instability according to the marginal stability curve (5), versus the measured wavelength
of instability, for both smooth and wavy wall experiments. The marginal stability prediction
was shown to be a good fit to the smooth wall experiments in §4.2.2. In theory, if the stabil-
ity in the wavy wall experiments is driven by the presence of the boundary we might expect
to see the wavelength of the instability deviate from the marginal stability theory towards
the wavelength of the boundary, as shown by the solid black line in the figure. Instead,
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Figure 13: Pictures showing the evolution of instability for two experiments with identical
parameters f = 2.5s−1, g = 4.7cm s−2, Q = 10cm3s−1, H = 3.9cm, for (a) a wavy wall and
(b) a smooth wall.

there is no clear difference in trends between the smooth wall experiments and the wavy
wall experiments. It is important to point out that the range of values of λmeasured/λtopo are
limited in our experiments and we do not achieve the limiting regimes λmeasured/λtopo ≪ 1
and λmeasured/λtopo ≫ 1 described in the introduction, making it difficult to draw any
broad conclusions about the behaviour for the wavy wall experiments. However, in the case
λmeasured/λtopo ∼ 1 there is no clear qualitative or quantitative difference in behaviour.

To investigate further, we injected a small amount of blue dye into the current near
the wall and mounted a GoPro Hero 7 camera just above the current downstream of the
injection point to get a close-up view of the dynamics. A snapshot of the flow is shown in
figure 15. The trajectory of the blue dye suggests that fluid is being trapped in recirculating
‘bay’ regions of the topography, with the current flowing over the top. This reduces the
effective amplitude of the topography and may explain why we do not see large differences
in flow evolution between the wavy wall and smooth wall experiments.

5 Conclusion

Laboratory experiments were conducted to investigate the instability of a rotating buoyant
gravity current emerging from a localised source at the boundary. Combining existing the-
oretical models for the evolution and subsequent instability of such currents demonstrated
that instability should only be achievable provided the ratio of the current depth to the
bottom layer depth γ is sufficiently large. In this scenario, it is natural to expect that the
motion of the bottom layer induced by the impinging current may be important to the
dynamics. We proposed a simple theoretical model for an active bottom layer based on the
work of TL07 that predicts the main effect of an active bottom layer is to permit deeper
currents than a stationary bottom layer for a given initial ambient height H. This leads
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to larger values of γ and hence favours instability. In general, the trends in the height h0
and width w0 of the current predicted by the model were reproduced in the experiments,
though we found that the depth was consistently smaller than the model predicted, whilst
the width was consistently larger. It seems likely that the latter observation could be a
result of non-zero potential vorticity in the top layer, as has been explored by [4].

Once they are established, geostrophic currents emerging from a point source are not
expected to grow in width over time. Provided they are wide enough, they may become
unstable to the marginal instability described in [7] once the shear between the two layers
becomes sufficiently large. If the shear is already sufficiently large when the geostrophic
current is established, supercritical instability as described in [9] is possible. These two
types of instability behave independently on the Froude number F = (w0/LR)

2 describing
the width of the current relative to its Rossby radius, and the depth ratio γ. We found
in general that marginal instability curves gave a better prediction of the wavelength of
instability observed than those of supercritical instability in the majority of our experiments.
Our experiments fall in a different regime of (F, γ)-parameter space to classical ring source
experiments. This being said, since the width of the current was consistently wider than
predicted, F was large enough that measurable instability could be achieved at moderate
values of γ, thus the mechanism for instability appears similar to the ring source experiments
of [7]. Indeed, that study also performed a small number of point source experiments and
made the same conclusion. We greatly extend the parameter space in γ however, and clear
dependence of the instability on γ was observed.

Additionally, a couple of our experiments demonstrated convincing supercritical be-
haviour. Wider geostrophic currents naturally have a larger velocity at their boundaries,
thus having a larger component of mean geostrophic shear potentially leading to super-
critical instability. On the other hand, narrow currents may still become supercritically
unstable by possessing an additional component of ageostrophic shear. In the lab, we hy-
pothesise this may have been provided by the momentum of the impinging current near the
source. In the ocean, tidal dynamics or variations in the source strength may have the same
effect. As discussed in [7], various measured coastal current instabilities have wavelengths
that more closely match the supercritical theory, such as the East Greenland Current [21],
the Ligurian Sea coastal current [5] and the Norwegian Coastal Current [12]. It would be
interesting to explore the areas of parameter space that gave rise to this behaviour in our
experiments further in future work.

A limited set of experiments with a wavy lateral wall, that is, where the wavelength of
instability was similar in size to the wavelength of the topography, demonstrated that there
was no conclusive qualitative or quantitative difference between the flow instability over the
smooth wall. This might be attributed to fluid being trapped in recirculating ‘bay’ regions
created by the topography. It would be interesting to explore the parameter space with
the wavy wall more fully, although we note that this would be difficult to achieve in the
current lab set-up in which we had only one wavelength of topography available, meaning
the ratio of wavelengths was controlled by the wavelength of instability alone. In particular,
very small wavelengths of instability require very narrow and shallow currents, for which
friction may be important, and possibly dominant, in the 1m tank. Similarly, we are unable
to achieve wavelengths of instability of more than a few times the 7cm wavelength of the
topography due to scale limitations.
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Scaling with the Stars:

The emergence of marginal stability in low Pr turbulence

Kasturi Shah

1 Introduction

Shear-driven turbulence in the stratified regions of planetary oceans, atmospheres, stellar
interiors, and gas giants provides an important source of vertical transport of heat, mo-
mentum, and chemical tracers. Stratified turbulence in astrophysical objects differs funda-
mentally from geophysical turbulence because of the Prandtl number, Pr, which measures
the ratio of momentum diffusivity to thermal diffusivity. Values of Pr in stably stratified
geophysical systems such as Earth’s atmosphere and oceans are typically 0.7 and 10, re-
spectively. When Pr = O(1), turbulent flows (Re ≫ 1) are always close to adiabatic, i.e.,
thermally non-diffusive (Pe≫ 1). In stellar radiation zones of solar-type and intermediate-
mass stars, Pr = 10−9-10−5 [7]. The Peclet number, which is the ratio of the thermal
diffusion timescale to the turbulent advection timescale, is also the product of the Reynolds
and Prandtl number. With Pr ≪ 1, Pe≪ Re, heat diffusion in stellar fluids is much more
efficient than momentum diffusion at microscopic scales and the time scale for non-adiabatic
effects may be potentially even shorter than the advective time scale (Pe≪ 1). This regime
is, by contrast, not possible in geophysical turbulence where Re≫ 1 implies Pe≫ 1.

Stratified turbulence in stars is thought to be generated by horizontal shear instabilities
[12]. In a horizontal shear flow, due to the high stratification and low viscosity, the turbulent
eddies are flat and only weakly coupled in the vertical direction. Their characteristic vertical
scale of velocity variation, H, is far smaller than the characteristic horizontal scale, L, such
that the aspect ratio α = H/L≪ 1. Their relative motion via horizontal rotation produces
vertical shear on the vertical lengthscale, H, which generates vertical motion and vertical
mixing. As turbulence in stars is difficult to observe, numerical simulations of strongly
stratified, Pr ≪ 1 flows yield considerable insight into the validity of the [12] mechanism.
Numerical simulations at low [4] and high [6] Péclet number exhibit vertical velocity layering,
supporting [12]’s horizontal shear instability mechanism for stratified stellar turbulence. The
flows are strongly anisotropic and exhibit scale separation, as predicted.

