
Preface

The 2019 Geophysical Fluid Dynamics Summer Study Program theme was Strat-
ified Turbulence and Ocean Mixing Processes.Two principal lecturers, Stephanie Wa-
terman (University of Victoria) and Colm-cille Caulfield (University of Cambridge)
were our expert guides for the first two weeks. Colm covered the theoretical aspects
of stratified turbulence, from simple scaling laws to sophisticated, modern numerical
results. Stephanie kept the enthusiastic audience grounded with her lectures on ocean
mixing processes, observations, and their many technical challenges.

The first ten chapters of this volume document these lectures, each prepared by
pairs of the summer’s GFD fellows. Following the principal lecture notes are the
written reports of the fellows’ own research projects. This summer’s fellows were:

• Houssam Yassin, Princeton University

• Channing Prend, Scripps Institution of Oceanography

• Andre Paloczy Filho, University of California San Diego

• Jeremy Parker, University of Cambridge

• Wanying Kang, Harvard University

• Lois Baker, Imperial College London

• Kelsey Everard, The University of British Columbia

• Anuj Kumar, University of California Santa Cruz

• Alessia Ferraro, Ecole Polytechnique Federale de Lausanne

• Samuel Boury, ENS de Lyon

• Jelle Will, University of Twente

• Wenjing Dong, New York University

The 2019 Sears Public Lecture was delivered by Professor Lydia Bourouiba (Mas-
sachusetts Institute of Technology) on Fluids and Health. Lydia’s entertaining and
interesting talk introduced the audience to, among several topics, the fluid mechanical
details of a sneeze. Everyone was motivated to get their flu shot.

Claudia Cenedese, Bruce Sutherland and Karl Helfrich were co-directors. The
summer was marked by a large number of long-term staff members, as well as one of 
our largest-ever audiences for the principal lectures (necessitating an overflow room). 
The staff members and many long-term visitors ensured that the fellows never lacked
for guidance, and the seminar series was filled by a steady stream of more than 30 talks
on topics as diverse as microgravity snow and hydrothermal megaplumes.

As usual, laboratory experiments were facilitated by able support from Anders
Jensen. Janet Fields and Julie Hildebrandt made sure that the administrative side of
the summer ran smoothly. We continue to be indebted to WHOI Academic Programs
Office, who once more provided a perfect atmosphere.
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GFD 2019 Lecture 1: Why Ocean Turbulence Matters

Stephanie Waterman; notes by Lois Baker and Houssam Yassin

June 17, 2019

This lecture series, given over 2 weeks in summer 2019 at the Woods Hole Oceanographic
Institution (WHOI) Geophysical Fluid Dynamics (GFD) summer school aims to address:

1. Recent theoretical developments in the fluid dynamical description of turbulent stratified
mixing

2. The relevance of such mixing to the world’s oceans from the perspective of an observational
oceanographer

We begin with the latter, with lectures given by Physical Oceanographer Dr Stephanie Waterman.
The following 3 lectures aim to:

1. Keep it real

2. Ask the tough questions:

• Why does this matter?

• What can we actually measure?

• What does turbulence & mixing in the ocean actually look like?

• How does the theory relate to what we see?

This lecture aims to answer the question: why does ocean turbulence matter?

1 The Downscale Cascade of Energy

To motivate the importance of turbulence in ocean flows, first consider the spatial scales relevant
to ocean circulation, some of which are illustrated in figure 1.

Solar insolation incident on the Earth is unevenly distributed. Averaged over a year, the equator
receives more energy from the sun than the poles. This implies that in steady state, there must
be a net transfer of heat from the equator to the pole. On Earth, this poleward heat transport is
accomplished predominantly through the turbulent large-scale circulation of the atmosphere. It is
this circulation of the atmosphere that is responsible for ocean circulation.

At the largest scales, the alternating pattern of easterlies and westerlies produces the gyre
circulation in the world’s ocean basins. Typical length-scales of an ocean gyre are on the order
of thousands of kilometers. The ocean’s gyre circulation is not laminar; rather it is turbulent and
is susceptible to a host of hydrodynamic instabilities that produce smaller scale features (on the
order of 100km) called mesoscale eddies. Further instabilities and interaction of these eddies with
topography can then produce smaller scale (submesoscale) fronts and eddies with length scales of
less than 10km. At even smaller scales, shear instabilities of either submesoscale features or internal
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Figure 1: Sea Surface Temperature from AMSR-E satellite data, courtesy of Emily Shoyer

waves lead to turbulence on the scale of centimeters. Ocean circulation thus spans a wide range of
scales, from thousands of kilometers to a few centimeters. In addition, the phenomena at different
scales do not exist in isolation. Nonlinearities of the thermohydrodynamic equations governing
ocean circulation leads to interactions between a wide range of scales.

In the ocean, energy is injected at large planetary scales but is dissipated at the molecular
scale through viscous stresses. This implies that there must be a net transfer of energy from the
large-scale gyre circulations of the ocean to the centimeter scale where molecular viscosity acts
efficiently. In addition to this downscale transfer of energy, there is also downscale transfer of scalar
gradients. For example, on a planetary scale, there is a latitudinal equator-to-pole gradient in sea
surface temperature. Ocean circulation stirs this large-scale gradient until sea surface temperature
gradients are found at the centimeter scale where they are then destroyed by molecular diffusion.

2 The Definition of Turbulence

To an oceanographer, turbulence refers to the chaotic motion of the ocean at all length-scales. It is
characterized by the presence of unsteady features such as transient fronts and jets and unsteady
vortices. The Jet Stream is turbulent, the Antarctic Circumpolar Current is turbulent, and a
breaking internal wave is turbulent. This is the sense the word ’turbulence’ has been used above.
However, in the rest of this document, the word turbulence will be restricted to refer to motions
that result in the irreversible mixing of water properties at the molecular scale. In the ocean,
this typically occurs for flows with characteristic length-scales of a few centimeters. Irreversible
mixing results in the removal of both energy (through viscous dissipation) and gradients (through
molecular diffusion).

Motions at small scales matter because it is only at these scales that we can dissipate kinetic
energy of the ocean circulation and mix away the variance of water properties.
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Figure 2: Turbulent length scales and interactions, illustrating the necessary downscale cascade of
energy from global scale input of energy to centimetre scale dissipation of energy. Figure adapted
from the MITgcm group

3 Why Does Small-scale Turbulence Matter for Large-scale Circulation?

3.1 The meridional overturning circulation (MOC)

To answer this question, one needs a rudimentary understanding of the ocean’s meridional overturn-
ing circulation (MOC). The MOC can be thought of as a global scale ’conveyor belt’ transporting
water between the surface and abyssal ocean with characteristic time-scale of hundreds of years.
The overturning circulation is one mechanism by which heat is transported from the equator to the
pole. The sluggishness of the circulation means that once a parcel of fluid sinks from the surface, it
may take hundreds of years before it re-emerges. This makes the overturning circulation important
in sequestering heat and carbon and has important implications for thermosteric sea level rise and
the global radiative budget of the planet.

The overturning circulation in the Atlantic is formed of two stacked cells. The upper cell con-
sists of North Atlantic Deep Water (NADW) sinking to mid-depths and then being transported
along isopycnals (surfaces of constant density) to the Southern Ocean where Ekman suction (due
to intense mid-latitude westerlies) causes the water to upwell. This cell is essentially adiabatic and
water sinking at high-latitudes is brought to the surface mechanically by the wind. The lower cell
consists of Antarctic Bottom Water (AABW) sinking to the abyssal ocean. Unlike NADW, the
isopycnals that make up AABW do not upwell to the surface anywhere in the ocean. In the absence
of any other processes, the continuous sinking of AABW would fill the deep ocean with water of
that density resulting in a homogeneous layer of dense water. However, this is not the case in the
real ocean. The abyssal ocean then somehow remains stratified despite the continuous sinking of
cold dense water at high latitudes. To avoid becoming a homogeneous layer of cold salty water,
there must be some process that makes abyssal waters less dense. What is this process that sustains
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Figure 3: A schematic diagram of the Upper Cell and Lower Cell of the global MOC emanating
from, respectively, northern and southern polar seas. The zonally averaged oxygen distribution
is superimposed, yellows indicating low values and hence older water, and purples indicating high
values and hence recently ventilated water. The density surface 27.6 kg m−3 is the rough divide
between the two cells (neutral density is plotted) [1].

the abyssal ocean stratification? That is, how does the dense water sinking at high latitude return
to the surface?

3.2 Munk’s model of uniform upwelling

Despite water sinking at high latitudes, the ocean abyss remains stratified. The thermocline re-
mains, on average, at the same depth. Thus abyssal water must be returning to the surface. In
1966, Walter Munk proposed a simple model of how the dense abyssal water returns to the surface
[2]. Since water is warmed at the surface and cold water sinks, the surface of the ocean is much
warmer than at depth. This vertical temperature gradient results in a downward diffusion of heat.
The deep ocean is warmed as heat slowly diffuses from the surface to the abyss. As it warms, the
water becomes more buoyant and rises. Thus water sinks at high latitudes and upwells uniformly
throughout the ocean due to diffusive heating.

3.3 How much mixing is required?

Munk used this model along with radiocarbon measurements in the Pacific to independently de-
termine the upwelling velocity and the thermal diffusivity [2]. The measured vertical velocity was
about three meters per year and this is approximately what is required to balance the water sinking
at high latitudes. The more intriguing finding was that the measured diffusivity (K = 10−4m2s−1)
was three orders of magnitude (that is, a thousand times) larger the molecular thermal diffusivity
of water (K = 10−7m2s−1). If one uses the molecular thermal diffusivity of seawater, Munk’s model
predicts an effectively homogeneous abyssal ocean. Thus a large diffusivity term is necessary to
maintain the abyssal stratification. This diffusivity is clearly not of molecular origin; it is much
more efficient at diffusing heat vertically throughout the ocean. Instead, this is an eddy diffusivity
– a diffusivity due to turbulent fluid motions. Munk’s calculation reveals that the abyssal ocean is
not a quiescent motionless pool as many imagine, rather, it is a turbulent fluid and it is precisely
this turbulence that allows it to maintain its stratification.
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Exercise for the reader: Can you reproduce Munk’s estimate of the global deep ocean Kρ?

Munk estimated the intensity of small scale turbulent mixing in the deep ocean by considering the
density (ρ) conservation equation

Dρ

Dt
= Kρ

∂2ρ

∂z2
, (1)

where Kρ is the diapycnal (cross density surface) diffusivity, measuring the rate at which small-scale
turbulence mixes waters of different density. Kρ is assumed to be constant.

Assuming the ocean to be in steady state (∂ρ∂t = 0) and averaging horizontally across the ocean
such that the horizontal advective terms drop out, (1) simplifies to

w
∂ρ

∂z
= Kρ

∂2ρ

∂z2
(2)

where w is the vertical velocity. Solving (2) for Kρ, we obtain

Kρ = w
∂ρ

∂z

/
∂2ρ

∂z2
(3)

This is the basis for Munk’s calculation of the rate of turbulent mixing in the deep ocean.
You have the information in figure 4. Can you reproduce his result Kρ ∼ 10−4kg?

Figure 4: Schematic of estimated downwelling and isopycnal surfaces averaged zonally over the
global oceans. Courtesy of Alberto Naveira Garabato.

Hint: 1Sv = 106m3s−1, the global ocean area A ∼ 3× 1014m2, and ∂2ρ
∂z2

= ∂
∂z

(
∂ρ
∂z

)
Solution

First calculate the vertical velocity w from the downwelling shown in figure():

w ∼ (15Sv + 15Sv)

Am2
≃ 30× 106m3s−1

3× 1014m2
= 10−7ms−1 = 3m per year (4)
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Now find an estimate for ∂ρ
∂z , using a first order approximation to the derivative. At 1000m,

ρ = 1027.8kgm−1 and at 4000m, ρ = 1028.1kgm−1, so:

∂ρ

∂z
≃ 1027.8kgm−1 − 1028.1kgm−1

3000m
= −1× 10−4kgm−4 (5)

Now find an estimate for ∂2ρ
∂z2

using the intermediate values of ρ. First find two more estimates for
∂ρ
∂z at 1500m and 3500m:

At 1500m, ∂ρ
∂z ≃ 1027.8kgm−1−1027.9kgm−1

1000m = −1× 10−4kgm−4

At 3500m, ∂ρ
∂z ≃ 1028.05kgm−1−1028.1kgm−1

1000m = −5× 10−5kgm−4

So, since ∂2ρ
∂z2

= ∂
∂z

(
∂ρ
∂z

)
:

∂2ρ

∂z2
≃ (−1 + 0.5)× 10−4kgm−4

2000m
= −2.5× 10−8kgm−5 (6)

Using (3), we then have

Kρ ≃ (10−7ms−1)× (−1× 10−4kgm−4)

−2.5× 10−8kgm−5 = 4× 10−4m2s−1 ∼ 10−4kgm−5 (7)

We have thus recovered Munk’s estimate of the global deep ocean Kρ.

3.4 How turbulence mixes fluids

Suppose a small amount of dye is released into a localized region in a fluid. After a sufficiently
long time, the random motion of fluid molecules results in the irreversible dilution of the dye
throughout the entire container. This is an example of molecular diffusion. This process acts
to transport flow tracers, such as temperature or dye, down-gradient from regions of high to low
tracer concentration. As a consequence, diffusion tends to ultimately homogenize fluids. The rate
at which diffusion occurs depends on the initial tracer distribution: a blob of dye will take much
longer to diffuse than, say, an equivalent amount distributed as a narrow streak. This is because
diffusion is most effective in regions of large tracer gradients (in this case, the boundaries between
the dye and the fluid). Increasing the volume-averaged gradient results in more effective diffusion.
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Figure 5: Diagram of the effect of molecular diffusion alone versus turbulent mixing on diffusing
the temperature of some fluid parcel. The turbulent diffusivity is due to the nonlinearities in the
fluid flow, making it a property of the flow, not the fluid. Adapted from [4], courtesy of Emily
Shroyer.

One way to increase the volume averaged tracer gradients is by stirring. This is why we stir milk
in tea rather than wait for the milk to diffuse on its own.

The diffusivity Munk found in his calculation is an eddy diffusivity. This diffusion-like parameter
is a way to parametrize the highly nonlinear effects of turbulent fluid motions in simple models.
Rather than viewing the fluid as a collection of fluid particles, we instead view the fluid as consisting
of eddies. Eddies are an idealization of coherent fluid regions: they are regions moving in the same
direction and having the same fluid properties. With eddies as our basic building blocks, we extend
the concept of molecular diffusion to eddies. The random motion of eddies results in the down-
gradient transport of tracer properties. As in the previous case, this acts to homogenize the fluid.

Molecular diffusivity is an irreversible process. One cannot unmix the dye after it has been
diluted throughout the fluid container. Stirring however is reversible. This is because stirring
fundamentally is simply the movement of fluid parcels – it only results in their rearrangement. We
then see that, unlike molecular diffusivity, eddy diffusivity does not actually irreversibly mix the
fluid. Rather, turbulent fluid motions stir the fluid, stretching and filamenting fluid parcels into
highly convoluted shapes and patterns.

Mathematically, it is the non-linear terms in the equations of motion (such as u∂T
∂x , where T

is temperature and u is the x component of the fluid velocity) that are responsible for stirring of
the fluid and the interaction across disparate scales. Non-linear advective motions stir the fluid,
drastically increasing the volume-averaged tracer gradients, and allow molecular diffusivity to act
with increased efficiency. Turbulence stirs the fluid and allows molecular diffusion to proceed much
faster than it would have alone. To capture this enhanced mixing in simple models, an enhanced
diffusivity parameter is used. This is the eddy diffusivity Munk found in his calculation.
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3.5 Turbulent length scales

Having described how stirring introduces a cascade of scales to those on which molecular diffusion
can act, we now formalise some of the length scales relevant to stratified turbulence.

When stratification is important, the initial (largest) size of isotropic turbulent whirls is defined
by the Ozmidov scale

LO =
( ϵ

N3

) 1
2

(8)

where ϵ is the rate of dissipation of turbulent kinetic energy, and will be discussed further in the
following lectures. LO is the scale of the smallest turbulent motions that can ‘feel’ the stratification
- that is turbulent length-scales ≪ LO are not deformed by buoyancy.

The final (smallest) scale of turbulent whirls is defined by the Kolmogorov scale

LK =

(
ν3

ϵ

) 1
4

(9)

where ν is the molecular viscosity. This is the scale on which the smallest whirls are homogenized
by viscosity. Consider figure 6, which shows the spectral energy and dissipation as a function of

Figure 6: Diagram showing the cascade of scales of turbulence. The forcing is input at the Ozmidov
Scale (the scale of the largest 3D isotropic eddy), and dissipated at the Kolmogorov Scale (the scale
of the smallest 3D isotropic eddy). The range between these scales is known as the inertial subrange.
[4], Courtesy of Emily Shoyer.

wavenumber. The energy subrange is characterised by length scales LO, at which the small-scale
turbulence is forced by the largest 3D isotropic eddy. The energy then cascades to smaller scales
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through the inertial subrange, moving the gradients to the dissipation subrange where molecular
viscosity dissipates the motion. The stronger the stratification, the smaller the Ozmidov scale and
thus the smaller the distance between the energy and dissipation subranges. Conversely, the larger
the Reynolds number, the smaller the Kolmogorov scale, and the larger the distance between the
energy subrange and the dissipation subrange.

The molecular mixing at the smallest scales homogenises both momentum and density. The
energy residing in the field of turbulent whirls can thus have two fates: it can go into mixing the
fluid or it can be dissipated as friction. This can be expressed as

P = B + ϵ (10)

where P is the rate of production or turbulent energy (that is, the rate at which energy enters
the turbulent energy cascade at scale LO), B is the rate at which turbulent energy is expended in
mixing the fluid, and ϵ is the rate at which energy is dissipated.

For shear induced turbulence in the ocean, typically only approximately 17% of the turbulent
energy production ends up as mixing, and the remaining 83% is dissipated, giving B ∼ 0.17P . It is
a topic of active research whether this so called ’mixing efficiency’ can be taken to be a constant,
expect to hear more about this in future lectures!

3.6 Energetics

Let us now consider the energetics of mixing. Suppose we have a container with two layers of fluid.
A thin dense layer near the bottom and much thicker, more buoyant, fluid on top. The center of
mass of this system will be offset below the center of the container towards the dense fluid because
the container is bottom heavy. After a very long time, diffusion will mix the two into a single
homogeneous fluid. By symmetry, the center of mass will now be at the center of the container. It
follows that the mixing process did work against gravity on the fluid to bring the center of mass
upwards. The kinetic energy of fluid molecules was converted into gravitational potential energy in
the mixing process.

In the case of the ocean it is eddy diffusion rather than molecular diffusion that is acting to raise
the center of mass of a fluid column. Here, the kinetic energy of eddies is partially converted into
potential energy (as above) and partially dissipated. The fraction of eddy kinetic energy converted
into potential energy through mixing (rather than being dissipated) is called the mixing efficiency
Γ and typically has a value of Γ ≈ 0.2. That is, one-fifths of the eddy kinetic energy is used to mix
the fluid and raise the center of mass while the remainder is dissipated by viscous stresses.

Mixing is thus driven mechanically in the ocean by whatever is providing eddies (or seawater
in general) with kinetic energy. Since the overturning circulation depends crucially on mixing to
return the water to the surface, it is therefore dependent on this source of mechanical energy.

3.7 What causes deep ocean turbulence

To maintain the abyssal stratification against the rate of deep water formation, approximately two
terawatts are needed (2 TW = 2 × 1012 W, for reference, a typical human requires 100W). There
are two dominant energy sources to the deep ocean: winds and tides.

The forcing of the ocean by the wind contributes enormous amounts of energy into the ocean.
Most of this energy is dissipated in mixing the surface (mixed) layer and into the production of
surface gravity waves. A small portion goes into the development of the large scale wind-driven
ocean circulation. Wind can add mechanical energy into the ocean in two ways. The first is by
direct forcing at the surface resulting in, for example, isopycnal outcrops in the southern ocean. The
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other, less direct method, involves instabilities of the large-scale ocean circulation. Such instabilities
result in the pinching off of large ocean eddies which then radiate internal waves into the ocean
interior. These wave eventually break, depositing energy into the interior.

Unlike wind-stresses which can only act at the boundary, gravity is a body force meaning that
it can directly act on the ocean interior. The lunisolar tides, caused by the gravitational attraction
of the sun and moon and their relative position to the earth, result in the horizontal movement of
entire water columns. If these columns move over bottom topography, they will radiate internal
waves into the ocean interior. This converts gravitational lunisolar potential energy into mechanical
wave energy.

Thus, both winds and tidal forcing result in the production of internal waves and their emission
to the deep ocean. These mechanisms produce internal waves with scales of hundreds of meters.
Nonlinear interactions amongst propagating internal waves consequently produce a cascade towards
smaller vertical scales. Once internal waves have vertical scales on the order of meters, they become
prone to shear instabilities. Such instabilities cause internal waves to break, vigorously mixing
the surrounding fluid in the process. The breaking of internal waves is believed to be the main
mechanism behind the mixing of the ocean interior.

3.8 Mixing matters - impacts beyond physics

Besides the implications of mixing for the large scale ocean circulation, there are also important
impacts of mixing on the ecosystem. For example, primary production by phytoplankton in the
euphotic zone (the upper 100m or so of the ocean that receives enough light for photosynthesis
to occur) is highly sensitive to the concentration of nutrients. Nutrient concentrations are higher
below the euphotic zone, where they are not consumed, so upwelling and vertical mixing is a
necessary mechanism for primary production in the ocean. Figure 7 demonstrates some of the
many mechanisms by which microscale turbulence can impact the ocean’s ecosystem.
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Figure 7: A diagram showing the impact of microscale turbulence on the phytoplankton and zoo-
plankton ecosystem [3].

3.9 Why mixing matters

So why does mixing matter? The slow overturning timescale of the ocean means that the ocean
is a reservoir for both heat and carbon. This allows it to control the rate at which we expect
sea level to rise due to the thermal expansion of sea water. The overturning circulation is also
responsible for sequestering carbon in the deep ocean and so is important for feature projections of
Earth’s climate. However, for the overturning circulation to operate, two components are needed.
The first is convection – regions of dense water formation where new bottom water is created and
sinks to the abyss. The second is a mechanism to bring the abyssal water back to the surface.
In the deep ocean, this mechanism is mixing. Thus the properties of ocean mixing exert a strong
control on the overturning circulation and hence on Earth’s climate. Figure 8 demonstrates the
importance of understanding mixing and other poorly understood processes for creating accurate
climate projections.
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Figure 8: Diagram illustrating the necessity of good parametrizations for mixing and other processes
in predicting sea level rise. Courtesy of Matthew Alford.

Key Points

• Ocean circulation is turbulent, with Reynolds number ≫ 1.

• Small spatial scales and large spatial scales are inseparably linked through nonlinearities in
fluid motion.

• Turbulence is a property of the flow.

• Small scale turbulence mixes water masses vertically, and is essential for preventing the abyssal
ocean from becoming stagnant and unstratified.

• A turbulent energy cascade ensues between the Ozmidov and Kolmogorov scales. The ma-
jority (approximately 83%) of the turbulent energy ends up being dissipated as friction, and
a smaller fraction (approximately 17%) goes into diapycnal mixing.

• Turbulence influences gradients and has implications for the local environment and large scale
circulation.

• The accuracy of numerical models relies heavily on a good representation of turbulence.
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GFD 2019 Lecture 2: Measuring and Quantifying Ocean Mixing

Stephanie Waterman; notes by Wenjing Dong and Samuel Boury

June 18, 2019

1 Challenges of Measuring Ocean Mixing

1.1 Why is it so difficult to measure ocean mixing?

There are some challenges in quantifying ocean mixing. This is a non-exhaustive list:

• The oceanic processes involve a large range of scales in both space and time: energy is
mostly injected at large scales (of order O(105 m)) but dissipated at small scales (of order
O(10−3 m)).

• The process is non-deterministic and needs to be adressed using a stochastic/statistical
method.

• The rate of turbulent kinetic energy dissipation (noted ε) is highly variable in the ocean,
spreading over more than six orders of magnitude.

• Direct sampling of oceanic mixing also complicated due to the high intermittency in space
and time, so we need a high density of observations in both space and time.

• Because of intermittency, turbulent statistics are approximately log-normally distributed in
space and time. Since the distribution is non-normal, one must sample the relative rare but
extreme events to be able to quantify the mean.

• Ocean mixing involves a rich range of different processes and instabilities.

• Point measurements are typically contaminated by transient reversible processes (like internal
waves) which makes it difficult to find out what really plays a role in mixing.

• Turbulent transports are best quantified at the molecular level, which means at very small
scales. In order to sample at that small scale, sensing elements have to be small and able to
sample with a high sensitivity at high frequency.

• The difference between turbulence and mixing is not obvious: what amount of turbulence is
part of mixing? Given sparse measurements of turbulence at a point in space and time, how
can we infer representative estimates of mixing?

• There is also a theoretical issue: how do observed signals relate to theory? And how can we
use the relevant theory given sparse and missing information?
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Spectra from measurement campaigns often show very clearly these different issues. For ex-
ample, Moum et al ’s measurements from the Oregon Shelf [6] demonstrate the richness of oceanic
turbulent motions and some of the sampling challenges. From the observed data (figure 1, top
panel), the Turbulent Kinetic Energy (TKE) dissipation ε that can be derived (figure 1, bottom
panel) shows variability and intermittency, and provides evidence that the turbulent dissipation
varies by multiple orders of magnitude even in a short period of time (within only two days).

Figure 1: Above: spectrogram of velocity measured by Acoustic Doppler Velocimeter (ADV) on
bottom lander. Bottom: Time series of Turbulent Kinetic Energy dissipation (ε) estimated from
the above spectrogram. Oregon Shelf measurement campaign, from [6].

1.2 A closer look at a single isolated event

From an oceanographic perspective, we are concerned with the large-scale thermodynamic trans-
formation of water masses caused by mixing or, alternatively, the irreversible change in potential
energy created when down-gradient, Fickian-like diffusion moves the fluid’s center of mass upward.

From the complete knowledge of the flow field produced by a properly constrained DNS, we
can assess the net result of the mixing as a time-space integral. The net change in potential energy
can be used to estimate an average turbulent diffusivity needed to represent the complexities of the
modelled turbulent flow. As shown in figure 2, the dynamics of such events and their impact on
mixing efficiency can be isolated and study numerically [8].

It is, however, utterly impossible to reproduce such a calculation in natural geophysical flows,
simply because the density of time-space observations in the model cannot be replicated in the field
and because other events happen at the same time.

1.3 Different approaches to quantifying ocean mixing

In order to overcome these challenges, we can use different approaches, such as:
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Figure 2: DNS of a single isolated wave breaking event in a stratified medium, showing the temporal
evolution of the temperature anomaly evolution. At: (a) t = 565 s, (b) t = 1414 s, (c) t = 4242 s,
and (d) t = 6222 s. Extracted from [8].

1. Employ an integral approach: we compute integral estimates based on large-scale observa-
tions;

2. Use highly specialised instrumentation: we look for ”direct” estimates, based on microstruc-
tures observations;

3. Try to parametrize: understanding how larger scale processes create and modulate turbulence
to appropriately parametrize the phenomenon, for example through turbulent parameteriza-
tions.

2 Approach 1: Integral Estimates

2.1 Purposeful tracer releases

Idea

To quantify the mixing efficiency, we release a manmade passive tracer and measure its spread over
time. It is arguably the simplest method to measure mixing. Measurement campaigns can go over
several years to quantify how much does the tracer release spread.

This method is based on several assumptions: we assume a constant vertical (or isopycnal)
turbulent diffusivity K; we assume that the stratification of the ocean suppresses mean vertical
flow motion so turbulence is the only effective mechanism that causes vertical spreading of the
patch; and, following a parcel of water, the spread of the tracer C is governed by the diffusion
equation:

∂C̄

∂t
= K

∂2C̄

∂z2
, (1)

where C̄ is the concentration of the tracer. The solution of this equation is a widening Gaussian
profile, that helps to estimate the turbulent diffusivity K [9].
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In practice

The tracer is released on a surface of constant density. Then, another measurement campaign
returns to the site (or around) to measure and compare the actual spreading of the tracer to the
original distribution. As shown in figure 3, profiles of succesive measurements can be fitted by
Gaussian distributions [5]. Such measurements have been proved useful to provide estimates of
turbulent diffusivity in different regions of the world (see for example [10]; and figure 4 from [11]).

Figure 3: Tracer release experiment in the North Atlantic. From [5].

Advantages

This technique is elegant and definitive in its results: no confounding sources or sinks of the dye in
the ocean, so tracking the vertical spread is an unambiguous way to estimate mixing.

Limitations

Nonetheless, there are several limitations. The technique is difficult to perform and requires spe-
cialized equipment and analysis methods to release the dye and then analyze the water samples to
find minute quantities of tracer in the water (the spreading of the tracer is eventually large so the
measured concentrations C̄ are likely to be very low). Also, horizontal stirring and advection of a
dye patch can spread it horizontally to such an extent that it is very difficult to find all the dye
using finite ship resources (how many 2D transects needed to cover the whole extension of the 3D
spreading?).

2.2 Tracer budgets (inverse methods)

Idea

Mixing is estimated through an integrated version of the mean tracer equation

∂C̄

∂t
+ u · ∇C̄ = ∇ · (K∇C̄) (2)

in a constrained volume of water, in which we assume that its contents are in steady state.
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Figure 4: Tracer release experiment in the Drake Passage. From [11].

In practice

A budget method is applied to the environment we are looking at. For example, if we look at the
schematic of the Brazilian Basin depicted in figure 5 [4], cold water enters the basin (arrow on the
right side in picture 5) but no water that cold is found in the basin: the only way for this to happen
is that the water mixes and goes up. Water exiting the basin must be warm and leave either by
vertical advection or by vertical mixing. Further reading in [2] and [1].

Figure 5: Schematic of the Brazilian Basin, from [4]. The 1◦C water isotherm is the line between
light blue and cyan. Arrows show possible exchanges.
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Advantages

This method can be made from routinely made hydrographic sections in the ocean (usual ship
transects) and would be unambiguous if perfectly constrained in providing basin-averages.

Limitations

This method, however, requires the assumption that the system is in steady state, which is not true
in general. The velocities and tracer concentrations measured at the boundaries of the volume must
be well constrained and shown to be in steady state: this is very difficult as these measurements
are typically estimated from scarce individual ship tracks. Budget balance also requires well-
constrained topographies and geometries like the Brazil Basin, where inflowing velocities and tracers
and bounding isotherm can be mapped with high degree of confidence: these geometries are very
rare in the ocean!

3 Approach 2: “Direct”Microscale Estimates

The goal of this method is to estimate turbulent stirring and/or mixing by directly observing the
turbulence (can we actually have a “direct”measurement of turbulence?). Examples of this method
include:

1. directly measuring the turbulent stirring of a fluid using the eddy correlation technique;

2. directly measuring the molecular destruction of temperature gradients (Osborn-Cox method);
and

3. estimating mixing by relating the buoyancy-flux to the energetics of the turbulence (Osborn
method).

3.1 Direct eddy correlation

Idea

Using Direct Eddy Correlation, we try to estimate the mixing by quantifying the stirring of the fluid
via measuring turbulent fluxes (e.g., in the overturning example in figure 2 [8] that mixes warm and
cold water, this means measuring vertical velocity fluctuations, w′, and temperature fluctuations,
T ′, to quantify < w′T ′ >).

In practice

We need high frequency records of temperature and velocity acquired along a horizontal path using
a towed instrument outfitted with thermistors and shear probes. There are lots of them (MMP,
and so on). One example, marlin, is presented in figure 6 (figure from [3]).

Though the measurement instruments are more accurate now, there are still many challenges.
In particular, raw signals are large and very active, and the product w′T ′ is not one-sided: it has
instantaneous values that are large and can be of either sign, so that the fluctuations are far greater
than the mean correlation < w′T ′ >. This is a general problem since turbulence is sporadic and
stirring in both down-gradient (i.e. transports heat from regions of warm fluid) and up-gradient
(i.e., transports heat to regions of warm fluid). Since much of w′T ′ is reversible (i.e., just stirring
fluid that is not immediately mixed), the eddy-correlation technique must be made over long times
to produce stable estimates of the irreversible flux, but such measurements are hard to sample.
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Figure 6: Marlin on the deck. Figure from [3].

Advantages

This method provides a direct measure of the turbulent transport that is of interest.

Limitations

It is hard to determine what is “mean” and what is “turbulent” from the limited measurements
possible with a vertical or horizontal profiler; choosing what is “large scale” requires some art! Also,
estimating the vertical velocities in the ocean is hard. In this instance, the vertical velocities were
anomalously large. Finally, it is challenging to gathering enough statistics of the turbulence to
make robust estimates of mean fluxes.

As a consequence, this method does not enjoy wide use!

3.2 Microscalars (Osborn-Cox) [1972]

Idea

The Osborn-Cox method deals with quantifying the rate of molecular diffusion of scalar variance
at the microscale level. It is owed to Osborn and Cox who showed, by considering the evolution
equation for microscale scalar variance, that diffusivity κT is related to the rate of destruction of
scalar variance χT via

χT = 2κT < |∇T ′|2 > . (3)
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The scalar-gradient variance is a non-intuitive quantity to consider, but it is the best measure of
“stirring”, and is intimately related with the thermodynamic quantity of entropy. In order to get
the turbulent diffusivity K, we also need larger scale scalar gradients, and apply

K = 3κT
< (∂T ′/∂z)2 >

(∂T̄ /∂z)2
=

χT

2(∂T̄ /∂z)2
. (4)

Here, we are assuming steady state, homogeneous turbulence so that the net production of gradient
variance by turbulent velocities is locally balanced by its destruction by molecular diffusion, i.e.,
we are assuming that the transport terms are negligible.

In practice

To measure such small scales, a sensor must be small and respond very rapidly. The most commonly
measured scalar is temperature, as it is relatively easy to measure and as it diffuses at larger scales
(i.e., 1 mm to 1 cm) than chemical constituents like salt. The other problem with considering salt
is you have to measure micro-conductivity, which depends mostly on temperature. Measurements
of microstructure temperature are typically made with Microbead thermistors – coated with a
thin film of glass to electrically insulate them from seawater. Typically only one dimension of the
gradient is measured so we assume the turbulence is isotropic and estimate χ as

χ = 6κT

〈(
∂T ′

∂z

)2
〉
, (5)

rather than the exact χ.

Advantages

Because this method measures the rate of irreversible molecular mixing, it is one of the most direct
measures of quantifying the turbulent diffusivity K.

Limitations

Like other methods, we need to make assumptions: steady-state, homogeneous isotropic turbu-
lence; no transport terms (i.e., production = dissipation locally). We also need to collect enough
measurements for long enough time that the irreversible part of the ”turbulent” flux is measured
and a robust mean can be calculated; unlike the estimate of < w′T ′ >, χT is a direct measure
of irreversible mixing, so it does not need many realizations of the same turbulent event. From a
technical point of view, we need to move probes slowly enough for the probes to respond (takes
time for heat to diffuse through probes’ insulation) but fast enough to capture a synoptic snapshot
of a turbulent event: there is a trade off between resolution and statistics.

In practice, most sensors are deployed too rapidly and not all the variance is measured; it is
then common to apply corrections by fitting data to a universal spectrum to extrapolate resolved
measurements to higher wavenumber. Doing so accurately requires an independent measure of ε.

The discussion of measurement techniques will be continued in tomorrow’s lecture. First we
will discuss the Osborn method, which uses velocity microstructure data and is based on energy
considerations. Then we will also discuss parameterization estimates.
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GFD 2019 Lecture 3: Rates and Mechanisms—What We Observe

and Interpret from Observations of Mixing and Turbulence in the

Ocean Interior

Stephanie Waterman; notes by Kelsey Everard and Alessia Ferraro

June 19, 2019

1 Introduction

One of the most challenging tasks in physical oceanography is the achievement of a comprehensive
physical model able to accurately describe the global oceanic circulation in its entirety. The chal-
lenge is due to the large range of spatio-temporal scales and the numerous processes in ocean mixing
that interact in a messy non-linear way, making comprehensive numerical simulation difficult and
the development of simplified models for the various processes a necessity. Of the numerous com-
plications in modelling global oceanic circulation, small-scale turbulence poses perhaps the most
challenging problem. Thus, in an effort to accurately close the equations governing global oceanic
circulation, much attention has been given to the role of micro-scale processes as it is believed that
these processes control the turbulent mixing in the ocean in need of parameterisation.

At the micro-scale, rotation can be neglected and stratification dominates, thus creating the
physical conditions for the excitation of internal waves. These waves, generated by the interaction
of tides with the bottom topography (in the deep ocean) or by atmospheric winds (at the surface),
can propagate horizontally and vertically, transporting heat, momentum, and nutrients. Compli-
cating matters further is the non-linear interaction of internal waves with each other and with the
surrounding topography which can lead to wave breaking. The evolution and the fate of internal
waves is the result of a complex scenario that involves a plethora of different phenomena (as shown
in figure 1) and is still matter of active research. However, despite the rich dynamics that controls
their evolution, the internal wave breaking has been recognized as one the main cause of enhanced
turbulent dissipation in the deep ocean and thus a key ingredient to parametrise ocean mixing.
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Figure 1: Schematic of internal wave mixing processes in the open ocean taken from [6]. Tides
interact with topographic features to generate high-mode internal waves (e.g., at midocean ridges)
and low-mode internal waves (e.g., at tall steep ridges such as the Hawaiian Ridge). Deep currents
flowing over topography can generate lee waves (e.g., in the Southern Ocean). Storms cause inertial
oscillations in the mixed layer, which can generate both low- and high-mode internal waves (e.g.,
beneath storm tracks). In the open ocean, these internal waves can scatter off of rough topography
and potentially interact with mesoscale fronts and eddies until they ultimately dissipate through
wave–wave interactions. Internal waves that reach the shelf and slope can scatter or amplify as
they propagate toward shallower water.

2 Parameterisation Estimates and Finescale Parametrisations

Among the numerous approaches to quantify ocean mixing, estimations can also be made using
large-scale observations and ‘models’ designed to make explicit predictions on the amount of ex-
pected turbulence.
With this approach, parameterisations for turbulent processes are included in large-scale models
such that estimations of mixing from large-scale measurements can be made more readily. A major
disadvantage, however, is that parameterisations necessitate a number of assumptions which can
lead to many limitations of the model from which these estimates eventually arise. Some examples
include the estimation of mixing from a statically unstable fluid (Thorpe-scales method [1]) and
from fine-scale models. While in the first case the estimate is based on vertical density profiles,
in the second, mixing is quantified by means of the observed temperature, salinity and velocity
profiles. Due to the fundamental role of internal wave dynamics in the closure of the global oceanic
circulation [11], the key idea behind fine-scale parametrizations is the link between turbulent energy
dissipation and energy transfer due to the non-linear interactions of these waves. Figure 2 shows
a schematic of the energy spectrum associated with the evolution of internal waves at different scales.

The Gregg-Henyey-Polzin (GHP) method, one of the most used fine-scale parameterisation meth-
ods, computes the turbulent dissipation rate based on the downscale transfer of energy through the
internal wave spectrum via weakly nonlinear wave-wave interactions ([3], [4], [8]). Taking in to ac-
count the latitudinal variation of the internal wave interactions and the background wave spectrum
field given by the Garret-Munk (GM) model, the dissipation rate can be expressed in terms of the
variance of shear ⟨V 2

z ⟩ and strain ⟨ξ2z ⟩2 as
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Figure 2: From [7]. A map of dynamical processes in the vertical wave number-frequency domain.
Red colors represent sources associated with wave mean effects, green nonlinear transfers, and blue
sinks associated with shear instability and wave breaking. Arrows denote the dominant direction
of energy transfer. Nonlinear transfers in the frequency domain are uncertain. Wind forcing and
barotropic tidal conversion are regarded here as boundary conditions on the radiation balance
equation.

εIW [strain] = ε0
N2

N2
0

⟨ξ2z ⟩2

⟨ξ2zGM ⟩2
h(Rω)L(f,N) (1)

εIW [shear] = ε0
⟨V 2

z /N
2⟩2

⟨V 2
zGM/N2

0 ⟩2
h(Rω)L(f,N) (2)

where both the strain and the shear variance are integrated over internal wave scales (up to a
finite maximum wave number kmax in order to filter high frequency instrumental noise). Here ε0
is the reference dissipation rate, N0 represents the stratification, N is the average stratification,
and h(Rω) and L(f,N) are empirical correction factors that account for latitude effects and wave
frequency, respectively.

Allowing for the calculation of the average dissipation over many wave periods, this approach
has been proven to be incredibly useful in capturing the spatio-temporal variability of the energy
dissipation rate. The relatively easy access to measurements of the wave-field energy, together
with the abundance of vertical profiles of shear and strain from numerous platforms and locations
around the ocean, makes fine-scale parametrisation methods practically more advantageous over
microscale estimates.

However, the strong assumptions at the basis of this approach limits the applicability of the
GHP method. Although agreement with microscale estimates exists over smooth topography, dis-
crepancies are observed whenever the wave-wave interaction cannot be considered at most weakly
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non-linear or the wave field deviates from the GM model. The failure of the GHP parametrization,
often observed near coastal environments or over rough topography, usually relates to the presence
of physical processes that modify the evolution of internal waves not accounted for in the model.
For example, a systematic over-prediction of the energy dissipation rate from fine-scale estimates
has been observed by Waterman et al. [10] in the bottom ocean where intense flow speed and lower
shear-to-strain ratios Rω were observed (fig.3). In spite the numerous plausible explanations for
this phenomenon, from the role of a non isotropic background state to a possible mean flow-wave
interaction, among others, the mechanistic underpinning behind the phenomenon still remains un-
clear.

An additional drawback of the GHP parametrization method is its extremely high sensitivity
to implementation choices and accuracy in the value of input parameters, like the reference buoy-
ancy frequency, the presence of spatial non-homogeneity and the lack of instrumental resolution or
bandwidth [7].

Figure 3: From [10]. An along-transect distance–depth section of the ε ratio εfine/εmicro both
displayed on a logarithmic scale. The section, as displayed, starts in the southwestern corner of
the survey domain, then runs clockwise along the rim of the region, and finally runs northeastward
along the central transect, with each subsection corresponding to an individual transect as indicated.
White ticks at the bottom of delineate individual stations with key station numbers labeled to help
orient the reader. Neutral density contours in the range of 26˘28.4kgm−3 in 0.1kgm−3 intervals
are shown by the black contours.

Due to the restricted validity of fine-scale parametrization in specific conditions, different tech-
niques to estimate mixing from observational data have been developed:

• measurements of wavenumber spectra from acoustic Doppler currents [9]

• measurements of temperature microstructure from high-frequency acoustics [5]

• in situ particle imaging and tracking [2]
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3 Closing Thoughts

Substantial effort has gone into estimating the rates of turbulence mixing in the ocean. Due to the
highly non-linear and opaque nature of turbulence in general, a high degree of ingenuity has lead to
the creation indirect methods for solving the problem with observations. The use of observational-
based parameterisations and estimates has seen both successes and failures.

In the Brazil Basin, where the source of deep water is well-constrained, estimates of turbulent
eddy viscosity, K, from the basin-scale estimates agree quite well with micro-structure estimates
(see for a nice summary St. Laurent et al. 2001). In the open ocean, however, use of a large-
scale diffusivity to estimate a fine- or micro-scale diffusivity poses an issue. For example, inverse
methods indicate turbulent diffusivities on the order of K = 10-4 m2 s-1, however, micro-structure
measurements indicate that turbulent diffusivities in the open ocean are rarely ever this large (see
Wunsch and Ferrari 2004, for a review).

Because of the strengths and weaknesses associated with the variety of different methods, we
continue to rely on multiple approaches, and our understanding of turbulence in the ocean continues
to develop through intuition gained from a combination of laboratory studies, fieldwork, theory,
and numerical simulations.
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GFD 2019 Lecture 4: Introduction to Turbulence Theory for

Stratified Flows

Colm-cille Caulfield; notes by Anuj Kumar and Wanying Kang

June 20, 2019

1 Introduction

Some of the characteristics that capture the behavior of turbulence are the unsteady, random,
chaotic and irregular motion of the fluid. However, it is difficult to give a precise definition of
turbulent flow. Turbulent flows typically consist of several vortices/eddies whose interaction gives
rise to a wide range of scales in the system. This phenomenon is inherently nonlinear and complex,
such that creating a complete theory of turbulent flows is very hard. However, certain characteristics
of turbulent flows can be understood. One of the most important ways of approaching the problem
is to study the energetics of the flow. In these notes, we define what we mean by mean flow
and fluctuations and analyze their energetics. We then briefly discuss some differences between
turbulence in two and three dimensions.

2 Description of Turbulence

The motion of a Newtonian fluid is described by the Navier-Stokes equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ 2u×Ω+ ν∇2u+

1

ρ
F, (1)

where F is a generic forcing and other variables follow standard notation. For simplicity, we ignore
the Coriolis term, 2u×Ω, and assume the fluid is incompressible, ∇·u = 0. Applying the divergence
operator to the unforced version of equation 1 yields1

∇ · (u · ∇u) = ∇ · (−1

ρ
∇p). (2)

This partial differential equation is know as a Poisson equation, and it describes the evolution of
the pressure field. It is immediately clear that pressure here is a non-local quantity, whose sole
purpose is to enforce the incompressibility condition. The motion is governed by two competing
factors: the advection term (second term on the left-hand side of equation 1) and the diffusion term
(last term on the right-hand side of equation 1). Based on the characteristic velocity scale U and
length scale L involved in the problem, the relative strength of these two factors is given by the
Reynolds number, defined as

Re =
U2/L

νU/L2
=

UL

ν
. (3)

1Alternatively, this equation can be derived by studying the variation of the Lagrangian functional of this system.
From there, one can see p is the Lagrangian multiplier that constrains the mass conservation.
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Figure 1: 1513 sketch by Leonardo da Vinci, illustrating the coexistence of multiple scales and the
complexity of turbulent flow.

At sufficiently small Reynolds number, when diffusion of momentum (friction) is dominant, the fluid
motion is smooth and we term it laminar. However, at large Reynolds number, when the fluid’s
inertia overpowers diffusion, fluid motion becomes turbulent, with a range of time-dependent and
disordered “eddies”. Analysis to understand turbulent flow typically proceeds by decomposing the
total velocity field into its mean component and fluctuations, under the assumption that there is
a sufficiently large spectral gap between the scales of the background mean flow and those of the
turbulent eddies. Here, the mean flow’s velocity field should be understood as the ensemble average
of the total velocity field, i.e.,

u(x, t) = U(x, t) + u′(x, t), U(x, t) = ⟨u(x, t)⟩, (4)

p(x, t) = P(x, t) + p′(x, t), P(x, t) = ⟨p(x, t)⟩. (5)

Here, angle brackets are used to denote ensemble average, whereas the prime quantities denote
fluctuations. Substituting the above decomposition into the momentum equation gives

∂(U+ u′)

∂t
+ (U+ u′) · ∇(U+ u′) = −1

ρ
∇(P + p′) + ν∇2(U+ u′) +

1

ρ
F. (6)

Taking the ensemble average of equation 6, all terms that are linear in fluctuation variables vanish.

∂U

∂t
+U · ∇U = −∇ · ⟨u′u′⟩ − 1

ρ
∇P + ν∇2U+

1

ρ
F. (7)

In the above equation, F is an external forcing with dimensions [F] = [ρ]L/T 2. The first term
on the right hand side is the acceleration induced by the “Reynolds stress,” −ρ∇ · ⟨u′u′⟩, whose
divergence works as an additional force. This term scales as [ρ](U2/L).

Remembering that “energetics is the key,” we next derive the energy equation for the mean
flow by taking the inner product of U and equation 7. Using index notation with the Einstein
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summation convention, we get

∂

∂t

(
1

2
U2
i

)
+

∂

∂xj

(
1

2
U2
i Uj

)
=− 1

ρ
Ui

∂

∂xi
P − Ui

∂

∂xj
⟨u′iu′j⟩+ ν

∂

∂xj

(
Ui

∂Ui

∂xj

)
− ν

∂Ui

∂xj

∂Ui

∂xj
+ FiUi/ρ. (8)

Switching the index wherever required and collecting the transport terms on the right hand side,
we obtain,

∂

∂t

(
1

2
U2
i

)
+

∂

∂xj

[
1

2
U2
i Uj + Uj⟨u′iu′j⟩ − νUi

∂Ui

∂xj

]
=− 1

ρ
Ui

∂

∂xi
P − ⟨u′iu′j⟩

∂Ui

∂xj

− ν
∂Ui

∂xj

∂Ui

∂xj
+ FiUi/ρ. (9)

Since dissipation happens when there is fluid strain, one can define the dissipation rate,

ϵ̄ = 2νSijSij , (10)

where Sij is the symmetric component of the strain tensor Sij =
1
2

(
∂Ui
∂xj

+
∂Uj

∂xi

)
. Reorganizing this

terms yields

ϵ = ν
∂Ui

∂xj

∂Ui

∂xj
+ ν

∂

∂xi

(
Uj

∂Ui

∂xj

)
. (11)

Substituting the above expression back into equation 9 yields,

∂

∂t

(
1

2
U2
i

)
+

∂

∂xj

[
1

ρ
UjP

1

2
U2
i Uj + Uj⟨u′iu′j⟩ −

ν

2

∂U2
i

∂xj
− νUj

∂Ui

∂xj

]
= −⟨u′iu′j⟩

∂Ui
∂xj

−ϵ+ FiUi
ρ . (12)

Making the isotropic assumption, or assuming that there is no flux crossing the boundary, the
divergence term on the left hand side vanishes after integrating over the domain. We then see that
the mean flow is maintained by the external forcing Fi, and is damped by kinetic energy dissipation
ϵ. Mean flow energy can also be converted to (or from) the eddy kinetic energy when the eddies
are coherent with the mean flow shear, i.e., when ⟨u′iu′j⟩

∂Ui
∂xj

̸= 0. (We have also implicitly made the

so-called “Boussinesq” approximation to ignore the spatial variability of the density in absorbing
the pressure work term into the square bracket on the right hand side, and to be honest there are
further subtleties with the meaning of the pressure which we don’t want to get involved with at
this stage: variable density makes things complicated!)

3 Energy in the Perturbed Flow

To obtain the energy equation for the fluctuation flow field, we first subtract the governing equation
for the mean flow from the governing equation for the total flow. We then take the dot product
of the resulted equation with fluctuation flow field and take an ensemble average. The governing
equation for the energy in the fluctuation flow field is then found to be

∂

∂t

⟨u′iu′i⟩
2

=
∂

∂xi

[
−1

ρ
⟨p′u′i⟩ − Ui

⟨u′ju′j⟩
2

−
⟨u′ju′ju′i⟩

2
+ ν

∂

∂xi

⟨u′ju′j⟩
2

+ν
∂

∂xj
⟨u′iu′j⟩

]
− ⟨u′iu′j⟩

∂Ui

∂xj
− ε′ +

1

ρ
⟨Fiu

′
i⟩ (13)
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ω

Figure 2: A schematic of vortex stretching mechanism

where

ε′ = 2νS′ : S′

S′
ij =

1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
. (14)

The last term in the equation (13) is nonzero only if the forcing F has a nonzero fluctuation part.

4 Inertial Scaling of Dissipation

Therefore, if we consider a situation where the term in the square bracket on the left hand side can
be ignored (as it can be thought of as a divergence of a flux, it often integrates to zero over closed or
periodic domains for example) the energy in the fluctuation field decreases monotonically due to the
turbulent dissipation rate ϵ′, and can increase (or decrease) due to exchanges with the mean flow
via the turbulence production −⟨u′iu′j⟩∂Ui/∂xj . Let us first consider a simple case, where U(z, t)x̂,
in the “geophysical” coordinate system where z points upwards. Then the turbulence production
term reduces to

P = −⟨u′w′⟩∂U
∂z

. (15)

Now, to fix ideas, let’s assume that the mean velocity increases with height and there are charac-
teristic scales U and L for the mean velocity and its scale of variation. Two scaling observations
follow.

1. A fluctuation with w′ > 0 would be expected to have u′ < 0 as it would involve “lifting up” a
slower moving parcel of fluid. Therefore, it seems natural that in such shear flows u′ and w′

are negatively correlated thus leading to P > 0.
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2. For vigorously turbulent flows, it seems at least plausible that the fluctuations u′ and w′

would also scale with the characteristic velocity scale U , and so P ∼ U3/L.
Therefore (and appreciating that this is piling assumption upon assumption), if the turbulence is
sustained, so that the fluctuation kinetic energy is approximately in steady state, the dissipation
rate and the production should roughly balance, and so

ϵ′ ∼ P ∼ U3

L
. (16)

This “inertial scaling” has been proposed for decades (dating at least as far back as the great G.
I. Taylor) and is an example of the so-called“zeroth law of turbulence”, as it suggests that as ν → 0,
ϵ′ remains finite. Although this has very interesting connections with regularity of solutions of the
Navier-Stokes equations, we are not going to get involved with such issues here, as we are actually
more interested in how the presence of stratification might affect this (empirically suggested) scaling
“law”.

5 The Difference Between Two-dimensional and Three-dimensional Tur-

bulence

The vorticity equation can be obtained by applying the curl operator on the momentum equation:

∂ω

∂t
+ u · ∇ω = ω · ∇u+ ν∇2ω (17)

The first term on the right-hand side of equation 17 describes stretching and tilting of vortex
tubes. In three-dimensional turbulence, vortex tubes can stretch and then conservation of angular
momentum implies that vorticity can intensify (∂ω∂t ̸= 0) if it is not dissipated locally (last term on
the right-hand side) or advected away (second term on the left-hand side). This vortex stretching
mechanism tends to increase the enstrophy ⟨ω · ω⟩ of the system. If we neglect the effect of body
forces and viscosity, the total energy of the system is conserved.

The only possible way in which enstrophy can increase while the total energy stays the same
is when there is transfer of energy to smaller scales, which we call a forward cascade of energy.
(As a further aside, this approaching smaller and smaller scales suggests a possible way by which
the above-mentioned zeroth law might actually be possible, with extremely small-scale vortical
structures developing in turbulent flows. Indeed, as an exercise for the reader, it is possible to show
that ϵ′ can be written as the viscosity times the fluctuation enstrophy plus a transport term.)

The first term on the right hand side of equation 17, however, is absent if the flow is two-
dimensional, and therefore a forward cascade of energy is not possible. This makes three-dimensional
turbulence fundamentally different from two-dimensional turbulence. Therefore, in any type of
analysis of turbulence in real-world flows, it is important to consider whether the flow is in fact
three-dimensional.
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GFD 2019 Lecture 5: Effects of Stratification and/or Shear on

Turbulence and Their Description by Nondimensional Parameters

Colm-cille Caulfield; notes by André Palóczy and Jeremy Parker

June 21, 2019

1 Key Scales of Turbulence

The most significant result from the last lecture was to present an argument that the turbulent
dissipation rate

ϵ′ ∝ U3

L
, (1)

where U and L are characteristic velocity and length scales of the flow. As mentioned, in a uni-
directional shear flow, the turbulence production is dominated by

P ∼ −
〈
u′w′〉 ∂U

∂z
. (2)

It is “obviously” very challenging to determine ⟨u′w′⟩, as it is (effectively) a second-order corre-
lation of fluctuation quantities. Dimensionally, (when multiplied by density) this term is

[ρ
〈
u′w′〉] = ML−1T 2, (3)

which we can recognise as a force per unit area, i.e., a stress, and so this term (even without the
density) is commonly referred to as a “Reynolds stress”.

By analogy with the viscous stress in a shear flow, a common simplifying assumption in an
attempt to parameterise this term is to assume that −⟨u′w′⟩ = νT

∂U
∂z , where νT is the eddy or

turbulent viscosity. This expression can be thought of as a closure that relates a second-order
correlation of fluctuation quantities (hard to compute/measure) to a first order quantity (the shear
in the ensemble mean velocity U), with a proportionality factor νT inevitably having the dimensions
of a (kinematic) viscosity. Of course, this can’t be right, not least because of the strange things
that must happen when ∂U/∂z gets small, or even changes sign.

However, if the turbulent viscosity assumption is appropriate, combining it with the inertial
scaling for the dissipation rate we obtain:

U3

L
∝ νT

(
∂U

∂z

)2

∝ νT
U2

L2
, (4)

so νT ∝ LU . (Therefore, for consistency, the characteristic length scale L of the flow should be
thought of as a “mixing length”.)

This turbulent viscosity does not depend on the actual molecular viscosity, but there must come
a scale on which this actual viscosity is important: viscosity must be comparable to the turbulent
dissipation on some timescale TK . Dimensionally, remember

[ν] = L2T−1, (5)
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and [
ϵ′
]
= L2T−3, (6)

so we must have

TK =
( ν

ϵ′

)1/2
. (7)

This is equivalent to saying we are (here) concerned with a length scale LK and velocity scales
UK ∼ LK/TK such that the local Reynolds number is about 1. Therefore, we wish to identify the
length scale such that

LK

ν

LK

TK
≈ 1, (8)

which implies that

LK =

(
ν3

ϵ′

)1/4

. (9)

This is the Kolmogorov length scale, which can be interpreted (loosely, but we’re all relaxed in
Walsh Cottage) as the length scale of eddies that are killed after one turnover time.

We then find, using (1) that the outer Reynolds number with velocity scale U and length scale
L is given by

Re3 =
U3L3

ν3
=

ϵ′L4

ν3
=

L4

L4
K

, (10)

using the inertial scaling to eliminate U . Here, and elsewhere, remember that L is some external
characteristic length scale of the flow.

Therefore, to resolve a numerical simulation of these equations at high Re, we must resolve the
very fine length scale

LK = LRe−3/4. (11)

In practice, in truth this is very rarely done, not least because the averaging to arrive at an estimate
of ϵ′ may smooth out (and suppress) significant spatio-temporal variability.

For any hope of a universal description of turbulence, we must have a situation where

L ≫ LE ≫ LK ,

where LE is the length scale of an eddy. In fact, this must hold for a significant range of LE .
Experiments on a jet [1] suggest that we may need Re as high as 104 for this to hold (see figure 1).

Finally, let us consider briefly a classical simple model flow: stationary, homogeneous, isotropic
turbulence.1 For such a flow, a spectral description in terms of wave numbers is appropriate, as
it is only the magnitude of the wave vector that can be important. Therefore, we can define the
energy spectrum E(k) such that the turbulent kinetic energy (density) is given by

EK =
1

2

〈
u′iu

′
i

〉
=

∫ ∞

0
E(k)dk. (12)

Note that
[E ] = L [E] = L3T−2. (13)

Therefore, if we make the reasonable assumption that E(k) can depend only on the length scale of
the eddy and the turbulent dissipation rate, dimensional analysis immediately yields

E(k) ∝ k−5/3ϵ′2/3. (14)

1Devising a suitable mnemonic for these requirements is left as an exercise to the reader.
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Figure 1: Jet-fluid concentration in the plane of symmetry of a round turbulent jet [2]. (a) Re ≈
2.5× 103 (b) Re ≈ 2.5× 104. Notice the clear difference as Re is increased.
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Figure 2: Observations with a k−5/3 spectrum, which definitely cannot be isotropic turbulence [3].

This is the classic Kolmogorov spectrum of turbulence. It is important to note here that merely
observing a k−5/3 spectrum is not sufficient to say that the Kolmogorov argument (for example of
isotropy so that only the wavenumber (i.e., the magnitude of the wave vector) k matters) such as
that presented above is correct, because of the assumptions (see figure 2).

2 Stratification Effects on Turbulence

As already noted, turbulence is hard to define, but has (at least) three key attributes: a wide
range of scales; vorticity (through eddying motion, vortex stretching etc) plays a central role; and
kinetic energy dissipation is significantly enhanced, through the turbulent dissipation rate ϵ′. The
presence of a density stratification affects all three of these attributes, in complicated (and deeply
interesting) ways.

For a density-stratified fluid where ρ = ρ(x, t), the Navier-Stokes equation may be written in
the form

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p− ρgẑ + ρν∇2u. (15)

Separating the density and pressure fields into perturbations (primed variables) and background,
hydrostatic fields (with subscript h, that depend only the vertical coordinate direction in which the
gravitational field acts), we have
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p(x, t) = ph(z) + p′(x, t) and (16)

ρ(x, t) = ρh(z) + ρ′(x, t),

where the hydrostatic fields ph and ρh (generically nontrivial functions of z) are defined by the
hydrostatic relation

∂ph
∂z

≡ −gρh. (17)

Using Equation 16 in Equation 15 and making the Boussinesq approximation (ρ′/ρ0 ≪ 1 where ρ0
is a reference value of ρh(z) so density differences can be ignored in all terms except −ρgẑ)2, we
have

ρh

(
1 +

ρ′

ρh

)(
∂u

∂t
+ u · ∇u

)
= −∇(ph + p′)− ρh

(
1 +

ρ′

ρh

)
ν∇2u− (ρh + ρ′)gẑ, (18)

and dividing through by ρh, Equation 18 becomes

∂u

∂t
+ u · ∇u = − 1

ρh
∇p′ − gρ′

ρh
ẑ + ν∇2u. (19)

The mass conservation equation is

∂ρ

∂t
+∇ · (ρu) = 0, (20)

and a linearized form of the equation of state ignoring salinity and pressure effects is

ρ(T ) = ρ0
[
1− α(T − T0)

]
, (21)

where ρ0 and T0 are, respectively, a reference density and salinity and α is the thermal expansion
coefficient. Within the Boussinesq approximation, ρh(z) in the denominators of the first two terms
on the right hand side can be replaced consistently with ρ0.

The temperature satisfies an advection-diffusion equation:

∂T

∂t
+ u · ∇T = κ∇2T. (22)

Differentiating Equation 21 with respect to time and using Equation 22, we obtain a conservation
equation for density:

∂ρ

∂t
+ u · ∇ρ = κ∇2ρ, (23)

2Formally, the Boussinesq approximation means that we are in the distinguished limit where g → ∞ and ρ′ → 0,
while the product gρ′ remains finite.
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or

∂ρ′

∂t
+ w

dρh
dz

+ u · ∇ρ′ = κ∇2ρh + κ∇2ρ′. (24)

The presence of a gravitational field and a statically stable tratification (or buoyancy gradient)
gives the fluid the natural frequency of vertical oscillation or the buoyancy frequency N , which in
the Boussinesq approximation is defined as

N2 ≡ − g

ρ0

∂ρ

∂z
. (25)

Note that gρ′/ρ0 = g′ is called the reduced gravity, and many authors prefer using the buoyancy
b = −g′ (the negative convention capturing the concept that negative density perturbations do
indeed correspond to buoyant parcels, in the non-technical meaning of the word). Stratified flu-
ids with nonzero buoyancy frequency are prone to internal waves, with frequencies of oscillation
bounded above by N . The existence of internal waves makes turbulence more non-local than in
the unstratified case, since internal waves can propagate energy injected in one location across the
system, making it available for turbulence and mixing elsewhere.
A particularly elegant form of Equation 24 arises if ρh is a linear function of z, of the form:

ρh = ρ0

(
1−

N2
h

g
z

)
. (26)

With this form of ρh the first (diffusive) term on the right hand side disappears, and upon multi-
plying across by −g/rho0, the equation becomes

∂b

∂t
+N2

hw + u · ∇b = κ∇2b. (27)

Remember that N2
h here is the buoyancy frequency associated with the (assumed by construction)

linearly varying hydrostatic density field, and the density perturbations ρ′ (and hence the buoy-
ancy b) are defined as the perturbations away from this time-invariant density field, which is not
necessarily the same as the horizontal mean/time average/ensemble average of the density field.
Stratified fluids are complicated!

To add to the complications, stratification also modifies the vorticity balance. Taking the curl
of the Boussinesq equation 19, we obtain

∂ω

∂t
+ u · ∇ω = ω · ∇u+ ν∇2ω +

1

ρ2
∇ρ×∇p, (28)

where ω is the vorticity vector. We note that the last term is a baroclinic torque term by which
the stratification can be a source or sink of vorticity. As the dominant component of the (total)
pressure is the hydrostatic part ph associated with the hydrostatic density distribution ρh, to leading
order the (total) pressure gradient points in the (negative) z−direction. Therefore, if the density
isosurfaces are tilted away from the horizontal, and so ∇ρ is not purely vertical, there can be
(baroclinic) creation or destruction of vorticity, explicitly due to the presence of density variations.

The last of the three key attributes of the flow affected by stratification is the energy budget.
The Navier-Stokes equations for an incompressible fluid can be written as (once again applying the
Boussinesq approximation to replace ρh with ρ0 when allowed):
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∂ui
∂t

+
∂

∂xj
(uiuj) = − 1

ρ0

∂p′

∂xi
− gρ′

ρ0
δi3 + ν∇2ui, (29)

for the total velocity field ui. Taking the dot product of this equation with velocity naturally leads
to a kinetic energy equation. If there were no density variations, we would obtain the classical
equations with transport terms, dissipation through viscosity, and exchanges between mean and
fluctuation (with the mean defined as an ensemble or a time or space averaging) via turbulent
production terms and Reynolds stress. However, the ρ′ term in the vertical direction will inevitably
lead to a new term:

B ≡ g

ρ0
⟨ρ′w⟩, (30)

such that −B appears on the right hand side of an evolution equation for kinetic energy. This
term, often called the buoyancy flux (though more appropriately should be called the density flux)
quantifies exchanges between the kinetic energy and the potential energy reservoirs. For example,
if on average dense parcels are lifted up, (and so ⟨ρ′w⟩ > 0), kinetic energy is converted to potential
energy. Two fascinating (and still highly controversial) questions then arise? First, how does this
exchange affect turbulence? Second, is this exchange irreversible (like the conversion of kinetic
energy into internal energy via viscous dissipation) or reversible (like the bobbing up and down of
a wave)?

Much of the rest of the lectures will be focussed on trying to answer (at least partially) these
questions. As a first step, we can think about defining a turbulent or eddy diffusivity for heat κT (or
equivalently density within the Boussinesq approximation) analogously to the turbulent viscosity νT
defined above. Once again we want to relate hard-to-measure second-order correlations to easier-to
-measure first order mean quantities, and so

κT ≡
− g

ρ0
⟨ρ′w′⟩

− g
ρ0

∂⟨ρ⟩
∂z

=
B

⟨N2⟩
, (31)

where we now have defined an ensemble-averaged (squared) buoyancy frequency ⟨N2⟩. There are
further subtleties that we don’t want to consider here concerning when this ensemble average could
or should be made equal to the buoyancy frequency Nh associated with the hydrostatic constant
gradient background density field ρh. Using this definition, the turbulent Prandtl number is defined
as

PrT ≡ νT
κT

=
P

B

⟨N2⟩
⟨S2⟩

, (32)

and can be thought of as the ratio of the time scales associated with changes in shear and stratifi-
cation.
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GFD 2019 Lecture 6: Mixing Mechanisms in Forced and
Freely Evolving Flows

Colm-cille Caulfield; notes by Channing Prend and Jelle Will

June 24, 2019

1 Introduction

What is the effect of stratification on turbulence? This is the fundamental question that these 
lectures are trying to address though (spoiler alert) the question is fundamentally ill-posed as there 
is no unique (or even generic) answer. We have seen that stratification perturbs many of the funda-
mental aspects of turbulence, including crucially its vorticity and energetics. The original intention 
of this lecture was to discuss mixing mechanisms, but unfortunately there are certain preliminaries 
that need to be covered, and due to the classic (and in fact really welcome) chit-chat and ques-
tioning in the Cottage, the discussion of those mixing mechanisms will have to be covered later. 
The preliminaries covered here are two-fold: first a brief introduction to two classical approaches 
towards modelling mixing in stratified flows; and second a gentle introduction to the crucial impor-
tance of velocity shear for turbulence transition via instability of laminar flows. The two modelling 
approaches we will introduce are typically called (after their initial proposers) the “Osborn” method 
[1] and the “Osborn-Cox” method [2], and are commonly used to obtain microscale estimates of 
mixing in the ocean. One is based on arguments concerning the energetics (Osborn), while the 
other depends on arguments concerning scalar variance (Osborn-Cox). The key assumptions on 
which these methods depend are discussed (briefly) below.

2 The Osborn Method

The Osborn method at its heart assumes that the turbulent energy production is balanced by the 
turbulent buoyancy flux and viscous dissipation, and that those two terms can be related, which 
is quite a strong pair of assumptions to say the least. These assumptions come from consideration

of the evolution of the turbulent kinetic energy (TKE) of a fluid, defined as EK =
1

2
⟨u′iu′i⟩ (and

already discussed in lecture 5, strictly speaking this is an energy per unit mass). The TKE evolution
equation (in a Boussinesq stratified fluid, i.e., the stratified generalisation of Equation 13 of lecture
4) is then:

∂EK

∂t
= −∇ · (transport terms) + P + ϵ′ −B +

⟨Fiu
′
i⟩

ρ0
. (1)

Therefore, the time rate of change in TKE is given by:

• the (negative) of the divergence of transport terms (often called“flux”, but one must be careful
about what we call flux in the earshot of a chemical engineer, for example, as the dimensions
must be correct; whatever these terms do not affect the global balance in a closed or periodic
system);

42



• turbulent production P = ⟨u′w′⟩∂U∂z (if for simplicity the mean flow U is assumed to be in the
x−direction, and to vary only in the z−direction and possibly with time);

• the TKE dissipation rate ϵ′;

• and the exchange with the potential energy reservoir via the “buoyancy flux”

B =
g

ρ0
⟨w′ρ′⟩.

The Osborn method assumes that the flow is in equilibrium, such that the production term is
balanced by the buoyancy flux and dissipation and so

P = B + ϵ′. (2)

As previously noted, the buoyancy flux, B, should really be split into a reversible part (think sloshing
of waves) and an irreversible part associated with irreversible (duh!) mixing of fluid parcels. The
situation is further complicated for applications to the real ocean, as diapycnal transport (i.e.,
transport in the direction normal to surfaces of constant density) is not necessarily equivalent to
vertical transport, but that is one of the very many real-world issues that we are at least going to
pretend we don’t need to worry about.

This equilibrium assumption of the Osborn method naturally begs the question: “how much of
the energy is dissipated and how much goes into (irreversibly) rearranging the density gradient?”.
It seems natural (and, indeed, is correct) to assume that there is some correlation between viscous
dissipation and irreversible mixing. Appealing perhaps to Occam’s razor, it is then tempting to
make Osborn’s second fundamental assumption, that this correlation is a linear relationship, and
so

B = Γϵ′, (3)

for some coefficient Γ, known as the turbulent flux coefficient.1 Γ is the ratio between the portion
of the kinetic energy that goes into the potential energy reservoir (via the buoyancy flux) and the
portion that is viscously dissipated, i.e., the “taxation” rate of stratification on turbulence. The
first equilibrium assumption implicitly requires the conversion of TKE to PE to be irreversible,
and so this conversion can be considered to quantify the rate of irreversible mixing. Although the
definition of Γ is appealing, unfortunately, there is not typically a linear relationship between B
and ϵ′, and, indeed, B and ϵ′ can have markedly different distributions. However, all is not lost, as
there are sometimes convincing arguments to assume that Γ, indeed, globally has a constant value
for some specific flow conditions, as we discuss in more detail below.

We also now define a (related) dimensionless parameter that will be used quite extensively over
the remainder of these lectures. The flux Richardson number is defined as

Rif =
B

P
. (4)

Note, if the equilibrium assumption of Osborn applies,

Rif =
Γ

1 + Γ
. (5)

Notice that Rif is, indeed, (by construction) restricted to be in the range 0 ≤ Rif ≤ 1, and so
can be (reasonably) considered to be an “efficiency” of mixing, though it most definitely is not the

1Or rather should be known as the turbulent flux coefficient. There is an unfortunate convention to refer to this
quantity as a “mixing efficiency”, which really should wind up any right-minded person who thinks that efficiencies
should be strictly in the closed interval [0, 1] by construction.
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unique definition of such an efficiency, since it is based around the idea of shear-driven turbulence
production. Using this definition, the turbulent Prandtl number can now be interpreted as a ratio:

PrT =
P ⟨N2⟩
B⟨S⟩2

=
⟨Ri⟩
Rif

, (6)

where ⟨Ri⟩ is a (gradient) Richardson number, defined in terms of the ratio of ensemble-averaged
time scales, the ensemble-averaged (square) buoyancy frequency and shear.

With these definitions, we have a particularly useful way to think about the ultimate objective
of our modelling, the determination of κt. Remember, we want to understand how fluid motions
enhance mixing. To produce a model or parameterisation for that enhancement, it would be really
nice if we could model the enhancement as a diffusive process, i.e., via κt. In other words, we would
like to be able to determine the relative enhancement of density diffusivity by fluid motions, i.e.,

κT
κ

=
B

ν⟨N2⟩
= ΓPrm

ϵ′

ν⟨N2⟩
, (7)

where Prm is the molecular Prandtl number and ν the kinematic viscosity or momentum diffusivity
of the fluid. However, even within the framework of the Osborn method, for this expression to be
useful we still require intimate knowledge of the energy dissipation rate as a function of space and
time. Unfortunately, a fundamental issue is that ϵ′ = 2ν⟨S′

ijS
′
ij⟩ is prone to strong spatiotemporal

intermittency, which is further enhanced when the flow is stratified. Thus, understanding where in
the flow energy is dissipated and how this is correlated to other quantities is key to understanding
turbulent mixing, even when making the sweeping assumption that B and ϵ′ are linearly related.
Furthermore, it is actually reasonable to argue that the Osborn method complicates the modelling
unnecessarily, as both Γ and ϵ′ need to be modelled, and so any error or uncertainty in the estimation
of κt/κ may be due to either uncertainties in Γ or ϵ′, or, indeed, both. Not entirely a satisfactory
state of affairs.

3 The Osborn-Cox Method

In contrast to the energetic argument of the Osborn method, which inevitably introduces a need
to model both Γ and ϵ′, the Osborn-Cox method is based on quantifying the destruction of scalar
variance. This is perhaps more appealing (at least from the point of view of simplicity), since this
approach is direct in that it requires the modelling of only one quantity, this destruction rate. There
is no such thing as a free lunch however, as it is important to note that there are different scales
associated with dissipation of scalar as opposed to dissipation of energy. We have already met the
Kolmogorov length scale in lecture 5:

LK =

(
ν3

ϵ′

)1/4

, (8)

loosely the length scale at which eddies are smoothed out by viscous diffusion in one turn over time.
The equivalent scale at which variability in scalar (as opposed to variability in velocity/momentum)
is smoothed out in one turn over time is known as the Batchelor length scale:

LB =

(
νκ2

ϵ′

)1/4

=
LK

Pr
1/2
m

, (9)

which, for oceanographically relevant scalars, is smaller than LK since Prm ∼ O(10) for heat
in water, and (mangling notation somewhat as it should really be called a Schmidt number)
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Prm ∼ O(1000) for salinity in water, thus leading to challenges in computation and experimen-
tal/observational measurement.

For the Osborn-Cox method, in contrast to Equation 1, we will instead construct an equation for
the buoyancy variance. This can be directly related to an appropriately defined available potential
energy of the system, i.e., the potential energy to drive the flow, as originally introduced by [3],
but there are many subtleties to be considered that we don’t want to go into here: a good starting
place to find out about those subtleties is the review of Tailleux [4], both for cited references,
and subsequent references to that review. We again make the Boussinesq approximation, with
the further assumption that the density varies linearly with the scalar “temperature” field (often
called the Oberbeck-Boussinesq approximation). We again decompose the density field into the
aforementioned hydrostatic linearly varying with depth part ρh(z) and a fluctuating part ρ′(x, t):

ρ(x, t) = ρ0

(
1−

N2
h

g
z

)
+ ρ′ = ρh(z) + ρ′, (10)

(re-)defining the hydrostatic buoyancy frequency Nh, where we are considering sufficiently small
differences of z so that the Boussinesq approximation is still valid, and |ρ′| ≪ ρ0.

With this decomposition, the advection-diffusion equation for (total) density ρ becomes

∂ρ′

∂t
+ w′dρh

dz
+ u · ∇ρ′ = κ∇2ρ′, (11)

where we make the (reasonable) extra assumption that there is no background mean flow in the ver-
tical direction so w = w′. Multiplying this equation by ρ′ and rearranging with a bit of integration-
by-parts action yields:

∂

∂t

(
ρ′2

2

)
= −∇ ·

(
ρ′2

2
u− κρ′∇ρ′

)
− κ∇ρ′∇ρ′ + wρ′N2

h

ρ0
g
. (12)

Looking at this equation, the last term in the right hand side is very reminiscent of the buoyancy

flux B arising in Equation 1, particularly if we multiply across by
g2

ρ20N
2
h

:

∂

∂t

(
g2ρ′2

2ρ20N
2
h

)
= −∇ · (transport)− κ∇

(
gρ′

ρ0Nh

)
∇
(

gρ′

ρ0Nh

)
+

g

ρ0
w′ρ′. (13)

Furthermore, gρ′/ρ0 = g′ = −b is the (Boussinesq) reduced gravity or the (negative) of the buoyancy.
The term on the left hand side is “clearly” the time derivative of a scaled buoyancy variance. A
particular attraction of the buoyancy variance being scaled in this way is that this quantity has
dimensions [L2T−2], i.e., the dimensions of the TKE EK defined above, thus showing the intimate
connection to the potential energy.

Averaging in the same fashion as Equation 1, we obtain

∂

∂t

(
g2ρ′2

2ρ20N
2
h

)
= −∇ · (transport)− χ+B, (14)

where

χ = κ

〈∣∣∣∣∇g′

Nh

∣∣∣∣2
〉
, (15)

is the destruction rate of (scaled) buoyancy variance, and has dimensions [χ] = L2T−3. There are
multiple attractions of this formulation. χ is clearly sign-definite, and is also clearly an inherently
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diffusive term quantifying the rate at which |ρ′| decreases, and hence a rate at which the fluid is
irreversibly mixed. Analogously to the argument of the Osborn-Cox method, in equilibrium in an
appropriately closed or periodic domain, χ destroys buoyancy vaariance at precisely the rate that
the buoyancy flux B increases it, further reinforcing the connection between the buoyancy variance
equation and an equation for an appropriately defined available potential energy. Due in no small
part to all these attractive properties, the Osborn-Cox method then defines the eddy diffusivity of
density in terms of this destruction rate of buoyancy variance, (usually determined in the ocean
from temperature microstructure measurements):

κT =
χ

⟨N2⟩
. (16)

Of course, this definition can still be posed in terms of a flux coefficient, as implicitly, this expression
defines a (subtly different) flux coefficient

Γχ =
χ

ϵ′
, (17)

though it is reasonable to argue that reintroducing the TKE dissipation rate is not immediately
obviously a good idea. Often in practice the averaged buoyancy frequency is determined from a
resorting of the observations, or is assumed to be equal to Nh. Again there are several subtleties
that we are not getting into here, but is reasonable to think of χ when defined in this way as a
destruction rate of an appropriately defined available potential energy.