Scaling relationships between the aspect ratio and modified Froude number FrM , the
ratio of the linear wave period to the time scale of the large-scale flow [8, 11], characterise
the interplay between the anisotropy and the stratification. Various scaling relationships
have been proposed. At low Péclet number, the vertical velocity is the unique forcing for
the buoyancy, such that w = ∇2b [8]. Two proposed scaling relationships are: α ∼ FrM

[11] and α ∼ Fr
4/3
M [4]. [4] explain the scalings that emerged from DNS by balancing
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the vertical advection of vertical velocity and the thermally-constrained buoyancy term
(w∂zw ∼ (N2/κT )∇−2w), while [11] recovers the α ∼ FrM scaling by balancing the vertical
gradient of pressure and the thermally-constrained buoyancy term, ∂zp ∼ (N2/κT )∇−2w.
At large Péclet number (but low Prandtl number), [6] finds that the vertical lengthscale
varies as Fr2/3 in numerical simulations. As changes in scaling relationships predict tran-
sitions between turbulent behaviours, a self-consistent and rigorous derivation of physically
reliable scalings is necessary to identify various turbulent regimes.

Existing algorithms for time integrations of slow-fast quasilinear systems provide meth-
ods to solve the derived multiscale model presented here [5, 10]. The central challenge is
the integration of the reduced model on two timescales and two spatial scales. The former
is typically approached by solving an eigenvalue problem for the fast-varying fields and
time-stepping the slowly-varying fields on the slow timescale. The latter is addressed by
considering small spatial scales only (for simplicity) and hence suppressing the large-scale
derivatives. The key insight obtained from applying these algorithms is the evolution of the
growth rate, represented by the eigenvalue, which indicates the stability of the flow. Ad-
ditionally, the algorithm explicitly calculates the amplitude of the fast-varying fluctuation
fields. Their feedback on the mean flow maintains its marginal stability.

Motivated by open questions regarding the validity of scaling relationships and identi-
fication of distinct turbulent regimes, we present a formal, multiscale analysis of governing
low-Pr (Boussinesq) equations at low and high Peb in the limit of strong stratification. Scal-
ing relationships between the aspect ratio and modified Froude number emerge naturally
from the multiscale analysis, which is supported by prior numerical simulations revealing
anisotropic, scale-separated, dynamics. We use our analysis to assess the validity of pub-
lished scaling relationships and construct a full regime diagram.

2 Multiscale Model Development

Consider a three-dimensional, non-rotating, incompressible, stably stratified flow expressed
in a Cartesian reference frame where z is aligned with gravity g = −gez. Let u⊥ de-
note the horizontal velocity, w the vertical velocity, p the pressure divided by a constant
reference density, and b the buoyancy perturbation with respect to a linearly stratified
background. The fluid has, in accordance with the Boussinesq approximation, a constant
kinematic viscosity ν, thermal diffusivity κT , coefficient of thermal expansion β, and a con-
stant stratification measured by the buoyancy frequency N . The governing equations for
this configuration are,

∂u⊥
∂t

+ (u⊥ · ∇⊥)u⊥ + w
∂u⊥
∂z

= −∇⊥p+ ν

(
∇2

⊥u⊥ +
∂2u⊥
∂z2

)
+ f(z)êx, (1a)

∂w

∂t
+ (u⊥ · ∇⊥)w + w

∂w

∂z
= −∂p

∂z
+ b+ ν

(
∇2

⊥w +
∂2w

∂z2

)
, (1b)

∇⊥ · u⊥ +
∂w

∂z
= 0, (1c)

∂b

∂t
+ (u⊥ · ∇⊥) b+ w

∂b

∂z
+N2w = κT

(
∇2

⊥b+
∂2b

∂z2

)
, (1d)
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where the horizontal gradient operator is denoted by ∇⊥ and ⊥ represents the horizontal
coordinates x and y. A body force fex (where f is a function of z only) is applied to drive
a mean horizontally sheared flow.

2.1 Low Péclet number equations

Motivated by evidence of strongly anisotropic flows in numerical simulations of thermally
diffusive stellar fluids [4, 6], we non-dimensionalise the system in (1) anisotropically by
defining dimensionless (hatted) variables

(x, y) = L(x̂, ŷ), z = αLẑ, u⊥ = U û⊥, t =
L

U
t̂, w = αUŵ, p = U2p̂, b = α3N

2UL2

κT
b̂,

(2)
where U is the characteristic horizontal velocity scale. Note that the body force is of order
U2/L. At low Péclet number, the vertical velocity is the unique forcing for the buoyancy,
and we expect N2w = κT∇2b [8]. Accordingly, we chose the dimensionless scaling of b in
(2) to obtain this balance in the limit Pe→ 0. On substituting the newly defined variables
in (2) and omitting the hats, (1) becomes

∂u⊥
∂t

+ (u⊥ · ∇⊥)u⊥ + w
∂u⊥
∂z

= −∇⊥p+
1

Reα2

(
α2∇2

⊥u⊥ +
∂2u⊥
∂z2

)
+ f, (3a)

∂w

∂t
+ (u⊥ · ∇⊥)w + w

∂w

∂z
= − 1

α2

∂p

∂z
+

α2

Fr4M
b+

1

Reα2

(
α2∇2

⊥w +
∂2w

∂z2

)
, (3b)

∇⊥ · u⊥ +
∂w

∂z
= 0, (3c)

∂b

∂t
+ (u⊥ · ∇⊥) b+ w

∂b

∂z
+

1

Peα2
w =

1

Peα2

(
α2∇2

⊥b+
∂2b

∂z2

)
, (3d)

where the forcing has been non-dimensionalised by U2/L. The following dimensionless
parameters arise:

Re =
UL

ν
, α =

H

L
, FrM =

(
UκT
N2L3

)1/4

, P r =
ν

κT
, P e = PrRe, (3e)

representing the Reynolds number, the aspect ratio, the modified Froude number, the
Prandtl number and the Péclet number. Both the aspect ratio and the modified Froude
number are emergent parameters. Crucially, to describe low Pe anisotropic flows, (3d) re-
quires a small buoyancy Péclet number, Peb = Peα2 ≪ 1, not a low bare Péclet number.
In this limit, (3d) reduces to

w = α2

(
∇2

⊥ +
1

α2

∂2

∂z2

)
b. (3f)

At low Peb, the vertical advection of the background buoyancy gradient is balanced by
the diffusion of the individual anomaly rather than by the time tendency of the buoyancy
anomaly, as at high Peb. Alternatively, (3f) can be derived by expanding b in the Boussinesq
equations in powers of Pe and assuming an order unity velocity field [8]. At O(Pe0), the
subjugation of the buoyancy to the vertical velocity emerges, i.e., w = ∇2b, consistent with
(3f). (3abcf) are referred to as the low Péclet number equations (LPN).
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2.2 Multiple scale asymptotics

Numerical studies of strongly stratified stellar turbulence at low Pe [4] and high Pe [6] ex-
hibit anisotropy and thus scale separation. The dominant shear instabilities have horizontal
scales commensurate with the vertical scale of variability of the large-scale flow. The vertical
scale of velocity variation H is much smaller than the horizontal scale. Motivated by these
findings, we develop a multiscale model for low Peb in §2.2 and, separately, for high Peb
flows in §2.3. Based on the anisotropy described by the aspect ratio, we formally split the
horizontal spatial scales into ‘slow’ and ‘fast’ scales, such that x⊥f = x⊥s/α and x⊥s = x⊥,
where subscript f denotes fast and subscript s denotes slow [3]. Based on the time scale for
horizontal shear in layers separated by distance αL, we formally split the temporal scales
into a ‘slow’ and ‘fast’ time scale, such that tf = ts/α and ts = t. Consequently, the partial
derivatives transform as

∂

∂t
=

1

α

∂

∂tf
+

∂

∂ts
, ∇⊥ =

1

α
∇⊥f +∇⊥s. (4)

In accordance with the multiple scale asymptotic formalism, the buoyancy, pressure and
velocity fields are functions of both x⊥f and x⊥s and of both tf and ts. For a multiscale

function q(x⊥f ,x⊥s, z, tf , ts;α), we define a fast-averaging operator (·),

q(x⊥s, z, ts;α) = lim
Tf ,Lx,Ly→∞

1

LxLyTf

∫ tf

0

∫
D
q(x⊥f ,x⊥s, z, tf , ts;α)dx⊥fdtf . (5)

where D is the horizontal x⊥f domain, with fast spatial periods Lx and Ly, and Tf is the
fast time-integration period. Hence, q depends on slow variables only. Hence, q can be split
into a slowly-varying and a fast fluctuation component, q − q′ = q. Here, primes denote
fluctuation fields, where the fast-average of the fluctuation field vanishes, i.e., q′ = 0.

2.3 Multiple scale quasilinear model for low Péclet flows

We begin with the development of the multiscale model for low Peb flows. We proceed
to asymptotically expand the pressure, horizontal velocity, vertical velocity, and buoyancy.
The expansion proceeds in fractional powers of α where the exponent, γ, in the expansion
is determined separately in the high Peb and the low Peb cases. We posit the following
asymptotic expansions,

[p,u⊥] ∼ [p0,u⊥0] + αγ [p1,u⊥1] + α2γ [p2,u⊥2] + . . . , (6a)

[b, w] ∼ 1

αγ
[b−1, w−1] + [b0, w0] + αγ [b1, w1] + . . . , (6b)

which reflect our expectation that the dominant contributions to the pressure and velocity
arise on large horizontal scales; accordingly, their expansions begin at O(1). In contrast,
in stratified turbulence, the vertical velocity is a small-scale field [2, 9, 4]. For the verti-
cal divergence of the vertical flux of horizontal momentum associated with fluctuations to
feed back on the leading-order large-scale horizontal flow, the fluctuation velocities must be
appropriately small, given the 3D incompressibility of the isotropic fluctuating flow. Specif-
ically, the vertical divergence of the fluctuation flux is ∂z(w′u′) = O[(U ′/U)(W ′/U)(1/α)]
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relative to the inertial terms, where fluctuations scales are denoted as primed capital letters.
Since W ′ = U ′ only from continuity, (W ′)2 = αU2, i.e., W ′ = α1/2U , so γ = 1/2 and the
vertical velocity expansion starts at w−1. The tight coupling between vertical velocity and
buoyancy in the LPN equation (3f), requires the asymptotic expansion of b to mimic w.

On substituting the two-scale derivatives (4) and asymptotic expansions (6) into the
LPN equations, (3abc) and (3f), we obtain at lowest order

∂u⊥0

∂tf
+ u⊥0 · ∇⊥fu⊥0 = −∇⊥fp0,

∂p0
∂z

= 0, ∇⊥f · u⊥0 = 0. (7a,b,c)

Following arguments in [3], we find that u0⊥ = u0⊥ only. Then (7a) requires that ∇⊥fp0 =
0. This combined with fast averaging (7b), from which we obtain ∂zp0 = 0, implies that
the leading-order pressure too is independent of fast horizontal and temporal scales, i.e.,
p0 = p0. At next order, the governing equations are,

αγ

α
∇⊥f · u′

1 +
1

αγ

∂w−1

∂z
= 0, (8a)

αγ

α

(
∂u′

⊥1

∂tf
+ u⊥0 · ∇⊥fu

′
⊥1

)
+

1

αγ
w−1

∂u⊥0

∂z
= −α

γ

α
∇⊥fp1, (8b)

1

αγ+1

∂w−1

∂tf
+

1

αγ+1
u⊥0 · ∇⊥fw−1 = −α

γ

α2

∂p1
∂z

+
α2

Fr4M

1

αγ
b−1, (8c)

w−1 =

(
∂2

∂z2
+∇2

⊥f

)
b−1. (8d)

The balance of terms in (8ab) implies that αγ/α ∼ 1/αγ must be true, such that the
asymptotic parameter in (6) is α1/2. Hence, (8ab) provide a mathematical basis for our
expectation that γ = 1/2, which arose from physical arguments about the order of magni-
tude of the vertical divergence of the vertical flux relative to the inertial terms. (8cd) then

implies a balance α−3/2 ∼ α3/2/Fr4M , yielding the crucial scaling relationship α ∼ Fr
4/3
M .

Fast averaging (8) then gives

∂w−1

∂z
= 0, w−1

∂u⊥0

∂z
= 0,

∂p1
∂z

=

(
∂2

∂z2

)−1

w−1. (9a,b,c)

From (9a) we conclude that w−1 = 0, provided u−1 = 0 along any given z plane. As
expected for strongly stratified flow, the leading order vertical velocity is larger on small
than on large horizontal scales, i.e., w−1 = w′

−1. Hence, (9b) is trivially satisfied and (9c)
yields ∂zp1 = 0. Given the tight coupling between the vertical velocity and buoyancy in (3f),
(9a) implies that b−1 = b′−1, only. We obtain the governing equations for the fluctuations
by subtracting (9) from (8).

To derive the mean flow equations, we collect terms at O(1) in our asymptotically
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expanded equations:

∂u⊥2

∂tf
+ (u⊥0 · ∇⊥f )u⊥2 + w0

∂u⊥0

∂z
+∇⊥fp2 =

−∂u⊥0

∂ts
− (u⊥0 · ∇⊥s)u⊥0 −∇⊥sp0 +

1

Reb

∂2u⊥0

∂z2
− (u⊥1 · ∇⊥f )u⊥1 − w′

−1

∂u′
⊥1

∂z
+ f,

(10a)

∂w0

∂tf
+ (u⊥0 · ∇⊥f )w0 +

∂p2
∂z

−
(
∇2

⊥f +
∂2

∂z2

)−1

w0 = −(u⊥1 · ∇⊥f )w
′
−1 − w′

−1

∂w′
−1

∂z
,

(10b)

∇⊥f · u⊥2 +∇⊥s · u⊥0 +
∂w0

∂z
= 0, (10c)

where the buoyancy Reynolds number is Reb = Reα2. We have chosen to interpret the
forcing as an O(1) quantity. A necessary condition for bounded behaviour of the O(α)
fluctuation fields is that the fast average of the right-hand side of (10a) vanishes. On fast
averaging (10) and making use of the continuity equation (8a) at O(1/α1/2), we obtain
equations for the leading order mean fields, u⊥0, w0, and b0.