4 Part II: Effects of Stratification and Shear

4.1 Introduction

We now turn our attention to thinking about when and how flows can actually become turbulent and
lead to enhanced mixing. An appealing way by which energy might be injected is through velocity
shear, as (empirically) uniform distributions of background vorticity associated with such shear are
often “unstable”, and break up into vortices. However, as you will be completely unsurprised to
read, for flows that are both stratified and sheared, things can become very complicated. We will
frame our consideration in terms of thinking about several questions. For example, we need to
think about: which parameters are important in classification of flows; whether flow mechanisms
actually matter for understanding mixing; and especially does the particular form of the forcing
of the fluid make a difference? Indeed, the key issue that we would like to understand is whether
or not sufficiently “strong” statically stable density stratification can either prevent the onset of
turbulence or inevitably make the turbulence die out. A related issue is understanding the role of
spatio-temporal intermittency in stratified turbulence, as it is not a priori clear that very strong
stable stratification can completely damp out turbulent motion, as there is at least the possibiliity
that small regions of turbulence could still persist locally. Of course, even if they do, it’s not clear
how material their existence is for a model of the overall mixing within a flow.

The scale of the challenge can at least be started to be appreciated by thinking about the
dimensional qualities that could go into constructing (nondimensional) parameters, which fall into
three (at least) natural categories:

1. intrinsic properties of the fluid, such as ν and κ;

2. characteristic properties of the ensemble/mean/background, such as the shear or the buoyancy
frequency;
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3. characteristic properties of the fluctuations/perturbations, such as the turbulent kinetic en-
ergy EK , the (available) potential EP and/or the scaled buoyancy variance, as well as their
associated destruction rates ϵ′ and χ.

Furthermore, the second and third categories require an implicit averaging to determine the “char-
acteristic” value, further complicating the picture.

4.2 Role of Shear

As a first step, we will consider some aspects of the importance of the background properties of
the flow. To keep things simple, we will first consider inviscid parallel flow, and we will assume
that there is a known (time-constant, and so “steady”) background density distribution ρb(z) and
velocity distribution Ub(z)x̂ with associated buoyancy frequency Nb(z) and (vertical) shear Sb(z)
defined as

Nb(z) = − g

ρ0

dρb
dz

; Sb(z) =
dUb

dz
. (18)

We assume that this background flow is perturbed by a sufficiently small and smooth perturbation
that the underlying equations can be linearised, and that the perturbation can be represented as
a sum of Fourier modes. We further assume (for good reasons, but there’s not time to go into it
here) that we can focus on two-dimensional perturbations, and so we assume we have a plane wave
solution the perturbation u = (u, 0, w):

u = [û(z), 0, ŵ(z)]eik(x−ct), (19)

where the (streamwise) wavenumber k is real, while the phase speed c = cr + ici may be complex.
We are therefore focussing on the possibility of temporal instability, which will occur if ci > 0
(with exponential growth rate kci). It is also important to remember that the real part of this
expression is understood, and that the wavenumber and/or (real) frequency ωr = kcr may be
negative, i.e., there are complex conjugates flying around all over the place. Assuming wave-like
forms for the perturbation pressure p′ and density ρ′, manipulation of the linearised equations of
motion for incompressible inviscid flow perturbations to the background flow yields the Taylor-
Goldstein equation:

d2ŵ

dz2
−

ŵ d2Ub
dz2

Ub − c
− k2ŵ +

N2
b

(Ub − c)2
ŵ = 0 (20)

Note that there is a (regular) singularity at Ub − c, which is associated with a critical layer where
the (real) phase speed of the mode is the same as the background flow speed, but once again this
is not the place to get into the fascinating issues associated with that, but [5] is a good reference
for critical layers and also for much of the classical material described here. Indeed, the Taylor-
Goldstein equation in the unstratified limit (i.e., N = 0) reduces to the more well-known “Rayleigh
equation”. Several general criteria for instability can be derived from the Rayleigh equation. For
example, multiplying by the complex conjugate ŵ∗ and integrating leads to the Rayleigh inflection
point theorem, which states that a necessary condition for instability is that the background velocity
profile must have an inflection point (i.e., d2Ub/dz

2 must change sign).
If we instead multiply by Ŵ ∗, where Ŵ = ŵ/(Ub − c), we recover Howard’s semicircle theorem

(one of the gems in the amazing four page paper by Lou Howard of this parish[6]). This states that
a necessary condition for instability is that the real and imaginary components of the phase speed
must satisfy: (

cr −
Umax + Umin

2

)2

+ c2i ≤
(
Umax − Umin

2

)2

, (21)
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where Umin ≤ Ub(z) ≤ Umax. Geometrically, this means that (as Lou put it so beautifully) “the
complex wave velocity c for any unstable mode must lie inside the semi-circle in the upper half-plane
which has the range of U for diameter.”

Howard also proved that a different change of variables, H = ŵ
(u−c)1/2

in the Taylor-Goldstein

equation, leads to the Miles-Howard theorem[7, 6]:

ci

(∫ [∣∣∣∣dHdz
∣∣∣∣2 + k2|H|2 + |H|2

|Ub − c|2

(
N2

b − 1

4

(
dUb

dz

)2
)]

dz

)
= 0. (22)

Since the first two terms in the integrand are clearly positive definite, if 4N2
b > (dUb/dz)

2 ev-
erywhere, then the integral is positive definite and we must have ci = 0. Therefore, a necessary
condition for instability is that somewhere in the domain

N2
b <

1

4

∣∣∣∣dUb

dz

∣∣∣∣2 = 1

4
S2
b . (23)

In other words, a necessary condition for such a steady inviscid parallel stratified shear flow to be
linearly unstable is that the gradient Richardson number Rig < 1/4 somewhere in the flow, where
Rig is defined here as

Rig(z) =
N2

b

S2
b

. (24)

As an aside, remembering our definitions of the flux Richardson number Rif and the turbulent
Prandtl number Prt from Equation (6), if we can identify the averaged quantities ⟨N2⟩ and ⟨S2⟩
with the background quantities, Prt = Rig/Rif , a very interesting relationship...

4.3 The hyperbolic tangent shear layer

To consider a specific example, it is very convenient (and traditional) to consider the hyperbolic
tangent background velocity and density profiles:

Ub(z) =
∆U

2
tanh

( z
h

)
; ρ = ρ0 −

∆ρ

2
tanh

( z
h

)
. (25)

These profiles have several attractions which have meant that they are very commonly used. These
functions are quite similar to the error function profiles that would be expected to form if two
streams of fluid with different velocities and different densities (and Prm = 1, so density and
momentum would diffuse at the same rate) came into contact. They also have the attraction
that the bulk Richardson number Rib (aka J) corresponds to the minimum value of the gradient
Richardson number at z = 0:

Rib =
g∆ρ[2h]

∆U2
= Rig(0) = min

z
Rig(z), (26)

remembering that h is half the characteristic depth of the shear layer (and here the density interface),
with total velocity jump ∆U and density jump ∆ρ. It is natural to scale lengths with this half-
depth, and so to define a nondimensional wavenumber α = kh. Perhaps the most elegant attraction
of this background flow is that the stability boundary, i.e., the locus in α−Rib space where ci = 0
and so the flow is marginally stable can be determined analytically to be the very simple curve:

Rib = α(1− α), (27)
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This simple curve has the maximum possible Rib = 1/4, nicely making the Miles-Howard theorem
“sharp”, and thus being a great “smoking gun”motivating proving the general result. The stability
boundary for the tanh profiles is a “known” result that I have set as an examination question, and
its first mention appears to be in lecture notes of J. Holmboe, a professor at UCLA, whose name
will feature significantly in later lectures. The stability boundary and curve of maximum growth
for smaller Rib is shown in figure 1 [8], remembering that Rib ≡ J .

For sufficiently small Rib, this instability is clearly the stratification-modified version of the
classical “Kelvin-Helmholtz” instability, though it is perhaps more appropriately called the Rayleigh
instability since it is the instability of a finite depth shear layer and exists even in the absence of
density variations. It is clear from the figure that stable stratification acts in the intuitive fashion
expected, reducing the growth rate and range of wavenumbers that are unstable. However, the
view of stratification as an always stabilizing mechanism can be misleading. For example, it is
conceivable that Rib could be very large (defined in terms of shear layer depths and total velocity
and density jumps) while locally Rig < 1/4, thus meaning “all bets are off” in terms of the Miles-
Howard theorem. Perhaps counterintuitively, there are also instabilities that inherently require the
presence of a stable stratification, which we will discuss in the next lecture as part of our larger
aim to understand the effects of stratification on turbulence.
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GFD 2019 Lecture 7: Mixing Modelling and Parameterization in

Stratified Turbulence

Colm-cille Caulfield; notes by Lois Baker and Houssam Yassin

June, 25 2019

1 Introduction

In the previous lecture, we discussed how (for example, considering the Miles-Howard theorem)
stratification can stabilize shear instabilities, presumably thus preventing the onset of turbulence or
reducing turbulent motion. However, this can be deeply misleading. There is increasing evidence
that the generic base state of a stratified fluid is not one with a constant density gradient, but
rather with a layered “staircase”-like structure. That is, a typical vertical structure for the density
field consists of relatively deep, relatively weakly stratified “layers” separated by relatively thin
or “sharp” interfaces of enhanced density gradient. The Doppler-shifted interaction of the various
waves present in such a layered fluid when affected by (vertical) velocity shear may actually lead to
instability. Especially since “sharp”density interfaces can sustain localised (internal) gravity waves,
it is actually entirely possible for stratification to trigger new classes of instabilities, as we discuss
in more detail below.

Figure 1: For the same shear profile, a relatively weak density interface (left) and a sharper density
interface (left) lead to qualitatively different gradient Richardson number profiles, indicating that
instability is possible even in a strongly stratified fluid if the interface is sufficiently sharp.
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2 The importance of “sharp” density interfaces

To illustrate how stratification may not necessarily be stabilising, consider first a generalization of
the hyperbolic tangent flow considered in the last lecture:

ρ = ρ0 −
∆ρ

2
tanh

(z
δ

)
(1)

u =
∆U

2
tanh

( z
h

)
. (2)

This is a simple representation of an arbitrarily “sharp” density interface in the presence of shear,
as the density varies from ρ ≈ ρ0 + ∆ρ/2 below to ρ ≈ ρ0 −∆ρ/2 above the interface, which has
characteristic half-depth δ, and which crucially can be different from the shear layer half-depth h.
Indeed, as δ → 0, the interface between the two layers becomes infinitely thin and we obtain a two
layer fluid. The gradient Richardson number of this background flow is

Rig(z) =
N2

S2
= R Rib

cosh4 (z/h)

cosh2 (z/δ)
, (3)

where R = h/δ is the ratio of the velocity length scale to the density length scale and the bulk
Richardson number Rib is as in Lecture 6:

Rib =
g∆ρ[2h]

ρ0∆U2
, (4)

which is now only equal to Rig(0) when R = 1. As mentioned in the previous lecture, such
hyperbolic tangent profiles can be thought of as convenient approximations to the error function
profiles which would arise diffusively when two streams of fluid of different density and velocity come
into contact. R = 1 only when ν = κ, and in general it would be expected that R =

√
Prm[10].

Since Prm ∼ O(10) for heat in water, there is a clear motivation to consider flows when R > 1
nontrivially. Far from the shear layer and the density interface, Rig tends towards

Rig ≈ 1

4
R Ribe

(4−2R)
|z|
h as |z| → ∞. (5)

The stability properties (and in particular the relevance of the Miles-Howard theorem) of the
fluid flow then depends on the relative depths of the shear layer and the density interface.1 If
R < 2, then Ri gets arbitrarily large away from the interface and so considering the value of Rig
near z = 0 is useful to understand the stability properties. If Rig > 1/4 at the midplane, then the
Miles-Howard theorem can be applied to yield that the flow is stable to normal mode instabilities,
as in the classical Kelvin-Helmholtz instability (KHI) considered in the previous lecture. However,
if R > 2 (that is, if the velocity “interface” is at least twice as thick as the density “interface”),
then Ri → 0 as |z| → ∞, irrespective of the value of Rib, or indeed Rig(0) = RRib. In this case,
once we are sufficiently far from z = 0, then Ri < 1

4 and shear instabilities are at least in principle
possible, as the Miles-Howard theorem does not apply. This is a simple demonstration that layered
or staircase background states can remain susceptible to shear instabilities and that stratification

1It would be cognitively easier if they were both commonly referred to either as layers or interfaces, but unfortu-
nately that is not the convention. The situation is somewhat analogous to the ill-informed and inherently ambiguous
pedantry of insisting on referring to Association Football as “football” in English, whereas the abbreviation of “asso-
ciation” to “soccer” dates back to the earliest mid-nineteenth century genesis of the codified laws by English public
school alumni at the University of Cambridge, who naturally had to distinguish between “soccer” (you can’t carry
the ball) and “rugger” (short for Rugby football, where you can carry the ball)...but I digress...
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is not necessarily stabilizing. These two cases (R = 1 on the left, R ≫ 1 on the right) are shown in
figure 1.

Indeed, for “sharp” density interfaces, the resulting instability may take two different forms de-
pending on the strength of the stratification. If the density difference between the two layers is not
too large then the resulting instability “rolls up” the initially streamwise-invariant strip of spanwise
vorticity in the shear layer into trains of elliptical vortices. This roll-up brings higher density fluid
above lower density fluid—a convectively unstable situation that, at least at sufficiently high flow
Reynolds number, leads to turbulent mixing between the two layers. This is the nonlinear finite
amplitude manifestation of the well-known KHI. As noted last time, this should really be called
the Rayleigh instability, since Kelvin and Helmholtz only considered a discontinuous background
velocity distribution, and the ensuing delta-function vorticity sheet is indeed unstable, but in in-
viscid flow in the absence of surface tension there is no scale selection, and the growth rate (in
an inviscid flow) increases monotonically with wavenumber. Conversely, Rayleigh demonstrated
that there was a unique finite wavenumber with maximum linear growth rate in finite-depth shear
layers, i.e., when there was a characteristic (vertical) scale in the system that the strip of spanwise
vorticity in the shear layer “knows about”. Whoever the instability should be named after, this
particular strongly overturning instability is monotonically stabilised by stratification.

However, if the density difference between the two layers is sufficiently large and the density
interface is sufficiently sharp, then the unstable strip of vorticity in the shear layer cannot completely
roll up and overturn because of the relatively greater potential energy cost associated with the roll-
up of the sharp interface. Instead, the density interface “splits” the strip of spanwise vorticity, and
(smaller) vortices roll up on either side of the interface. As these trains of vortices are embedded
within the shear layer, and hence have different characteristic streamwise velocities as they are
centered at different vertical locations, these trains of vortices propagate relative to each other.
The finite amplitude manifestation of the instability appears to lead to significantly less mixing
between the layers, but induces counter-propagating cusped waves on the interface, associated with
the fluid wrapping around the “scouring” counter-propagating trains of vortices. This instabilty is
known as the Holmboe Wave Instability, (HWI) after J. Holmboe, though at least in this case a
paper was published[4]. To summarize, at weak stratification, shear instability takes the form of
an overturning KHI that mixes the two layers and hence spreads out the (already relatively broad)
interface between the layers, thus actually having a hope to be represented as a turbulent diffusive
process. Conversely, for a strongly stratified interface, overturning the layers is no longer possible
and we obtain a scouring HWI, which (appears) to keep the interface relatively sharp, and so a
description as a diffusive process is not really appropriate[9].

There appears to be a continuous transition between KHI and HWI as the interface strength is
increased, as quantified by the value of the bulk Richardson number Rib. In the simplest symmet-
rical case we are considering here, the billows associated with KHI have zero phase speed, while
the vortices associated with the HWI have equal and opposite phase speeds. At low Rib, the fastest
growing mode has zero phase speed and is associated with the KHI. At some critical value of Rib
there is a bifurcation—we obtain two modes with opposite phase speeds characteristic of the HWI.
It is important to appreciate that HWI only exists because the flow is statically stable: the more
one thinks about that, the stranger it should seem that stable stratification destabilises the flow.
To understand why these different instabilities can arise in a sheared stratified flow, it is actually
very instructive to consider the limit of discontinuous density distributions, as significant analytical
progress can be made, particularly when the vorticity field is also allowed to become piecewise
constant, modelling the shear layer as a uniform strip of vorticity rather than the smooth sech2(z)
distribution implicit in the assumption of a tanh-like background velocity distribution. In such a
situation, it is possible to get a handle on how statically stable density distributions can destabilise
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shear flows. The key ingredients are that stratification leads to internal waves, and shear leads
to Doppler shifting, thus allowing the internal waves to interact in just the right way to lead to
instability.

3 Discontinuous density distributions

Remember (from the last lecture) the Taylor-Goldstein equation for linear disturbances to a parallel
background flow Ub = (Ub(z), 0, 0) in a Boussinesq stratified fluid with background buoyancy
frequency distribution Nb(z):

d2ŵ

dz2
−
[
k2 +

d2Ub/dz
2

Ub − c
−

N2
b

(Ub − c)2

]
ŵ = 0. (6)

where w is the vertical (perturbation) velocity, and is assumed to be of the form

w(x, z, t) = ŵ(z)eik(x−ct), (7)

where k is the horizontal wavenumber, and c is the horizontal phase speed.

This equation actually also can be thought of as the governing equation for the dynamics of
internal waves in the presence of arbitrary stratification and vertical shear. The Taylor-Goldstein
equation is a second-order linear differential equation with regular singular points. Note that non-
zero stratification introduces a second-order singularity while the singularity associated with vertical
shear is first-order. This equation simplifies considerably in a layered fluid with arbitrarily sharp
interfaces, i.e., where we assume that the density and spanwise vorticity are piecewise constant.
We assume that the velocity remains continuous while becoming piecewise linear so that there
remains a finite depth shear layer of depth 2h with a constant gradient, and so piecewise constant
vorticity. Therefore, N2

b vanishes everywhere except at the interfaces between the density layers
where N2

b → ∞, and so N2
b is actually proportional to (in general) sums of Dirac δ-functions. In

addition, if we take the shear to be piecewise constant, then d2Ub/dz
2 vanishes within each layer,

though again d2Ub/dz
2 is actually proportional to sums of δ-functions.

For convenience, nondimensionalize lengths with h, velocities with ∆U/2 and density differences
from a reference density ρ0 with ∆ρ/2, where ∆U and ∆ρ are the total differences in background
velocity and density across the flow

The equation within each layer (for nondimensional variables) becomes very nice:

d2ŵ

dz2
− α2ŵ = 0; α = kh, (8)

and so the eigenfunction within each layer takes the form of a sum of exponentials ŵ = C+
i exp(αz)+

C−
i exp(−αz). Stratification and shear then enter the problem only through the matching conditions

between each layer (of constant density and/or constant shear) associated with integrating across
the δ-functions while maintaining key physical properties of continuity. These matching conditions,
along with the boundary conditions determine the various constants C±

i to construct a polynomial
dispersion relation relating c to α. “Clearly” the vertical velocity across each interface must be
continuous– this leads to the requirement that[

ŵ

Ub − c

]+

−

= 0 (9)
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across the interface (where again either background density and/or background vorticity jumps).
Continuity of pressure across each interface is equivalent to[

(Ub − c)
dŵ

dz
− dUb

dz
w −Ribρb

ŵ

(U − c)

]+

−

= 0, (10)

where once again it is important to remember that Ub and ρb have been scaled with ∆U/2 and
∆ρ/2, respectively. Solving this system leads to a polynomial equation for the phase speed c.
Instability occurs when c has an imaginary component.

4 Wave resonance interpretation

When considered in such a piecewise linear way, instabilities can then be interpreted in terms of
resonance between waves localised at the different interfaces. At a velocity interface, Rayleigh waves
can develop on the jump in the vorticity at the interface at the edge of a shear layer. Analogously, at
a density interface, internal gravity waves can develop. If we make the assumption that the distance
between the relevant interfaces is large compared to the wavelength of the wave, we may consider
each interface in isolation to help build a picture of the resonances that can occur. However, it
should be noted that (especially in the case of asymmetric interfaces), it is not clear (and is an area
of active research) where the boundary between, for example HWI and KHI lies.

4.1 Kelvin Helmholtz Instability

Kelvin-Helmholtz instability is the result of the coupling of two Rayleigh waves, and may occur
in a stratified or unstratified flow. Consider an unstratified fluid with piecewise constant shear as
shown in figure 2.

z = 1

z = −1

U = −1

U = z

U = 1

Figure 2: Wave resonance can take place between the two Rayleigh waves at each velocity interface,
forming Kelvin Helmholtz instability. Figure adapted from [1].

There is a discontinuity in vorticity at the edges of the shear layer at z = ±1. Assuming these
discontinuities are very far apart (relative to the wavelength of the wave, so when α ≫ 1), each
discontinuity can support the existence of a trapped Rayleigh wave that decays exponentially away
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from the interface. At z = 1 there is a (relatively) leftward propagating wave with c+ = 1− 1
2α , while

at z = −1 there is a relatively rightward propagating wave with c− = −1 + 1
2α . Instability occurs

when the two waves have the same phase speed c+ = c− at the same wavenumber. This occurs for
waves with a wavenumber of α = 1/2. Although the asymptotic assumption of α ≫ 1 is clearly
violated, this estimate is actually pretty good, as the full problem (doing the proper matching of
the jump conditions across the two interfaces at z = ±1) leads to the quadratic dispersion relation:

c2 =
(2α− 1)2 − e−4α

4α2
, (11)

which predicts instability for 0 < α ≲ 0.64, with the largest growth rate at α ≃ 0.4, very similar
to the hyperbolic tangent case considered in the previous lecture. The key generic idea is that the
instability arises through the interaction of two Doppler-shifted interfacial waves.

4.2 Holmboe Wave Instability

If, in addition to shear, the flow is also stratified, there is another class of interfacial waves, i.e.,
gravity waves which also exist in the fluid. The presence of such waves can lead to new instabilities.
Consider the shear and density profile in figure 3. Holmboe Wave Instability (HWI) may be
interpreted as an instability involving the coupling of a gravity wave with a Rayleigh wave. In a

two-layer fluid, gravity waves have phase speeds of cg,± = ±
√

Rib
α . There is coupling (in z > 0)

between the rightward propagating gravity wave cg,+ and the leftward propagating Rayleigh wave

when
√

Rib
α = 1 − 1

2α . This occurs when α ≈ Rib + 1. Therefore, there can be instability for

arbitrarily high stratification in some wave number range. (In this symmetric case, there is an
analogous resonance in the lower half-plane between the left-going internal wave and the Rayleigh
wave at z = −1.) In this case, the resonance continues to arbitrarily large Rib, (not violating the
Miles-Howard theorem, since the gradient Richardson number is zero everywhere except at the
density interface z = 0) when the asymptotic high wavenumber assumption definitely is satisfied.
This prediction is consistent with the solution of the full problem, which leads (in the symmetric
case) to a biquadratic dispersion relation for the phase speed:

c4 + c2
(
e−4α − (2α− 1)2

4α2
− Rib

α

)
+

Rib
α

(
e−2α + (2α− 1)

2α

)2

= 0. (12)

This (as described above) predicts KHI (with zero phase speed) for sufficiently small Rib but then
a band of unstable wavenumbers with non-zero (both negative and positive) phase speeds for all
Rib, the band getting narrower as Rib → ∞ and tending towards α = Rib + 1.[4].
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z = −1

z = 0

z = 1

U = −1

U = z

U = 1

ρ̄ = −1

ρ̄ = +1

Figure 3: One density interface and two vorticity interfaces allow coupling between the top leftward
propagating red Rayleigh wave and the blue rightward propagating internal gravity wave, and
similarly for the other pairing in z < 0. Figure adapted from [1].

4.3 Taylor - Caulfield Instability

The actual first stratified shear problem considered by G. I. Taylor (originally in his Adams Prize
Essay in 1915 on “Turbulent motions in fluids” but only published in 1931[12] since S. Goldstein
had independently derived the key equation) considered a three-layer density distribution, crucially
with two sharp density interfaces embedded within a shear layer. Such a flow is difficult to realise
experimentally (and to interpret mathematically) as Taylor noted when he explained why he had
not published before 1931:

“The chief part of the work described in this paper was done in 1914 and formed part of the essay
for which the Adams Prize was awarded in 1915. During the war years it was laid aside, and since
then I have delayed publication, hoping to be able to undertake experiments designed to verify, or
otherwise, the results... It is a simple matter to work out the equations which must be satisfied
by waves in such a fluid, but the interpretation of the solutions of these equations is a matter of
considerable difficulty...

The simplest distillation of the case he considered is shown in figure 4, where there is a constant
shear with two density interfaces. Interestingly, it is possible to achieve instability even though the
shear profile would be stable with no stratification. The mechanism in this case is the resonant
coupling of the two interfacial gravity waves at the two different and separated density interfaces.
It is necessary to have shear in this situation, to modify the phase velocities of the gravity waves
such that the phase speeds can be equal. However, a uniform shear is sufficient to allow this
instability to develop - a situation which would not be unstable to Kelvin Helmholtz instability
without stratification by the Rayleigh inflection point criterion. Doing the full calculation for the
flow shown in the figure it is possible to show that there is a band of instability (i.e., ci > 0) for

2α

1 + e−2α
< Rib <

2α

1− e−2α
, (13)
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which (amazingly) implies instability only for Rib strictly greater than zero, due to the essential
requirement for the interaction of Doppler-shifted interfacially trapped internal gravity waves. Re-
membering that here each interface has half of the total density jump, the lower density interface
(if isolated) supports a (relatively) rightward propagating wave with phase speed

c = −1 +

(
Rib
2α

)1/2

, (14)

while the upper density interface (if isolated) supports a (relatively) leftward propagating wave
with phase speed

c = 1−
(
Rib
2α

)1/2

. (15)

Resonance thus occurs at c = 0 and Rib = 2α, which is clearly the asymptote of the band of
instability as Rib and α get large.

This is another example of the introduction of a stratification destabilising an otherwise stable
flow- contrary to the widely held view of stratification as a stabilising mechanism. To distinguish
it from the many other instabilities identified by Taylor, this instability is now often referred to (at
least by the lead author of the first experimenatl observation[2]) as the Taylor-Caulfield instability
(TCI).

z = 1

z = −1

ρ̄ = ρ0

U = z
ρ̄ = ρ0 −∆ρ

ρ̄ = ρ0 +∆ρ

Figure 4: Wave resonance between the leftward propagating interfacial gravity wave at the top
density interface and the rightward propagating interfacial gravity wave at the bottom density
interface allows Taylor-Caulfield instability to develop. Figure adapted from [1].

4.4 Realisations of stratified shear instabilities

KHI has been widely observed in nature, experiments, and simulations. When the stratification
is sufficiently weak, finite amplitude classical Kelvin Helmholtz billows form at the interface, over-
turning and acting to mix effectively the dense and lighter fluids, smoothing out the interface. If
instead there is a sharp density interface, Kelvin Helmholtz billows have insufficient energy to over-
turn the interface, and the instability is instead susceptible to HWI. The finite amplitude realisation
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Figure 5: A weak diffusive interface versus a strong scouring interface. The left figure could
result from Kelvin Helmholtz instability, whereas the right figure could result from Holmboe Wave
instability [14].

of (symmetric) HWI is two trains of counter propagating elliptic vortices above and below the in-
terface, which instead of mixing scour the interface, sharpening it further. Figure 5 demonstrates
how a gradual interface may become more well mixed and a sharp interface may become sharper as
a result of shear instabilities. Unfortunately for the ego of the lead author of the first experimental
observation at least, while KHI and HWI can be readily observed in natural systems, experiments
and simulations, TCI appears to be much more fragile, and to be very unstable to secondary in-
stabilities, only (apparently) occuring for a very narrow band of flow parameters, consistently with
Taylor’s difficulties to observe it experimentally. (He had the good sense to move onto the much
better behaved Taylor-Couette problem[11]). As a closing point, in all linear stability problems, it
is important to note that the finite amplitude realisation of an instability does not necessarily rep-
resent the most unstable wave number of the linear problem, and the finite amplitude manifestation
may be very different in structure from the linear eigenfunction.

5 Lateral Shear

Having investigated instabilities that can occur at sharp density interfaces, it is natural to ask the
question: do sharp interfaces, or density layering, occur naturally? Typically, we have considered
“vertical”shear, in the sense that the velocity and density gradients are (anti-) parallel. If we instead
have lateral shear (associated with vertical vorticity) in a stratified system, i.e., the velocity and
density gradients are orthogonal, the vertical vorticity will create rolls that can spontaneously form
layers, typically with the vertical scale U

N . Figure 6 shows such layers forming in an experimental
rotating stratified flow [5].
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Figure 7: A conceptual non-monotonic relation of Rif to Rib. To the right of the critical Ric, it is
expected that layering can take place [8].

Figure 6: Couette flow in pure water (a) and the stratified rotational instability in vertically
stratified salt water (b) at the same Reynolds number. See [5].

One suggested mechanism for layer formation relies on a non-monotonic flux Richardson number
as a function of the stratification. Recall that the flux Richardson number is defined as Rif = B/P
where B is the rate at which turbulent energy is expended in mixing the fluid and P is the rate of
production of turbulent energy. Suppose that the flux Richardson number (remember this can be
thought of as an efficiency of mixing) reaches a maximum at some critical value of the (gradient)
Richardson number and then decreases for larger Rig, as demonstrated in figure 7. Suppose that
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we are in the left flank regime to the left of Ric, such that Rif increases with Rib. Then moving to
an area of stronger stratification increases mixing, creating a divergent flux away from the strongly
stratified region and eroding gradients and sharp interfaces, analogously to “diffusive” overturning.
If instead we are in the right flank regime where Rif is decreasing with stratification, then moving
towards an area of stronger stratification decreases mixing, causing a convergent flux towards the
interface and sharpening gradients, analogously to “anti-diffusive” scouring. This is a proposed
mechanism for the formation of layered flow. Molecular diffusion eventually becomes important to
regularise the interface thickness.

Another remarkable manifestation of this layering was found in horizontally sheared vertically
stratified plane Couette flow[7]. By direct numerical simulation, this flow was shown to exhibit
layering and turbulence, consistent with the prediction that such a flow had linear instabilities
at strong stratification[3] although it is well-known that the unstratified flow is linearly stable
for all Reynolds numbers. The layering of such stratified flows is due to the tendency for strong
stratification to become anisotropic or “patchy”. Vertical velocities are suppressed by the strong
stratification, and this anisotropy in the velocity field means horizontal velocities are much larger
than vertical velocities, allowing pancake-like layering [6].

5.1 Mixing associated with layering

Buoyancy changes can be reversible and we want to be able to distinguish between reversible
buoyancy changes due to stirring and irreversible changes associated with turbulent mixing events,
that is between PE and APE (available potential energy). One way to do this is by sorting densities.
Suppose you have a box with four regions of fluid with different densities as described in (I).
These regions can be rearranged so that they are stacked in a stable sense in the vertical (II).
Clearly, arrangement II has a lower (indeed minimum) potential energy compared to arrangement I.
Arrangement II is the background potential energy (BPE or PB) of arrangement II, and the difference
between the potential energy of arrangement I and this BPE is the available potential energy which
could drive fluid motions. Now suppose if, after the rearrangement, the middle two boxes mix
irreversibly, leading to arrangement (III). The BPE has now increased as arrangement III has higher
potential energy than arrangement I, and so the amount of APE has also dropped, showing again
why mixing (reduction of variance in the density field) is associated with destruction of APE. In
numerical experiments, using such a sorting algorithm for density is a way to distinguish between
available potential energy and a minimum background potential energy, and hence to capture
irreversible mixing. This approach can be used to look at different mixing regimes as turbulence
develops, as the background potential energy will monotonically increase with (irreversible) mixing,
as originally argued in the very influential paper of Winters et al., building on Lorenz’s original
APE ideas.[13]

ρ0 −∆ρ

ρ0 − 3∆ρ ρ0 + 3∆ρ

ρ0 +∆ρ

I

ρ0 + 3∆ρ

II

ρ0 +∆ρ

ρ0 −∆ρ

ρ0 − 3∆ρ

ρ0 + 3∆ρ

III

ρ0

ρ0 − 3∆ρ
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GFD 2019 Lecture 8: Open Questions and Controversies in

Stratified Turbulent Mixing Research

Colm-cille Caulfield; notes by Wenjing Dong and Samuel Boury

June 26, 2019

Choosing the Parameters for Mixing Efficiency

Now that we have thought about ways by which stratified flows may become unstable, and thus
presumably become turbulent, it is time to think about how we might describe and perhaps pa-
rameterize the ensuing turbulent mixing. Any parameterization requires parameters after all, and
that leads to some complicated issues, not least in defining the parameters themselves. As perhaps
already has been hinted in these lectures, there is a real issue with a proliferation of subtly different
definitions for key quantities within stratified turbulent flows, which can lead to the potential for
confusion and unnecessary disagreement. Indeed, Gregg et al. 2018 suggest a few standard defini-
tions should be adopted for mixing efficiency and mixing coefficients [1]. They recommend focusing
on two parameters we define below: the instantaneous efficiency, Ei; and the cumulative efficiency,
Ec; and two parameters already encountered: the flux Richardson number, Rif ; and the mixing
coefficient for κT , using the “Osborn method” via the TKE equation, here referred to (I hope) as Γ.

When choosing parameters to parameterize mixing efficiency, it is clear that great care should
be taken over the definitions of their parameters. For example, the gradient Richardson number
Rig = N2

b /S
2
b can be a function of vertical coordinate z and time t, and there can clearly be a whole

can of worms to be opened concerning how the background fields are actually defined. Similarly, in
the apparently innocuous definition of a Froude number, Fr = U/NL, N can be spatially varying
and it is not clear how to choose the right length scale L or velocity scale U . Indeed, the very same
issues arise in the definition of the appropriate Reynolds number Re = UL/ν.

It perhaps goes without saying that choosing which parameters to characterize the flow depends
strongly on the flow itself. For example, Fr does not need shear, however Rig does require (strictly
vertical) shear. Indeed, for horizontal shear, it is more natural to describe the flow in terms of Fr
instead of Rig, because Rig should (I believe) always describe a competition between the restoring
force of stratification and the destabilising effect of (vertical) shear, loosely in a balance between PE
and KE. Nevertheless, there are certainly examples in the literature where “Richardson numbers”
are defined for horizontal shear, and indeed often as the inverse square of a Froude number, as
Fr−2 = N2(L2/U2), which is the same as Rig if S2

b = U2/L2 and the characteristic N in the Fr
definition is the same as the background Nb in the definition of Rig.

Analogously, there is some (to put it politely) divergence of opinion concerning how precisely to
define the buoyancy Reynolds number. One school of thought, emerging entirely reasonably from
a careful consideration of the appropriate scaling of the underlying governing equations[2], is that
the correct definition for this naturally-emerging parameter is:

Reb = ReFr2 =
U3

N2Lν
, (1)
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for appropriate choices of characteristic scales of U , N and L.
However, another school of thought is that the natural way to define this parameter is in terms

of emergent properties of the turbulence, in particular the dissipation rate of turbulent kinetic
energy ϵ′. This is particularly natural if we assume the zeroth law of turbulence holds, since then
ϵ′ ∼ U3/L. Often it is assumed that this scaling is an equality (implicitly defining either U or L)
and then

Reb =
ϵ′

νN2
. (2)

Some authors[2] argue that this latter definition based on emergent turbulence properties should
more naturally be called the Gibson number Gn after Carl Gibson who first used it to describe the
intensity of stratified turbulence, and indeed in older papers it is sometimes called the turbulence
intensity or the intensity parameter of stratified turbulence. It is still more common to refer to
both expressions given in Equations 1 and 2 as Reb interchangeably, and so real caution needs to
be exercised when comparing different studies.

A particular attraction of the “turbulent” form of Reb is that it can be naturally interpreted in
terms of a ratio of length scales, (the four-thirds power of) the ratio of the Ozmidov scale LO to
the Kolmogorov length scale LK , i.e.,

Reb =

[(
ϵ′

N3

)1/2(ν3

ϵ′

)−1/4
]4/3

=

[
LO

LK

]4/3
. (3)

Loosely, LO is the largest scale of eddies that are largely unaffected by the stratification. (Another
way to think about it is for an eddy of that scale, the kinetic energy in the eddy is just enough
to turn over, and thus exchange energy with the potential energy reservoir, in the stratification
defined by N .) Therefore, for there to be any chance for the ensuing turbulence to have an inertial
range, LO/Lk ≫ 1, which implies Reb ≫ 1. Indeed, there is a lot of evidence that the world’s
oceans are in the regime (when Reb is defined by Equation 1 using horizontal scales of velocity and
length) where Re ≫ 1, Fr ≪ 1 yet ReFr2 ≫ 1, though as ever, it is very important to appreciate
just exactly how the various characteristic scales are determined, especially over which volume they
are averaged. Just how such “strongly stratified” turbulence can be born and maintained is still a
topic of great controversy, which we will briefly discuss in the following lectures. In this lecture, we
will focus our attention on attempting to parameterize mixing in shear-driven mixing events.

1 The Thorpe Scale and the Age of Mixing Events

Another (actually purely geometric) length scale that can be useful for the interpretation (and
perhaps the parameterization) of mixing events is the Thorpe scale. Consider a density profile, ρ(z)
that has regions of static instability. Discretize the profile into a large number of parcels, perhaps in
terms of the resolution of the observational measurement or numerical simulation. Rearrange those
parcels vertically so that the density distribution is everywhere monotonic and statically stable,
recording the displacement distance for every parcel that needs to be moved because of initial
static instability. The root-mean-square of that displacement distance is the Thorpe scale, which is
thus a measure of the characteristic scale of the overturnings. It then seems reasonable to suppose
that larger values of Thorpe scale imply at least the potential for more mixing.

Furthermore, applying the definition of the Ozmidov scale, it is clear that

κT = Γ
ϵ′

N2
= ΓL2

oN = Γ
L2
o

L2
T

L2
TN = ΓROTL

2
TN. (4)
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Figure 1: The evolution of ROT for Kelvin-Helmholtz instability for Re = 6000 for flows with
different initial minimum gradient Richardson number. From [5].

Although this seems an arbitrary manipulation, observationally it is much easier to estimate LT

and N , as both can be constructed directly from a density profile measurement, whereas estimating
dissipation rate is very hard. Therefore, if useful estimates for Γ and the ratio ROT can be made,
then there is a chance to use observational profiles to construct estimates of κT . This may thought
of as a third Thorpe method to estimate diffusivity, complementary to the aforementioned Osborn
method and Osborn-Cox method. As a “rule of thumb”based on observation (rather like the Γ = 0.2
union agreement), it has been suggested that ROT ∼ 0.8[3]. However, using DNS prone to primary
KHI as a model for an overturning mixing event, it seems that as KHI with various initial minimum
Rig break down and transition to turbulence, ROT monotonically increases, suggesting that ROT

should be used more as a measure of the age of turbulence rather than for parameterization[4, 5].
It is clear from figure 1 that ROT = 0.8 is right only in the sense that a stopped clock is right.

2 Parameterization of Γ in Terms of Reb and Ri

We continue to want to get our head around how we might understand and describe stratified
turbulent mixing and now we have defined Reb, the key relationship between κT and Γ using the
Osborn method described in Lecture 6 can be understood in terms of Reb, if we assume the ensemble
average ⟨N2⟩ of Lecture 6 can be identified with the “characteristic” value of N being used here as:

κT
κ

= ΓPrm
ϵ′

νN2
= ΓPrmReb. (5)

If only Γ were constant (and especially not a function of Reb), then the enhancement of the mixing
would be entirely determined by the intensity of the turbulence as quantified by Reb. Indeed Osborn
argued, based on experimental evidence, that Γ ≲ 0.2, and this bounding value has been widely
used as a rule of thumb, even missing the careful and thoughtful inequality in the original paper.

However, one might reasonably expect Γ to decrease with Reb when N is very small and Reb
is large because there is little density difference that can be mixed. It has also been found that
Rif depends non-monotonically on some overall characteristic value Ri of Rig, consistently with
the left-flank/right-flank dichotomy discussed in the previous lecture. Since Rif = Γ/(1 + Γ)
by definition, it seems reasonable that Γ needs to be parameterized (at least) by both Reb and
Ri, or perhaps Fr if there is no vertical shear. A fundamental assumption embedded in this
parameterization approach is that Reb and Ri are uncorrelated, which unfortunately is (extremely)
unlikely to be true. However, we have to start somewhere, and it is also apparent (I think) that
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a single parameter parameterization of mixing is unlikely to be robust and generic enough to be
useful. We now consider various (relatively recent) attempts to construct parameterizations of
mixing.

2.1 Optimal Ri for mixing in shear instability

In the previous lecture we (very briefly) introduced the concept of the background potential energy
PB and the sorting algorithm introduced by Winters et al. [6]. The rate of increase of this energy
naturally defines the rate of irreversible mixing M(t):

dPB

dt
= M(t), (6)

inevitably associated with fluid motions, and using this it is possible to define the instantaneous
mixing efficiency Ei and cumulative mixing efficiency Ec as

Ei =
M(t)

M(t) + ε′(t)
, Ec(t) =

∫ t
0 M(s)ds∫ t

0 M(s)ds+
∫ t
0 ε

′(s)ds
, (7)

where the t = 0 time is chosen on some reasonable physical grounds (for example when the turbulent
dissipation has reached a particular enhanced value). It is also important to remember that sum
authors use the dissipation rate of total kinetic energy, not the dissipation rate of TKE as in this
definition.

Through a series of direct numerical simulations (DNS) of KHI undergoing the transition to
turbulence with different (minimum) initial gradient Richardson numbers Ri, it appears that the
optimal mixing efficiency occurs at Ri = 0.16 for Kelvin-Helmholtz instability[7]. Figure 2 shows
the evolution of density and dissipation rate for KHI for different Richardson number of hyperbolic
tangent velocity and density profiles. When Ri is too low, there is little to be mixed. When Ri
is too high, e.g., for the flow with Ri = 0.20, the turbulence is suppressed by stratification as the
primary instability is very weak, and mixing is also low. Thus, mixing varies non-monotonically
with Richardson number. Figure 3 shows the proportion of loss of kinetic energy is highest for
Ri = 0.16. The loss of kinetic energy is either dissipated or converted to potential energy. Figure 4
shows the cumulative mixing efficiency ηc (Ec, labelled as ηc in the figure) and η3Dc (i.e., Ec integrated
from the beginning of turbulence) both peak around Ri = 0.16, showing clearly that at least the
cumulative mixing efficiency for flows prone to primary KHI exhibits non-monotonic variation with
Ri, analogously to the left-flank/right-flank paradigm discussed earlier.

2.2 Dependence of Γ on Reb

From analysis of both DNS (for flows prone to primary KHI) and observational data, it also appears
that Γ varies non-monotonically with Reb (however defined) as shown in Figure 5[8]. In this study,
the “age” of the turbulence was also inferred from appropriate estimates of ROT . There is clearly
reasonable agreement between observation and simulation, suggesting that the KHI simulations may
actually be useful models of oceanic mixing events. Furthermore Γ for relatively young turbulence
associated with approximately two-dimensional Kelvin-Helmholtz billows is higher than when the
turbulence is more mature.

The figure also shows (clearly) a non-monotonic dependence of Γ on Reb. Figure 6 taken from

the same paper shows: Γ ∝ Re
1/2
b for Reb ≪ Re∗b where Re∗b represents the buoyancy Reynolds
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Figure 2: The evolution of flow during the transition phase. For each Ri value, the upper panels
show contours of density and the lower panels show contours of the rate of dissipation of kinetic
energy. The color maps for both contours are linear. (a) Ri = 0.14; (b) Ri = 0.16; (c) Ri = 0.18;
(d) Ri = 0.20. From [7].
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Figure 3: Time evolution of the total kinetic energy. From [7].

Figure 4: Cumulative mixing efficiency from the beginning of the simulation (here labelled asηc)
and cumulative mixing efficiency for the turbulent stage (here labelled as η3Dc ) for simulations prone
to primary KHI with different initial minum gradient Richardson number. From [7].

Figure 5: Reb dependence of Γ, comparing the young and mature mixing events obtained from
oceanic measurements and DNS analyses. From [8].
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Figure 6: Reb dependence of Γ as inferred from (a) observational data sets and (b) DNS data sets.
From [8].

number associated with peak Γ, and Γ ∝ Re
−1/2
b for Reb ≫ Re∗b . By joining these two scaling

regimes, they approximate the dependence by

Γ(Reb) =
2Γ∗(Reb/Re∗b)

1/2

1 +Reb/Re∗b
. (8)

It is clear from this figure that the constant value of Γ = 0.2 is once again only true in the stopped-
clock sense.

3 Mixing by Different Mechanisms: KHI vs. HWI

Flows prone to primary KHI have been much more widely studied than HWI, particularly at
sufficiently high Re to exhibit a vigorous transition to turbulence, and (to my knowledge) there
has only been one comparison of the mixing properties of flows prone to primary KHI and HWI at
sufficiently high Re to be vigorously turbulent.[9] Figure 7 shows the spanwise vorticity component
ωy for flows prone to primary KHI and HWI, showing the expected characteristic overturning of
the interface and scouring above and below the interface, respectively. Figure 8 (a) shows the
(instantaneous) mixing efficiency as well as enhanced mixing κT /κ for both types of mixing events
as a function of Reb during the mixing events for both classes of mixing event. Interestingly, the
HWI flow at later time proceeds along a trajectory in Reb − Ei space similar to the trajectory
of earlier time. However, the KHI flow follows a wide loop in Reb − Ei space, (and reaches much
larger values of efficiency) due to the existence of the organised, essentially two-dimensional Kelvin-
Helmholtz billows. Moreover, the maximal mixing efficiency of Kelvin-Helmholtz instability is much
larger than the canonical value 1/6, corresponding to Γ = 0.2, since Ei ≃ Rif = Γ/1+Γ. However,
focus on efficiency or equivalently flux coefficient Γ can be misleading, as figure 8 (b) shows during
the turbulent stage, the trajectory in Reb − κT /κ space for these two flows is similar, suggesting
that the enhanced mixing might be generic for shear-driven mixing events. Much more work on
this issue needs to be done however, before anything can be said with any real confidence.
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Figure 7: Contour plots of vorticity ωy for a simulation prone to primary KHI (a − c) and for a
simulation prone to primary HWI (d− f). From [9].

Figure 8: Variation with Reb for a KHI flow (grey circles) and HWI flow (white circles) of: (a) the
instantaneous irreversible mixing efficiency for the entire life cycle; and (b) the irreversible diapycnal
diffusivity for the turbulent stage. From [9].
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3.1 Self-organized criticality in sheared stratified turbulence

Mixing events associated with primary HWI are much longer-lived than those associated with pri-
mary KHI: a useful metaphor is that HWI“burn”, while KHI “flare”. Interestingly, there is a strong
suggestion that the HWI-mediated turbulence induces horizontally-averaged velocity and density
fields that have Rig(z, t) ≃ 0.25 for a significant period after the onset of turbulence, and through-
out the “mixing layer” depth[10]. Figure 9 shows that the probability density function(p.d.f.) of
Rig(z, t) for HWI flows calculated from the horizontally-averaged fields peaks around 0.25 irrespec-
tive of initial density and shear layer depths. The authors of this study conjectured that Ri ≈ 1/4
is a critical state that acts as an “attractor” toward which the flow tends to self-organize. However,
this does not appear to be the case for flows prone to primary KHI. Figure 10 shows for KHI-
induced turbulence, the peak of p.d.f. is either larger than 0.25 or less than 0.25, depending on
whethere the initial minimum Rig is “large” (in this case 0.16) or “small” (here 0.04). Indeed, KHI
flows requires specific initial conditions so that the p.d.f. peaks around 0.25.

Figure 9: (a) The probability density function of Rig(z, t) for turbulent stage for different simula-
tions (with various initial R and midplane Rig) prone to primary HWI. (b) The probability density
function of Rig(z, t) during the turbulent stage aggregated from all HWI flows. From [10].

A further indicator (or to be more cautious “hint”) of self-organised criticality is the emergence
of an invariant turbulent length scale with a power-law dependence in its p.d.f. Ek and ϵ′ define an
energy-containing length scale Len:

Len =
E3

k

ϵ′
. (9)

For the HWI flows figure 11 (left panel) shows the p. d. f. of this length scale is close to invariant
with time during the turbulent phase of flow evolution and follows approximately a power law, at
least superficially consistent with the key characteristics of self-organised criticality. Subsequently,
Smyth et al 2019 also demonstrated that the vertical scale of turbulent overturns follows approx-
imately a power law within a suitable range of observational data, as shown in figure 11 (right
panel)[11].
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Figure 10: P.d.f.s for Rig for a flow prone to primary HWI and two flows prone to primary KHI.
From [10].

Figure 11: Left: the p.d.f. of energy containing length scale Len = (3/2)3k′3/ε′ at five characteristic
times. From [10]. Right: probability density function P of the vertical scale L of turbulent overturns
in the upper equatorial Pacific. Straight line with slope w shows the maximum likelihood estimate
of the exponent. From [11]
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3.2 Stratified shear instability in pre-existing turbulence, optimal perturbation, and
marginal instability

Of course, geophysical flows are rarely laminar, yet the vast majority of numerical simulations of
stratified shear instability have used a laminar flow as the base state, assuming that such a smooth
and calm (yet fundamentally linearly unstable remember...) has somehow come into existence. In a
beautiful and innovative recent study (wish I’d thought of it) Kaminski & Smyth 2019 examined the
evolution of stratified shear instability in pre-existing turbulence. Their results show that adding
turbulence can significantly reduce the growth of a primary KHI, and indeed completely disrupt
the primary billow roll-up for sufficiently strong ambient noise, as shown in figure 12[12].

Figure 12: Vertical slices of buoyancy at various times. A is a measure of initial turbulence intensity.
From [12]

Another dirty little secret of classical studies of mixing events induced by shear instabilities is the
focus on classical normal modes. As the underlying linear operator is non-normal transient growth
is actually possible however, and using direct-adjoint looping it is possible to identify “optimal”
perturbations that grow non-trivially, but inherently transiently, for flows with minimum Rig > 1/4.
It is important to remember that such perturbation growth does not violate the Miles-Howard
theorem, which (as noted above) is inherently based on an inviscid analysis of the linear stability
of steady parallel flows, perturbed by normal (exponentially growing) models. Figure 13 shows
the evolution of the total buoyancy field of a DNS seeded with the linear optimal perturbation of
a hyperbolic tangent flow with R = 1 and minimum Rig = 0.4[13] . For this flow, the optimal
perturbation grows enough actually to modify the mean flow, distorting the buoyancy field until it
becomes very reminiscent of a classical Kelvin-Helmholtz billow.

Indeed, at finite Re and for finite amplitude perturbations, the behaviour of stratified shear
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flows with minimum Rig ≃ 1/4 prone to KHI is quite subtle, calling into question exactly how the
marginal stability dynamics of such stratified shear flows should be interpreted. For example, if a
viscous shear layer is forced to maintain steady hyperbolic tangent density and velocity profiles with
minimum Rig ≲ 1/4, it is possible to establish that the energy gain of perturbations becomes small,
but is strictly bounded away from zero as (minimum) Rig → 1/4 from below, as shown in figure
14[14]. However, as is also shown in the figure, the amount of time for the perturbation to reach
finite amplitude increases dramatically as the minimum Rig approaches 1/4 from below, suggesting
that in practice, KHI do not roll up vigorously for flows with minimum Rig ≃ 1/4. Furthermore,
treating a high Reynolds number Re = 4000, Pr = 1 forced steady hyperbolic tangent base flow
shear later as a dynamical system, it is possible to establish that a saddle-node bifurcation exists
for Rig(0) > 1/4, with an associated finite amplitude structure, highly reminiscent of a Kelvin-
Helmholtz billow, as shown in figure 15[15]. Nevertheless, these really weak billows when Rig ≲ 1/4
suggest that the apparent self-organized criticality cannot be interpreted in a strictly Miles-Howard
theorem sense, as the primary instabilities are apparently too weak to trigger the required strong
turbulence as the background flows just dip under the stability criterion.

Figure 13: Evolution of total buoyancy through centre of shear layer (isosurface) and vorticity
ωz = ∂xv0 − ∂yu0 (colour) for a simulation with Re = 4000, Rig(0) = 0.40. From [13]

.

4 Parameterizing Turbulent Diffusivity

Simulations of turbulent mixing induced by the break down of stratified shear flow instabilities
(typically KHI) can also be used to test the various different methods of estimating and/or pa-
rameterizing turbulent diffusivity. As shown in figure 16, turbulent diffusivity computed using the
Osborn-Cox method matches the actual turbulent diffusivity significantly better than turbulent
diffusivity computed using the Osborn method[16]. As already discussed, this is perhaps unsurpris-
ing, as the Osborn-Cox method is more “direct”. Figure 17 (also from [16]) shows that turbulent
Prandtl number PrT becomes approximately 1 provided Reb is sufficiently large. This shows that
density is diffusing like a passive tracer and density and momentum essentially mixes at the same
scale in such overturning stratified shear flows. Again this is not really surprising, as these flows
are inevitably “weakly” stratified as the primary instability requires the minimum value of Rig to
be (actually nontrivially) less than 1/4 to grow to significant amplitude, as noted above.

It is also (of course) possible to use increasingly fashionable data-driven methods to estimate
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Figure 14: variation with Ri0 of (a) scaled maxima of total perturbation energy RT (crosses),
perturbation kinetic energy RK (asterisks) and perturbation potential energy RP (pluses) ; (b)
time to saturation tmax. From [14]

Figure 15: Bifurcation diagram for the flow with hyperbolic tangent background stratification,
at Re = 4000, showing the variation of ||X|| over a (very narrow) range of Rib, where ||X|| is a
measure of perturbation energy. At different points, the solution branch has one stationary unstable
direction (dashed line), two stationary unstable directions (dotted line), or is stable to stationary
disturbances (solid line). From [15]
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Figure 16: Left: turbulent diffusivity computed by the Osborn-Cox model. Right: turbulent
diffusivity computed by the Osborn method. From [16].

Figure 17: Variation of Prt with Reb. From [16].
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mixing properties, particularly as numerical simulations provide more and more data for “training”.
Figure 18 shows the comparison between the exact value of the instantaneous mixing efficiency
Ei computed directly from DNS of flows prone to either primary KHI or primary HWI with the
predictions of a convolutional neural network, the Osborn-Cox method, and an alternative em-
pirical multiparameter parameterization[17]. Although not perfect, it is apparent that the CNN
outperforms the more traditional parameterizations as an estimator of the real mixing efficiency[18].

Figure 18: Comparing the precise calculation of (instantaneous) mixing efficiency, Edns with those
predicted by: a convolutional neural network Ecnn; an empirical multi-parameter parameterization
Epar[17]; and the Osborn-Cox method, Rf,cox. From [18].

4.1 Parameterization in forced stratified turbulence

Heretofore, this lecture has only considered shear-driven instabilities as the “source” of a stratified
turbulent mixing event. Of course, other mixing events are available, and (both unfortunately and
unsurprisingly) the evidence is that nothing really generic can be said about stratified mixing events,
as different forcing mechanisms appear to lead to different mixing properties. Figure 19 shows three
regimes of the variation of (κT+κ)/κ with Reb from simulations of forced stratified shear turbulence
with uniform shear and stratification[19]. WhenReb ∼ O(1), turbulence is weak and κT is negligible,
and so the plotted quantity tends towards one. When Reb is in the range O(10) − O(102), κT
appears to be largely linearly dependent on Reb, and quantitatively the prediction of (κT + κ)/κ
using the constant upper bound of the Osborn method (i.e., Γ = 0.2, in Equation 5) actually agrees
quite well with the exact value, as shown by the red line.[20] When Reb ≳ O(102), this linear

dependence appears no longer to hold, and indeed κT ∝ Re
1/2
b , or equivalently (when using the

Osborn method) Γ ∝ Re
−1/2
b , and so energetic turbulence (at least for this flow) appears to get

less efficient at mixing, consistently with the model assumption of Equation 8, and the data shown
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Figure 19: The variation of (κT + κ)/κ with Reb. The prediction using constant Γ = 0.2 is shown
by the red line. Figure extracted from [20] based on data from [19].

Figure 20: (a) Variation of turbulent flux coefficient Γ with Reb.The upper bound proposed by
Osborn is indicated by the gray dashed line where Γ ≈ 0.2, and the Reb−1/2-based parameterization
suggested by the data shown in figure 19 is plotted for their energetic regime of Reb > 100. (b)
Variation of turbulent Prandtl number PrT with Reb. From [21].
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in figure 6. As Ivey et al note in their review[20]: “Both laboratory and DNS work indicate that
at these extremes, when either ϵ′/νN2 ∼ O(1) or ϵ′/νN2 ∼ O(105), Rif → 0 and the use of large
Rif ∼ 0.2 in field situations in these limits cannot be justified.”

However, this somewhat surprising evidence of decreasing mixing efficiency for high values
of Reb is not universally observed in turbulent stratified shear flows, especially when particular
care is taken through the forcing mechanism to ensure statistically steady flow. For example it is
possible numerically to impose linear vertical variation in both the horizontally-averaged streamwise
velocity and horizontally-averaged density[21]. If the value of both the Reynolds number Re and
the magnitude of the shear S is fixed, and a target value of TKE EK is chosen, then g can be varied
smoothly using a control mechanism to ensure that the simulation remains statistically steady.
This method leads to emergent values for Rig (due to the variation of g, and because of the linear
distributions in both velocity and density, Rig is constant across the computational domain) and
the two dissipation rates ϵ′ and χ to ensure the imposed forcing via the shear maintains the constant
target value of EK . Therefore, Reb and Γ are also emergent quantities, though it is to be expected
that as the target value of EK increases, Reb will also increase.

As shown in figure 19, this is indeed observed, with Reb increasing as the target EK increases,
and indeed the simulations had Reb ranging between O(10) and O(103). Interestingly, the emergent
value of Γ was constant, and really quite close to the canonical value of 0.2, with no evidence of the

Re
−1/2
b dependence at high Reb mentioned above, and shown with a dashed line in the upper panel

of the figure. The close to constant value of Γ appears to be associated with the (at least superficially
somewhat surprising) emergent close-to-constant value of Rig ≃ 0.16 for all the simulations. This
can actually be (at least partially) understood by consideration of the turbulent Prandtl number, as
shown in the lower panel of the figure. Since PrT = Rig/Rif = Rig(1 + Γ)/Γ, this emergent value
of Rig appears to be a “consequence” of PrT ≃ 1 for all the simulations, once again suggesting this
statistically steady flow converges to a “weakly stratified” state, where the density field is effectively
being mixed as a passive tracer. However, this argument is not complete, as it is not clear why
Γ ≃ 0.2, consistently with Osborn’s original (and still deeply influential) arguments, as the transient
stratified shear instability flows discussed earlier in this lecture definitely do not exhibit constant
Γ ≃ 0.2, although as shown in figure 4 there does seem to be something special about Rig ≃ 1/6.
There is still very much to do...
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GFD 2019 Lecture 9: Challenges in and Promising Approaches for

Connecting Theory to Observation

Colm-cille Caulfield & Stephanie Waterman; notes by Alessia Ferraro and Kelsey Everard

June 27, 2019

Introduction to CPC’s section

In the last lecture we largely considered stratified turbulence in (vertical) shear flows, which in-
evitably are “weakly” stratified so that the primary instabilities can grow, saturate and then break
down to turbulence. However, as already mentioned, it is thought that much of the world’s oceans
are very, very strongly stratified, in the sense that an appropriate Froude number based on charac-
teristic horizontal length and velocity scales LH and UH is very small, i.e., Fr = U/(NL) ≪ 1 for
an appropriate characteristic buoyancy frequency N . We then want to think about the properties,
and indeed the very existence of turbulence in such a strongly stratified regime. There are (at
least!) three important questions we wish to consider. First, is it even possible for turbulence to
exist in such a strongly stratified regime? Second, if so, how can we model the required energy
injection to maintain strongly stratified turbulence? Finally, and perhaps most importantly, how
can fluid dynamicists and oceanographers harmonise their skill sets in the most optimal way so as
to answer these questions in a relevant way?

1 Mixing Regimes

Before attempting to understand whether turbulence can exist in strongly stably stratified fluids,
it is clearly necessary to define what is meant by strongly. Indeed, it is also worth discussing
whether or not stably stratified turbulence can exist in only some flow regimes, but not others.
To classify flow regimes (and indeed to define what is meant by strongly) it is natural to use an
appropriate definition of a Froude number. As we are (above all) interested in turbulence, it is
conventional[4, 18, 9] to use a turbulent Froude number FrT , defined as

FrT =
ϵ′

NEK
, (1)

where as usual ϵ′ is the dissipation rate of the turbulent kinetic energy (TKE) EK and N is a
characteristic value of the buoyancy frequency. In terms of this parameter, three regimes can
immediately be identified: weakly stratified flow with FrT ≫ 1; moderately stratified flow with
FrT ≃ 1; and strongly stratified flow with FrT ≪ 1. Each will be considered in turn.

1.1 Weakly stratified flow

Simple scaling arguments can be presented for this regime, which are in fact closely related to the
previously discussed behaviour of stratified shear-driven turbulence. Remember in the previous
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lecture we saw that the turbulent Prandtl number PrT ≃ 1, implying that density is mixed as
a passive scalar, and also that the flux Richardson number (and hence the mixing efficiency, and
even the flux coefficient since Γ = Rif/(1 +Rif )) Rif ≃ Ri for some characteristic value Ri of the
gradient Richardson number.

Figure 1: Mixing coefficient as a function of Froude number (log-log plot shown in inset). From [9].

Figure 2: Mixing coefficient Γ as a function of turbulent Froude number Fr. The colour bar shows
values of Reb. Star: decaying DNS; circle: forced DNS of Maffioli et al. [9]; square: sheared DNS
of Shih et al. (2005). Solid lines display the scaling relations derived in [2], from which this figure
is taken.

We assume further that the flow is at sufficiently high Reynolds number Re and Péclet number
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Pe = RePrm (where Prm is the molecular Prandtl number, O(10) in the ocean) so that the effects
of ν and κ can be ignored. Then, following the argument presented in [9], the dissipation rates of
turbulent kinetic energy and available potential energy approach finite positive limits of the same
order as the advection terms in their respective evolution equations [9], and so the zeroth law of
turbulence applies to ϵ′ with the classic inertial scaling:

ϵ′ =∼ u · ∇
(
|u|2

2

)
∼ U3

L
, (2)

for some characteristic velocity scale U and length scale L, while

χ ∼ u · ∇
(

b2

2N2

)
∼ b2u

N2l
∼ N2UL, (3)

as the characteristic buoyancy frequency and buoyancy are expected to be related as N2 ∼ b/L.
Therefore, supposing that the flow is in equilibrium so that the buoyancy flux B ≃ χ, the mixing
coefficient Γ is given by:

Γ ≃ χ

ϵ′
∼ N2L2

U2
∼ Fr−2

T , (4)

using the inertial scaling for ϵ′ in the definition of FrT , and also assuming that EK ∼ U2. If
U/L can further be identified with the vertical shear S, then this scaling is clearly consistent with
the Ri ≃ Rif scaling implicit in the PrT ≃ 1 weakly stratified behaviour already encountered.
This scaling is clearly observed in forced simulations, as shown in figures 1 and 2. Note that this,
particularly for large values of FrT , implies a very small efficiency of mixing, effectively as there is
not much density variation to mix.

Following an argument originally presented by [2], this scaling can actually be couched in terms
of the length scale ratio ROT = LO/LT as introduced in Lecture 8 when discussing the Thorpe
method, where LT is the Thorpe scale (i.e., the rms of the displacements required to sort an
overturning density profile into a statically stable monotonic profile) and LO is the Ozmidov scale:

LO =

(
ϵ′

N3

)1/2

. (5)

They argued that for weakly stratified flows, LT < LO and also that the characteristic length scale
L in the various expressions above is approximately LT and so

Γ ∼ N2L2

U2
∼

(
LT

LO

)4/3

= R
−4/3
OT , (6)

which again is expected to be very small since LT < LO.
1

1They actually presented the argument in terms of assuming the Thorpe scale LT could be approximated by the

Ellison scale LE = ⟨ρ′2⟩1/2/[∂⟨ρ⟩/∂z]. ⟨ρ′2⟩
1
2 is the standard deviation of density fluctuations from the ensemble

mean, and ∂⟨ρ⟩/∂z is the ensemble mean vertical density gradient. It is entirely reasonable that LT and LE are
closely related, and there are operational reasons why one or the other might be easier to calculate in a particular
circumstance. The key assumptions are that the characteristic scale of the density fluctuations is smaller than LO in
weakly stratified flow, and that the density fluctuation scale is the same as the characteristic scale of the dissipation
rate(s).
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1.2 Moderately stratified flow

Moderately stratified flow can be assumed to exhibit hybrid scaling[2]. The stratification is suffi-
ciently strong to set the time scale for the mixing, and so

χ ∼ w′2N. (7)

However, the velocity field remains (largely) unaffected, and it remains close to isotropic, and so
w′2 ∼ EK , and so

Γ ∼ w′2N

ϵ′
∼ EKNϵ

′ = Fr−1
T . (8)

This scaling is at least consistent with the data shown in figure 2, although there is quite a bit
of scatter, and the behaviour may possibly be just associated with the transition between the two
extreme weakly and strongly stratified regimes.

1.3 Strongly stratified flow

In the case of strongly stratified turbulence, i.e., in the limit FrT ≪ 1, it is reasonable to assume
that buoyancy is the dominating factor in the mixing dynamics, so that both dissipation rates
“know” about the buoyancy frequency, and so

Γ ∼ w′2N

w′2N
= const. ∼ Fr0T , (9)

thus tending towards a constant in the limit of strong stratification. There are some case studies
that would suggest that it can indeed be possible to maintain turbulence in highly stratified flows,
and thus approach a constant value for Γ. Unfortunately, the question is now more complex in that
it becomes necessary to address the possibility that factors like initial stratification [17] and form
of forcing may lead to different constant values, a point we shall return to below. There is also
a critical issue of how the various characteristic quantities used to construct the turbulent Froude
number are calculated and, in particular, averaged. Cursory observation of any turbulent stratified
flow shows that the turbulence is (typically) highly anisotropic and spatio-temporally intermittent.

Just to consider one example, we have already mentioned the prevalence of density “staircases”,
and for such flows, what are the characteristic value of N , U and L? Are they the values in the
layers, in the interfaces, or in some average of the two? Along the same vein, it has been argued
that the very concept of a “strongly stratified turbulence” regime may be misleading in the first
place. Looking at a slice through a forced stratified turbulent simulation as shown in figure 3, it is
apparent that there are three qualitatively different types of region, which actually can be identified
robustly and algorithmically[15]. There are:

1. “quiescent regions” where Reb = ϵ′/(νN2) ∼ O(1);

2. intermittent “layers” where Reb ∼ O(10);

3. ”turbulent patches” where Reb ∼ O(100).

These three types of regions occur even in a flow where the overall value of Reb ≃ 13, with
FrT ≃ 0.015 when the dissipation rate was determined by averaging over the whole domain. For this
flow, (shown in the figure) the turbulent patches only occupy 4% of the flow volume. Nevertheless,
these patches are effectively just as turbulent as the entire domain of a flow with overall Reb ≃ 200
and FrT ≃ 0.075, which is thus more weakly stratified and is over 96% by volume classified as a
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“turbulent patch”. The turbulent patch in the figure is strongly correlated with a region of static
instability, thus suggesting that “strongly stratified” turbulent flows may just be flows with very
rare regions of weak stratification in which turbulence can be vigorous, although that view is quite
controversial.

Figure 3: A vertical slice through a forced stratified flow illustrating: (a) the logarithm of the
potential enstrophy normalised by its domain average, (b) ∂ρt/∂x3/dρ̄/dx3 and (c) the result of
flow classification as implemented in [15]. The colouring in (b) highlights the convectively unstable
fluids elements in red. The colouring in (c) corresponds to the region classification, where red
indicates a turbulent patch region, green an intermittent layer region and blue a quiescent flow
region. From [15].

1.3.1 Mixing at sharp interfaces

Such spatio-temporal inhomogeneity appears to be generic in stratified turbulent flows. For ex-
ample, axially stratified Taylor-Couette flow spontaneously forms a density staircase[13]. In the
limit of strong stratification, the buoyancy flux across the layer interfaces asymptotically tends to
a constant value as shown in figure 4. Assuming (as is reasonable) that the viscous dissipation rate
remains roughly constant, this is strongly suggestive of a constant value of Γ at high stratification.

The possibility for strongly stratified turbulence to approach constant mixing efficiency (or
equivalently constant flux coefficient Γ) as the stratification gets arbitrarily strong has also been
demonstrated experimentally through considering the mixing induced by vortex rings impinging
on a sharp interface as shown in figure 5 [14]. These experiments suggest that mixing can exist at
arbitrarily strong stratifications so long as some sort of forcing is applied.
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Figure 4: Non-dimensional [turbulent entrainment] flux F̂e through individual interfaces: six
Initially-Linear-Stratification (ILS) experiments (filled coloured symbols); three Initially-Five-Layer
(IFL) experiments (open green symbols); 12 Initially-Two-Layer (ITL) experiments with varying
R1, Ω and initial ∆ρ (open black circles). Each coloured symbol represents a different interface in
one experiment. The solid blue lines show the constant F̂e in the [19] asymptotic regime and the
empirical value of Ria. From [13].

Figure 5: Long-exposure photographs of a vortex ring impinging on a sharp interface between an
upper tracer-particle-laden fresh-water layer and a lower green-dyed salt-water layer. Photographs
display a vortex ring (a) just prior to and (b) during the vortex-ring interaction. Here Ri ≫ 1.
From [14].

1.3.2 Optimal mixing

Returning to consideration of the data presented in figure 3 as Ri decreases, it is apparent that the
density staircase breaks down due to vigorous overturning of the various interfaces. This overturning
is clearly associated with an enhanced flux, again suggestive of a non-monotonic mixing efficiency
with a clear left flank-right flank structure as discussed in Lecture 7. The flux curve is also consistent
with there being an “optimal” stratification at which the mixing efficiency is maximal, analogously
to the KHI-driven mixing discussed in Lecture 8. Using stably stratified plane Couette flow as a
model flow, constructing a rigorous upper bound (across all possible Richardson numbers, and at
asymptotically large Reynolds number) on the long-time-averaged buoyancy flux leads to a flow with
bulk Richardson number (and also maximum gradient Richardson number) of 1/6. The associated
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flux coefficient is Γ = 1/4[16], associated with a cumulative efficiency Ec = 1/3, as shown in figure
6. This is consistent with classical observations[7], and it is at least curious that the particular
value of Ri = 1/6 has popped up yet again. In some sense this seems to be the largest possible
Richardson number that still behaves as a weakly stratified flow, and thus is able to mix vigorously
due to turbulence.

Figure 6: Contours of the upper bound on the mixing-efficiency specific buoyancy flux,
Bη
max(J,Re; η)/B∞, as the bulk Richardson number, here labelled as J , and (cumulative) mix-

ing efficiency, here labelled as η, are varied for an asymptotically large value Re = 20000. The
thick solid line marks the envelope of Jη

max(Re; η) while the circle marks Jmax(Re) ≃ Jinfty = 1/6,
which corresponds to ηmax(Re) ≃ ηinfty = 1/3. From [16].

1.3.3 Impact of initial buoyancy profile

By means of a statistical mechanics approach, it is possible to infer the cumulative mixing efficiency
for a given amount of energy injection in a Boussinesq flow[17]. As shown in figure 7, the mixing
efficiency and the final state can very much depend on the chosen initial condition. If the initial
condition is initially two layer (as shown in the left panel), a non-monotonic dependence on the
appropriate definition of Ri is observed, with clear evidence of a “right flank”with a sharp interface
surviving, and very small mixing efficiency for very strong stratification. Conversely, if the initial
profile is linear (right panel), the mixing efficiency is a monotonic function of Ri, tends to a constant
value ≃ 0.25 in the limit of large Ri. Clearly, it is very difficult to say something generic about
mixing when such strong dependence on initial conditions can be observed.

87



Figure 7: Variation of the cumulative mixing efficiency (here labelled as η) with an appropriately
defined Richardson number Ri = H∆b/ec (a) for an initial background buoyancy profile with two
homogeneous layers, (b) for an initial linear background buoyancy profile. The three insets show
the equilibrium buoyancy field b̄ for Ri = 0.07, 7, 70. From [17].

1.3.4 Dependence on forcing mechanism

The situation becomes even more disheartening when different forcing mechanisms are used to
maintain turbulence in a strongly stratified flow[3]. In figure 8, horizontally averaged Γ is plotted
against the horizontally averaged local value of FrT for three different stratified turbulence simula-
tions. Each simulation is forced differently: simulation H is forced purely horizontally; simulation
R is forced with internal waves with random phase; while simulation P is forced with a propagating
wave field. There is clear evidence of the predicted strongly-stratified regime with Γ being indepen-
dent of FrT . However, the particular asymptotic mean value is different for the three simulations:
Γ = 0.37 for simulation H; Γ = 0.518 for simulation R; and Γ = 0.496 for simulation P, showing
marked sensitivity of the mixing properties to the particular form of the forcing: again very difficult
to say anything generic and quantitative about stratified mixing from a theoretical viewpoint.
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about � –Fr scaling from figure 8(a). The tilted, intense cluster of points near
Fr = 10�1 is, however, suggestive of a negative correlation between � and FrH in the
more turbulent parts of the domain.

We can extend our approach of investigating localised correlations in the domain
by considering relationships between quantities calculated locally at each grid point.
A single-time snapshot provides more than 109 data points for each variable in this
approach, so we use the full 3-D flow fields at the final time t = 150 as an example
to investigate local correlations in each simulation. Figure 9 shows the 2-D p.d.f. of
"L (as defined in (4.1)) and the analogous term �L calculated from the final-time
snapshots associated with each simulation. The p.d.f. is constructed by the same
method as for figure 7, using a histogram of the logarithms of each quantity. The
positive correlation between "L and �L is still evident in these plots, although all
three cases have larger departures from the volume average than in figure 7. In the
horizontally forced (case H) simulation, with data plotted in figure 9(a), there is a
relatively uniform spread in the p.d.f. along lines of constant � . When compared
to figure 7(a) where the p.d.f. clusters at higher values of "H and �H , this indicates
that the horizontally averaged quantities are dominated by contributions from highly
turbulent locations (associated with larger values of "L and �L) within each horizontal
plane. The wave-forced cases R and P also exhibit this behaviour, with figures 9(b)
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for three simulations with different forcing strategies. From [3].

Introduction to SW’s section

Numerical models of the oceans at both regional and global scales require the specification of a
mixing rate to model unresolved sub-grid scale processes. However, obtaining realistic turbulence
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mixing rates from observational data is non-trivial as this requires proper identification of uncon-
taminated turbulence from a signal. The difficulty lies in the fact that there is often no clear
scale separation between turbulence and the processes generating the turbulence in the real ocean,
making the identification of turbulence from observational data a difficult task. Exacerbating this
difficulty is the relative sparsity of measurements taken in the ocean. Further, even if a proper
mixing rate is found and included in the numerical model, numerical challenges exist, such as nu-
merical diffusion. In view of making scientific progress, the approach must necessarily be “move on
and do the best we can”.

2 A History of Vertical Mixing in Models

Prior to the 1990s, approximations of turbulent mixing were dominated by a Fickian diffusion
approach, whereby turbulence flux occurs across vertical or diapycnal gradients,

w′ψ′ = K
∂ψ

∂z
(10)

where the eddy diffusivity, K, was taken as a constant, aside from in a few exceptions (e.g., [1]).
It wasn’t until the 1990s when oceanographers began to add turbulence parameterisations based
upon individual physical processes such as shear-driven mixing and mixing due to double-diffusion.

In the early 2000s, oceanographers began to include parameterisations that considered the impact
of internal wave breaking, starting with Jayne and St. Laurent (2001) [6]. Since this introduction,
a lot of attention has been given to the role of internal wave action on turbulent mixing (see [8]).
With the understanding that internal wave breaking is an important turbulent mixing process, the
next step is in identifying the processes generating the internal waves in the first place. McKinnon
et al. (2018) identify four main processes,

• near-field mixing due to breaking of tidally driven internal waves

• far-field mixing due to breaking of tidally driven internal waves

• mixing due to breaking of internal lee waves

• mixing due to breaking of wind driven internal waves.

In addition to McKinnon et al. (2018), Ed Wunsch added that the breaking of near-inertial internal
waves, whatever their source, is also an important process.

2.1 Near-field breaking of tidally driven internal waves

The waves generated by tidal flow over topography that break near their place of origin tend to
be higher mode waves. These near-field processes include, for example, hydraulic jumps, and expe-
rience enhanced interaction with other internal waves higher in the water column. The enhanced
dissipation, ε, is given in [8] as,

ε =
1

ρ
E(x, y) q F (z) (11)

where E(x, y) is the spatially dependent energy input into the internal wave from the tides, q is the
fraction of the generated internal waves that break locally, and F (z) is the vertical structure function
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that models the vertical distribution of turbulent mixing. Relating this enhanced dissipation back
to the eddy diffusivity,

K = Kb +
q ΓE(x, y)F (z)

ρN2
(12)

where Kb is the constant value that was assumed prior to the 1990s. [5] find that use of this eddy
diffusion parameterisation has noticeable impact on oceanic circulation, but a modest effect on the
poleward transport of heat. [11] find that ocean circulation is slightly sensitive to F (z), but that
this sensitivity is robust and statistically significant. [8] devote a lot of effort to improving the
parameterisation of F (z), particularly to account for wave-wave interactions.

2.2 Far-field breaking of tidally driven internal waves

The lower mode waves from tidal flow over topography in contrast can propagate thousands of
kilometres before breaking, however the mechanism by which the breaking of non-local internal
waves enhances dissipation is not well understood. A ray tracing method is used for the param-
eterisation of these far-propagating internal waves, which allows for ‘tracking’ of these waves to
provide insight into where they travel. [12] include a parameterisation of the enhanced dissipation
due to the far-field breaking of internal waves, and find that ocean dynamics are sensitive to the
vertical distribution of mixing due to the far-field tidally driven internal wave breaking enhanced
dissipation.

2.3 Breaking of internal lee waves

Internal lee waves are generated by mean flows over topography and have significant impacts on the
ocean state [10]. Despite the known impacts of internal lee waves on ocean dynamics, the relative
importance of both local and non-local breaking of internal lee waves on dissipation is not known.
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GFD 2019 Lecture 10 Part I: Stratified Turbulence and Ocean

Mixing Processes 2: Future Directions for Research into Stratified

Turbulence and Ocean Mixing Processes

Stephanie Waterman; notes by Wanying Kang and Anuj Kumar

June 28, 2019

1 Challenges in Quantifying Ocean Mixing

There are several reasons as to why measuring ocean mixing is difficult. One of the main reasons is
that the process of ocean mixing involves a wide range of scales and to be able to perform a computer
simulation that captures the large scales, as well as small scales, is currently out of reach. Therefore,
any model for ocean mixing should proceed by making assumptions about either small scales or
large scales. This makes the problem non-deterministic as these assumptions should be modeled
as a stochastic process. High variation in turbulent kinetic energy dissipation which can vary up
to six orders of magnitude; a wide range of processes and instabilities that can lead to turbulence;
contamination of point measurements by transient reversible processes; and quantifying mixing
based on sparse data are among the other reasons that make quantifying ocean mixing challenge.
Besides the scientific reasons, going into the middle of the ocean to take measurements in itself is
a challenging task. These expeditions require financial investments, manpower and highly depend
on the weather.