Gathering the results of the formal multiscale asymptotic analysis, we obtain a novel
two-scale model for strongly stratified, turbulent flows at low Peb, as summarised below.
Mean flow equations

∂u⊥0

∂ts
+ (u⊥0 · ∇⊥s)u⊥0 + w0

∂u⊥0

∂z
= −∇⊥sp0 −

∂

∂z

(
w′
−1u

′
1

)
+

1

Reb

∂2u⊥0

∂z2
+ f0 (11a)

∂p0
∂z

= 0 (11b)

∇⊥s · u⊥0 +
∂w0

∂z
= 0 (11c)

Fluctuation equations

∂u′
⊥1

∂tf
+ (u⊥0 · ∇⊥f )u

′
⊥1 + w′

−1

∂u⊥0

∂z
= −∇⊥fp

′
1 +

α

Reb

(
∇2

⊥f +
∂2

∂z2

)
u′
⊥1 (11d)

∂w′
−1

∂tf
+ (u⊥0 · ∇⊥f )w

′
−1 = −∂p

′
1

∂z
+

(
∇2

⊥f +
∂2

∂z2

)−1

w′
−1 +

α

Reb

(
∇2

⊥f +
∂2

∂z2

)
w′
−1

(11e)

∇⊥f · u′
⊥1 +

∂w′
−1

∂z
= 0 (11f)

Note that in (11de), formally small higher-order Laplacian diffusion terms have been added
to regularize the fluctuation dynamics in the possible presence of sharp vertical gradients
or critical layers, as in [3]. We note that, for the dimensionless system (3), the vertical

lengthscale αL = Fr
4/3
M L is, in the limit of strong stratification, so small that mean buoyancy

anomalies, i.e., departures from the imposed linear basic state profile, do not disrupt the
leading-order basic state hydrostatic balance: ∂zp0 = 0. As the scaling relationship α =
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Fr
4/3
M describes the short vertical scale between horizontal eddies (c.f. [12]), ∂zp0 = 0

only on these short scales. Higher order mean pressure terms, however, do depend on
mean buoyancy via gradients in mean vertical velocity, for instance, ∂zp2 = ((∇⊥s)

2 +
∂2z )

−1w2 − ∂zw′
−1w

′
−1. This higher-order buoyancy dependence offers a possible path for

(weak) buoyancy effects to be incorporated into the mean dynamics of the reduced order
model (11), which may be important on larger vertical scales. We do not pursue this path
in the present study, but instead briefly outline it here for future work. In the horizontal
momentum equation, p0 can be replaced by a composite pressure, pc = p0 + αp2. For
consistency, the corresponding horizontal momentum equation accurate to O(α) should
be derived in terms of a composite horizontal velocity, u⊥c. Finally, we emphasize that
buoyancy anomalies do affect the fluctuation dynamics.

The closed system (11) tightly couples the mean flow to the fluctuations. The mean flow
modifies the fluctuation dynamics via advection by u⊥0 and by modifications of the vertical
shear. The fluctuation equations are linear in the fluctuations themselves. However, the
fluctuations feed back non-linearly on the mean flow via the divergence of the Reynolds
stress term in the horizontal momentum equation (11a). Therefore, the multiscale system
(11) has a (generalised) quasilinear form. A central result of this study is the emergence
of this quasilinearity as a consequence of the strong stratification and the associated for-
mal asymptotic derivation: nowhere in the multiscale expansion do we invoke nor impose
quasilinearity as an adhoc closure for the mean dynamics.

2.4 Summary of multiple scale quasilinear model for high buoyancy Péclet
flows

Next, we develop a multiscale model for high Peb flows, focusing only on those points of
difference with the multiscale model for low Peb. At high Peb, we non-dimensionalise (1)
using the same scalings as in (2), but replace the buoyancy scaling with b = αN2Lb̂. At large
Peb, the vertical advection of the background buoyancy gradient is balanced by the time
tendency of the buoyancy anomaly rather than by the diffusion of the individual anomaly,
as at low Peb. We perform a multiscale analysis of the resulting dimensionless governing
equations by substituting the two-scale derivatives (4). The asymptotic expansions used
are as in (6), except for buoyancy. b is no longer forced by w and hence b is a large-scale
field; accordingly the asymptotic expansion for b begins at O(1), i.e., b = b0+α

γb1+α
2γb2.

Consequently, the derivation follows [3], yielding the scaling relationship α = B−1/2 ≡ Fr,
a well-known scaling result for strongly stratified geophysical turbulence [1, 2, 3]. Here, the
Froude number, Fr = U/NL, is the ratio of the buoyancy period to the time scale of the
large-scale flow. The resulting closed, generalised quasilinear two-scale system for strongly
stratified, turbulent high Peb flows is identical to the system presented in [3]. We note that
in the mean flow and fluctuation buoyancy equations,

∂b0
∂ts

+ (u0 · ∇s)b0 + w0
∂b0
∂z

= − 1

Peb
w0 −

∂

∂z

(
w′
−1b

′
1

)
+

1

Peb

∂2

∂z2
b0, (12a)

∂b′1
∂tf

+ (u0 · ∇f ) b
′
1 + w′

−1

∂b0
∂z

= − 1

Peb
w′
−1 +

α

Peb

(
∇2

⊥f +
∂2

∂z2

)
b′1, (12b)
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an inverse buoyancy Péclet number 1/Peb multiplies the vertical velocity (i.e., the first term
on the RHS of equations (2.30) and (2.34) in [3]). However, this 1/Peb factor is an artefact
of the choice of non-dimensionalisation.

3 Regimes Of Stratified Stellar Turbulence

One merit of the multiscale analysis detailed in §2 is that scaling relationships for the aspect
ratio naturally emerge. These relationships for low Peb and high Peb flows are,

α ∼ Fr
4/3
M , α ∼ Fr, (13a,b)

respectively. We now assess the validity of published scaling relationships. Numerical
simulations in [6] imply scalings for: the vertical eddy scale l̂z ∼ Fr2/3, the root-mean
square (rms) vertical velocity ŵrms ∼ Fr2/3, and the rms temperature fluctuations T̂rms ∼
Fr4/3, where we have translated their notation using B = Fr−2. The hatted variables are
dimensionless. Given the α ∼ Fr scaling in (13b), there would seem to be no theoretical
basis for the scalings in [6].

In the low Pe case, the α ∼ Fr
4/3
M scaling is verified by the numerical simulations in

[4]. Indeed, a key contribution of this study is that it provides a theoretical basis for the
scaling underlying the numerical results in [4]. To date, two distinct low Pe scalings have

been proposed in the literature, α ∼ Fr
4/3
M (this study validated by [4]) and α ∼ FrM ([11]

or from hydrostatic balance in the anisotropically scaled equation (3b)). A key difference

between the α ∼ Fr
4/3
M and α ∼ FrM relationships is the vertical scales they describe; for

instance, our low Peb multiscale model (11) with its intrinsic α ∼ Fr
4/3
M scaling describes

the short vertical scales between the decoupled horizontal eddies that generate vertical
shear [12]. These differences raise a natural question: which of these regimes (if either)
characterises turbulence in stars?

To address this question, in Figure 1 we construct a regime diagram for stellar turbu-
lence. Our multiscale models for low and high Peb flows describe stratified, anisotropic
flows. The unstratified regime where our multiscale models do not apply is identified by
regions where Fr > 1, i.e., when B < 1. For Peb < 1 (where the LPN approximation is
valid), the demarcating line BPe ∼ 1 (along which α ∼ 1) represents isotropic flows. We
first identify the viscous and adiabatic bounds between which the low Peb multiscale model
(11) is valid. To identify the viscous transition of the fluctuation fields, we consider the
multiscale fluctuation equation in the low Pe case (11de), in which, relative to the mean
dynamics, viscous diffusion of fluctuation momentum is weak by the factor α. Therefore,
the viscous transition for the fluctuation fields occurs at Reb = α and the viscous fluctuation
regime arise for α/Reb ≪ 1. For the adiabatic transition, the relevant parameter is Peb
rather than Pe; accordingly, we consider the multiscale buoyancy fluctuation equation for
low Peb but high Pe in (3d). The balance ∂tb

′
−1 + · · · = (α/Peb)∇2b−1 indicates that this

transition occurs at Peb = α. Adiabatic dynamics occur when Peb/α ≫ 1. The range of
validity of the LPN multiscale model is therefore 1/Re≪ α≪ 1/Pe. For ease of compari-
son with previously published regime diagrams [4, 6], we express the resulting inequalities
in terms of Pe and B using FrM = (BPe)−1/4. On substituting the scaling relationship
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Figure 1: Regime diagram showcasing stellar turbulent behaviours for Pr = 10−3. The
blue solid and dashed lines mark the adiabatic and viscous transitions in (14). The low
Pe multiscale equations (11) are valid between these blue bounds. The parameter space
above the blue solid line corresponds to adiabatic stratified turbulence where the high Pe
multiscale model applies. The red dashed line marks the viscous mean flow transition in
(15). The coloured circles represent numerical simulations whose behaviour is classified
following [4].
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(13a), the region of LPN validity where the low Pe multiscale model (11) applies is

Pr3/2B1/2 ≪ Pe≪ B1/2, (14)

demarcating where diffusive stratified turbulence occurs. Notably, the adiabatic bound
Pe≪ B1/2 can be equivalently derived using the high Pe scaling given in (13b).

Next, we identify the boundary along which the mean flow becomes viscous. This occurs
when Reb = O(1) which, on substitution of (13ab), yields

Pe ∼ Pr3B2, P e ∼ PrB, (15)

respectively. In Figure 1, the region above the red dashed line corresponds to non-viscous
dynamics, below the blue dashed line to fully viscous non-turbulent dynamics, and between
the red and blue dashed lines to viscous mean flow but non-viscous fluctuations.

To corroborate the theoretical predictions, two sets of simulations at Pr = 10−3 are
overlaid in coloured circles in Figure 1: Re = 100 and Pe = 0.1, which solve (3abcd),
and Re = 600 and Pe = 0.6, which solve the LPN equations (3abcf). These simulations
are categorised into stratified turbulent, stratified intermittent, stratified viscous, and fully
viscous behaviours, classified consistently with [4]. The stratified turbulent and intermittent
simulations (purple/purple with black outline) behave independently of viscosity and lie in
the non-viscous region of the diffusive stratified turbulent regime. The stratified viscous
simulation (cyan) is in the region of the diffusive stratified regime with a viscous mean
flow and non-viscous fluctuations, while the fully viscous simulation (yellow) lies in the
viscous non-turbulent regime. Hence, there is compelling agreement between the theoretical
predictions and the independently classified numerical results

Returning to the question of which scaling relationship, α ∼ Fr
4/3
M or α ∼ FrM , may

be expected to be realised in stars, we consider where the latter can occur in Figure 1. As
the lines indicating the viscous mean flow and fluctuation transitions, Reb ∼ 1 and Reb ∼ α
respectively, intersect exactly at the isotropic transition α ∼ 1, there is evidently no region
in the regime diagram where the α ∼ FrM scaling in [11] applies. We note that his scaling
is only dynamically consistent with the strongly stratified α ∼ Fr relationship when there
are no small scales and when FrM = Fr interchangeably.

4 Marginal Stability Of Vertical Shear Instabilities In Low
Pe Flows

4.1 Time integration of the slow-fast quasilinear system

Having established the regimes of strongly stratified stellar turbulence, we now present solu-
tions of the slow-fast quasilinear system (11). We consider three systems: the anisotropically
scaled dimensionless governing equations in (3), henceforth called direct numerical simula-
tions (DNS), the quasilinear system integrated on one single timescale, henceforth called
a single timescale quasilinear system (STQL), and the multiple scale quasilinear system
(MTQL). Our focus is vertical shear instabilities. To study them, we take a vertical slice
through our cuboid of low Pr fluid and henceforth consider the equations in x and z only.
We assume a forcing of the form f = 10 cos(z)/Reb êx.
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4.1.1 Single timescale formulation (STQL)

The single timescale formulation evolves the entire system on a single timescale, which we
choose to be the fast timescale. To express (11) on a single time scale, we undo the chain

rule, i.e. ∂ts = ∂tf /Fr
4/3
M . For convenience, we suppress the derivatives with respect to xs

and zoom in to the small horizontal scales only. On assuming that the fast average is only
horizontal, (11) becomes

1

Fr
4/3
M

∂u0
∂tf

− 1

Reb

∂2u0
∂z2

= − ∂

∂z

(∫
w′
1u

′
1dx

)
+ f0, (16a)

∂u′1
∂tf

+
∂p′1
∂xf

−
Fr

4/3
M

Reb

(
∂2

∂x2f
+

∂2

∂z2

)
u′1 = −u0

∂u′1
∂xf

− w′
1

∂u0
∂z

, (16b)

∂w′
1

∂tf
+
∂p′1
∂z

− b′1 −
Fr

4/3
M

Reb

(
∂2

∂x2f
+

∂2

∂z2

)
w′
1 = −u0

∂w′
1

∂xf
, (16c)(

∂2

∂x2f
+

∂2

∂z2

)
b′1 − w′

1 = 0, (16d)

∂u′1
∂xf

+
∂w′

1

∂z
= 0, (16e)

where the fast and slow fields co-evolve on tf .