Some of the above-mentioned problems, however, can be resolved if we have a better sampling.
By better sampling, we mean

• more measurements

• higher density of measurements in space and time

• longer sampling durations

• increased number of locations/environments/regimes sampled

• coincident measurements of multiple variables

• coincident measurements of multiple scales

With a better sampling, the following problem may be improved:

1. contamination of point measurements typically by transient reversible processes.

2. problem of sparse measurements.

3. making better stochastic models.
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2 Robots are Coming

Turbulence measurement was particularly challenging until recently. Sensors needed to be fast and
passivated. To make sure measurement is taken in the right place, platform needs to be designed
to have stable and minimal motion as well as to be easy for deploy and recovery. Calibration
procedures need to be repetitively tested and the noice in a circuitry has to be lowered to an
acceptable level (which is quite low).

Robots and the autonomous sampling platforms coming along significantly boost the measure-
ment of microstructures in the ocean. They allow measurement to be taken at high temporal and
spatial frequency, while requiring much less efforts.

• Sampling is typically near-continuous

• Sampling typically can be sustained for long observing periods

• Does not require ship time or resources → relatively cheap → We can have lots! They can be
out most of the time!

• Typically sample with high resolution in space and/or time

• Allows for adaptive sampling strategies based on near-real time data

• Ideal for sampling places a ship can’t go (e.g. in a hurricane, under ice)

• Typically can accommodate multiple sensors for concurrent measurements of multiple vari-
ables and/or at multiple scales

• Gliders love the age-old problems of doing free-ascent based measurements as allow for mea-
surements into the near-surface layer (upper 1 m)

• Can have no moving parts → very low noise levels

Shown in Fig. 1 are the upcoming robots that will help us with the sampling issue. Instead of
having ships/people go to a spot and take measurement, robots (e.g. glider and Turbulence AUV)
can be programmed to collect high-frequency data through a path. Not only can they significantly
increase the sampling frequency, but they can also go to places that are too dangerous for ships
and people. Recently, these data start to be used to better understand the turbulence statistics,
which can then push forward the mesoscale parameterization.

3 Future Directions

Future is bright. We would hope for

• extended moored time series of ’direct’ turbulence measurements

• widespread turbulence measurements from gliders and floats

• deep ocean turbulence measurements from deep gliders

• autonomous under-ice turbulence measurements

• process studies with everything in the ’kitchen sink’
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Figure 1: The upcoming robots that may help us resolve the bad sampling issue.
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As a closing statement, by adapting sensing technology to new platforms (moorings, floats,
gliders etc.), we are excited to have the opportunity to see a step change in the number and
time/space resolution of ocean turbulence measurements. These achievements let us see the ocean in
new ways, and will almost certainly produce transformative insights. That said, hypothesis-driven
experiments are essential to move process understanding forward. Process experiments/adaptive
sampling will always require ships. Nothing replaces dedicated research ships for adaptive sampling.
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GFD 2019 Lecture 10 Part II: Future Directions for Research into

Stratified Turbulence and Ocean Mixing

Colm-cille Caulfield; notes by Wanying Kang and Anuj Kumar

June 28, 2019

1 How Good Are Our Estimates for Turbulent Diffusivity?

Throughout these lectures we have tried to get to grips with stratified turbulent mixing in general,
and in possible models for the associated enhanced turbulent diffusivity κT in particular. There
are many different causes of uncertainty in the estimates of those models, and we will here focus on
two main classes. First, there are different methods to estimate κT , based on different fundamental
modelling assumptions, and the different methods are (most definitely) not necessarily consistent
with each other. Second, a limited number of data points (typically oceanographic profile measure-
ments) can be collected for one estimation. Therefore, even using one specific method, the results
may not be convergent, due to the inherent variability present in a turbulent mixing event, as it is
self-evident that stratified turbulence in the world’s oceans is both spatially and temporally inter-
mittent. As is clearly apparent in figure 1, even in one direct numerical simulation (DNS), turbulent
regions with different intensity have completely different fingerprints in the buoyancy distribution,
ϵ′, and χ. Such intermittency of ocean turbulence in space and time makes the sampling problem
even more severe[6].

There are then two natural issues which can be investigated in terms of the convergence and
reliability of estimating turbulent diffusivity from profiles using different methods. Firstly, it is
not at all clear whether estimates using a particular method will converge to the “ground truth”
value of the diffusivity as more and more profiles (or equivalently a data volume) are used. Second,
and perhaps more optimistically, it is of interest to see how uncertainty in the estimates decreases
(hopefully!) as more and more estimates are constructed from distinct vertical profiles. As previ-
ously discussed in Lectures 6 and 8, there are three classical methods used to estimate turbulent
diffusivity κT , i.e., the Osborn method, Osborn-Cox method and the Thorpe method. Briefly (and
loosely) the Osborn method estimates κT by assuming the buoyancy flux is linearly related to the
dissipation rate via a (often-assumed) constant flux coefficient Γ ≃ 0.2. The Osborn-Cox method
is more “direct”, assuming that the mixing is well-described by the destruction rate of buoyancy
variance χ, and so

κO = Γ
ϵ′

N2
(1)

κO−C =
χ

⟨N2⟩ , (2)

where as usual, there are real issues to be addressed concerning the particular space-time volume
which is used to estimate the various quantities on the right-hand side of these expressions. In the
Thorpe method, the dissipation rate is estimated based on the vertical profiles of the (potential)
density field. For a given density profile, the various parcels are displaced to create a sorted density
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Figure 1: The buoyancy, turbulent kinetic energy dissipation rate and perturbation potential energy
dissipation rate for three regions with strong, moderate and weak dissipation from a particular DNS.
From [6].

field which is a monotonic function of height. The associated displacements Ld of the various parcels
then can be used to estimate the Thorpe scale:

LP
T = ⟨L2

d⟩
1/2
P . (3)

Assuming that the Thorpe scale is linearly proportional to the profile’s characteristic Ozmidov scale

LP
O = ⟨ϵ′⟩1/2P ⟨N2⟩−3/2

P , it is then possible to construct an estimate of the dissipation rate:

⟨ϵ⟩P = R2
OT (L

P
T )

2⟨N2⟩3/2P . (4)

The next heroic (and not really justified by more recent data, particularly from numerical simu-
lations) assumption is that ROT takes a fixed value ROT ≃ 0.8. Substitituting this estimate for
ϵ′ into the expression at the heart of the Osborn method, the Thorpe method’s estimate for the
turbulent diffusivity is now

κT = 0.64Γ(LP
T )

2⟨N2⟩1/2P , (5)

where somewhat confusingly, the subscript now refers to the Thorpe method.
Considering the first “issue” mentioned above, these three model estimations when averaged

across an entire computational volume are compared against the turbulent vertical diffusivity di-
agnosed directly from the volume-averaged buoyancy flux κVd = ⟨B⟩/⟨N2 for three different sim-
ulations with different characteristic Reb in figure 2 from [6]. Encouragingly, the Osborn method
and the Osborn-Cox method both give a good estimate of κVd in all cases. On the other hand, the
Thorpe method underestimates κVd by about 50% in the highly turbulent case, but significantly
overestimates it in the less turbulent cases, demonstrating just how unreliable the assumption of
constant length scale ratio ROT is.
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Figure 2: Vertical diffusivity estimated using the Osborn method κVO, Osborn-Cox method κVO−C

and Thorpe method κVT , each calculated using data extracted from the full computational volume
and normalized by the turbulent vertical diffusivity diagnosed directly from the volume-averaged
buoyancy flux κVd . From [6].

However, such a volume-average will not in general be available. Actual estimates will be
constructed from individual profiles, and the second-mentioned issue concerns the reduction in
uncertainty as more and more profiles are used to construct estimates. Figure 3 shows the results
of just such an analysis. For each simulation, the black dashed line shows the true value of the
diffusivity. Unsurprisingly, due not least to the non-sign definiteness of the buoyancy flux B, profile-
based estimates using the “direct method” are very uncertain. There is also clear evidence that,
at least for these simulations, the Thorpe method is inherently biased. The other two methods
are somewhat more reliable, with approximately 20 profiles typically yielding reasonable estimates
for the “true” value with the Osborn-Cox method being perhaps the best of all. However, it is
important to remember that it is not (yet) usual observational practice to take multiple profiles in
the same place. Perhaps it should be...

2 The Effects of Boundaries

Throughout these lectures, we have only considered highly idealized flows, either with an initial
shear or artificial imposed forcing to keep the turbulence energised. However, real flows inevitably
have boundaries, and there is an overwhelmingly large amout of evidence that shows the impor-
tance of boundary-mediated mixing. For example, we know that diffusivity increases exponentially
approaching the bottom of the ocean as shown in figure 4 [5], and it has become increasingly ap-
preciated that boundary layers play a key (indeed governing) role in the abyssal ocean upwelling
[4].

Consider the schematic situation shown in figure 5. In the interior of an ocean basin, stronger
mixing near the basin floor (where the density is naturally highest), will tend to lead to a relative
local increase in the density of a water parcel, thus leading to an interior sinking in a basin.
Conversely, a water parcel right at the boundary cannot mix from below as the buoyancy flux has
to vanish at the boundary, while it can mix from above. This will bring lighter water into this water
parcel and cause rising. Crucially, this upwelling mechanism only works when the boundary is tilted,
but fortunately that is a natural characteristic of shelf regions of ocean basins. Furthermore, a tilted
side boundary also means a decreasing basin cross-section (and boundary perimeter) with depth. As
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Figure 3: Estimates of the vertical diffusivity using the Osborn method (green), Osborn-Cox method
(blue), Thorpe method (magenta), and the “direct” method (red), calculated using n vertical pro-
files. Lines denote one standard deviation about the mean and the area between these limits is
shaded. The dashed line indicates the “true” vertical diffusivity calculated by directly averaging
the flux over the full volume of the simulations. From [6].
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Fig. 2. Depth-longitude section of cross-isopycnal diffusivity in the Brazil Basin inferred from velocity
microstructure observations. Note the nonuniform contour scale. Microstructure data from the two
quasi-zonal transects have been combined without regard to latitude. The underway bathymetric data
to 32°W is from the eastward track, the balance comes from the westward track. The white line marks
the observed depth of the 0.8°C surface.

Polzin et al.  1997

Figure 4: Depth-longitude section of cross-isopycnal diffusivity in the Brazil Basin inferred from
velocity microstructure observations. Note the non-uniform contour scale. Microstructure data
from the two quasi-zonal transects have been combined without regard to latitude. The underway
bathymetric data to 32◦W is from the eastward track, the balance comes from the westward track.
The white line marks the observed depth of the 0.8◦C surface. From [5].

Ferrari et al. 2016
Figure 5: Schematics from [4] to demonstrate the role of side boundaries in the abyssal upwelling.
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Figure 6: Left: schematics of stratified plane Couette flow. Right: Summary of the direct numerical
simulations (circles) and predictions of the intermittency boundary given by the Monin–Obukhov
theory (solid black line) and the explicit algebraic models (dashed grey line) for simulations with
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red (fully turbulent). Triangles representing simulations that fully relaminarised are also shown for
reference. From [2].

shown schematically in figure 5b, the total length of the ocean basin boundary perimeter increases
with height. As a result, although the (local) strength of the mixing and upwelling increases with
depth, the total upwelling transport may actually decrease with depth. Understanding the trade-
offs and subtle balances of these various spatially-dependent transports is an active and exciting
area of research, where there is a real need for observationalists and theoreticians to work together.

2.1 Monin-Obukhov theory and stratified plane Couette Flow

Considering wall-bounded idealized flow proves to be surprisingly challenging, as it does not appear
possible to maintain purely wall-boundary forced flows in a turbulent state when the stratification
is in any sense “strong”. Nevertheless, we shall press on, not least because there is a ready-made
theory available to“understand”the behaviour of wall-bounded stratified flows. As briefly discussed
in Lecture 9 from a bounding viewpoint, we here consider stratified plane Couette flow (SPC) as
shown schematically in the left panel of figure 1. The fluid in contact with the two horizontal
boundaries are maintained at constant density: ρ0−∆ρ at the upper boundary and ρ0+∆ρ at the
lower boundary (effectively by fixing the temperature T of the upper boundary to be a constant
hot value, and the temperature of the lower boundary to be a constant cold value). The upper
boundary (at y = d, sorry the diagram uses the engineering coordinate system) moves at constant
streamwise velocity ∆U , while the lower boundary (at y = −d) moves at constant streamwise
velocity −∆U . This flow thus has a natural static stability, and characteristic bulk Richardson
number. Monin–Obukhov Similarity Theory (MOST) is found to be useful in understanding the
behavior of such a flow in steady state [2, 7], in particular identifying the boundary between fully
developed turbulence and intermittent flow for flows with various Reynolds numbers and (bulk)
Richardson numbers, the gradient Richardson number profile Rig(y) being an emergent property
of the statistically steady flow.

According to MOST, the only nondimensional group in the boundary layer is ξ = y/L, where

L = u3
τ

Cκqw
is the Monin–Obukhov length scale, uτ =

√
τw/ρ0 is friction velocity, and τw and qw
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are the shear stress and heat flux at the wall. Therefore, the vertical gradient of velocity and
temperature should satisfy

∂u

∂y
=

uτ
Cκy

ϕm(ξ) and
∂T

∂y
=

Tτ

Cκy
ϕh(ξ). (6)

As the first order approximation, it is natural to assume that the key functions are linear
functions of ξ, and so

ϕm(ξ) = 1 + βξ and ϕh(ξ) = PrT +βξ, (7)

where PrT is our old friend the turbulent Prandtl number, and β is a nondimensional constant.
Integrating Equation 6 vertically, yields an expression for the velocity and buoyancy jumps between
the upper and lower walls,

U = 2
uτ
Cκ

(
logReτ + β

h

L
+ CκC1

)
(8)

T = 2
Tτ

Cκ

(
PrT log Reτ +β

h

L
+ CκC2

)
, (9)

where C1, C2 are both constants, and Reτ is the Reynolds number corresponding to the friction
velocity

Reτ =
uτh

v
.

Rearranging Equation 8 and Equation 9 yields

Re =
Reτ
Cκ

(
logReτ + β

Reτ
L+

+ C1

)
(10)

Rib =
h

L

PrT logReτ + βReτ
L+ + C2(

logReτ + βReτ
L+ + C1

)2 , (11)

from which L+ = L
l = uτL

v can be solved. L is the Monin-Obukhov scale, and l = v/uτ is
the wall viscous length scale. With reasonable choices of parameters, the critical L+ separating
the full turbulence and intermittency is estimated to be ∼ 200[2], a result which appears to be
largely independent of (molecular) Prandtl number Prm. This critical L+ is denoted by the solid
curve in the Re − Rib (here labelled Ri) parameter space in the right panel of figure 6 for flows
with Prm = 0.7. This prediction is verified by numerical simulations and by a more complicated
explicit algebraic model. The key point to observe is that the maximum Ri that can sustain
turbulence appears to be bounded so Rib ≲ 0.2, (although for these flows this also corresponds
to the maximum gradient Richardson number, occuring at midplane). As many times discussed
before in these lectures, in these flows the turbulent Prandtl number PrT ≃ 1, thus suggesting that
the flux Richardson number Rif (and hence the mixing efficiency) is also bounded above by 0.2.
Crucially, irrespective of Re, the flow cannot be forced to maintain turbulence in anything other
than a “weakly stratified” flow regime.

Changing Prandtl number can still strongly affect the the mean velocity and temperature (or
equivalently density/buoyancy) profiles between the two walls, as shown in figure 7[7]. At fixed
values of (Re,Ri)=(4250, 0.04), the mean temperature gradient (as shown in figure 7a) sharpens
significantly in the near-wall region while it weakens in the interior, as Prm increases by two orders
of magnitudes from 0.7 to 70. The changes of gradient Richardson number (for given Re) are
plotted in figure 7c.

Rig(y) ≡
N2

S2
=

− (g/ρ0) (dρ/dy)

(dU/dy)2
=

gαV (dΘ/dy)

(dU/dy)2
(12)
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Figure 7: (Colour online) Vertical profiles of: (a) normalized mean temperature variation (Tw is the
flow temperature at the wall); (b) normalized mean velocity variation (Uw is the flow velocity at
the wall); and (c) gradient Richardson number Rig at (Re, Ri)=(4250, 0.04). Results with Pr=0.7,
Pr = 7 and Pr = 70 are shown. From [7].
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Rig varies sharply in the near-wall region and reaches a plateau in the channel gap interior. Given
that the mean shear S (as shown in 7b) is less sensitive to Pr, the Rig values at midgap (y =
0) decrease with Prm for a given Re and Ri, which is mainly attributed to the sharpening of
temperature variation in the near-wall region and weakening of those gradients (and thus the
strength of stratification, as measured by N2) in the channel gap interior. Nevertheless, the key
result concerning intermittency remains, as even for large values of Prm, sustained turbulence
cannot survive for flows with a maximum (midplane) Rig ≳ 0.21. Weird, not least because this
is half-way between the often-mentioned “optimal” value of Rig ≃ 1/6, and the marginally stable
canonical value of Rig = 1/4. Are these just fortuitous coincidences or is there something deeper
going on?

3 The LAST Regime?

Although it appears essentially impossible to sustain strongly stratified turbulence through wall-
forcing, as already noted (several times) there is observational evidence that the world’s oceans are
in a strongly stratified turbulence (SST) regime characterized by very large Reynolds number and
very small (horizontal) Froude number in a particular distinguished limit:

Re =
UHLH

ν
>> 1; Fh =

UH

NLH
≪ 1; ReF 2

H =
U3
H

LhνN2
≫ 1 (13)

where UH and LH are characteristic horizontal scales. Motivated by some very elegant scaling
arguments due to Paul Billant and Jean-Marc Chomaz, a self-consistent, SST regime has been
proposed, with some suggestive (though still preliminary) numerical evidence[1]. The key idea is
that characteristic vertical scales adjust self-similarly so that the vertical Froude number FV ≃ 1:

FV =
U

LV N
→ LV =

U

N
. (14)

This vertical scale is larger than the Ozmidov scale LO, which, since Reb = ϵ′νN2 ≫ 1 (under the
reasonable assumption that ϵ′ ∼ U3

H/LH , the classical large scale inertial scaling) is in turn very
much larger that the Kolmogorov scale LK . There is thus a strict hierarchy of scales:

LK ≪ LO ≪ LV ≪ LH , (15)

defining pancake-like layers of horizontal extent LH and vertical extent LV .
Interestingly, when such pancakes encounter each other and “rub” past each other, they in-

evitably induce significant values of vertical shear (due to generic differences in the UH orientation
between different layers) thus yielding a natural route for injection of relatively “weakly stratified”
spatio-temporally intermittent bursts of shear-driven turbulence. Within the individual pancakes
however, the turbulence must be extremely anisotropic, as for scales in the interval [LO, LV ] vertical
velocities must be strongly suppressed. This interval is expected to be quite broad, as using the
inertial scale ϵ′ = U3

H/LH , FH = ϵ′/(NU2
H) and so

LV

LO
=

UHN1/2

√
ϵ′

= F
−1/2
H ≫ 1. (16)

Due to the particular layered and anisotropic characteristics of this regime, an alternative and
perhaps more specific name for this regime that has been proposed is the Layered Anisotropic
Stratified Turbulence (LAST) regime[3]. Whatever it’s called, an especially interesting prediction
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from our seismic experiment (Fig. 2a). We chose to

FIG. 3. Set of images showing evolving geometry of seismic re-

flection experiment. (a) Solid black ship5 locus of vessel at time t0;

open ships 5 loci of vessel at subsequent times t1, t2, and t3; hori-

zontal band with vertical lines 5 4.8-km-long streamer with 240

receiver groups; undulating line 5 moving reflector within water

column; stars with solid/dashed lines and arrows 5 successive

acoustic shots and associated ray paths. Each locus on subsurface

reflector is sampled by many different shot–receiver pairs over

a period of time governed by speed of vessel V and length of

streamer L. (b) Reduced streamer length where dotted ships,

streamer, and ray paths identify those shot–receiver pairs that have

been omitted. Vertical arrow5 reduced streamer length. Streamer

is only shown at time t0 for clarity.

FIG. 2. (a) Bathymetric map of region encompassing Falkland Islands (see inset). Red line 5 seismic reflection profile acquired by

WesternGeco Ltd. in February 1993; colored circles5 loci of legacy CTD casts that are plotted smoothed by a 25-mGaussian window and

colored according to mensal range; black arrows 5 geostrophic velocity field from exact day of seismic experiment determined from

satellite altimetric data. (b)–(e) Buoyancy frequencyN as function of depth calculated from legacy CTD casts for mensal range straddling

February (blue 5 61 month; green 5 62 months; purple 5 64 months; orange 5 66 months; pale orange 5 set of outlying CTD casts

acquired on theResearchVesselCapitanoCabalda in September 1994). In each case, dashed black lines5 average profile calculated using

50-m Gaussian window for 62 months used in this study. Altimetric products produced by Ssalto/Duacs and distributed by Aviso with

support from CNES.
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Figure 8: Red stripe shows location of seismic reflection profile acquired by WesternGeco Ltd. in
February 1993. From [3].

for this regime is that the energy spectrum in the horizontal motions should still exhibit a k
−5/3
H

scaling for horizontal wavenumbers, even for scales bigger than LO, and so the turbulence is expected
to be highly anisotropic. It is critical to remember that in this range of scales the turbulence is
definitely not stationary, homogeneous and isotropic turbulence, (don’t you dare think about an

acronym for this regime) and so this predicted k
−5/3
H horizontal energy spectrum has nothing to do

with the classic Kolmogorov K41 spectrum.
Fortunately, evidence for just such a horizontal spectrum can be found using the methods of

seismic oceanography[3]. Figure 8 shows the location of a seismic profile taken 100km east of the
Falkland Islands (aka Las Malvinas) in the South Atlantic Ocean. This seismic reflection experiment
was performed by WesternGeco Ltd in Feburary 1993, principally to image the hydrocarbon reserves
in the subsurface of these islands’ territorial waters. (No inferences should be drawn concerning
the economic value of those reserves to whoever asserts sovereignty of these particular islands.)

An array of 36 guns with a volume of 119L of compressed air was towed behind a vessel moving
with a speed of 2ms−1. This array of guns was at a depth of 7.5m. Acoustic energy generated by air
guns was directed vertically which was then reflected by temperature contrasts. Behind the vessel, a
4.8km long streamer consisting of 240 hydrophones spaced every 20m was towed at a depth of 10m.
Reflected energy was recorded by these hydrophones. The first active streamer was 97m behind
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open ships 5 loci of vessel at subsequent times t1, t2, and t3; hori-

zontal band with vertical lines 5 4.8-km-long streamer with 240

receiver groups; undulating line 5 moving reflector within water

column; stars with solid/dashed lines and arrows 5 successive

acoustic shots and associated ray paths. Each locus on subsurface

reflector is sampled by many different shot–receiver pairs over

a period of time governed by speed of vessel V and length of

streamer L. (b) Reduced streamer length where dotted ships,

streamer, and ray paths identify those shot–receiver pairs that have

been omitted. Vertical arrow5 reduced streamer length. Streamer

is only shown at time t0 for clarity.

FIG. 2. (a) Bathymetric map of region encompassing Falkland Islands (see inset). Red line 5 seismic reflection profile acquired by

WesternGeco Ltd. in February 1993; colored circles5 loci of legacy CTD casts that are plotted smoothed by a 25-mGaussian window and

colored according to mensal range; black arrows 5 geostrophic velocity field from exact day of seismic experiment determined from

satellite altimetric data. (b)–(e) Buoyancy frequencyN as function of depth calculated from legacy CTD casts for mensal range straddling

February (blue 5 61 month; green 5 62 months; purple 5 64 months; orange 5 66 months; pale orange 5 set of outlying CTD casts

acquired on theResearchVesselCapitanoCabalda in September 1994). In each case, dashed black lines5 average profile calculated using

50-m Gaussian window for 62 months used in this study. Altimetric products produced by Ssalto/Duacs and distributed by Aviso with

support from CNES.
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Figure 9: Figure shows the location of vessel at different times t0, t1, t2, and t3. Thin horizontal
band with vertical lines shows 4.8km long streamer. Stars with solid/dashed lines and arrows show
successive acoustic shots and associated ray paths. From [3].

the vessel. This procedure is shown schematically in figure 9. Although the primary objective
of the survey was to image the subsurface, changes in sound speed associated with temperature
contrasts, and associated reflections, allow the close-to-contemporaneous imaging of the entire water
column, as shown in figure 10. Very close to horizontal reflections (note the scales of the figures) of
temperature isosurfaces (here very similar to density surfaces) can be extracted from these images
(laboriously!) with horizontal resolution of approximately 10m.

After careful averaging and normalization of the data, it is possible to consider the normalized
and averaged power spectrum. For convenience the slope spectrum i.e., k2HE(kH) is plotted in figure
11. For ease of interpretation lines with slope −1 (corresponding to E(kH) ∝ k−3

H characteristic of

an internal wave field) and slope +1/3 (corresponding to E(kH) ∝ k
−5/3
H ) are shown on the figure.

There is clear evidence of a sharp transition (at horizontal scales O(300m)) to the predicted LAST
regime, strongly suggesting that (at least in this part of the ocean) the LAST regime actually
occurs, and indeed onsets quite suddenly due to an as yet not-understood wave-breaking process.
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FIG. 4. (a) Seismic reflection profile (see Figure 1 for location). Red/blue stripes = reflections of positive and

negative polarity within water column; irregular sloping base = sea bed. (b) Automatically tracked reflections.

Labelled boxes are shown in (c) and (d) and in Figure 6. (c) and (d) 10 km ⇥ 150 m zoomed panels located in

(b). (e) and (f) automatically tracked reflections. (g) and (h) 2 km ⇥ 25 m zoomed panels located in (e) and (f).

(i) and (j) automatically tracked reflections.
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FIG. 4. (a) Seismic reflection profile (see Figure 1 for location). Red/blue stripes = reflections of positive and

negative polarity within water column; irregular sloping base = sea bed. (b) Automatically tracked reflections.

Labelled boxes are shown in (c) and (d) and in Figure 6. (c) and (d) 10 km ⇥ 150 m zoomed panels located in

(b). (e) and (f) automatically tracked reflections. (g) and (h) 2 km ⇥ 25 m zoomed panels located in (e) and (f).

(i) and (j) automatically tracked reflections.

789

790

791

792

793

39

Figure 10: a) and b) show 856 tracked reflections. c) and e), and d) and f) are zoomed panels
located in b). From [3].
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curve before summing and averaging (Figs. 10c,f,i). In

other words, averaging is carried out along a curved

rather than a straight line.

Figure 10 shows the resultant spectra for simple, linear,

and nonlinear normalization of all 22 groups of slope

spectra. Note that usage of the term ‘‘normalization’’

does not mean that there is a single normalization factor

that relates these spectra and the original spectra.

Quality of fit for all three forms of averaging with ref-

erence to the two competing models is quantitatively

assessed in Figs. 10d–i. When simple averaging is carried

out, it is difficult to discriminate between additive and

FIG. 11. Analysis of averaged spectra. (a) Black lines 5 22 of 88 individual spectra de-

termined from tracked reflections; red line5 simple average spectrum. (b) Blue lines5 11 of 22

grouped spectra; solid circles5 crossover loci identified bymodel fitting (60.2 log units of each

crossover locus ignored); dotted lines on right-hand side 5 fits for turbulent regime. (c) Solid

circles5 crossover loci; open circles5 loci projected onto linear relationship. (d) Blue lines5
normalized grouped spectra calculated by collapsing open circles shown in (c) to a single point

along linear relationship; red line5 average spectrum. (e) Density plot of linear averaged and

normalized spectra where large range of spectral models was used to identify crossover loci

shown in (c). Gradient of internal wave regime varied between 20.4 and 22 with steps of 0.2;

gradient of turbulent regime varied between ;0.1 and ;1.8 with steps of 0.03; fine dotted

reticule indicates slopes of 21 and 1/3. Normalization means that absolute numerical values

along axes have no meaning and are omitted as necessary.
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Figure 11: Density plot of linear averaged and normalized slope spectra k2HE(kH) for horizontal
numbers. Grey lines show slopes of −1 characteristic of internal waves and −5/3 characteristic of
the LAST regime. Shading shows standard deviation, with noise onsetting on scales of O(10m).
From [3].

4 Open Questions

I trust it is clear that I still have essentially no idea what is going on, and there are a huge number
of open questions which fluid dynamicists need to answer before academic fundamental studies of
stratified turbulence can really be useful to oceanography. Nevertheless, it is both a really important
and really beautiful topic of study, so I hope to spend the next years convincing as many people as
possible to work on this fascinating subject. Thanks for listening and reading these exceptionally
incoherent lectures. To end, here’s just a very short list of some of the open questions which I think
need answering.

• What do “characteristic” values of parameters even mean in a turbulent or spatio-temporally
varying flow?

• Is emergent criticality related in any way to linear stability theory?

• Do forced flows have any connection with freely evolving flows?

• How can the history/memory/advection of a flow be captured in a parametric description?

• Are layered states generic or even accessed?

• Is stratified turbulence ever strongly stratified and does LAST ever actually occur?

• Can forcing and/or boundaries ever be ignored or modelled appropriately?

• Is there any hope to use deterministic “physics” models to describe mixing in stratified tur-
bulence?
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1 Introduction

The ocean is a rotating stratified fluid forced at its upper boundary by the circulation of 
the atmosphere and is subject to gravitational and tidal body forces. The combined effect 
of these forces is to set up a mean ocean circulation and density structure that is unstable 
to a host of fluid dynamical instabilities. These instabilities grow and develop in such a 
way as to eliminate their energy source and revert the fluid to its original unforced state. 
In the ocean, this energy source is continuously replenished by the external forces acting 
on the ocean and a steady state is attained where energy extraction from the mean flow by 
eddies balances the energy injected at large scales. The ocean is thus a highly nonlinear 
fluid exhibiting turbulent, eddying structures with a wide range of temporal and spatial 
scales.

One consequence of the nonlinear eddying dynamics of the ocean is that a neutrally 
buoyant particle (or a tracer) is not advected by the mean circulation. Rather, one must 
also take into account the advective effects of ocean eddies. For overturning circulations, 
these eddies typically advect tracers in a direction opposing that of the mean flow. The 
net transport of the tracer is the sum of these two processes, and since they tend to be in 
opposing directions, the net transport tends to be a small ’residual’ of two larger terms. 
This gives rise to the term ’residual velocity’ for the velocity that advects tracers in the 
ocean. If one wants to study how tracers (such as heat and nutrients) are transported and 
distributed within the ocean, it is the residual velocity that is of interest.

Another aspect of ocean circulation that is of relevance to this report is the highly 
adiabatic nature of eddies in the ocean interior. At scales sufficiently large such that the 
rotation of the planet is relevant to the dynamics, the flow is quasi-two-dimensional with 
circulation primarily taking place on surfaces of constant density (or buoyancy). Indeed, 
analogous to two-dimensional turbulence, rotating stratified turbulence exhibits an inverse 
cascade of energy to larger spatial scales and a forward cascade of (potential) enstrophy to 
smaller scales where it can be efficiently dissipated by molecular diffusion. At large-scales, 
turbulent stirring along surfaces of constant density can be up to eight order of magnitude 
larger than turbulent stirring across density surfaces. Thus, we expect that tracers will also 
be advected primarily along density surfaces.

In this report, we derive the Nikurashin-Vallis model [12] of the residual overturning 
circulation beginning from the residual-mean theory presented in [14]. We then present
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possible scaling laws that the residual overturning circulation may follow and then proceed
to present numerical solutions.

2 Residual-mean Theory

If we take a simple zonal average of the equations governing rotating stratified flows (in a
zonally re-entrant domain), we obtain (e.g. [14])

ut + v · ∇u− fv = −∇ · v′u′ + X (1)

fuz = −by (2)

vy + wz = 0 (3)

bt + v · ∇b = −∇ · v′b′ +Q (4)

where v = (0, v, w) is the velocity in the meridional plane, X and Q denote mechanical and
diabatic forcing, respectively. Note that, in the above set of equations, we have assumed that
meridional flows are weak. We see that this simple averaging approach produces equations
for mean fields u, b that are forced by the divergence of an eddy fluxes v′u′ and v′b′. These
equations have two undesirable properties:

1. Advection is by the zonal mean velocity rather than the residual velocity.

2. The buoyancy equation is forced by the divergence of an eddy flux. For adiabatic
eddies, eddy-forcing belongs in the zonal mean momentum equation.

There are several approaches to ameliorating these issues (see, for example, [5], [9], [10],
[14], [17]). Below, we follow the approach outlined in [14].

When both diabatic and mechanical forcing vanish (X = Q = 0), the zonal mean
buoyancy and zonal velocity terms are forced by the divergence of an eddy flux. These
eddy fluxes have components that are both along the mean gradient (of a given tracer) and
a component that is ’skew’, that is, along iso-surfaces of the tracer. Residual mean theory
involves redefining the velocity to repartition the fluxes so that the ’eddy flux’ that forces
the mean terms contains no skew component.

As an example, consider a tracer that satisfies the following zonal mean equation

ct + v · ∇c = −∇ · v′c′ + S (5)

where S is a source term. We define a ’residual velocity’ v† by

v† = v +∇∧ x̂ψ? (6)

where ψ? is a ’psuedo-Stokes’ streamfunction that needs to be specified (the ’psuedo’ refers
to the non-divergent nature of the resulting velocity whereas the ’usual’ Stokes velocity
tends to be divergent [9]). Eliminating v from the zonal mean tracer equation gives

ct + v† · ∇c = −∇ ·
[
v′c′ − ψ?x̂ ∧∇c

]
+ S. (7)

We now choose ψ? so that the eddy flux only has a component along ∇c. The direction in
the meridional plane orthogonal to ∇c is x̂∧∇c. It follows that the skew component of the
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flux is (x̂ ∧ ∇c) · v′c′. Consequently, to ensure that the eddy flux has no skew component,
we choose

ψ? =
1

|∇c|2
[x̂ ∧∇c] · v′c′. (8)

The eddy forcing term on the right hand side becomes

[
v′c′ − ψ?x̂ ∧∇c

]
= v′c′ −

[(
x̂ ∧ ∇c

|∇c|

)
· v′c′

](
x̂ ∧ ∇c

|∇c|

)
(9)

The skew component of the eddy flux is subtracted from the total flux so that the eddy flux
forcing the tracer equation only has a component along ∇c.

The velocity obtained from the streamfunction is the quasi-Stokes velocity v? = ∇∧x̂ψ?.
The residual velocity is then

v† = v + v?. (10)

The above equation shows the analogy between the residual velocity and the Lagrangian
velocity in, say, wave dynamics. Both the residual and Lagrangian velocities are equal to
a mean (Eulerian) velocity plus a velocity arising from the non-linearities of the governing
equations (a Stokes velocity).

2.1 Residual mean buoyancy equation

Define n̂ = ∇b/|∇b| to be the unit vector normal to buoyancy surface and ŝ = n̂ ∧ x̂ to
be the unit vector along buoyancy surfaces. The buoyancy flux can then be written as the
sum of a skew flux (along b-surfaces) and a diapycnal flux (across b-surfaces),

v′b′ =
(
v′b′ · ŝ

)
ŝ+

(
v′b′ · n̂

)
· n̂. (11)

To eliminate the skew component of the eddy buoyancy flux, we can choose a streamfunction
to be of the form

ψ? = − 1

|∇b|2
ŝ · v′b′. (12)

It turns out the buoyancy equation retains the same form under the more general transfor-
mation

ψ? = − 1

|∇b|2
[
ŝ · v′b′ − α n̂

(
v′b′
)]

(13)

where α is some arbitrary function. Under this transformation, the buoyancy equation takes
the form

bt + v† · ∇b = −∇ ·
[(
v′b′ · n̂

)
(n̂+ αŝ)

]
+Q. (14)

The residual flux only depends on the diapycnal component of the raw eddy buoyancy flux
v′b′. This immediately displays one of the advantages of the mean residual formulation– in
the adiabatic ocean interior, the diapycnal eddy flux vanishes. In steady state, the buoyancy
equation is only forced by sources and sinks of buoyancy.

There are three canonical choices for the function α.
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1. Non-quasigeostrophic case: Here we choose α = 0. The quasi-Stokes streamfunc-
tion then is the projection of the eddy flux along buoyancy surfaces ψ? = |∇b|−1

(
ŝ · v′b′

)
and the residual eddy flux is then simply the diapycnal component of the raw eddy
flux directed along the mean buoyancy gradient.

2. Quasigeostrophic case: We set α = −by/bz (i.e. α is now the slope of the buoyancy
surfaces in the meridional plane). The quasi-Stokes streamfunction then takes the
particularly simple form ψ? = −v′b′/bz. In the quasigeostrophic limit when buoyancy
slopes are shallow, the non-quasigeostrophic case is equivalent to the quasigestrophic
case. In this case, the residual eddy flux is directed along the vertical.

3. The Held-Schneider: The third case corresponds to α = bz/by. This leads to a
residual eddy flux directed along the meridional direction. This formulation is useful
for dealing with surface boundary conditions in residual-mean problems. This choice
for the streamfunction was first introduced in [6].

2.2 Residual mean momentum equation

We now express the zonal mean momentum equation in terms of the residual velocity to
obtain the residual momentum equation. We adopt the non-quasigeostrophic quasi-Stokes
streamfunction where α = 0. The zonal mean momentum equation then takes the form

ut + v† · ∇u = −∇ ·
[
v′u′ − ψ?ζa

]
+ X (15)

where ζa = uzŷ− (f + uy) ẑ is the absolute momentum of the zonal flow. Alternatively, we
can rewrite the equation so that the residual Coriolis acceleration appears explicitly

ut + v† · ∇u− fv† = −∇ ·
[
v′u′ − ψ?ζ

]
+ X (16)

where ζa = ζ + f ẑ.

3 The Marshall-Radko Model

In this section we derive the Marshall-Radko model [7] of Southern Ocean overturning in the
limit of no residual circulation. Making use of Held-Schneider quasi-Stokes streamfunction,
the steady residual buoyancy equation takes the form

v† · ∇b = −∇ ·
[
|∇b|
by

(
n̂ · v′b′

)
ŷ

]
+Q = −∂y

[
v′b′ − 1

s
w′b′

]
+Q (17)

where s = −by/bz is the slope of buoyancy surfaces.
The steady residual zonal momentum equation is

v† · ∇u− fv† = −∇ ·
[
v′u′ + ψ?ζ

]
− fψ?z + X . (18)

To simplify the above two equations, a few assumptions are made:
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1. In the interior of the ocean, there is no buoyancy forcing Q = 0 and the buoyancy
eddy fluxes are directed entirely along isopycnals. The residual buoyancy equation
simplifies to

v† · ∇b = 0. (19)

Thus, in the ocean interior, the residual circulation is along buoyancy surfaces.

2. Note that we can write the momentum equation as

−fv† = −∇ ·
[
v u+ v′u′

]
− fψ?z + X . (20)

We now assume that the eddy momentum terms can be ignored and that we can write
the momentum source term as a vertical divergence X = τ z. The residual momentum
equation then reduces to

fv† = fψ?z − τ z.

Another way to think about this approximation is as follows. We suppose that the
residual circulation is weak enough such that the advection of zonal momentum by
the residual flow may be neglected. This allows us to ignore the v† ·∇u term. We also
assume the meridional component of the eddy flux may be neglected. Then, assuming
X = Tz where T is the wind stress, we have

−fψ†z = τz − fψ?z (21)

where τ = T − w′u′ + ψ?uy.

We introduce a residual streamfunction by v† = ∇∧ x̂ψ†, then the governing equations
in the interior of the ocean are

J
(
†, b
)

= 0 (22)

ψ†z = − 1

f
τ z + ψ?z (23)

where J(A,B) = AyBz −AzBy is the Jacobian. The vanishing of the Jacobian implies that
there must be a functional relationship ψ† = ψ†(b).

Since the the vertical velocity vanishes at the surface z = hm, both streamfunctions
must vanish there. Integrating the momentum equation from the surface to some depth z
in the interior, we obtain

† =
τ

f
+ ψ? (24)

where τ0 is the zonal mean stress at the surface.
To close the circulation, there must be a mixed layer where the residual streamfunction

crosses buoyancy surfaces. We suppose that there is a vertically homogeneous mixed layer
of constant depth hm (whose bottom boundary is z = 0). In the mixed layer, the buoyancy
eddy flux will have a diapycnal component. Rewrite the buoyancy equation as

v† · ∇b = −∂y
[
(1− µ) v′b′

]
+Bz (25)
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where µ = 1
s
w′b′

v′b′
is a measure of diapycnal eddy buoyancy flux.We also assumed that the

buoyancy forcing at the surface takes the form Q = Bz In the mixed layer, we suppose that
µ varies linearly from µ = 0 at the base of the mixed layer z = 0 to µ = 1 at the surface
z = hm. Noting that v† · ∇b = −J(ψ†, b) = ψ†zby, then the buoyancy equation in the mixed
layer is

†
z∂ybs = − (1− µ) ∂yv′b′ +Bz (26)

where bs = bs(y) is the buoyancy in the mixed layer. Integrating from the surface to the
base of the mixed layer yields

†|z=0 = − B0
∂ybs

where B0 = B|z=0 −
∫
dy (1− µ)v′b′. Here we have assumed that entertainment fluxes at

the base of the mixed layer vanish B|z=0 = 0. The above expression sets the functional
relationship between the residual streamfunction and the buoyancy. If B0 > 0 so that the
mixed layer is locally gaining buoyancy, then since ∂ybs > 0, ψ† > 0 (and ψ† vanishes at
the surface) then the flow is equatorward in the mixed layer. If the buoyancy gradient in
the mixed layer is constant, then the circulation is proportional to the surface buoyancy
forcing.

To summarize, the equations governing the Marshall-Radko model [7] are

† =
τ0
f

+ ψ? (27)

J
(
†, b
)

= 0 (28)

†|z=0 = − B0
∂ybs

(29)

The wind stress at the surface τ0(y), the buoyancy in the mixed layer bs(y), and the net
buoyancy supplied to the mixed layer B(y) are given, and we solve for the residual circulation
ψ† (and hence the buoyancy).

Although we use the Held-Schneider eddy streamfunction ψ? = v′b′

by
, the fact that the

interior is adiabatic implies that all three choices of eddy streamfunctions are equivalent, so

ψ? =
w′b′

by
= −v

′b′

bz
.

Finally, to close the system, we need to specify the functional dependence of ψ?. We do
this by using a simple down-gradient buoyancy closure v′b′ = −Kby where K is a positive
eddy transfer coefficient (equivalent to the Gent-McWilliams parameterization [5]). The
eddy streamfunction then is ψ? = −Ks where s = −by/bz is the slope of buoyancy surfaces.

4 Nikurashin-Vallis Model

The Nikurahsin-Vallis model [12] consists of a diabatic circumpolar channel governed by
the Marshall-Radko [7] model coupled to an ocean basin where Munk’s advective-diffusive
balance [11] holds. The stratification and circulation of the circumpolar channel are required
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to match those of the ocean basin. There is an extension of the model to include an Atlantic
deep water source [13], but for the remainder of the report, we restrict our attention to a
Pacific-like basin with deep water formation near the southern boundary.

The governing equations in the circumpolar channel are

−fv† = ∂zτ − fv? (30)

fuz = −by (31)

v†y + w†z = 0 (32)

v† · ∇b = ∂z
(
κbz
)
. (33)

As before, we have ψ† = ψ + ψ? where ψ = −τ0/f and ψ? = Ks where the eddy transfer
coefficient K is taken to be constant. Note that, for consistency with [12], we have redefined
all streamfunctions to include a negative sign (i.e. ψ → −ψ).

At the base of the mixed layer (at z = 0), the buoyancy distribution is given by

b|z=0 = b0(y). (34)

At the northern edge of the channel (at y = 0), the buoyancy and overturning circulation
in the channel are required to match those of the basin.

In the basin north of the channel, we assume that the buoyancy surfaces are horizontal
and that Munk’s advective diffusive balance holds,

†
ybz = ∂z(κbz). (35)

Note that, in the ocean basin, ψ† = ψ since ψ? = 0 for flat isopycnals. We can integrate
this equation from the northern edge of the channel (at y = 0) to the northern edge of the
basin (at y = L) to obtain the northern boundary condition for the channel

† =

∫ L

0
dy

∂z
(
κbz
)

bz
= − L

∂z
(
κbz
)

bz
(36)

where the last equality follows from the fact that isopycnals are flat within the ocean basin.
Note that if κ = 0 the residual circulation vanishes everywhere.

In this model, we prescribe the wind forcing τ(y) and the buoyancy in the mixed layer
bs(y). We then obtain the stratification and the residual circulation in the channel and the
ocean basin. The air-sea buoyancy flux is part of the solution and need not be prescribed.
The governing equations for the model (in the channel) are then

†
y + sbψ

†
z =

1

bz
∂z
(
κbz
)

(37)

† = − τ
f

+ ψ? (38)

†|y=0 = −L
∂z
(
κbz
)

bz
(39)

b|z=0 = bs(y). (40)
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We now non-dimensionalize the governing equations using the following scales

z = Dẑ y = lŷ τ = τ0τ̂ (41)

f = |f0|f̂ ψ† = τ0
|f0| ψ̂

† s =
D

l
ŝ (42)

where D the depth of the channel and l is the width of the channel. In [12] the vertical
diffusivity κ is taken to be constant. We instead suppose that κ has an exponential vertical
structure in depth with a characteristic e-folding scale of H. Mathematically, κ takes the
form

κ = κ0e
−(z+D)/H = κ0e

−(ẑ+1)/η (43)

where η = H/D is the ratio of the vertical scale of the stratification to the depth of the
basin. The non-dimensional governing equations in the channel are

†
y + sψ†z = λεκ

(
bzz
bz
− 1

η

)
(44)

ψ† = Tτ + s (45)

†|y=0 = −εκ
(
bzz
bz
− 1

η

)
(46)

b|z=0 = bs(y). (47)

where the non-dimensional numbers λ, ε, T are defined by

λ =
l

L
ε =

κ0L/D

KD/l
T =

τ/(ρ|f0|)
KD/l

. (48)

The first parameter λ is the ratio is of the meridional extent of the channel to the basin
with a value of λ ∼ O(0.1) � 1. The second parameter ε is a non-dimensional measure of
the mixing. Using D ∼ 103m,K ∼ 103m2s−1, L ∼ 107m, we find that ε ∼ κ0 · 104m−2s
so that κ0 ∼ 10−4m2s−1 would make ε of first order importance. T is a non-dimensional
measure of the wind forcing. For τ ∼ 0.1Nm−2 typical of the Southern Ocean, we obtain
T ∼ 1. Finally, η is the ratio of the decay-scale of the vertical diffusivity to the ocean depth
and is typically order one.

The governing equations (for constant wind stress) can be rewritten as

[byy + λε (κbz)] b
2
z − 2byzbybz + bzzb

2
y = 0 (49)

by − Tbz = ε(κbz)z at y = 0. (50)

Note that, in the case of constant wind stress, the wind forcing only appears in the boundary
condition.

The quantity we are interested in is the minimum of ψ at the northern edge of the
channel (at y = 0). Requiring that ψ = T − by/bz be a minimum in the vertical yields the
relation

byzbz = bzzby (51)

which provides the relation

[byy + λε (κbz)] b
2
z − bzzb2y = 0 at z = zpeak (52)

Substituting in the boundary condition at y = 0 then gives a relationship between the
gradients of the buoyancy at the position of the maximum.
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5 Scaling Arguments

5.1 Uniform κ

First, we consider the case when κ is independent of depth as in [12]. This implies that the
(non-dimensional) vertical diffusivity is κ = 1. In addition, if we also assume constant wind
forcing, then τ = 1 and wind forcing only appears in the northern boundary condition. At
the northern edge of the channel, the following balance holds,

= T + s = −εbzz
bz
. (53)

We have dropped the dagger superscript on the residual circulation ψ†. From here on in
the report, ψ = ψ†.

5.1.1 Adiabatic limit

We now consider the adiabatic limit when ε is small (or more precisely, ε� T ). Then there
are two possible scalings that emerge from the governing equations.

One possibility, if we assume bzz/bz is O(1), is that the slopes are set by the wind to
leading order

T + s ≈ 0. (54)

Here, stratification in the channel is set by wind. But how does this physically occur?
And why is it that the wind forcing appears only at the northern boundary condition? To
understand this, we must be more careful in how we represent the wind. In deriving the
model, we assumed that there is some wind forcing that leads to an Eulerian circulation
ψ = Tτ(y) in the channel. For constant wind forcing, τ = 1 in the channel, that is, τ(y) = 1
for y ∈ [−l, 0). In the basin, at y > 0, the wind forcing is assumed to vanish. Therefore,
τ(y) = 1− θ(y) where θ is the step function. It then follows that w = ∂yψ = −Tδ(y) where
δ(y) is the delta function. Consequently, although a constant wind forcing results in no
Ekman upwelling or downwelling in the interior of the channel (since ψy = 0), we do obtain
a downward velocity exactly at the northern edge of the channel. This negative velocity
pushes buoyancy surfaces deep into the ocean and, in the adiabatic limit, sets the large-scale
stratification of the circumpolar channel. This is the balance implied in the equation above.

The above balance implies that stronger winds lead to buoyancy surfaces with steeper
slopes. Let us write the slope as a ratio of the vertical and horizontal length scales of the
stratification s ∝ −h/`. Now, we suppose that ` = 1 so that changes in the slope are due
to changes in the vertical scale of the stratification h, then −s ∝ h ∝ T . Substituting this
expression into the northern boundary condition

= −εbzz
bz
∝ − ε

h
∝ − ε

T
. (55)

where bzz/bz ∝ h. We see that, in the adiabatic limit, ψ is expected to be linearly propor-
tional to the diffusivity and inversely proportional to wind stress.

Alternatively, for small ε, the ratio bzz/bz can become large enough so that εbzz/bz does
not become negligible in comparison to the other terms. In terms of the length scale h, this
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involves h ∝ ε−1, then

T − h

`
= − ε

h
. (56)

Both T and ε/h are now O(1). The term representing the slope can only be order one if
` ∝ ε which represents a case where the buoyancy field in the circumpolar channel has small
horizontal and vertical characteristic scales. If we assume ` = 1 as before, then we obtain

T = − ε
h
. (57)

Since T > 0, this balance is only possible if h < 0, which is equivalent to bzz < 0 for stable
stratification. This implies a balance between the δ-downwelling at the northern edge of
the channel and diffusion. The meridional overturning circulation implied by this balance
is

∝ − ε
h
∝ 1 (58)

we obtain a circulation that is independent of wind and diffusion and is in a direction
opposite to the circulation observed in the southern ocean. This alternative scaling is never
observed in the model runs described later in the report.

5.1.2 Diabatic limit

Now consider the limit that ε is large (ε � T ). Again, as before, then the system can
respond in two ways. The first corresponds to the case when bzz/bz is O(1). This then
implies that we may ignore T and that

s ≈ −εbzz
bz

(59)

so that buoyancy slopes become large |s| ∝ ε� T . As before, we write the slope as a ratio
between the characteristic vertical and vertical scale of the buoyancy s ∝ −h/`.

In [12], they assume that ` = 1 so that changes in the slopes are due to changes in the
stratification. Then, as in the adiabatic case, bzz/bz ∝ h. This then implies

−h ∝ − ε
h

(60)

which leads a h ∝
√
ε and

∝ −
√
ε. (61)

In this scaling, increasing diffusivity increases the vertical scale of the stratification so that
bz and bzz both become smaller. The slopes become steeper not because of any modifications
to by, but rather due a decreasing stratification bz.

Although the ψ ∝
√
ε is observed in the model, it is not for the reason [12] suggest. To

obtain the correct scaling, we must use the buoyancy equation in the channel. At the depth
of an extrema of ψ, the buoyancy equation may be written as

s2 =
byy
bzz

+ λε (62)
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subject to the boundary condition Tbz + by = εbzz. Recall that T � ε in the diabatic limit.
Consequently, we can neglect the term Tbz if we assume bz ∼ O(1). Let C = bzz denote the
vertical curvature of the buoyancy profile. The lateral gradient of buoyancy has the form
by = ∆b/` where ∆b is the buoyancy difference between the circumpolar channel and the
basin. This also implies that byy ∝ ∆b/`2. If we assume ` = 1 then we obtain

(∆b)2 =
∆b

C
+ λε (63)

while the boundary condition gives
∆b = εC. (64)

Solving this system of equations gives

C ∝
√

1 + λ

ε
(65)

∆b ∝
√

(1 + λ) ε (66)

which implies a circulation that scales as

∝ −εC ∝ −
√

(1 + λ) ε. (67)

Again, the circulation is proportional to the square root of the diffusivity. However, unlike
in [12], here bz at the minimum of ψ is independent of ε. In the diabatic limit, the ψ ∝

√
ε

scaling emerges due to the curvature decreasing with increasing diffusivity. This scaling
also predicts that the fields b and by should display a

√
ε dependence. This is verified later

in the report.
Now we address the physical meaning of this scaling. The northern boundary condition

is essentially a statement that the circulation and stratification of the channel must be
consistent with the advective-diffusive balance in the basin. We can rewrite this as

w?bz = εbzz (68)

where we have neglected the contribution from the wind-driven δ-downwelling velocity w
because we are in the diffusive limit. Note that w? = −∂y(by/bz). Therefore, this state-
ment is that the stratification in the channel must be configured so that the eddy induced
upwelling can balance the downward diffusion of buoyancy. This is why, unlike the scaling
of [12], the above scaling required the use of the buoyancy equation in the channel.

5.2 Bottom enhanced diffusivity

In the adiabatic limit, it is irrelevant whether the diffusivity is uniform or bottom enhanced.
The adiabatic limit is therefore identical to that discussed above. In this section, we instead
look at the diabatic limit when ε is large and κ = e−(z+1)/η.

We begin with a perturbation expansion of the buoyancy field. In the diffusive limit, ε
is large, this motivates the use of ε−1 as our small parameter,

b = b(0) + ε−1b(1) + · · · . (69)
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Substituting into the governing equations yields

0 = −κ

(
b
(0)
zz

b
(0)
z

− 1

η

)
(70)

b(0)yy [b(0)z ]2 − 2b(0)yz b
(0)
y b(0)z + b(0)zz [b(0)y ]2 = 0 (71)

at zeroth order in ε. We see that, to leading order, the buoyancy of the deep ocean is set by
the diffusivity. The constant wind stress, which appears in the boundary condition, does
not appear at leading order.

At the next order, the northern boundary condition becomes

Tb(0)z − b(0)y =− κ

(
b(1)zz −

b
(1)
z

η

)
(72)

We see that although the O(ε0) buoyancy fields b(0) are independent of wind, the O(ε−1) 
buoyancy fields depend on wind in the diffusive limit.

Now, the overturning streamfunction in the basin has the form

= −ε
(κbz)z
bz

= −κ

(
b(1)zz −

b
(1)
z

η

)
+O(ε−1) (73)

That is, the O(ε0) buoyancy field b(0) that is independent of wind does not contribute
to the residual circulation. To leading order in ε−1, it is the perturbation buoyancy field
b(1) that determines the magnitude of the residual circulation. In order to obtain the
perturbation buoyancy field, the wind stress must be taken into account, even in the diffusive
limit. This is the fundamental difference in the sensitivity to wind stress between the
case with uniform diffusivity and bottom-intensified diffusivity. In the case with uniform
diffusivity, it is the zeroth order buoyancy field b(0) that sets the overturning circulation, and
in the diffusive limit, b(0) is independent of wind. This leads to an overturning circulation
that is independent of wind stress. In the case with a bottom-enhanced κ, the leading
order buoyancy field b(0) that is determined by the diffusivity does not contribute to any
overturning. It is the higher order buoyancy fields that are sensitive to wind that are
important to overturning. This leads to a circulation that retains its sensitivity to wind
stress, even in the diffusive limit.

6 Numerical Solutions

6.1 Numerical solver

The equations are solved on a staggered Cartesian grid in a domain y ∈ [−l, 0] and z ∈
[−D, 0] where l = 1000km and D = 4km. A grid spacing of ∆y = 50km and ∆z = 50m is
used. The buoyancy flux is required to vanish at the bottom and the streamfunction is set
to zero on all boundaries aside from the northern boundary (which connects the channel
to the basin). To step the equations forward in time, the time tendency in the buoyancy
equation is retained, and the model is run until a steady state is reached.
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In all the solutions below, a constant wind stress, in both space and time, is used. The
surface buoyancy distribution is prescribed to be

bs(y) = b0

(
1 +

y

l

)
(74)

with b0 = 2× 10−2ms−2.
After obtaining the numerical solutions in the channel, the solutions are analytically

continued into the basin through the (dimensional) relation

† = −L
(κbz)z
bz

(
1− y

L

)
for 0 < y < L. (75)

This relation is obtained by integrating the vertical advective-diffusive balance in the basin
from latitude y = 0 to some arbitrary latitude y.

There is one subtlety that differentiates the numerical solver from the mathematical
model presented above. In the mathematical model, the eddy streamfunction is exactly
ψ? = Ks and is required to vanish at the top and bottom. However, this is numerically
challenging as can be seen from the following example. Near the upper and lower boundaries
of the ocean the stratification becomes weak making the eddy streamfunction ψ? large in the
boundary layers. But then ψ? is also required to vanish at the upper and lower boundaries.
One way to avoid this difficulty is to make ψ? a nonlocal function of the stratification. In
[4], the following boundary value problem for ψ? is presented(

c2
d2

dz2
− bz

)
ψ? = Kby (76)

with ψ? vanishing at the upper and lower boundaries. The parameter c that appears above
is a depth-independent speed that needs to be specified. If c = 0, we obtain ψ? = Ks,
equivalent to the mathematical model presented in the previous sections. In general, c is
typically set to a baroclinic wave speed cm approximated by

cm ≈
1

mπ

∫ 0

−D
bzdz. (77)

Choosing a low baroclinic wave speed (i.e. a small m) emphasizes lower vertical modes. All
the solutions presented below have m = 2.

We now look at the regions where ψ? in the numerical model (as obtained from the
boundary value problem) approximates the ψ? = Ks in the mathematical model. A non-
dimensional form of the boundary value problem is(

ε2
d2

dz2
− bz

)
ψ? = Γby (78)

where ε2 = c2/(N2
0D

2) and Γ = KN2
0D/L. In the limit ε→ 0, we expect ψ?, as computed

from the boundary value problem, to equal Ks in the interior of the ocean, and approach
zero quadratically in thin boundary layers near the upper and lower boundaries. We now
compute the thickness of these boundary layers. Any analysis done on the mathematical
model is expected to hold only outside these boundary layers.
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In the case of uniform stratification bz = 1, we obtain ε = (mπ)−1. The boundary layer
thickness is then given by δz = ε = (mπ)−1, or including dimensions,

δz =
D

mπ
. (79)

For m = 2, δz = D/(2π) ≈ D/6 ≈ 630m. In the upper and lower 630m of the ocean,
ψ? 6= Ks and ψ? is determined by a combination of quadratic interpolation in addition to
the stratification in the water column.

It is also worth noting that, in regions of weak stratification, ε becomes large and Γ
becomes small reducing the boundary value problem to

ε2
d2ψ?

dz2
= 0. (80)

In weakly stratified regions, the ψ? in the model has essentially no resemblance to the form
ψ? = Ks and is simply a quadratic in the vertical.

6.2 Uniform diffusivity

We now verify the scaling relations derived earlier by conducting a sweep of parameter space
for a range wind stress and vertical diffusivity values given by

0.05Nm−2 < τ < 0.25Nm−2 10−5m2s−1 < κ < 10−3m2s−1 (81)

Where κ is the vertical average of κ. The values of τ are linearly space while a logarithmic
spacing is chosen for the values of κ. For the case with uniform κ we choose ten points for
each of τ and κ. For all other simulations, twenty points are chosen (i.e. 20×20 simulations
are done, one for each pair of (τ, κ))

First we show some cross sections in (τ, κ) space displaying the dependence of ψ on wind
stress and vertical diffusivity. The value of ψ is diagnosed at y = 0 and the vertical position
of the minimum of ψ (see figure 1). The minimum of ψ at the northern edge of the channel
is a measure of the overturning circulation in the basin. By continuity, the minimum of psi
at the northern edge of the channel must equal the amount of water upwelling in the basin.

Figure 2 shows the dependence of the overturning to diffusivity. We see that, even for
the weakest wind stress, the overturning streamfunction scales with the square root of the
vertical diffusivity. Thus, we conclude that our simulations are in the diffusive regime of
[12].

In Figure 3, we see the dependence of the overturning streamfunction to wind stress.
For the largest values of diffusivity, there is a weak dependence of wind stress as expected
from the diffusive limit of [12]. Even for the smallest diffusivity displayed in figure 3, the
dependence on wind is weaker than the expected τ−1 scaling. This is consistent with the
fact that our simulations are in the diffusive limit.

We show the dependence of the circulation to both τ and κ in figure 4. Observe that
the slope of the contours of ψ in (τ, κ) space indicate that the strength of the overturning
circulation will always decrease with increasing wind and increase with increasing diffusivity.
The contours also become more vertical for stronger diffusivity, which is a manifestation of
the insensitivity of the circulation to wind in the diffusive limit.
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Figure 1: The overturning circulation for an exponentially enhanced diffusivity profile (as
described in the text). The thin black lines are lines of constant temperature (or, equiv-
alently, buoyancy). The thick black lines are lines of constant transport and the color
represents the value of ψ . The white dot represents the maximum value of the overturning
streamfunction at the northern edge of the channel and is a measure of the overturning

circulation in the basin. For this plot τ = 0.13Nm−2 and κb = 1.4 × 10−3m2s−1.

Figure 2: The minimum of ψ at the northern edge of the channel as a function of κ for the
case of uniform diffusivity. Different lines represent different values of the applied constant
wind stress.
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Figure 3: The minimum of ψ at the northern edge of the channel as a function of τ for the
case of uniform diffusivity. Different lines represent different values of the vertical diffusivity.

Figure 4: The maximum of |ψ| as a function of τ and κ for a uniform diffusivity (left) and
an exponential, bottom enhanced diffusivity (right).
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Figure 5: Buoyancy and its gradients as a function of vertical diffusivity for τ = 0.25Nm−2.
The slope s is defined by s = −by/bz.

We can also look at how buoyancy and its gradients are modified as either vertical
diffusion or wind stress are modified. In figure 5, we see the stratification is essentially
independent of diffusivity. Rather, the slope increases because by ∝

√
κ. Furthermore, we

see that the buoyancy b also increases with the
√
κ and that the vertical curvature of the

buoyancy bzz decreases with
√
κ. This implies that, unlike what is suggested in [12], it is

not the vertical scale of the stratification that is decreasing with diffusivity but only the
vertical curvature of the buoyancy. In addition, the steepening of the slopes is entirely due
to the larger buoyancy gradient between the channel and the basin,

db

dy
≈ bbasin − bchannel

∆y
≈ bbasin

∆y
+O(λ) (82)

where, from figure 5, we have bbasin ∝
√
κ. Thus, the slopes of buoyancy surfaces (and hence

the overturning circulation) are increasing with diffusivity not because of any changes in
the characteristic vertical or horizontal scales of the stratification, but because of the larger
buoyancy gradient between the channel and the basin.

Finally, in figure 6, we show the dependence of the buoyancy gradients on wind stress. All
fields are largely insensitive to wind stress, although both by and bz show greater sensitivity
than the other fields. However, both increase with wind in such a way so that the slope
s = −by/bz (and hence the overturning) is insensitive to wind. What this tells us is that, in
the diffusive limit, stronger winds will enhance stratification at the peak of the overturning
circulation, but this enhancement is largely confined near the northern edge of the channel
(more so with stronger winds, hence the increasing by),

6.3 Bottom intensified diffusion

We now impose a diffusivity that is exponentially enhanced near the ocean bottom. Vertical
diffusion now has the form

κ(z) = κt + (κb − κt)e−(z+D)/H . (83)
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Figure 6: Buoyancy and its gradients as a function of wind stress τ for κ = 10−3m2s−1.
The slope s is defined by s = −by/bz.

Figure 7: ψp as a function of κ for the case of bottom intensified diffusivity. Different lines
represent different values of the applied constant wind stress.

Here, κt is some background value of vertical diffusivity away from the bottom boundary. In
all simulations it, is chosen to have a value of κt = 10−5m2s−1. The value of the diffusivity
at the bottom is κb. The vertically averaged value of κ(z) is denoted by κ. The simulations
below are done for values of κ between 10−5m2s−1 and 10−3m2s−1. One can then compute
the appropriate value of κb in the above expression. There are two vertical length scales
in the expression for κ(z). The first is the ocean depth which is given by D. The vertical
length scale H is the e−folding scale of the bottom diffusivity. In the limit that H →∞ we
recover the vertically uniform bottom diffusivity. For the following simulations we choose a
value H = 500m.

As before, we proceed by showing cross sections of ψ in (τ, κ) space. Figure 7 shows the
dependence of the strength of the overturning circulation to the value of diffusivity at the
ocean bottom. We see that, as in the case with uniform diffusivity, the overturning displays
a
√
κ dependence on the diffusion. However, the mechanism giving rise to this dependence

differs from a uniform diffusivity ocean.
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Figure 8: ψp as a function of τ for the case of bottom intensified diffusivity. Different lines
represent different values of the bottom vertical diffusivity κb.

At the northern end of the channel, the overturning streamfunction satisfies

= −L
(κbz)z
bz

≈ −Lκ
(
bzz
bz
− 1

H

)
(84)

where we have approximated κ by κ ≈ κbe
−(z+D)/H , valid when κb � κt. From the

momentum equation we also know that = −τ/f +Ks, giving the following balance

= − τ
f

+Ks ∝ −Lκbe−(dp−D)/H δ

H2
(85)

where δ/H2 = bzz/bz − 1/H and dp is the depth of the peak of the overturning circulation.
In the diffusive limit, there is typically a leading order balance between bzz/bz and 1/H [8],

bzz ≈
1

H
bz. (86)

This is a strong constraint on the vertical structure of the buoyancy in the basin. It says
that both the stratification bz and its gradient bzz are exponentially decreasing towards the
ocean bottom with an e−folding scale equivalent to that of the vertical diffusion. Since κ
is small near the surface, this relationship is only valid at sufficient depths. The depths at
which bzz/bz = 1/H approximately holds is called the deep layer [8].

The existence of a deep layer implies that δ becomes small in the diffusive limit. The
circulation is then proportional to δ, which is a measure of the the deviation of the vertical
structure of the stratification from an exact exponential structure determined by a vertical
decay scale of H.

So why is ψ ∝
√
κ in the diffusive limit? In the case where diffusion is uniform, this

is determined by the decrease in the vertical curvature of the buoyancy field (bzz ∝ 1/
√
κ)

which leads to ∝ κbzz/bz ∝
√
κ. However, in the bottom intensified case, we see from

figure 9 that both bzz and bz are insensitive to changes in κ for sufficiently large κ. Rather,
we see that δ is now inversely proportional to

√
κ. That is, a larger vertical diffusivity makes

the vertical structure of the stratification closer to an exponential with a vertical decay scale
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Figure 9: Buoyancy and its gradients as a function of vertical diffusivity for τ = 0.25Nm−2

for the case of bottom-intensified vertical diffusion. The slope s is defined by s = −by/bz.

Figure 10: Buoyancy and its gradients as a function of wind stress τ for κ = 10−3m2s−1

for the case of bottom-intensified vertical diffusion. The slope s is defined by s = −by/bz.
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of H. Along with the observation that the depth of the peak becomes insensitive to the
strength of the diffusivity, we obtain the ψ ∝

√
κ scaling.

In figure 10 we see that, unlike in the case of uniform diffusivity, the buoyancy and its
gradients show a strong dependence on wind. In particular, b, bz, and bzz all scale linearly
with τ whereas by ∝ τ2. This is consistent with the balance at the northern edge of the
basin. The balance may be rewritten as

−Kby ∝
(
τ

f
− Lκbe−(D−dp)/H

δ

H2

)
bz. (87)

Noting the bz and the e−(D−dp)/H are proportional to τ , we find that by ∝ τ2.
In the diffusive limit, the large κ pins the vertical structure of the buoyancy at sufficient

depths in the basin. In the deep layer (at y = 0), b ≈ b0e
(z−D)/H + b1 where b0, b1 are

some constants, and so bz ≈ 1
H b0e

(z−D)/H and bzz ≈ 1
H2 b0e

(z−D)/H . Thus, the fact that
b, bz, bzz scale with τ implies that it is b0 that scales with τ . We can interpret b0/H as
the stratification near the top of the deep layer (i.e. at the transition between the wind-
driven adiabatic layer and the deep layer). Physically, increased wind forcing pushes more
buoyancy (or, equivalently, stratification) downwards to the deep layer where then it decays
with a decay scale of H towards the bottom. By pushing more buoyancy deeper into the
ocean, a stronger overturning circulation is possible because of the large values of diffusion
at depth (so that more water mass transformation takes place).

Note that e−(D−dp)/H is proportional to τ and that δ is independent of wind. This
implies that

∝ −Lκbe−(D−dp)/H
δ

H2
∝ τ (88)

so that overturning should be linearly proportional to wind. However, from figure 8, we see
that ψ ∝ τ1/3. It turns out this inconsistency is due to the tapering scheme employed in
the numerical implementation of Gent-McWilliams parametrization.

Figure 4 shows the dependence of the maximum of |ψ| on the overturning circulation.
We see that iso-ψ lines have positive slopes in (ψ, κ) space for low values of κ and negative
slopes for large κ. This corresponds to the transition between ψ decreasing with wind stress
in the adiabatic limit to ψ increasing with wind stress in the diffusive limit.

We can also look at how the results depend on the e-folding depth H of the diffusivity.
The above results are for H = 500m. In figure 11 we show the dependence of ψ on both κ
and τ in the case of H = 250m and the case when H = 750m. When H = 250, essentially,
diffusivity is weak everywhere in the water column except in a thin layer near the bottom
boundary. Therefore, we see that, except for the largest values of wind and diffusivity, the
overturning circulation weakens with stronger wind forcing. If H is too small, the bottom
enhanced diffusion does not play a role in the dynamics of the overturning circulation and
the overturning is essentially in the adiabatic limit.

Figure 11 also shows the case with H = 750m. Recall that, as H → ∞, we recover a
uniform κ and hence an overturning circulation that weakens with stronger wind forcing.
We see that in the limit of weak diffusivity, ψ weakens with stronger winds, as expected in
the adiabatic limit. As κ get larger, we observe that the dependence of ψ on wind forcing
reverses and now ψ increases with increasing wind, as expected from the bottom-enhanced
diffusive limit. At even larger values of κ, the overturning becomes relatively insensitive to
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Figure 11: The maximum of |ψ| as a function of κ and τ . The plot on the right is for an
e-folding depth of H = 250m and the plot on the left is for H = 750m.

κ, as expected from the H → ∞ limit. From 11, we see that the overturning circulation
displays a non-trivial dependence on wind forcing and that H needs to be known for even
the sign of the sensitivity to be determined.

We now return to the issue of the tapering scheme [4] employed in the model. At the
northern end of the channel, the boundary condition states that

= −L
(κbz)z
bz

. (89)

In the numerical solver, however, the two sides of the equation are not equal due to the 
tapering scheme. Regions where bz → 0 are essentially interpolated through quadratically. In 
par-ticular, in the bottom boundary layer, the stratification becomes weak and the right hand
side becomes large while the tapering scheme sends ψto zero. Figure 12 shows both sides of
the equation in the limit of weak, intermediate, and strong diffusivity for an intermediate
value of wind stress. What is important to note in the figure is that in the case of large
diffusivity, the strength of the overturning circulation is determined by the tapering scheme.
The black line in the rightmost plot only has a minimum because the stratification in the
bottom boundary layer is weak so the tapering scheme quadratically sends ψto zero. This is
unlike the leftmost plot in figure 12 where ψ(and (κbz)z/bz) possess minimum in the interior 
outside the tapered region.

When the bottom boundary layer becomes weakly stratified, the strength of the over-
turning circulation is therefore set by the tapering scheme instead of the dynamics of the
model. This makes the results in the limit of large diffusion and large wind physically
dubious. In the real ocean, weakly stratified regions are restratified through ageostrophic
baroclinic instabilities (e.g. mixed-layer instabilities [2], [3] and symmetric instabilities [15],
[16], [1]), so this suggests a link between the overturning circulation and the dynamics of
the bottom boundary layer (that are not represented here).
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Figure 12: Examples of how the tapering scheme modifies the streamfunction. The red
line is (κbz)z/bz at y = 0. The black line represents the tapered streamfunction. The
horizontal lines indicate the minimum of the tapered streamfunction. The wind strength is
τ = 0.155Nm−2 while κb = 2.0 × 10−4m2s−1, 8.3 × 10−4m2s−1, and 7.9 × 10−3m2s−1 for
the left, middle, and right plots respectively.

In any case, the result that the overturning circulation intensifies with stronger wind
forcing occurs for diffusivities and wind stresses that are small enough so that the tapering
scheme is not creating an artificial minimum. Thus, the conclusion that the overturning
circulation intensifies with increasing wind should be independent of the tapering scheme.
However, the two possible scalings (ψ ∝ τ1/3 and (κbz)z/bz ∝ τ) obtained are most likely
dependent on the tapering scheme. In the first case, we are diagnosing ψ = −τ/f+ψ? where
ψ? 6= Ks but is rather some quadratic interpolation through a weakly stratified region. The
position where ψ is diagnosed (at the minimum of ψ) and its actual value are determined
by the tapering scheme. In the second case, the buoyancy fields are not tapered but the
position where they are diagnosed is determined by the tapering scheme. This places more
confidence in the second, linear, scaling. But as mentioned previously, the dependence on
the tapering scheme suggests that in the real ocean, the relationship of the overturning
circulation to wind stress and diffusion is sensitive to the dynamics of the bottom boundary
layer. Therefore, even the second scaling may not be relevant for the real ocean.

7 Conclusion

In this report, we have derived the Nikurashin-Vallis model [12] of the overturning circula-
tion beginning from the residual-mean theory presented in [14]. We then presented possible
ways the overturning circulation and the buoyancy field may scale with wind stress and
diffusion. In particular, for an ocean with vertically uniform diffusion, we found two dis-
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tinct ways in which ψ ∝
√
κ. The first is the scaling theory presented in [12] that predicts

that the stratification at the maximum of |ψ| should decrease with increasing diffusivity as
bz ∝ 1/

√
κ. Then, assuming by is constant, one obtains ψ ∝ −by/bz ∝ −

√
κ. The alterna-

tive scaling presented here predicts that it is bz that is constant at the maximum of |ψ| and
that by ∝

√
κ. This alternative scaling is found to agree with the numerical solutions.

We have also shown why the overturning circulation should be expected to depend
on wind in the limit when vertical diffusion is exponentially enhanced towards the ocean
bottom. In an ocean with uniform diffusion, the buoyancy field is determined to leading
order by diffusive processes and the diapycnal velocity ω = (κbz)z/bz = κbzz/bz is then
determined by the vertical curvature of the leading order buoyancy field. This leads to
an overturning circulation that is independent of wind. However, when mixing is bottom-
intensified, the existence of a deep layer where bzz ≈ bz/H implies that the leading order
buoyancy field does not contribute to water mass transformation. Instead, the diapycnal
velocity ω is entirely determined by higher order corrections to the buoyancy field that
depend on wind. Thus, in this model, the existence of a deep layer implies an overturning
circulation that is sensitive to changes in wind forcing.

In addition, we have also determined the sign of the dependence of the overturning ψ
on wind stress. If a deep layer exists, then stronger winds push more buoyancy into the
deep layer where it then decays with the characteristic vertical scale of κ towards the ocean
bottom. This causes the depth of the maximum of |ψ| to increase and deepens the circulation
to depths where diffusion is larger. The diapycnal velocity ω = (κbz)z/bz then increases
because the effective κ experienced at the maximum of |ψ| has increased. Therefore, the
existence of a deep layer implies an overturning circulation that increases in magnitude as
westerlies strengthen.

The characteristic vertical scale H of the diffusivity is a crucial parameter in determin-
ing the dependence of ψ on wind. If H is too small, then the overturning circulation does
not ’feel’ the bottom enhancement of diffusion and the overturning circulation is essentially
in the adiabatic limit. If H is too large, then a deep layer cannot form and we recover a
circulation that is independent of wind stress. We showed the results of a range of simu-
lations in (τ, κ) space (Figure 11) for H = 750m where the circulation weakens with wind
for small κ, strengthens with wind for intermediate values of κ, and becomes independent
of wind for large κ.

Finally, we found that the sensitivity of the overturning circulation to both wind stress
and diffusion depends on the dynamics of the bottom boundary layer. This is seen in
the model through the dependence of the circulation on the tapering scheme [4] used in
the implementation of the Gent-McWilliams parameterization. For small values of vertical
diffusion and wind, the diapycnal velocity ω exhibits a maximum in the ocean interior that
is independent of the tapering. However, when wind stress or diffusion are large, then ω has
no local maxima in the interior. Instead it grows monotonically towards the bottom because
of the near vanishing stratification. Presumably, if processes in the bottom boundary layer
are represented, the maximum would occur in the bottom boundary layer. In this model
however, an artificial maximum is created as the tapering scheme quadratically interpolates
through weakly stratified regions and sends ω to zero at the ocean bottom. Although
the numerical results (such as how ψ scales with τ and κ) likely depend on the tapering
scheme, it is found that the fact the sign of the sensitivity of ψ to both κ and τ in the
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bottom-enhanced diffusive limit is independent of the tapering scheme.
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Eddy Mixing of Biogeochemical Tracers
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1 Introduction

The ocean is characterized by motions at a range of scales. This has important consequences
for oceanic biogeochemical processes, which are similarly multi-scale in nature. At the global
and basin scales, the meridional overturning circulation (MOC) controls subsurface nutrient
distributions, which in turn determine where photosynthesizing phytoplankton can grow on
climatic time-scales [7, 15]. On shorter timescales, primary productivity has been observed
to be closely linked to mesoscale and submesoscale processes [2, 3, 10]. This is evident from
satellite images of ocean color, a proxy for phytoplankton biomass, which clearly show the
expression of eddies and other small-scale structures in the flow (Figure 1).

Figure 1: True color image of a phytoplankton bloom from the NASA MODIS satellite.

It has been suggested that accounting for (sub-)mesoscale productivity is necessary to
close global budgets [8, 13]. This poses a problem for climate models, which rarely resolve
processes smaller than the mesoscale. Therefore, the fluxes of tracers—such as nutrients
and phytoplankton—associated with the unresolved dynamics must by parameterized. It
is common to assume that the eddy fluxes of an arbitrary tracer, c, are proportional to
the gradients in the mean field, the so-called gradient diffusion hypothesis [16]. In this
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framework, the turbulent dispersion takes the form of an enhanced molecular diffusion:

u′c′ = −Ke∇c, (1)

where Ke is an effective diffusivity. However, it is not clear that this form of the eddy
flux is appropriate for reactive tracers, which have some growth or decay in time that is
independent of the flow and thus do not remain constant following a fluid parcel.

Here, we examine the turbulent transport of reactive biogeochemical tracers using an
idealized nutrient-phytoplankton model. We consider only the generation of phytoplank-
ton patchiness by the 2-D stirring of large-scale gradients [1], although it is noted that
vertical nutrient transport associated with (sub-)mesoscale dynamics is also important in
driving productivity at these scales [2, 6]. We show that the validity of the mixing-length
approximation (1) for reactive tracers requires a separation between the timescales of the
turbulent motions and the reaction. However, there are a number of cases in the atmo-
sphere and ocean where we might expect the flow and reaction timescales to be of the same
order, including phytoplankton growth in submesoscale eddies and carbon dioxide equili-
bration at small-scale air-sea interfaces. Therefore, these results have implications for the
representation of sub-grid scale biogeochemical processes in global climate models.

2 Biological Model

Nutrient-phytoplankton-zooplankton (NPZ) models have been used in oceanographic re-
search for decades. Given the inherently simplistic nature of NPZ models, some have ques-
tioned their efficacy. Still, NPZ models have been shown to capture fundamental aspects
of plankton dynamics and are useful in making complex biological processes more tractable
[5]. A general set of NPZ model equations can be written as:

DN

Dt
= −f(I)g(N)P + (1− γ)h(P )Z + i(P )P + j(Z)Z (2)

DP

Dt
= f(I)g(N)P − h(P )Z − i(P )P (3)

DZ

Dt
= γh(P )Z − j(Z)Z (4)

where γ is zooplankton assimilation, and the 5 transfer functions are: phytoplankton re-
sponse to light f(I), phytoplankton nutrient uptake g(N), zooplankton grazing h(P ), and
phytoplankton i(P ) and zooplankton j(Z) loss terms. Defining these transfer functions is
nontrivial and Franks (2002) reviews many of the functional forms that have been used.
Perhaps the simplest possible system one could consider has linear transfer functions and
no zooplankton grazers. Since we are considering lateral stirring only, there is no depth
dependence for any fields. Including explicit diffusion, Eq. (2)-(4) then become:

DN

Dt
− κ∇2N = − µ

ÑD

NP − λN + λND (5)

DP

Dt
− κ∇2P =

µ

ÑD

NP − λP, (6)
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where µ [s−1] is the uptake rate, and λ [s−1] is the entrainment rate. These equations
could describe the biological dynamics in the mixed-layer (ML; Figure 2), where nitrate is
utilized for phytoplankton growth and resupplied by mixing of nutrient-rich waters from
below, with N = ND. There is also loss of N and P due to detrainment from this mixing
across the ML base. ÑD is some characteristic N value (whereas ND is spatially variable)
that is included for dimensional reasons (so that the nonlinear growth term has the correct
units). In principle, µ, λ, and ND could all be spatially variable. The motivation for
choosing this simplified system of equations is to understand the fundamental response to
variations in parameters without introducing extraneous nonlinearity from the choice of
transfer functions. Note that our goal is not to realistically model tracer concentration
values or match observations directly.

Figure 2: Schematic of mixed-layer plankton dynamics governed by Eq. (5) and (6).

To illustrate how the addition of reaction terms influences the effective diffusivity felt
by a tracer, consider the equation for the total nitrogen in the system, S = N+P , obtained
by adding together Eq. (5) and (6).

DS

Dt
− κ∇2S = λND − λS (7)

Note that the nonlinear growth term, which is an equal but opposite sign in the N and P
equations, cancels. Therefore, there is a single reaction rate, λ, associated with the evolution
of S. Here, the reaction terms represent a balance between resupply of nitrate to the ML
from mixing with nutrient-rich deep waters (λND) and the detrainment of nutrients and
phytoplankton (−λS). Let’s consider the case of a background gradient in ND that is a
function of y only, i.e., ND = Γy, with a periodic flow field of the form

u = v0(t) sin(kx)ŷ (8)
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Decomposing S into the background gradient and transient fluctuations driven by the flow
field, S = Γy + S′(x, t), and plugging into Eq. (7) gives

∂S′

∂t
+ vΓ = −λS′ + κ

∂2S′

∂x2
. (9)

Assuming that S′ is also separable and of the same form as the velocity field, i.e., S′ =
S0(t) sin(kx), reduces Eq. (9) to an ordinary differential equation

dS0
dt

+ v0Γ = −λS0 − κk2S0. (10)

Now taking v0 to be wave-like, v0 = ṽe−iθt, and solving Eq. (10) using the integrating factor
e(λ+κk

2)t yields a solution for S0 (and thus S′), which implies an eddy flux of

v′S′ = − ṽ2Γ(λ+ κk2)

θ2 + (λ+ κk2)2
. (11)

S̄ is Γy in this case, so mixing-length theory gives v′S′ = −KeΓ. Thus, by Eq. (11) we find
that the effective diffusivity is

Ke =
ṽ2(λ+ κk2)

θ2 + (λ+ κk2)2
(12)

We can see that the effective diffusivity depends directly on the entrainment rate, λ. To
illustrate this, Eq. (12) is plotted in Figure 3 for varied λ with all other parameters held
constant at values similar to those used in the simulations discussed in Section 4. To
highlight the deviations from the passive tracer case, Ke is normalized by Ke(λ=0), which
is the effective diffusivity in the absence of reaction terms. For most values of λ, the effective
diffusivity for a reactive tracer is smaller than for a passive tracer. In other words, as the
entrainment rate increases, more nutrients and phytoplankton are mixed out of the ML,
causing the S concentration to decrease and thus less tracer to be acted on by the effective
diffusivity. However, note that for some small λ values, Ke is larger than Ke(λ=0). This
suggests a regime where the nutrient resupply (λND), also associated with the entrainment
rate, is larger than the detrainment term (−λS).

Figure 3 suggests that the inclusion of reaction terms can significantly modify the dis-
persion of a tracer—at least for certain reaction rates. Therefore, we expect the gradient-
diffusion hypothesis will break down for reactive tracers under some parameter regimes.
To gain insight into the relevant parameters that might control this for the nutrient-
phytoplankton system, Eq. (5) and (6) can be nondimensionalized

∂N∗

∂t∗
+ u∗ · ∇∗N∗ − Pe−1

(
∇2
∗N
∗) = Da

(
−N∗P ∗ − λ

µ
(N∗) +

λ

µ
N∗D

)
(13)

∂P ∗

∂t∗
+ u∗ · ∇∗P ∗ − Pe−1

(
∇2
∗P
∗) = Da

(
N∗P ∗ − λ

µ
(P ∗)

)
(14)

where the ∗ denotes nondimensional variables. Biological reaction terms scale with the
Damköhler number, Da = µL/U , which is the ratio of advective (L/U) and reactive (1/µ)
time scales; diffusive terms scale inversely with the Peclet number, Pe = UL/κ.
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Figure 3: Effective diffusivity as a function of λ, normalized by the effective diffusivity for
λ = 0 (i.e., passive tracer).

This system of equations is used to examine the validity of the mixing-length assumption
for parameterizing eddy fluxes of nutrients and phytoplankton. First, the method of multiple
scales is applied to the advection-diffusion equation for a passive tracer to show how u′c′ =
−Ke∇c is derived, and then to the advection-diffusion-reaction equations given by (5) and
(6) to show the effect of the biological reaction terms. Next, the dynamics of the system
are explored in a 2-D stirring flow. Finally, we consider the relevance of these results to the
parameterization of submesoscale productivity in global climate models.

3 Multiple Scale Analysis

3.1 Passive tracer case

Multiple scale analysis has been used to understand the evolution of a passive tracer [11].
We review this method to show how the gradient-diffusion hypothesis can be derived. In
this case, we assume a scale separation between the turbulent eddies (`) and the mean flow
(L). Slow time and space variables are defined: T = εt and X = εx, where ε ≡ `/L. The
evolution equation for a passive tracer with no sources or sinks is given by

∂c

∂t
+ u · ∇c− κ∇2c = 0 (15)

Plugging in the perturbation expansion c = C0(X, T ) + εC1(x, t;X, T ) + O(ε2), and de-
composing the velocity, where the mean flow is a function of the slow variables only, i.e.,
u = U(X, T ) + u′(x, t;X, T ) yields

O(1) : C0t + (U + u′) · ∇xC0 − κ∇2
xC0 = 0 (16)

Averaging over small and fast scales, all the terms on the left hand side go to 0 and we find
that C0 = C0(X, T )—as expected by construction. The first order solution is

O(ε) : C1t + (U + u′) · ∇xC1 − κ∇2
xC1 = −C0T − (U + u′) · ∇XC0 (17)
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Averaging over small and fast scales, we find that

C0T + U · ∇XC0 = 0 (18)

Subtracting this from (17) gives

C1t + (U + u′) · ∇xC1 − κ∇2
xC1 = −u′ · ∇XC0, (19)

which has solutions of the form

C1 = −(ξ · ∇X)C0, (20)

where ξ(x, t) satisfies
ξt + (U + u′) · ∇xξ − κ∇2

xξ = u′ (21)

Eq. (20) implies that u′ic
′ = −Dij∂xjc, where Dij = u′iξj is like an effective diffusivity. This

is the mixing-length approximation. Now considering the second order solution

O(ε2) : C2t+(U+u′)·∇xC2−κ∇2
xC2 = −C1T−(U+u′)·∇XC1+2κ∇x·∇XC1+κ∇2

XC0 (22)

Averaging over small and fast scales, we find that

C1T + U · ∇XC1 = κ∇2
XC0 + (u′ · ∇X)ξ · ∇XC0 (23)

It has been shown that summing the solvability conditions at O(ε) and O(ε2) gives the
evolution equation for the mean tracer concentration

∂c

∂t
+ u · ∇c = ∂xi(Dij∂xjc), (24)

where Dij is the effective diffusivity tensor. In other words, the evolution of the mean
tracer concentration depends on the divergence of the eddy flux. The key point is that
multiple scale analysis of the advection-diffusion equation for a passive tracer recovers the
gradient-diffusion hypothesis. It should be noted that this analysis requires a scale sepa-
ration between the turbulent eddies and the mean concentration structure. When these
length scales are similar, nonlocal effects may dominate the eddy fluxes [9]. However, this
is not the topic we consider here, instead we investigate the effects of adding biological
reaction terms.

3.2 Reactive Tracer Case

Now we apply the same methods from Section 3.1 to the nutrient-phytoplankton system
given by Eq. (5) and (6). Again we assume a scale separation between the turbulent eddies
(`) and the mean flow (L). Slow time and space variables are defined: T = εt and X = εx,
where ε ≡ `/L. Plug in the perturbation expansions P = P0(X, T )+εP1(x, t;X, T )+O(ε2),
N = N0(X, T ) + εN1(x, t;X, T ) + O(ε2) and decompose the velocity as before, i.e., u =
U(X, T ) + u′(x, t;X, T ). Note that we assume the mean flow and leading order biological
behavior are a function of the slow variables only. The zeroth order solution is

O(1) : P0t + (U + u′) · ∇xP0 − κ∇2
xP0 = µP0N0 − λP0, (25)
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O(1) : N0t + (U + u′) · ∇xN0 − κ∇2
xN0 = µP0N0 − λN0 + λND, (26)

Averaging over small and fast scales gives 0 = µP0N0 − λP0 for Eq. (25), which implies
that N0 = λ/µ and thus P0 = ND − λ/µ by Eq. (26). The first order solution is

O(ε) : P1t+(U+u′) ·∇xP1−κ∇2
xP1+P0T +(U+u′) ·∇XP0 = µP0N1+µP1N0−λP1, (27)

O(ε) : N1t+(U+u′)·∇xN1−κ∇2
xN1+N0T+(U+u′)·∇XN0 = −µP0N1−µP1N0−λN1, (28)

If we now consider P1 and N1 that can be divided into a mean part (that is a function
of slow time variables only) and a fluctuating part, i.e., P1 = P 1(X, T ) + P ′1(x, t,X, T ).
Averaging over small and fast scales gives:

P0T + U · ∇XP0 = µP0N1 + µP 1N0 − λP 1 (29)

Subtracting Eq. (29) from Eq. (27) gives an expression for fluctuating parts P ′1 and N ′1:

(∂t + (U + u′) · ∇x − κ∇2
x)

[
P ′1
N ′1

]
− B

[
P ′1
N ′1

]
= −u′ · ∇X

[
P0

N0

]
, (30)

where B is

[
µN0 − λ µP0

−µN0 −µP0 − λ

]
. Solutions to Eq. (30) can be written in the form

[
P ′1
N ′1

]
= −

∫
dt′e−B(t−t

′)(ξ · ∇X)

[
P0

N0

]
, (31)

Note that Eq. (30) is in close analogy to Eq. (20) for the passive tracer, but with a different
ξ—the forcing in Eq. (21) is u′δ(t− t′). The key differences being the B term resulting from
the reactions and the coupling between N and P . The second order solution is

O(ε2) : P2t+(U+u′) ·∇xP2−κ∇2
xP2 +P1T +(U+u′) ·∇XP1−2κ∇x ·∇XP1−κ∇2

XP0 =

µP0N2 + µP2N0 − λP2 + µP1N1 (32)

Averaging over small and fast scales gives the solvability condition:

P 1T + (U + u′) · ∇XP 1 − κ∇2
XP0 = µP0N2 + µP 2N0 − λP 2 + µP1N1 (33)

Summing over our results at O(1), O(ε), and O(ε2) gives:

P T + U · ∇XP − κ · ∇2
XP + u′ · ∇XP ′ = µPN − λP + µP ′N ′ (34)

We can see that the evolution of the mean tracer concentration depends on the divergence
of the eddy flux. It should also be noted that Eq. (31) suggests that the eddy fluxes can
be expressed in terms of the large-scale gradients. A general equation for the eddy flux of
any set of reactive tracers, bα, can be derived in terms of the Lagrangian covariance, as in
[4]. For example, Eq. (31) can be expressed in terms of a Green’s function

b′α = −
∫
dx′dt′ e−Bαβ(t−t

′)G(x− x′, t− t′)u′(x′, t′) ∂
∂x
bβ(x′, t′) (35)
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u′b′α = −
∫
dx′dt′ e−Bαβ(t−t

′)u′(x, t)G′(x− x′, t− t′)u′(x′, t′) ∂
∂x
bβ(x′, t′) (36)

The x′ integral will give the Lagrangian covariance, Rij ,

Rij(t− t′) =

∫
dx′ u′(x, t)G′(x− x′, t− t′)u′(x′, t′) (37)

Thus the eddy flux is

u′b′α = −
∫
dt′ e−Bαβ(t−t

′)Rij(t− t′)
∂

∂xj
bβ (38)

In the case of the nutrient-phytoplankton system, we can see from Eq. (31) that there
is a coupling between N and P in the time-dependent components. Therefore, the mixing-
length analogy would have the form

u′P ′ = −KPP∇XP −KPN∇XN (39)

u′N ′ = −KNP∇XP −KNN∇XN (40)

We can solve for these effective diffusivities by exploiting the eddy flux of S, which is simpler
since Eq. (7) has no nonlinear reaction terms.

u′S′ = −Kλ∇S (41)

u′P ′ + u′N ′ = −Kλ(∇P +∇N) (42)

Defining A = P ′+aS′ and taking the evolution equation allows us to solve a = −µP/µP−λ.

Then since u′A′ = −KµP∇A = u′P ′ + au′S′ we can plug in a and u′S′ from above to solve
for the effective diffusivities in Eq. (39) and (40). This gives

u′P ′ = −µPK
λ − λKµP

µP − λ
∇P − µP (Kλ −KµP )

µP − λ
∇N (43)

u′N ′ = −λ(KµP −Kλ)

µP − λ
∇P − µPKµP − λKλ

µP − λ
∇N (44)

We can investigate when the cross term will become important by taking the ratio of
KPP /KPN using the expressions for the effective diffusivities from Eq. (43).

KPP

KPN
=
Kλ − λ

µP
KµP

Kλ −KµP
(45)

From Eq. (45) we can see that KPP /KPN depends on the size of λ/µP . Plugging in the
leading order approximation P = ND − λ/µ, we find that the importance of the cross term
to the eddy flux depends on the ratio of reaction rates via a parameter that we’ll call Rx

Rx =
1

µ
λ − 1

(46)
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The results from this section demonstrate how the gradient-diffusion hypothesis results
from the tracer evolution equations. However, the multiple scale analysis depends on there
being a space and time scale separation between the turbulent eddies and the leading order
biological behavior. Therefore, we might expect the relationship to break down when the
timescales of the turbulent motions and reactions are similar. This is examined in the next
section by investigating the dynamics of the nutrient-phytoplankton system in a 2-D stirring
flow across a range of parameter values.

4 Numerical Simulations

4.1 Model setup

Here, we consider a 2-D stirring flow similar to the one in Pierrehumbert (2000). The
velocity fields are generated by a streamfunction of the form

Ψ =

4∑
n=1

Un cos(k1nx+ k2ny + θn) (47)

where the wavenumbers are selected so that the kinetic energy spectrum from the resultant
velocity field has a k−5/3 slope. The θn component is a randomized phase shift added at
each time step to ensure that things are stirred up. Eq. (47) is essentially a simple way
of generating a zero-mean, 2-D turbulent-like flow. The model domain is 4π × 4π and
doubly-periodic.

The physical model is coupled to the nutrient-phytoplankton system given by Eq. (5)
and (6). N and P transport is represented by a first order upwind advection scheme. For
example, the fluxes of a tracer, c, in the x and y direction, Fx and Fy, are given by

Fx =
u

∆x
(cni,j − cni−1,j), Fy =

v

∆y
(cni,j − cni,j−1) (48)

A sinusoidal distribution is selected for µ, the uptake rate, which goes to 0 at the northern
and southern boundary of the domain. Assuming that our model domain is an ocean
basin, this north-south µ gradient is motivated by the fact that phytoplankton growth
is light-dependent and there is a planetary-scale gradient of incoming solar radiation. A
constant value is used for λ, the entrainment rate, although this could be spatially variable
in principle. The initial N distribution is also selected to be sinusoidal, although with
an east-west gradient to distinguish it from gradients in µ. The initial P distribution is
determined from the leading order P solution in the multiple scale analysis (P = ND−λ/µ).
Figure 4 gives an example of the N and P fields at discrete times for one of the simulations.

Our goal is to assess the validity of mixing-length theory, and the sensitivity of this
result to different parameters. In order to do this, we can exploit the fact that the velocity
field from Eq. (47) is zero-mean. Therefore, the tracer fluxes from the upwind advection
scheme, i.e., Eq. (48), are equal to the eddy fluxes u′P ′ and u′N ′. It is also straightforward
to calculate the gradients ∇P , and ∇N from the mean tracer distributions. Using the
time-averaged eddy fluxes and gradients in the mean fields (after the simulation reaches
steady-state) we can then compute an effective diffusivity via a least squares fit assuming
Eq. (1) holds. Comparing the actual diagnosed eddy flux with Ke∇c at each grid point
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allows us to assess the validity of the mixing-length relationship. In the case where mixing-
length theory holds perfectly, these points would all fall on the 1 : 1 line. Figure 5 gives an
example of what this looks like for the simulation depicted in Figure 4. Clearly the points
do not depict the perfect linear relationship, and we can calculate the R2 value to quantify
the goodness of the fit. R2 values near 1 suggest that the mixing length relationship holds,
whereas smaller R2 values indicate a break down of the theory. In the next section, we will
show how varying different parameters impacts the validity of u′c′ = Ke∇c.

Figure 4: N (left) and P (right) for one of the simulations at (a) t = 0, (b) t = 50, (a)
t = 100, (d) t = 200.

4.2 Perturbation experiments

We can gain some intuition into the parameters that control the efficacy of the mixing-
length assumption by considering the nondimensionalized N-P model, Eq. (13) and (14).
The biological reaction terms scale with Da, so in cases where Da� 1, the reaction terms
are negligible at leading order and we can treat N and P as passive tracers. The other
nondimensional parameters that may be important are Pe and the ratio of reaction rates,
λ/µ. Several runs with varied molecular κ suggest that results are insensitive to changes in
Pe. However, the system responds strongly to variations in Da and λ/µ. For example, the
variance of the equilibrium P and N concentration is much higher when Da ∼ O(1) due to
the interaction between the stirring and biological growth (Figure 6). In the limit of slow
or fast growth relative to the mixing, the system reaches an equilibrium that is much more
homogeneous.

The validity of the mixing-length assumption, as measured by the R2 value described in
Section 4.1, also varies with Da. When Da � 1 the mixing-length theory holds—whether
you consider u′P ′ = −Ke∇P (Figure 7a) or u′P ′ = −KPP∇P −KPN∇N (Figure 7b). This
result can be understood by remembering that when Da� 1, biological reaction terms are
not important at leading order and thus N and P can be treated like passive tracers. When
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Figure 5: Calculated eddy flux of N (purple) and P (green) assuming that the mixing-length
relationship holds vs the diagnosed eddy flux.

Figure 6: Variance of equilibrium P concentration versus Da.
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Da ∼ O(1), R2 values are much lower (< 0.3), suggesting a break down of mixing-length
theory. Recall that the derivation of the gradient-diffusion eddy flux relied on a space and
time scale separation between the turbulent eddies and mean tracer concentration structure.
This assumption will necessarily be violated when Da ∼ O(1). When Da� 1, the R2 values
are larger than for Da ∼ O(1), although there can be a significant difference between the
R2 if you assume u′P ′ = −Ke∇P versus u′P ′ = −KPP∇P −KPN∇N .

To understand the importance of the cross term, KPN∇N , recall the parameter Rx
defined by Eq. (46), which is a measure of KPP /KPN . We can plot Rx as a function of
µ/λ (Figure 8). Then we can calculate both of these ratios from our simulations and plot
them colored by Da. Notice that for Da� 1, KPP /KPN > 1 regardless of µ/λ. Under this
regime, the biological reaction terms are not important at leading order and so the eddy
fluxes of N and P do not depend on the cross terms (i.e., N and P are effectively passive
tracers). When Da ∼ O(1), the points are scattered, perhaps because the mixing-length
relationship itself breaks down under this regime. However, when Da � 1, the points fall
closely on the predicted KPP /KPN curve. In other words, there are parameter regimes
where the cross terms are important (and even dominant) in controlling the behavior of the
eddy fluxes. For example, when µ/λ� 1, KPN > KPP . Based on the nondimensionalized
P equation (Eq. 14), this is when the entrainment term is negligible and thus the biological
behavior is governed solely by the nonlinear growth term (which explicitly couples N and
P ). The fact that KPN can actually be greater than KPP has implications for climate
models, which use more complex biological models and thus have even more cross terms
that may be important in accurately representing the eddy fluxes.

Figure 7: R2 of the mixing-length eddy flux and “true” eddy flux versus Da assuming (a)
u′P ′ = −Ke∇P and (b) u′P ′ = −KPP∇P −KPN∇N

5 Ocean Modeling Implications

We showed in Section 4 that there are certain parameter regimes where the gradient-diffusion
hypothesis fails to represent the true eddy fluxes of N and P . But do these parameter
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Figure 8: Theoretical prediction of KPP /KPN versus µ/λ (black line) and scatter points
showing results from simulations (colored by Da).

regimes exist in the real ocean? And are these differences large enough to affect global
biogeochemical budgets? The first question can be easily addressed. Damköhler numbers
for various physical and biogeochemical processes in the ocean are given in Figure 9.

Figure 9: Da for various physical and biogeochemical processes in the ocean (Table from
Kat Smith).

The approximate timescales associated with submesoscale processes and phytoplankton
growth in the euphotic zone are comparable, O(1 day). Therefore, we do expect that
Da ∼ O(1) regimes, where the mixing-length theory breaks down, apply to phytoplankton
transport by submesoscale eddies. The implications of this are significant. Our results
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suggest that parameterizations of sub-grid scale nutrient and phytoplankton eddy fluxes
are invalid at submesoscales, but submesoscale productivity is known to be an important
component in biogeochemical cycles [8, 13].

To investigate the error associated with applying the mixing-length theory in Da ∼ O(1)
regimes, we consider output from the Biogeochemical Southern Ocean State Estimate (B-
SOSE). B-SOSE is an eddy-permitting, data assimilative model that uses ocean observations
to constrain the MITgcm solution [17]. The configuration used in this analysis has 1/6o

horizontal resolution, 42 uneven vertical levels, and runs from January 1, 2013 to December
31, 2017. The motivation for using B-SOSE is twofold. First, productivity in the Southern
Ocean has a dramatic seasonal cycle, so there are few zooplankton grazers at the time
of spring bloom initiation. Thus, our simple nutrient-phytoplankton model may represent
plankton dynamics better here than in other regions. Second, the Southern Ocean plays a
major role in the global ocean circulation and carbon cycle through deep water formation
and interbasin exchange. Therefore, understanding the magnitude of error in the mixing-
length assumption in the Southern Ocean is key to determining the global implications.

Figure 10: November 2013 mixed-layer averaged (a) nitrate [mol N/m3] and (b) phyto-
plankton biomass [mol C/m3] from B-SOSE.

Figure 10 shows maps of mixed-layer averaged nitrate and phytoplankton biomass for
November 2013. This is early austral spring—roughly the time of bloom initiation in much
of the Southern Ocean—and thus zooplankton terms may be negligible. Since the ultimate
goal is to determine a feasible way of improving upon the accuracy of the eddy fluxes, we
examine the inclusion of the cross term in Eq. (39) and (40). Figure 8 suggests that there
are some regimes where the cross term actually dominates the eddy flux, and including a
cross term in a climate model would be simple to do in practice. Gradients in N and P
are calculated from the nitrate and phytoplankton biomass maps shown above. Note that
phytoplankton biomass is converted from [mol C/m3] to [mol N/m3] using the Redfield
ratio [14]. Using these gradients in N and P from B-SOSE, we calculate the eddy fluxes
of P first assuming the standard gradient-diffusion hypothesis -Ke∇P , and then including
the cross term -KPP∇P -KPN∇N . Values for Ke, KPP , and KPN are chosen from the
least-squares fitted effective diffusivities in one of the simulations from Section 4. The
difference between these two eddy fluxes is shown in Figure 11. We can think of this map as
showing the locations where the cross term significantly changes the magnitude of the eddy
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flux. The basin-averaged discrepancy is minimal, but in some cases, such as around the
Malvinas Current, these differences can be as large as 80% of the total eddy flux. This could
have impacts on the distribution of upper trophic level organisms and spatial variability in
biogenic carbon uptake. While the diffusivity values used here are not meaningful within B-
SOSE, this calculation still suggests that accounting for the cross term could be important
in regions with large gradients and low covariance between N and P . Furthermore, in more
complex biological models—such as the eight component model used in B-SOSE—there are
even more cross terms that might be relevant. Including cross terms could be a practical
way to improve the accuracy of modeled eddy fluxes.

Figure 11: Map of (-Ke∇P )−(-KPP∇P -KPN∇N).

6 Conclusion

Phytoplankton biomass is quite patchy and spatially variable at the mesoscale and sub-
mesoscale, which has important implications for marine ecosystems and the global carbon
cycle. Observational evidence suggests that turbulent eddies exert significant control over
the distribution of phytoplankton at these scales. Understanding this coupling between
physics and biology is necessary given the key role of (sub-)mesoscale productivity in global
biogeochemical budgets. Since climate models do not resolve these scales, the transport of
tracers associated with the unresolved dynamics must be parameterized. Here, we showed
that the gradient-diffusion hypothesis, -Ke∇c, is not necessarily a valid way of parameter-
izing eddy fluxes of reactive tracers. A multiple scale analysis suggests that this form of the
mixing-length assumption is only valid when there is a time scale separation between the
reaction and turbulent eddies, as well as a scale separation between the turbulent eddies
and the mean tracer concentration structure. This is an important result for the climate
modeling community since Da ∼ O(1) for phytoplankton growth in submesoscale eddies,
therefore the error associated with applying gradient-diffusion to represent eddy fluxes of
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phytoplankton at the submesoscale could be significant.

For the idealized nutrient-phytoplankton system we considered, gradients in both N and
P may be important to the eddy flux of either tracer. The significance of this cross term to
the total eddy flux is determined by the ratio of the growth rate, µ, to the entrainment rate,
λ. Adding this sort of cross term into a climate model could potentially provide a practical
way of improving the representation of eddy fluxes of nutrients and phytoplankton. Perhaps
a scheme that depends on the covariance between different model fields or incorporating
an effective diffusivity that varies with reaction rates are possible avenues to pursue as
well. Investigating these possibilities is necessary in order to improve the parameterization
of submesoscale primary productivity, which in turn will help us to better predict the
evolution of the oceanic carbon cycle on longer time scales.
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Reduced Models for Wave-balanced Flow Interactions
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1 Introduction and goals

Energy pathways in the ocean encompass the full range of scales from planetary, O(107 m)
down to microscales, O(10−2 m). Energy is introduced in the ocean mostly at seasonal,
planetary scales by the time-mean atmospheric forcing; at diurnal, planetary scales by the
most energetic modes of the barotropic tide; and in the weather band (days to weeks) by
the synoptic weather systems. This energy must either leave the ocean or be converted into
internal energy at the Kolmogorov scale, O(1 cm) [3].

The routes mechanical energy takes from injection to dissipation in the ocean are cur-
rently an open problem. A group of candidates that has been gaining attention over the
past decade includes processes involving the interaction of near-inertial waves (NIWs) with
the mesoscale balanced flow, e.g., [13, 12, 7]. Two broad classes of such processes can be
identified: The first is generation of NIWs by mesoscale and submesoscale instabilities, of-
tentimes called spontaneous loss of balance. The second is the interaction of the balanced
flow with existing NIWs by processes such as refraction, advection and dispersion, a mech-
anism that has been more studied in recent years and has been called stimulated loss of
balance, e.g., [7].

The goals of this project are to: 1) Study the energy exchanges between NIWs and the
balanced flow using idealized simulations and 2) To derive a new asymptotic model to help
develop an understanding of such interactions.

2 Non-asymptotic reduced models

2.1 The modified Thomas & Yamada (2019) model

The primary tool we employ in this work is a slightly modified form of the reduced model
used by [10]. The starting point is the hydrostatic Boussinesq equations, with the assump-
tion of constant buoyancy frequency N :

ut + u · ∇u+ wuz + f × u+∇p = 0, (1)

pz = b, (2)

bt + u · ∇b+ wN2 = 0, (3)

∇ · u+ wz = 0, (4)
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where (u, v, w) are the velocity components of u in the (x̂, ŷ, ẑ) directions, respectively, p is
pressure (normalized by a reference density ρ0), b ≡ −gρ′/ρ0 is the buoyancy (where ρ′ is the
perturbation pressure), ∇ ≡ x̂∂x + ŷ∂y is the horizontal gradient operator, f ≡ ẑf (where
f is the inertial frequency) and N is the buoyancy frequency. We expand all variables in
the following form:

u(x, z, t) = u0(x, t) +

∞∑
n=1

u(x, t)φ′n(z) (5)

w(x, z, t) =
∞∑
n=1

w(x, t)φn(z) (6)

p(x, z, t) = p0(x, t) +

∞∑
n=1

λ−2n pn(x, t)φ′n(z) (7)

b(x, z, t) = −
∞∑
n=1

pn(x, t)N2φn(z) (8)

where φn=0(z) = 1, φn>0 = sin(nπz) is the solution of the Sturm-Liouville problem with
constant stratification N(z) = 1 and rigid lid boundary conditions, i.e.,

φ′′n + λ2nN
2φn = 0, with φn(0) = φn(1) = 0 (9)

where the eigenvalues are λn=0 = 0 and λn>0 = nπ.
Restricting 5-8 to the barotropic mode (subscript T ) and the n-th baroclinic mode

(subscript C) gives

u(x, t), p(x, t) = [uT (x, t), pT (x, t)] + [uC(x, t), pC(x, t)]×
√

2 cos

(
nπz

H

)
(10)

w(x, t), b(x, t) = [wC(x, t), bC(x, t)]×
√

2 sin

(
nπz

H

)
, (11)

Substituting 10-11 into 1-4 and using the orthogonality property of the modes results in
equations similar to the linear shallow water equations for the n-th baroclinic mode (n ≥ 1):

∂tuT + f × uT +∇pT + Ro
[
uT · ∇uT + uC · ∇uC +

(
∇ · uC

)
uC

]
= 0, (12)

∇ · uT = 0, (13)

∂tuC + f × uC +∇pC + Ro
(
uT · ∇uC + uC · ∇uT

)
= 0, (14)

∂tpC +

(
NH

nπ

)2

∇ · uC + Ro
(
uT · ∇pC

)
= 0, (15)

where the Rossby number is (with characteristic velocity and horizontal length scales U and
L, respectively)
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Ro ≡ U

fL
. (16)

Taking curl of the T-mode’s momentum equation 12 to eliminate pT ,

∂tζT + Ro∇×
[
uT · ∇uT + uC · ∇uC + (∇ · uC)uC

]
= 0, (17)

where ζT ≡ ∂xvT − ∂yuT . Rescaling the baroclinic pressure as pC → BunpC gives the final
set of equations:

∂tζT + Ro∇×
[
uT ·∇uT + uC ·∇uC + (∇ · uC)uC

]
= 0, (18)

∂tuC + ẑ× uC + Bun∇pC + Ro
(
uT · ∇uC + uC · ∇uT

)
= 0, (19)

∂tpC +∇ · uC + Ro
(
uT · ∇pC

)
= 0, (20)

where the modal Burger number is (with a characteristic vertical length scale H)

Bun ≡
(
NH

λnfL

)2

(21)

where the baroclinic mode is a high mode, rather than the first baroclinic mode considered
by [10].

Two-dimensional models obtained from truncating three-dimensional equations to few
modes have been used elsewhere in the literature, e.g., [4, 2]. We call this the modified
Thomas & Yamada (2019) model because [10] treated only the particular case where Bu = 1,
relevant to the first mode of the internal tide rather than near-inertial waves. This difference
can be seen by considering the nondimensional dispersion relation for inertia-gravity waves:

ω2 = f2(1 + Buw), (22)

where ω is the wave frequency, Buw ≡ [Nkh/(fkz)]
2 is the wave Burger number, kh ≡√

k2x + k2y is the magnitude of the horizontal wavenumber vector and kz is the vertical

component of the wavenumber vector. Since near-inertial waves have more energy content
in high baroclinic modes, ω ≈ f , due to which Buw � 1. This is the limit considered in
this project. The dynamical components of the system described by 18-20 are represented
schematically in Figure 1. The barotropic mode (T−mode) contains only geostrophically
balanced energy, while the baroclinic mode contains both balanced energy (G−mode) and
unbalanced inertia-gravity wave energy.

In order to further specialize the model to study the interactions between near-inertial
waves and balanced flows, we supress the G-mode at every time step by inverting the linear
baroclinic potential vorticity q ≡ ζC − pC = ζG − pG and subtracting out the balanced
velocity from the total baroclinic velocity vector uC . This is possible because only the
balanced flow projects on q, since near-inertial waves have no linear potential vorticity.
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Figure 1: Schematic showing the three components of the modified Thomas & Yamada
(2019) model: The barotropic mode (T -mode) consists only of purely geostrophically-
balanced flow, while the baroclinic mode consists of geostrophically-balanced flow (G-mode)
and unbalanced (near-inertial) wave motions (W -mode).

2.2 The coupled T-W model

A more elegant and less artificial approach to isolate interactions between near-inertial
waves and a balanced barotropic flow is to seek a simpler, two-component model (Figure
2) where the prognostic variables are pure wave quantities. We start from the equations of
motion (with the C subscript dropped):

∂tuT + ẑ× uT +∇pT = Fu
T , (23)

∂tu + ẑ× u + Bu∇p = Fu, (24)

∂tp+∇ · u = F p, (25)

where u and uT are, respectively, the baroclinic (wavy) and barotropic (geostrophically
balanced) velocities and

Fu
T ≡ −Ro

[
uT · ∇uT + u · ∇u + (∇ · u)u

]
, (26)

Fu ≡ −Ro
(
uT · ∇u + u · ∇uT

)
, (27)

F p ≡ −Ro
(
uT · ∇p

)
(28)

we can define a velocity potential φ and a streamfunction χ such that

u = φx − χy, (29)

v = φy + χx, (30)

u+ iv = (∂x + i∂y︸ ︷︷ ︸
≡∂s

)(φ+ iχ︸ ︷︷ ︸
≡A

). (31)
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Defining the Laplacian operator 4 ≡ ∂2x + ∂2y and taking ∇·24, ∇×24 and 425 yields,
respectively,

∂t(

4φ︷ ︸︸ ︷
∇ · u)−4χ+ Bu4p =∇ · Fu, (32)

∂t(∇× u︸ ︷︷ ︸
4χ

) +4φ =∇× Fu, (33)

∂t(4p) +42φ = 4F p. (34)

Taking 33 - 34,

∂t4
(
χ− p

)
+4(1−4)φ =∇× Fu −4F p, (35)

or

∂t
(
χ− p

)
+ (1−4)φ = 4−1

(
∇× Fu −4F p

)
. (36)

From 32, we have

∂t(4φ)−4(1− Bu4)χ =∇ · Fu, (37)

or

∂tφ− (1− Bu4)χ = 4−1(∇ · Fu). (38)

Adding 38 to i×36 and defining the unbalanced streamfunction χ̃ ≡ χ− p gives

∂t
(
φ+ iχ̃

)
− (1− Bu4)χ̃+ iφ = 4−1(∇ · Fu) + i4−1(1−4)−1(∇× Fu −4F p), (39)

which can be rewritten in terms of Ã ≡ φ+ iχ̃ (dropping the tilde):

∂tA+ iA− i

2
Bu4(A−A) = 4−1

[
∇ · Fu + i(1−4)−1(∇× Fu −4F p)

]
. (40)

Taking ∇×23 gives the evolution equation for the barotropic streamfunction Ψ:

∂t4Ψ =∇× Fu
T . (41)

Taking the spatial average (denoted by 〈•〉) of the momentum equation 24:

〈ut〉+ ẑ× 〈u〉+ 〈Bu∇p〉 = 〈Fu〉 (42)
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Figure 2: Schematic showing the two components of the T−W model: The barotropic mode
(T -mode) consists only of purely geostrophically-balanced flow, while the high baroclinic
mode consists only of unbalanced (near-inertial) wave motions.

Defining A0 ≡ 〈u〉+ i〈v〉 = u0 + iv0 and manipulating the RHS:

∂tA0 + iA0 = −Ro

2
〈4(A+A)UT 〉, (43)

where UT ≡ uT + ivT . Equations 40, 41 and 43 form a set of evolution equations for the
barotropic streamfunction Ψ (T-mode), the near-inertial wave amplitude A (W-mode) and
the pure inertial oscillation amplitude A0. The next step is to implement the T -W model
numerically.

2.2.1 Energetics of the coupled T-W model

We may obtain equations for the kinetic energy of the divergent and rotational parts of the
wave velocity by taking φ×37 and χ×36, respectively. The result is

∂

∂t

1

2
|∇φ|2 −∇φ ·∇χ+ Bu∇φ ·∇p = Fu ·∇φ (44)

and

∂

∂t

1

2
|∇χ|2 +∇φ ·∇χ = −χ(1−4)−1

(
∇× Fu −4F p

)
. (45)

We note that the second term on the left-hand sides of 44 and 45 appears with opposite signs
in both equations and can therefore be interpreted as a conversion term that represents the
kinetic energy transfers between the rotational and divergent parts of the wave field.
Using the fact that p = 4χ, we can form a potential energy equation by taking 4χ×36 to
obtain

∂

∂t

1

2
(4χ)2 +4χ4φ = 4χ(1−4)−1

(
∇× Fu −4F p

)
(46)
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3 Parameter Sweep with the Linearized Modified Thomas &
Yamada (2019) Model

Next, we explore the sensitivity of the energy changes to different barotropic flows in the
linearized version of 18-20 (linearized about a steady barotropic balanced flow U = x̂U +
ŷV ). We solve 18-20 using a standard pseudo-spectral code based on [9]. Figure 3 compares
the evolution of wave kinetic, potential and total energies for simulations with barotropic
balanced flows with randomized phase and increasing number of initial wavenumbers Ki.

The wave amplitude can be further approximately decomposed into clockwise and
counter-clockwise motions as follows:

U = A−e−it +A+eit (47)

So that the kinetic energy is

1

2

∫∫
UU dx dy =

1

2

∫∫
|A−|2 + |A+|2 +A−A+e+2it +A+A−e−2it dx dy (48)

and the potential energy is (using the fact that p+ = p−)

1

2

∫∫
pp dx dy =

1

2

∫∫
2|p−|2 + p− p−e+2it + p−p−e−2it dx dy (49)

Figure 4 compares the evolution of the wave energy terms associated with positive
(proportional to A+) negative (proportional to A−) and mixed (proportional to A+A− +
c.c.) amplitudes. It can be seen that the cross component has magnitude comparable to
the + and − components, indicating that this decomposition is non-orthogonal, contrary
to the orthogonal decompositions used in e.g., [5, 10].

4 Helmholtz Decomposition of Reduced Model Solutions

In this section we briefly compare the energy partitioning into rotational (balanced, non-
divergent) and divergent (unbalanced, irrotational) motions in the linearized version of 18-20
with the partitioning in the simpler Young and Ben Jelloul (YBJ, [13]) model. The total ve-
locity field can be decomposed into a velocity potential φ (irrotational) and a streamfunction

(non-divergent) according to

= 4−1
(
vx − uy

)
, (50)

φ = 4−1
(
ux + vy

)
, (51)

u+ iv = (∂x + i∂y)(φ+ iψ). (52)

Figure 5 shows the spatial distribution of the wave kinetic energy density in a simulation
of the linearized 18-20 system. Figure 6 shows the energy evolution in different reservoirs,
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Figure 3: Wave energy changes for 6 (top left) 12 (top right) and 24 (bottom) initial
wavenumbers in the system evolving according to Equations 18-20. Note that the wave
potential energy gain is offset by the wave kinetic energy loss, causing the total wave energy
to decrease.
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Figure 4: Kinetic (top left), potential (top right) and total (bottom) wave energy changes
in the system evolving according to Equations 18-20 for the approximate decomposition in
+, − and x (cross) terms. Note that the cross terms are not negligible, indicating that this
simplified decomposition is non-orthogonal.
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Figure 5: Kinetic energy density snapshots of a linearized 18-20 solution decomposed into
rotational (ψ) and divergent (φ) parts.

which is similar in both systems: The purely inertial mode (inertial oscillations evolving
according to 43, dashed black lines) loses kinetic energy while the near-inertial modes gain
kinetic energy. This energy gain is approximately equipartitioned between rotational and
divergent motions. It can also be seen that the wave kinetic energy decreases in the linearized
18-20 solution, while it stays constant in the YBJ solution, as predicted by one of its
conservation laws [13]. The fact that the YBJ system conserves wave kinetic energy is one
of its limitations.

5 Wave-balanced Flow Interaction: Case Studies

In this section we aim to gain some physical intuition on the wave-balanced flow interac-
tion by analyzing a set of initial value problems with different barotropic flows as initial
conditions. Specifically, we seek answers to the following questions:

1. How do different balanced flows couple with the near-inertial wave field?
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Figure 6: Energy changes for the linearized 18-20 system (left) and the YBJ system (right).
The kinetic energy is decomposed into rotational (ψ, green) and divergent (φ, yellow) parts.

2. what is the direction of the energy transfers, i.e., from balanced flow to waves or from
waves to balanced flow?

The system simulated is 18-20, where the barotropic flow evolves according to Equation
18 and therefore has a two-way coupling with the near-inertial waves. The balanced part
of the baroclinic mode is removed by inverting the potential vorticity. Although the two-
component T -W model has not been numerically implemented yet, it is expected to give
similar results.

We begin with an initial barotropic flow of a simple Gaussian anticyclone (Figure 7) in
the presence of a spatially uniform inertial oscillation. As is well known in the literature
(e.g., [7]), wave kinetic energy density gets trapped inside anticyclonic vortices, as observed
in this experiment (top-right panels in Figure 7). The total balanced energy increases at
the expense of the total wave energy, and the skewness of the barotropic vorticity changes
from negative to slightly positive by t = 200 (bottom panel of Figure 7), indicating a change
in the predominance of anticyclones (negative vorticity) to cyclones (positive vorticity).

When the initial barotropic flow is a cyclone superimposed on a spatially uniform inertial
oscillation, wave kinetic energy density is repelled from the core of the vortex (top-right
panels of Figure 8), contrary to the anticyclonic case described in the previous paragraph.
The skewness changes from positive to negative, also in contrast with the anticyclonic case.
However, the energy changes of the cyclonic case are qualitatively similar to the anticyclonic
case (bottom panel of Figure 8).

Does this energy pathway change direction as Ro → 1? Figure 9 shows results of a
simulation identical to that in Figure 7, except for the Rossby number, which is set to 1.
Numerical instability sets in very early on in the simulation, and total energy is no longer
conserved after t ≈ 2.5. However, if not an initial transient or a numerical artifact, the
behavior seen at t < 2.5 could suggest that the energy exchange changes direction, with
waves now extracting energy from the balanced flow. This would imply that it is possible to
reproduce the behavior of fully three-dimensional, non-hydrostatic Boussinesq simulations
at Ro ∼ 1 (e.g., [1]) with this simple two-dimensional model.
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When the initial conditions have both anticyclones and cyclones randomly distributed
across a few low wavenumbers, the behavior is qualitatively similar to when only one sign of
vorticity is initially present, in the sense that anticyclones trap wave energy while cyclones
repel it (upper-right panels of Figures 10 and 11). The energy changes are also similar,
with the waves losing total energy while the balanced flow gains total energy. The wave
energy is initially contained entirely in the purely inertial, spatially uniform mode (k = 0),
but it decreases rapidly mirroring the increase in wave energy in the higher modes (k 6=
0). Importantly, the energy changes appear to be relatively insensitive to the relationship
between Ro and Bu and the initial balanced/wave energy ratio, Et0/Ew0 (compare Figure
10, where Bu = Ro = 0.01 and Et0/Ew0 = 1, with Figure 11, where Bu = Ro2 = 0.01 and
Et0/Ew0 = 0.01). The vortices in the simulation where Et0/Ew0 = 0.01 are more deformed,
with a less smooth vorticity distribution (compare upper-right panels of Figures 10 and 11),
indicating that the balanced flow can be appreciably impacted by the near-inertial waves
in this strong wave regime.

6 Asymptotic Model for NIWs-balanced Flow Interaction

In this section we derive a new asymptotic model that represents both clockwise and coun-
terclockwise wave modes. We begin with the truncated equations derived by [9], linearized
about a steady balanced barotropic flow, written in complex representation:

Ut + iU + 2Bups∗ + RoF u = 0, (53)

pt + Us + Us∗ + RoF p = 0, (54)

where

Fu ≡ UT + UUs + UUs∗ +
i

2

(
Uζ + Uσ

)
, (55)

Fp ≡ pT + Ups + Ups∗ , (56)

ζ ≡ 4Ψ, σ ≡ 4⊥Ψ (57)

Following [9]’s Appendix B, the governing equations can be rewritten only in terms of
velocity in complex representation as

∂t
(
∂2tt + 1− 4Bu∂2ss∗

)
U + RoRu = 0 (58)

∂t
(
∂2tt + 1− 4Bu∂2ss∗

)
p+ RoRp = 0, (59)

where

Ru ≡ iF ut − F utt + iBu
(
F uss∗ − F uss

)
+ iBu

(
F uss∗ − F us∗s∗

)
+ 2Bu

(
F ps∗t − iF

p
s∗
)

(60)

Rp ≡ F ust + F us∗t + i
(
F us∗ − F us

)
− F ptt − F p. (61)

We write the solutions as
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Figure 7: Coupled T-W wave energy changes (lower panel) and snapshots of the barotropic
vorticity ζT and the wave amplitude |A| (upper panels), initialized with a barotropic anti-
cyclone. ∆ET , ∆Etot, ∆PEW , ∆KEW,k=0 and ∆EW are the balanced barotropic energy,
the total (wave + balanced) energy, the wave potential energy, the wave kinetic energy in
the purely inertial mode (k = 0) and the total wave energy, respectively. The purple line
in the lower panel is the instantaneous skewness of the barotropic vorticity. Et0/Ew0 is the
initial balanced-to-wave energy ratio, and N and dt are respectively the number of Fourier
modes and the time step in the simulation.
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Figure 8: Same as Figure 7 but initialized with a barotropic cyclone.
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Figure 9: Same as Figure 7, but initialized with a barotropic anticyclone with Ro = 1.
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Figure 10: Same as Figure 7, but initialized with 6 wavenumbers with randomized phase and
the same initial energy in the balanced and wave modes, i.e., Et0/Ew0 = 1. Ro = Bu = 0.01.
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Figure 11: Same as Figure 7, but initialized with 6 wavenumbers with randomized phase,
and a hundred times more initial energy in the wave modes, i.e., Et0/Ew0 = 0.01. Ro = 0.1
and Bu = Ro2 = 0.01).
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U = A−e−iωt +A+e+iωt, (62)

p = − i
ω

(
A−s +A+

s∗
)
e−iωt +

i

ω

(
A+
s +A−s∗

)
e+iωt (63)

Expanding U and p in powers of Ro:

U = U (0) + RoU (1) + Ro2U (2) + · · · (64)

and substituting in the momentum equation,

iω(∓ω2 ± 1∓ 4Bu∂2ss∗)A∓0 = 0 (65)

iω(∓ω2 ± 1∓ 4Bu∂2ss∗)︸ ︷︷ ︸
≡M∓

A∓1 +R∓0 = 0 (66)

To obtain a single pair of equations for A∓ ≡ A∓0 + RoA∓1 , we follow the reconstitution
technique as used by e.g., [6, 11, 8]. The first step is to add a small correction to the RHS
of the O(1) equations:

M∓A∓0 = RoΦ∓ (67)

M∓A∓1 +R∓0 = 0 (68)

Take (67) + Ro× (68):

RoΦ∓ = −Ro
[
M∓A∓1 −R

∓
0

]
(69)

Substitute back in 67:

M∓A∓ + RoR∓0 = 0 (70)

After some manipulations, the coupled equations for A− and A+ become:

[
L∓ − 2Bu(1 + i)∂2ss∗

]
A∓T = 2Bu(1 + i)(A±Ts∗s∗ + β∓)− L∓α∓ · · · (71)

· · · ∓ iω

Ro

(
− ω2 + 1− 4Bu∂2ss∗

)
A∓ +DA∓, (72)

where the hyperviscosity operator D ≡ ν42r has been added and

L∓ ≡
{
ω(ω ± 1) + iBu

[
∂2ss∗ − ∂2ss + ∂2ss∗(•)− ∂2s∗s∗(•)

]}
, (73)

α∓ ≡ UA∓s + UA∓s∗ +
i

2

(
A∓ζ +A±σ

)
, (74)

β∓ ≡
[
U(A∓ss +A±ss∗) + U(A∓ss∗ +A±s∗s∗)

]
s∗
. (75)
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in Cartesian coordinates, Equation 71 reads

[
L∓ − 1

2
Bu(1 + i)4

]
A∓T = 2Bu(1 + i)

(
1

4
4⊥A±T + β∓

)
− L∓α∓ · · · (76)

· · · ∓ iω

Ro

(
− ω2 + 1− Bu4

)
A∓ +DA∓,

and

L∓ ≡ ω(ω ± 1) +
i

2
Bu
(
∂2yy + i∂2xy

)
+
i

2
Bu
(
∂2yy − i∂2xy

)
(•). (77)

If ω = 1 and Bu, A+ → 0, the YBJ [13] amplitude equation is recovered for A−:

A−T + U · ∇A− +
i

2

(
A−ζ − Bu

Ro
4A−

)
= 0. (78)

6.1 Numerical implementation

Our next goal is to solve 76 numerically. Equation 76 can be rewritten as

[
(ω ± 1)− Bu

2
4̃
]
A∓T −

Bu

2
(1 + i)4⊥A±T ± iω(−ω2 + 1− Bu4)A∓ −DA∓ = · · ·

· · · − L∓α∓ + 2Bu(1 + i)β∓, (79)

and semi-discretized with a forward-in-time scheme as

[
ω(ω ± 1)− Bu

2
4̃
]
A∓(n+1) −A∓(n)

Roδt
− Bu

2
(1 + i)4⊥A

±(n+1) −A±(n)
Roδt

· · ·

· · · ± iω(−ω2 + 1− Bu4)A∓(n+1) −DA∓(n+1) = −L∓α∓(n) + 2Bu(1 + i)β∓ (80)

Multiplying through by Roδt and rearranging yields:

[
ω(ω ± 1)− Bu

2
4̃ ± iωRoδt(−ω2 + 1− Bu4)− RoδtD

]
A∓(n+1) − Bu

2
(1 + i)4⊥A±(n+1) = · · ·

· · ·
[
ω(ω ± 1)− Bu

2
4̃︸ ︷︷ ︸

≡L̃∓

]
A∓(n) − Bu

2
(1 + i)4⊥A±(n) + Roδt

(
2Bu(1 + i)β∓(n) − L∓α∓(n)

)
,(81)

where

4̃ ≡ ∂2xx + ∂2yy + ∂2xy + i∂2xx (82)
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and the (n) and (n+ 1) superscripts indicate the time step at which the term is evaluated.
Writing A∓ in terms of their real and imaginary parts, i.e., A∓ = A∓R + iA∓I , we have

[
L̃∓ ± iωRoδt(−ω2 + 1− Bu4)− RoδtD

](
A∓R + iA∓I

)(n+1) − Bu

2
(1 + i)4⊥

(
A±R − iA

±
I

)(n+1)
= · · ·

· · · L̃∓
(
A∓R + iA∓I )(n) − Bu

2
(1 + i)4⊥

(
A±R − iA

±
I )(n) + Roδt

(
2Bu(1 + i)β∓(n) − L∓α∓(n)

)
,(83)

Equation 83 and its complex conjugate can be written respectively as

H∓1 A
∓(n+1)
R + iH∓1 A

∓(n+1)
I +H2A

±(n+1)
R − iH2A

±(n+1)
I = R∓(n) (84)

and

H∓1 A
∓(n+1)
R − iH∓1 A

∓(n+1)
I +H2A

±(n+1)
R + iH2A

±(n+1)
I = R∓(n). (85)

In matrix form, 
H−1 iH−1 H2 −iH2

H2 −iH2 H+
1 iH+

1

H−1 −iH−1 H2 iH2

H2 iH2 H+
1 −iH+

1



A
−(n+1)
R

A
−(n+1)
I

A
+(n+1)
R

A
+(n+1)
I

 =


R−(n)

R+(n)

R−(n)

R+(n)

 (86)

The next step is to implement and time-step this system numerically.

7 Conclusions

The main results of this project are as follows:

• A new two-component 2D model seems to reproduce the energetics of more complex
3D models, i.e., energy transfer from NIWs to the balanced flow at low Ro;

• This might be the simplest non-asymptotic two-component model that also captures
balanced energy dissipation at high Ro;

• Idealized models such as the ones developed in this study can be used as testbeds
for parameterizations for global 3D models in regions of high NIW energy (instead
of artificially enhanced viscosity) and

• A new asymptotic model was derived for NIW-balanced flow interactions.

8 Next Steps

The next steps in this project are to

• Verify if the direction of the energy exchange (NIWs→balanced) changes as Ro
= O(1) is approached (computationally demanding) and

• Test the new asymptotic model against the parent T-W model.
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Exploiting Sum-of-Squares Optimisation in Hamiltonian

Chaos: Flip Times for the Double Pendulum

Jeremy P. Parker

August 19, 2019

1 Introduction

Sum-of-squares optimisation (SOS) is an analytic and computational method allowing one
to find nonnegative polynomials satisfying prescribed constraints, through semi-definite
programming (SDP) [15]. One important application of this method is to finding Lyapunov
functions to prove stability of polynomial dynamical systems. In particular, when Galerkhin
truncations are made of fluid dynamical systems, the resulting system is polynomial, and
so this method can be applied [2].

Another application of SOS to dynamical systems proposed by Chernyshenko et al.
[2] is the so-called ‘auxiliary function method’ to find bounds on infinite time averages of
quantities. Thus far, applications have concentrated on dissipative systems [6, 7, 8], as
otherwise infinite time averages over all possible initial conditions are not generally well
defined.

A new application of sum-of-squares optimisation is to compute regions of attraction
for sets. Introduced by Henrion and Korda [10], this method makes use of a function V
which is required to decrease along trajectories of the system. A similar idea underlies the
‘barrier function method’ which is employed in our work. The barrier function method can
give a guarantee that trajectories starting in one set do not enter another set within some
finite or possibly infinite time.

The barrier function method has the advantage that it can be applied to non-dissipative
systems, such as the Hamiltonian systems which underlie classical mechanics. One simple
example of a Hamiltonian system which displays chaotic behaviour is the double pendulum,
which is often used as an example in introductory courses and textbooks [18, 12]. Though
the system has four dynamical variables – usually given as two angles and two angular
velocities – it is more intuitive to understand than chaotic systems with three variables
such as the Rössler and Lorenz systems (which are both dissipative).

Relatively little serious research has been focussed on the double pendulum, despite it
being a favourite toy problem for introductory textbooks. Poincaré sections were studied
by Stachowiak and Okada [16]. A fractal pattern in the time-to-flip plots which will be
discussed in detail below was first discovered and discussed in an unpublished work Heyl
[11] and has been studied by a number of student projects [5, 14], but is still not fully
understood.
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The fractal pattern means that, for arbitrarily long times, it is impossible to state
whether for initial conditions within certain regions of phase space, the pendulum will flip
[11]. We attempt to certify that sets of initial conditions do not flip within a certain time.
The report proceeds as follows: in section 2, we present, in abstract terms, the barrier
function method for certifying that trajectories starting in one semialgebraic set do not
enter another in a given time. In section 3, we present the double pendulum model, and
show how the barrier function method is formulated in this case. Section 4 compares the flip
time from a direct solution of the governing equations with regions which we have certified
do not flip, and section 5 briefly discusses and concludes the work. The appendices give
some additional results which may help when applying the barrier function method to other
systems.

2 Method

We consider a system with dynamical variables x = (x1, . . . , xn) ∈ Rn, and dummy variables
(such as Lagrange multipliers) y = (y1, . . . , ym) ∈ Rm, which satisfy

dxk
dt

= fk(x,y), k = 1, . . . , n, (1)

0 = gk(x,y), k = 1, . . . ,m. (2)

Here, the fk and gk are assumed to be polynomial. By introducing additional dummy
variables, it is often possible to transform simple dynamical systems into this polynomial
form (see appendix A).

Let X0 be a semialgebraic set defined by

a0k(x) = 0, k = 1, . . . , N0, (3)

b0k(x) ≥ 0, k = 1, . . . ,M0. (4)

Again, we assume that the ak and bk are polynomial. In physically relevant situations, it
will always be possible to approximate a set by a semialgebraic set, with accuracy increasing
as the order or number of the polynomials is increased. Similarly, define X1 by

a1k(x) = 0, k = 1, . . . , N1, (5)

b1k(x) ≥ 0, k = 1, . . . ,M1. (6)
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Lemma 1. Suppose there exist polynomials V (x, t), sk(x,y, t), tk(x,y, t) such that

∂V

∂t
+

n∑
k=1

fk
∂V

∂xk
− s0t(T − t)−

m∑
k=1

skgk ≥ 0, (7)

sk ≥ 0, k = 0, . . . ,m, (8)

V −
M0∑
k=1

r0ka
0
k −

N0∑
k=1

s0kb
0
k ≥ 0, t = 0, (9)

s0k ≥ 0, k = 1, . . . , N0, (10)

−1− V − s10t(T − t)−
M1∑
k=1

r1ka
1
k −

N1∑
k=1

s1kb
1
k ≥ 0, (11)

s1k ≥ 0, k = 0, . . . , N1, (12)

where the inequalities hold over all space and time unless otherwise stated. Then no trajec-
tories starting inside X0 at t = 0 intersect X1 when t ∈ (0, T ).

Proof. Consider a trajectory starting at x0 ≡ (x01, .., x
0
n) ∈ X0 at t = 0. By equation (9),

and the definition of X0, we have

V (x0, 0) ≥
M0∑
k=1

r0k(x0)a0k(x0) +

N0∑
k=1

s0k(x0)b0k(x0)

=

M0∑
k=1

r0k(x0) · 0 +

N0∑
k=1

s0k(x0)b0k(x0)

=

N0∑
k=1

s0k(x0)b0k(x0)

≥
N0∑
k=1

s0k(x0) · 0

= 0.

Along a trajectory when t ∈ (0, T ),

DV

Dt
=
∂V

∂t
+

n∑
k=1

fk
∂V

∂xk

≥ 0,

using (7) and the fact that gk(x,y) = 0 on the trajectory. Therefore, V is increasing in time,
and in particular V ≥ 0 for all t ∈ (0, T ). But, through similar reasoning to that above,
(11) ensures that V ≤ −1 for x ∈ X1 and t ∈ (0, T ), so this trajectory cannot intersect with
X1 in the time interval.

The feasibility of the system (7-12), as well as a solution to it if one exists, can be found
using sum-of-squares optimisation.
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θ1

θ2

x

z

Figure 1: The conventions used for the double simple pendulum in this work.

3 The Double Pendulum

Two quantitatively different – though qualitatively very similar – double pendulum systems
are commonly studied. The compound double pendulum uses two massive rods of equal
length. Instead, we consider the double simple pendulum: two light, rigid rods of unit
length connecting two point masses with unit mass. The angle the rods make with the
vertical are θ1 and θ2, and they have corresponding angular velocities ω1 and ω2. Figure 1
shows a schematic of this setup. Let T1 and T2 be the tensions in each of the rods, and let
s1 = sin θ1, c1 = cos θ1, s2 = sin (θ2 − θ1) and c2 = cos (θ2 − θ1). It is then possible to write
down a Lagrangian, and derive in the usual way [17] the governing equations

dω1

dt
= s2T2 − s1, (13)

dω2

dt
= −s2T1, (14)

dc1
dt

= −ω1s1, (15)

ds1
dt

= ω1c1, (16)

dc2
dt

= −(ω2 − ω1)s2, (17)

ds2
dt

= (ω2 − ω1)c2, (18)

and the constraints

c21 + s21 = 1, (19)

c22 + s22 = 1, (20)

T1 − c2T2 − ω2
1 − c1 = 0, (21)

2T2 − c2T1 − ω2
2 = 0. (22)

178



We may interpret these physically: (13) and (14) represent Newton’s second law for the
angular velocities, with a balance between angular acceleration and the torques from ten-
sion and gravity. Equations (15-18) state that the rate of change of the angles are the
angular velocities. Equations (19) and (20) are the normalisation constraints for the sines
and cosines, and (21-22) ensure that tension balances centrifugal force and gravity in the
direction parallel to each rod.

Note that by formulating using cos(θ2 − θ1) etc. instead of cos θ2, the order of the
polynomial system (13-22) is reduced by 1. The system is invariant under the reflection in
the centreline

S : (θ1, θ2, ω1, ω2) 7→ (−θ1,−θ2,−ω1,−ω2), (23)

which is equivalent to

(T1, T2, ω1, ω2, c1, s1, c2, s2) 7→ (T1, T2,−ω1,−ω2, c1,−s1, c2,−s2). (24)

There is also a time-reversal symmetry which will not be relevant to us.
From the equations, it can be shown that the Hamiltonian

H = ω2
1 +

1

2
ω2
2 + c2ω1ω2 − 2c1 − (c2c1 − s2s1) + 3 (25)

remains some constant value H = E along trajectories.

3.1 Definition of the problem

There are numerous possible definitions of a ‘flip’ in the double pendulum system, each of
which is quantitatively different but displays a similar fractal pattern. We define a flip as
having occurred when the angle between the two rods, θ2− θ1, becomes π, so that c2 = −1.
This does allow the possibility that the system approaches a flip but then moves back on
itself, which intuitively one would not consider a flip. We wish to answer the following
question: for which initial (stationary) conditions can we guarantee that a flip will not
occur before time T?

The minimum energy required for a flip is clearly the energy at rest when θ1 = 0 and
θ2 = π, giving E = 2. Therefore, any initial condition with energy less than 2, i.e.

2 cos θ1 + cos θ2 ≥ 1, (26)

will never flip, and so the problem is trivial. On the other hand, if initially we have
cos (θ2 − θ1) = −1 then the time-to-flip is 0, and the problem is also trivial. A large region
of the θ1 − θ2 plane remains, and here the time-to-flip displays a fractal-like pattern.

3.2 Rescaling

If we consider only those trajectories which start from rest (ω1 = 0, ω2 = 0), we must
therefore have E ≤ 6, and by construction, E ≥ 0. Certainly then, ω1 and ω2 must lie
within the region with boundary

ω2
1 +

1

2
ω2
2 + ω1ω2 = 6. (27)
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By extemising this expression, we find that |ω1| ≤ Ω1 ≡ 2
√

3 and |ω2| ≤ Ω2 ≡ 2
√

6. Solving
(21) and (22),

T1 =
(
2(ω2

1 + c1) + c2ω
2
2

)
/
(
2− c22

)
, (28)

T2 =
(
c2(ω

2
1 + c1) + ω2

2

)
/
(
2− c22

)
. (29)

These give bounds

|T1| ≤ τ1 ≡ 2Ω2
1 + Ω2

2 + 2 = 50, (30)

|T2| ≤ τ2 ≡ Ω2
1 + Ω2

2 + 1 = 37. (31)

Suppose there is some particular region of time t ∈ (0, T ) in which we are interested.
We may then define rescaled variables ω̃1 = ω1/Ω1, T̃1 = T1/τ1, t̃ = t/T etc. In this way, all
variables are constained to lie between −1 and 1, which is of course automatically the case
for s1, c1 etc. The equations now become (all tildes are immediately dropped for brevity)

dω1

dt
= fω1 ≡

T

Ω1
(s2τ2T2 − s1) , (32)

dω2

dt
= fω2 ≡ −

T

Ω2
s2τ1T1, (33)

dc1
dt

= fc1 ≡ −TΩ1ω1s1, (34)

ds1
dt

= fs1 ≡ TΩ1ω1c1, (35)

dc2
dt

= fc2 ≡ −T (Ω2ω2 − Ω1ω1)s2, (36)

ds2
dt

= fs2 ≡ T (Ω2ω2 − Ω1ω1)c2, (37)

with constraints

0 = g1 ≡ c21 + s21 − 1, (38)

0 = g2 ≡ c22 + s22 − 1, (39)

0 = h1 ≡ τ1T1 − c2τ2T2 − Ω2
1ω

2
1 − c1, (40)

0 = h1 ≡ 2τ2T2 − c2τ2T1 − Ω2
2ω

2
2. (41)

We may also constrain our system by considering only trajcetories whose energy is less than
some maximum by

0 ≤ bE ≡ Emax −H. (42)

Notice that all the f , g, h and b are polynomials.

3.3 Formulation of sum-of-squares problem

Let V be a polynomial in t, ω1, ω2, c1, s1, c2 and s2. If it holds that

∂V

∂t
+ f · ∇V ≥ 0, (43)
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the value of V increases along trajectories.
It is only necessary for this to be the case when our constraints g and h hold, so we

require
∂V

∂t
+ f · ∇V ≥ g1σ1 + g2σ2 + h1σ3 + h2σ4 = 0, (44)

where, for i ∈ [1, 4], σi is any polynomial in t, ω1, ω2, c1, s1, c2 and s2, and also T1 and
T2. We are only interested in trajectories which start stationary and are only interested in
times up to T (rescaled to 1), so

∂V

∂t
+ f · ∇V ≥ g1σ1 + g2σ2 + h1σ3 + h2σ4 + t(1− t)σ5 + bEσ6 ≥ 0, (45)

where again σ5 and σ6 are polynomials in t, ω1, ω2, c1, s1, c2, s2, T1 and T2, but are now
also required to be nonnegative.

If we can find a solution with some C such that V > C in the initial region, but V ≤ C
in the ‘flipped’ region, then we guarantee no flip before T . To this end, we require

V |t=0 − C > b0σ7 + ω2
1σ8 + ω2

2σ9 ≥ 0. (46)

Here the σ are polynomials of ω1, ω2, c1, s1, c2 and s2 (no t or Ti dependence), and are
non-negative. The initial region is defined by b0 ≥ 0 and ω1 = ω2 = 0. The last two terms
ensure that we start with zero velocity. The strict inequality is implemented using some
small fixed ε. We also need

C − V − g1σ10 − g2σ11 − t(1− t)σ12 − bEσ13 − (c2 + 1)σ14 ≥ 0, (47)

where now the σ depend on t, ω1, ω2, c1, s1, c2 and s2, but not Ti. Only σ12 and σ13 are
required to be non-negative.

Therefore our full problem is to find coefficients for V and all σi, while requiring the
following are sum-of-squares:

∂V

∂t
+ f · ∇V − g1σ1 − g2σ2 − h1σ3 − h2σ4 − t(1− t)σ5 − bEσ6, (48)

σ5, (49)

σ6, (50)

V |t=0 − C − b0σ7 − ω2
1σ8 − ω2

2σ9 − ε, (51)

σ7, (52)

σ8, (53)

σ9, (54)

C − V − g1σ10 − g2σ11 − t(1− t)σ12 − bEσ13 − (c2 + 1)σ14, (55)

σ12, (56)

σ13. (57)

If V and the σ are all chosen to be invariant under S, then all of these expressions are
invariant under S except (51), which may or may not be, depending on the choice of initial
set b0 ≥ 0.
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3.4 Systematic mapping of initial conditions

We restrict to the case that ω1 = ω = 2 initially, and want to certify as non-flipping as much
of the remaining θ1 − θ2 plane as possible. In order to exploit the problem’s symmetry, we
will consider sets of initial conditions defined by

b0 = −
{
R2 − (c1 − cos θ01)2 − (s1 − sin θ01)2 −

(
c2 − cos(θ02 − θ01)

)2 − (s2 − sin(θ02 − θ01)
)2}

×
{
R2 − (c1 − cos θ01)2 − (s1 + sin θ01)2 −

(
c2 − cos(θ02 − θ01)

)2 − (s2 + sin(θ02 − θ01)
)2}

,

so that b0 ≥ 0 gives a pair of hyperspheres in s1 − c1 − s2 − c2 space, parameterised by
radius R and centre θ01 and θ02 and invariant under S. This transforms into a pair of oval
shapes in θ1 − θ2 space.

Our method for mapping out which regions flip proceeds as follows:

1. Divide the θ1 − θ2 plane into a coarse grid of squares.

2. For each square (in parallel), solve a simple SOS problem to find the smallest set of
the form b0 ≥ 0 which entirely contains the square, by minimising R and choosing θ1
and θ2 as the centre of the square.

3. For this region b0 ≥ 0, use another simple SOS problem to find the maximum energy,
so that we may restrict ourselves to trajectories with less than this energy.

4. Attempt to find a solution to (48-57) for this region.

5. If a solution is found, all trajectories starting within b0 ≥ 0 are guaranteed not to flip.
If not, we can subdivide the square into four smaller squares, and repeat the process.

4 Results

Figure 2a shows the time-to-flip, using the definition in section 3.1, as a function of the
initial conditions, assuming ω1 = ω2 = 0 initially. This was calculated using the ode45
function in MATLAB, solving (13-22) directly. A complex fractal-like pattern is apparent.
As the time goes to infinity, the vast majority of trajectories seem to flip, but there are
certainly unstable periodic orbits which do not. It is believed that the ‘wisps’ which appear
in figure 2a are those trajectories which start very close to simple periodic orbits, and so
take a long time to flip.

Given such fine structures in the long time case, it is not obvious that after a short
time, such as that presented in figure 2b, there are not small regions which flip very quickly.
Since these figures are based on integrations starting at a grid of points, what appears to
be a coherent region which does not flip is not guaranteed to be so. However, the method
presented in section 2 allows us to certify that all trajectories starting within a simply
connected set do not flip.

The system is parsed in YALMIP [13] and solved using Mosek [1]. YALMIP is able to
automatically detect the symmetry in the system, and reduce the complexity of the resulting
SDP accordingly. Despite this, the system is a very large one, and slow to solve.
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The polynomials used in the system were chosen to be homogeneous to a certain degree 
Nd in the dynamical variables, and up to a certain degree Nt in time. So, for example, if 
Nd = 2 and Nt = 3, and supposing for brevity that V were to depend only on t, c1 and s1, 
it would be of the form

V =
(
C1 + C2c1 + C2s1 + C3c

2
1 + C4c1s1 + C5s

2
1

)
+
(
C6 + C7c1 + C8s1 + C9c

2
1 + C10c1s1 + C11s

2
1

)
t

+
(
C12 + C13c1 + C14s1 + C15c

2
1 + C16c1s1 + C17s

2
1

)
t2

+
(
C18 + C19c1 + C20s1 + C21c

2
1 + C22c1s1 + C23s

2
1

)
t3;

there are no c21s
2
2 terms.

Initially we chose Nd = 4 and Nt = 4, giving a total of 1050 unknown coefficients to
be found, before symmetry reduction approximately halves this number. The results are
shown in figure 3a. This degree is apparently insufficient to certify that regions near the
boundaries found from direct calculation do not flip. It is possible, though unlikely, that
there are trajectories not visible from the direct calculations which do flip in these regions.
In order to test this, the tests near the boundaries were repeated with Nd = 6 and Nt = 6,
at much greater computational cost (6468 total unknown coefficients), and in this case more
regions were certified.

5 Conclusion

We have developed a new method to guarantee events in a dynamical system do not occur
within a certain time period. The results confirmed what we believed to be true from direct
computation of trajectories. Though we were able to do this only for modest time horizons,
the method presented has several advantages.

Firstly, there is no discretisation in this computational method, in either space or time.
This removes any possibility of trajectories which do flip existing within a set which appears
not to. It also means we can be fairly confident of the accuracy of our results, so long as
the SDP solver tells us the problem is well posed and well conditioned.

Secondly, the complexity of the problem does not necessarily scale with the size or di-
mensionality of the set of initial conditions we consider. So long as the trajectories within
the initial region behave similarly, in some sense, then it is not more expensive to consider
a larger region. Only when getting close to a flip/no flip boundary as seen in figure 2b is it
necessary to include higher order polynomials. This means that we can certify large areas
of initial conditions relatively cheaply, without the need for a large number of time integra-
tions. In this proof-of-concept study, we have only considered initial conditions which start
from stationary, ω1 = ω2 = 0. Though this intuitively makes sense, mathematically there is
no reason one should consider only two dimensions. Our method is no more complex when
considering a four-dimensional initial condition, whereas discretising a four-dimensional re-
gion of phase space is significantly more computationally demanding than a two-dimensional
one.

Nevertheless, for this simple system, it is very cheap to perform accurate direct solutions
of the equations, and we have only been able to attain modest time intervals using the barrier
function method without using very large systems.
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(a) Colour scale chosen so that T = 0 is blue,
T = 20 or higher is yellow.

(b) Blue: T < 4, yellow: T > 4.

Figure 2: Time-to-flip T against initial conditions for the simple double pendulum, by direct
solution of equations (13-22). The solid black line encloses the region for which flipping is
energetically forbidden. The stable equilibrium is at the centre of the figures, and the three
unstable equilibria are at the corners, the top and bottom centre and the left and right
centre – recall that the plot is periodic in both directions. The two clear diagonal lines are
the ‘initially flipped’ trajectories.
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(a) Using degree 4 polnomials. (b) Using degree 6 polynomials.

Figure 3: As per figure 2b but with regions guaranteed not to flip coloured in green. Notice
the oval shapes from the sets of initial conditions defined by b0 ≥ 0.
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Appendices

A Some useful tricks for making systems polynomial

The barrier function method employed in this work, as well as the auxiliary function method
of time averages, and the finding of Lyapunov functions using SOS, relies on dynamical
systems being in the form

dx

dt
= f(x), (58)

where, crucially, f must be a polynomial. In many simple and interesting dynamical systems,
this is not the case.

A.1 Rational functions

Suppose we have a dynamical system

dx

dt
=
f(x)

g(x)
(59)
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where x ∈ Rn, and f : Rn → Rn and g : Rn → R are polynomials. Define a dummy variable

λ ≡ 1

g(x)
, (60)

so that the system becomes polynomial:

dx

dt
= λf(x), (61)

with the polynomial constraint
λg(x) = 1. (62)

For some polynomial V (x) : Rn → R to be increasing along trajectories is therefore
equivalent to requiring

λf(x) · ∇V (x) > (λg(x)− 1)s(x, λ), (63)

for all x and λ, for some polynomial s.
This method can be extended to matrix inverses, as well as to fractional powers.

A.2 Trigonometric functions

Suppose
dx

dt
= f(x, cosx, sinx),

where f : R3 → R is a polynomial. We may simply define y = cosx, z = sinx and then the
system becomes the simple polynomial system:

dx

dt
= f(x, y, z),

dy

dt
= −zf(x, y, z),

dz

dt
= yf(x, y, z).

Note that the order of the system is one higher than that of the original polynomial, and
there are three variables instead of one. Tricks like this can be combined, but may quickly
lead to very large polynomial systems. Care is also required to ensure that the initial
conditions for y and z are compatible with the definition.

In the special but common case

dx

dt
= f(cosx, sinx),

the result is particularly simple:

dy

dt
= −zf(y, z),

dz

dt
= yf(y, z).

Again, this system is only relevant to the original one when the initial conditions are chosen
so that y = ±

√
1− z2.

Similar tricks can be used for exponentials, other trigonometric functions, and compo-
sitions of these functions with polynomials.
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B Discrete-time dynamical systems

All examples studied in this work have been continuous-time dynamical systems, in the form
(58). However, many interesting dynamical systems, especially simple examples relevant to
Hamiltonian systems [9, 3, 4] are discrete-time systems, or maps,

xn+1 = f(xn). (64)

If f is a polynomial, we may formulate a barrier function method for this system, by finding
polynomial V (x, n) such that

V (f(x), n+ 1)− V (x, n) ≥ 0 (65)

over some number N of iterations. In practice, n should be rescaled to be between 0 and 1,
by using N . Unfortunately, the composition of V with f gives a very high degree polynomial,
which is slow and memory intensive to optimise over, so in practice only small N is possible.
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Symmetry Breaking of the Enceladus Ice Shell

Wanying Kang

August 20, 2019

1 Introduction

This study investigates why there is a hemispheric asymmetry of the ice thickness on Ence-
ladus although the tidal forcing is perfectly symmetric between the two hemispheres. We 
consider a simple limit and treat the ice crust as a membrane covering the ocean which 
is modeled by a shallow water model. We propose that this asymmetry may arise from a 
symmetry breaking induced by a positive feedback, which can reinforce the tilting of the 
ice-ocean interface but only at large scales. With such a positive feedback, an infinitesimal 
initial asymmetry from random processes could end up in a finite interface tilting that may 
be balanced by the heat diffusion to the space. We will also show that this mechanism is 
efficient only for perturbations with wavenumber 1 meridionally (P10 modes), while the per-
turbations with smaller scales (wavenumber greater than 1) are not growing as fast. With 
this scale selectivity, we expect the interface topography to be dominated by wavenumber 
1 or 3, consistent with the geysers gathering over the south pole of Enceladus.