4.1.2 Multiple timescale stability analysis (MTQL)

We consider a small 2D domain with proportionate horizontal and vertical lengths (di-
mensionally, these lengths are of order H). We introduce a fluctuation streamfunction
formulation,

u′1 =
∂ψ′

∂z
, w′

1 = − ∂ψ′

∂xf
. (17)

On substituting (17) into (11), the mean field equations become,

∂u0
∂ts

+ (u0 · ∇s)u0 + w2
∂u0
∂z

= −∇sp0 +
∂

∂z

(
∂ψ′

∂z

∂ψ′

∂xf

)
+

1

Reb

∂2u0
∂z2

+ f0, (18a)

b2 =

(
∇2

s +
∂2

∂z2

)−1

w2, (18b)

∇s · u0 +
∂w2

∂z
= 0, (18c)
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and the fluctuation equations become,

∂

∂tf

(
∂ψ′

∂z

)
+

(
u0 ·

∂

∂xf

)(
∂ψ′

∂z

)
−
(
∂ψ′

∂xf

)
∂u0
∂z

= − ∂p′1
∂xf

+
α

Reb

(
∇2

f +
∂2

∂z2

)
u′, (18d)

∂

∂tf

(
− ∂ψ′

∂xf

)
−
(
u0 ·

∂

∂xf

)(
∂ψ′

∂xf

)
= −∂p

′
1

∂z
− b′1 +

α

Reb

(
∇2

f +
∂2

∂z2

)
w′,

(18e)

b′1 =

(
∂2

∂x2f
+

∂2

∂z2

)−1(
∂ψ′

∂xf

)
, (18f)

∂

∂xf

(
∂ψ′

∂z

)
− ∂

∂z

(
∂ψ′

∂xf

)
= 0. (18g)

On suppressing the xs derivatives, following [3], the mean field equations reduce to a single
equation

∂u0
∂ts

=
∂

∂z

(
∂ψ′

∂z

∂ψ′

∂xf

)
+

1

Reb

∂2u0
∂z2

+ f0. (19a)

We eliminate the pressure in the fluctuation equations by taking ∂z of (18d) summed with
−∂xf

of (18e), to obtain

(
∂

∂tf
+ u0

∂

∂xf

)(
∂2

∂x2f
+

∂2

∂z2

)
ψ′ =

(
∂ψ′

∂xf

)(
∂2u0
∂z2

)
+
∂b′1
∂xf

+
α

Reb

(
∂2

∂x2f
+

∂2

∂z2

)2

ψ′,

(19b)

b′ = −

(
∂2

∂x2f
+

∂2

∂z2

)−1(
∂ψ′

∂xf

)
. (19c)

We now focus on solving the slow-fast quasilinear system (19) to interrogate its approach
to marginal stability. To first develop intuition before delving into the mathematical frame-
work, consider the canonical example of self-organised criticality in which grains pour onto
a flat plate from above, piling up. Generally over time, the grain pile is maintained at a spe-
cial angle called the angle of repose. Mini-avalanches occur intermittently to maintain this
angle. This seemingly distinct system has a direct analogy to our stellar turbulent system,
in which the amplitude of the fluctuations (rather than mini avalanches) intermittently act
to maintain the mean flow (rather than the slope of the grains) at the stability criterion
(rather than the angle of repose). Here, the stability criterion corresponds to the growth
rate of the system being maintained at zero.

To formulate equations which can be solved in a manner consistent with slow-fast quasi-
linear algorithms [10], we first express the fluctuation streamfunction and buoyancy in
separable form,

ψ′(xf , z, tf , ts) = A(ts)ψ̂(z, ts) exp(σtf + ik(ts)xf ) + complex conjugate, (20a)

b′(xf , z, tf , ts) = A(ts)b̂(z, ts) exp(σtf + ik(ts)xf ) + complex conjugate, (20b)
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where their vertical structure is denoted by hatted variables, the complex growth rate is
σ = σr + iσi, and A(ts) is the amplitude of magnitude |A(ts)|. The Reynolds stress terms
can now be cleanly written as,

∂

∂z

(
∂ψ′

∂z

∂ψ′

∂xf

)
=|A(ts)|2ik

[
∂

∂z

(
ψ̂
∂ψ̂∗

∂z
− ψ̂∗∂ψ̂

∂z

)]
≡|A(ts)|2RS. (21)

On substituting (20) into (19), we obtain

∂u0
∂ts

=|A(ts)|2RS +
1

Reb

∂2u0
∂z2

+ f0, (22a)

(σ + iku0)

(
−k2 + ∂2

∂z2

)
ψ̂ = ik

∂2u0
∂z2

ψ̂ − ikb̂+
α

Reb

(
−k2 + ∂2

∂z2

)2

ψ̂, (22b)

b̂ =

(
k2 − ∂2

∂z2

)−1

ikψ̂. (22c)

We treat the fluctuation equations (22bc) as a linear, autonomous eigenvalue problem. On
writing the system as a linear dynamical operator LX = 0, we obtain

LX =

(σ + iku0)

(
∂2

∂z2
− k2

)
− ik

∂2u0
∂z2

− α

Reb

(
∂2

∂z2
− k2

)2

ik

−ik k2 − ∂2

∂z2

(ψ̂b̂
)

= 0

(23a)
with periodic boundary conditions in z. We define the inner product as

(X1|X2) =

∫ lz

0
X1(z)X

∗
2 (z)dz ∀ (X1, X2). (23b)

The adjoint operator L† satisfies (LX1|X2) = (X1|L†X2) and is calculated using integration
by parts to obtain

L†X† =

(σ∗ − iku0)

(
∂2

∂z2
− k2

)
− 2ik

∂u0
∂z

∂

∂z
− α

Reb

(
∂2

∂z2
− k2

)2

ik

−ik k2 − ∂2

∂z2

(ψ̂†

b̂†

)
= 0.

(23c)
Note that L is not a self-adjoint operator as L ̸= L†. To obtain an expression for the
temporal evolution of the growth rate with respect to the slow time, we take the time
derivative of (23a),

L∂X
∂ts

= −∂L
∂ts

X (24a)

where the slow time derivative of L is

∂L
∂ts

=

( ∂σ∂ts + ik
∂u0
∂ts

)(
∂2

∂z2
− k2

)
− ik

∂2

∂z2

(
∂u0
∂ts

)
0

0 0

+
dk

dts
M. (24b)
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The above matrix is singular as it has a zero determinant. In accordance with the Fredholm
alternative, for (24a) to be solvable, the RHS of (24b) must be orthogonal to corresponding
null eigenvector X†, i.e.,(

L∂X
∂ts

|X†
)

=

(
∂X

∂ts

∣∣∣L†X†
)
=

(
∂X

∂ts
|0
)
. (24c)

where X† = [ψ̂(z), b̂(z)]T . Therefore,(
∂L
∂ts

X|X†
)

= 0. (24d)

Substituting for mean flow equation (22a) into (24b), we derive a solvability condition

C1
dσ

dts
= C2|A(t)|2 + C3 + C4

dk

dt
(25a)

which describes how σ changes with with respect to slow time. Here, C4 = ∂kσ. As long as
we insist that the fastest growing mode has a zero growth rate (i.e., that σ = 0 is a local
maximum over k), then ∂kσ vanishes for the mode of interest. The coefficients C1, C2, and
C3 are

C1 =
1

ik

∫ lz

0

[
ψ̂†∗

(
∂2

∂z2
− k2

)
ψ̂

]
dz, (25b)

C2 =

∫ lz

0
RS

[
ψ̂

(
∂2

∂z2
+ k2

)
ψ̂†∗ + 2

∂ψ̂

∂z

∂ψ̂†∗

∂z

]
dz, (25c)

C3 =

∫ lz

0

[(
f +

1

Reb

∂2u0
∂z2

)(
ψ̂

(
∂2

∂z2
+ k2

)
ψ̂†∗ + 2

∂ψ̂

∂z

∂ψ̂†∗

∂z

)]
dz. (25d)

The total temporal evolution of the real part of the eigenvalue σr(u0, ∂zu0, k) is

dσr
dts

=

(
∂σr
∂ts

)
k

+
dk

dts

(
∂σr
∂k

)
u0,∂zu0

, (26)

however, the second term on the right-hand side vanishes for the mode of interest, provided
that k(t) corresponds to the fastest growing unstable mode. Hence, the total temporal
evolution is dtsσr = (∂tsσr)k, and simply corresponds to the evolution of the growth rate
for a given wavenumber. In fact, we can obtain the evolution of the growth rate for a given
k by dividing (25a) by C1 as follows,(

∂σr
∂ts

)
k

= Re

(
C3

C1

)
− Re

(
−C2

C1

)
|A(t)|2. (27)

The final crucial piece to the method of solution of slow-fast quasilinear systems in [10] is
that once σr = 0, it stays zero (i.e., ∂tsσr = 0), thus maintaining the system at marginal
stability. On rearrangement of (27) such that ∂tsσr = 0 is satisfied, we obtain an expression
for the amplitude of the fluctuations that guarantees the marginal stability of the system,

|A(t)|2 =


√

Re
(
C3
C1

)
Re

(
−C2

C1

)−1
if σr = 0 and Re

(
C3
C1

)
,Re

(
−C2

C1

)
> 0,

0 otherwise.