In the following sections, we first investigate the mechanism using a 1 dimensional shal-
low water model covered by an ice membrane (section 2). We solve for modal growth rates 
of the interface perturbation through asymptotic expansion, compare the results with nu-
merical simulations (section 2.2), and then we understand the positive feedback mechanism 
and the scale selective mechanism by keeping only the relevant terms (section 2.4). The 
tidal heating distribution generated with a “realistic” interface topography is estimated nu-
merically in section 2.3, to be compared with the observed heat flux distribution. Next, we 
asymptotically solve the growth rate in 2 dimensional spherical coordinates and show that 
the results remain qualitatively similar to the 1 dimensional model (section 3.2). Finally, 
in section 4, we couple the tidal heating model with the evolution of the interface topogra-
phy, and show that, starting from infinitesimal random noise, the interface topography can 
evolve to one that is tilted from one pole to the other. Discussions and conclusions are in 
section 5.

2 1D ice-covered shallow water

2.1 Model setup

We start from a minimum model for the Enceladus tides, a 1D shallow water model covered 
by an ice membrane representing a meridian on Enceladus. The governing equations for
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the flow speed u, v and the surface deformation η are,

∂tv = −g∂yη − r0
H(y)/H0

v − ∂yRice + f(y)u+ F (1)

∂tu = − r0
H(y)/H0

u− f(y)v (2)

∂tη = −∂y(H(y)v). (3)

In the above equations, we assume all fields to be uniform in x direction (corresponding
to the east-west direction on Enceladus), and thus all x derivative terms vanishes. The
momentum equations are forced by Ekman damping, tidal forcing F = −∂yU (U is the
tidal potential), Coriolis force, and restoring force due to gravity −g∂yη and due to ice
deformation −∂yRice. H(y) is the depth of the ocean varying with y, and H0 is the mean
ocean depth. g = 0.113 m/s2 is the gravitational acceleration rate on Enceladus and
ρ = 1000 kg/m3 is the water density. We parameterize Rice, the pressure that ice is exerting
on the water, as a function of the deformation η. In order to get the proper formula, we
write the momentum equation for a uniform ice membrane,

σ∂ttη + γ∂tη = ∂yT∂yη + σRice.

Here, σ, γ, T are the area mass density, damping coefficient, and surface tension of the
ice membrane, and σ is the area mass density of the subsurface ocean. For the tidal mode,
whose time variation can be written as e−iωt, Rice can be parameterized as

Rice = (−∂yα∂y + ν∂t)η, (4)

where α = T/σ is the ice spring constant, ν = γ/σ is the ice damping rate. The first term
comes from the surface tension; it has the form of a negative real number multiplying the
deformation η and thus acts as an elastic restoring force. The two y derivatives are not
combined together because, as will be mentioned later, we set α to be a function of ice
thickness H, which varies with y. The second term has the form of an imaginary number
multiplying η, and thus represent the damping in the membrane. In the above formula, we
keep the dominant real and imaginary terms, while dropping the inertial term −(ω2σ/ρ)η,
because it is also in the form of a real number multiplying η, but, in the stiff membrane
regime, is much smaller than the term due to surface tension. We adopt the ice modulus
values from Beuthe (2018), who explicitly solves a thin ice model; the elastic restoring term
associated with α induced by a 23 km thick ice shell is around 21.3gσ/σ ∼ 1.34 times η if
the deformation has degree-2 structure. On the other hand, the inertial term is only around
σω2/σ ∼ 1.6e-9 times η, which is clearly negligible. That is equivalent to say that the ice
membrane can be thought of as weightless. In fact, the ice rheology is much more complex
than what is considered here. We ignore the extra restoring force induced by the bending
motions, and we do not consider the tangential rubbing motions which have been shown to
be important for the heat generation. We explored some of these effects, which requires a
lot of works, including some repetitive ones. To keep the physics picture clear, we decide
not to include all the details and results, but to just present a simple case in detail and
discuss the effects of the ignored factors in the conclusion (section 5).
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Substituting Eq (4) into Eq (1) yields,

∂tv = −g∂yη − r0
H(y)/H0

v − ∂y (−∂yα∂y + ν∂t) η + f(y)u+ F. (5)

The ice membrane should be stiffer when it is thicker, so we let the ice spring constant
vary with the ice thickness H following

α(H) = α0(H/H0)
pα . (6)

The power pα by default is set to 1. Choosing a different positive number does not affect
the result qualitatively. We also allow the ice damping rate ν to vary with H to the same
manner,

ν(H) = ν0(H/H0)
pν . (7)

But by default, it is turned off, i.e., pν = 0. The ice depth H(y) and ocean depth H(y) are
decomposed into a mean value plus a variation.

H(y) = H0 + h(y) = H0(1 + h′(y))

H(y) = H0 + h(y) = H0(1 + h
′
(y)).

Prime denotes the fluctuation relative to the mean. We link the ice depth variation with
that of the ocean by assuming the column weight to be a constant. This is a reasonable
choice as the bottom of the ocean cannot maintain a tangential stress to counterbalance
the horizontal pressure gradient in a long term.

h(y) = −ρ

ρ
h(y)

h
′
(y) = −ρH0

ρH0

h′(y) ≡ −βh′(y) (8)

We solve Eq (5), Eq (2), Eq (3) and Eq (6-8) in a domain corresponding to a meridian
circle (domain size L = 2πa, where a is the radius of Enceladus), from south pole to north
pole, and then back to south pole from the opposite side. This way we can use periodic
boundary conditions and solve everything in Fourier space. The default parameter values
are summarized in Table. 1.

2.2 Asymptotic solution

In this section, we assume that the interface topography is small (h′ << 1), and solve
for the projection of the leading order tidal heating profile onto this topography through
asymptotic expansion. One difficulty facing us is that the Coriolis coefficient is varying with
y, and thus if this term is to zeroth order, all modes will be excited by a single mode forcing.
To make the problem analytically solvable, we can either set the Coriolis coefficient to be
a constant, or assume the Coriolis terms are to the first order so that it will only appear
in the first or higher order equation as a forcing. We choose the first. As demonstrated in
Beuthe (2016) and as we will show later (section 2.4), the rotation effect is negligible with
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Table 1: Parameter setups
Parameter Description Symbol Value Units Reference

Water density ρ 1000 kg/m3 –
Ice density ρ 900 kg/m3 –
Surface gravity g 0.113 m/s2 –
Rotation rate (tidal frequency) ω 5.308 × 10−5 s−1 –
Coriolis Coeff. at the poles f0 2ω = 1.062 × 10−4 s−1 –
Eccentricity e 0.0047 – –
Tidal potential Amp. in 1D A 1.5a2Ω2e = 1.26 m2/s2 Tyler (2011)

Tidal forcing wavenumber in 1D k̃ 2 – Tyler (2011)
Enceladus radius a 252.1 km –
Domain size L 2πa = 1584 km –
Mean ocean depth H0 37 km Beuthe (2018)

Mean ice depth H0 23 km Beuthe (2018)

Ocean ice mass ratio β ρH0/ρH0 = 1.79 – –
Ekman damping rate r0 0.05 day−1 –
Ice spring constant α0 21.3g/(4π/L)2/β = 2.1× 1010 m3/s2 Beuthe (2018)

α’s power dependence on H pα 1 – –
Ice damping rate ν0 0.73g/ω/β = 870 m/s Beuthe (2018)

ν’s power dependence on H pν 0 – –
Ice fusion energy Lf 3.3 × 104 J/kg –

a stiff ice shell (which is true). The tidal forcing and the interface topography are set to be
sinusoidal (More complex structure can be decomposed into the sum of multiple sinusoidal
modes, however, by doing so, we prevent different modes from interfering with each other),

U(y, t) = ℜ [A exp(iky − iωt)] (9)

h′(y) = ht cos(kty) ≡ hth1. (10)

Tyler (2011) and Beuthe (2016) derive the eccentricity tide potential on Enceladus.

Ueccen = ℜ
[

−
√

4π

5

2

3
Y2,0 +

√

96π

5

(

7

8
Y2,2 −

1

8
Y2,−2

)

]

e−iωt (11)

The factor
√

4π/5 and
√

96π/5 come from the normalization factor of Y2,0 and Y2,2. We
therefore choose A = A2,0 = (3/2

√
2)a2Ω2e, k̃ ≡ L/(2π)k = 2 to represent the Y2,0 eccen-

tricity tide. We divide an extra factor of
√
2 because we use a traveling wave form for the

forcing, which contains one cos(ky) cos(ωt) mode plus one sin(ky) sin(ωt) mode. As such,
the same amount of energy is put in the domain from north pole to south pole.

We use a traveling wave form for tidal potential to make sure everywhere in the domain
is forced equally. Any inhomogeneity arises from the heating profile then can be attributed
to the interaction between the tidal perturbation and the interface topography. Actually,
a stationary forcing can be decomposed into two wave trains traveling in the opposite
direction. Since this system has spatial inversion symmetry without the Coriolis effect
(which will be shown to be a secondary effect), the projection of heating onto topography
profile will not change when reversing the tidal forcing wave train. Because two dimensional
dynamics is crucial for Y2,2 tidal forcing, we leave the discussion to section 3, where we
directly solve for the spherical coordinates. In the rest of this subsection, we will solve

192



for the projection of the tidal heating profile onto the interface topography for various
topography wavenumbers, k̃t ≡ L/(2π)kt = 1, 2, . . ..

We first expand v, u and η using small parameter ht,

v = v0 + htv1 + htv2 + . . .

u = u0 + htu1 + htu2 + . . .

η = η0 + htη1 + htη2 + . . . .

The zeroth order equation set is,

∂tv0 = −g∂yη0 − r0v0 − ∂y (−α0∂yy + ν0∂t) η0 + f0u+ F (12)

∂tu0 = −r0u0 − f0v (13)

∂tη0 = −H0∂y(v0). (14)

Substituting the plane wave solution

v0(y, t) = ℜ[ṽ0 exp(iky − iωt)]

u0(y, t) = ℜ[ũ0 exp(iky − iωt)]

η0(y, t) = ℜ[η̃0 exp(iky − iωt)]

one can get the following specific solution,

ṽ0 =
ωk

δ0
A (15)

ũ0 =
−if0ωk

(ω + ir0)δ0
A (16)

η̃0 =
k2H0

δ0
A, (17)

where
δ0 = −iω(−iω + r0) + k2H0(g + α0k

2 − iων0) + f2
0/(1 + ir0/ω). (18)

We then obtain the first order equation set by linearizing each term and keeping only
the term proportional to ht,

∂tv1 = −g∂yη1 − r0v1 − ∂y (−α0∂yy + ν0∂t) η1 + f0u1

+β∂y [−α0pα∂y(h1∂yη0) + ν0pν∂tη0h1] + r0h1v0 (19)

∂tu1 = −r0u1 − f0v1 + r0h1u0 (20)

∂tη1 = −H1∂y(v1) +−H0∂y(h1v0) (21)

Interfering with h1 = cos(kty) = (exp(ikty) + exp(−ikty))/2 excites two modes in the first
order equation, with wavenumber k + kt and k − kt. Substituting the plane wave solution

v1(y, t) = ℜ[ṽ+1 exp(i(k + kt)y − iωt) + ṽ−1 exp(i(k − kt)y − iωt)],

u1(y, t) = ℜ[ũ+1 exp(i(k + kt)y − iωt) + ũ−1 exp(i(k − kt)y − iωt)],

η0(y, t) = ℜ[η̃+1 exp(i(k + kt)y − iωt) + η̃−1 exp(i(k − kt)y − iωt)],
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we get the amplitudes of the first order perturbation,

ṽ±1 =
1

2δ±1
{[ωβ(α0pαk(k ± kt)− iων0pν)(k ± kt)] η̃0

−
[

iωr0 + (g + α0(k ± kt)
2 − iων0)H0(k ± kt)

2
]

ṽ0

+ [f0r0/(1 + ir0/ω)] ũ0} (22)

ũ±1 =
1

2δ±1 (−iω + r0)
{[−f0ωβ(α0pαk(k ± kt)− iων0pν)(k ± kt)] η̃0

[

if0ωr0 + f0(g + α0(k ± kt)
2 − iων0)H0(k ± kt)

2
]

ṽ0

+
[

−iωr0(−iω + r0) + r0(k ± kt)
2H0(g + α0(k ± kt)

2 − iων0)
]

ũ0
}

(23)

η̃±1 =
H0(k ± kt)

2δ±1 ω
{[ωβ(α0pαk(k ± kt)− iων0pν)(k ± kt)] η̃0

+
[

iω(−iω + 2r0)− f2
0 /(1 + ir0/ω)

]

ṽ0

+ [f0r0/(1 + ir0/ω)] ũ0} . (24)

where

δ±1 = −iω(−iω + r0) + (k ± kt)
2H0(g + α0(k ± kt)

2 − iων0) + f2
0 /(1 + ir0/ω). (25)

Next, we derive the energy equation. We multiply ρvH(y) to Eq (5), multiply ρuH(y) to
Eq (2), multiply ρ(g−∂yα(H)∂y)η to Eq (3), and add them together. After some integration
by parts, we get

∂t
[

1
2ρv

2H + 1
2ρu

2H + 1
2ρgη

2 + 1
2ρα(∂yη)

2
]

= −∂y [ρvHgη + ρvH∂y (α∂yη)− ρα(∂tη)(∂yη) + ρνvH∂tη]

+ ρvHF − ρν(∂tη)
2 − ρr0H0(v

2 + u2). (26)

Clearly, the quadratic form on the left hand side is the energy of the system. The first term
on the right hand side is the energy transport term; it vanishes after averaging over the
domain. The first term on the second line is the energy source from the tidal forcing. The
last two terms are the tidal heating generated in the ice and in the ocean, respectively.

Projecting the tidal heating onto the topography h1 = cos(kty), keeping only the leading
terms (O(ht) terms), and dividing everything by ht (by doing so, the projected heating we
get should not change with the topography amplitude as long as it is small enough), leads
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to the projected heating rate associated with ice dissipation and Ekman friction,

P kt
ice ≡ 1

Lht

∫ L

−L
ρν(∂tη)

2 · h1 dy

=
ρν0ω

2

Lht
ℜ
∫ L

−L
(1− pνβht cos kty) cos kty · . . .

. . .
[

η̃0e
iky + htη̃

+
1 e

i(k+kt)y + htη̃
−
1 e

i(k−kt)y
]2

dy

= ρν0ω
2ℜ

[

−1
2pνβη̃0η̃

∗
0 + η̃+1 η̃

∗
0 + η̃−1 η̃

∗
0

]

(27)

P kt
ekman ≡ 1

Lht

∫ L

−L
ρr0H0(u

2 + v2) · h1 dy

=
1

Lht

∫ L

−L
ρr0H0

{

ℜ
[

ṽ0e
iky + htṽ

+
1 e

i(k+kt)y + htṽ
−
1 e

i(k−kt)y
]2

+ℜ
[

ũ0e
iky + htũ

+
1 e

i(k+kt)y + htũ
−
1 e

i(k−kt)y
]2
}

· cos(kty) dy

= ρr0H0ℜ
[

ũ+1 ũ
∗
0 + ũ−1 ũ

∗
0 + ṽ+1 ṽ

∗
0 + ṽ−1 ṽ

∗
0

]

(28)

P kt
total ≡ P kt

ice + P kt
ekman. (29)

The question we intend to address in this study is whether the tidal heating can reen-
hance the interface topography and lead to symmetry breaking between the two hemisphere.
The condition for this to happen is Ptotal > 0. In Fig. 1, we show the projected heating
rate associated with ice dissipation and Ekman friction solved at f0 = 0 (dashed curve) and
f0 = 2ω (solid curve). Here, we want to highlight three features without diving into the
mechanisms, which will be discussed in section 2.4. 1) The ice dissipation is the dominant
contributor, consistent with Beuthe (2016). 2) A constant Coriolis coefficient makes little
difference because the ice restoring force dominates all other processes (see section 2.4),
again consistent with Beuthe (2016). 3) Only large-scale interface topography (wavenum-
ber 1 and 2) can be reenhanced by the tidal heating. As mentioned at the beginning, the
scale selectivity (feature 3) is necessary to explain the fact that geysers cluster in one spot
on Enceladus. The interface topography will be dominated by the fastest growing mode;
if the small-scale interface perturbations grow equally fast or even faster, compared to the
large-scale ones, the Enceladus would be “patchy”, which means the geysers would have
different scales and spread all over the globe. Mechanisms leading to the nonmonotonic
dependence of P kt

ice, P kt
ekman on kt are proposed in section 2.4.

2.3 Numerical solution as a verification

To verify the asymptotic solution from the previous subsection, we numerically solve the
same problem. With a numerical model, we can also lift the small perturbation assumption,
and evaluate the heat flux distribution under a “realistic” interface topography.

We first decompose the solution into one component varying as cosωt and one as sinωt.

v(y, t) = vc(y) cos ωt+ vs(y) sinωt
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Figure 1: The projected tidal heating onto interface topography, associated with (a) ice
dissipation and (b) Ekman friction. Lines are results from asymptotic solutions (Eq. 27-
28), and markers are results from numerical solution. Coriolis effects are completely ignored
when evaluating the cross markers, the dashed line and the dash dotted line, and a constant
Coriolis effect are used when evaluating the results denoted by circles or the solid line.
Diamond denotes numerical solution for a more realistic case where we adopt a spatial
varying Coriolis coefficient f(y) = f0 cos(y). The star denotes the 2k tide-tide interference
mode (Eq. 50) induced by a stationary tidal forcing.

Other variables, such as u, η, F , are decomposed in the same manner. Substituting back
to Eq (5), Eq (2) and Eq (3) yields,

ωvs + ∂y(g − ∂yα∂y)ηc + r′vc + ∂yνωηs − fuc = Fc (30)

−ωvc + ∂y(g − ∂yα∂y)ηs + r′vs − ∂yνωηc − fus = Fs (31)

ωus + r′uc + fvc = 0 (32)

−ωuc + r′us + fvs = 0 (33)

ωηs + ∂y(Hvc) = 0 (34)

−ωηc + ∂y(Hvs) = 0. (35)

Canceling us, uc from the first four equations above leads to

ωvs + ∂y(g − ∂yα∂y)ηc + r′vc + ∂yνωηs −
f2

ω2 + r′2
(

ωus − r′vc
)

= Fc (36)

−ωvc + ∂y(g − ∂yα∂y)ηs + r′vs − ∂yνωηc +
f2

ω2 + r′2
(

ωus + r′vc
)

= Fs. (37)

where we have defined r′ = r0H0/H.
We then discretize Eq (34-(37)) into matrix form using second-order central difference,

and solve for the tidal perturbation vc, vs, uc, us, ηc, ηs forced by a tide forcing,

Fc = −kA sin(ky), Fs = kA cos(ky).
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Finally, we evaluate the total tidal heating profiles (without projecting onto the interface
topography) using

Hice = 1
2ρν0ω

2
(

η2c + η2s
)

(38)

Hekman = 1
2ρr0H0

(

u2c + u2s + v2c + v2s
)

(39)

Htotal = P num
ice + P num

ekman. (40)

The factor of 1/2 comes from the mean value of sinusoidal profiles. To compare with the
asymptotic solutions, we calculate the projected heating by inner multiplying the above H
profiles and the topography h1 (wavenumber kt), and normalize it with 2/ht (the factor of
2 is again from the mean value of sinusoidal profiles).

P num,kt
n =

2

ht
Hnh1, n ∈ {ice, ekman, total} (41)

We numerically solve the projected heating using a relatively small interface topography
(ht = 0.1) while keeping other parameters the same as in the asymptotic solution. The
numerical results with f0 = 0 and f0 = 2ω are plotted in Fig. 1 as × and ◦ markers, to be
compared with the asymptotic solution in the dashed line and solid line. The matching is
almost perfect, even if the interface topography amplitude is almost 10% of the total ocean
depth, indicating the asymptotic solutions can, at least, provide useful insight to explain
the real world. We also investigate the effect of a spatial varying Coriolis coefficient (♦
markers in Fig. 1). P kt

ice and P kt
ekman remains almost unaffected for most k̃t, except P kt

ekman

increases by almost 10 times at k̃t = 2, 4 (these two points are far off the domain we show).
However, since P kt

ekman is two orders of magnitude smaller than P kt
ice, none of these changes

make a difference to P kt
total.

2.4 Mechanisms for symmetry breaking and scale selection

In this subsection, we will investigate the dominant balance of the 1D model, in order
to understand the mechanisms for symmetry breaking and scale selection. We start by
estimating the relative magnitude of the terms in δ0. Unless we let Ekman friction damp
out the ocean flow in a time scale comparable or shorter than 1 day (which is not likely),
the r0 associated terms are negligible. With an ocean deeper than a2ω2/g ∼ 1.58 km
(which is possible, see Nimmo et al. (2011); Beuthe et al. (2016) and Tajeddine et al.
(2017)), the inertial terms will, in turn, be dominated by the gravity term. The ice restoring
force associated with α works as an extra gravity, and 4α0/a

2 = 1.35 m/s2 (for degree-2
deformation) is far beyond g = 0.113 m/s2 and ν0ω = 0.046 m/s2. Therefore, the zeroth
order solution can be well approximated by

ṽ0 ∼ ω

α0H0k3
A (42)

ũ0 ∼ 0 (43)

η̃0 ∼ 1

α0k2
A, (44)
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ũ0 ∼ 0 because it is negligible compared to the v flow. Similarly, we can get an approxima-
tion for the first order solution,

ṽ±1 ∼ 1

2α0H0(k ± kt)2
{

[ωβα0pαk] η̃0 −
[

α0(k ± kt)
2H0

]

ṽ0
}

= −A
ω

2α0H0k3

[ −βpαk
2

(k ± kt)2
+ 1

]

(45)

ũ±1 ∼ 0 (46)

η̃±1 ∼ 1

2α0(k ± kt)ω
[ωβα0pαk] η̃0

= A
βpα

2α0k(k ± kt)
(47)

Substituting the approximate solution above into Eq (27) and Eq (39), we obtain the
leading terms of projected heatings,

P lead,kt
ice = A2ρν0ω

2β

α2
0k

2

[

−pν
k2

+
pα

k2 − k2t

]

(48)

P lead,kt
ekman = A2 ρr0ω

2β

α2
0H0k6

[

pαk
2(k2 + k2t )

(k2 − k2t )
2

− 1

β

]

(49)

The above leading order projected heatings are also plotted in Fig. 1 as a dash-dotted
line. It explains most of the features in the full asymptotic solution (dashed line). Therefore,
we take advantage of the simplicity of the leading order P to understand the physics.

1. Relative contribution from Ekman friction and ice dissipation. The rela-
tive importance of Ekman friction compared to the ice dissipation can be measured by
P lead,kt
ekman /P

lead,kt
ice ∼ r0/(ν0H0k

2). Substituting the default parameters yields a ratio of 0.0052,
indicating the ice dissipation will dominate at least in the default setup. We note that we
miss all of the baroclinic processes by using a shallow water formula, we do not consider
the energy damped by eddy diffusion, and we set the ocean to be too deep for ocean tide
resonance to occur (Tyler, 2011; Kamata et al., 2015). With these processes, the ocean tidal
heating may play a much more important role (Tyler, 2011; Kamata et al., 2015; Wilson
and Kerswell, 2018). Here, we mainly focus on the contribution from ice dissipation.

2. The mechanisms leading to the amplification of the interface topography.

From Eq (48), we can clearly see which processes tend to amplify the interface topography.
A positive dependence of ν on the ice thickness (pν > 0) will smooth out the interface to-
pography for all wavenumbers. Physically, a positive pν means the ice will damp the motion
more efficiently and thus generate more heat when it is thicker, as a result, the interface
inhomogeneity will be reduced. To the contrary, having α increase with ice thickness can
possibly (when kt < k) amplify the topography. This is because, in lack of the suppression
from the ice shell, perturbations below a weaker (thin) ice are stronger, which will generate
more heat and make the ice even thinner. We here assume pα > pν , in order to take into
account the fact that the thin ice region may be mushy, and hence more efficient in damping
but less efficient in restoring perturbations.
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3. The mechanisms for scale selectivity. We can understand the scale selectivity
from Eq (48). The denominator of pα term is k2 − k2t . That means the tidal heating will
amplify the interface topography with scale larger than that of the forcing. Mathematically,
this k2 − k2t comes from the summation of η+1 , which is proportional to 1/(k + kt), and η−1 ,
which is proportional to 1/(k − kt). The latter dominates the former in magnitude, and its
sign jumps from positive to negative as kt gets larger than k, as a result, Pice drops from
positive to negative. That is to say, the existence of the k − kt mode is necessary for this
jump. We will get back to this point when analyzing the tidal response in a 2D spherical
geometry (section 3.2).

In terms of physics picture, when the forcing scale is smaller than the topography scale,
the perturbations in the weak shell regions can not talk to those in the strong shell regions,
instead, they respond to forcing independently. A weaker shell yields more flexibility for
perturbation to develop, generating more heat, and vice versa. However, when the forcing
scale is larger than the topography scale, the perturbation in the weak shell regions can now
talk to those in the strong shell regions. Lacking flexibility, the strong shell regions tend to
move as a whole following the tidal forcing, leaving gaps to be bridged by the weak shell
regions. In this scenario, one can imagine that the perturbation amplitudes would peak in
the strong shell regions because of the relatively large η amplitude.

In our model, the scale selectivity essentially comes from the different scale dependence
of α and ν in our model. The ice damping rate ν has a fixed time scale, while the ice spring
constant α increases with the perturbation wavenumber. This behavior naturally comes
out of the ice membrane model we use. Setting a stronger ν for small-scale perturbations,
the scale selectivity may disappear or reverse. In reality, the bending mode dominates
large-scale perturbations, while the shear mode dominates small-scale ones. As shown in
Beuthe (2018), the bending mode has a larger ν/α ratio than the shear mode. This will
also preferentially let the large-scale topography grow.

4. The artificial resonance in the leading order solution. In Eq (48-39), both

P lead,kt
ice and P lead,kt

ekman diverge at kt = k, suggesting a resonance between the interface topog-
raphy and the tidal forcing. However, in reality, the projected heating will not really go to
infinity, because there are other terms that will not vanish at kt = k in the denominator
δ1 (Eq. 25). Thus, the leading order formula (Eq. 48 and Eq. 49) cannot be applied to the
“near-resonant” state. Actually, the projected heatings do not even peak at kt = k = 2.
kt = 1 topography is amplified even more efficiently.

5. The effects of a stationary tidal forcing. Since the tidal forcing we add here is a
traveling wave, the tidal heating contributed purely by the zeroth order solution is uniform
in the domain. However, for the real Y2,0 tidal forcing, the tidal forcing is not a traveling
wave meridionally, instead, it is closer to an oscillating k = 2 stationary pattern. The
consequence of this is that the tidal heating from the zeroth order solution will naturally
have a meridional variation with wavenumber 4.1 For a pure stationary tidal forcing with

1In spherical coordinates, Y4,0 is not the only mode gets excited by Y2,0-Y2,0 (interference between Y2,2

and Y2,−2 tides has a similar effect) tide interference; Y2,0 is also excited. Here we focus on the k = 4 mode
since we are in the context of Cartesian coordinates.
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wavenumber k, half of the zeroth order tidal heating goes into wavenumber 2k.

P stationary,2k
ice =

1

4
ρν0ω

2η̃0η̃
∗
0 = A2 ρν0ω

2

4α2
0k

4
(50)

P stationary,2k
ekman =

1

4
ρr0H0ℜ [ũ0ũ

∗
0 + ṽ0ṽ

∗
0] (51)

This value is marked by a star in Fig. 1. Different from the tide-topography interference
mode, which is our focus in this paper, the tide-tide interference mode does not rely on
the topography. In absence of any topography suppression mechanism, it will cause the
topography to grow linearly at a constant rate. To the contrary, the topography growth
rate induced by the tide-topography interference mode increases with topography, and will
lead to an exponential growth of topography. The topography structure can be dominated
by either mode depending on its amplitude. As shown in Fig. 1, P stationary,4

ice is roughly 1/10
of P 1

ice, indicating the wavenumber 1 topography induced by tide-topography interference is
likely to dominant if the wavenumber 1 topography amplitude is greater than 37 km/10 =
3.7 km, which is approximately the amplitude of the hemispheric asymmetry component
of the ice shell on Enceladus (Beuthe et al., 2016). This criterion will become lower as the
topography-tide interference enhances at larger pα (will be discussed in section 2.5).

In a long run, the topography structure is unlikely to grow to a state that the subsurface
ocean exposes, instead, the topography amplitude is determined by the balance between the
above topography enhancement mechanisms and the topography suppression mechanisms,
such as the dependence of heat loss to space on ice thickness (Beuthe, 2019) or the down
gradient ice sheet flow (Ashkenazy et al., 2018). With an efficient topography suppression
mechanism, the topography is likely to be dominated by the tide-tide interference mode;
with an inefficient topography suppression mechanism, the topography can grow larger, and
its structure is likely to be dominated by the tide-topography interference mode instead.

6. Topography growth rate. We can get an estimation of the topography amplification
time scale from asymptotic solution,

dht
dt

=
P kt
total

ρLf

ht
H0

τkt =
ρLfH0

P kt
total

. (52)

For the most unstable mode, kt = 1, the τ1 ∼ 17 Myr, which is pretty long. If this estimation
is true, topography suppression mechanisms, such as the dependence of heat loss to space
on ice thickness (Beuthe, 2019) or the down gradient ice sheet flow (Ashkenazy et al., 2018),
may be able to stop the topography growth at a fairly low amplitude.

The above estimation is quite conservative. First, in above calculation, we assume the
ice spring constant α0 varies linearly with the ice thickness (pα = 1), however α0 − H0

relationship could be beyond linear relationship, if taking into account that the ice modulus
is a decreasing function of temperature and that the fractures in the thin ice region can
largely reduce the ice strength. Using pα = 3 will reduce the growing time scale to 1/3 of
before, which is about 6 Myr. Second, we here only account for the Y2,0 component of the
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W/m2 by over 14 times, as pα triples. This unpredicted increase disappears when the
topography amplitude is 1000 times smaller, suggesting that it should be attributed to the
nonlinear interference with the finite amplitude topography.

Since the realistic topography has a finite amplitude and it is a mixture of multiple
harmonic modes, even the projected heating at pα = 1, 0.0005 W/m2, is higher than
expected. The topography we use here is a mixture of wavenumber 1,2 and 3, whose
amplitudes are (A1 = 1.5, A2 = 9, A3 = 2.5) km. If we assume that all three modes
are independent of each other and their amplitudes are small enough, according to the
asymptotic analysis, the projected heating should be

∑

i=1,2,3AiP
i
ice = 0.00031 W/m2.

If we allow the interaction between the three modes but still assume the amplitude is
small, the projected heating should be 0.00018 W/m2 (we obtain this value by reducing the
topography amplitude by 1000 times), which is only about 1/3 of the projected heating at
high topography.

Again, because of the same reason, the structure of the ice dissipation profile changes
as pα increases (we do not expect the ice dissipation profile to exactly follow this realistic
topography at the beginning because P kt

ice varies with the topography wavenumber), becom-
ing highly concentrated over the south pole, where the ice shell is thinnest, with a peak
of over 20 mW/m2. This highly concentrated tidal heating profile is consistent with the
observation by Cassini (Howett et al., 2011), but the peak heat flux is a bit too low to
explain a 4-20 GW of endogenic heat flux in the SPT region. Other processes are needed to
generate enough heat. Possible candidates include the tidal heating generated in the core
(Tobie et al., 2008; Behounkova et al., 2010; Beuthe, 2013), the tidal heating generated in
the ice shell faults (Soucek et al., 2019), and the heating due to ocean tide resonance (Tyler,
2011; Kamata et al., 2015) and due to the ice shell liberation (Wilson and Kerswell, 2018).

Stationary pattern in the tidal forcing itself can also help form interface topography
through tide-tide interference, but it may be dominated by the tide-topography interference
when the topography is strong. We, therefore, also try a stationary Y2,0 tidal forcing. The
estimation in section 2.4 suggests a critical wavenumber 1 topography amplitude of 1/10 of
the mean ocean depth, which gives 3.7 km. The wavenumber 1 component of the topography
we use here is 1.5 km, about half of the critical amplitude. As expected, the heating profile
for pα = 1 (Fig. 2d) has comparable amplitudes in the tide-topography interference mode
(wavenumber 1) and the tide-tide interference mode (wavenumber 4). With a higher pα, the
critical amplitude should drop with 1/pα. However, since a finite amplitude topography is
unproportionally more efficient in term of reenhance itself, the tide-topography interference
mode completely dominates the tide-tide interference mode when pα = 2 and 3.

3 2D ice-covered shallow water in spherical coordinates

3.1 Model setup

In this section, we solve the same problem in 2D spherical geometry. The purpose is to
show the relevance of the 1D model in the previous section, and to highlight some new
features coming out of the spherical geometry. The governing equation for a 2D shallow
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water covered by an ice membrane can be written as

∂tv = −g∇η − r0H0

H(θ, φ)
v +∇

(

∇ · α(H)∇− ν(H)∂t
)

η +∇U (54)

∂tη = −∇ · (H(θ, φ)v). (55)

The ocean depth H is decomposed into a mean value H0 and a small amplitude topography
h(θ, φ). As before, we introduce a nondimensional number ht for the topography amplitude
so that h(θ, φ)/H0 = hth1(θ, φ), where h1 is set to a normalized spherical harmonic

h1(θ, φ) =
1√
2
(Ylt,mt

+ Ylt,−mt
) =

√
2Plt,mt

cos(mtφ). (56)

The factor
√
2 in the second equality drops when mt = 0 (zonally symmetric topography).

The parameterization of α, ν are directly adopted from the 1D model. Coriolis effects
are dropped here to allow analytical solution. As shown in the 1D model (section 2), the
Coriolis effects are only secondary.

With spherical geometry, we directly use the full eccentricity tidal potential (Eq 9),
which include a Y2,0 mode, a Y2,2 mode and a Y2,−2 mode. Since the system has spatial
reversion symmetry without rotation effect, the Y2,2 mode has the same effect as the Y2,−2

mode, we therefore combine them into one mode with a larger amplitude,

Ueccen = ℜ
[

(A20Y2,0 +A22Y2,2) e
−iωt

]

. (57)

where

A20 = −
√

4π

5

2

3
, A22 =

√

96π

5

√

(

7

8

)2

+

(

1

8

)2

3.2 Asymptotic solution

In this subsection, we solve the tidal heating induced by the Y2,0 mode and by the Y2,2

mode separately. By doing so, we intrinsically prevent different modes to interact with each
other, and that is consistent with the way we calculate the combined Y2,2 amplitude.

Asymptotically expanding the equation in the nondimensional topography ht leads to a
zeroth order equation that does not feel the inhomogeneity of H.

∂tv0 = −(g − α0∇2 + ν0∂t)∇η0 − r0v0 +∇U (58)

∂tη0 = −H0∇ · (v0). (59)

To solve the zeroth order equation, we first do the Helmholtz decomposition to the flow
field,

v = ∇Φ−∇× (Ψr̂).

Taking divergence and time derivative of Eq (58) and canceling η using Eq (59) yields

∂tt∇2Φ0 = H0∇2(g − α0∇2 + ν0∂t)∇2Φ0 − r0∂t∇2Φ0 + ∂t∇2U. (60)
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Taking curl of Eq (58) and projecting onto r̂ yields

(∂t + r0)∇2Ψ0 = 0. (61)

The Ψ0 equation is not forced without Coriolis effects. Even with a non-zero initial Ψ0, it
will damp out with time by Ekman friction.

Ψ0 = 0 (62)

The Φ0 equation is forced by tidal forcing. Substituting the plane wave solution

Φ0 = ℜ
[

Φ̃lm
0 Yl,me−iωt

]

, l = 2, m = 0, 2

we get

Φ̃lm
0 =

−iω

δl0
Alm, (63)

where

δl0 = −iω(−iω + r0) +
l(l + 1)

a2

(

g + α0
l(l + 1)

a2
− iων0

)

H0.

Substitute the Φl
0 solution to Eq (59), we get the solution for ηl0,

η̃lm0 =
l(l + 1)H0

a2δl0
Alm. (64)

The first order equation is forced by the zeroth order solution,

(∂t + r0)v1 = (α0∇2 − ν0∂t − g)∇η1 − β∇(α0pα∇ · (h1∇)− ν0pνh1∂t)η0 + r0h1v0

(65)

∂tη1 = −H0∇ · (v1)−H0∇ · (v0h1). (66)

Similarly, we take divergence and time derivative of Eq (65) and substitute Eq (66) to cancel
η1.

∂tt∇2Φ1 = H0∇2(g − α0∇2 + ν0∂t)∇2Φ1 − r0∂t∇2Φ1

+ ∂tr0∇ · (h1∇Φ0)− ∂tα0pαβ∇2∇ · (h1∇Φ0) + ∂tν0pνβ∇2(h1Φ0)

+ H0(g − α0∇2 + ν0∂t)∇2∇ · (h1∇Φ0). (67)

The solution should be in a plane wave form,

Φ1 =
1√
2

∑

|l−lt|≤j≤l+lt

ℜ
[

Φ̃jm+
1 Yj,m+mte

−iωt + Φ̃jm−
1 Yj,m−mte

−iωt
]

,

The factor 1√
2
drops and the two modes merge into one when mt = 0.

Φ1 =
∑

|l−lt|≤j≤l+lt

Φ̃jm
1 Yj,me−iωt
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In the following calculation, we do not explicitly consider the special case of mt = 0. When
it is true, Φ̃jm+

1 and Φ̃jm−
1 are identical to each other. Substitute the above solution form

into Eq (67), we get

Φ̃jm±
1 =

1

δj1

{

iωr0B(l,m, lt,±mt, j)Φ̃
lm
0

+

[

iωα0βpα
j(j + 1)

a2
B(l,m, lt,±mt, j) − ω2ν0βpνj(j + 1)E(l,m, lt,±mt, j)

]

η̃lm0

+

(

g + α0
j(j + 1)

a2
− iων0

)

j(j + 1)

a2
B(l,m, lt,±mt, j)Φ̃

lm
0

}

, (68)

where

δj0 ≡ j(j + 1)(−iω)(−iω + r0) +
j2(j + 1)2

a2

(

g + α0
j(j + 1)

a2
− iων0

)

H0

B(l,m, lt,±mt, j) ≡ [−l(l + 1)E(l,m, lt,±mt, j) + C(l,m, lt,±mt, j)] .

C, E, B are spherical harmonics expansion coefficients such that

Yl,mYlt,mt
=

∑

|l−lt|≤j≤l+lt

E(l,m, lt,mt, j)Yj,m+mt

∇Yl,m · ∇Ylt,mt
=

∑

|l−lt|≤j≤l+lt

C(l,m, lt,mt, j)Yj,m+mt

∇ · (Ylt,mt
∇Yl,m) =

∑

|l−lt|≤j≤l+lt

B(l,m, lt,mt, j)Yj,m+mt .

Their expressions are in Appendix. A.
η1 can then be solved from Eq (66). Substitute the plane wave solution yields,

η̃jm±
1 =

H0

iωa2

[

j(j + 1)Φ̃jm±
1 +B(l,m, lt,mt, j)Φ̃

jm±
0

]

. (69)

Next, we solve for Ψ1. Take curl of Eq (65) and projecting onto r̂, we get

(∂t + r0)∇2Ψ1 = r0(∇h1 ×∇Φ0) · r̂. (70)

Substituting the plane wave solution yields

Ψ̃jm±
1 =

r0D(l,m, lt,±mt, j)

j(j + 1)(iω − r0)
Φ̃lm
0 , (71)

where D is also the spherical harmonics expansion coefficient (definition see Appendix. A),
which satisfies

(∇Yl,m ×∇Ylt,mt
) · r̂ =

∑

|l−lt|≤j≤l+lt

D(l,m, lt,mt, j)Yj,m+mt .
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Finally, we derive the energy equation. Multiplying ρHv to Eq (58), (g + ∇α(H)∇)η
to Eq (59), adding them together yields

∂t
[

1
2ρ|v|

2H + 1
2ρgη

2 + 1
2ρα(∇η)2

]

= −∇ · [ρHv (gη +∇ · (α∇η)) − ρα(∂tη)(∇η) + ρνvH∂tη]

+ ρHv · ∇U − ρν(∂tη)
2 − ρr0H0|v|2. (72)

Clearly, the last two terms in the second row are the tidal heating associated with ice
dissipation and Ekman friction.

As in the 1D model (section 2), we project the tidal heating onto the topography and
keep the leading order. In case of mt = 0,

P lt
ice ≡ 1

ht

∫∫

ρν(∂tη)
2h1 sin θdθdφ

=
ρν0
ht

∫∫

(1− pνβhtYlt,0)ω
2ℜ



η̃lm0 Yl,m + ht
∑

|j−lt|≤l

η̃jm1 Yj,m





2

Ylt,0 sin θdθdφ

= ρν0ω
2ℜ



η̃lm∗
0

∑

|j−lt|≤l

E(l,−m, j,m, lt)η̃
jm
1 − 1

2pνβE(l,m, l,−m, 0)η̃lm0 η̃lm∗
0



 (73)

P lt
ekman ≡ ρr0H0

ht

∫∫

|v|2h1 sin θdθdφ

= ρr0H0ht

∫∫

∣

∣

∣

∣

∣

ℜ
[

∇Φ̃lm
0 Yl,m

ht
+∇Φ̃jm

1 Yj,m −∇× (r̂Ψ̃jm
1 Yj,m)

]
∣

∣

∣

∣

∣

2

Ylt,0 sin θdθdφ

= ρr0H0Φ̃
lm∗
0

∑

|l−lt|≤j≤l+lt

[

C(l,−m, j,m, lt)Φ̃
jm
1 −D(l,−m, j,m, lt)Ψ̃

jm
1

]

(74)

P lt
total ≡ P lt

ice + P lt
ekman. (75)

Similarly, for mt 6= 0

P ltmt

ice = 1
2ρν0ω

2ℜ



η̃lm∗
0 η̃jm±

1

∑

|j−lt|≤l

∑

±
E(l,−m, j,m ±mt, lt)− η̃lm∗

0 η̃lm0 pνβE(l,m, l,−m, 0)





(76)

P ltmt

ekman = 1
2ρr0H0Φ̃

lm∗
0

∑

|j−lt|≤l

∑

±

[

C(l,−m, j,m±mt, lt)Φ̃
jm±
1 −D(l,−m, j,m ±mt, lt)Ψ̃

jm±
1

]

(77)

In this study, we focus on the zonally uniform topography, and thus we will use the
formula for mt = 0.

In Fig. 3, we show the leading order P lt
ice and P lt

ekman solved under spherical geometry.
Solid curve for the Y2,0 tide and dashed curve for the Y2,2 tide. In particular, the Y2,0

solution is remarkably similar to the 1D model result (Fig. 1), indicating that the tidal
response to this zonally symmetric Y2,0 mode can mainly be explained by the 1D analysis
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Figure 3: The projected tidal heating onto interface topography, associated with (a) ice
dissipation and (b) Ekman friction. Shown are results from asymptotic solutions (Eq. 73-
74).

in the previous section. As found in the 1D model, the ice dissipation is the dominant
contributor to the projected tidal heating. Also consistently, only the large-scale interface
topography with a total wavenumber of 1 or 2 can be reenhanced by the tidal heating, and
P 1
ice is much larger than P 2

ice. Again consistently, as the total wavenumber of topography
lt exceeds that of the tidal forcing l = 2, P lt

ice suddenly turns negative, and even higher lt
leads to a decrease of the magnitude of P lt

ice. As demonstrated in section 2.4, the spatial
scale of the topography relative to the forcing determines whether the ice shell deformation
peaks at the thin (weak) ice regions or at the thick (strong) ice regions.

A new feature that does not exist in the 1D model is that the P lt
ice forced by Y2,2

mode never turns negative. Mathematically speaking, this is because of the absence of the
equivalent “k− kt mode”, which causes the sign switch in 1D model (see discussion toward
the end of section 2.4). Let us first consider a Y2,0 tidal forcing interacting with a Y3,0

topography, where sign switch occurs. Interference between Y2,0 and Y3,0 leads to Y1,0, Y3,0

and Y5,0. The Y1,0 mode is analogous to the k−kt mode in 1D model. We can see this from

the dominant term of η̃j1, contribute by the H dependence of ice spring constant α,

η̃jm1 ∼ α0βpαH
2
0

δj1δ
l
0a

6
j2(j + 1)2l(l + 1)B(l,m, lt,±mt, j)Alm. (78)

The factor B controls the sign of η̃jm1 . η̃501 , η̃301 are positive, but η̃101 is negative, just as
in 1D model, η̃+1 is positive but η̃+1 is negative. The arising of the Y1,0 mode through
topography-forcing interference drags the Pice from positive to negative.

The interference between a Y2,2 forcing and a Y3,0 topography is different from the above
scenario. Only Y3,2 mode and Y5,2 mode form, while Y1,2 is unphysical (l has to be greater
than m in Ylm) and thus absent. As a result, the sign of Pice never flips when forced by
a Y2,2 tidal forcing. As kt keeps increasing, the absolute value of the factor B decreases,
leading to an overall reduction of the magnitude of P lt

ice.
Physically speaking, a Y22 tidal forcing is roughly wavenumber 2 in the east-west di-

rection and wavenumber 0 in the north-south direction (there is meridional magnitude
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variation but the sign never changes). Such a forcing tends to distort the ice shell zonally,
however, along a zonal circle, no topography exists. Therefore, the forcing always “thinks”
the topography has a larger scale than itself. Following the arguments in section 2.4, P lt

ice

is therefore always positive.
Since the meridional structure of the tidal forcing is stationary, direct tide-tide inter-

ference can cause linear growth of some topography structure (see section 2.4 point 5 for
discussions in the context of 1D Cartesian coordinates). For Y2,0, Y2,±2 tide, Y2,0 and Y4,0

topography will be excited. We project the zeroth order heating profile onto Y2,0 and Y4,0

structures to get P stationary,q
ice/ekman (q = 2, 4),

P stationary,q
ice =

1

4
ρν0ω

2ℜ
[

η̃20∗0 η̃200 E(2, 0, 2, 0, q) + η̃22∗0 η̃220 E(2, 2, 2,−2, q)
]

(79)

P stationary,q
ekman =

1

4a2
r0H0ℜ

[

Φ̃20∗
0 Φ̃20

0 C(2, 0, 2, 0, q) + Φ̃22∗
0 Φ̃22

0 C(2, 2, 2,−2, q)
]

(80)

These values are scattered on Fig. 3 using stars. The ratio between P stationary,q
ice and P lt

ice

provides an estimation of the relative amplitude of the tide-tide interference mode with total
wavenumber q and the tide-topography interference mode with total wavenumber lt (for the
situation that the topography suppression mechanism did not depend on the topography
scale). P stationary,2

ice , the dominant tide-tide interference mode, is just slightly lower than the
most unstable topography-tide interference mode at lt = 1, indicating that the tide-tide
interference mode is likely to dominate unless the interface topography is greater than half
of the mean depth of the ocean. However, as we noted in section 2.5, the actual topography
amplitude threshold can actually be much lower because of the nonlinear effect induced
by a finite amplitude topography. A larger pα can further reduce the threshold and let
the topography-tide interference mode dominant at lower topography amplitude by over 10
times.

4 Evolution of ice-ocean interface topography

4.1 Topography formation due to symmetry breaking in coupled 1D

model

As shown in the linear instability type of analysis in the previous sections, a large-scale
interface topography, if already exists, can be amplified by the tidal heating associated with
ice dissipation. However, a linear theory prevents different modes from interacting with
each other and does not tell us the relative phase of the different modes, whose effects
are discussed in section 2.5. The next step is to demonstrate that the tide-topography
interference can generate a large-scale interface topography from “nothing”.

To do so, we start from a white noise initial interface topography (moving-averaged
to prevent numerical instability) with amplitude 100 m, and let the topography evolve
following

dht
dt

=
1

ρLf
(Htotal − 〈Htotal〉), (81)

where ρ and Lf are the density and fusion energy of water. ht is the topography amplitude
normalized by the mean ocean depth H0, and 〈·〉 denotes the domain average. One can
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of the poles, although which pole is completely random.
In Fig. 4a, we also show the time-averaged full heating profiles associated with ice dissi-

pation, ekman friction and the sum of both (thin solid lines), No projection to topography
or mean subtraction has been done. The total tidal heating associated with ice dissipa-
tion dominates that associated with Ekman friction. As expected, the tidal heating peak
collocates with the ice melting point.

As mentioned before, the dependence of the ice spring constant α0 on the ice thickness
may be beyond linear relationship. We test the sensitivity to pα, and the same plot at
pα = 2 and 3 are shown in Fig. 4b,c. As predicted by Eq. (48), the tidal heating projected
onto topography increases linearly when the topography is small, and thus the time needed
to form a significant topography reduces with 1/pα, from ∼180 Myr to ∼80 Myr and
to ∼60 Myr. With a finite topography, the projected heating increases with pα faster
than linearly (see section 2.5). But this effect does not affect the time scale of topography
formation here because the system spends most time at very small topography, where linear
asymptotic analysis applies.

5 Conclusions

Enceladus’s ice shell thickness has a significant hemispheric asymmetric component, and the
ice shell at the south pole is so thin that water vapor is ejected out of the ice shell (Iess et al.,
2014). In this work, we propose a hypothesis to explain this unexpected strong hemispheric
asymmetry: distribution of tidal heating on an icy moon with an inhomogeneous ice shell
may be able to amplify the large-scale inhomogeneity in particular and break the symmetry
between the two hemispheres. Starting from an infinitesimal hemispheric asymmetry, the
mechanism can end up significantly thinning the ice shell at one of the poles. Unlike the
two mechanisms proposed by Han and Showman (2010) and by Rozel, A et al. (2014), this
new mechanism does not require the south pole to have any special property to begin with.

The key to examine the feasibility of the hypothesis is the tidal heat distribution on
Enceladus whose ice shell thickness varies from place to place (we call this variation as
topography). We used a membrane-covered shallow water model to represent the ice shell
and ocean on Enceladus. The restoring force induced by the ice shell is parameterized to
be proportional to the vertical displacement. All analyses were first done in 1D Cartesian
coordinates and then in 2D spherical coordinates; results turned out to be consistent. The
tidal heating we considered includes two components: the heating generated in the ocean
due to Ekman friction at the top and bottom boundaries and the heating generated in the
ice shell. At this stage, we assumed the work done by the ocean will be dissipated in the
ice shell locally.

We first asymptotically solved the tidal heating in the weak topography limit and project
the heating profile onto the topography imposed, to get the growth rate of a specific to-
pography wavenumber. The heating generated in the ice shell (projected or not) is much
stronger than that in the ocean, consistent with Beuthe (2016). The heating generated in
the ice does amplify the topography, and the amplification is strongest for large scale to-
pography anomalies, as how we expected a symmetry breaking mechanism would work. A
numerical version of the model based on finite difference was used to verify the result, and
the same analysis is done in 2D spherical coordinates to show the relevance of 1D model.
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Dominant balances yielded a simpler solution form, helping clarify why the topography can
be amplified and why large scale topography is particularly amplified. The ice shell is more
easily perturbed by tidal forcing where it is thinner, and thus more heat and melt is con-
centrated to the regions with thinner ice. The restoring force induced by ice is stronger for
perturbations at smaller scales, and thus the heat generation is prohibited for these scales.

We then used the numerical model to calculate the tidal heating for the observed topog-
raphy in (Beuthe et al., 2016). The heating profile has a strong peak at the south pole as
in observation (Howett et al., 2011). We finally coupled the ice-ocean interface topography
and the tidal heating together, letting them evolve together. Starting from an infinitesimal
random distributed topography, the topography can finally evolve to a state that one pole
has particularly thin ice shell compare to anywhere else, suggesting the hypothesis may
work.

However, toward the end of the summer program, we realized several caveats of the
above hypothesis.

1. The tidal heating generated in the ice should not be proportional to the displace-
ment of the ice, instead, it should be proportional to the horizontal derivative of the
displacement: moving an ice plate up and down without deformation should not gen-
erate heat. To take this into account, we change the imaginary part of restoring force
(the second term in the Rice expression, Eq. (27)) to be proportional to the second
derivative of η rather than η itself. As such, the ice dissipation will be proportional to
the square of the vertical shear of the ice membrane |∇η|2 instead of the vertical dis-
placement |η|2. It turns out that the ice-water interface topography can be amplified
but large-scale topography is not selected any more2. When introducing the bending
mode, the scale selectivity will be enhanced slightly, but still weak compared to the
case we present in this report.

We therefore need to find other sources for the scale selectivity. The suppression of
topography by the ice flow is one potential source, because it smooths out small scale
topographies more efficiently. We follow a similar path, solving for the heat generation
in 1D and 2D geometry, through asympototic expansion and numerical simulation,
and then we couple the heating with an ice flow model and let them both evolve the
ice-ocean interface topography over time. Analytically, the new energy form provides
some convenience in solving a leading order solution for finite amplitude topography
(for derivations, please refer to Appendix section B). When this model is forced by
the Y20 tidal component, the ice thickness also ends up to be particularly thin close
to one of the poles, however, Y22 tidal component cannot lead to symmetry breaking
because of the second caveat below.

2. The second caveat is that ice shell does not dissipate the energy input from the ocean
locally. For an ice shell in the membrane limit, the restoring force acting on the
ocean underneath is mainly due to the compression and extension of the ice shell,
and the heat generation is mainly induced by the tangential shear motion (Beuthe,

2One can see this from the dominant balances. Multiplying Eq. (47) with the wavenumber k ± kt before
substituting into Eq. (27) will exactly cancel out the denominator under pα in Eq. (48). There is a subtle
preference to large-scale topographies in the full solution, but is too small to be a mechanism for symmetry
breaking.
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2019), which is completely ignored in our membrane-covered shallow water model. We
didn’t realize until much later that the tidal heating pattern over the globe without
topography (homogeneous ice shell) controls which topography wavenumber can grow.
Using our energy formula (Hice ∝ |∇η|2 or Hice ∝ |η|2, with and without bending
mode), the total tidal heating induced by Y22 and Y20 (mostly Y22) tidal components
has a pattern that peaks at the equator rather than the poles, which is the pattern
people obtained from a more sophisticated ice model (Beuthe, 2013, 2019). Starting
from such an equator-amplified heating pattern mistakenly suppresses the growth of
the hemispherically asymmetric modes, which is necessary for the symmetry breaking.

A Expressions of spherical harmonics expansion coefficients

C(l,m, lt,±mt, j) ≡ −(−1)m±mt

√

l(l + 1)lt(lt + 1)

2

√

(2l + 1)(2lt + 1)(2j + 1)

4π

×
(

l, lt, j
m, ±mt, −(m±mt)

)[(

l, lt, j
1, −1, 0

)

+

(

l, lt, j
−1, 1, 0

)]

E(l,m, lt,±mt, j) ≡ (−1)m±mt

√

(2l + 1)(2lt + 1)(2j + 1)

4π

×
(

l, lt, j
m, ±mt, −(m±mt)

)(

l, lt, j
0, 0, 0

)

D(l,m, lt,±mt, j) ≡ i(−1)m±mt

√

l(l + 1)lt(lt + 1)

2

√

(2l + 1)(2lt + 1)(2j + 1)

4π

×
(

l, lt, j
m, ±mt, −(m±mt)

)[(

l, lt, j
1, −1, 0

)

−
(

l, lt, j
−1, 1, 0

)]

The six-element matrices in above equations are the three j-symbol matrix.

B Tidal heating using the new energy form

In order to calculate the new ice dissipation

Hice = ρν0|∂t∇η|2 (82)

the only field required is ∇η.
This term can be solved from the dominant balance equation without small amplitude

assumption, even in 2D spherical geometry. The dominant balance equations read

∇
(

α0∇ · (H/H0)
pα∇

)

η = −∇U (83)

∇ · (H(θ, φ)v) = −∂tη. (84)

Integrating both sides leads to

−∇ · α(H)∇η = U = ℜ
[

AlmYl,me−iωt
]

. (85)
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there and hence a weak ice dissipation. With topography, the heating will be concentrated
to the regions with a thinner, and thus weaker, ice shell, by the factor (1− βh′)−2pα .

In Fig. 5, we show the tidal heating profile calculated with the “realistic” topography
reconstructed by Beuthe et al. (2016, Eq. (53)). Panel (a) shows the result for pα = 1, and
panel (b) shows for pα = 2. As expected, the tidal heating is concentrated to the south
pole where the ice shell is thin, and a larger pα makes the concentrating more efficient. In
Fig. 5b, there is almost no heating to the north of 60S. Such a heating profile will, in turn, be
able to amplify the interface topography, unless some topography suppression mechanisms
stop it.

A larger pα also lead to a much stronger heat flux in general. Note that the scale of
panel (b) is 100 times larger than panel (a). The maximum tidal heating with pα = 2
reaches 200 mWm−2, which matches much better with the observed heat flux around 150
mWm−2 (Spencer et al., 2013; Howett et al., 2011) than the pα = 1 profile does.
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The Evolution of Superharmonics Excited by Internal Tides in

Non-Uniform Stratification

Lois Baker

August 20, 2019

1 Introduction

Energy input from winds and tides creates a diverse internal wave field in the Earth’s strat-
ified rotating oceans. Internal waves on a variety of scales transport energy and momentum
throughout the global oceans, and are an important pathway by which energy is transferred
from large scale forcing to small scales where mixing and dissipation can occur.

In 1966 Walter Munk proposed that in order to maintain the global overturning ther-
mohaline circulation, a certain level of small scale isopycnal mixing is required [16]. The
question of how much mixing takes place in the abyssal ocean to account for the required
water mass transformation remains at the forefront of modern oceanographic research. In
particular, global climate models (GCMs) are sensitive to the spatial distribution of mix-
ing [7, 15], thus a proper understanding of the energy transfer from resolvable large scale
features to unresolvable small scales is essential for GCM parametrizations.

Internal waves play a leading order role in this energy cascade and are the primary
cause of diapycnal mixing e.g., [20], resulting in extensive research in recent decades into
the generation, propagation and transition to turbulence of oceanic internal waves. In this
work we investigate a mechanism for the extraction of energy from the large scale internal
waves generated by tides, known as internal tides.

Tides with a semi-diurnal or diurnal frequency are ubiquitous in the ocean, forced by
the gravitational pull of the moon or sun. This forcing directly creates a barotropic tide
with uniform vertical structure and horizontal velocities of order 1 - 10 cm s−1. When the
barotropic tide flows over bottom topography in the ocean, baroclinic internal tides are
excited, possessing a rich vertical modal structure [5]. The important generation sites for
these internal tides include mid-ocean ridges and island chains.

The linear theory for internal tide generation was first developed by Baines (1973) [2]
and Bell (1975) [3]. The internal tide field near topography is primarily composed of beams
with tidal frequency that radiate away from topography much like internal wave beams from
an oscillating cylinder, as well as waves at a spectrum of superharmonic frequencies and
quasi-steady trapped lee waves. Although the internal tide local to the generation site can
have a complex vertical structure, the higher modes are more susceptible to vertical shear
and are thus more likely to dissipate locally [10], leaving a far field composed primarily of
low mode internal tides with tidal frequency. Even at generation sites with significant local
dissipation, most internal wave energy propagates away to the far field as low modes [14].
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These low modes can have wavelengths of order 100 - 200 km and are capable of propagating
thousands of kilometres across ocean basins [17, 25].

It is estimated that the total energy content of the barotropic M2 (semi-diurnal lunar)
tide is approximately 392PJ [9] and the total energy content of the mode-1 M2 internal
tide is 36PJ [25], indicating an almost 10% conversion from the barotropic tide to mode-1
internal tides. However, the fate of this huge amount of mechanical energy contained in
the low mode internal tides remains an open question [12]. Ultimately, this energy must be
dissipated at small scales or used to irreversibly mix fluid across isopycnals.

An important mechanism for extracting energy from the low-mode internal tide is in-
teraction with large and small amplitude topography and continental slopes, as reviewed in
Sarkar and Scotti (2017) [19]. The predicted and observed ability for low mode internal tides
to travel thousands of kilometres across entire ocean basins [17, 25] implies that ultimately
internal tides will interact with topography, if they are not destroyed by other mechanisms
during propagation. In particular, if the slope of large amplitude topography is critical or
subcritical to the characteristic angle of internal tide beam propagation, energy density can
be effectively focused by reflection at the slope, resulting in enhanced dissipation [11].

Parametric subharmonic instability (PSI) whereby the internal tide loses energy to
smaller scale waves with approximately half the frequency has also been proposed as a
possible mechanism for decay of the internal tide. This decay is predicted to be especially
strong near the critical latitude 29°N where the subharmonics have frequency near the local
inertial frequency [13]. Observations [1, 12] of a propagating internal tide beam north of
the Hawaiian Ridge found enhanced dissipation consistent with particularly efficient PSI at
this critical latitude, but found that it did not extract significant energy from the internal
tide.

Other mechanisms proposed for the destruction of the internal tide include interaction
with the mesoscale flow field [17] and nonlinear steepening at sufficiently large internal tide
amplitudes [8, 6]. In practice, all of the above mechanisms and more are likely to contribute
to internal tide dissipation, with relative importance varying geographically.

The focus of this work is a mechanism that could be responsible for energy transfer from
the mode-1 internal tide to smaller scales but has received relatively little attention in the
literature. It was realised by way of theory and simulations that internal waves in non-
uniform stratification can generate superharmonics with half the wavelength of the original
wave [4, 23]. Varma and Mathur (2017) [22] extended the theory to apply to more general
nonlinear modal interactions between modes with different wavelengths. It was assumed in
all of these studies that the superharmonic response had twice the frequency of the original
wave, which we refer to as a ‘steady state’.

Sutherland (2016) [21] ran fully nonlinear 2D Boussinesq simulations in an idealized
domain with idealized stratification profiles and initialised with a mode-1 ‘parent’ internal
mode. It was found that superharmonics of the parent are generated, with highest amplitude
near areas of strong stratification. These superharmonics were found to interact nonlinearly
with the parent, and have the ability to introduce smaller vertical scales and distort the
parent mode. It was noted that the superharmonic generated need not have twice the
frequency of the parent, and that the superharmonic could undergo resonant growth to
become significantly large even for a small amplitude parent.

This idea was examined further by Wunsch (2017) [24], who made the analogy of the
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system to that of a harmonic oscillator. The superharmonic is forced by the nonlinear self-
interaction of the parent at twice the parent frequency, which in certain parameter regimes
is very close to the natural frequency of the superharmonic, allowing resonant growth of
the superharmonic akin to that of a forced harmonic oscillator. This study assumed that
after a period of initial growth, the transients would decay and the system would reach the
steady state found in Diamessis et al. (2014)[4], and Varma and Mathur (2017) [22].

However, when run for longer times, simulations similar to those in Sutherland (2016)
[21] are found to show a long timescale periodic evolution of the amplitude of the super-
harmonic, motivating the current study. Figure 1 shows the horizontal velocity field of the
total flow and superharmonic component at several times, showing how the superharmonic
grows from zero to some maximum amplitude before decaying back to zero. This behaviour
repeats periodically with the same period. Here we investigate this phenomenon using a
weakly nonlinear theory, and compare the results to simulations.

Section 2 will develop the theoretical framework of the problem, extending the estab-
lished theory described in Diamessis et al. [4] to include time dependence of the superhar-
monic amplitude. In section 3, numerical simulations are introduced and compared to the
theory derived in section 2. A weakly nonlinear theory for the feedback between the parent
and the superharmonic is derived in section 4 and shown to improve on the theory from
section 2 by taking account of the energy transfer from the parent. Section 5 compares
the results of the weakly nonlinear theory to simulations. In section 6, the results from
the previous sections are considered with realistic oceanic parameters and stratification to
evaluate the possibility for these superharmonics to be important in the real ocean.
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Figure 1: Snapshots of the 2D horizontal velocity field from nonlinear simulations described in
section 3. Top: full horizontal velocity field at various times. Bottom: horizontal velocity field
with parent wavenumber removed, showing generation, growth and decay of superharmonic over a
period N0t ≃ 2000. Parent wavenumber k = 0.2/H, Coriolis parameter f = 0.01N0, stratification
N(z) = N0 exp(5z/H)
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2 Linear Theory

2.1 Governing equations

Consider a 2D inviscid Boussinesq fluid with stratification N2(z) and zero background
velocity. The domain is periodic in the horizontal coordinate x and bounded in the vertical
at z = −H and z = 0. The flow satisfies the inviscid Boussinesq equations on an f -plane:

ut + uux + wuz − fv = − 1

ρ0
px , (1)

vt + uvx + wvz + fu = 0 , (2)

wt + uwx + wwz = − 1

ρ0
pz + b , (3)

bt + ubx + wbz + wN2 = 0 , (4)

ux + wz = 0 , (5)

where u = (u, v, w), p is the pressure, b is the buoyancy perturbation from the background
stratification N2(z), f is the Coriolis parameter, ρ0 is a reference density and ∂

∂y = 0 since
the domain is 2D.

Define the vorticity ζ = ŷ ·∇×u = uz−wx and the streamfunction ψ such that u = −ψz,
w = ψx satisfies (5), and ζ = −∇2ψ. Taking the curl of the momentum equations (1) -
(3) eliminates pressure to give the vorticity equation. The system is then represented by 3
equations:

∇2ψt + fvz − bx = ψz∇2ψx − ψx∇2ψz = N1 , (6)

vt − fψz = ψzvx − ψxvz = N2 , (7)

bt +N2ψx = ψzbx − ψxbz = N3 , (8)

where N1, N2, N3 denote the nonlinear terms. Combining (6) - (8) gives

∇2ψtt + f2ψzz +N2ψxx = N1t − fN2z +N3x , (9)

where the LHS is linear in ψ, and the RHS contains nonlinear terms in ψ, v and b.

2.2 The parent mode

We seek horizontal periodic solutions of a single mode with the form

ψ(x, z, t) =
1

2
A0ψ̂(z)e

i(kx−ωt) + c.c. , (10)

where k is the prescribed horizontal wavenumber of the parent mode, A0 is a given small
real amplitude, c.c. is the complex conjugate, and ψ̂(z) is normalised so that max |ψ̂(z)| = 1.
To linear order in A0, i.e., neglecting the RHS of (9), ψ̂ satisfies the eigenvalue problem

ψ̂′′ +
N2(z)− ω2

ω2 − f2
k2ψ̂ = 0 , (11)
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with the free slip boundary conditions ψ̂(0) = ψ̂(−H) = 0. For prescribed k, the solution
gives a set of eigenfunctions ψ̂ with corresponding frequencies ω. If N2 = N2

0 is constant,
the solutions are simply the harmonic modes

ψ̂ ∝ sin(mz) , (12)

where for mode-1 waves m = π
H , and

ω2 =
N2

0k
2 + f2m2

k2 +m2
. (13)

Consider a mode-1 ‘parent’ mode with given k and corresponding ω, and denote the
vertical structure by ψ̂1. For convenience, let the phase ϕ = kx− ωt.

If N2 is a function of z, (11) can be solved numerically for the mode ψ̂1(z) and ω using
Galerkin methods, described in section 3. We define a non-dimensional amplitude α ≪ 1
such that A0 = ωd

k α, where d is a characteristic length scale of the stratification profile
N2(z). The parent mode is thus given by

ψ(1) =
1

2
α
ωd

k
ψ̂1(z)e

iϕ + c.c. (14)

2.3 Response to parent mode self-interaction

Consider now the nonlinear terms in (9). The order α parent mode will self-interact in these
terms to create an O(α2) forcing for the next order correction to ψ. This forcing will have a
part that is proportional to e0iϕ, hence forcing a mean flow, and a part that is proportional
to e2iϕ, forcing a superharmonic with double the wavenumber of the parent. To calculate
the nonlinear forcing terms, first use (7) - (8) to find the parent mode spanwise velocity
v(1) = 1

2A0v̂1e
iϕ+ c.c. and buoyancy b(1) = 1

2A0b̂1e
iϕ+ c.c., giving the polarisation relations

v̂1 =
if

ω
ψ̂′
1 , b̂1 =

kN2

ω
ψ̂1 . (15)

The forcing terms become (using (11) to replace second derivatives of ψ̂1):

N {1,1}
1 = ψ(1)

z ∇2ψ(1)
x − ψ(1)

x ∇2ψ(1)
z

= A2
0

ik3(N2)′

4(ω2 − f2)
ψ̂2
1e

2iϕ + c.c. , (16)

N {1,1}
2 = ψ(1)

z v(1)x − ψ(1)
x v(1)z

= −A2
0

fk

4ω

(
ψ̂′2
1 +

N2(z)− ω2

ω2 − f2
k2ψ̂2

1

)
e2iϕ −A2

0

fk

4ω

(
ψ̂′2
1 − N2(z)− ω2

ω2 − f2
k2ψ̂2

1

)
+ c.c. ,

(17)

N {1,1}
3 = ψ(1)

z b(1)x − ψ(1)
x b(1)z

= −A2
0

ik2(N2)′

4ω
ψ̂2
1e

2iϕ + c.c. , (18)
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where {1, 1} indicates the self-interaction of the parent mode. Substituting (16) - (18) into
(9) gives

∇2ψtt + f2ψzz +N2ψxx = G0(z) + G2(z)e
2iϕ + c.c. , (19)

where

G0 = − α2kωd2f2

4(ω2 − f2)

(
2(N2 − ω2)

∂

∂z
|ψ̂1|2 + (N2)′|ψ̂1|2

)
, (20)

G2 =
α2kωd2(4ω2 − f2)(N2)′

4(ω2 − f2)
ψ̂2
1 . (21)

Examination of (19) - (21) gives the result that in uniform stratification and for f = 0,
monochromatic internal waves satisfy the fully nonlinear equations of motion. In a uniform
stratification with rotation, the forcing forces a mean flow, but no superharmonics. Thus
the generation of superharmonics is only possible in non-uniform stratification.

The total flow is now written as a sum of the parent ψ(1), the mean flow ψ(0) and the
superharmonic ψ(2):

ψ = ψ(1) + ψ(0) + ψ(2) . (22)

In what follows, we separately consider the response to the forcing G2 on the superharmonic
ψ(2) and the forcing G0 on the mean flow ψ(0).

2.3.1 Superharmonic generation

The superharmonic ψ(2) is given by

∇2ψ
(2)
tt + f2ψ(2)

zz +N2ψ(2)
xx = G2(z)e

2iϕ + c.c. , (23)

where we write

ψ(2) =
1

2
α2ωd

k
ψ̃2(z, T )e

2iϕ + c.c. (24)

Crucially, the time dependence of the superharmonic ψ(2) is allowed to vary from the
imposed forcing e2iϕ in the term ψ̃2(z, T ), with some timescale T . We define the superhar-
monic field as disturbances with twice the wavenumber of the parent, thus with horizontal
structure e2ikx, but not necessarily with twice the frequency. This is motivated by sim-
ulations (see section 3) with the parent mode imposed as an initial condition that show
growth of the superharmonic on a much longer timescale than the forcing ω−1. We thus
define a slow timescale T = ϵt for the superharmonic evolution ψ̃2, where ϵ ≪ 1 will later
be defined explicitly. Note that this assumption need not be made a priori, and can be
derived explicitly with a little more work.

We write the superharmonic structure ψ̃2 as an expansion in vertical structure functions
ψ̂2j :

ψ̃2(z, T ) =

∞∑
j=1

aj(T )ψ̂2j(z) . (25)

The vertical structure functions ψ̂ij have corresponding frequencies ωij and correspond to
the ith horizontal mode and jth vertical mode. They are eigenfunctions of the generalization
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of (11) to wavenumber ik, such that:

ψ̂′′
ij + i2k2

N2 − ωij

ω2
ij − f2

ψ̂ij = 0 . (26)

We can rearrange (26) into the Sturm-Liouville form

Liψ̂ij = −w(z)λijψ̂ij , (27)

where Li =
∂2

∂z2
− i2k2 is self-adjoint, w(z) = (N2 − f2), and λij =

i2k2

ω2
ij−f2 . Sturm-Liouville

theory then states that for each i the eigenfunctions ψ̂ij of (26) with frequency ωij are
orthogonal with respect to the weight function w(z), so that∫ 0

−H
ψ̂ij(z)ψ̂il(z)w(z)dz = δjl

∫ 0

−H
(ψ̂ij(z))

2w(z)dz . (28)

Substituting (24) and (25) into (23) gives

∞∑
j=1

(
ϵ2äj − 4iωϵȧj − 4ω2

(
4ω2 − ω2

2j

4ω2

)
aj

)
N2 − f2

ω2
2j − f2

ψ̂2j = −d(4ω
2 − f2)(N2)′ψ̂2

1

8(ω2 − f2)
, (29)

where ȧ denotes ∂a
∂T . We now multiply through by another basis function ψ̂2l, integrate over

z ∈ [−H, 0] and notice that the orthogonality condition (28) can be applied to give

ϵ2äj−4iωϵȧj−4ω2

(
4ω2 − ω2

2j

4ω2

)
aj = −

d(4ω2 − f2)(ω2
2j − f2)

8(ω2 − f2)

∫ 0
−H(N2)′ψ̂2

1ψ̂2j dz∫ 0
−H(N2 − f2)ψ̂2

2j dz
. (30)

The first term of (30) is O(ϵ) smaller than the second term, and thus to leading order in ϵ
it can be neglected. Let

∆j =
4ω2 − ω2

2j

4ω2
, (31)

such that ∆j is effectively the normalised difference between the superharmonic forcing
frequency 2ω and natural frequency ω2j of vertical mode j. The evolution of aj at leading
order in ϵ is thus given by

ȧj −
iω∆j

ϵ
aj = − iωMj

2ϵ
, (32)

where Mj is the constant

Mj =
4ω2 − f2

4(ω2 − f2)
·
ω2
2j − f2

4ω2
·
d
∫ 0
−H(N2)′ψ̂2

1ψ̂2j dz∫ 0
−H(N2 − f2)ψ̂2

2j dz
. (33)

Note that steady solution of [4, 23, 22] can be found as a special case of (32) using the

initial condition aj(0) =
Mj

2∆j
.

Here we impose the initial condition aj(0) = 0 so that there is a pure parent mode at
t = 0. The solution to (32) is then

aj =
Mj

2∆j

(
1− e

iω∆j
ϵ

T

)
. (34)
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For two reasons the mode-1 coefficient is dominant, such that a1 ≫ aj when j > 1.

Figure 2(a) showsMj , ∆j , and
Mj

∆j
against mode number j for an exponential stratification,

showing that M1 ≫ Mj , ∆1 ≪ ∆j for j > 1, resulting in M1
∆1

≫ Mj

∆j
. Figure 2(b) shows

the corresponding stratification, parent mode structure ψ̂1, and the superharmonic mode-1
structure ψ̂2. Notice how similar ψ̂1 and ψ̂21 are, although no assumption on their similarity
is made.

Firstly, recall from (33) that Mj ∝
∫ 0
−H(N2)′ψ̂2

1ψ̂2j dz. Since ψ̂1 is mode-1, ψ̂2
1 has a

mode-1 structure with no internal zero crossings. Therefore, given certain conditions on N2,
such as (N2)′ being single signed, (N2)′ψ̂2

1 will map primarily onto ψ̂21, so that M1 ≫Mj .
However, the most important reason for mode-1 dominance is the result

0 ≲ ∆1 ≪ ∆j , j > 1 . (35)

To see this, recall that ∆j is effectively the difference between the superharmonic forcing
frequency 2ω(k) and the natural frequency ω2j(k) of the superharmonic, which for mode-1
is by definition given by ω21(k) = ω(2k). Consider the dispersion relations shown in figure
3. The near linearity of the dispersion relation ω(k) means that ω(2k) ≃ 2ω(k), so that
∆1 ≪ 1. Notice also that this effect is more pronounced for f = 0. We therefore define
the small parameter ϵ ≡ ∆1. For stratification and wavenumber as in figure 2(a), ϵ = 0.11
when f = 0.01N0, and ϵ is an order of magnitude smaller at ϵ = 0.01 when f = 0.

The result of this is that a1 ≫ aj for j > 1, and the superharmonic vertical structure
is very near mode-1. This result is very robust to different stratifications. To illustrate
this, table 1 shows the ratio between the maximum value of a1 and a2 (the next largest
coefficient) for a range of realistic parameters and stratification profiles. The dominance of
mode-1 is greater for lower f , lower wavenumber k, and larger e-folding depth d, but in all
cases considered, the maximum value of a1 is still greater than 15 times the maximum value
of |a2|. Changing the stratification profile, including adding in a mixed layer (and thereby
allowing (N2)′ to be multi-signed) is shown not to greatly affect the result.

The dominance of a1 is now used to simplify the expression for the superharmonic at
leading order. Writing a ≡ a1, ψ̂2 ≡ ψ̂21, ψ̂1 ≡ ψ̂11, ω21 ≡ ω2 and M1 ≡M :

ψ(2) =
1

2
α2ωd

k
a(T )ψ̂2e

2iϕ + c.c. , (36)

where from (34),

a(T ) =
M

2ϵ

(
1− eiωT

)
. (37)

The superharmonic therefore evolves on two timescales - it oscillates at the fast forcing
frequency ω within an envelope that oscillates with slow frequency Ω = ϵω. This periodicity
is equivalent to an acoustic ‘beat’, whereby the constructive and destructive interference
of two slightly different frequencies causes a longer timescale periodicity in volume at a
frequency proportional to the difference between the two frequencies.

This behaviour is an extension of the ‘near resonance’ described in Wunsch (2017)
[24]. As ϵ → 0, the forcing frequency approaches the natural frequency of the mode-1
superharmonic, and near resonance occurs. The amplitude of the superharmonic becomes
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(a)

(b)

Figure 2: (a) Mj , ∆j and Mj/∆j plotted against mode number j, in the case k = 0.2/H, f =
0.01N0, N

2 = N2
0 e

z
d , d = 0.2. (b) The stratification N2 = N2

0 e
z
d for the same parameters, and the

corresponding mode-1 parent vertical structure function ψ̂1(z) and superharmonic vertical structure

function ψ̂21(z).
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(a)

(b)

Figure 3: Twice the dispersion relation of the parent 2ω(k) for the first vertical mode and the
dispersion relation of the first vertical mode of the superharmonic ω(2k) for stratification N2 =
N2

0 e
z
d , d = 0.2. (a) f = 0 (b) f = 0.01N0
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f
N0

kH
Profile 1 Profile 2 Profile 3
d/H zmix/H d/H

0.1 0.2 0.3 0.005 0.01 0.02 0.1 0.2 0.3

0
0.1 6972 7117 8908 7112 7079 6857 5082 6875 8506
0.2 1745 1769 2208 1768 1760 1705 1296 1752 2167
0.5 282 274 334 273 272 264 239 322 397

0.01
0.1 24 58 113 58 58 56 25 54 90
0.2 48 150 308 150 149 145 49 134 240
0.5 123 206 284 206 205 199 124 235 323

0.02
0.1 17 31 52 31 31 30 19 32 47
0.2 23 56 107 56 55 54 26 54 89
0.5 53 123 199 123 123 119 60 138 213

Table 1: Value of max |a1|
max |a2| rounded to the nearest integer for various values of k, f , and stratification

profiles N2. Profile 1: Exponential stratification N2 = N2
0 e

z
d . Profile 2: Exponential stratification

with a mixed layer of depth zmix, given by N2(z) = 1
2N

2
0 e

z
d

(
1− tanh

(
z+zmix

σ

))
with σ = 0.001H

and d = 0.2H. Profile 3: N2 =
N2

0 d
2

(d−z)2 .

larger with a longer growth as ϵ → 0, until in the limit ϵ = 0 the growth is linear and true
resonance occurs.

Naturally, the superharmonic grows at the expense of the parent mode, so as the super-
harmonic grows relative to the parent, the parent must decay. The expression (37) predicts
that the ratio of the maximum superharmonic amplitude to the parent amplitude is given
by

max
∫ 0
−H |ψ(2)|2dz∫ 0

−H |ψ(1)|2dz
∼ α2

ϵ2
. (38)

This result assumes that the parent is forced to maintain its energy, and thus the super-
harmonic energy can exceed that of the parent mode for sufficiently small ϵ or large α.
Therefore this theory is valid in the limit α

ϵ ≪ 1, equivalent to assuming that the super-
harmonic does not grow large enough to extract energy from the parent. In section 4, we
derive a weakly nonlinear (WNL) theory at next order in α

ϵ to take account of the transfer
of energy between the parent and the superharmonic.

2.3.2 Mean flow generation

The mean flow is given by

∇2ψ
(0)
tt + f2ψ(0)

zz +N2ψ(0)
xx = G0(z) + c.c. (39)

We write

ψ(0) =
1

2
α2ωd

k
ψ̃0(z, t) + c.c. (40)

Similarly to the superharmonic case, we allow the mean flow to have time dependence, but
here make no assumption on the timescale. We expand ψ̃0 similarly to (25), although in
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the absence of a suitable basis from (26) when i = 0, we impose the boundary conditions
by using a sine expansion.

ψ̃0(z, t) =
∞∑
j=1

qj(t) sin(mjz), mj =
jπ

H
. (41)

Substituting (40) and (41) into (39) gives

∞∑
j=1

−m2
j sin(mjz)(q

′′
j + f2qj) =

2kG0(z)

α2ωd
. (42)

Multiplying through by sin(mlz), integrating over z ∈ [−H, 0] and using the orthogonality
property of the sine functions gives

q′′j + f2qj = f2Pj , (43)

where

Pj = −
4k
∫ 0
−H G0 sin(mjz) dz

m2
jf

2Hα2ωd
(44)

=
k2d

m2
jH(ω2 − f2)

∫ 0

−H

(
2(N2 − ω2)

∂

∂z
|ψ̂1|2 + (N2)′|ψ̂1|2

)
sin(mjz) dz . (45)

Suppose we impose qj(0) = q′j(0) = 0 for each j, then

qj = Pj(1− cos ft) . (46)

Thus the full mean flow is given by

ψ(0) =
1

2
α2ωd

k
(1− cos ft)

∞∑
j=1

sin(mjz)Pj + c.c. (47)

The mean flow therefore has a vertical structure such that the second derivative is propor-
tional to the forcing, in contrast to the superharmonic vertical structure which is primarily
mode-1. The time dependence takes the form of inertial oscillations, which is an interesting
result in itself and requires further investigation.

A full treatment of the internal mode induced mean flow is not the focus of this study,
and in what follows it will be neglected. However, it can be checked with a scaling argument
on (47) that ψ(0) ∼ O(α2), whereas the superharmonic ψ(2) ∼ O(α

2

ϵ ), and thus the super-
harmonic dominates the mean flow. This is to be expected given the resonant behaviour
derived in section 2.3.1. The mean flow is forced at O(α2) by the parent, thus a flow of
O(α2) is induced. The superharmonic is forced at O(α2), but the near resonance allows it
to grow O(ϵ−1) larger.
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3 Comparison of Linear Theory to Simulations

3.1 Simulations

This study was motivated by and is validated with fully nonlinear simulations, described in
detail in Sutherland (2016) [21]. The 2D rotating Boussinesq equations (1) - (5) are solved
in a rectangular domain with horizontally periodic boundary conditions and free slip at the
top and bottom of the domain. The stationary stratification N2(z) is imposed, and is taken
to be exponentially varying as N2 = N2

0 e
z
d , with an e-folding depth d = 0.2. Timescales

are scaled by the maximum buoyancy frequency N0 and lengthscales are scaled by the total
domain depth H.

The simulations are initialised with the parent mode ψ(1), as defined in (10). Through-
out, the wavenumber k of the parent is taken to be k = 0.2/H, representing long waves, with
two wavelengths in the computational domain. The Coriolis parameter f is generally taken
to be f = 0.01N0 unless otherwise specified, which is typical throughout mid-latitudes. A
range of amplitudes A0 are considered.

For a given k, the mode-1 frequency ω and vertical structure ψ̂1 are first found from (11).
This is solved numerically using a Galerkin method whereby ψ̂1 is written as a truncated sine
series to satisfy the free slip boundary conditions, and the buoyancy frequency N2 is written
as a truncated cosine series. This transforms (11) to an algebraic matrix equation, where
the eigenvectors give the coefficients of the sine expansion of ψ̂1 and the eigenvalues give the
corresponding frequencies. The mode-1 solution is then used as the initial condition for the
nonlinear simulations. Equivalently, the frequency ω could be set (by the tidal frequency,
for example), and (11) solved for the wavenumber k. No noise is superimposed on the initial
state, ensuring that PSI cannot grow.

The prescribed initial streamfunction ψ(1)(x, z, 0) is then used to determine the timestepped
variables ζ, b, v. Vorticity ζ is found through ζ = −∇2ψ, and the corresponding initial span-
wise velocity v and buoyancy b fields through the polarization relations (15). The fields are
represented spectrally in the horizontal (with the added benefit of allowing easy analysis of
different wavenumber components of the fields) and at evenly spaced grid points in the ver-
tical. The timestepping uses a leapfrog scheme with an Euler backstep every 20 timesteps.
The timestep for simulations presented here is 0.01 or 0.05, with increased time resolution
found to improve small numerical errors but not change the fundamental results. The spa-
tial vertical resolution is 257 or 1025 points, with the higher resolution again reducing small
numerical errors.

For numerical stability, Laplacian diffusion is applied to the each of the vorticity, buoy-
ancy and spanwise velocity equations for wavenumbers greater than 16k with Reynolds
number 100,000 and Prandtl number 1. For the analyses considered here, the relevant
wavenumbers are not subject to diffusion so it will not be considered further.

The primary metrics derived from the simulations for comparison with theory are the
normalised superharmonic and parent amplitudes, defined for i = 1, 2 by

||ψ(i)||2(t) =
∫ 0
−H |ψ(i)(x, z, t)|2 dz∫ 0
−H |ψ(1)(x, z, 0)|2 dz

, (48)

where ψ(1) is the component of the full ψ field with wavenumber k (the ‘parent’) and ψ(2) is
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Figure 4: Simulations and predictions of the parent and superharmonic component of the normalised
amplitude of ψ, as defined by (49), against time. N2 = N2

0 e
z
d , d = 0.2H, k = 0.2/H, f = 0.01N0.

the component with wavenumber 2k (the superharmonic). Applied to the theoretical form
(36) of the superharmonic, this gives:

||ψ(2)||2 = |a|2
∫ 0
−H ψ̂2

2 dz∫ 0
−H ψ̂2

1 dz
≃ |a|2 . (49)

When determining the amplitude or period of the superharmonic from the simulations
(as in figures 5, 11, 12(a)), we take the amplitude as the first maximum in ||ψ(2)||2, and
the period as the time of the first minimum of ||ψ(2)||2 after t = 0. For larger amplitude
simulations in particular, the period and amplitude may not be constant with time. This
is likely due to both nonlinear effects and numerical error. An investigation of these effects
would require very long simulations, and is not considered here.

3.2 Results

Figure 4 shows the evolution in time of the superharmonic and parent from the simulations
with a stratification N2 = N2

0 e
z
d , d = 0.2H, f = 0.01N0, α = 0.01 and k = 0.2/H with

predictions of the same quantity from section 2 superimposed. The small oscillations with
frequency ω visible in the parent amplitude are purely numerical, and can be reduced with
higher spatial resolution.

The prediction does indeed recreate the observed long timescale oscillation of the su-
perharmonic, with period Ω correct to 5% accuracy. The predicted amplitude of the super-
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Figure 5: Simulated first maximum of superharmonic amplitude ||ψ|| (pink triangles) and linear
prediction of maximum superharmonic amplitude (blue dashed line).

harmonic is of the correct order of magnitude, but the prediction is a little high. This is
because the prediction does not account for loss of energy from the parent into the super-
harmonic, which reduces the magnitude of the forcing on the superharmonic and thus the
reduces the superharmonic amplitude. This issue is also clearly evident in the assumption
that the parent stays constant, when it actually reduces comparably to the growth of the
superharmonic over each oscillation.

In figure 5, the maximum amplitude of the superharmonic is plotted against the ampli-
tude α of the parent. For small α the prediction is good, but as discussed, for large α it
allows the superharmonic to grow to comparable size and eventually larger than the parent,
which is both unphysical and inconsistent with the linear theory derived here. There must
be a mechanism by which the growth of the superharmonic drains energy from the parent,
reducing its amplitude. This then feeds back to the superharmonic by reducing the mag-
nitude of the forcing from the parent self interaction. We now consider a weakly nonlinear
theory to take account of these feedbacks.

4 Weakly Nonlinear Theory

We have in the preceding sections derived what is often referred to as a weakly nonlinear
theory for the generation of superharmonics [4, 23, 24]. However, we view the theory thus
far as linear, and reserve the term weakly nonlinear for what follows, in which we derive
the feedback on the parent mode from the superharmonic.
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We begin by deriving the next order correction to (36) - (37), taking the next order
of the expansion (22). The nonlinear interaction of the superharmonic and the parent
provides a forcing ∼ eiϕ, e3iϕ at order α3, which can then modify the superharmonic through
nonlinear interaction with the parent. Now we are working to next order, we extend our
notation so that ψ(n,s) denotes a field with wavenumber nk at order αs. Thus ψ(1) ≡ ψ(1,1),
ψ(2) ≡ ψ(2,2), ψ(0) ≡ ψ(0,2)

Extending (22), let

ψ = {ψ(1,1) + ψ(0,2) + ψ(2,2)}+ ψ(1,3) + ψ(3,3) , (50)

where the new terms ψ(1,3) and ψ(3,3) are the O(α3) fields generated by the interaction of
the parent and the superharmonic, with wavenumbers k and 3k, respectively.

The order α3 field ψ(1,3) will be referred to as the ‘correction’ to the parent mode, and
the field ψ(3,3) will be referred to as the 3k superharmonic.

As shown in section 2.3.1, resonance between the forcing and the natural frequency of the
superharmonic sets the structure of the superharmonic to be primarily mode-1. This result
can be shown to carry through to all modes generated in this system, with the exception
of the mean flow, as discussed in section 2.3.2. We thus assume that modes generated by
nonlinear interactions take the vertical structure of the relevant mode-1 eigenfunction, such
that

ψ(n,s) =
1

2

ωd

k
αsgns(T )ψ̂ne

inϕ + c.c. , (51)

where ψ̂n ≡ ψ̂n1 in (26), and gns(T ) introduces the slow time dependence as in section 2.3.1
where g22(T ) ≡ a(T ).

4.1 Parent - superharmonic generation of correction to parent

As in (51), we take the correction to the parent to be

ψ(1,3) =
1

2

ωd

k
α3c(T )ψ̂1e

iϕ + c.c. , (52)

where we have written g13(T ) ≡ c(T ).
The correction is forced by the parent - superharmonic interaction, thus from (9) the

evolution equation is

∇2ψ
(1,3)
tt + f2ψ(1,3)

zz +N2ψ(1,3)
xx = N {1,2}

1t − fN {1,2}
2z +N {1,2}

3x , (53)

where {1, 2} indicates the part of the nonlinear interaction of the parent and the super-
harmonic that is proportional to eiϕ. The calculation of the RHS forcing terms requires
expressions for the superharmonic buoyancy b(2,2) and velocity v(2,2). From (7) - (8), they
satisfy

v
(2,2)
t = fψ(2,2)

z +N {1,1}
2 , (54)

b
(2,2)
t = −N2ψ(2,2)

x +N {1,1}
3 , (55)

(56)
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where N {1,1}
2 and N {1,1}

3 are given by (17) and (18).
Recall from section 2.3.1 that T = ϵt, and 0 < ϵ ≪ 1. In calculating the RHS of (53)

we use the slowly varying approximation ϵȧ≪ ωa to effectively treat a(T ) as constant in t,
thus we are now working at leading order in ϵ.

The parent-superharmonic forcing in the RHS of (53) can now be calculated, giving:

∇2ψ
(1,3)
tt + f2ψ(1,3)

zz +N2ψ(1,3)
xx =

1

2
α3ωd

k
(C(z) + a(T )D(z))eiϕ + c.c. , (57)

where C(z) and D(z) can be determined. Since a(T ) ∼ O(ϵ−1), we have C ≪ a(T )D. The

term C originates from the terms N {1,1}
2 and N {1,1}

3 in (53). These nonlinear terms are
therefore negligible when ϵ≪ 1, so that to leading order in ϵ the polarization relations (cf.
(15)) hold for v(2,2), b(2,2). We thus neglect C at leading order. D(z) is given by

D(z) =
dk2

2

[
ψ̂1ψ̂2(N

2)′
(
3− 4ω2 + 2f2

ω2
2 − f2

)
− 8f2ψ̂′

1ψ̂2
N2 − ω2

2

ω2
2 − f2

− 2f2ψ̂1ψ̂
′
2

N2 − ω2

ω2 − f2

− 2f2(ψ̂′
1ψ̂2 + ψ̂1ψ̂

′
2)

(
N2 − ω2

ω2 − f2
+
N2 − ω2

2

ω2
2 − f2

)
+ (2ψ̂′

1ψ̂2 + ψ̂1ψ̂
′
2)(N

2 − f2)

(
ω2

ω2 − f2
− 4ω2

ω2
2 − f2

)]
.

(58)

Substituting (52) into (57) gives an ODE for c(T ) (cf. (30)):

−N
2 − f2

ω2 − f2
(
ϵ2c̈(T )− 2iωϵċ(T )

)
ψ̂1 = a(T )D(z) . (59)

Again, we multiply through by ψ̂1 and integrate over z ∈ [−H, 0] to give

ϵ2c̈− 2iωϵċ = −a
(ω2 − f2)

∫ 0
−H Dψ̂1 dz∫ 0

−H(N2 − f2)ψ̂2
1 dz

. (60)

Neglecting the first term on the LHS of O(ϵ2), we obtain the simple ODE for c (cf. (34))

ċ = − iωD
2ϵ

a , (61)

where

D =
(ω2 − f2)

∫ 0
−H Dψ̂1 dz

ω2
∫ 0
−H(N2 − f2)ψ̂2

1 dz
. (62)

Using the known form of a(T ) from (37) gives

ċ = − iωDM
4ϵ2

(
1− eiωT

)
. (63)
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Integrating and using the initial condition c(0) = 0 (by definition of the correction to the
parent) gives

c(T ) =
DM

4ϵ2
(
eiωT − iωT − 1

)
. (64)

It is immediately evident that there is a problem with the form (64) due to the term that
is linear in T . In performing an asymptotic expansion, it is implicitly assumed that the
higher order terms in α remain small compared to the terms at lower order in α. In this
case, even when the superharmonic and correction are amplified by ϵ−1 due to resonance,

it is still necessary to assume that α
ϵ ≪ 1. The parent correction should be O

(
α2

ϵ2

)
smaller

than the parent, but we see here that the linear term in (64) is unbounded, and will ensure
that at some time the parent correction is larger in amplitude than the parent itself.

Although clearly unphysical due to conservation of energy, this is once again a manifes-
tation of resonance in the system. Previously, the superharmonic forcing was near resonant
with its natural frequency, giving growth and decay on a long timescale. Here, the parent
correction is forced at its true resonant frequency ω, causing pure resonance and linear
growth. Clearly, there must be some nonlinear feedback mechanism between the parent
and the superharmonic that acts to prevent this resonance, thereby conserving energy.

Figure 6 shows this new prediction of the parent, for comparison with figure 4. The
superharmonic prediction remains the same as in the linear theory, but the addition of the
resonant correction to the parent is certainly unphysical.

We conclude that the parent and superharmonic are so strongly coupled that it will be
necessary to consider all orders of feedback. To do this, we consider a fully coupled parent
- superharmonic system.

4.2 Fully coupled parent - superharmonic system

We now only consider the parent - superharmonic coupled system, neglecting the mean flow
for reasons discussed previously, and also neglecting the third and higher order superhar-
monics. This removes the need for asymptotic expansion in amplitude α. The system is
illustrated in the schematic in figure 7.

The neglect of the the 3k superharmonic ψ(3,3) can be justified by noting that, as in the
generation of the correction above, it will be related to the superharmonic ψ(2,2) by

∥ψ(3,3)∥ ∼ α

ϵ
∥ψ(2,2)∥ , (65)

where the ϵ in the denominator of (65) comes from the resonance between the forcing
frequency 3ω and resonant mode-1 frequency ω31 of the 3k superharmonic, similarly to the
original near resonant generation of the superharmonic from the parent. However, assuming
α ≪ ϵ, we neglect ψ(3,3). Despite appearing that they should be of the same order from
(50), the key difference between the 3k superharmonic and the parent correction is the
perfect resonance and coupling between the parent and the superharmonic, allowing the
parent correction to grow as large as the superharmonic.

In order to derive the parent-superharmonic coupled system, we first redefine the stream-
function, making no assumption that the parent amplitude stays near its initial value:

ψ =
1

2

ωd

k

(
αp(T )ψ̂1e

iϕ + α2a(T )ψ̂2e
2iϕ
)
+ c.c. , (66)
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Figure 6: Simulations and first attempt at WNL predictions of the parent and superharmonic
component of the normalised amplitude of ψ, as defined by (49), against time. N2 = N2

0 e
z
d ,

d = 0.2H, k = 0.2/H, f = 0.01N0.

Figure 7: Diagram showing the pathways to be considered in the weakly nonlinear theory. The
interactions are represented by blue arrows, and the forcing pathways by black. The parent-parent
interaction forces the superharmonic, and the parent - superharmonic interaction feeds back to
parent. The mean flow and 3k superharmonic are neglected.
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where p(T ) = 1 + α2c(T ) is a slowly varying function to represent evolution in time of
the parent field, a(T ) is the slowly varying superharmonic amplitude (no longer defined by
(37)), and all other variables are as before.

It is very little work to extend the results of sections 2.3.1 and 4.1 to account for all orders
of forcing. First, recall equation (37) for the first approximation of superharmonic amplitude
a, with the assumption that the superharmonic is primarily mode-1 in the vertical:

ȧ− iωa = − iωM
2ϵ

. (67)

We now simply add in all orders of forcing, accounting for the evolution in time of the
parent forcing:

ȧ− iωa = − iωM
2ϵ

p2 , (68)

where it is assumed that ϵṗ≪ ωp, so that time derivatives of p can be neglected at leading
order in ϵ.

Next, recall the equation for the parent correction (61), and use the redefined form (66)
to set p = 1 + α2c, giving

ṗ = − iα
2ωD

2ϵ
a . (69)

The RHS of (69) represents the parent-superharmonic forcing. The superharmonic evolution
is already accounted for, thus we need only adjust to take account of the parent evolution:

ṗ = − iα
2ωD

2ϵ
ap∗ , (70)

where p∗ is the complex conjugate, since the forcing is due to the product of the part of the
superharmonic that is proportional to e2iϕ and the part of the parent that is proportional
to e−iϕ.

The equations (68) and (70) form a coupled nonlinear set of ODEs for a(T ) and p(T ).

4.3 Analysis of coupled system

The system (68) and (70) has several interesting properties that can be obtained analytically,
and an asymptotic solution in the limit α

ϵ ≪ 1.

4.3.1 Conservation law

A conservation law for |a| and |p| can be derived from (68) and (70) (see Appendix A for
derivation):

|p|2 + α2D

M
|a|2 = 1 . (71)

This elegant result is evocative of conservation of energy - as energy drains from the
parent, the superharmonic must gain a proportional amount of energy. Note that this result
is somewhat surprising in this context, given that for the reduced system considered here,
energy is not conserved because in reality energy transfers to the mean flow and higher
horizontal and vertical modes.
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Figure 8: The value of D
M against various parameters. Stratification is given by N2 = N2

0 e
z
d . Top:

k varies, f = 0.01N0, d = 0.2H fixed. Middle: d varies, f = 0.01N0, kH = 0.2 fixed. Bottom: f
varies, d = 0.2H, kH = 0.2 fixed.

The factor D
M gives a constant ‘efficiency’ which tells us how much the parent amplitude

must decay as the superharmonic grows. The constants D and M can be simply calculated
from (33) and (62) as a function of the wavelength k of the parent, the Coriolis parameter f
and background stratificationN2. Figure 8 shows that for a range of parameters, the ratio D

M
is approximately 1. The interpretation of this is that the small differences in frequency and
vertical structure of the parent and the superharmonic cause slightly different amplitudes
for each for a given energy input.

Now that we have a simple relation between the absolute value of the amplitude of
the parent and the superharmonic, we can further manipulate (68) and (70) to obtain one
equation for |p|.

4.3.2 Dynamical system interpretation

The coupled nonlinear system (68) and (70) can be further manipulated (see Appendix B
for derivation) to give

(1−X)Ẍ + Ẋ2 + ω2X =
1

2
ω2δ2(1−X)3 , (72)

where X = 1− |p|2, such that X = α2D
M |a|2 ≥ 0 and δ2 = MDα2

ϵ2
.

Remarkably, (72) can be written as a Hamiltonian system with generalised position X
and generalised momentum P , such that:

H(X,P ) =
1

2m(X)
P 2 + V (X) . (73)
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The generalised potential V (X) and mass function m(X) in this case are

V (X) =
1

2
ω2 2X − 1

(1−X)2
− 1

2
ω2δ2X , (74)

m(X) =
1

(1−X)2
, (75)

and dH
dT = 0. The generalised position and momentum are given by the equations

Ẋ =
∂H

∂P
(76)

= (1−X)2P , (77)

Ṗ = −∂H
∂X

(78)

= (1−X)P 2 − ω2 X

(1−X)3
+

1

2
ω2δ2 . (79)

Combining (77) and (79) to eliminate P does indeed recover (72).
We use the property dH

dT = 0 to determine the constant H for this system. Notice from

(70) that a(0) = 0 implies ṗ(0) = 0, so that X(0) = Ẋ(0) = 0, and thus

H(X,P ) = H(X(0), P (0)) = V (0) . (80)

The solution is therefore a curve in (X,P ) phase space given by

1

2m(X)
P 2 + V (X) = V (0) (81)

or, writing m and V explicitly using (74) and (75):

(1−X)2P 2 + ω2

(
X2

(1−X)2
− δ2X

)
= 0 . (82)

Figure 9(a) shows the curve defined by (82), plotted in (X,P ) phase space. Only the
part of the curve that lies in the relevant domain 0 ≤ X ≤ 1 is plotted. It is clear that there
is a periodic orbit, which recovers the characteristically periodic behaviour that we expect
from the superharmonic and parent as in the simulations in figure 4. There are stationary
points at (0, 0) and (Xmax, 0) where the curve intersects P = 0. Xmax is defined such that
V (Xmax) = V (0).

Notice that X = 0 and X = Xmax are in fact solutions of (82), and therefore fixed points
in the phase diagram. However, they are not solutions of (72), and not valid solutions to
our system. In fact, Ẋ = 0 is always a solution to dH

dT = 0. Explicitly, this solution is

introduced when (72) is multiplied through by Ẋ
(1−X)3

before being integrated to form the

Hamiltonian.
We wish to find the maximum amplitude of the superharmonic, at which Ẋ = 0. This

is given by the stationary point X = Xmax up to constants in the definition of X, and can
be determined analytically by solving V (X) = V (0). There are 3 solutions to the resulting
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(a)

(b)

Figure 9: (a) A plot of the level set (82) on which the solution (X,P ) lies. The points at which
P = 0 are marked, corresponding to stationary points of X. (b) The numerical solution of (72), as
represented in phase space in 9(a). The periodic orbit is evident, with maxima at X = Xmax and
minima at X = 0. The solution is calculated using an ODE solver.
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cubic equation; X = 0 represents the minima of the superharmonic amplitude, X = Xmax

represents the maxima of the superharmonic amplitude, and some X > 1 is irrelevant as
X ≤ 1. Figure 9(b) shows the numerical solution for X, found using a numerical ODE
solver. The solution appears to be near sinusoidal, and the oscillation between X = 0 and
X = Xmax can be seen clearly. Xmax is given by

Xmax = 1− 1

2δ2

(
(1 + 4δ2)

1
2 − 1

)
. (83)

Recall that the weakly nonlinear theory for the coupled parent - superharmonic system is
valid for α

ϵ ≪ 1, or equivalently, δ ≪ 1. We therefore expand (83) for small δ, to obtain

Xmax = δ2 − 2δ4 +O(δ6) . (84)

We are also interested in determining the frequency of the system, corresponding to the
slow frequency of growth and decay of the superharmonic. Rewriting (82) in terms of X
only gives

Ẋ2 + ω2(X2 − δ2X(1−X)2) = 0 . (85)

Differentiating and dividing through by Ẋ removes the Ẋ = 0 solution and recovers an
equation reminiscent of simple harmonic motion:

Ẍ + ω2

(
X − 1

2
δ2(1−X)(1− 3X)

)
= 0 . (86)

Finding the period or directly solving this equation requires solution of an elliptic integral.
However, as before we can consider an asymptotic solution for δ ≪ 1. From (83), we know
that X ∼ δ2. At leading order in δ, (86) then becomes simple harmonic motion:

Ẍ + ω2X =
1

2
δ2ω2 . (87)

This has the solution

X =
1

2
δ2(1− cosωT ) , (88)

or, in terms of a and t:

|a|2 = M2

2ϵ2
(1− cos ϵωt) . (89)

This fully recovers the initial prediction (37) of |a|.
At next order in δ, (86) becomes

Ẍ + ω2(1 + 2δ2)X =
1

2
ω2δ2 . (90)

Similarly to (87), this also has a simple harmonic form, with solution

X =
δ2

2(1 + 2δ2)

(
1− cos

(
ω
√
1 + 2δ2T

))
, (91)

where the maximum value is consistent with (83) to O(δ4). To the first two orders in δ, the
solution is indeed sinusoidal. The exact solution will have small corrections at next order
in δ.
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Figure 10: The simulated parent and superharmonic amplitudes for the set-up in figure 4 are plotted
with the new WNL prediction, solved from (72) using a numerical ODE solver. The simulated 3k
superharmonic is also plotted for reference.

5 Comparison of WNL Theory to Simulations

The weakly nonlinear theory is valid for α
ϵ ≪ 1, and predicts that

1. The superharmonic and parent amplitude obey a conservation law |p|2+ α2D
M |a|2 = 1.

2. The system is periodic, with frequency Ω = ϵω
√
1 + 2MDα2

ϵ2
+O(α

3

ϵ3
).

3. The maximum amplitude of the superharmonic is given by

max |a|2 = M

Dα2

(
1− ϵ2

2MDα2

(√
1 +

4α2MD

ϵ2
− 1

))
(92)

=
M2

ϵ2

(
1− 2Mα2

ϵ2

)
+O

(
α4

ϵ4

)
. (93)

Figure 10 shows the simulation previously plotted in figure 4, with the prediction from
section 2 replaced with the new weakly nonlinear theory. The parent is now shown to evolve
with the same period as the superharmonic, greatly improving the constant prediction from
the linear theory. The maximum superharmonic amplitude is also more accurate. This is
illustrated for various parent amplitudes α in figure 11, which shows the amplitude of the
first superharmonic maximum from simulations, from the linear prediction, and from the
WNL prediction. The linear prediction is good for small α such that α

ϵ ≪ 1 as previously
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Figure 11: The results from figure 5 are replotted with the new WNL amplitude prediction, greatly
improving the prediction of the superharmonic amplitude.

discussed, and consistent with the WNL solution (as is evident from the expansion (84)).
However, for larger values of α, the WNL prediction greatly improves the linear prediction.
At α = 0.05 the WNL prediction is still good, despite a fairly large α

ϵ = 0.44.
From figure 10, it is clear that although the superharmonic amplitude prediction is good,

the minimum parent amplitude is overestimated. This is likely due to the parent also losing
energy to the mean flow and 3k superharmonic, which is not accounted for in the model. The
3k superharmonic from simulations is also plotted in figure 10. We expect the squared 3k

superharmonic amplitude to be O
(
α2

ϵ2

)
smaller than the superharmonic. Since α2

ϵ2
≃ 0.2 in

this case, this is consistent with the size of the the simulated 3k superharmonic. Although
not examined here, from simulations it is clear that the effect of the 3k superharmonic
superimposing with the 2k superharmonic is to amplify and focus the peaks of the parent.
The this could be an important mechanism in facilitating steepening of the parent when
the 3k superharmonic is large enough.

The predicted period of the superharmonic and parent is shorter than that of the simu-
lations. This effect appears amplified in figure 10 due to the cumulative error in the period,
but the relative error in the period is approximately 15%. This error is consistent with
the neglect of the next order in ϵ throughout the derivation of the model. When taking
time derivatives, we often invoked ϵ ≪ 1 in order to neglect 2nd order terms. In this case,
ϵ ≃ 0.1, so a 10% error is expected.

The source of this error is investigated in figure 12(a). Simulations were run for different
values of ϵ (by changing the value of f), whilst keeping α

ϵ constant at 0.44. This was
necessary because fixing α and allowing ϵ to become very large would cause α

ϵ to become
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large, invalidating the model. At first glance, both the linear prediction of the period
T = 2π

ϵω and the WNL prediction of the period match well with the period from simulations.
Figure 12(b) plots the relative error of the linear and WNL theories to the simulations.
Interestingly, the linear theory appears to be better than the WNL theory at predicting
the period. However, as predicted, the error in the WNL theory decreases for decreasing ϵ,
suggesting that it is indeed due to the neglect of higher orders in ϵ.

6 Application to Realistic Oceanic Parameters

In this section we briefly consider the implications of the conclusions of sections 2 - 5 on
the oceanic internal tide. We do not attempt to predict the generation of superharmonics,
but rather to investigate whether there is potential for superharmonics to grow from the
internal tide given realistic oceanic conditions.

We consider in particular the internal tide generated at the Hawaiian Ridge, where the
far field propagation of the low mode internal tide has been the subject of multiple studies
(e.g., [18, 1, 26]). We use the mooring data from mooring MP1 of Zhao et al. (2010) [26] to
give estimates of the stratification profile and amplitude of the internal tide. The internal
tide at this mooring is 218km NE of its generation site, and is dominated by the mode-1
signal from the M2 tide [26].

An idealized stratification profile is designed to roughly approximate the stratification
profile in figure 2b of Zhao et al. (2010) [26]. Depth H is taken to be 5000m, and the
stratification profile as exponential with a mixed layer:

N2(z) =
1

2
N2

0 e
z
d

(
1− tanh

(
z + zmix

σ

))
, (94)

where N2
0 = 1 × 10−4, e-folding depth d = 500m, mixed layer depth zmix = 50m and

interface width σ = 5m.
The maximum along beam surface velocity of the mode-1 is taken to be 0.1m s−1 from

ADCP measurements at the mooring MP1. This corresponds to a non-dimensional parent
amplitude of roughly α ≃ 0.02.

The latitude at MP1 is 25.5◦N , giving f = 6.3 × 10−5 s−1. The frequency ω is set by
the frequency of the semidiurnal lunar (M2) tide, which has a period of 12.5 hours, giving
ω = 1.4×10−4 s−1. Given the stratification profile, Coriolis parameter and frequency of the
parent, the wavelength k of the parent is found by modifying the Galerkin method described
in section 2, giving k = 1.82 × 10−5m−1, corresponding to a wavelength λ = 182 km. For
comparison, a wavelength of 162km is used in Zhao et al. 2010 [26] to simulate the northward
Hawaiian internal wave beam.

The ratio α
ϵ = 0.13, suggesting that in this case the superharmonic could grow to roughly

10% of the size of the parent.
If instead we consider the same stratification profile, amplitude and tidal frequency for

a range of latitudes, we find that the maximum value of the superharmonic will be greatly
amplified at lower latitudes. Figure 13(a) shows the maximum amplitude of the superhar-
monic relative to the parent calculated from both the linear theory (37) as maxα|a| = Mα

ϵ ,
and the WNL prediction (92). The linear theory predicts that the superharmonic will grow
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(a)

(b)

Figure 12: (a) The period of the long timescale superharmonic growth and decay against ϵ, for
fixed α

ϵ = 0.44, as predicted by the linear theory T = 2π
ϵω (blue dashed) and by the asymptotic

approximation to the weakly nonlinear theory from (91) (black solid). The period from simulations
is marked with pink triangles. (b) The relative error between the period from linear theory and
from simulations (blue circles) and between the period from WNL theory and from simulations
(pink triangles).
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to over twice the amplitude of the parent at the equator, which is unphysical. The WNL
theory predicts that it will grow to 80% of the size of the superharmonic, which could be
physical but is still outside of the realms where the WNL theory is valid. The WNL theory
is formally valid for α

ϵ ≪ 1, though is good for α
ϵ ≲ 0.5, which is true at latitudes higher

than ∼ 12◦N from figure 13(a).
At lower latitudes, the WNL theory breaks down because higher harmonics and further

nonlinear effects are present. Therefore, despite the invalidity of our theory at low latitudes,
we can predict that the superharmonics could become significantly amplified and grow large
enough to excite further superharmonics, perhaps eventually facilitating the destruction of
the internal tide via a cascade to smaller scales and eventual turbulence.

However, it is important to note that the time taken for the superharmonic to grow to
its maximum value also increases with decreasing latitude. Figure 13(b) shows that the
number of days for the superharmonic to reach its first maximum increases from 1.7 days
at 25.5◦N to 15 days at the equator according to the WNL prediction, or 40 according to
the linear prediction. Both the linear and WNL theories are only formally valid for α≪ ϵ,
so these estimates near the equator are likely to be inaccurate.

Rainville and Pinkel (2006) [17] estimate the propagation paths of certain known in-
ternal tide beams over a period of 21 days (see figure 1, Rainville and Pinkel (2006) [17]),
calculated from a ray tracing approach using estimates of geographic distribution of the
group velocity of internal tide beams. For example, an internal tide beam propagating NE
of the Hawaiian Ridge is expected to reach the coast of Alaska in approximately 3 weeks,
and a beam propagating SW from Hawaii could reach south of Fiji in 3 weeks, after crossing
the equator. Therefore, it is possible that the internal tide could reside at low amplitudes
for an insufficient time for superharmonics to attain their maximum amplitude. However,
the superharmonic could certainly be significantly amplified in this time.

In order to determine how large the superharmonics could grow over the propagation
of an internal tide beam, it would be necessary to modify our theory to account for slowly
varying f , perhaps using a ray tracing approach similar to Rainville and Pinkel (2006) [17] to
quantify the effect of changing ϵ on the growth of superharmonics. The change in amplitude
of the internal tide as it loses energy during propagation should also be considered.

The conclusion of these rough analyses with realistic parameters is that superharmonic
generation certainly could be important in the ocean, and for certain regions the WNL
theory derived here will apply to their evolution.

7 Conclusion

A possible mechanism for the extraction of energy from the mode-1 internal tide in a rotating
and non-uniformly stratified environment has been investigated theoretically and verified
with fully nonlinear simulations.

In non-uniform stratification, an internal mode (the ‘parent’) has been shown theo-
retically to generate superharmonics with double the wavenumber through nonlinear self-
interaction [4]. In this work, a theory was developed to extend the analysis of Diamessis et
al. (2014) [4], Wunsch (2015) [23] and Sutherland (2016) [21] to allow for time evolution of
the superharmonic in a general stratification N2(z).
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(a)

(b)

Figure 13: (a) The maximum amplitude of the superharmonic relative to the parent at different
latitudes, calculated from the linear theory and WNL theory with stratification given by (94) for a
parent internal tide with semidurnal frequency, and parameters given in the text. The value of α

ϵ ,
and the WNL theory is valid when α

ϵ ≪ 1. ||ψ|| = 1 is marked for reference, to show where the
superharmonic is as large as the parent. (b) The number of days for the superharmonic to reach it’s
maximum amplitude, calculated as in figure 13(a).
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A first order approach in which the parent amplitude is held constant was found to
recreate a slow periodic growth and decay of superharmonic amplitude seen in simulations.
This is due to near resonance between the forcing frequency 2ω(k) of the parent-parent
interaction and the natural frequency of the mode-1 component of the superharmonic ω(2k),
and could also be compared to an acoustic ‘beat’.

The resonance ensures that the mode-1 component of the superharmonic is much larger
than higher mode components, even when the vertical structure of the forcing from the
parent is not mode-1. A theory for the evolution of the superharmonic in the limit α ≪
ϵ≪ 1 was developed, where α is the non-dimensional parent amplitude and ϵ is effectively
the difference between the forcing frequency and the true frequency of the superharmonic.
This ‘linear’ theory predicts low frequency periodicity with frequency Ω = ϵω and maximum
superharmonic amplitude of O

(
α
ϵ

)
. The prediction is good in the limit α

ϵ ≪ 1, that is when
the maximum amplitude of the superharmonic is much smaller than the parent.

A weakly nonlinear theory was then developed to take account of the feedbacks between
the parent and the superharmonic. A first attempt at asymptotic expansion in amplitude
α was found to introduce an unphysical true resonance and linear growth into the system.
It was concluded that the parent - superharmonic coupling is so strong as to necessitate
consideration of all orders of feedback. A coupled parent - superharmonic system was then
developed, neglecting the mean flow and higher harmonics of the parent. The resulting
coupled set of nonlinear ODEs for the parent and superharmonic amplitude was shown to
possess a conservation law linking the instantaneous amplitude of the parent to that of
the superharmonic. Although this does not exactly represent energy conservation, this law
ensures that the physical condition that the parent decays when the superharmonic grows
(and vice versa) holds.

The nonlinear ODEs were manipulated to form an equation for the real magnitude of
the superharmonic amplitude. Although this system does not have an analytic solution, it
was shown to possess a Hamiltonian structure. This was exploited to find the maximum
amplitude of the superharmonic analytically. An asymptotic solution for the superharmonic
amplitude and period at next order in α

ϵ was found, which is consistent at leading order in
α
ϵ with the initial linear prediction.

The solution to the coupled system was compared with the simulations and found to
improve the prediction of the amplitude of the parent and superharmonic. Errors in the
frequency Ω of the slow oscillation of the superharmonic were found to decrease with de-
creasing ϵ in the WNL theory, which is expected due to neglect throughout of higher orders
in ϵ.

The weakly nonlinear theory is valid for 0 ≪ α ≪ ϵ ≪ 1. Typical oceanic parameters
were shown to lie in this range, suggesting that this mechanism could take place in the real
ocean. In particular, a primitive analysis of internal tide radiating from Hawaii showed that
the superharmonics could be of significant size. In the case of internal tides approaching
the equator, the superharmonics could grow large enough to excite further superharmonics,
thus causing nonlinear steepening of the internal tide and potential for further cascade to
smaller scales.
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8 Further Work

Both the simulations and theoretical framework of this work are highly idealized. In reality,
the other mechanisms mentioned previously for destruction of the internal tide (interaction
with topography, PSI, interaction with mean flow) are likely to take place alongside the
formation of superharmonics, perhaps modifying the generation mechanism.

The higher harmonics have been neglected in this analysis, but reference was made to
the potential for higher harmonics to facilitate the eventual destruction of the internal tide
given the right conditions. It was found in the simulations that the 3k superharmonic could
superimpose with the 2k superharmonic to steepen the parent, perhaps creating conditions
for nonlinear steepening described in Helfrich and Grimshaw (2008) [8]. This avenue could
be explored numerically or by inclusion of the 3k superharmonic in the coupled system of
section 4.

A natural extension of this work would be to consider the effect of varying f on the su-
perharmonic amplification, as mentioned in section 6. This work could then be considered
in an real oceanic context, and predictions made of the probable location and amplitude
of superharmonics generated from known internal tide beams. Estimates of depth, strati-
fication and internal tide amplitude could be used to map the global distribution of α

ϵ to
determine where this mechanism is likely to be important.

9 Appendices

Appendix A

We derive a conservation law for |a| and |p|. Taking (70) and multiplying through by p∗

gives

ṗp∗ = − iα
2ωD

2ϵ
a(p∗)2 . (95)

Adding (95) to its complex conjugate:

∂|p|2

∂T
= − iα

2ωD

2ϵ
(a(p∗)2 − a∗p2) . (96)

Using (68) do eliminate p from the RHS gives

∂|p|2

∂T
= −α

2D

M

∂|a|2

∂T
. (97)

Integrating and using initial conditions a = 0, p = 1 then gives the conservation law

|p|2 + α2D

M
|a|2 = 1 . (98)
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Appendix B

An equation for |p| alone is derived from equations (68) and (70). Begin by setting a =
AeiωT , so that (68), (70) become

Ȧ = − iMω

2ϵ
e−iωT p2 , (99)

ṗ = −iα
2ωD

2ϵ
eiωTAp∗ . (100)

Rearranging (100) to find A then differentiating gives an expression for Ȧ in terms of p.
Substituting into (99) gives an equation in p only:

p̈p∗ − iωṗp∗ − ṗṗ∗ = −1

4
ω2δ2|p|4 , (101)

where

δ2 =
MDα2

ϵ2
. (102)

Adding the complex conjugate to (101) gives:

∂2

∂T 2
|p|2 − 4|ṗ|2 + iω(ṗ∗p− ṗp∗) = −1

2
ω2δ2|p|4 . (103)

Subtracting the complex conjugate from (101) gives:

∂

∂T
(ṗp∗ − ṗ∗p) = iω

∂

∂T
|p|2 . (104)

Notice from (70) that since a(0) = 0, we have ṗ(0) = 0. Thus we can integrate (104) using
p(0) = 1 to give

ṗp∗ − ṗ∗p = iω(|p|2 − 1) . (105)

Substituting (105) into (103) gives

∂2

∂T 2
|p|2 − 4|ṗ|2 + ω2(|p|2 − 1) = −1

2
ω2δ2|p|4 . (106)

We now use the identity

(ṗp∗ − ṗ∗p)2 = ( ˙(|p|2))2 − 4|ṗ|2|p|2 (107)

to find an expression for |ṗ| in terms of |p|. Combining (105) and (107) gives

4|ṗ|2 = ( ˙(|p|2))2 + ω2(|p|2 − 1)2

|p|2
. (108)

Substituting (108) into (106) gives an equation in |p| only:

|p|2 ∂
2

∂T 2
|p|2 − ( ˙(|p|2))2 + ω2(|p|2 − 1) = −1

2
ω2δ2|p|6 . (109)

Writing X = 1− |p|2, (such that X = α2D
M |a|2 ≥ 0), we have

(1−X)Ẍ + (Ẋ)2 + ω2X =
1

2
ω2δ2(1−X)3 . (110)
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Free Convection With Large Viscosity Variation

Kelsey A. Everard
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1 Introduction

Traditionally in geophysical fluid dynamics, an assumption of a constant viscosity is made
at the outset of analysis. However, for many fluids, viscosity can be a strong function of
temperature, potentially making this assumption as applied to some geophysical contexts
invalid in the case of a flow in which temperature variation is present. For example, strong
temperature dependent viscosity impacts the dynamics of mantle convection [14, 4, 16] and
the ascent of diapirs [11, 7].

There exists a large body of research into the impact of a temperature dependent viscosity
in cases of forced convection [9, 10, 13, 3]. However to our knowledge, there has yet to
be a rigorous asymptotic treatment of the case of a temperature dependent viscosity in
free convection. Furthermore, a majority of the previous investigations have considered a
polynomial form of temperature dependence on viscosity [13], which is only acceptable in
the case of very large temperature fluctuations relative to the background.

We extend current knowledge by considering the case of free convection under the condition
of sufficiently small temperature fluctuations relative to the background isothermal state
such that the temperature dependence of viscosity is exponential. We show that the expo-
nential dependence of viscosity on temperature leads to an intriguing triple decked boundary
layer structure which is not present in the case of polynomial dependence of viscosity on
temperature. Consideration of the impact of large viscosity variations is particularly timely
to accompany ongoing research into the shape dynamics of a dissolving solid which are
being investigated using laboratory experiments of dissolving candy [8, 6, 15]. While the
thermal analogue of dissolving candy is the case of a cooled wall, we begin investigations
with the case of a heated wall, leaving the case of the cooled wall for future work.

We first define our problem and the assumptions that must be made for our results to be
valid in Section 2. For completeness, we then consider the case of iso-viscous free convection
in Section 5, the details of which can also be found in e.g., [1, 12]. We then address the
case of free convection when the fluid viscosity is an exponential function of temperature in
Section 6.
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2 Model Formulation

Here, we consider the theoretical case of a vertical wall which is the y − z plane centred
at x = 0 where x is the horizontal wall-normal coordinate, y is the vertical wall-parallel
coordinate, and z is the horizontal wall-parallel coordinate. We assume for simplicity that
the dynamics are homogeneous in the z-direction, thus allowing for the simplification of
the problem to 2D. Let L be the distance from the tip of the wall (the position of the wall
that is either located at the most negative y location or at the most positive y location,
depending on whether the wall is heated or cooled, respectively). The analysis herein will
be applicable for |y| > L, where L is defined such that L ≫ δBL, where δBL is the thickness
of the boundary layer separating the near-wall region where viscous effects are important.
Since δBL is expected to continually increase in the y−direction, the requirement that
L ≫ δBL can be understood as the requirement that dδBL

dy ≪ 1. Figure 1 gives a physical
representation of the boundary layer structure.

δBL

L

y
x

Figure 1: Diagram of boundary layer that forms when convection is forced by a cooled plate.
The vertical (plate-parallel) direction is given by the y coordinate, and the horizontal (plate-
normal) direction is given by the x coordinate. The case of a heated plate is the image of
what is shown for the cooled plate about the x-axis. L is the vertical distance from the tip
of the plate after which the boundary-layer approximation can be made. δBL = δBL(y) is
the boundary layer thickness.
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With this assumption, we can apply the boundary-layer approximation to the governing
equations. Upon the additional application of the Boussinesq approximation and an as-
sumption of stationarity, we are left with the governing equations for the steady-state prob-
lem,

∂ u

∂ x
+
∂ v

∂ y
= 0 (1)

u
∂ v

∂ x
+ v

∂ v

∂ y
= α g∆T +

∂

∂ x

(
ν
∂ v

∂ x

)
(2)

u
∂∆T

∂ x
+ v

∂∆T

∂ y
= κ

∂2∆T

∂ x2
(3)

u = 0, v = 0, θ = 1 at x = 0

u→ 0, v → 0, θ → 0 as x→ ∞

where u is the wall-normal (horizontal) velocity component, v is the wall-parallel (vertical)
velocity component, ∆T = T (x, y) − T0 is the relative temperature difference, T0 is the
far-field (base-state) temperature, ν = µ/ρ0 is the dynamic viscosity, ρ0 is the density of
the fluid at T0, µ is the molecular viscosity, α is an expansion coefficient, g is the gravita-
tional acceleration, and κ is the diffusivity of heat. It is worth noting that we have yet to
make an assumption as to whether ν is a constant or not. In the following two sections we
address the form of viscosity variation that we will consider, and we address the validity of
the Boussinesq assumption under this specific form of viscosity variation.

These boundary conditions, particularly that for u at the wall, are the free-convection
massless-transfer analogue of those used in the formative work of [2], who investigated the
impact that the potential for mass transfer has on iso-viscous forced convection at a wall.

2.1 Validity of exponential form of temperature dependent viscosity

We will examine natural convection in a fluid whose viscosity is a function of temperature.
We start with the Arrhenius equation for a temperature dependent viscosity,

µ(T ) = Ae
Ea
RT (4)

where A = Const. is the exponential prefactor, Ea is an activation energy, R is an analogue
to a gas constant, and T is the temperature in Kelvin. We are interested in the case of small
deviations of the wall temperature, Tw, from the base-state, T0, i.e., |∆T | = |Tw−T0| ≪ T0.
Let T = T0 +∆T , and Taylor expand the argument of the exponential at T0,

f(T ) = T−1
0 − T−2

0 ∆T +O(|∆T |2) (5)

Substituting this expansion in to Equation (4),

µ(T ) = Ae
Ea
R (T−1

0 −T−2
0 ∆T+O(|∆T |2)) (6)

∼ Ae
Ea
RT0 e

− Ea
RT2

0
∆T

(7)

µ(T ) = µ0 e
−β∆T . (8)
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Where µ0 = Aeβ T0 is the viscosity of the fluid at the far-field (base-state) temperature, T0,
and β = Ea

RT 2
0
, Ea is the activation energy.

2.2 Validity of Boussinesq Approximation

Upon initial investigation, the Boussinesq approximation is in direct harmony with our
formulation of the temperature dependent viscosity. This is evident since the Boussinesq
approximation necessitates that | ∆ρ∆ρ0

| ≪ 1 which under the assumption that ∆ρ
ρ0

= −∆T
T0

implies that |∆TT0 | ≪ 1, which is the condition that must be satisfied in order to use our
formulation of the temperature dependent viscosity.

However, appropriate application of the Boussinesq approximation in the case of a tem-
perature dependent viscosity is slightly more complicated. In the same way that density
perturbations are important to gravitational acceleration, our problem set up implicitly
states the importance of density perturbations on diffusion, which could have the potential
to violate the requirements for the Boussinesq approximation. These density perturbations
can be neglected, however, under the assumption that d ρ

d T ≪ dµ
dT . With this further as-

sumption and the imposed uniform background temperature (density), we are free to define
ν(T ) = ρ−1

0 µ(T ) without further consideration.

2.3 Non-dimensionalisation and Similarity Scaling

For the problem at hand, we know that the temperature at the wall (Tw) is the driving term
in the flow dynamics, thus making ∆T (x, y, t) = T (x, y, t) − T0 of leading order, at least
near the wall. We accordingly non-dimensionalise ∆T as ∆T = Θ θ(τ, ξ), where θ is the
similarity form of temperature perturbation, Θ = Tw − T0, and τ and ξ are the similarity
time and spatial variables to be found.

Upon the assumption that equations 1-3 fully capture the important dynamics, all terms
must scale with one another for a balance to be possible. Thus, to satisfy continuity, we
have,

u

x
∼ v

y
. (9)

From equation (2), we have that,

u v

x
∼ v2

y
∼ α gΘ ∼ ν0

v

x2
(10)

which gives,

v ∼ (α gΘ)
1
2 y

1
2 , u ∼ (ν20 α gΘ)

1
4 y−

1
4 (11)

x ∼
(

ν20
α gΘ

) 1
4

y
1
4 (12)

with the independent similarity variable defined as,

ξ =

(
α gΘ

ν20

) 1
4

y−
1
4x. (13)
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We can implicitly satisfy continuity by considering the stream function, ψ, defined by u =
∂ ψ
∂ y and v = −∂ ψ

∂ x . It is readily observed from the scalings (11) that ψ ∼ (ν20 α gΘ)1/4y3/4.
We can define similarity versions of u(x, y), w(x, y), ∆T (x, y), and ψ(x, y) as,

ψ(x, y) = (ν20 α gΘ)
1
4 z

3
4Ψ(τ, ξ) (14)

∆T (x, y) = α gΘ θ(τ, ξ) (15)

v(x, y) = −(α gΘ)
1
2 y

1
2Ψξ (16)

u(x, y) =
1

4
(ν20 α gΘ)

1
4 y−

1
4 [3Ψ− ξΨξ − 2τΨτ ] . (17)

Upon substitution of equations (14)-(17) into equations (1)-(3), we obtain the similarity
form of the problem,

1

2
Ψ2
ξ −

3

4
ΨΨξξ = θ − [ν̂Ψξξ]ξ (18)

Pr−1θξξ −
3

4
θξΨ = 0 (19)

Ψ = 0, Ψξ = 0, θ = 1 at ξ = 0

Ψξ → 0, θ → 0 as ξ → ∞

where Pr = ν0
κ is the Prandtl number.

3 Numerics

In addition to the matched asymptotic solutions, we solve the full problem numerically.
However, in our numerical procedure, the boundary value problem (BVP) was reformulated
as an initial value problem (IVP). This is done for two reasons, 1) to take advantage of
Matlab’s superior time integrating routines like ode15s, but more importantly, 2) because
successfully implementing the problem at hand as a BVP in Matlab proved to be much
more arduous than expected. Thus, numerically, we solved the following problem using a
‘shooting method’,

1

2
Ψ2
ξ −

3

4
ΨΨξξ = θ − [ν̂Ψξξ]ξ (20)

κ

ν0
θξξ −

3

4
θξΨ = 0 (21)

Ψ = 0, Ψξ = 0, Ψξξ = Ψ′′
0 at ξ = 0

θ = 1, θξ = θ′0 at ξ = 0

where Ψ′′
0 and θ′0 are both unknown (shooting) parameters that are optimised such that the

far-field solution sufficiently satisfies the far-field boundary conditions. While the shooting
method is often a simple method for solving BVPs, this is not the case when the number
of shooting parameters is greater than one. Despite this, shooting over the two parameters,
Ψ′′

0 and θ′0, proved to be simpler than solving the problem as a BVP.
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The most difficult part was solving the case where ε ≡ 0 and M = 0 which we used as a
baseboard for solving for non-zero ε and M. The initial difficulty laid in constraining the
range of Ψ′′

0 and θ′0 as much as possible. Luckily, Acrivos [2] briefly addressed an analo-
gous case of free convection whereby a concentration gradient drives flow in the limit of
a large Schmidt number. While Acrivos’ focus was on the effects of a boundary that can
move in the horizontal direction due to dissolution or solidification, the limiting case of
this problem is that where the wall is stationary [2] which is analogous to our limiting case
where viscosity is a constant. Acrivos [2] found that in the limit of a stationary wall and a
very large Schmidt number, θ′(0) = 0.540. Thus, we were able to constrain our search for θ′0.

As a check on the use of the values given by Acrivos [2], the problem was solved for values of
Ψ′′

0 and θ′0 within a liberal buffer range. Fortunately, is was very clear when the values of Ψ′′
0

and θ′0 were incorrect as the solution for θ would ‘blow-up’. Thus, we were able to encode
breaking conditions into the integration routine by defining events, of which ensuring that
1 + tol < θ < −tol was the most important. When an event was triggered in the routine,
integration was stopped and the time at which the event occurred was recorded. The
values of Ψ′′

0 and θ′0 that allowed for the longest time integration without an event being
triggered were then used as the starting points for a bisective search for more precise values
of Ψ′′

0 and θ′0. Figure 2 provides a visualisation of the length of time integration before an
event was triggered and the resulting values of Ψ′′

0 and θ′0 (red circle) that were used as
the starting points for the bisective search.

Figure 2: Contour plot of event trigger times during the time integration of Equations
(20) and (21) for values of Ψ′′

0 and θ′0. A longer time before an event is triggered (more
yellow) indicates that the Ψ′′

0 and θ′0 pair is closer to the desired solution. The region circled
in red was identified as the closest to the desired solution.
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To identify the new values of Ψ′′
0 and θ′0 for subsequent non-zero values of ε (see Section 4)

and M (see Section 6), a bisective search was performed starting from the previous Ψ′′
0 and

θ′0 pair.

4 High Prandtl Number Limit, Pr ≫ 1

As briefly discussed in the Introduction, all analysis herein applies in the limit as Pr → ∞.
Before delving in to the case of poly-viscous free convection in the large Pr limit, it is
worthwhile to first consider how Pr → ∞ affects the flow dynamics irrespective of the form
of viscosity. Kuiken [5] was the first to our knowledge to fully solve the case of large Prandtl
number free convection for the case of a constant fluid viscosity. Below, we present our own
independent analysis of the problem, which was later discovered to be exactly what Kuiken
[5] accomplished.

A Prandtl number greater than one (Pr > 1) means that the diffusivity of momentum is
larger than that of heat (ν0 > κ). Thus, taking the limit Pr → ∞ can be interpreted as
considering the case where the diffusivity of momentum is so much larger than that of heat
that diffusion of heat is comparably negligible (for the most part). For this reason, in the
limit Pr → ∞, the diffusion term in Eq. (19) is negligible compared to the advection term
at least when ξ ≥ O(1) and Ψ ≥ O(1). We are then left with the problem,

1

2
Ψ2
ξ −

3

4
ΨΨξξ = θ − [ν̂Ψξξ]ξ (22)

3

4
θξΨ = 0 (23)

Ψ = 0, Ψξ = 0, θ = 1 at ξ = 0

Ψξ → 0, θ → 0 as ξ → ∞.

Equation (23) implies that either Ψ = 0 or θξ = 0, both of which satisfy the far-field bound-
ary condition. Ψ = 0 obviously has issues since this would imply from Eq. (22) that θ = 0
everywhere as well, which fails to satisfy the boundary condition at the wall. Additionally,
θξ = 0 poses an issue since this implies that θ = Const., so either the boundary condition
at the wall is satisfied or the far-field condition is satisfied, but not both. Regardless, it
is apparent that there must be a boundary layer near ξ = 0 where the diffusion of heat is
important since the problem dictates that the diffusion of heat is negligible only at least
when ξ ≥ O(1).

Given that there is a boundary layer near the wall, it is obvious that Ψ = 0 and θ = 0 is
incredibly problematic since any rescaling of the problem would only restate the original
problem at hand in a new coordinate variable. Thus, it must be that in the ‘outer’ layer,
θξ = 0, where the far-field condition on θ necessitates that θouter ≡ 0. Since θ = 0 in the
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outer region, and the ‘outer’ problem is thus reduced to,

[ν̂Ψξξ]ξ +
1

2
Ψ2
ξ −

3

4
ΨΨξξ = 0 (24)

Ψ →?, Ψξ →? as ξ → 0

Ψ → 0 as ξ → ∞.

Where the boundary conditions on Ψ and Ψξ at ξ = 0 have turned into matching conditions
with the inner solution, Ψ →? and Ψξ →?, as ξ → 0.

4.1 The ‘Inner’ Problem

We now turn to the ‘inner’ problem which should satisfy the boundary conditions at the
wall and match with the outer solution. To begin, we consider a rescaling of the original
problem with the knowledge that diffusion of heat must be leading order throughout the
region and that since this region includes the boundary where the forcing θ = 1 is applied,
that the buoyancy term, θ in Equation (18) is of leading order as well.

Without loss of generality, let ν̂ = 1 (constant viscosity). Let ε ≡ Pr−1 ≪ 1, ξ = εaζ, and
Ψ = εbφ. Values of ‘a’ and ‘b’ must be found to obtain a leading order balance in,

θ = ε2b−2a

[
1

2
φ2
ζ −

3

4
φφζζ

]
+ εb−3aφζζζ (25)

0 = ε1−2aθζζ −
3

4
εb−aθζφ. (26)

From Equation (25), we find that either b = 3a, whereby viscous effects balance buoyancy
effects, or b = a, whereby inertial effects balance buoyancy effects. Applying either b = 3a
or b = a will allow for the diffusion of heat to be leading order in Eq. (26), but only the case
where the diffusion of heat is balanced by advection (i.e., b = 1− a) and b = 3a allows for a
leading order balance in both Eq. (26) and Eq. (25). Thus, a = 1/4 and b = 3/4 gives us a
rescaled problem where the effects of inertia have importance in the higher-order balance,
but no effect in the leading order. The ‘inner’ region to leading order thus satisfies,(

ν̂φ′′)′ − θ = 0 (27)

θ′′ − 3

4
φθ′ = 0 (28)

θ = 1, φ = 0, φ′ = 0 at ζ = 0

θ → 0, φ→? as ζ → ∞

where the far-field boundary condition on the derivative of the stream function has turned
into a matching condition with the outer-solution, φ′ →?, as the inner variable, ζ → ∞.
We obtain almost identical inner and outer problems as Kuiken [5], save a few differences
in the signs of some terms (due to a different definition of the stream function), the lead-
ing numerical constants (due to a slight difference in definition of the similarity variables).
These differences have no effect, however, on the dynamics, and will come out in the wash
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when back transforming both our solutions and those presented in [5].

The purposes of the above exercise are to better understand the matching conditions be-
tween the inner thermal layer and the outer inertial layer and to lay the foundation for an
in-depth consideration of the inner layer, which is the only region that should be affected
by a temperature dependent viscosity. In the following section, we continue our solution
to the problem of free convection in the limit Pr → ∞, the purpose of which is to act as
a testing ground for our numerics, and to elucidate the appropriate matching condition for
the stream function, which is still at this point unknown (i.e., φ→? as ζ → ∞).

5 Isoviscous Free Convection

For the iso-viscous case, we let ν̂ ≡ 1. It is worth recalling that isoviscous or not, the
definition of the ‘inner’ and ‘outer’ regions discussed in Section 4 are unchanged. However,
behaviour in the near-wall ‘inner’ region is affected by the form of viscosity, whereas the
‘outer’ region truly remains unchanged regardless of the form of viscosity. While taking
Pr ≡ ∞ has no physical meaning, it does allow us to distill the interaction of the ‘inner’
and ‘outer’ regions and inform asymptotic matching between the two regions since the value
of Pr will do little else but to shift the location of the transition from the ‘inner’ to the
‘outer’ regions.

Figure 3: Numerical solution to the system of equations, (18) and (19) in terms of the ‘inner’
variables for (a) ε = 0, (b) ε = 0.01, (c) ε = 0.1, and (d) ε = 1, where ε = Pr−1 = κ ν−1

0 .
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For ε = 0 (Pr ≡ ∞), we see that the far-field boundary condition, φ′ → 0 is not satisfied
(Figure 3). While at first glance, it may seem disastrous, this situation is to be expected for
one main reason. Consider the Reynolds number, Re = U L

ν where U is a velocity scale and
L is a length scale. The Reynolds number can be rewritten in terms of the Peclet number,
Pe, which is the ratio of heat advection to heat diffusion, and the Prandtl number, Pr,
as Re = PePr−1. In the case of natural convection, and as is the case in our problem,
Pe ∼ O(1), thus Re acts as an inverse Reynolds number. Given that Pe ∼ 1, Pr ≡ ∞ im-
plies that Re ≡ 0, thus an assumption that Pr is very large implies that Re≪ 1. However,
this is only applicable in the region where there are thermal gradients to be advected and
diffused. In the limit Pr → ∞, momentum diffuses much slower than heat, thus the region
where thermal gradients exist is much smaller than the region where momentum gradients
exist, and ultimately, Pe increases outside of the thermal boundary layer, meaning that
Re → O(1). Thus, we see that to satisfy the condition that the far-field is stagnant, we
must reintroduce inertial terms in the far-field as their absence leads to a Stokes-like para-
dox.

The overall consequence of this to the following analysis is that neglect of the inertial terms
is only appropriate up to a certain distance from the wall, thus what we will refer to as
a ‘far-field’ in the following sections is in reality not the ‘furthest’ far-field, but a far-field
with respect to the region where inertia is negligible at the leading order. The order of this
inertial-less region is computed in the next section, Section 5.1.
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Figure 4: Change in wall stress (φ′′(0), red line) and wall heat flux (θ′(0), blue line) with
increasing ε. Right-most figure portrays both φ′′(0) and θ′(0) rescaled by their respective
values at ε = 0 to show that their change with ε is not identical.
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5.1 Scale of the inertialess region

To compute the thickness of the inner, inertialess, region, we consider what happens when
the buoyant forcing is no longer present. As evidenced by the numerical solution, in the
‘furthest’ far-field, there is no buoyancy forcing, thus, the viscous term must be balanced by
inertia. We will refer to the region nearest to the wall as the inner region, and the ‘furthest’
far field as simply the far-field. In the far-field, we have the balance,

εb−3ad
3φ

dζ3
∼ ε1+2b−2a

[
φ
d2φ

dζ2
+

(
dφ

dζ

)2
]

which necessitates that 1 + a = −b. From the numerical solution for ε = 0 (Figure 3), we
know that dφ

dζ → Const. as ζ → ∞, thus in terms of the original similarity variables, ψ and

ξ, we have that εa−b dψdξ ∼ v∞, indicating that a = b = 1
2 . Thus, the thickness of the inner

region is ∼ O(Sc
1
2 ), beyond which inertia becomes important to the flow dynamics.

6 Temperature-Dependent Viscosity

With a firm understanding of the behaviour of free convection in the limit of Pr → ∞
regardless of the form of viscosity, we now consider what happens when viscosity is an
exponential function of temperature. As stated in the introduction, herein, we will only
address the case of a heated wall, saving the case of a cooled wall for future investigation.

In Sections 4 and 5, we have learned that in the inner inertialess layer, φ′′ → 0, i.e.,
the stream function in the inner layer should tend towards a linear function as the inner
coordinate, ζ → ∞. This will allow for matching to the outer inertial layer and avoidance
of a Stokes-like Paradox. Upon substitution of the exponential form of viscosity, Equation
(8), into Equation (27), we obtain the inner problem that accounts for an exponential
dependence of viscosity on temperature,

(
e−Mθφ′′

)′
− θ = 0 (29)

θ′′ − 3

4
φθ′ = 0 (30)

θ = 1, φ = 0, φ′ = 0 at ζ = 0

θ → 0, φ′′ → 0 as ζ → ∞

where M = βΘ is the non-dimensional parameter that controls the sensitivity of viscosity
to temperature perturbations. Since we consider the case of a heated wall, M > 0. While
not relevant to the analysis provided herein, is worth noting that for the case of a cooled
wall, M < 0 since Θ = Tw − T0 < 0.

Since M controls the sensitivity of the viscosity to temperature perturbations, for the case
of a heated wall it is natural to consider the limit as M → ∞. There are three ways in
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which M can approach infinity, 1) the activation energy, Ea → ∞, 2) the far-field temper-
ature, T0 → 0, and 3) the wall temperature, Tw → ∞. Since both 2) and 3) would imply
a breakdown of the assumptions necessary for viscosity to be an exponential function of
temperature, we will for the time being assume that M → ∞ because Ea → ∞, which is a
property of the fluid, and set aside the case where M → ∞ because ∆T ̸≪ T0, which is not
a property of the fluid, for future investigation.

The first point of business is to gain an understanding on how an exponential temperature
dependence affects the dynamics of the thermal layer. For this, we numerically solve Equa-
tions (29) and (30) for increasingM from 0. We then use the numerical solutions to provide
insight into how to approach the problem using matched asymptotic methods.

6.1 Case of a Heated Wall, M > 0

Figure 5: Numerical solution to the system of equations, (29) and (30) in terms of the
‘inner’ variables for M = 0, 1, 3, and 7. ε ≡ ∞.

Figure 5 provides the numerical solutions to Equations (29) and (30) forM = 0, 1, 3, and 7.
It is apparent that with increasing sensitivity of viscosity to temperature perturbation for
the case of a heated wall, the near-wall vertical velocity (∼ −φ′) increases dramatically, and
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the region where the temperature decays to the far-field value decreases. Effectively, the
wall-stress and the wall heat-flux increases dramatically. These results make some intuitive
sense because as M increases away from zero, the viscosity of the fluid nearest to the wall
decreases (see Figure 6), which means that there is less viscous drag on the fluid nearest
the wall. Of course, complicating things is the fact that the fluid at the wall must be at
rest, thus, as M increases, the stress at the wall increases because while the fluid must be
at rest on the wall, the fluid is also compelled to motion in the region nearest the wall due
to the reduced viscous resistance.
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Figure 6: Viscosity, ν̂ = exp(−Mθ), with distance from the wall for M = 0, 1, 3, and 7.
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Figure 7: Derivative of the stream function, φ′ (red line), and the temperature perturbation,
θ (blue line), in the inner inertialess layer for M = 20. The lubrication layer is shaded light
red and the thermal layer is shaded light blue. The x-axis is zoomed in sufficiently for the
solutions within the lubrication layer to be visible.

The interplay of the zero-velocity boundary condition at the wall, and the reduced viscos-
ity region nearest the wall leads to the development of the ‘Lubrication Layer’, where all
of the vertical velocity shearing occurs. This reduced viscosity region exists because the
temperature perturbation, θ ∼ O(1) (see Figure 7). Once θ decays sufficiently, the viscosity
increases to the far-field value regardless of M in what we refer to as the general ‘Thermal
Layer’ that exists for the isoviscous case.
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Figure 8: Dependence of the wall heat flux, θ′(0), and the wall stress, φ′′(0) on the strength
of the temperature dependence of viscosity M . y−axis scale is logarithmic.

6.2 Asymptotic Anaylsis

Now that we have solved the problem numerically, we begin an analytical treatment to
uncover the underlying scaling relationships dictating of the M → ∞ limit. We begin by
restating the problem, (

e−Mθφ′′
)′

− θ = 0 (31)

θ′′ − 3

4
φθ′ = 0 (32)

θ = 1, φ = 0, φ′ = 0 at ζ = 0

θ → 0, φ′′ → 0 as ζ → ∞

for which we now know there are two distinct regions, the Lubrication layer, and the Thermal
layer.

6.2.1 Lubrication Layer

From the numerical solution, we know that the solution’s behaviour is distinctly different
between the near-wall region and the ‘outer’ boundary layer. We use this knowledge to our
advantage, and first consider the dynamics near the wall, i.e., let ζ = δ χ, φ = γ η, and
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θ = 1 − ϵ ϕ, where ϵ ≪ 1, and where δ is explicitly taken as the depth of the inner wall
region.

e−Mγ

δ3

(
eM ϵϕη′′

)′
− 1 = 0 (33)

ϕ′′ − 3

4
γ δ η ϕ = 0 (34)

Where we have recognised that ϵϕ ≪ 1, and thus is certainly negligible to leading order

in (33). Since 1 ̸= 0, we must impose that e−Mγ
δ3

∼ O(1). Suppose also that γ δ ≪ 1. To
leading order near the wall, we have that,(

eM ϵϕη′′
)′

− 1 = 0 (35)

ϕ′′ = 0 (36)

ϕ = 0, η = 0, η′ = 0 at χ = 0 (37)

ϕ ∼ 1, η′′ ∼ 0 for χ≫ 1 (38)

Immediately, it is seen that ϕ = aχ + b, where b = 0 satisfies the boundary condition for
χ = 0, and ϕ′ = a at the wall (in terms of the inner-inner variables). Upon substitution of
this into (35), we obtain,(

eM ϵaχη′′
)′ − 1 = 0 (39)∫
η′ dη =

∫
(C0 + χ) e−M aϵχ dχ (40)

η′ = −(M aϵ)−2 (M aϵC0 +M aϵχ+ 1) e−M aϵχ + C1 (41)

Applying the boundary condition at the wall, η′ = 0,

0 = −(M aϵ)−2 (M aϵC0 + 1) + C1

C1 =
M aϵC0 + 1

(M aϵ)2

Applying the far-field matching condition that dη
dχ ∼ ϵ

γ v∞ as χ→ ∞,

C1 =
ϵ

γ
v∞

Now, integrating Equation (41),

η =
(M aϵC0 +M aϵχ+ 2) e−M aϵχ

(M aϵ)3
+ C1χ+ C2 (42)

Applying the boundary condition that η = 0 at χ = 0,

0 =
(M aϵC0 + 2)

(M aϵ)3
+ C2

C2 = −(M aϵC0 + 2)

(M aϵ)3
= −C1 + 1

M aϵ
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Applying the far-field matching condition that η ∼ ϵ
γ v∞χ+ φ0

γ as χ→ ∞,

ϵ

γ
v∞︸ ︷︷ ︸
C1

χ+
φ0

γ
= C1χ+ C2

C2 =
φ0

γ

We then have the following equations from boundary and matching conditions,

C1 =
M aϵC0 + 1

(M aϵ)2
=
ϵ

γ
v∞ (43)

C2 = −(M aϵC0 + 2)

(M aϵ)3
=
φ0

γ
(44)

We can obtain an expression for C0 from both Equations (43) and (44).

C0 =
ϵ v∞M aϵ

γ
− 1

M aϵ
(45)

C0 = −φ0 (M aϵ)2

γ
− 2

M aϵ
(46)

Upon equating Equations (45) and (46), we obtain an expression for v∞ in terms of the two
unknowns, a and φ0.

v∞ = −φ0M a− γ

(M a)2 ϵ3
(47)

6.2.2 Thermal Layer

From numerical solutions, we know that in the thermal layer, φ′ ∼ Constant. Since we
want to consider the solution valid strictly in the thermal layer, we will let φ′ = φ0, from
which it follows that φ(ζ) = v∞ ζ + φ0, and φ′′ = 0, leaving us with the problem in the
thermal layer,

θ′′ − 3

4
(v∞ ζ + φ0) θ

′ = 0 (48)

θ → 0, φ′′ → 0 as ζ → ∞

With the matching condition that θ → 1− ϵ a
δ ζ as ζ → 0. Upon integrating once, we have,

θ′ = A0 exp
(
g ζ − f ζ2

)
(49)

where f = −3
8 v∞ and g = 3

4 φ0. Upon applying the matching condition that θ′ →
− ϵ,a

δ asζ → 0, we find that,

A = −ϵ a
δ

giving,

θ′ = −ϵ a
δ

exp
(
g ζ − f ζ2

)
(50)

Integrating once again,

θ = −ϵ a
√
π

2δ
√
f
exp

(
g2

4f

)
erf

(
2fζ − g

2
√
f

)
+B (51)
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Applying the far-field condition that θ → 0 as ζ → ∞,

B =
ϵ a

√
π

2δ
√
f
exp

(
g2

4f

)
Thus,

θ =
ϵ a

√
π

2δ
√
f
exp

(
g2

4f

)[
1− erf

(
2fζ − g

2
√
f

)]
(52)

Now, we want to ensure matching as ζ → 0. We expect that as ζ → 0, θ takes on the
lubrication layer solution, thus we expect that as ζ → 0, θ ∼ 1 − ϵ a

δ ζ. We can start by
taking the limit of Equation (52) as ζ → 0.

lim
ζ→0

θ = 1− ϵ a

δ
ζ = lim

ζ→0

ϵ a
√
π

2δ
√
f
exp

(
g2

4f

)[
1− erf

(
2fζ − g

2
√
f

)]
In the limit as ζ → 0, we can Taylor expand the error function around ζ = 0,

1− ϵ a

δ
ζ =

ϵ a
√
π

2δ
√
f
exp

(
g2

4f

)1−
−erf

(
g

2
√
f

)
+

2 exp
(
− g2

4f

)
√
π

√
f ζ


1− ϵ a

δ
ζ =

ϵ a
√
π

2δ
√
f
exp

(
g2

4f

)[
1 + erf

(
g

2
√
f

)]
− ϵ a

δ
ζ

As expected, since we’ve already matched the thermal gradients between the lubrication
and thermal layers, we end up with a final matching condition on the integration constant,
namely,

1 =
ϵ a

√
π

2δ
√
f
exp

(
g2

4f

)[
1 + erf

(
g

2
√
f

)]
. (53)

Thus, all of the information from which we can obtain the scaling laws is summarised as,

1 =
ϵ a

√
8π

2δ
√−3v∞

exp

(
− 3φ2

0

8 v∞

)1 + erf

√
−3φ2

0

8v∞

 (54)

v∞ = −φ0M a− γ

(M a)2 ϵ3
(55)

With information from scaling arguments,
γ

δ3eM
∼ 1 (56)

and an educated guess,

ϵ ∼M−1 (57)

The issue remains that we are left with two equations and three unknowns. We are currently
working on detangling this to get a rigorous asymptotic prediction of the scaling laws. For
the time being, we estimate the scaling laws from our existing numerical solutions in the
following section.
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6.3 Estimation of Scaling Laws

While we currently are still working on deriving the scaling laws, it is possible to make
predictions on the scaling laws using the numerical solutions that we have obtained and
presented herein. Of particular interest is the relationship between the asymptotic param-
eter, M , and the Nusselt number, Nu = hL/k, which is the ratio of the convective to
conductive heat transfer at a boundary, where h is a heat transfer coefficient (related to
the heat flux at the boundary), L is a characteristic length scale, and k is the thermal
conductivity. In the absence of motion, heat transfer is purely conductive and Nu = 1.
Thus, the Nusselt number can be regarded as a measure of how much more efficient fluid
motion (i.e., convection) makes the transfer of heat at a boundary. Since it should not only
be expected that a temperature dependent viscosity would affect the fluid velocity, but has
been shown that this is indeed the case (Figure 5), it is only natural that we ask further
how a temperature dependent viscosity may affect the efficiency of heat transfer. Because
thermal conductivity of a fluid is unaffected by the temperature of the fluid, and because L
should also not be temperature dependent, only the heat transfer coefficient, h, is affected
by M . Further, the changes to h are due to the changes in the heat flux at the wall. Thus,
Nu should have the same scaling relationship with M as the heat flux at the surface, θ′(0).

0 5 10 15 20
-102

-101

-100

-10 -1

Figure 9: Wall heat flux, θ′(0), as a function of M . Numerical solution, as presented in
Figure 8, is given as a solid black line. The estimated scaling relationship based upon the
numerical solution is given as the dashed red line.
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Via a more or less guess-and-check method, we have estimated that,

θ′(0) ∼M− 1
4 e

M
4 (58)

with an asymptotic pre-factor of −0.71. As should be expected, since we consider the limit
asM → ∞, the scaling relationship is slightly wonky aroundM = 0, but improves at larger
values of M (Figure 9).

Another relationship of interest is that of the wall-stress, ∂ w
∂x , with M . In terms of our

similarity system, ∂ w
∂x ∼ φ′′, thus the scaling relationship of the derivative of the stream

function at the wall should be the same as the wall stress.
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Figure 10: Wall stress, φ′′(0), as a function of M . Numerical solution, as presented in
Figure 8, is given as a solid black line. The estimated scaling relationship based upon the
numerical solution is given as the dashed red line.

Again, via a more or less guess-and-check method, we have estimated that the scaling
relationship is,

φ′′(0) ∼M
1
4 e

3M
4 (59)

with an asymptotic pre-factor of −0.91. As was the case for the scaling relationship for the
wall heat flux, we consider the limit as M → ∞, thus the scaling relationship is expected
to apply more accurately as M increases.
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7 Conclusions

While an assumption of a constant viscosity may be appropriate in certain situations, in
the cases where the fluid viscosity is a strong function of temperature, such an assumption
can prove disastrous. Herein, we have presented the initial stages in our development
of a full regime diagram for free convection with an exponential viscosity dependence on
temperature. While we have yet to complete the asymptotic treatment of the problem, the
scaling relationships that we have found using our numerical solutions are expected to be
those that fall out in the final matching steps in our asymptotic analysis. Thus, we have
found the universal scaling relationships that describe the dynamics of free convection with
an exponentially temperature dependent viscosity for the case of a heated wall in the limit
of high Prandtl number. This work lays the foundation for our future investigation into the
case of a cooled wall, and eventual completion of the full Pr −M regime diagram.
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Maximal Heat Transport in Rayleigh–Bénard Convection:

Reduced Models, Bifurcations, and Polynomial Optimization
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Abstract

A study on Rayleigh–Bénard convection by [12] has shown that at high Rayleigh number heat

transfer due to steady convection rolls, maximized over horizontal wavenumber, is comparable to

heat transfer in the turbulent flow. Although these convection rolls are unstable at high Rayleigh

number, they continue to be the solution of the Boussinesq equations. Inspired by this study, we

ask the quesiton, do steady states maximize heat transfer? Answering such questions is hard for

the governing equations (PDEs), as obtaining exact bounds for PDEs is beyond current capabilities.