(28)

Hence, the amplitude of the fluctuations is intermittently non-zero when σr = 0.
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4.2 Nonlinear evolution of energy and growth rate

The three systems, DNS, STQL, and MTQL, are solved using the Python software package
Dedalus burns2020. Pseudo-spectral methods in Dedalus are used with a second-order
Runge-Kutta time-stepping scheme. The three simulations are run in a vertical domain Lz =
2π using a Fourier basis with 128 gridpoints. The horizontal domain length for DNS and

STQL simulations is Lx = (2π/kc)Fr
4/3
M (where we consider kc = 0.5). In order to ensure

that the MTQL simulation captures dynamics on the same scale as the DNS and STQL
simulations and to thus facilitate a direct comparison between the three simulations, we

implement a wavenumber cutoff, kcutoff = 2πFr
4/3
M /kc. The search over wavenumbers occurs

only when k > kcutoff, such that the identified fastest growing mode does not correspond to
large-scale dynamics not captured by the DNS and STQL simulations. All three simulations
are forced from rest, i.e., with zero initial velocity.

We compare the total energy in the simulations, given by

E =
1

2

∫ Lx

0
dxs

∫ Lz

0
dz
(
u2 + Fr

8/3
M w2 + b2

)
. (29)

Note that for the STQL and MTQL simulations, the reconstructed fields are used to calcu-

late the total energy, i.e., (u, b, w) → (u0 + Fr
2/3
M u′1, F r

2/3w′
−1, F r

2/3b′−1). For the dimen-
sionless parameters FrM = 0.1 and Reb = 1, the total energy from the three algorithms is
compared in Figure 2. The energy in these three simulations is compared to the energy in
the mean flow only scenario (termed “MF only” in the legend) governed by

∂u

∂t
= f +

1

Reb

∂2u

∂z2
, (30a)

which when solved for f = F0 cos(z)/Reb gives an amplitudeA(t) = F0Reb(1−exp(−k2t/Reb))
and a mean flow energy EMF = A2/4.

There is generally excellent agreement between the energy at which the MTQL and
STQL simulations equilibrate at. Additionally, the STQL and MTQL energy falls within
the ‘undulations’ of the energy in the DNS. When run out for longer times (not shown),
the DNS equilibrates at a similar energy to the STQL and MTQL simulations.

The three simulations fall off the mean flow curve (broken line) at different times. As
expected, the MTQL solution reaches steady-state the fastest as the fluctuation fields are
instantaneously non-zero per (28) and adjust the mean flow instantaneously. The STQL
solution takes longer to fall off the mean flow curve and reach steady-state as the adjust-
ment of the fluctuation fields, while present, is not instantaneous. The DNS simulation
takes longest to reach equilibrium; this is expected as there is no formal separation of
spatiotemporal scales here.

The evolution of the growth rate in the MTQL simulation is plotted in the inset of
Figure 2. Several key points bear discussion. First, as the simulation is forced from rest,
the real part of the growth rate over all horizontal wavenumbers is initially negative (i.e.,
the system is stable). However as the flow develops with time, the growth rate approaches
zero “from below”, i.e., σ becomes increasingly less negative. Once σr = 0, the amplitude
of the fluctuations in (28) maintains the system at marginal stability, such that from that
timestep onward, ∂tsσr = 0. The sudden jump of |A|2 to a finite, non-zero value when
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Figure 2: Total energy from DNS (green), STQL (red) and MTQL (blue) simulations for
Reb = 1 and FrM = 0.1, compared against the analytical solution for a system with mean
flow only (black dashed line). The forcing in each simulation is given by f = 10 cos(z)/Reb.
Note that the time against which the energy is plotted here is the time of the DNS, i.e.,
the slow time ts. The inset describes the evolution of the growth rate during the MTQL
simulation.

σr = 0 causes a sharp change in the slow-time evolution of not just the growth rate but also
the energy.

4.3 Steady exact coherent states

We now turn our attention from calculated quantities to the exact coherent states of the
three systems. Given the different timescales on which the DNS, STQL, and MTQL systems
reach steady-state, to effect a fair comparison between the three solutions, we consider
steady-state snapshots. To identify when the simulations have reached steady-state, we plot
a Hövmuller diagram for the horizontal velocity (second row in Figure 3). The simulations
have clearly reached steady-state by t = 20.

The horizontal, vertical and buoyancy field snapshots from all three simulations are
plotted in Figure 3. For notational convenience, we introduce ϵ = α1/2. To compare the
2D anisotropic structure, the horizontal and vertical velocities are normalized by U . Hence,
the velocities (u, ϵ2w) are plotted for the DNS, while (u0+ ϵu′1, ϵw

′
−1) are plotted for STQL

and MTQL solutions. In general, there is excellent agreement between the DNS, STQL and
MTQL results. This suggests that a quasilinear description for low Péclet flows is valid, at
least for the values of Reb and FrM in Figures 2-3.
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Figure 3: Snapshots at t = 20 for the simulations in Figure 2. [first row] u, [third row] w,
[fourth row] b, plotted against x (xs for STQL and MTQL) and z. A vertically averaged
Hövmuller plot is shown for u.

4.4 Bursting events

For different domain lengths, ‘bursting’ events could arise in which the inverse ratio of
coefficients in (28) are negative. For notational convenience, we define

αr = Re

(
C3

C1

)
, βr = Re

(
−C2

C1

)
. (31)

If αr < 0, the positive growth rate would decay on setting |A|2 = 0. However, if βr < 0
then the system undergoes a bursting event in which the positive growth rate increases with
|A|2 = 0, and even further with |A|2 > 0. Physically, this situation means scale separation
breaks down and fast transient dynamics need to be incorporated to maintain the system
at marginal stability.

Given the explosive growth associated with bursting events, how can we algorithmically
solve the system when βr > 0? We outline several options here which apply the techniques
developed for toy slow-fast quasilinear systems in [5] to the slow-fast quasilinear system for
stellar turbulence, and save their algorithmic implementation for future work. Specifically,
we outline how to: (a) evolve the system to a non-bursting state, (b) identify when to stop
this evolution, and (c) re-initialise the MTQL system once the growth rate is negative.