However, for truncated models (ODEs) of the governing equations, using polynomial optimization,

we can obtain sharp bounds on heat transfer. In this report, we study truncated models of two-

dimensional Rayleigh–Bénard convection in a box with stress-free boundaries. Specifically, we study

two models – an 8-mode model which is energy conserving in the dissipationless limit – also a 15-

mode model which along with the energy conservation property satisfies a vorticity integral identity.

In the 8-mode model, for the chosen values of parameters (Prandtl number, and the aspect ratio of

the box), we show that steady states maximize the heat transfer except for a small range of Rayleigh

number.

1 Introduction

Convection in a horizontal layer of fluid heated from below is known as the Rayleigh–Bénard
convection. In this convection, viscosity and thermal diffusivity are the stabilizing elements,
whereas the buoyancy is the destabilizing element. For small temperature difference across
the layer, viscous forces dominate and the system remains in pure conduction state. When
the temperature difference across the layer exceeds a threshold, the buoyancy force takes
over, and the system becomes thermally unstable to convective rolls. Figure (1) shows
a rough sketch of Rayleigh–Bénard convection after the first bifurcation. With further
increase in temperature, in a sequence of bifurcations, the structure of the flow gradually
becomes complex and eventually turbulent. Bénard was the first one to conduct quantitative
experiments of this type of convection. Inspired by Bénard’s experiments, Rayleigh studied
([9]) the stability of conduction state analytically to find out when thermal instability first
occurs. He found out that the instability occurs when a non-dimensional quantity, now
known as the Rayleigh number, exceeds a critical value. Physically speaking, the Rayleigh
number represents the ratio of the destabilizing effect of buoyancy to the stabilizing effect
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Figure 1: A typical flow structure in the Rayleigh–Bénard convection after the first bifur-
cation.

of viscous and thermal diffusion. Rayleigh number and Prandtl number (ratio of viscous
and thermal diffusivities) are the two non-dimensional numbers that govern the convection.

In Rayleigh–Bénard convection, one important question that one wishes to understand
is the variation of heat transfer as a function of Rayleigh and Prandtl number. Specifically,
one assumes the power-law dependence of Nusselt number (non-dimensional heat transfer)
on Rayleigh and Prandtl number, i.e. Nu = CPrαRaβ and interested in knowing the
exponents (α, β). There are two popular theories of heat transfer which tries to answer this
question. One of these theories is due to Priestly ([8]), Malkus ([6]), and Howard ([3]), which
suggests a one-third dependence of the heat transfer on Rayleigh number (Nu ∼ Ra1/3),
also known as the classical limit. Priestly’s argument for this dependence goes as follows.
Rayleigh number going to infinity can be thought of height of the fluid layer going to infinity.
Based on which he argues that the effect of one boundary on the other boundary must
vanish. The dimensional heat transfer, therefore, should become independent of the layer
height, which then leads to the desired scaling. The other one is due to Spiegel([10]) and
Kraichnan ([4]) which suggest a one-half dependence of the heat transfer on the Rayleigh
number (Nu ∼ Ra1/2), also known as the ultimate limit. To justify this limit, one can think
of Rayleigh number going to infinity as viscosity and thermal diffusivity going to zero. One
can then argue that a blob of fluid can rise or fall freely without losing any heat, which
then leads to one-half scaling.

There are several experimental studies to verify the above two theories for the convection
between no-slip boundaries. Unfortunately, there is no consensus among these experimental
studies at very high Rayleigh number. However, at moderately high Rayleigh number
(Ra ≈ 109), experiments are consistent with Nu ∼ Ra0.31. In a study on Rayleigh–Bénard
convection between no-slip boundaries, [12] explored the fate of primary convection rolls
at large Rayleigh number. It should be noted that the primary convection rolls become
unstable beyond a critical Rayleigh number; however, these rolls continue to be the solution
of the Boussinesq’s equations. Figure (2) shows a typical structure of primary rolls at
Ra = 5×106. They found that heat transfer due to these primary rolls, when maximized over
the aspect ratio, shows a similar type of scaling as the turbulent flow. This an interesting
result since one can now ask whether studying the heat transfer due to primary rolls is
sufficient to say something about the heat transfer in the turbulent flow. Our study is, in
fact, inspired by this result. We ask the following question: Do steady states maximize heat
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Figure 2: Temperature contours of primary solution at Ra = 5× 106 (Waleffe et al. 2015)

transfer in Rayleigh–Bénard convection?
Answering such questions is hard for PDEs because obtaining exact bounds on quantities

for PDEs is beyond current capabilities. However, using polynomial optimization, we answer
this question for the truncated models of the governing equations (ODEs). Specifically,
we study the truncated models of Rayleigh–Bénard convection in a box with stress-free
boundaries. Truncations using trigonometric functions for convection in a stress-free box
are asymptotically accurate near the primary bifurcation. This is not the case for a no-slip
box where truncations involve rather complicated functions. Our choice of convection in
a stress-free box is therefore governed by the fact that trigonometric functions are more
straightforward to handle.

While considering the truncations, it is good to retain some of the properties of origi-
nal equations. Rayleigh–Bénard convection in a stress-free box has the energy-conserving
property in the dissipationless limit. Also, the system satisfies a vorticity integral identity.
In this report, we study two truncated models: 8-mode model and 15-mode model. The
8-mode model has only energy conserving property, while the 15-mode model satisfies the
vorticity integral identity as well.

The rest of the report is arranged as follows. In section (2) we formulate the problem
and discuss the linear stability analysis of the conduction state. In section (3) we discuss
a general framework to find bounds on long-time average of a scalar quantity. In section
(4), we illustrate method discussed in section (3) using a the example of Lorenz system.
In section (5), we apply the method to find bounds on the Nusselt number for the 8-mode
model. In section (6), we apply the method to find bounds on the Nusselt number for the
15-mode model. In section (7), we conclude and discuss the future work.

2 Problem Formulation

We consider the problem of two-dimensional vertical transport of heat in a horizontally
placed box. We assume that the height of the box is H and the length of the box is L. The
aspect ratio of the box (L/H) is Γ. The problem can be best described in the Cartesian
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Figure 3: Problem schematic

coordinate system x′ = (x′, y′). We place the origin of our coordinate system at the left-
bottom corner of the box with x′ is pointing to right and y′ pointing upward. The governing
equations of the fluid motion are the Boussinesq equations.

∇ · u′ = 0,

∂u′

∂t′
+ u′ · ∇u′ = −∇p′

ρ
+ ν∇2u′ + gT ′ey′ ,

∂T ′

∂t′
+ u′ · ∇T ′ = κT∇2T ′. (1)

The first equation is the continuity equation. The second equation is the momentum equa-
tion which includes the buoyancy forcing due to the variation in temperature. The last
equation is the convection-diffusion equation of the temperature field. Here, u′ = (u′x, u

′
y),

p′, and T ′ are the velocity field, pressure, and temperature, respectively. Whereas, ρ, ν, and
κT are mean density, kinematic viscosity, and thermal diffusivity, respectively. g denotes
the acceleration due to gravity and ey′ denotes the unit vector in the y′-direction. For
simplicity, we consider the boundaries of the box to be stress-free with fixed temperature
conditions on the top and the bottom walls and zero-flux condition on the sidewalls.

∂u′x
∂y′

= 0, u′y = 0, T ′ = TB if y′ = 0, 0 ≤ x′ ≤ L,

∂u′x
∂y′

= 0, u′y = 0, T ′ = TT if y′ = H, 0 ≤ x′ ≤ L,

∂u′y
∂x′

= 0, u′x = 0,
∂T ′

∂x′
= 0 if x′ = 0, 0 ≤ y′ ≤ H,

∂u′y
∂x′

= 0, u′x = 0,
∂T ′

∂x′
= 0 if x′ = L, 0 ≤ y′ ≤ H. (2)
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Here, TB and TT are the temperature of the top and the bottom walls with TB > TT .
At this point, we non-dimensionalize our system. We define non-dimensional variables as
follows:

x =
x′

H/π
, t =

t′

κT /(H/π)2
, u =

u′

κT /(H/π)
,

p =
p′

ρ
(
κT π
H

)2 +
g(TB − TT )H

3

κ2Tπ
3

y, T =

(
T ′ − TB
TB − TT

)
π + π. (3)

Notice, a factor of π is involved here as compare to the usual non-dimensionalization. This
is done to make truncated models simple. The governing equations in the non-dimensional
form are given by,

∇ · u = 0,

∂u

∂t
+ u · ∇u = −∇p+ Pr∇2u+ PrRaTey,

∂T

∂t
+ u · ∇T = ∇2T, (4)

where,

Ra =
(TB − TT )H

3

κT νπ4
, P r =

ν

κT
. (5)

Here, Ra is the Rayleigh number and Pr is the Prandtl number. Boundary conditions now
reads as,

∂ux
∂y

= 0, uy = 0, T = π if y = 0, 0 ≤ x ≤ Γπ,

∂ux
∂y

= 0, uy = 0, T = 0 if y = π, 0 ≤ x ≤ Γπ,

∂uy
∂x

= 0, ux = 0,
∂T

∂x
= 0 if x = 0, 0 ≤ y ≤ π,

∂uy
∂x

= 0, ux = 0,
∂T

∂x
= 0 if x = Γπ, 0 ≤ y ≤ π. (6)

Figure (3) shows the problem schematic. In this report, we are interested in studying
the long-time average of the heat transfer as a function of Rayleigh and Prandtl number.
Non-dimensional heat flux which we call Nusselt number is given by,

Nu =
1

Γπ

∫ Γπ

x=0
−∂T
∂y

∣∣∣∣
y=0

dx. (7)

Using the governing equations and with a bit of algebra, one can show that the long-time
average of the Nusselt number can be expressed in four different ways.

Nu = 1 + ⟨uyT ⟩ = 1 +
1

Ra
⟨|∇u|2⟩ = 1 + ⟨|∇T |2⟩ = 1

Γπ

∫ Γπ

x=0
−∂T
∂y

∣∣∣∣
y=0

dx, (8)
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where overline deontes the long-time average.

[ ] = lim
T→∞

∫ T

t=0
[ ]dt. (9)

To be more precise, one can think of the above limit as limit supremum. Also, the angle
brackets denote the volume average.

⟨[ ]⟩ = 1

π

1

Γπ

∫ π

y=0

∫ Γπ

x=0
[ ]dxdy. (10)

The vorticity-perturbed-temperature formulation is well suited for our problem as it makes
all the boundary conditions homogenous, and we have only two variables involved, vorticity
and perturbed temperature. The governing equations in this formulation are given by,

dθ

dt
+ J{ψ, θ} = ∇2θ + ∂yψ,

dω

dt
+ J{ψ, ω} = Pr∇2ω + PrRa∂xθ, (11)

along with the boundary conditions,

ω = 0, θ = 0 on y = 0, 0 ≤ x ≤ Γπ,

ω = 0, ∂xθ = 0 on x = Γπ, 0 ≤ y ≤ π,

ω = 0, θ = 0 on y = π, 0 ≤ x ≤ Γπ,

ω = 0, ∂xθ = 0 on x = 0, 0 ≤ y ≤ π. (12)

Here, ψ and ω denotes the stream function and the vorticity in spanwise direction. Relation
between the stream function, the velocity field, and the vorticity is as follows:

u = (∂yψ,−∂xψ), ω = ∂xuy − ∂yux = −∂2xψ − ∂2zψ. (13)

θ = T − (π − y) denotes the perturbed temperature which is a deviation in temperature
from the linear conduction profile. J{η, ζ} = ηxζy − ηyζx is the Poisson bracket.

One can show that the total energy is conserved in the dissipationless limit, i.e., we have
the following,

K.E. =
1

2
⟨u2x + u2y⟩, P.E. = −PrRa⟨Ty, ⟩

d

dt
(K.E. + P.E.) = 0. (14)

One other integral identity that the governing equations satisfy is,

d⟨ω⟩
dt

− PrRa⟨θx⟩ = 0. (15)

While constructing the truncated model, we would like our truncation(ODEs) to satisfy
certain integral identities inherited from the PDEs. Specifically, we look for truncation to
satisfy the above two integral identities.
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2.1 Linear stability analysis

In this section, we perform the linear stability analysis to find out when instability first
occurs for the Rayleigh–Bénard convection in a stress-free box. To perform the linear
stability analysis, we assume |ψ| ≪ 1, and |θ| ≪ 1 for all (x, y) ∈ (0, π) × (0,Γπ) and we
neglect the higher order terms (non-linear terms) in equations (11). Linearized equations
are given by,

dθ

dt
= ∇2θ − ∂xψ,

dω

dt
= Pr∇2ω + PrRa∂xθ, (16)

Since these equations are linear, one can consider the linear stability of the eigenmodes
individually. Consider the following eigenmode decomposition.

θ = θ̂eλt cos(nαx) sin(my),

ψ = ψ̂eλt sin(nαx) sin(my), (17)

where n,m ∈ Z+, and θ̂, ψ̂ ∈ C are constants. Conduction state will be linearly unstable
when Re(λ) > 0. Vorticity can be obtained in terms of stream function as follows.

ω = −∇2ψ = ψ̂eλt(α2n2 +m2) sin(nαx) sin(my). (18)

Substituting these expressions into the linear equations, we obtain,

λθ̂ = −θ̂(α2n2 +m2)− ψ̂αn,

=⇒ ψ̂αn = −θ̂(λ+ α2n2 +m2), (19)

and

λ(α2n2 +m2)ψ̂ = −Pr(α2n2 +m2)2ψ̂ − αnPrRaθ̂,

=⇒ (α2n2 +m2)(λ+ Pr(α2n2 +m2))ψ̂ = −PrRaαnθ̂. (20)

Consistency then requires,

αn

(α2n2 +m2)(λ+ Pr(α2n2 +m2))
=

(λ+ α2n2 +m2)

PrRa αn
. (21)

We obtain the following quadratic equation in λ.

λ2 + λ(Pr + 1)(α2n2 +m2) + Pr(α2n2 +m2)2 − PrRa α2n2

(α2n2 +m2)
= 0. (22)

For instability to occur, we require,

Pr(α2n2 +m2)2 − PrRa α2n2

(α2n2 +m2)
< 0,

=⇒ Ra >
(α2n2 +m2)3

α2n2
. (23)
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Therefore, the critical Rayleigh number is,

Ral = inf
n,m∈Z+

(α2n2 +m2)3

α2n2
. (24)

In this report, we choose Γ =
√
2 =⇒ α = 1/

√
2. Therefore, the corresponding critical

Rayleigh number is given by,

Ral = inf
n,m∈Z+

(n2 + 2m2)3

4n2
=

(1 + 2× 12)

4× 12
=

27

4
. (25)

2.2 Energy stability analysis

In this section, we perform the energy stability analysis of the conduction state. We multiply
second equation in (11) by ω and first equation in (11) by θ to get the following equations.

1

2

dω2

dt
+

∇ · (u ω2)

2
= Pr(∇ · (ω∇ω)− |∇ω|2) + PrRa ω∂xθ. (26)

1

2

dθ2

dt
+

∇ · (u θ2)
2

= (∇ · (θ∇θ)− |∇θ|2)− θ∂xψ. (27)

Perform (26) + γ×(27), where γ > 0.

1

2

d

dt

(
ω2 + γθ2

)
+

∇ · (u (ω2 + γθ2))

2
= Pr(∇ · (ω∇ω)) + (∇ · (θ∇θ))

−Pr|∇ω|2 − γ|∇θ|2 + PrRa ω∂xθ − γθ∂xψ. (28)

Integration over whole volume (Ω = [0,Γπ]× [0, π]) gives,

1

2

d

dt

∫
Ω

(
ω2 + γθ2

)
= −Pr

∫
Ω
|∇ω|2 − γ

∫
Ω
|∇θ|2 + PrRa

∫
Ω
ω∂xθ − γ

∫
Ω
θ∂xψ︸ ︷︷ ︸

RHS

. (29)

At this point, we consider a fairly general form of ψ and θ in terms of trigonometric series.

ψ =
∞∑
j=1

∞∑
i=1

ψ̂i,j sin(iαx) sin(jy), (30)

θ =

∞∑
j=1

∞∑
i=1

θ̂i,j cos(iαx) sin(jy). (31)

Vorticity being the Laplacian of the stream function is then given by,

=⇒ ω = −∇2ψ =

∞∑
j=1

∞∑
i=1

(i2α2 + j2)ψ̂i,j sin(iαx) sin(jy). (32)
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Using these trigonometric series, we calculate the following integrals,∫
Ω
|∇ω|2 = π2

4α

∞∑
j=1

∞∑
i=1

(i2α2 + j2)3ψ̂2
i,j , (33)

∫
Ω
|∇θ|2 = π2

4α

∞∑
j=1

∞∑
i=1

(i2α2 + j2)θ̂2i,j , (34)

∫
Ω
ω∂xθ =

π2

4α

∞∑
j=1

∞∑
i=1

−iα(i2α2 + j2)ψ̂i,j θ̂i,j , (35)

∫
Ω
ωθ∂xψ =

π2

4α

∞∑
j=1

∞∑
i=1

iαψ̂i,j θ̂i,j . (36)

Using this, we get the right hand side of equation (29) as follows:

RHS = −Pr π
2

4α

∞∑
j=1

∞∑
i=1

(i2α2 + j2)3ψ̂2
i,j − γ

π2

4α

∞∑
j=1

∞∑
i=1

(i2α2 + j2)θ̂2i,j

−PrRaπ
2

4α

∞∑
j=1

∞∑
i=1

−iα(i2α2 + j2)ψ̂i,j θ̂i,j − γ
π2

4α

∞∑
j=1

∞∑
i=1

iαψ̂i,j θ̂i,j . (37)

A factor of π2/4α is removed for the convenience. Our aim is to find out smallest Rae
such that for some ψ̂i,j ’s and θ̂i,j ’s RHS first becomes positive. We note that for a given

magnitude of θ̂i,j and ψ̂i,j with negative correlation is more dangerous than the one with

positive correlation. Infact, for given ψ̂i,j ’s and Ra, θ̂i,j ’s with

θ̂i,j = −ψ̂i,j
γiα+RaPriα(i2α2 + j2)

2γ(i2α2 + j2)
(38)

is the most dangerous combination. Substitute this expression in (37), we get,

RHS = −
∞∑
j=1

∞∑
i=1

Mi,jψ̂
2
i,j , (39)

where Mi,j is given by,

Mi,j =

(
Pr(i2α2 + j2)3 −

[
γiα+RaPriα(i2α2 + j2)

]2
4γ(i2α2 + j2)

)
. (40)

We are interested in studying energy stability analysis at α = 1/
√
2. At this value of α,

Mi,j = Pr
2(i2 + 2j2)4β − i2

[
Ra(i2 + 2j2) + 2β

]
16β(i2 + 2j2)

, (41)

where β = γ/Pr. We note that the choice of β totally depend on us. And we choose a
β > 0 such that we can delay RHS from becoming not negative definite for as large Rayleigh
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number as possible in order to obtain the best energy bound. We choose β = 81/8. For
this value of β, we get,

Mi,j = Pr
81
4 (i

2 + 2j2)4 − i2
[
Ra(i2 + 2j2) + 81

4

]
162(i2 + 2j2)

(42)

One can show that if Ra < 27
4 then for each (i, j), Mi,j > 0 and therefore RHS< 0 for any

ψ̂i,j . This implies that critical Rayleigh number for energy stability is

Rae ≥
27

4
. (43)

However, the critical Rayleigh number for the energy stability has to be less that equal to
the critical Rayleigh number for the linear stability, i.e.,

Rae ≤ Ral =
27

4
. (44)

This implies,

Rae =
27

4
. (45)

Therefore, at Ra = 27/4 we have supercritical bifurcation.

3 Bounding Time Average for ODEs

In this report, we deal with truncated models, which are system of ODEs, and we are inter-
ested in finding upper bound on the Nusselt number, which is a scalar function. Therefore,
before going to the specific problem, we setup a general framework of finding the upper
bound on a long-time average of a scalar quantity where trajectories evolve in space accord-
ing to a given dynamical system. Coniser an n-dimensional dynamical system such that
every trajectory is bounded forward in time.

ẋ = f(x), x ∈ Rn, f : Rn → Rn. (46)

We are interested in finding,

max
x0∈Rn

 lim
T→∞

1

T

∫ T

0
Φ(x(t))dt︸ ︷︷ ︸

Φ

 . (47)

Assume that we cannot calculate above integral analytically, which generally would be the
case. The option then comes to one’s mind is using numerical methods to calculate the
maximum of the long-time average over all initial conditions. Calculating the long-time
average for a given initial condition can be done with sufficient accuracy. However, the
long-time average as a function of initial condition may not be a convex function; infact, it
can be a discontinuous function. For example, starting with an unstable fixed-point or from
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its neighboring point can give two completely different values of the long-time average. In
that case, numerical methods such as steepest gradient method are not useful. Therefore,
we need to come with another strategy to be able to compute the maximum of the long-time
average of a scalar function. One such strategy is presented as follows.

Consider a scalar differentiable function V . Along any trajectory, we have,

dV (x(t))

dt
= lim

T→∞

1

T

∫ T

0

dV (x(t))

dt
dt = lim

T→∞

V (x(T ))− V (x(0))

T
= 0. (48)

Above vanishes because every trajectory is bounded forward in time. Rate of change of a
scalar function along a trajectory, using the chain rule can also be written as,

dV (x(t))

dt
= f · ∇V. (49)

Combining (48) and (49), we get,

f · ∇V = 0. (50)

This means that instead of looking at the long-time average of Φ, we can equivalently look
at the long-time average of Φ + f · ∇V for any scalar differentiable V . Next step is to
carefully choose V such that we can bound Φ + f · ∇V in space which would then prove a
bound on the long-time average of Φ+ f · ∇V and therefore on the long-time average of Φ.
Mathematically, it can be written as,

max
x0

Φ = max
x0

Φ+ f · ∇V ≤ sup
x

Φ+ f · ∇V. (51)

Since above is valid for all scalar differentiable function V , therefore we can obtain the best
bound by trying all possible V ’s, i.e, we cand do the following.

max
x0

Φ ≤ inf
V ∈C1(Rn)

sup
x

Φ+ f · ∇V. (52)

There is a theorem due to [11] which says that the above inequality is actually equatlity,
i.e., there is a trajectory for which the long-time average of Φ becomes equal to R.H.S. in
inequality (52).

max
x0

Φ = inf
V ∈C1(Rn)

sup
x

Φ+ f · ∇V (53)

Problem of integrating in time to calculate the long-time average has been converted into
finindg a good scalar differentiable function V . At this point we notice that, for our trun-
cated models, both f and Φ are polynomial. We restrict V to be a finite degree polynomial,
and following ([1] and [2]), we use sum-of-squares method to prove bounds on the long-time
average of Φ.
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Figure 4: The Lorenz attractor and the steady states at parameter values (σ = 10, β =
8/3, r = 28).

4 Lorenz System: An Example

In 1960’s Lorenz [5] derived a heavily truncated model of convection. Lorenz system is given
by,

x = (x, y, z), f = (−σx+ σy, rx− y − xz, xy − βz). (54)

Here, σ and r are Prandtl number and scaled Rayleigh number, whereas β = 4(1 + a2)−1

and a is the aspect ratio. The truncated Nusselt number of this system is given by,

Nu = 1 +
2

r
z. (55)

Therefore, asking about the long-time average of the Nusselt number is equivalent to asking
about the long-time average of z. Therefore, we first focus on the long-time average of
z. Figure (4) shows the Lorenz attractor and the steady states for parameter values (σ =
10, β = 8/3, r = 28). From this figure it is not entirely obvious that the steady states
maximize the heat transfer.

Analysis done next is similar to Malkus [7]. We use the general formulation from the last
section. We choose V to be a second-degree polynomial.

V =
C1

2σ
x2 +

C2

2
(y2 + z2) + C3z. (56)
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However, one can immediately notice that this is not the most general form of a second-
degree polynomial in x, y, and z. We have use the fact that f · ∇V should not be a odd
degree polynomial (in this case cubic). This is becuase an odd degree polynomial cannot
be written as sum of squares of polynomials. Other fact which we have used is that V to
have the reflection symmetries of the dynamical system. A theorem from ([2]) proves that
bounds do not become any worse when restricting the polynomials to have the reflection
symmetries of the dynamical system. Lorenz system has the following reflection symmetry.

(x, y, z) 7→ (−x,−y, z). (57)

One can notice that chosen form of V also has this reflection symmetry. After respecting the
above mentioned facts, (56) is the most general expression of a second-degree polynomial.
From the previous section, we know that the long-time average of z is equivalent to the
long-time average of z + f · ∇V , i.e.,

z = z + f · ∇V ,
z + C1(−x2 + xy) + C2(rxy − y2) + C2(−βz2) + C3(xy − βz). (58)

At this point, we choose, C1, C2 and C3 carefully so that we can bound the quantity under
the line in (58). The following choice will work,

C1 =
1

β(r − 1)
, C2 =

1

β(r − 1)
, C3 = − 1

β
, (59)

which results into,

z = (r − 1)− (x− y)2

β(r − 1)
− (z − r + 1)2

r − 1
≤ r − 1 = r − 1. (60)

Above is valid only if r > 1. Therefore, the bound on heat transfer for r > 1 is given by,

Nu ≤ 1 +
2(r − 1)

r
. (61)

Now we calculate the heat transfer due to steady states. Lornez system has the following
non-trivial steady states for r > 1. Figure (5) shows the bifurcation diagram.

(x, y, z) = (±
√
β(r − 1),±

√
β(r − 1), r − 1) if r > 1. (62)

These steady states corresponds to steady rolls. Maximum heat transfer due to these
steady states is given by,

max
SS

Nu = 1 +
2(r − 1)

r
(63)

This is equal to the bound on heat transfer for any trajectory (61). Therefore, we have
found a bound on heat transfer for any trajectory and have shown that this bound is
actually achieved by a steady state. For Lorenz system, we conclude that steady states
maximize the heat transfer.
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Figure 5: Steady states in the Lorenz system. Bifurcation occurs at r = 1.

5 The 8-mode Model

Consider the following truncation,

ω(x, y, t) = ω̂1,1(t) sin(αx) sin(y) + ω̂1,2(t) sin(αx) sin(2y) + ω̂2,1(t) sin(2αx) sin(y), (64)

θ(x, y, t) = θ̂0,2(t) sin(2y) + θ̂0,4(t) sin(4y)

+θ̂1,1(t) cos(αx) sin(y) + θ̂1,2(t) cos(αx) sin(2y) + θ̂2,1(t) cos(2αx) sin(y).

(65)

The governing equations of individual modes can be obtained by substituting the above the
truncation into the governing equations (11) and then projecting the resulting equations
onto different eigenfunctions. The 8-mode model is given by,

dω̂1,1

dt
+

3

4

(
α

α2 + 4
− α

4α2 + 1

)
ω̂1,2 ω̂2,1 =

−(α2 + 1)Prω̂1,1 − αPrRaθ̂1,1, (66)

dω̂1,2

dt
+

3

4

(
α

4α2 + 1
− α

α2 + 1

)
ω̂1,1 ω̂2,1 = −(α2 + 4)Prω̂1,2 − αPrRaθ̂1,2, (67)

dω̂2,1

dt
+

3

4

(
α

α2 + 1
− α

α2 + 4

)
ω̂1,1 ω̂1,2 = −(4α2 + 1)Prω̂2,1 − 2αPrRaθ̂2,1,

(68)
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dθ̂0,2
dt

− α

2(1 + α2)
ω̂1,1 θ̂1,1 −

α

4α2 + 1
ω̂2,1 θ̂2,1 = −4θ̂0,2, (69)

dθ̂0,4
dt

− α

α2 + 4
ω̂1,2 θ̂1,2 = −16θ̂0,4, (70)

dθ̂1,1
dt

+
3α

4(α2 + 4)
ω̂1,2 θ̂2,1 +

3α

4(4α2 + 1)
ω̂2,1 θ̂1,2 +

α

α2 + 1
ω̂1,1 θ̂0,2

= −(α2 + 1)θ̂1,1 −
α

α2 + 1
ω̂1,1, (71)

dθ̂1,2
dt

− 3α

4(α2 + 1)
ω̂1,1 θ̂2,1 −

3α

4(4α2 + 1)
ω̂2,1 θ̂1,1 +

2α

(α2 + 4)
ω̂1,2 θ̂0,4

= −(α2 + 4)θ̂1,2 −
α

α2 + 4
ω̂1,2, (72)

dθ̂2,1
dt

+
3α

4(α2 + 1)
ω̂1,1 θ̂1,2 −

3α

4(α2 + 4)
ω̂1,2 θ̂1,1 +

2α

4α2 + 1
ω̂2,1 θ̂0,2

= −(4α2 + 1)θ̂2,1 −
2α

4α2 + 1
ω̂2,1, (73)

This model has the energy conservation property in the dissipationless limit. The total
energy is given by,

E = KE + PE, (74)

where,

KE =
1

2
⟨u2 + v2⟩ = 1

8

(
ω̂2
1,1

α2 + 1
+

ω̂2
1,2

α2 + 4
+

ω̂2
2,1

4α2 + 1

)
, (75)

PE = −PrRa⟨y(1− y + θ)⟩ = PrRa

(
−π
2
+
π2

3
+
θ̂0,2
2

+
θ̂0,4
4

)
, (76)

dE

dt
=

1

4

(
ω̂1,1

α2 + 1

dω̂1,1

dt
+

ω̂1,2

α2 + 4

dω̂1,2

dt
+

ω̂2,1

4α2 + 1

dω̂2,1

dt

)
+PrRa

(
1

2

dθ̂0,2
dt

+
1

4

dθ̂0,4
dt

)
. (77)

After substituting the expression of evolution of various quantities in time from (66-73), we
obtain,

dE

dt
= 0. (78)
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Figure 6: Black lines show the long-time average of the Nusselt number due to steady states.
Red line shows result for Nu from a numerical simulation with random initial. The blue
symbols denote the bound obtained using the sum-of-squares method.
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5.1 The Nusselt number

The Nusselt number for the truncated model can be obtained by substituting (64) and
(65) into the original expressions of the Nusselt number (8). We can obtain four different
expressions for the truncated long-time average of the Nusselt, which may not necessarily
be equal. However, for the 8-mode model, one can prove that equality holds among the
four different expressions, i.e.,

Nu = 1 +
1

4

(
αω1,1θ1,1
1 + α2

+
αω1,2θ1,2
4 + α2

+
2αω2,1θ2,1
4α2 + 1

)
(79a)

= 1 +
1

Ra

(
ω2
1,1 + ω2

1,2 + ω2
2,1

)
(79b)

= 1 +
1

2

(
4θ20,2 + 16θ20,4

)
+

1

4

(
(α2 + 1)θ21,1 + (α2 + 4)θ21,2 + (4α2 + 1)θ22,1

)
(79c)

= 1− 2θ0,2 − 4θ0,4. (79d)

One can prove (79a) and (79d) are equal by talking the long-time average of equation

1

2
× (69) +

1

4
× (70).

(79a) and (79b) can be shown to be equivalent by taking the long-time average of equation

1

1 + α2
× (66) +

1

1 + 4α2
× (67) +

1

4 + α2
× (68).

(79b) and (79c) can be shown to be equivalent by taking the long-time average of equation

−1

PrRa

[
ω1,1(66)

1 + α2
+
ω1,2(67)

4 + α2
+
ω2,1(68)

1 + 4α2

]
+
θ0,2(69)

2
+
θ0,4(70)

2
+
θ1,1(71)

4
+
θ1,2(72)

4
+
θ2,1(73)

4
.

5.2 The reflection symmetries

First rename the variables as follows:

(x1, x2, x3, x4, x5, x6, x7, x8) ≡ (ω1,1, ω1,2, ω2,1, θ0,2, θ0,4, θ1,1, θ1,2, θ2,1). (80)

The 8-mode model has the following reflection symmetries.

(x1, x2, x3, x4, x5, x6, x7, x8) 7→ (−x1,−x2, x3, x4, x5,−x6,−x7, x8),
(x1, x2, x3, x4, x5, x6, x7, x8) 7→ (−x1, x2,−x3, x4, x5,−x6, x7,−x8),
(x1, x2, x3, x4, x5, x6, x7, x8) 7→ (x1,−x2,−x3, x4, x5, x6,−x7,−x8).

That is to say that the 8-mode model is invariant under above transformations.
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5.3 A uniform bound in the Rayleigh number, Prandtl number and as-
pect ratio

In this section, we prove a bound on the heat transfer for the 8-mode model which is
uniformly valid in the Rayleigh number, Prandtl number, and aspect ratio and becomes
asymptotically accurate in the limit of high Rayleigh number. We choose V to be a second
degree polynomial, as follows.

V = c1θ02 + c2θ04 + c3(2θ
2
02 + 2θ204 + θ211 + θ212 + θ221). (81)

This implies,

Nu+ f · ∇V = 1− (2 + 4c1)θ02 − (4 + 16c2)θ04 − 16c3θ
2
02 − 64c3θ

2
04 − 2(α2 + 1)c3θ

2
11

−2(α2 + 4)c3θ
2
12 − 2(4α2 + 1)c3θ

2
21 +

α(c1 − 4c3)

2(1 + α2)
ω11θ11 +

α(c2/2− 2c3)

4 + α2
ω12θ12

+
α(1− 4c3)

1 + 4α2
ω21θ21. (82)

Choose, c1 = 4c3, and c2 = 2c3 which leads to,

Nu+ f · ∇V = 1− (2 + 4c3)θ02 − (4 + 32c3)θ04 − 16c3θ
2
02 − 64c3θ

2
04 − 2(α2 + 1)c3θ

2
11

−2(α2 + 4)c3θ
2
12 − 2(4α2 + 1)c3θ

2
21

= 1 +
(2 + 16c3)

2

64c3
+

(4 + 32c3)
2

256c3
−
(
4θ02

√
c3 +

2 + 16c3
8
√
c3

)2

−
(
8θ04

√
c3 +

4 + 32c3
16
√
c3

)2

−2(α2 + 1)c3θ
2
11 − 2(α2 + 4)c3θ

2
12 − 2(4α2 + 1)c3θ

2
21

≤ 1 +
(2 + 16c3)

2

64c3
+

(4 + 32c3)
2

256c3
. (83)

The best bound is obtained when c3 = 1/8.

Nu+ f · ∇V ≤ 1 + 2 + 2 = 5. (84)

This gives us a bound on the long-time average of the heat transfer.

=⇒ Nu = Nu+ f · ∇V ≤ 5. (85)

We note that this bound is indeed achieved in the limit of high Rayleigh number.

5.4 Bounds on the heat transfer

We are intersted in finding the maximum of the long-time average of the Nusselt number
over all trjactories, i.e,

max
x0

Nu = max
x0

1− 2θ0,2 − 4θ0,4. (86)

We use the method described in the section (3) followed by sum-of-squares method to find
this bound. We choose V to polynomial of degree 2, 4, 6, 8, and 10. Figure (6) shows
the results. The bounds saturate to heat transfer due steady states for Ra ≲ 100 using
the second-degree polynomial and for Ra ≳ 150 using the eight-degree polynomial. For
100 ≲ Ra ≲ 150, we suspect that a limit cycle maximize the heat transfer. Figure (7) shows
the flow structure corresponding to four different branches of steady states in figure (6).
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Figure 7: Steady states corresponding to four different branches of steady states in figure
(6). Color contours shows the temperature variation scaled with π, i.e., T/π. The lines
show the streamlines. One can easily guess the flow direction by looking at the temperature
variation. The Rayleigh number corresponding to each of these figures is close to the
Rayleigh number when these steady-states branches first appear.

6 The 15-mode Model

We consider the following truncation.

ω(x, y, t) = ω̂1,1(t) sin(αx) sin(y) + ω̂1,2(t) sin(αx) sin(2y) + ω̂2,1(t) sin(2αx) sin(y)

+ω̂1,3 sin(αx) sin(3y) + ω̂3,1 sin(3αx) sin(y) + ω̂3,3 sin(3αx) sin(3y), (87)

θ(x, y, t) = θ̂0,2(t) sin(2y) + θ̂0,4(t) sin(4y) + θ̂0,6 sin(6y)

+θ̂1,1(t) cos(αx) sin(y) + θ̂1,2(t) cos(αx) sin(2y) + θ̂2,1(t) cos(2αx) sin(y)

+θ̂1,3 sin(αx) sin(3y) + θ̂3,1 sin(3αx) sin(y) + θ̂3,3 sin(3αx) sin(3y). (88)

Rename the variables as follows:

(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15)

≡ (ω̂1,1, ω̂1,2, ω̂2,1, ω̂1,3, ω̂3,1, ω̂3,3, θ̂0,2, θ̂0,4, θ̂0,6, θ̂1,1, θ̂1,2, θ̂2,1, θ̂1,3, θ̂3,1, θ̂3,3). (89)

The governing equations of individual modes can be obtained by substituting the above
truncation into the governing equation and then projecting the resulting equation onto
different eigenfunctions. The 15-mode model is given by,

ẋ1 = −3

4

(
α

α2 + 4
− α

4α2 + 1

)
x2x3 − (α2 + 1)Prx1 − αPrRax10, (90)
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ẋ2 =
3

4

(
α

α2 + 1
− α

4α2 + 1

)
x1x3 +

5

4

(
α

4α2 + 1
− α

α2 + 9

)
x3x4

+
5

4

(
α

4α2 + 1
− α

9α2 + 1

)
x3x5 −

3

4

(
α

4α2 + 1
− α

9α2 + 9

)
x3x6 − (α2 + 4)Prx2 − αPrRax11,

(91)

ẋ3 = −3

4

(
α

α2 + 1
− α

α2 + 4

)
x1x2 −

5

4

(
α

α2 + 4
− α

α2 + 9

)
x2x4

−5

4

(
α

α2 + 4
− α

9α2 + 1

)
x2x5 +

3

4

(
α

α2 + 4
− α

9α2 + 9

)
x2x6 − (4α2 + 1)Prx3 − 2αPrRax12,

(92)

ẋ4 =
5

4

(
α

α2 + 4
− α

4α2 + 1

)
x2x3 − (α2 + 9)Prx4 − αPrRax13, (93)

ẋ5 =
5

4

(
α

α2 + 4
− α

4α2 + 1

)
x2x3 − (9α2 + 1)Prx5 − 3αPrRax14, (94)

ẋ6 = −3

4

(
α

α2 + 4
− α

4α2 + 1

)
x2x3 − (9α2 + 9)Prx6 − 3αPrRax15, (95)

ẋ7 =
1

2

(
α

α2 + 1

)
x1x10 −

1

2

(
α

α2 + 1

)
x1x13 +

(
α

4α2 + 1

)
x3x12 −

1

2

(
α

α2 + 9

)
x4x10

+
3

2

(
α

9α2 + 1

)
x5x14 −

3

2

(
α

9α2 + 1

)
x5x15 −

3

2

(
α

9α2 + 9

)
x6x14 − 4x7, (96)

ẋ8 =

(
α

α2 + 1

)
x1x13 +

(
α

α2 + 4

)
x2x11 +

(
α

α2 + 9

)
x4x10 + 3

(
α

9α2 + 1

)
x5x15

+3

(
α

9α2 + 9

)
x6x14 − 16x8, (97)

ẋ9 =
3

2

(
α

α2 + 9

)
x4x13 +

9

2

(
α

9α2 + 9

)
x6x15 − 36x9, (98)

ẋ10 = −
(

α

α2 + 1

)
x1x7 −

3

4

(
α

α2 + 4

)
x2x12 −

3

4

(
α

4α2 + 1

)
x3x11

+

(
α

α2 + 9

)
x4x7 − 2

(
α

α2 + 9

)
x4x8 − (α2 + 1)x10 −

α

α2 + 1
x1, (99)
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Figure 8: Black lines show the long-time average of the Nusselt number due to steady states.
Red line shows result for Nu from a numerical simulation with random initial. The blue
symbols denote the bound obtained using the sum-of-squares method.
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ẋ11 =
3
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ẋ13 =

(
α
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)
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(
α
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)
x1x8 +

5

4
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α
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ẋ14 =
5

4

(
α

α2 + 4

)
x2x12 −

5

4

(
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)
x3x11 − 3
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α

9α2 + 9

)
x6x8 − (9α2 + 1)x14 − 3

α

9α2 + 1
x5, (103)

ẋ15 = −3

4

(
α

α2 + 4

)
x2x12 +

3

4

(
α

4α2 + 1

)
x3x11 + 3

(
α

9α2 + 1

)
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)
x5x8 − 9

(
α

9α2 + 9

)
x6x9 − (9α2 + 9)x15 − 3

α

9α2 + 9
x6. (104)

This 15-mode model satisfies both the energy conservation property as well as the vorticity
integral identity. There are four different truncated expressions of the Nusselt number (all
equivalent) can be calculated for this model. The one we use for bounding purposes is given
by,

Nu = 1− 2x7 − 4x8 − 6x9. (105)

6.1 Bounds on heat transfer

The figure (8) shows the results for the 15-mode model. For this case, so far, we have
calculated the bounds using a four-degree polynomial. In the future, we will obtain bounds
using higher degree polynomial. Bounds from the four-degree polynomial saturate to heat
transfer due to steady state before the emergence of the chaotic attractor. The figure (9)
the flow structure corresponding to the braches which eventually tranfer the maximum
heat in figure (8). These flow structures of steady states, however, are not entirely physical.
Because the Rayleigh number at which these steady states branches first appear, the 15-
mode truncation is not a good model of original governing equations (PDEs).
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Figure 9: Steady states corresponding to four different branches which eventually maximize
the heat transfer in figure (6). Color contours shows the temperature variation scaled with
π, i.e., T/π. The lines show the streamlines. One can easily guess the flow direction by
looking at the temperature variation. The Rayleigh number corresponding to each of these
figures is close to the Rayleigh number when these steady-states branches first appear.

7 Conclusions and Future Work

We studied two truncated models of the Rayleigh–Bénard convection in a stress-free box.
The 8-mode model satisfies the energy conservation property in the dissipationless limit. We
obtain bounds on the heat transfer using the sum-of-squares method. Using a polynomial
of two-degree bounds saturate to heat transfer due to steady states up to Ra ≲ 100. For
Ra ≳ 150 bounds saturate using an eight-degree polynomial. For the middle range, we
suspect that there is a limit cycle which maximizes the heat transfer. Future work includes
studying the effect of aspect ratio, similar to the study of Waleffe [12]. We want to check
the hypothesis that if heat transfer due to steady states when optimized over wavenumber,
gives the maximum possible heat transfer. Second, we want to study how variation in the
Prandtl number changes the conclusions.

The 15-mode model satisfies both energy conservation property as well as the vorticity
integral identity. For this case, so far, we have calculated the bounds using a four-degree
polynomial. The bounds saturate to the steady-state before the emergence of the chaotic
attractor. Future work for this model includes obtaining more strict bounds on heat transfer
using higher degree polynomials.
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Abstract

A new mathematical formalism that exploits the property of quasi-linear systems to
self-tune towards marginally stable states is investigated. The inspiration for this study
comes from the multi-scale analysis of strongly stratified flows, mathematically justified
by the presence of scale separation, which yields to a simplified quasi-linear models.
In this reduced description small-scale instabilities evolve linearly about a large-scale
hydrostatic field (whose evolution is fully non-linear) and modify it via a feedback term.
By analysing carefully constructed model problems, two different aspects of this reduced
system are addressed. In the first case, a one-dimensional model is used to develop an
algorithm capable of dealing with scenarios in which fluctuations exhibit positive growth
rates on a fast time scale. In the second case an extension of the algorithm to a two-
dimensional system is presented.

1 Introduction and Significance

Turbulence is ubiquitous in most of the geophysical flows relevant for the climate of the
Earth, particularly in the oceans and the atmosphere. Turbulence involves the interaction
of a vast range of spatiotemporal scales, as well as the coexistence of huge variety of physical
phenomena. In the oceans, where energy is injected at global scales, O(103 − 104)km, and
dissipation occurs at the Kolmogorov scale, O(10)cm many different form of turbulence
are manifest: while at the larger scales the combined effect of rotation and strong density
stratification stirs the flow mainly on quasi-horizontal planes coincident with isopycnals,
at the so-called microscale, O(1 − 100)m, turbulence is fully 3D and erodes the stable
stratification. At this scale, the flow naturally develops an anisotropic layer structure,
characterized by a vertical length scale h that is considerably smaller than the horizontal
one (L) [8],[9]. The relative motion of these layers, gives rise to strong shear that can
trigger small-scale instabilities, of Kelvin-Helmholtz and Holmboe type, introducing into
the system an horizontal characteristic length scale comparable to layer thickness h. These
small isotropic disturbances, although not resolved in numerical regional circulation and
global climate models, play a fundamental role in the overall global circulation controlling
the vertical mixing of denser water from the deep oceans.

Nevertheless several fundamental questions related to the strongly stratified turbulent
regime are remain unanswered (e.g. the relative importance of spectrally local and non-local
energy transfer and the importance of the initial stratification or the forcing mechanism on
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mixing [13],[14],[10],[15]) making the parametrization of the small-scale processes a challeng-
ing task. The major obstacle in the investigation of the physical processes is the enormous
range of scales that must be resolved in order to capture them. More precisely, the mi-
croscale spans from scales L that are small enough not to be affected by the Coriolis force
to the Ozmidov scale LO = (ϵh/N

3)1/2, the largest horizontal flow scale not to be influenced
by stratification. Denoting by N the Brunt-Väisälä frequency, by ϵh ∼ U3/L the horizon-
tal turbulent energy dissipation rate and by the horizontal Froude number Frh = U/NL
the inverse measure of the stratification strength, this scale range is then fixed by the

last parameter, as the ratio L/LO = O(Fr
−3/2
h ). Thus, owing to the strong stratification

(Frh < 10−3) and the considerably high Reynolds number (Re > 109) required to achieve
the strongly stratified turbulence regime, a full 3D direct simulation (DNS) would require
a resolution of the order of 1018 grid points, far beyond current computational capabilities,
as shown in figure 1 [16],[18],[17]. The development of new theoretical tools is therefore a
prerequisite for further advancements in this subject. A better understanding of strongly
stratified turbulence would not only provide a deeper insight on the role of the microscale
in the global overturning circulation but it would also facilitate the development of new
flow-control techniques.

Figure 1: Stratified flow regime diagram as a function of the Reynolds number Re and the
Froude number Fr a) from [16] and b) from [17]. Despite the huge increase of computational
power over the past 12 years both diagrams show the gap in parameter space between the
parameter regime numerically accessible and the one of interest for geophysical applications.

Scale separation in geophysical flows is very often related to the presence of a strong
external constraint that is responsible for the coexistence of large-scale anisotropic and
small-scale isotropic structures. This translates into the emergence of a dominant balance in
the governing equations that can be mathematically exploited to derive simplified equations
by means of multi-scale and asymptotic analysis. This approach has been successfully
used by Julien and Knobloch to derive reduced models when rapid rotation or a strong
magnetic field is applied to a flow system [2],[1] and by Rocha for flows subjected to strong
stratification [4]. In the latter work, the multi-scale analysis of Boussinesq equations in the
limit of small Frh number and large Re reveals two disparate spatiotemporal scales and
yields to a set of coupled equations for the large anisotropic dynamics and the small-scale
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disturbances. These two different spatiotemporal scales are indicated in equations (1.1)-
(1.8) below by T , x for the slow dynamics and by τ = T/ϵ, χ = x/ϵ for the fast dynamics
where ϵ =

√
Frh is the small parameter in the multi-scale expansion. Denoting by u⊥, W ,

b, the horizontal velocity vector, the vertical velocity and the buoyancy deviation from a
linear background profile, respectively, (1.1)-(1.4) show that in this specific limit the slowly
varying fields (denoted by the overbar) obey the hydrostatic primitive equations and their
dynamics is modified by the cumulative effect of the small-scale fluctuations (denoted by the
prime) via the eddy momentum and the buoyancy fluxes highlighted in red. The evolution
of the fast dynamical modes ((1.5)-(1.8)) instead, is described by a linear and homogeneous
system coupled to the slow dynamics via the mean-field coefficients highlighted in blue. An
interesting feature of this reduced system is the two-ways coupling between the slow and
the fast dynamics: the feedback produced by the fluctuations on the mean variable is not
sign-definite meaning that its effect may be stabilizing or destabilizing in nature.

∂Tu⊥ + u⊥ · ∇x⊥u⊥ +W∂zu⊥ = −∇x⊥p− ∂z(W ′u′⊥) +
1

Reb
∂2zu⊥ + f⊥ (1.1)

0 = −∂zp+ b (1.2)

∂Tu⊥ + u⊥ · ∇x⊥u⊥ +W∂zb = −W − ∂z(W ′b′⊥) +
1

PrReb
∂2zb (1.3)

∇ · u⊥ + ∂zW = 0 (1.4)

∂τu
′
⊥ + u⊥ · ∇χ⊥u

′
⊥ +W ′∂zu⊥ = −∇χ⊥p

′ +
Frh
Reb

(∇2
χ⊥

+ ∂2z )u
′
⊥ (1.5)

∂τW
′ + u⊥ · ∇χ⊥W

′ = −∂zp′ + b′ +
Frh
Reb

(∇2
χ⊥

+ ∂2z )W
′ (1.6)

∂τu
′
⊥ + u⊥ · ∇χ⊥b

′ +W ′∂z b = −W ′ +
Frh

PrReb

(
∇2

χ⊥
+ ∂2z

)
b′ (1.7)

∇2
χ⊥

· u′⊥ + ∂zW
′ = 0 (1.8)

The resulting system may be viewed as a generalized quasi-linear model (GQL), in that
the evolution of the fast variables is linearized around slowly varying mean fields and the
fluctuation-fluctuation interactions are retained only when they feed back onto the mean
flow. Although the quasi-linear (QL) approximation has been used in the past to enable
the investigation of simplified flow systems [19], here it should be emphasized that the
quasi-linearity is an intrinsic feature of the asymptotic behaviour of the strongly-stratified
dynamical system and not the result of an ad hoc approximation. Owing to the linearized
evolution of the fluctuations, the first issue concerning slow-fast QL systems is related to the
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choice of a suitable integration method. Although co-evolution of the mean and fluctuation
dynamics on the same fast temporal scale (i.e. the single-time QL algorithm) may ensure
accuracy, it does not take computational advantage of the multi-scale nature of the system.
On the other hand, the application of the heterogeneous multi-scale algorithm, although
more efficient, introduces many arbitrary choices for the inizialization and the duration of
the fast-time integrations.

Based on the observation that many slow-fast QL systems have the tendency of self-
organize around marginally stable states, Michel & Chini [3] have recently proposed a
new integration strategy that exploits a marginal stability constraint. Building upon their
work, the present study aims to further develop this methodology, with the final goal of
tailoring a numerical algorithm for simulations of the reduced Boussinesq equations in the
strongly-stratified regime relevant to the ocean. This goal will be pursued by making use
of two different model problems, each designed to serve a distinct purpose: in section 2 the
twofold nature of the feedback terms will be addressed on a 1D model problem, while in
section 3 an extension of the algorithm to a 2D QL model will be presented.

2 1D Model Problem

In the following section, we will first illustrate the methodology, retracing the fundamental
steps in the development by Michel & Chini [3], and then investigate the stabilizing nature
of the fluctuation-induced feedback on the slow dynamics.

In this first example the slow field U(z, t) and the fast fluctuations η(z, t) evolve accord-
ing to

∂U

∂t
= F − νU − η2e−U2

(2.1)

ϵ
∂η

∂t
= Uηe−U2

+
∂2η

∂z2
− ϵη3 (2.2)

where F (z, t) is a space and time dependent forcing and νU is a linear damping. As in the
stratified flow problem the slow variable feels the effect of the fluctuations via a quadratic
feedback, here multiplied by the exponential term in (2.1), η2e−U2

; and the fluctuations in
turn are ”advected” by the mean flow via the term Uηe−U2

. The scale separation is set
by the small parameter ϵ in (2.2) (analogous of the Fr number in the reduced Boussinesq
equations).

Explicitly taking into account the temporal scale separation by introducing two time
scales t→ (T, τ), with T = t and τ = T/ϵ and positing the following asymptotic expansions
for U and η

U = U0 + ϵU1 + ϵ2U2 +O(ϵ3) (2.3)

η = η0 + ϵη1 + ϵ2η2 +O(ϵ3) (2.4)
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a two-scale reduced system governing the leading-order dynamics ( O(1) for the mean
variable and O(1/ϵ) for the fluctuations) can be obtained [3]:

∂U0

∂T
= F − νU0 − η20e

−U2
0 (2.5)

∂η0
∂τ

= U0e
−U2

0 η0 +
∂2

∂z2
η0 (2.6)

where the overbar (·) indicates an average over the fast time τ and U0 = U0(z, T ), only.
Because the evolution equation for the fluctuations is linear and homogeneous in the fluc-
tuation field and autonomous in the fast time τ , it is not restrictive to assume solutions of
the form η0 = A(T )η̂0(z, T )e

σ(T )τ where A(T ) is a slowly varying amplitude; η̂0(z, T ) is a
vertical structure function; and σ(T ) is a growth rate. Substituting this ansatz into (2.5)-
(2.6), it is immediately clear that for the feedback term to be physically meaningful the
fast-time average (2.7) has to converge, excluding then the possibility for positive growth
rates if A(T ) ̸= 0. If σ < 0 there is an exponential decay (σ < 0) of the fluctuations on
the fast time scale and, hence, a zero feedback on the slow dynamics; consistently A(T ) is
set to zero in this case. If σ > 0, however, the fluctuation field could grow without bound
while the mean field U0 remains ”frozen”, invalidating the asymptotic scaling (unless A(T )
=0). This observation suggests that the system naturally selects a zero growth rate by
self-adjusting to a marginally stable state. Correspondingly the asymptotic analysis must
attempt to enforce the condition σ ≤ 0.

η20 = |A|2|η̂0|2 lim
τf→∞

1

τf

∫ τf

0
eστdτ (2.7)

Therefore, the simplified equations for the leading-order dynamics can be reduced to an
initial-value problem for the evolution of U0 and to an eigenvalue problem for the fluctuations
η̂0 being the vertical eigenfunction associated with the zero eigenvalue σ0:

∂U0

∂T
= F − νU0 − |A|2|η̂0|2e−U2

0 , (2.8)

ση̂0 =

(
U0e

−U2
0 +

∂2

∂z2

)
η̂0, (2.9)

where the linear operator

L = U0e
−U2

0 +
∂2

∂z2
. (2.10)

Notice that the operator L is self-adjoint and singular with a 1D nullspace.

The fast and slow dynamics are now coupled by the presence of an unknown amplitude
for which an evolution equation has to be derived. As shown in Michel & Chini [3], the
standard procedure of imposing a solvability condition on the higher-order terms in the
expansion of η does not yield in this case to a closed set of equations, and an alternative
constraint has to be found. The key idea of this new approach is to exploit the natural
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tendency of the slow dynamics to evolve near to a state of marginal stability, as noted
above, in order to prescribe the fluctuation amplitude required to maintain that state.
Consequently the slow time derivative of the growth rate has to be zero whenever the
growth rate σ = σ0 ≡ 0. To derive the necessary condition, we take the slow time derivative
of the leading-order eigenvalue problem (2.9):

L∂η̂0
∂T

= −
(
∂L
∂T

)
η̂0 +

dσ

dT
η̂0 + σ

∂η̂0
∂T

(2.11)

L∂η̂0
∂T

= (1− 2U2
0 )
∂U0

∂T
e−U2

0 +
dσ

dT
(2.12)

upon setting σ = σ0 = 0. For (2.12) to be solvable the Freedholm alternative (solvability
condition) requires the right-hand side of (2.12) to be perpendicular to the nullspace of the
adjoint operator L†, which in this case is L itself. Thus, taking the inner product of (2.12)

with η̂0 and using the normalization
∫ Lz

0 |η̂0|2dz = 1, an evolution equation for the growth
rate on the slow time scale can be obtained

(L∂T η̂0, η̂†0) = (∂T η̂0,L†η†0) = 0 (2.13)

(L∂T η̂0, η̂∗0) =
∫ Lz

0

(
(1− 2U2

0 )
∂U0

∂T
e−U2

0 +
dσ

dT

)
|η̂0|2dz (2.14)

dσ

dT
=

∫ Lz

0
(1− 2U2

0 )(F − νU0)e
−U2

0 |η̂0|2dz − |A|2
∫ Lz

0
(1− 2U2

0 )e
−2U2

0 |η̂0|4dz (2.15)

Renaming the two integrals in (2.15) as

α =

∫ Lz

0
(1− 2U2

0 )(F − νU0)e
−U2

0 |η̂0|2dz, β =

∫ Lz

0
(1− 2U2

0 )e
−2U2

0 |η̂0|4dz (2.16)

yields

dσ

dT
= α− |A|2β. (2.17)

Imposing the marginal stability condition dTσ = 0 when σ(T ) = 0, yields an expression
for the amplitude that ensures the slow dynamics remains tangent to the marginally stable
manifold:

A =
√
α/β (2.18)

It is straightforward to notice that the amplitude expression (2.18) is only defined for
positive ratios of α and β. In this example, as in the stratified flow problem, however either
α nor β is sign-definite. While negative values of α increase the stability of the system,
eventually leading to a zero amplitude for the fluctuations ( as is clear from (2.17)), negative
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values of β necessarily drive the system away from the marginally stable condition. In the
latter scenario, the marginally stable manifold ceases to exist and the fluctuations quickly
attain an asymptotically large magnitude due to the linear instability mechanism. This
inevitably causes the slow variable U0 to respond on the fast time scale, resulting in a
bursting dynamics, that eliminates the scale separation initially present in the system. In
order to accommodate turbulent events associated to positive growth rates the two fields
must be co-evolved on the fast time scale until the marginal-stability manifold is restored,
i.e. until σ = 0 again. As pointed out in [3], the integration of the initial finite-ϵ set of
equations (2.1)-(2.2) is not the only co-evolution strategy that is appropriate for this fast
dynamical regime. Instead, by positing the modified asymptotic expansions

U = U0 + ϵU1 + ϵ2U2 +O(ϵ3),

η =
1√
ϵ
η0 +

√
ϵη1 + ϵ

√
ϵη2 +O(ϵ2

√
ϵ), (2.19)

which incorporate the asymptotic amplification of η, the following modified reduced system
is obtained:

∂U0

∂τ
= −η20e−U2

0 (2.20)

∂η0
∂τ

= U0η0e
−U2

0 +
∂2η0
∂z2

− η30 (2.21)

Equation (2.21) retains the cubic non-linearity present in the original set of equations,
mechanism responsible for the saturation of the exponentially growing instabilities, and
thus (2.20)-(2.21) is not of QL form. Nevertheless, the system (2.20)-(2.21) has the great
computational advantage of not including the small parameter ϵ, allowing for larger numer-
ical time-steps.

A further option to integrate the reduced system (2.8)-(2.9) when bursting events occur
and no fluctuation amplitude can be determined, is inspired by gradient descent techniques.
Because of the fast and abrupt growth of the fluctuations in this regime it is reasonable to
assume they dominate the evolution equation of the mean variable U0, making the forcing
F and the damping νU negligible (as also confirmed by the asymptotic analysis above).
Then, although A(T ) is unknown, the mean variable U0 can be updated in the direction
that minimizes dTσ making use of the eigenfunction η̂0 resulting from the linear eigenvalue
problem (2.9):

∂U0

∂T
= C|η̂0|2e−U2

0 (2.22)

where C is an arbitrary constant.
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2.1 Numerical Implementation and Results

The accuracy of the reduced QL algorithm presented above has been assessed via compari-
son with the results obtained from direct numerical simulations of the full system. A Python
code was written in-house and implemented within the open-source framework Dedalus [5],
for this purpose. All of the simulations are performed with a second-order Runge Kutta
time-stepping algorithm (dt = 10−2 for the QL model and dt = 5 × 10−3 for the DNS) a
damping coefficient ν = 1 and a forcing term F = 1+0.5cos(z). The original set of equations
(2.1)-(2.2) and the corresponding reduced model (2.8)-(2.9) are solved in a periodic domain
with Lz = 2π using a Fourier and Chebyshev discretization scheme respectively, with 64
grid points in each case. The use of a Chebyshev spectral method, although not optimal
for problems having periodic boundary conditions, is dictated by the necessity of solving
the eigenvalue problem with non-constant coefficients (2.9) within the Dedalus framework,
which is presently only possible using Chebyshev polynomials.
The small parameter ϵ in the full system, responsible for the scale separation, is fixed
to 0.02 and the initial condition for the fluctuations, only needed in the finite-ϵ DNS, to
η0(z, t) = cos(z).

In the first test case the initial condition for the mean variable is U0(z, 0) = −1, cor-
responding to a stable state of the slow dynamics. Since the initial growth is negative,
the amplitude of the fluctuations is initially set to zero. Accordingly, the mean field U0 is
updated on the slow time scale in absence of the feedback, only subject to the action of
forcing and damping, until the marginal-stability is reached.
Once the real part of σ, whose value together with the eigenfunction η̂0 are obtained by
solving the linear eigenvalue problem, approaches zero the amplitude A(T ) is computed
using (2.18).
The results obtained from the QL model are compared to those obtained from the DNS
in figures 2 and 3, where space-time diagrams of the slow variable U0(z, t) and of the fluc-
tuations η0 respectively, are presented. As is clearly evident, the reduced model not only
to qualitatively captures the long term dynamics of the full system but also the detailed
quantitative features of the structures underlying it, from the wavelength to the amplitude
and the phase. This agreement between the QL model (a) and the DNS (b) is even more
remarkable given the finite value of ϵ chosen to set the scale separation in the full system.
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Figure 2: Space-time evolution of the slow variable U0 resulting from a) the QL model
simulation and b) the DNS at ϵ = 0.02 .

Figure 3: Space-time evolution of the (fast) fluctuation field η0 obtained from a) the QL
model and b) the DNS at ϵ = 0.02.

The only significant observable difference in the two dynamics relates to the initial
transient. As evident in figure 4, where the energy of the mean field (in black) and the
fluctuation (in red) both for the QL simulation (dashed line) and the DNS are shown, the
full system exhibits fast bursting events before relaxing onto the marginally stable manifold
while it occurs instantaneously in the reduced system because of the slaving of the ampli-
tude. From figure 5(a), which shows the evolution of the real part of the growth rate on
the slow time scale, this test case does not exhibit fast bursting events: once the marginal
stability condition is reached, it is maintained for the entire duration of the simulation.
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Figure 4: Time series of the fluctuation energy (in red) and the mean field energy (in black)
from the QL model simulations (dashed lines) and the DNS at ϵ = 0.02 (solid lines)

Figure 5: Temporal evolution of the growth rate σ associated to the linear eigenvalue
problem a) on the slow time for the QL model and b) on the fast time for the DNS when
starting from a stable initial condition U0(z, 0) = −1

To assess the efficacy of the three strategies presented in section 2, for coping with
fluctuation events associated either with an initial positive growth rate or with subsequent
occurrences of positive feedback (i.e. β < 0) for σ = 0, the second test case has been
initialized with a positive initial condition U0(z, 0) = 1, corresponding to an unstable state.
That is, co-evolution of the two fields is necessary if either the initial state is already char-
acterized by σ > 0 or whenever β < 0, meaning that the fluctuation-induced feedback has
a destabilizing effect on the mean field. In the specific case presented here, both of these
conditions happen to be satisfied at the initial time.

Figure 6 shows the evolution of the growth rate during the same co-evolution event
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simulated using the three different techniques: finite-ϵ DNS (eq. (2.1)-(2.2)), ϵ-free DNS (eq.
(2.20)-(2.21)) and gradient descent (eq.(2.22)). The initial conditions for the fluctuations
necessary to initialize the DNS in the first two cases are generated using the eigenfunction
η̂0 resulting from the linear eigenvalue problem and the amplitude computed in the previous
iteration or a randomly generated one when no amplitude is available (as in this case where
co-evolution happens at t = 0) or is zero. The higher efficiency, in terms of number of
time steps required to return to a (marginally) stable condition, of the last two methods
is attributable to the absence of the small parameter ϵ, allowing for a time step about two
orders of magnitude larger than the one used for the full DNS.

Figure 6: Comparison between the temporal evolution of the real part of the growth rate σ
during a co-evolution event simulated using three different techniques: finite-ϵ DNS (blue),
ϵ-free DNS (red), gradient descend (green).

Figure 7 shows a flowchart of the algorithm developed for this 1D model problem, highlight-
ing with different colors the three possible satbility scenarios and summarizing the logical
steps implemented in each of those.
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Figure 7: Flowchart of the 1D QL algorithm. The loop is started by solving the linear
eigenvalue problem for the maximum growth rate σ and the corresponding eigenfunction
η̂0. When negative growth rates characterize the state of the system, the green blocks are
executed: the slowly-varying amplitude of the fluctuation is set to zero and the mean field
is updated on the slow time scale without any feedback term. Once marginal stability (zero
growth rate) is realized the slaving of the amplitude activates (blocks in yellow) and the
mean field is updated on the slow time with the amplitude prescribed to ensure its marginal
stability. The red circuit is entered whenever an unstable (σ > 0) or potentially unstable
(β < 0) situation is realized. The mean field and the fluctuations are time-stepped together
on the fast time scale until the growth rate resulting from the linear eigenvalue problem
again becomes non-positive.
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3 2D Model Problem

Inspired by the stratified flow system, where the layers exhibit an horizontal structure and
the mean flow, we have designed a model problem to capture this features and extend the
algorithm presented in the previous section to the 2D case.

The slow-evolving variable U(x, z, t) and the fluctuations η(x, z, t) now satisfy the fol-
lowing set of equations

∂U

∂t
+ U

∂U

∂x
= F (x, z, t)− νU − ϵ2

(
∂η

∂x

)2

+D

(
∂2

∂x2
+

∂2

∂z2

)
U (3.1)

ϵ
∂η

∂t
= −η − ϵ2U

∂2η

∂x2
− ϵ4

∂4η

∂x4
+
∂2η

∂z2
− ϵη3 (3.2)

In addition to the previous case, where the dynamics of the mean field was controlled by
an external forcing , a linear damping and the cumulative effect of the fast modes, here we
introduce a diffusive and an inertial term, like in the Boussinesq equation (1.1). The fluc-
tuation feedback in 3.1, also has been replaced by a flux-type term, suggestive of the eddy
flux and buoyancy flux in real system. As regards the fluctuations the evolution equation is
a modified version of the Swift-Hohenberg operator ∂tψ = rψ − (1 +∇2)2ψ +N (ψ) where
the bifurcation parameter r is here the mean field U(x, t) and it multiplies the second term
on the right-hand side instead of the first one. The reason behind this choice is to provide
a playground as near to reality as possible but relatively more controllable and comparable
to known cases.

As done in §2, owing the scale separation due to the small parameter ϵ, we apply multi-
scale analysis, this time introducing a slow-fast time scale and a large-small spatial scale.

t→ (T, τ) T = t and τ = T/ϵ
x→ (X,χ) X = x and χ = X/ϵ

U = U0 + ϵU1 + ϵ2U2 +O(ϵ3)
η = η0 + ϵη1 + ϵ2η2 +O(ϵ3)
F = F0 + ϵF1 + ϵ2F2 +O(ϵ3)

Solving the first equation (3.1) order by order in ϵ, the independency of U of the fast
time τ is obtained at order O(ϵ−1) (being ∂τU0 = 0) and the reduced dynamics at O(1)

∂U0

∂T
+
∂U1

∂τ
+ U0

∂U0

∂x
+ U0

∂U1

∂χ
+ U1

∂U0

∂χ
= F − νU0 +D

∂2U0

∂z2
−
(
∂η0
∂χ

)2

(3.3)

Introducing then the average over fast time τ and space χ defined for a generic function ψ
as
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ψ(x, z, t, ϵ) = lim
τf ,Lχf→∞

∫ τf

0

∫ Lχf

0
ψ(χ, x, z, τ, t, ϵ)dτdχ (3.4)

the final evolution equation for the mean variable U0(χ, x, z, t, ϵ) reads

∂U0

∂T
+ U0

∂U0

∂x
= F − νU0 +D

∂2U0

∂z2
−
(
∂η0
∂χ

)2

(3.5)

As for the fluctuation field the dynamics at the leading order O(ϵ−1) results

∂η0
∂τ

= −η0 − U0
∂2η0
∂χ2

− ∂4η0
∂χ4

+
∂2η

∂z2
(3.6)

Not surprisingly the evolution equation for the fast modes is again linear and homogeneous
and modal solutions are allowed

η0 = A(T )η̂0(x, T )e
σ(T )τeik(T )χ + c.c. (3.7)

where A(T ) a real amplitude, the real part of σ is the growth rate and k the horizontal
wave number. Substituting the ansatz (3.7) into (3.5)-(3.6) the Generalized Quasi Linear
(GQL) model is obtained

∂U0

∂T
+ U0

∂U0

∂x
= F − νU0 +D

∂2U0

∂z2
− 2|A|2k2|η̂0|2 (3.8)

ση̂0 =

(
−1 + k2U0 − k4 +

∂2

∂z2

)
η̂0 (3.9)

We point out that the marginal stability requirement, necessary for the feedback term
in (3.5) not to blow up (see §2), has been already taken in to account substituting a zero
growth rate while fast averaging over τ and χ.
The backbone of the model, consisting of an initial value problem for the slow variable
and an eigenvalue problem for the fast one, reoccurs in this 2D example with the major
differences being the k-structure of the fluctuations and the dependence of the mean field
on slow x. The latter feature, introduced by the convective term in (3.1), allows for the
interaction between low Fourier modes, turning the strict mean U0 in a slow varying mean
(hence the categorization under Generalized Quasi Linear model)

Although of fundamental importance in the real stratified flow system, for purposes
of simplifications the dependence of U0 on the slow coordinate x (and thus the presence
of convective term) will be from now on neglected, postponing the investigation to future
work.
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3.1 Algorithm for Strict QL Models

The elimination of the slow spatial coordinate x from (3.1)-(3.2) leads to the following strict
QL system:

∂U0

∂T
= F (z, T )− νU0 − 2k2|A|2|η̂0|2 +D

∂2U0

∂z2
(3.10)

ση̂0 =

(
−1 + k2U0 − k4 +

∂2

∂z2

)
η̂0 ≡ Lη̂0 (3.11)

where the average over the fast spatial coordinate χ in 3.4 is now interpreted as a strict

streamwise average.

By inspection of (3.11) that the linear operator L is again singular and self-adjoint as in
the 1D case but now also depends on the wavenumber k. This dependency introduces the
need for an additional constraint on the growth rate in order to ensure the marginal stability
condition in time: not only the total time derivative of the growth rate but also its partial
derivative with respect to k must vanish when marginal stability is satisfied. More simply,
the tangency condition to the marginal-stability manifold in time has to be satisfied by the
fastest growing mode. Pragmatically the eigenvalue problem (3.11) must be solved multiple
times, i.e. for varying k to find the mode that first undergoes an instability. Moreover
the number of marginally stable modes and the wavenumbers associated with each of them
can change in time, requiring for the last step to be repeated, in principle, at each time
iteration. Being the eigenvalue problem at the core of the slow-fast QL systems presented
in this work, as well as the computational bottleneck, in the remainder of this section we
derive an algorithmic structure for slaving the amplitude to the mean field and for predict-
ing the wavenumber k in the condition of marginal stability, limiting for the moment the
complexity to one marginally stable mode.

To enforce the first constraint dTσ = 0 (holding z fixed) when σ = 0, we take the
slow-time derivative of the eigenvalue problem (3.11).

L∂η̂0
∂T

= −
(
∂L
∂T

)
η̂0 +

dσ

dT
η̂0 + σ

∂η̂0
∂T

, (3.12)

yielding

L∂η̂0
∂T

=

(
−k2∂U0

∂T
+ (2k2 − U0)

∂k2

∂T

)
η̂0 +

dσ

dT
η̂0

= −k2
(
F − νU0 +D

∂2U0

∂z2
− 2|A|2k2|η̂0|2

)
η̂0 + (2k2 − U0)

∂k2

∂T
η̂0 +

dσ

dT
η̂0 (3.13)

A solvability condition for (3.13) can be obtained by taking the inner product of (3.13)

with η̂†0 (equivalent to requiring the solutions to be orthogonal to the nullspace of L†, that
in this case equals the nullspace of L, i.e. L is self-adjoint):
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(L∂T η̂0, η̂†0) = (∂T η̂0,L†η̂†0) = 0. (3.14)

Consequently,

(L∂T η̂0, η̂†0) = −k2
∫ Lz

0

∂U0

∂T
|η̂0|2dz −

∂k2

∂T

∫ Lz

0
U0|η̂0|2dz + 2k2

∂k2

∂T
+
dσ

dT
= 0, (3.15)

yielding an evolution equation for the wave number k associated with the fastest-growing
mode:

∂k2

∂T
=

k2
∫ Lz

0

(
F − νU0 +D

∂2U0

∂z2

)
|η̂0|2dz − 2k4|A|2

∫ Lz

0 |η̂0|4dz −
dσ

dT

2k2 −
∫ Lz

0 U0|η̂0|2dz
, (3.16)

provided the amplitude can be determined.

Substituting the solvability condition (3.16) into (3.13), which is tantamount to subtracting
the projection of the right-hand side that lies in the nullspace of L, we obtain

L∂η̂0
∂T

= −k2(F − νU0 + ∂2zU0)η̂0 + 2|A|2k4|η̂0|2η̂0 +
dσ

dT
η̂0

+ (2k2 − U0)
k2

∫ Lz

0 (F − νU0 + ∂2zU0)|η̂0|2dz − 2k4|A|2
∫ Lz

0 |η̂0|4dz −
dσ

dT

2k2 −
∫ Lz

0 U0|η̂0|2dz
η̂0 (3.17)

With the aim of isolating the unknown amplitude A(T ), the problem (3.17) can then be
split into two subproblems that can be independently solved (recalling that dTσ = 0 when
σ = 0):

∂η̂0
∂T

= k2η̂α + 2|A|2k4η̂β +
dσ

dT
η̂σ, (3.18)

where

Lη̂α = −
(
F − νU0 +D

∂2U0

∂z2

)
η̂0 + (2k2 − U0)

∫ Lz

0 (F − νU0 + ∂2zU0)|η̂0|2dz
2k2 −

∫ Lz

0 U0|η̂0|2dz
η̂0, (3.19)

Lη̂β = |η̂0|2η̂0 − (2k2 − U0)

∫ Lz

0 |η̂0|4dz
2k2 −

∫ Lz

0 U0|η̂0|2dz
η̂0. (3.20)

Lη̂σ =
dσ

dT

[
1− (2k2 − U0)

2k2 −
∫ Lz

0 U0|η̂0|2dz

]
η̂0 (3.21)

Although the solvability of the two problems (3.19)-(3.20) is guaranteed by the Freedholm
alternative, the orthogonality of the respective right-hand sides (RHS) to the kernel of L
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can not be perfectly achieved numerically. This issue can be overcome making use of a
generalized inverse resulting from a singular-value decomposition (SVD) of the operator L.
The great advantage of the SVD (consisting in a generalized eigenvalue decomposition) is
that it actually solves the least squares problem minimizing the quantity ||L∂T η̂0−RHS||2,
and therefore already satisfies the solvability condition (removing the part of RHS lying in
the range of L) [6], [7].

We now proceed to enforce the second constraint ∂k2σ = 0 (holding z, T , and A fixed) when
σ = 0, taking this time the k-derivative of (3.11)

L∂η̂0
∂k2

= −
(
∂L
∂k2

)
η̂0 +

∂σ

∂k2
η̂0 + σ

∂η̂0
∂k2

(3.22)

L∂η̂0
∂k2

= −
(
k2V + U0 − 2k2

)
η̂0 (3.23)

where we have defined the sensitivity of the slow field U0 with respect to the wavenumber
as V = ∂k2U0

1. The evolution equation for V (that will be used subsequently) can be
obtained by differentiating w.r.t. k2 the evolution equation (3.10) for U0:

∂V

∂T
= −νV +D

∂2V

∂z2
− 2|A|2k2

(
η̂†0
∂η̂0
∂k2

+ c.c.

)
− 2|A|2|η̂0|2 (3.24)

We now take the inner product of (3.23) with η̂†0 to obtain a solvability condition

(L∂k2 η̂0, η̂
†
0) = (∂k2 η̂0,L†η̂†0) = 0 (3.25)

2k2 = k2
∫ Lz

0
V |η̂0|2dz +

∫ Lz

0
U0|η̂0|2dz (3.26)

Substituting (3.26) into (3.23) yields an equation for the sensitivity of the eigenfunction η̂0
with respect to changes in the wavenumber:

L∂η̂0
∂k2

= −
(
k2V + U0

)
η̂0 +

(
k2

∫ Lz

0
V |η̂0|2dz +

∫ Lz

0
U0|η̂0|2dz

)
η̂0 (3.27)

that can be solved, as done for (3.19) and (3.20) making use of the SVD.

By next taking the slow time derivative of the solvability condition (3.26),

∂k2

∂T
= k2

∫ Lz

0 ∂TV |η̂0|2dz +
∫ Lz

0 V (η̂†0∂T η̂0 + c.c.)dz

2−
∫ Lz

0 V |η̂0|2dz
+

+

∫ Lz

0 ∂TU0|η̂0|2dz +
∫ Lz

0 U0(η̂
†
0∂T η̂0 + c.c.)dz

2−
∫ Lz

0 V |η̂0|2dz
, (3.28)

1Given the dependency of the eigenfunction η̂0 on the wavenumber k, we are inclined to assume the same
intrinsic dependency for the mean field U0 on k when marginal stability is realized. Whether this dependency
is realized (at fixed T ) remains a subject of ongoing investigation.
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and substituting (3.16) into the left-hand side and (3.10), and (3.24), (3.18) into the right-
hand side of (3.28) we eventually obtain an equation to determine the amplitude analogous
to that for the 1D model problem:

dσ

dT
= α− 2|A|2k2β, A =

√
α

2k2β
, (3.29)

After renaming the integrals as follows,

Iu1 =

∫ Lz

0
(F − νU0 +D∂2zU0)|η̂0|2dz

Iu2 =

∫ Lz

0
U0|η̂0|2dz

Iu3 =

∫ Lz

0
U0(η̂

†
0η̂α + c.c.)dz

Iu4 =

∫ Lz

0
U0(η̂

†
0η̂β + c.c.)dz

Iu5 =

∫
0
LzU0(η̂

†
0η̂σ + c.c.)dz

Ig =

∫ Lz

0
(η̂†0∂k2 η̂0 + c.c.)|η̂0|2dz

Iv1 =

∫ Lz

0
(−νV +D∂2zV )|η̂0|2dz

Iv2 =

∫ Lz

0
V |η̂0|2dz

Iv3 =

∫ Lz

0
V (η̂†0η̂α + c.c.)dz

Iv4 =

∫ Lz

0
V (η̂†0η̂β + c.c.)dz

Iv5 =

∫
0
LzV (η̂†0η̂σ + c.c.)dz

Iη =

∫ Lz

0
|η̂0|4dz,

(3.30)

the expressions for α and β now, read

α = −Iu1Iu2 + k2(2k2 − Iu2)(Iu3 + Iv1 + k2Iv3)

2 + (2k2 − Iu2)(Iu5 + k2Iv5)
(3.31)

β =
k4(2k2 − Iu2)Iv4 − Iη(1− Iu2)

2 + (2k2 − Iu2)(Iu5 + k2Iv5)
. (3.32)

With A known, k can be predicted using (3.16), with dTσ = 0.