From the previous timestep when αr, βr > 0, we have the amplitude A, the wavenumber
k corresponding to the fastest growing mode, and the streamfunction ψ̂ (from which the
2D streamfunction can be recovered by computing the outer product of ψ̂ and eikxf , where
xf = xs/α). The techniques to deal with a bursting event usually involve co-evolving a
system of equations until αr, βr > 0, and then re-initialising the MTQL system. There are
at least three possible techniques for initialising the bursting algorithm:

225



1. Co-evolution of DNS in a 2D streamfunction formulation

This approach would evolve (22) on a single timescale. Evolution on the fast timescale
would be the most judicious choice as A is large, is balanced by ∂tsu0, and evolves
on the fast timescale. The resulting set of equations is similar to the 2D DNS system
in (3), except that it splits the spatial scale into a slow and fast component (i.e.,
x = x+ x′), and retains the eddy-eddy non-linearities.

2. Co-evolution of a STQL-like system

This approach involves evolving a system similar to the STQL equations in (16), how-
ever, in a streamfunction formulation. As such, we eliminate pressure. The evolution
considers a single wavenumber k, corresponding to the fastest growing mode from the
previous timestep when αr, βr > 0, to reconstruct the streamfunction.

3. A ‘gradient descent’ strategy

This approach considers the dominant balance of terms,

−∂w
′u′

∂z
∼ ∂u0
∂ts

(32)

to adopt a hybrid eigenvalue timestepping, rather than co-evolution. An O(1) positive
number is arbitrarily assigned to the amplitude A, such that the amplitude is constant.
The following equation is timestepped,

∂u0
∂ts

=
∂

∂z
RS (33)

and its eigenvalue is computed to identify the fastest growing mode. While more crude
than the first two approaches listed above, this approach has been shown to work well
for toy problems [5] and the Pr ∼ O(1) system of equations [3].

4. An appropriate rescaling strategy

This approach involves finding a scaling such that the equations are free of ϵ and non-
stiff. The resulting set of equations are then evolved on the fast timescale and without
a forcing term, thus guaranteeing a reduction of the growth rate to zero. Ignoring the
forcing term is a valid approximation when the fluctations are large, as they are in a
bursting event.

Once the co-evolution begins, the next question to address is when to stop it. In general, this
involves solving the eigenvalue problem corresponding to the linearised dynamics, LX = 0,
as a diagnostic to monitor the (anticipated) decrease of the growth rate σr towards zero
during the co-evolution. Once σr < 0, one would switch back to evolving the MTQL system.

The third and final question to address is how to re-initialise the MTQL once the growth
rate goes negative. To identify the wavenumber corresponding to the fastest growing mode,
the Fourier spectrum in x is computed. (It might be necessary to vertically integrate the
output from the previous timestep prior to computing the Fourier spectrum.) Then the
signs of αr, βr are checked and the usual conditions outlined in §4.1.2 are applied. As the
wavenumber k is discrete, when the MTQL system is re-initialised, it is possible that the
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wavenumber does not exactly correspond to the fastest growing mode. There are several
workarounds, such as changing the domain size with time. Rather than implementing time-
dependent coefficients, a linear transformation between coordinates can be used such that
instead of a domain length [0, Lx(t)], we consider a domain length of [0, 1]. For instance,
xcomputational = 2π xphysical/L(t), and by the chain rule ∂xcomputational

= 2π ∂xphysical
/L(t),

where 2π/L(t) is the wavenumber and the computational domain is [0, 2π].

5 Conclusions

This study has established the main regimes of strongly stratified turbulence at low Prandtl
number and demonstrated the approach of these turbulent flows towards marginal stabil-
ity. Stratified turbulence in stars cannot be directly measured. Given the observational
difficulties, previously published studies either simulate stellar flows at measured Froude,
Prandtl and Péclet numbers (e.g. [6, 4]) or invoke physical arguments to balance terms and
assess resulting scaling relationships (e.g. [11]). The present work adopts a different ap-
proach, using numerical evidence of anisotropic flows, scale separation, and velocity layering
as motivation for conducting formal, multiple scale analyses of the equations governing the
dynamics of stars at low Prandtl number. Two multiple scale models are developed, one
each for low and high Péclet number flows. A central feature of the derivation is that the
generalised quasilinear form of the asymptotically-reduced equations, in which the fluctu-
ation dynamics are shown to be linear about the mean flow and the fluctuations influence
the mean flow via their induced Reynolds stress divergence, naturally emerges and is not
invoked in an ad hoc fashion to close the system. Through multiple scale asymptotics, this
study provides a formal justification for the application of quasilinear approximations to
descriptions of strongly stratified stellar turbulence.

The identification of distinguished limits in turbulent behaviour is a core motivation
that drives the development of the multiple scale models presented here. A second key
outcome of this study is the scaling relationships for the aspect ratio that emerge via the

two-scale asymptotics for high Pe (α ∼ Fr) and low Pe (α ∼ Fr
4/3
M ) flows. For low Pe

flows, our α ∼ Fr
4/3
M theoretical prediction is validated by numerical simulations in [4]. For

high Pe flows, our α ∼ Fr theoretical prediction indicates that there is no theoretical basis
for the scalings in [6].

While a star’s outerscale Péclet number can be estimated from stellar observations, the
emergent turbulent Péclet number can only be deduced for a given model. As the vast
majority of stars, including our Sun, have a global scale Pe ≫ 1 but Pr ≪ 1, pinpoint-
ing the bound between adiabatic stratified and diffusive stratified turbulence is valuable
for predicting turbulent characteristics based on stellar observations of the outerscale Pe.
Arguably, the primary contribution of this work is the identification of regimes of stellar
turbulence. Crucially, the momentum and buoyancy fluctuation equations in the multiscale
models offer a systematic theoretical basis for regime identification. We construct a full
regime diagram, identifying adiabatic stratified turbulence, diffusive stratified turbulence,
and non-turbulent, viscous dynamical behaviours. Our theoretical identification of regimes
agrees with numerical simulations, whose behaviour we classify per [4].

Solutions of the multiscale slow-fast quasilinear system reveals its approach to and main-
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tenance of marginal stability. The system is forced from rest and hence the initial growth
rate is negative but becomes increasingly less negative over time. Once the growth rate
is zero, the amplitude of the fluctuation fields acts intermittently to maintain the growth
rate at zero. There is excellent agreement between the steady, coherent states of the DNS,
STQL, and MTQL solutions. The energy in all three systems equilibrates at similar values.
The MTQL system reaches steady-state first as the system adjusts instantaneously to the
fluctuations via the divergence of the Reynolds stress restoring the system to marginal sta-
bility. The STQL system is the second to reach steady-state as its adjustment of the mean
flow by the Reynolds stress divergence is faster than the response of the fully nonlinear
DNS.

The insight obtained from the multiscale models notwithstanding, in order to develop a
truly astrophysically relevant theory for stratified stellar turbulence, physical processes such
as rotation must be incorporated. The vast majority of stars rotate. Indeed, differential
rotation typically is the main source of shear in rotating stars. This study assumes that
rotation is not needed to achieve the large horizontal scales x⊥s; however, on these scales
Rossby numbers are small, indicating that the large-scale dynamics are strongly affected by
rotation. Magnetohydrodynamics too must be incorporated, given that most stars are ex-
pected to be magnetized. Finally, a two-scale expansion in z might enable the full turbulent
mechanism proposed by [12] to be realised, which we save for future work.
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