As in the 1D case, β is not sign-definite, meaning that the fluctuation can drive the
dynamics away from the local marginal stability manifold. Whenever marginal stability is
compromised, the adoption of a co-evolution technique is a crucial step for the efficacy of
QL models.
As in §2 we show below that, with a different choice for the rescaling of equations (3.1)-(3.2),
an ϵ-free reduced model describing the bursting regime can be obtained. Specifically, we
posit the revised expansions

U = U0 + ϵU1 + ϵ2U2 +O(ϵ3),

η =
1√
ϵ
η0 +

√
ϵη1 + ϵ

√
ϵη2 +O(ϵ2

√
ϵ)
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and obtain the following set of leading-order equations for the bursting regime:

∂U0

∂τ
+ U0

∂U0

∂χ
= −

(
∂η0
∂χ

)2

(3.33)

∂η0
∂τ

= −η0 − U0
∂2η0
∂χ2

− ∂4η0
∂χ4

+
∂2η0
∂z2

− η30 (3.34)

Once more, the leading-order dynamics for the mean field U0 is dominated by the effect
of the fluctuation-iduced feedback and the cubic non-linearity is recovered in the evolution
equation for the fluctuation field, crucial for the saturation of the instabilities. However, in
this specific case where the mean field does not explicitly depend on the horizontal spatial
coordinate, the QL model is essentially 1D, making the gradient descent technique prefer-
able over DNS as the co-evolution method.

Figure 8 shows the updated flowchart for the 2D extension of the QL algorithm, summa-
rizing all of the logical steps that constitute the procedure and the conditions under which
they are executed.

317



Figure 8: Flowchart of the 2D QL algorithm. The loop is started by solving the linear
eigenvalue problem for the maximum growth rate σ and the corresponding eigenfunction
η̂0. When negative growth rates characterize the state of the system, the green blocks are
executed: the slowly-varying amplitude of the fluctuation is set to zero and the mean field
is updated on the slow time scale without any feedback term. Once marginal stability (zero
growth rate) is realized the slaving of the amplitude activates (blocks in yellow) and the
mean field is updated on the slow time with the amplitude prescribed to ensure its marginal
stability. The red circuit is entered whenever an unstable (σ > 0) or potentially unstable
(β < 0) situation is realized. The mean field and the fluctuations are time-stepped together
on the fast time scale until the growth rate resulting from the linear eigenvalue problem
again becomes non-positive.
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4 Conclusions and Future Work

In the limit of small Froude and large Reynolds numbers, stratified shear flows exhibit a
strongly constrained form of turbulent dynamics. Multi-scale analysis of this phenomenon
leads to a set of reduced, quasi-linear stystem of equations where fields evolving on different
spatiotemporal scales are coupled. The dynamics of the fast variables, or fluctuations, is
linear around the slow-evolving mean flow, with the fluctuations being advected by the
mean flow and producing a feedback on it. Because the evolution of the fluctuations is
linear the only possible long-term dynamics requires the system to self-adjust around a
marginal-stability manifold. Michel and Chini [3] recently have shown for a 1D model prob-
lem that this scenario can be realized in slow-fast QL systems by appropriately slaving the
fluctuations dynamics to the mean field so that zero growth rates are ensured.
The interaction between the slow and fast fields in stratified flows, however, is not sign-
definite, potentially allowing for the fluctuations to intermittently prevent marginal stability
from being attained. Accordingly, in the second section of this study, we investigated a sim-
plified 1D dynamical system and its corresponding asymptotic QL reduction, specifically
addressing the two-way nature of the fluctuation feedback. Inspired by the approach of
Michel and Chini [3] we have developed a numerical procedure that can properly acco-
modate bursting events associated with positive fluctuation growth rates. The algorithm
simulates the QL system, exploiting the multi-scale nature of the problem, when stability or
marginal stability is satisfied and simulates/emulates the full non-linear system otherwise.
In the first case, the fluctuation amplitude is set so that zero growth rates can be reached
and then maintained, while in the second one, the co-evolution of the two fields is performed.
In this regard three different methods were tested: finite-ϵ DNS (the full non-linear system),
ϵ-free DNS (the rescaled system for the bursting regime) and a gradient descent technique.
The first two methods explicitly reintroduce the fluctuation non-linearities in the dynamics,
which generally are not negligible when fluctuation amplitudes are large and which may
be crucial for the saturation of instabilities. The third method exploits information from
the eigenvalue problem by shooting in the direction provided by its linear eigenfunctions.
The computational expense of the last two approaches, ϵ-free DNS and the gradient descent
technique, is shown to be one order of magnitude smaller than that of the full DNS, owing
the absence of the small parameter ϵ, which enables larger numerical time-steps. However
the gradient descent technique, although crude, has the advantage in many cases (as re-
marked in the third section) of not requiring further information or arbitrary choices, like
the domain size and initial conditions for the fast field, other then the ones already present
in the QL approximation.

Considering the structure of the stratified flow system of interest, the next crucial step
is the 2D extension of slow-fast QL formalism. In the third section we develop an algorithm
for a 2D model problem in which a strict QL approximation is made (i.e. unlike in the
real system slow spatial modulation is suppressed). Because of the explicit spatial structure
of the fluctuation fields two constraints are needed to slave the fluctuation dynamics and
ensure the marginally stable dynamics: the zero fluctuation growth rate condition must
persist in time and this condition has to be realized for the fastest growing mode. Limiting
here the analysis to a single marginally stable mode, the derivation yields a relatively simple
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expression to slave the amplitude of the fluctuations to the slow field and to an evolution
equation for the wavenumber of the fastest-growing mode once the fluctuation amplitude is
determined.

The objectives of future work will be to implement this 2D algorithm numerically and
then to reincorporate slow spatial modulation of the mean and fluctuation fields. The
long-term aim is to enable simulations of strongly stratified turbulence in geophysically-
relevant parameter regimes, although we expect the slow-fast QL formalism will find wide
applicability in turbulence sub-grid modeling.
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A Mushy Source for the Geysers of Enceladus

Samuel Boury

August 21, 2019

1 Introduction

The outer solar system may harbor life, and a promising location is Enceladus, a tiny moon
of Saturn [3] (figure 1), due to its observed cryovolcanism and inferred liquid ocean. This
rock-cored icy satellite has a liquid ocean covered by a thin outer ice shell [14]. Tidal
heating [8, 14] due to Enceladus’ orbital eccentricity around Saturn likely maintains the
liquid ocean. At the South Pole, where hot activity has been recorded at the surface [10, 15],

fractures penetrate i nto the i ce shell and emit geysers of salty i ce crystals (∼ 1% salt), i .e.,
cryovolcanoes [ 12].

Enceladus Saturn

Figure 1: Left: Saturn and Enceladus. Right: Light illuminating geysers of water and salts
on the South pole of Enceladus. The diameter of Enceladus is about 500 km and the geysers
can reach heights of hundreds of km. From the Cassini mission, NASA.

It has been proposed that shear heating along the fractures (figure 2) explains surface
temperature anomalies on the ice shell adjacent to the fractures around the South Pole
[6, 8], and may explain the plume genesis if the shear heating is large enough to cause
melting. Prevailing models have treated pure fresh ice, but the ice shell is likely a binary
mixture of salts and water. Partial melting of the salt and ice mixture can result in the
formation of a mushy layer, which is a reactive porous layer of fresh ice crystals and saline
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liquid brine, and allows for convection of the interstitial fluid with a corresponding heat
transport [16].

Figure 2: Left: Enceladus, in false colours, with the cracks at the South Pole (light blue
stripes). Right: Geysers blowing from the cracks. From the Cassini mission, NASA.

Nimmo et al. [8] proposed a model of partial depth cracks in fresh ice to supply water to
the geysers of Enceladus. This model, however, does not provide a source for the observed
liquid saline water that seems to have experienced serpentisation reactions consistent with
contact of a liquid ocean with the solid core [12]. An alternative approach, widely used,
considers cracks through the full depth of the ice shell, down to an inner liquid ocean located
under the 20 km thick ice shell (see figure 3(a)) [11, 13, 20]. Nonetheless, such cracks are
difficult to maintain through the full depth of the ice shell. In this study, we adapt the first
of these two models, and investigate a potential source for salts. We consider a new model
where a crack stops at a finite depth within the the ice shell. Through frictional heating
along the crack, a mushy region with salty water flowing through an icy matrix is formed,
and provides water and salt for geysers (see figure 3(b)).

(a) ocean-exchange model

Ocean
Ice

(b) near-surface heating model

Local
melting

Figure 3: Two different models for the cracks: (a) full depth crack, going from the surface
to the underneath ocean; and (b) partial depth crack with localised ice melting through
frictional heating, creating a “mush”. For further details, see [8] and [14].

We model the crack by a partial depth crack, in a 2D ice region (figure 4(a)). Due to
tidal forcing, the two sides of the crack rub against each other, acting as a heat source. To
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build insight we here consider an illustrative problem where the frictional heating along the
crack generates a constant heat flux and is modelled by a sharply peaked Gaussian along
x (horizontal direction) with no z variation (vertical direction). The reason for this is to
approximate a delta function which describes heating localised along the crack. We expect
this to result in partial melting of the eutectic ice shell (figure 4(b)). Due to heating at the
crack, the ice shell starts to melt and forms a mushy region in which salty water is flowing
through an ice matrix, and convective motion is expected to be sustained by the heat source
and the resulting relatively fresh meltwater released by melting [7]. The ice-mush boundary
can evolve freely and either expand or contract with changes in solid fraction and porosity.
In order to have a better understanding of the flow close to the crack, we here focus on a
second simplified model with a full depth crack in a mushy region (figure 4(c)). We below
show that using the near-eutectic approximation, which means that the solute composition
S of the system is close to the eutectic composition SE , and assuming that the permeability
does not depend strongly on porosity, the problem simplifies to porous media convection
with a constant Gaussian heat flux located at the crack. Whilst this model neglects some
physical processes relevant to the dynamics in an Enceladus-like setting, the goal is to yield
an analytically tractable problem capturing the key elements of the convective boundary
layer flow near to a heated crack in order to build initial insight.

(a)

Ice

Crack
= Heating source

. Frictional heating along the crack:

Q(x, z) = Q0√
2πσ2

exp
(
− x2

2σ2

)
H(z − z0)

(b)

Ice

Model 1:

Partial melting of eutectic ice shell

(c)

Mush

Model 2:

Full crack (z0 = 0)
Use near-eutectic approximation
→ porous media convectionz

x

Figure 4: Crack modelling: (a) partial depth crack in an ice layer, with frictional heating
(constant Gaussian heat flux multiplied by a Heaviside function); (b) partial depth crack
with frictional heating producing partial melting of the eutectic ice shell; and (c) full depth
crack in a mushy region with constant heat flux and porous convection. In (c) we assume a
constant temperature T = TE and no vertical velocity for the flow at the top and bottom
boundaries.

In this report, we explain how the frictional heating and the mushy region along the
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crack could be a plausible source of geysers on Enceladus. In section 2, we illustrate the key
features of the flow using solutions from Direct Numerical Simulations (DNS). In section
3, we derive the theoretical framework suitable for our study and we show that different
behaviours may exist close to the crack. This gives us an overall picture of the problem.
We quantitatively check the relevant scalings by comparison with the DNS in section 4.
Conclusions and discussions are drawn in section 5.

2 Direct Numerical Simulation and Comments

We consider a porous ice shell in the configuration of figure 4(c) (model 2). The model
is assumed to be 2D and we define H as the vertical extension of the domain, which
corresponds to the depth of the crack. In this configuration, the relevent variables are the
temperature, the liquid salinity, and the velocity, and localised melting produces a mushy
region close to the crack, with a given permeability and porosity. We here assume that the
permeability is constant, and that the porosity depends slowly on the solid fraction. We
will justify, in section 3, that the problem reduces to porous media convection.

We run Direct Numerical Simulations using Dedalus [1] in this idealised framework. We
use a constant Gaussian heating along the crack,

Q(x, z) =
Q0√
2πσ2

exp

(
− x2

2σ2

)
, (1)

where Q0 is the heating coefficient and σ the width of the Gaussian, and solve the dimen-

sionless set of equations for porous media convection (see next section). Preliminary results
are presented in figure 5 to provide context for the subsequent discussion.

The left panel in figure 5 shows contours of the stream function in the steady state, in a
DNS with H = 7 (size of the crack, in length units) and Q0 = 100 (dimensionless heating 
source). Two convective cells are created, one flowing clockwise (in red) and one flowing anti-
clockwise (in blue). They are symmetric right-left but the up-down symmetry is broken.
From the thin layer close to the crack, we can infer the existence of a vertical boundary layer
in which the flow is accelerated vertically to the top. The right panel in figure 5 shows the
instability triggered when the heating is increased further, to Q0 = 180. The study of this 
instability, however, is beyond the scope of this work.

We focus primarily on the boundary layer flow near the crack supplied by a reservoir
of far field mush, which could supply the geysers. These dynamics are common to both
model 1 and model 2 (figure 4)(b) and (c)). The far-field return flow will be more strongly
influenced by the specific far-field boundary conditions and the geometry of the mushy
inclusion. Hence, whilst the generic feature of a return flow is common to both model 1 and 
model 2, the specific scalings of the far-field dynamics in figure 5) may differ somewhat from
that in the more detailed model 1. Hence we focus less on the far field and, in the next
sections, we show that there are different behaviours close to the crack and we quantitavely
explain them.
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Figure 5: Contours of stream function in a DNS using Dedalus [1], imposing a constant
Gaussian heat flux on a full crack located at x = 0, and zero buoyancy and vertical veloctity
at the top and at the bottom of the domain. Red is clockwise and blue is anti-clockwise.
Left: Steady state reached at relatively low heating Q0 = 100. Right: Instability triggered 
while increasing heating, at Q0 = 180.

3 Theory of Mushy Regions

A mushy region, or a mush, is a region in which the solid-liquid interface has become so
convoluted that the solid forms a matrix of crystals bathed in the remaining fluid [18].
Porous sea ice is an example of such a mushy layer [16]. Relevant parameters in such a
system are the temperature T , the salinity (solute) S of the liquid, the solid fraction φ
(i.e. φ = 1 means everything is solid, φ = 0 means everything is liquid), and the velocity
of the flow running through the porous media u = (u, 0, w). In this section, we first state
the general equations of the physics of mushy regions. Then, we derive the theoretical
framework appropriate for our study by neglecting terms proportional to small parameters,
using assumptions corresponding to a so-called near-eutectic approximation.

3.1 General equations

3.1.1 Heat equation

The temperature in the mush is governed by the advection-diffusion equation

∂T

∂t
+ (u · ∇)T = κ∇2T +

L

Cp

∂φ

∂t︸ ︷︷ ︸
phase change

, (2)

with L the latent heat, Cp the heat capacity, and κ the thermal diffusivity assumed to
be constant. Compared to the classical advection-diffusion equation, an additional term
is included to take into account the contribution of latent heat transfer from the phase
changes.
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3.1.2 Solute equation

The salinity, or solutal composition, of the liquid part in the mush is governed by an
advection-diffusion equation. Due to the low diffusivity of salt, we neglect the diffusive term
compared to the thermal diffusivity. The temporal variation of the salinity only accounts
for the liquid phase, which means in the (1 − φ) liquid fraction. We therefore consider

(1− φ)
∂S

∂t
+ (u · ∇)S = S

∂φ

∂t︸ ︷︷ ︸
melting

, (3)

where an additional term for the melting contribution to account for brine rejection during
freezing, or freshening during melt. In this model, we assume that no salt is frozen into the
ice crystals (pure ice).

3.1.3 Local themodynamic equilibrium

In the mush, the liquid and solid phases are in equilibrium. Transition from a fully solid
system to a fully liquid system occurs by increasing the temperature T , at constant salinity
S, through system of solid and liquid (figure 6). While in this region, the liquid phase and
the solid phase are at the same temperature but have different salinities: the solid phase
has S = 0, and the salinity of the liquid phase aligns on the liquidus. The liquidus is the
border line TL(S) between the liquid region and the region with liquid and solid. At first 
order, we assume that this relation is linear and write

T = TL(S) = Tf −m(S − S0), (4)

with S0 a given solute concentration, Tf the freezing temperature at S = S0, and m a 
constant parameter.

3.1.4 Momentum equation: Darcy’s Law

The flow in the mush is governed by Darcy’s law, which is a reduction of the Navier-Stokes
equations for flow in a porous media with no inertia

µ

Π
u = −∇P + ρg, (5)

with µ the viscosity, Π the permeability, ρ the density, and g the gravity field. In this
equation, u = (u, 0, w) and P stand for the velocity and the pressure fields.

3.1.5 Mass (continuity) equation

Considering an incompressible flow, assuming that solid and liquid densities are equal, we 
also have the continuity equation

∇ · u = 0. (6)

327



T

S

TE

SE

Liquid (Ocean)

Liquid+Solid

Solid (Ice)

Figure 6: Idealised phase diagram for a binary alloy of water and salt. TE and SE are the 
eutectic temperature and salinity. The line between the liquid phase and the liquid + solid
phase is called the liquidus and is assumed to be linear at first order [17, 18]. Geysers on
Enceladus are mostly composed of water and salt (NaCl), with volatile gases (CO2, N2, 
CO, CH4) in the gas phase [12].

3.1.6 Complete set of equations

Therefore, the complete set of equations is

∂T

∂t
+ (u · ∇)T = κ∇2T +

L

Cp

∂φ

∂t
, (7)

(1− φ)
∂S

∂t
+ (u · ∇)S = S

∂φ

∂t
, (8)

T = TL(S) = Tf −m(S − S0), (9)
µ

Π
u = −∇P + ρg, (10)

∇ · u = 0. (11)

3.2 Buoyancy

In Darcy’s law (5), the density of the fluid ρ is a function of the temperature and of the
salinity, which we approximate as

ρ(T, S) = ρ0 (1− αT (T − T0) + αS(S − S0)) , (12)

where ρ0 is a reference density, αT and αS are constant parameters, and T0 and S0 are
reference temperature and salinity. From the liquidus equation (4), however, temperature
and salinity are linearly related through a constant coefficient m, and the density ρ can be
written as a function that depends only on temperature. We have

ρ(T ) = ρ0 (1− α(T − T0)) , (13)
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with α = αT +αS/m. The coefficient αS/m can often dominate, in which case the buoyancy
is controlled by the meltwater released by phase changes as the system rapidly relaxes to
local thermal equilbrium.

We define the buoyancy b as a linear function of temperature

b = αgρ0(T − T0), (14)

so that
ρg = ρ0g − b. (15)

We will write both the advection-diffusion equation for heat (2) and the advection-
diffusion equation for salinity (3) in terms of b. In Darcy’s law, the constant term ρ0g can
be included in a redefined pressure field.

The buoyancy can be fully determined using a boundary condition that closes the system.
Considering the Gaussian heating model, when the width of the heat flux source σ goes to
zero, it behaves like an imposed flux condition at x = 0 as

F = −λ∂T
∂x

= − λ

αgρ0

∂b

∂x
, (16)

where F is a constant heat flux, parametrising the problem, and λ the thermal conductivity
of water, assumed to be the same in the liquid and the ice.

3.3 Dimensionless equations

We consider a characteristic length scale H, corresponding to the vertical size of the crack,

and a characteristic time scale H2/κ, where κ is the thermal diffusivity. We therefore 
construct a characteristic velocity scale κ/H. This leads us to the definition of dimensionless
lengths, time, and velocities:

x, z → x̃ =
x

H
, z̃ =

z

H
, t → t̃ =

κt

H2
, (17)

and

u,w → ũ =
Hu

κ
, w̃ =

Hw

κ
. (18)

A similar scaling can also be found for the buoyancy and the pressure

b → b̃ =
HΠ0b

κµ
, and p → p̃ =

Π0p

κµ
− gHΠ0ρ0

κµ
z. (19)

For the sake of clarity, the dimensionless variables will be noted without tildes. Hence, the
dimensionless equations are

∂b

∂t
+ (u · ∇)b = ∇2b+ SRa

∂φ

∂t
, (20)

(1− φ)
∂b

∂t
+ (u · ∇)b = (b+ CRa)

∂φ

∂t
, (21)

u = −∇p+ b, (22)

∇ · u = 0. (23)
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where S is the Stefan number defined as

S =
λL

CpFH
, (24)

and C the compositional ratio

C =
λ(TL(Ss)− T0)

FH
. (25)

The dimensionless form of the heat flux sideways boundary condition can also be written
in terms of the buoyancy b

F = −λ∂T
∂x
→ αgρ0Π0H

2

κ2µCp
F = − ∂b̃

∂x̃
, (26)

and introduces a porous medium Rayleigh number Ra as

Ra =
αgρ0Π0FH

2

κ2µCp
, (27)

that represents the ratio of buoyant to dissipative mechanisms (thermal and viscous). This
Rayleigh number allows us to write the boundary condition in a simpler way

Ra = − ∂b
∂x
, (28)

with dimensionless variables. In the DNS, we therefore identify the dimensionless heat flux F
to the Rayleigh number Ra. It can also be used to define a natural length scale h
written as

h =

√
H2

Ra
=

(
κ2µCp

αgρ0Π0F

)1/2

. (29)

3.4 Near-eutectic approximation 

Using the compositional ratio C defined as

C =
λ(TL(Ss)− T0)

FH
, (30)

the two advection-diffusion equations for heat and salinity write in dimensionless form

∂b

∂t
+ (u · ∇)b = ∇2b+ SRa

∂φ

∂t
, (31)

∂

∂t
[CRaφ+ b(1− φ)] + (u · ∇)b = 0. (32)

We now consider the near-eutectic approximation as described by Fowler [4] and in the
2007 GFD lectures [19]. Under this assumption, the composition of the system is close to
the eutectic composition SE (see figure 6). We consider a limit where b is order 1 and C
large, with the solid fraction φ = O(1/C ) � 1. Approximating (1 − φ)b ' b at leading
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order in (32) yields to an equation for ∂tφ in terms of ∂tb. Then, eliminating ∂tφ from (31)
results in (33), an advection-diffusion equation for the buoyancy that does not involve the
solid fraction φ

Ω

[
∂b

∂t
+ (u · ∇)b

]
= ∇2b, (33)

where Ω = 1 + S /C represents a modified dimensionless heat capacity, which accounts for
the impact of phase changes and latent heat transfer that occurs during warming or cooling
of the solid matrix.

3.5 Collapsed equation

From now, we focus on 2D dynamics in the plane (x, z) containing the crack. We will show
that the remaining equations (10), (11), and (33), can all collapse into a single equation
of a single function. This equation will help us to understand the physics involved in the
problem.

From the continuity equation (6), we define a streamfunction ψ so that the horizontal
and vertical velocities u and w write

u = −∂ψ
∂z

and w =
∂ψ

∂x
. (34)

Then, from the horizontal projection of Darcy’s law, which involves cross-derivatives of
the pressure field and of the streamfunction, we define a potential ϕ so that p and ψ can
be written as

p =
∂ϕ

∂z
and ψ =

∂ϕ

∂x
. (35)

Using this potential, the vertical projection of Darcy’s law becomes an equation for ϕ and
the buoyancy b,

∇2ϕ = b. (36)

As a result, all relevant functions of the problem can be expressed using derivatives of
the potential ϕ, as

p = ∂zϕ, (37)

= ∂xϕ, (38)

u = −∂x∂zϕ, (39)

w = ∂2
xϕ, (40)

b = ∇2ϕ = ∂2
xϕ+ ∂2

zϕ. (41)

From these results and using the advection-diffusion equation for b (33), we obtain a
collapsed equation for ϕ that is

Ω
[
∂t∇2ϕ− ∂x∂zϕ ∂x∇2ϕ+ ∂2

xϕ ∂z∇2ϕ
]

= ∇4ϕ. (42)

As Ω is a parameter of order 1, by renormalising the potential ϕ and the time variable t as

ϕ → 1

Ω
ϕ and t → Ωt, (43)
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the equation for ϕ writes without explicit dependence in Ω. Hence, we have the following
equation with three different contributions

∂t∇2ϕ︸ ︷︷ ︸
temporal

− ∂x∂zϕ∂x∇2ϕ+ ∂2
xϕ∂z∇2ϕ︸ ︷︷ ︸

non−linear advection

= ∇4ϕ︸︷︷︸
diffusion

. (44)

In our study, we will consider steady states for buoyancy and velocity, so the temporal
contribution will always be neglected, and relevant balances will involve the non-linear ad-
vection term and the diffusive term. We focus on steady solutions after the initial transient
adjustment after warming begins (e.g. figure 5, left), but note that at sufficiently large
Rayleigh number the transient dynamics can potentially trigger an instability, as shown
in figure 5(right). Interestingly, the two non-linear contributions have the same scaling in
terms of numbers of x and z derivatives, due to continuity.

Note that the heat flux boundary condition can also be expressed in terms of ϕ as

(45)F = −∂xb = −∂x∇2ϕ at x = 0. 3.6

Different regimes

The buoyancy is given by the Laplacian of ϕ and, as such, it involves x and z derivatives.
These derivatives may or may not have the same scalings, which leads to three different
idealised cases:

1. If ∂x ∼ ∂z, both derivatives contribute to the buoyancy and the region is isotropic.

2. If ∂x � ∂z, the horizontal variations are more important than the vertical variations,
which is characteristic of a vertical boundary layer.

3. If ∂x � ∂z, the horizontal variations are less important than the vertical variations,
which is characteristic of a horizontal boundary layer.

3.6.1 Isotropic scaling

We define the following scalings for x, z, and ϕ

x, z → L and ϕ → A, (46)

where x and z have the same scaling due to isotropy.
The scaling of the heat flux boundary condition gives

F = −∂xb ' − ∂x∇2ϕ︸ ︷︷ ︸
A
L3

, (47)

leading to
A ∼ FL3 ∼ L3. (48)

We assume that the system is in a steady state, so that temporal derivatives have no
contribution and the scaling of the potential equation writes

∂t∇2ϕ− ∂x∂zϕ∂x∇2ϕ+ ∂2
xϕ∂z∇2ϕ︸ ︷︷ ︸

A2

L5

= ∇4ϕ︸︷︷︸
A
L4

(49)
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and, reinjecting the flux scaling into the potential equation, we obtain that

∂x∂zϕ∂x∇2ϕ+ ∂2
xϕ∂z∇2ϕ ∼ A2

L5
∼ L, (50)

∇4ϕ ∼ A

L4
∼ 1

L
, (51)

meaning that the non-linear terms and the diffusive term have different scalings, in L and
in 1/L respectively. Two asymptotic behaviours can therefore be described:

1. L � 1: The diffusive term dominates the equation and is at least one order of mag-
nitude in L higher than the non-linear terms. The regime is diffusive, which means
that u · ∇b ≈ 0, and the buoyancy satisfies a Poisson equation. From the scaling of
ϕ, we have b ∼ L and w ∼ L; and

2. L� 1: The non-linear terms dominate the equation.

3.6.2 Vertical boundary layer

We define the following scalings for x, z, and ϕ

x → Lx, z → Lz ∼ z, and ϕ → A, (52)

where Lz ∼ z. In this case, the variations along z are small compared to the variations
along x and the scaling length Lx is expected to be a function of z [2, 5].

We assume that the system is in a steady state, so that temporal derivatives have no
contribution. Given that ∂x � ∂z, we neglect the z derivatives compared to x derivatives
and the scaling of the potential equation writes

∂t∇2ϕ− ∂x∂zϕ∂x(∂2
xϕ+∂2

zϕ) + ∂2
xϕ∂z(∂

2
xϕ+∂2

zϕ)︸ ︷︷ ︸
A2

LzL
4
x

= ∂4
xϕ︸︷︷︸
A

L4
x

+∂4
zϕ, (53)

leading to
A ∼ Lz ∼ z. (54)

The same method gives a scaling of the sideways-diffusive heat flux boundary condition

F = −∂xb ' − ∂x(∂2
xϕ︸ ︷︷ ︸

A

L3
x

+∂2
zϕ), (55)

then
Lx ∼ (A/F )1/3 ∝ z1/3. (56)

From these scalings, we define Lx as

Lx = h2/3z1/3 (57)

where h is the characteristic length defined from the Rayleigh number and the size of the
crack H in equation (29), and a self-similar variable η by

η =
x

Lx
=

x

h2/3z1/3
. (58)
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Therefore, the potential ϕ can be written in terms of a function f as

ϕ = zf(η). (59)

As we are neglecting the z derivatives, we have

w = b = ∂2
xϕ and p = ∂zϕ, (60)

and we obtain the following scalings for w and b

w ∼ z1/3 and b ∼ z1/3. (61)

Replacing ϕ by zf(η) in the collapsed advection-diffusion equation, we derive a self-similar
ordinary differential equation for f ,

(f ′′)2 − 2f ′f ′′′ − 3f ′′′′ = 0, (62)

with the boundary conditions

f ′′′(0) = −1︸ ︷︷ ︸
flux at x=0

, f ′(0) = 0︸ ︷︷ ︸
u=0 at the crack

and f ′′(η∗) = 0 with η∗ “large”︸ ︷︷ ︸
constant b in the far field

. (63)

Note that the final condition of constant buoyancy in the far field (for η∗ “large”) is equiv-
alent to zero vertical velocity in the far field.

3.6.3 Horizontal boundary layer

We define the following scalings for x, z, and ϕ

x → Lx ∼ x, z → Lz, and ϕ → A, (64)

where Lx ∼ x as the variations along x are small compared to the variations along z. The
scaling length Lz is expected to be a function of x.

We assume that the system is in a steady state, so that temporal derivatives have no
contribution. Given that ∂x � ∂z, we neglect the x derivatives and the scaling of the
potential equation writes

∂t∇2ϕ− ∂x∂zϕ∂x(∂2
xϕ+∂2

zϕ) + ∂2
xϕ∂z(∂

2
xϕ+∂2

zϕ)︸ ︷︷ ︸
A2

L3
zL

2
x

= ∂4
xϕ+ ∂4

zϕ︸︷︷︸
A

L4
z

, (65)

leading to
A ∼ L2

x/Lz ∼ x2/Lz, (66)

where Lz(x) has to be determined.
As for the vertical boundary layer, we introduce a similarity variable ζ

ζ =
z

Lz(x)
, (67)
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and the potential ϕ therefore writes in terms of a function g as

ϕ =
x2

Lz(x)
g(ζ). (68)

We determine Lz(x) by specifying that the buoyant heat flux coming from below is
transported sideways (see figure 7). A full solution of the problem will require asymptotic
matching of the incoming fluxes. However, to determine the scalings this only needs to be
true in an order-of-magnitude sense; the whole buoyant heat flux, corresponding to the heat
flux at the entire crack (i.e. sum of the flux 1/h2 emitted over the crack of length H), is
going sideways through this top region, meaning

∫
ubdz ∼ H

h2
as h→ 0. (69)

Computing the left-hand side

∫
ubdz =

x3

Lz(x)4

∫ [
g′′(ζ)

(
2g′(ζ)− xL′z(x)

Lz(x)

(
ζg′′(ζ) + 2g′(ζ)

))]
dz. (70)

Then, the balance of the heat fluxes gives

Lz(x) =
h1/2x3/4

H1/4
. (71)

Black Box
IV

δz = Lz

δx

Crack
F

Fin

Fout

Fin ' Fout

Figure 7: Balance of heat fluxes.

Hence, the potential ϕ writes

ϕ =
H1/4x5/4

h1/2
g(ζ). (72)
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As we are neglecting the x derivatives, we have

w = ∂2
xϕ and b ' ∂zp = ∂2

zϕ, (73)

which implies that the hydrostatic balance holds at leading order in this boundary layer,
and the pressure gradient writes

∂zp = ∂2
zϕ =

H3/4

h3/2x1/4
g′′(ζ). (74)

4 Four Different Regions

4.1 DNS

Using the above scaling arguments, we can define four different domains for the DNS results
presented in figure 5(left). They are shown in figure 8, labeled I, II, III, and IV, starting from
the bottom of the crack, and correspond to the different scalings derived in section 3. These

domains yield contrasting behaviour of the along-crack profiles of w, b, and ∂zp (see figure 9).

The interest in these three quantities is motivated by the relation b = ∇2ϕ = w + ∂zp,
showing that the buoyancy, the vertical velocity, and the vertical pressure gradient, are
linearly related.
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0

1

2

3

4

5

6

7

I

II

III

IV

x

z

Figure 8: Contours of stream function in a DNS, imposing a heat flux on a full crack located
at x = 0. We identify four different regions, labeled I, II, III, and IV, from the bottom to
the top of the domain.

These four regions have different scalings, that can be explained as follow:
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Figure 9: Profiles along the crack. Top: Vertical velocity w. Middle: Buoyancy b. Bottom:
Vertical pressure gradient ∂zp.
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1. Region I: Tip behaviour, in a small regularisation region. All quantities are small and

the region is isotropic. Diffusive terms dominate and the buoyancy satsifies a Poisson

equation. Because this region is isotropic, we expect the variation along the length of
the crack to satisfy w ∼ z and b ∼ z as discussed in section 3.6.1;

2. Region II: Rising plume region, described by a vertical boundary layer in which
horizontal spatial derivatives dominate. The buoyancy is mostly given by the vertical

velocity b ' w. Due to the vertical boundary layer, z1/3 scalings are expected as
discussed in section 3.6.2;

3. Region III: Connection region, between II and IV, where b, w, and ∂zp are of the same

order of magnitude. The region is isotropic and the non-linear terms dominate the
collapsed equation. The incoming plume flow from below carries most of the buoyancy
flux, which is advected through this region and the additional heating at the wall does
not change the buoyancy flux substantially, remaining of the same order of magnitude
throughout this region; and

4. Region IV: Top corner region, with the scaling of a top boundary layer, bringing the
heat flux sideways. The buoyancy is nearly in hydrostatic balance with the vertical
pressure gradient, so b ' ∂zp. Again, this region is diffusive and we expect the linear

scalings derived in section 3.6.1. The fluxes, however, point towards a region that grows
with x with a horizontal boundary layer as in section 3.6.3 and its scalings for the
pressure gradient.

Figure 10 presents log-log plots of the vertical velocity and of the buoyancy in which the
different scalings predicted analytically in the theory section 3 are tested. Figures 10(a) and
(b) show log-log plots of the vertical velocity along the crack, starting from the bottom and
starting from the top, respectively. We first linear scaling w ∝ z in region I, two 1/3
scalings w ∝ z1/3 and w ∝ (H − z)1/3 in region II and III, and a linear scaling w ∝ (H − z)
in region IV. Figures 10(c) and (d) show log-log plots of the buoyancy along the crack,
starting from the bottom and starting from the top, respectively. Similarly to the vertical
velocity, we first linear scaling w ∝ z in region I, a 1/3 scalings w ∝ z1/3 in region
II and a minus 1/3 scaling w ∝ (H − z)−1/3 in region III, and a linear scaling w ∝ (H − z)
in region IV. As discussed below, scalings for regions I, II, and IV, are consistent with the
theoretical expectations. Region III, however, shows interesting scalings that are still to be
explained.

We now look for more quantitative arguments of the different scalings.

4.2 Region I

Close to the tip, at the bottom of the crack, the vertical velocity, the buoyancy, and the
pressure gradient are small. All terms contribute to the equations as the region is isotropic.
The scalings of the potential equation

∂t∇2ϕ− ∂x∂zϕ∂x∇2ϕ+ ∂2
xϕ∂z∇2ϕ = ∇4ϕ, (75)

and the flux
F = −∂xb ' −∂x∇2ϕ, (76)

observe a

observe a
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Figure 10: Scalings inferred from the profiles along the crack. (a): Vertical velocity from the 
bottom; (b): Vertical velocity from the top; (c): Buoyancy from the bottom; and (d):
Buoyancy from the top.
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gives

∂x∂zϕ∂x∇2ϕ+ ∂2
xϕ∂z∇2ϕ ∼ A2

L5
∼ L, (77)

∇4ϕ ∼ A

L4
∼ 1

L
. (78)

As shown before (section 3.6.1), because the length scale is small, this region is diffusive
and has a linear scaling for b and w with z, that is observed in figure 10(a) and (c).

4.3 Region II

In region II, the flow acts like a rising buoyant plume described by the vertical boundary
layer from section 3.6.2. The lateral extent of this region at the bottom, connecting to
region I, is of order h, and increases with z. From equation (61), our theory predicts a
scaling in z1/3 for w and b which is observed in the log-log plot in figures 10(a) and (c).
In figure 11, we present horizontal slices of the vertical velocity (left) and of the buoyancy
(right) at different depths in region II (plain lines), rescaled in the horizontal variable by
z1/3 as well as in amplitude. There is a good collapse at x = 0, close to the crack. The
superimposed dashed line is the self-similarity solution of equation (62) and (63), which are
recalled here

(f ′′)2 − 2f ′f ′′′ − 3f ′′′′ = 0, (79)

and
f ′′′(0) = −1︸ ︷︷ ︸

flux at x=0

, f ′(0) = 0︸ ︷︷ ︸
u=0 at the crack

and f ′′(η∗) = 0 with η∗ “large”︸ ︷︷ ︸
constant b in the far field

. (80)

This is computed using Dedalus over 256 Chebyshev nodes, enough to ensure that the far
field boundary condition is satisfied. Numerical convergence of the solution is obtained
after a few iterations. The computed solutions show a good agreement with the data. The
profiles diverge from the similarity solution in the far field, due to the influence of the return
flow that is not included in the boundary layer model.

4.4 Region III

Region III is an isotropic region connecting regions II and IV. Figure 12 shows how this
connection region behaves. We recall that

b = w + ∂zp, (81)

from the definition of the potential ϕ. In region II, as seen before, the vertical boundary
layer model leads to w ' b and ∂zp is negligible, whereas in region IV, b ' ∂zp and w has
a small contribution. The only way this configuration can occur is to have an isotropic
transition region in between, in which w and ∂zp have the same order of magnitude, with
w decreasing while ∂zp increases. This behaviour is observed in domain III in figure 12.

From the log-log plots in figures 10 (b) and (d), we infer two empirical scalings: a
(z−H)1/3 scaling for w, and a (z−H)−1/3 scaling for b. Figure 13 presents horizontal slices
of vertical velocity (left) and buoyancy (right) rescaled by 1/3 and −1/3 power laws, showing
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Figure 11: Left: Horizontal slices of vertical velocity at different depths in region II (plain
lines) and self-similarity solution (dashed line). Right: Horizontal slices of buoyancy at
different depths in region II (plain lines) and self-similar solution to (62)-(63) (dashed line).
The colours correspond to different depths randomly chosen.
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Figure 12: Buoyancy (plain line), vertical pressure gradient (dashed line), and vertical
velocity (dotted line) taken along the crack.
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Figure 13: Left: Horizontal slices of vertical velocity at different depths in region III. Right:
Horizontal slices of buoyancy at different depths in region III.

a good collapse close to the crack. The collapse is better for w than for b, pointing towards
a transition between a vertical boundary layer in which w is set and a fully isotropic region
dominated by fluxes. This collapse, however, is curious as it does not correspond to the
boundary layer described in the previous sections, and still awaits a theoretical explanation.

4.5 Region IV

Region IV is the top region and has the scalings of the horizontal boundary layer in which
the flow spreads horizontally. In this region, the pressure gradient reaches a maximum and
has the largest contribution to the buoyancy. According to equation (74), the peak in the
vertical profile of the pressure gradient should increase and move upwards as we increase
the Rayleigh number. Figure 14 shows results from DNS at various Rayleigh numbers,
with this increasing peak. For each of these profiles, we measure the amplitude of the peak
max(∂zp) and its location zm from the top of the crack. Figure 15 presents these data in
log-log plots. For the amplitude of the peak (figure 15(left)) we have a Ra3/4 scaling (or
h−3/2) consistent with the theory. For the location zm (figure 15(right)), we have a Ra−1/2

scaling (or h) also consistent with the theory.
The linear behaviour in the top corner can be described using a stagnation point solution.

A series expansion of the stream function in this region gives

ψ = Ax+Bz + Cx2 +Dxz + Ez2, (82)

and the corresponding velocities are

u = −∂zψ = −B −Dx− 2Ez, (83)

w = ∂xψ = A+ 2Cx+Dz. (84)
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The different coefficients can be determined as follow. Firstly, there is no horizontal velocity
at x = 0 so B = E = 0. Secondly, there is no vertical velocity at z = 0 so A = C = 0.
Finally, the stream function is

= Dxz, (85)

with D a coefficient to be determined. It ensures a linear scaling in z for w. The coefficient
D depends on matching to the flow from the incoming isotropic region; this calculation is
challenging and not pursued here.

5 Conclusions and Discussion

5.1 Different regimes

We derived a simple model of frictional heating along a crack in a porous media, that
mimics the mushy region created around a crack in the ice shell of Enceladus. Through
Direct Numerical Simulations and construction of approximate asymptotic solutions, we
checked that our theoretical model provides a good description of the phenomenon. Four
different regions were identified along the crack, starting from the bottom to the top: a
diffusive region, a rising plume (vertical boundary layer), an isotropic connection region,
and a top layer. These regions and their scalings are summarised in figure 16.

5.2 Melting rate

The advection-diffusion equation for b and the solute and heat equations give an equation for
the solid phase evolution, or melting rate, depending on the potential ϕ. In a dimensionless
form this yields

∂φ

∂t
= − 1

RaC Ω
∇4ϕ. (86)

In this model, we assume that the system reaches a steady state for the flow and for the
buoyancy (and temperature). Although we do not consider porosity variation here (Π is a
constant and is equal to Π0), the expected change to porosity can be estimated as the solid
fraction is allowed to vary over a slow timescale, and ∂tφ is non-zero.

The melting rate (∂tφ ∼ −∇4ϕ) in the DNS is presented in figure 17, in which areas
with decreasing solid fraction are shown in red. Positive value for −∂tφ means that the
solid fraction is decreasing, corresponding to ice melting. A strong and localised region of
melting is identified at the top of the crack, corresponding to region IV, with a vertical
extent of order h. This confirms the importance of the top region in the melting problem,
which is therefore likely to be the source of geysers. The solutions are likely relevant if
a pre-existing porous region is suddenly heated. In this DNS, as the initial condition is
of pure eutectic, the solution for the melting rate becomes unphysical, which is why small
regions of freezing appear close to the crack and the results cannot be applied directly to the
crack problem. This freezing is a slower process than the melting, as −∂tφ varies over more
than an order of magnitude between the freezing and the melting region at the crack, and
even more if we look at the top region. It is likely that this behaviour would be suppressed
with a feedback of the porosity on the flow, as a solid fraction equal to 1 would prevent the
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Figure 16: Left: Contours of stream function in the steady state. Right: along crack profiles of
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liquid from flowing. The relevent scalings, however, are still a good approximation of what
is happening.
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Figure 17: Melting rate, or solid fraction change, from the DNS (red shows melting).

5.3 Importance of the top region

The vertical extension of the top region can be estimated through the Rayleigh number, as

Ra = (H/h)2. From the previous derivation, the Rayleigh number can be expressed into 
a classical Rayleigh number, often used in convection problems, with a fixed multiplicative

factor

Ra =
gαΠ0CpFH

2

κ2ν
=

(
gα∆TH3

νκ

)
Π0CpF

κ∆TH
≡
(
gα∆TH3

νκ

)
Π0

H2
. (87)

All parameters in this formula can be estimated, at least in order of magnitude [9, 14],
assuming that the material properties are similar to terrestrial sea ice

g = 10−1 m · s−2,

α = 10−2 K−1,

∆T = 10 K,

κ = 10−5 m2 · s−1,

ν = 10−6 m2 · s−1,

H = 10 km,

Π0 = 10−10 m2,
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where we assume that the media has high solid fraction and low porosity, so the thermal
diffusivity κ is well approximated by that of the solid. Hence

Ra ∼ 100 and h ∼ 1 km, (88)

meaning that the top region is localised over a short depth near the surface.

5.4 Discussion

In this study, we developped a simple model of buoyant plume generated through shear-
heating of a crack. We adapted Nimmo et al.’s model of a finite depth crack [8] to consider
mushy dynamics of an impure partially melted ice and salt mixture, and assumed that a
constant heat flux is applied along the crack due to tidal heating. We identified four different
regions created along the crack through the heating process, and we show that the relevent
part of the crack that dominates the melting is located near the surface over a short depth.
The proposed mechanism is robust and the different scalings observed in Direct Numerical
Simulations agree well with the theory.

Contrary to the partial crack model of Nimmo et al. [8], the melting process we describe
can supply salts to the geyser plumes. Also, it does not involve a full depth crack and does
not rely on the assumption that the cracks at the surface are connected to an inner liquid
ocean [11, 13, 20]. All the melting process, water and salts supply, happen close to the crack
in a finite depth region and are enhanced in the very top region, over a depth estimated
to be of order 1 km. We are only investigating the possible source mechanism for geysers,
and the steady state regime we describe is only valid at short times, as it breaks as soon as
the solid fraction goes to zero. We have also modelled a closed system, and hence the 
model cannot directly explain the ejection of water by geysers.

Different assumptions, however, are still to be tested. For example, the top boundary
condition for temperature would be radiative and should match with observational data [14].
Moreover, different scalings still remain with no explanation: region III, in particular, shows
two different scalings for the buoyancy and the vertical velocity, but they do not match with
our theoretical developments. In this region, it is very likely that the vertical velocity
matches with region II, whereas the buoyancy and the pressure fields match with region IV, 
and that the total heat flux is conserved, but we have no supporting mathematical evidence
of that. No analytical result for region I, at the bottom of the crack, has been properly
derived. Attempts to obtain the buoyancy and the vertical velocity from Green’s functions
have been made assuming a delta function heating. However, the results show a slightly
different scaling than the DNS. The explanation for that is presumably due to the finite width
of the Gaussian in the DNS, versus the delta function spike of heating in the analytical
approximation. The top region IV could be better understood by defining regions IV and V:
one being the top corner, the other one being the horizontal boundary layer that extends near
the surface in the x direction. Different scalings can then be tested in region V accordingly to
the horizontal boundary layer theory from section 3.6.3.

A more accurate description of the problem could be derived, relaxing the constant
porosity assumption. The flow would then feel a feedback from the melting of the mush
and the phase change itself, as the porosity would be a function of the solid fraction. The
influence of the boundaries needs to be more specifically parametrised too, as there should
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be a boundary between the mushy region and the pure ice region, that can evolve through
time as the mush is growing. The existence of a physical instability triggered at sufficiently
high Rayleigh number could be explored in some more details. Starting from the linear
steady state, such an instability is likely to occur with an intense and short-lived forcing, 
which might be enough to create strong intermittent eruptive geysers.
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Optimal Mixing of a Passive Scalar Field in Kolmogorov Flow

Jelle B. Will
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1 Introduction

Mixing is a topic that, rightfully, garners a lot attention in the fluid dynamics community.
This is due to its wide applicability to a wide range of problems both from natural phenom-
ena to industrial applications. An understanding of mixing is crucial to being able to predict
and comprehend ocean circulations as well as spreading of pollutants in both the ocean and
atmosphere. Additionally, there is much interest from industry due to mixing playing a
major role in getting chemical agents to react, an everyday example being combustion in a
car engine. The underlying physical mechanisms are, from a pure physics perspective, also
very interesting and complex. The interplay between convective mixing and molecular diffu-
sion makes even the most basic problems quite challenging and oftentimes counter intuitive.

In this work we will be focusing on a mixing type of problem. In a practical sense this
means that we have a fluid phase with all the related governing equations and a dispersed
phase, droplets, bubbles and/or particles which are affected by the fluid. In our case we are
dealing with a passive field, which means the dispersed phase will not affect the primary
phase, the interaction is one-way coupled. In this system the dispersed phase will be ad-
vected and diffused, thus altering its distribution over time. This needs to be quantified in

but we will get back to that later. The process of redistribution of the dispersed
phase is called mixing.
The more conventional approach to study mixing is to perform simulations or experiments
and study the resulting flow and scalar fields a posteriori to quantify the amount of mixing
that occurred. In this work our aim is to investigate mixing from a different perspective,
assuming that we can prescribe the initial flow field or perturbations; what initial state
will give us the most extreme outcome? a specific result we desire? This approach can
provide valuable insight into the parameters and structures that enhance or reduce mixing
in a specific type of flow.
One especially interesting case is that of inertial particles (particles with a different density
than that of the fluid phase), which was the original motivation for this project. In this
case one can, for instance, ask: “ ow can we achieve the highest local concentration?” This
problem is highly relevant in both natural as well as industrial flows. Consider for instance
the growth of droplets or snowflakes in a cloud, or clustering of sediments in a river, ocean,
or waste treatment plant. What all these scenarios have in common is that the fluid phase
is turbulent. Kinetic energy is injected at some scale that drives the flow, this energy is

,

some way

Or

H
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then cascaded down to smaller scales until it dissipates at the viscous length scale. Parti-
cles that are not density matched will interact with this spectrum in interesting ways due
to centrifugal pressure light particles will preferentially concentrate in the cores of eddies,
heavy particles on the other hand will be ejected and cluster on the outside of vortices. As
a result, for inertial particles we obtain structures as seen in the work by Calzavarini et al.
[2]. This type of problem is also common in industrial applications, such as the extraction
of minerals from a slurry by means of bubble injection and stirring. Here the bubbles (light
particles) have to collide and gather the minerals (heavy particles) float to the
top and be skimmed off. However a lot of ore is being thrown out because of poor mixing
of these two dispersed phases. Therefore, understanding the interaction between inertial
particles is a very relevant field of investigation with a lot of implications and applications.

As a first step towards the more complicated particulate problem, we will be content to
look at mixing of a passive scalar field in a model two-dimensional shear flow. The question
we aim to answer is: “what initial perturbation of the background flow will give us the best
mixed state after a set amount of time has passed?” The answer to this question is not trivial,
as was addressed by Danckwerts (1952) [3], who showed that owing to the interplay between
advection and diffusion the creation of complex flow patterns is desired. Even for relatively
simple systems this sometimes results in surprising solutions, as shown in the work by
Thiffeault et al. (2004) [10].

2 The Numerical Experiment

2.1 The base code

For the simulations we made use of a pseudo-spectral DNS code developed by Stephan Stell-
mach. The code, colloquially called PADDI (PArallel Double DIffusion), was developed
for the main purpose of solving double diffusive convection problems. This makes it very
suitable as a basis of the current project since all the routines for solving the equations
for both the fluid phase and the scalar field are already present. We use Adam-Bashforth
third order backwards differencing for the time integration of our velocity and scalar fields.
Furthermore, we are only running the code in its two-dimensional mode.

2.2 Experimental setup

We will be dealing with a single numerical setup throughout this work. The case we are
considering is that of a two-dimensional shear flow in a doubly periodic domain. The
horizontal extent of the domain is 0 to 4π and the vertical is 0 to 2π as is shown in Fig.
1. A numerical resolution of 256 and 128 Fourier modes in the horizontal and vertical
directions is used. The flow is incompressible and is forced in the horizontal direction by
a sinusoidal body forcing. This system is known as a Kolmogorov flow. The profile of the
background, or base, flow is given by:

ūx(z) = sin(z)

ūz = 0.
(1)

:
,

so they can
,

351



L
U0

x

z

2ππ

π

−π
−π

−2π 0

0

θ(z, 0) ux(z)

Figure 1: Schematic overview of the numerical experiment. The domain size, velocity field
and passive scalar distributions at t = 0 are shown.

Here, the amplitude of the corresponding dimensional background flow will define our our
unit velocity U0 and the wave length of this forcing defines the unit length scale L. The
resulting flow profile is shown in Fig. 1. We then use the standard decomposition of the
total velocity as follows:

U(x, t) = ū(z) + u(x, t), (2)

where ū is the aforementioned base flow which only depends on the vertical coordinate
and u is the perturbation velocity field superimposed on this base flow. There are no
assumptions made regarding the relative magnitude of the two velocities.
Additionally, at time t = 0 we assume the existence of a passive scalar field, denoted by θ,
in its unmixed state. In all results discussed here the same initial profile for the scalar field
is used, given by:

θ(z, 0) = tanh

(
10 sin(z)

tanh(z)

)
. (3)

This profile is also shown in Fig. 1. Note that the mean of the scalar field over the entire
domain is equal to zero and that the inflection points of both the velocity and the scalar
field profiles are at the same vertical positions. This profile is chosen for simplicity but
can be motivated from potential applications in geophysical flows. In oceanic flows, for in-
stance, the density (salinity, temperature) profiles often form horizontal layers, in the form
of thermohaline staircases. [8]. These span large horizontal extents but are quite narrow
in the vertical direction. Also these respective layers can have opposite velocities at the
interface, making them susceptible to shear instabilities. The current configuration can be
seen as a much simplified model for mixing in those types of systems.
It is, however, important to realize that the profile chosen here is somewhat arbitrary and 
that it will affect the resulting optimization. The steepness of the profile and exact align-ment
might affect the outcome significantly.
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The equations governing this system are the two-dimensional continuity, Navier-Stokes,
and advection-diffusion equations. These are further characterized by the kinematic viscos-
ity ν, i.e. diffusivity of momentum in the flow, and the molecular diffusivity of the scalar field
κ. Thus, we obtain two dimensionless quantities, namely the Reynolds and Péclet numbers 
defined as:

Re =
U0L

ν
, (4)

Pe =
U0L

κ
. (5)

These two dimensionless quantities are coupled through the Prandtl number:

Pr =
Pe

Re
=
ν

κ
. (6)

Using these definitions and assumptions we can write down the governing equations in
dimensionless form as follows:

∂tu + U ·∇u + u ·∇ū + ∇p−Re−1∇2u = 0 (7)

∇ · u = 0 (8)

∂tθ + U ·∇θ − Pe−1∇2θ = 0. (9)

We will refer to these equations as the direct or forward equations from now on. We impose
the background flow and initial condition for the scalar field as given in equations 1 and
3. The initial condition for the perturbation velocity field is a variable of our problem and
will be optimized for. The initial perturbation velocity field for the first iteration of the
optimization will in all cases be random noise amplitude of which is constraint by how
much we want to perturb the initial system. This is achieved by normalizing the random
velocity field by dividing by its standard deviation and then applying a scaling factor.
Here, two types of results will be presented first simulations are run at a constant
Reynolds number, Re = 50 as defined by Eq. 4. The second case is at constant Péclet
number, Pe = 50.

2.3 The mixing norm

In order to optimize our mixing we need a quantity that accurately reflects the “mixedness”
of our passive scalar field. A measure for how well a field is “mixed” needs to reflect how
uniform the distribution is throughout the field. A basic approach consists of using the
variance or its L2-norm of the scalar field, defined as:

Var θ =
1

VΩ
||θ||2 =

1

VΩ

∫
Ω
θ(x, T )2dΩ (10)

This parameter possesses all the properties we are looking for, since it quantifies deviations
from the mean value. If the field is completely mixed it has a value of zero, and if it is
completely binary it has a maximum value. This norm will be called the cost functional, or

 the,

. The
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measure to optimize. In this work we want to obtain the minimum value of this measure at a
specific  final (or  terminal)  time, called T  hereafter. Note  that the  variance  cannot
decrease as a result of stirring i.e. without diffusion. Therefore in the limit of P e → ∞, the
variance will not be reduced and thus no mixing is taking place according to this measure.

Alternate norms are discussed in references [5] and [9].

3 Optimization Using the DAL Method

In this section we give an overview of the algorithm that is used to find the initial perturba-
tion of the background flow that optimizes mixing at a fixed terminal time. This method is
closely related to the work of Foures et al.(2014) [5] and the work by Kerswell et al. (2014)
[6]. First we describe the basic idea of the approach and then provide additional detail on
the exact implementation of this method for our system.

The goal of the algorithm is to obtain the minimum value of our cost functional at time
T , which is Var(θ) as given in equation 10. We want to find the initial perturbation velocity
field u(x, 0) that accomplishes this. For the current problem, the optimal solution would be 
one where the velocity perturbations go to infinity in amplitude because they have not been
constrained yet. To this end we constrain the solutions by stating that:∫

Ω
|u0|2 dΩ =

∫
Ω
|u(x, 0)|2 dΩ = 2E0, (11)

where E0 is a finite number. For all cases considered here this is
√

2 percent of the energy
in the background flow.

We approach this problem by formulating and then iteratively minimize the constrained
Lagrangian:

L = L (u, θ, p,u†, θ†, p†). (12)

L =

∫
Ω
θ(x, T )2 dΩ︸ ︷︷ ︸

cost functional

−
∫ T

0

∫
Ω
p† ∇ · u︸ ︷︷ ︸

continuity

dΩdt

−
∫ T

0

∫
Ω

(
∂tu + U ·∇u + u ·∇ū + ∇p−Re−1∇2u

)︸ ︷︷ ︸
Navier-Stokes

·u† dΩdt

−
∫ T

0

∫
Ω
θ†
(
∂tθ + U ·∇θ − Pe−1∇θ

)︸ ︷︷ ︸
advection-diffusion

dΩdt. (13)

Here the variables denoted by † are Lagrange multipliers that ensure that the system
satisfies the constraints imposed by the continuity, Navier-Stokes and advection-diffusion
equations. In the following sections these will be referred to as the adjoint variables. It is
important to realize that the boundary conditions do not impose any constraints since the
domain is periodic. For an optimal solution the derivative of L with respect to any variable
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should be equal to zero. Variations with respect to the adjoint variables merely recover the
constraints. However, the variation with respect to the variables u, p, and θ, give us an 
additional set of equations to be satisfied and are computed in appendix A. They result in
a system of evolution equations for the adjoint variables:

∂tu
† + U ·∇u† − u† ·∇UT +∇p† +Re−1∇2u† = θ†∇θ (14)

∇ · u† = 0 (15)

∂tθ
† + U ·∇θ† + Pe−1∇2θ† = 0. (16)

These equations are reminiscent of the direct equations governing the system (equations 7,
8 and 9). There are, however, some important differences. Firstly, note that the forward
velocity and scalar fields are present in these equations. As a result, knowledge of the
direct fields at every timestep will be required to integrate the adjoint equations in time
numerically. This complicates matters since storing this data is quite memory intensive.
Secondly, note how the sign of the diffusion terms in the momentum and scalar equations
has switched. When integrated forward in time, these equations will thus be anti-diffusive.

However, we will be evolving the adjoint variables u†,θ†, and p† backwards in time so that will 
not be an issue. Finally, the adjoint Navier-Stokes equation is forced by a term containing
the scalar field from the advection-diffusion equation. This implies that the scalar field will
affect the updated initial velocity fields, as required.
In addition to these evolution equations, we obtain a number of important relationships
between the direct and adjoint variables at the target time T , which are used to initialize
the adjoint variables at the start of the backward loop. These relations are:

u†(x, T ) = 0, θ†(x, T ) = 2θ(x, T ). (17)

An optimal solution is found when δL /δu(x, 0) = 0. When this is not the case, the 
gradient of the Lagrangian can then be used to update the initial condition for the velocity
perturbations. Since for an arbitrary perturbation velocity field this will not be the case,
then:

δL

δu(x, 0)
= u(x, 0)†. (18)

We can use u(x, 0)†, obtained from the backward loop, into a gradient descent-type algo-
rithm to update u(x, 0), and restart the loop based on this new, improved, guess.

Now we will give a step-by-step approach of the DAL algorithm as implemented in this
work. A schematic overview is also given in Fig. 2.

Step 0. Create a random initial velocity field u(0)(x, 0) such that the energy of the field is
constrained by the equation 11.

The subscripts here indicate the index of the iteration in the DAL algorithm. In order to
determine the new initial condition we loop through the following steps over and over until
the convergence criteria have been met.
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time integration forward equations

time integration of the backwards equations

t = 0

t = 0

t = T

t = T

{
{{

Restart conditions:

Initial conditions
u(x, 0) θ(x, 0)

Backwards initial 
conditions

θ†(x, T )u†(x, T )u(x, 0) = f(u†(x, 0))

Figure 2: Schematic showing the procedure followed by the adjoint looping algorithm.

Step 1. Using the initial condition for u(n)(x, 0) and the fixed initial condition for θ(n)(x, 0)
as given in Eq. 3, we integrate the full system of equations forward in time from t = 0
until the terminal time T is reached. Here we obtain our final state u(n)(x, T ) and θ(n)

(x, T ).

Step 2. Using equations 17 we determine the initial conditions for the adjoint equations
which are u†(n)(x, T ) and θ†(n)(x, T ).

Step 3. Starting from these initial conditions we integrate the adjoint equations given by

14, 15 and 16 backwards in time from t = T to t = 0. Thus, we obtain the u(
†
n)(x, 0)

and θ†(n)(x, 0).

Step 4. The final state of the backwards velocity field can be used to determine δL /δu(x, 0)
as shown in equation 18. This is the gradient of the augmented Lagrangian function
with respect to the initial velocity perturbation. By moving along this gradient, up-
dating the new initial velocity field, we can iteratively move towards an optimum. To
do this we simply employ a steepest decent approach to reach this minimum value of
our Lagrangian.

u(n+1)(x, 0) = u(n)(x, 0) + ε

(
δL

δu

)
(n)

(19)

= u(n)(x, 0) + εu†(n)(x, 0) (20)

The parameter ε is a parameter that can be varied for each iteration in order to
improve convergence of the final solution.

Step 5. Finally, we apply the energy constraint since our solution is not beholden to this
at this moment. To do so we rescale the amplitude of u(n)(x, 0) to conform the  
constraint on the initial energy. Schematically this is shown in Fig. 3.
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 |u(x, 0)| 2 =

0

un(x, 0)

ε u†(x, 0)

un+3(x, 0)
E02

un+1(x, 0)
un+2(x, 0)

Ω
dΩ

Figure 3: A mathematical representation of the state space of the initial perturbation field
u(x, 0). The thick black line represents the energy constraint; all initial fields are constraint 
to lie on this surface. Starting from an initial system state designated by the subscript n we
obtain the gradient of δL /δu(x, 0) = u(x, 0), using steepest descent we add this to state 
vector obtaining a new guess for the optimal perturbation. As is shown in the graphic the
energy of this state does not satisfy the energy constraint, therefore it is rescaled and a
perturbation velocity field for step n + 1 is obtained. This process is iterated until the desired
convergence is reached.

3.1 Dealing with the required direct fields

As was noted before, the backwards time integration of the adjoint equations requires
knowledge about the forward fields at each timestep. It is it practically impossible to save
both the scalar field and the velocity field at every time step, therefore the following method,
shown schematically in Fig. 4, was employed. During the forward time-integration of the
direct equations both fields were saved in an external file at regular time intervals of length
∆ts, as shown in the top half of the image. The value of ∆ts was kept smaller than 100 time 
steps for all cases. During the backwards time-integration of the adjoint equations the
forward fields were loaded back into memory but only for two times. Consider a time t =
t*, shown in Fig. 4. To reconstruct the forward fields at t∗, for this time the fields of the
forward loop at times n∆ts and (n + 1)∆ts are loaded into memory. Using these, a simple

linear interpolation is performed to determine the approximate fields at time t = t∗:

u(x, t∗) = u(x, n∆ts) + (u(x, (n+ 1)∆ts)− u(x, n∆ts))
t∗ − n∆ts

∆ts

θ(x, t∗) = θ(x, n∆ts) + (θ(x, (n+ 1)∆ts)− θ(x, n∆ts))
t∗ − n∆ts

∆ts

(21)

This method worked remarkably well and no significant issues were observed.

3.2 Obtaining convergence

The convergence of the steepest descent method can be accelerated by a suitable choice of
the parameter ε that is adapted dynamically during each successive loop. For this we use
the method laid out by Pringle et al. (2012) [7] which was also employed and adapted by
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t∗

Direct equations

Adjoint equations

(n+ 1)∆tsn∆ts (n+ 2)∆ts

Figure 4: Schematic representation of the method used to store, retrieve

Eaves (2016)[4]. We initially start out with ε = 1, and then adapt its value (reducing it or
increasing it) following 3 criteria. The first is:∫

Ω
|θn(x, T )|2 dΩ <

∫
Ω
|θn−1(x, T )|2 dΩ (22)

which simply states that the cost functional must decrease at each iteration. If this is not the
case, this could indicate that we overshot our minimum and need to be more refined in 
looking for the optimal perturbation. We then reduce the value of ε by a factor of 5. If Eq. 22
is satisfied on the other hand, the value is unchanged and the next criteria are checked, which
brings us to the second criterion:∫

Ω
|u†n(x, 0)|2 dΩ < 4

∫
Ω
|u†n−1(x, 0)|2 dΩ (23)

which prohibits any rapid increase in the amplitude of the initial condition (prior to rescal-
ing). This could cause a large overshoot which is not desirable. If equation 23 is not
satisfied, then ε is again reduced by a factor of five.
The final criterion considers the angle between two respective update vectors, called d: :

d =

∫
Ω u†(n−1)(x, 0) · u†(n)(x, 0) dΩ√∫

Ω(u†(n−1)(x, 0))2 dΩ
∫

Ω(u†(n)(x, 0))2 dΩ
. (24)

Three distinctive cases can be distinguished based on the alignment of the two successive
vectors. Firstly, if the value of d is positive, this corresponds to a change in the “angle” in
state space of less than 90◦. Note that if d is equal to 1, they are they are exactly parallel and 
the vectors are in the same direction. Secondly, when the value is zero the angle is exactly 90◦. 
Finally, if the value of d is negative, this implies that the angle is greater than 90◦, the state 
vector is essentially “turning around”. In our case, a negative value is not possible due to the 
fact that increasing the energy of the system is always a valid solution for enhancing the
mixing, thus the state vector will always point outwards from the energy
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Figure 5: The initial perturbation velocity field corresponding to that of the fastest growing
mode corresponding to the mode 1 instability of wavenumber 0.5. The top image shows
the ux-field and the background forcing profile. The bottom part of the figure shows the 
uz-field.

constraint hyper sphere as shown in Fig. 3. We still use this quantity when d > 0.95, i.e. we
are heading in right direction, then the value of ε is increased by a factor of two, otherwise
it is left unchanged.

Finally, we say that the system has converged when d ≥ 0.99 and Var(θ(n)(x, T ))−
Var(θ(n−1)(x, T )) < 0.001.

4 Results

In this section we present the results of the various optimizations performed. The cases we
ran can be split into two categories as mentioned previously, constant Reynolds and constant
Péclet number runs. The exact values for each of these optimizations can be found here:

Constant Reynolds number cases:

For the constant Reynolds case, four values of the Péclet number were chosen, corresponding 
to Prandtl numbers of 0.1, 1, 3.333, and 10. For each of these Prandtl numbers
simulations were performed at 9 target times T , thus resulting in 38 simulations in total. The
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nondimensional target times are given by:

Target times (T ): 1.25 2.5 5 10 12.5 15 20 25 50

Constant Péclet number cases:

Additionally, we were interested in the effect of changing the Reynolds number. The Péclet 
number was kept constant at 50 while the Reynolds number was varied over the
following values: 5, 15, 50, 166.66, and 500, resulting in Prandtl numbers of 10, 3.333, 1,
0.3, and 0.1, respectively. Here only 6 target times were attempted.

Target times (T ): 1.25 2.5 5 10 15 25

4.1 Non-optimized mixing strategies

A useful metric against which to compare the performance of our optimization algorithm
can be obtained by considering three distinctive mixing strategies that can be defined a
priori. These methods are not obtained from the adjoint looping approach, but instead
consist of an initial perturbation velocity field that is naturally evolved forward in time. The
three mixing strategies we will compare to are the following:

• Pure diffusion: The first approach consists of not mixing the fluid at all. This
corresponds to the case of pure diffusion of the scalar field throughout the domain from
its initial condition. Numerically this is accomplished by evolving the system forward in
time for a null initial condition for the velocity field, and without any body forcing. For
this case we monition the time-evolution of the variance of theta for each of the 4
molecular diffusivities we examine in this work, i.e., corresponding to Péclet number of
5, 50, 166, and 500.

• Random perturbations: An alternative mixing strategy is to initiate the velocity
perturbations with random noise. In this case we solve the forward equations (in-
cluding body forcing), for the given values of both the Reynolds and Péclet numbers.
Contrary to the case of pure diffusion, advection will play a role here and the scalar field
mixing will be enhanced by advection.The resulting time evolution of the variance of
the scalar field is shown in Fig. 8.

• Fastest growing mode: While both of the previous cases provide interesting points of
comparison for the optimal solutions, they are not expected to be particularly
”competitive” in terms of mixing. A better mixing strategy would be to choose an
initial condition that will increase the kinetic energy in the system as fast as possible,
namely, the fastest growing linearly-unstable mode of the system. For a 2D Kolmogorov
flow in a domain with an 2:1 aspect ratio, this mode takes the form of a single roll-like
structure. Here we will call this state a mode 1 structure since in the horizontal extent
of the domain, there is exactly a single period present. In other words, the horizontal
wavenumber is equal to 0.5 in a domain of length 4π. This perturbation field is shown in
Fig. 5. The field as shown in this figure is rescaled to satisfy our energy constraint given
by 11 and is used to initialize these simulations. 
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Figure 6: Evolution of the rms value of the velocity field with time for the cases of random
forcing and for the case initialized with the fastest growing mode. Overplotted is the
analytically obtained growth rate. Also shown are the energy in the background flow and the
energy level of the initial perturbation, which in all cases are identical.

The flow field for the fastest-growing mode was obtained from the cases forced by
random noise. In Fig. 6 the time evolution of the root-mean-squared velocity for this
case is shown as the black dashed line. We see that the kinetic energy first decays,
then at around t = 3 starts increasing again. By time t = 12, most of the energy in the
system is contained in a single mode (mode 1, described above and pictured in Fig. 5),
and is growing exponentially. We then extract the velocity field at that time (t = 12),
and rescale its amplitude to satisfy the energy constraint (Eq. 11). Finally, we use
that initial condition in the forward problem, and integrate the forward equations in
time. An example is shown in Fig. 6 as the blue dashed line. We can see that in
this case there is no initial phase during which root-mean-squares velocity decays, and
that instead, it immediately triggers the exponential growth phase. We also see that
the energy level saturates close to the value of the background flow.

A semi-analytical growth rate for Kolmogorov flow was determined in appendix B.
We plot this fastest growth rate of the instability in Fig. 6, as indicated by the solid
black line. It is identical to that observed in the numerical simulations.

4.2 Constant Reynolds number

First, we investigate how the optimal perturbations depend on the Prandtl number (or
equivalently, Péclet number) and terminal time, while holding the Reynolds number con-
stant. In Fig. 7 we are showing variance of the scalar field as a function of the terminal
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Figure 7: The variance of the scalar field at each of the terminal times for all four of the
Prandtl numbers for a constant Reynolds number of 50.

time T , for various Prandtl numbers. Each data point is the result of converged iterations of
the DAL algorithm described in Sec. 3. The marker and line color indicates from light to dark
increasing Prandtl number over the range P r = 0.1 (for which P e = 5, which is strongly
diffusive) to P r = 10 (corresponding to P e = 500, weakly diffusive). Additionally, the purely
diffusive results obtained as described in Sec. 4.1 are shown as dashed lines for each of the
four molecular diffusivities considered. Note that for the highest molecular diffusivity we only
obtained converged results up to terminal times of 20, after which no solutions could be found
that would (significantly) optimize the final mixed state.
In this figure, we first note that the scalar field is mixed much more efficiently at lower
Prandtl number due to the higher molecular diffusion, as is expected. For the P r = 0.1 case
we even see that there is little difference between the stirred and unstirred (purely diffusive)
case for short terminal times. Only for the cases of terminal times between ap-proximately 5
and 20 do we see significant improvement. For all other Prandtl numbers the optimally mixed
case does a lot better compared to pure diffusion, as is expected.
We can also compare the results from our simulations to the two other reference cases dis-
cussed in Sec. 4.1; the system initialized with respectively random noise and the fastest
growing mode. Fig. 8 shows four different plots for the different Prandtl number cases. Here
the actual time-evolution of each of the optimized cases is shown. The terminal time is
indicated by a circular marker. These are compared with the diffusive solution (dashed line)
and the case initialized with the fastest-growing mode (solid black line), respectively. We
confirm that for all cases the optimal solution outperforms both of these other mixing
strategies.

Furthermore, one way to check the internal consistency of our optimized results is by check-
ing if the results we obtain are unique. For each of the terminal times the variance of the
scalar field at that time must be the lower than for any other initial condition. Any
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Figure 8: Time-evolution of the variance of the scalar field at Re = 50, for various values
of P r (from top left to bottom right, P r = 0.1, 1, 3.3 and 10), and various terminal times
T . Also shown are the forward cases initialized with random noise (dotted line) and with
the fastest growing mode (i.e. mode 1 structure) (solid black line).

perturbation in the velocity field should result in a worse outcome. In Fig. 8 this means that
all the markers indicating solutions at the terminal time need to have a scalar variance that is 
below any of the other case at that time. This is confirmed for all the solutions we have
obtained in this work.
Additionally, we note a strong dependence on Prandtl number: for low Prandtl number 
the impact of optimal mixing is marginal but becomes more important for higher values. In
fact, for these cases the optimal perturbation outperforms even the fastest growing mode
by a very significant margin. This is shown more clearly in Fig. 9(a). which shows the

ratio:

Θ =
Var(θ(x, 0))−Var(θ(x, T ))op

Var(θ(x, 0))−Var(θ(x, T ))fgm
(25)

for each of the terminal times and Prandtl numbers. The ratio Θ compares the reduction
of the variance between t = 0 and t = T for the fastest growing mode (fgm) and that for
the optimal perturbation case (op).
It is interesting to see that the maximum improvement appears to happen at a specific
terminal time, around t = 15. In this figure we can distinguish 3 different regions, whereby
the mixing efficiency of the optimal perturbations (compared with mode 1) first increases
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with T for short times, then reaches a maximum, then decays again for large T .
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Figure 9: (a) The ratio of improvement of the optimal solution when compared to perturbing
the system by its fastest growing mode. An optimum can be observed, independent of
Prandtl number around 10-15 dimensionless time units. (b) The horizontal wavenumber
(here wavenumber 1 corresponds to a wavelength of 4π), i.e., the number of structures we 
observed at t = 0 in the uz velocity field (see Fig.10).

4.3 Structures in the optimal perturbation field

A good way to understand how the optimal perturbations are able to promote efficient mix-
ing is by analyzing the initial perturbations and the resulting flow up until the terminal time.
The dependence on the Prandtl number and the terminal time is of primary importance. In
Fig. 10 we show a collection of snapshots of both the velocity fields and the passive scalar field
for the P r = 1 case. Using these, we will explain the behavior that we observe in Fig. 9.

Firstly, for short terminal times (left column Fig. 10) the optimal perturbations are
concentrated around the region where the gradient in the scalar field is largest. The optimal
solution consists of a sawtooth-like interface in the scalar field, creating as large a surface
for diffusion as possible. As can be seen from the final state of the scalar field over this short
time horizon, the perturbations only managed to cause mixing very close to this interface. We 
can also observe that at t = 0 all structures are inclined against the shear flow, while by t = T
they have turned with the shear. This is known as the Orr-mechanism, as also observed in
reference [1] figure 5. This mechanism enables the vortices to extract energy from the shear
flow and thus, hypothetically, perform additional mixing.

In the analysis, one parameter that we consider is the number of vortices we observe
in the x-direction of the domain. We will characterize this in terms of a so called ”mode
number” n. For example, the fastest growing mode is a mode 1 structure since exactly one
period fits in the domain. For short terminal time we observe a very high mode number,
corresponding to large number of small scale structures in the velocity field as can be seen in
the first column of Fig. 10. For increasing terminal times this mode number is reduced as is
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depicted in Fig. 9(b), for short terminal times the mixed scalar field gets this characteristic
sawtooth-like structure. Additionally we observe a positive correlation of the mode number
with the Prandtl number (i.e. the mode number increases when Pr increases, everything
else being kept equal). Both these effects make sense from a physical perspective. The size
of the velocity perturbation structures should depend on the distance over which molecular
diffusion can work within the time constraint set by the terminal time. If molecular diffu-
sivity is higher or the larger, then the structures will be larger, thus the
mode number lower and vice versa.

For intermediate terminal times, shown in the middle column of Fig. 10, it can be
seen that the initial velocity field in both x- and z-direction contains two horizontal wave-
lengths. In Fig. 9(b) it can be observed that for terminal times greater than 15 this holds
for all Prandtl numbers (except Pr = 0.1). The initial the sawtooth structures become
space filling and evolve into two elegant spirals in the scalar field as shown at the bottom
of the middle column. This pattern is very regular and provides very efficient mixing for
these intermediate times. In fact, this pattern provides the greatest improvement over the
case initialized with the fastest-growing mode (see Fig. 9(a)), despite being linearly stable!
Indeed, going back to the stability analysis from appendix B, we note that the system is
actually linearly stable to a structure of mode 2 (there called k = 1 since the width of
the domain is 4π). However, with targeted initial velocity perturbations we can trigger
this mode (temporarily), and it clearly improves mixing of the passive scalar field when
compared to the fastest growing mode, mode one.
For Pr = 0.1 on the other hand the mode 2 perturbations are nor preferred. This is due to
the high molecular diffusivity, which causes the entire θ-field to be successfully mixed due
to pure diffusion by T ∼ 15 (see Fig. 8(a)). In this case it no longer matters how the flow
is perturbed, the end state is always very well mixed.

Finally, for terminal times greater than 15 we observe that the optimal solutions still
perform better than the fastest growing mode (Fig. 9(a)). But the difference becomes
smaller and smaller as the terminal time increases. This is of course obvious since the
variance of the scalar field can not be reduced below 0, and for t→∞ the scalar field will
be fully homogenized regardless of the initial condition. In the right column of Fig. 10 we
can see that even for terminal times as large as 50, the initial flow field at t = 0 shows the
wavenumber 2 structure. However, this mode until approximately t = 30 into
the run, after which it transitions into a mode 1 structure.This can be seen in the velocity
field at time t = 50, shown in the third column third row in Fig. 10. For higher Prandtl
numbers the results are similar, indicating that for long term gains it is still better to start
with the mode 2 structure and not the fastest growing mode.

Previously, we made the observation that there is a maximum in the value of Θ at ap-
proximately T ≈ 12 regardless of Pr (except for Pr = 0.1), as can be observed in Fig. 9(a).
A possible explanation is that this terminal time coincides with the saturation in energy in
the fastest growing mode as shown by the blue dashed line in Fig. 6. This moment corre-
sponds with the time at which the wavenumber one structure starts mixing more efficiently
as is shown by enhanced reduction in Var(θ) as seen in Fig. 8(b,c and d). Note that the
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for a different terminal time as is shown at the top, respectively, from left to right T = 2.5,
15, and 50.The bottom row of the figure shows the final, optimal mixed state of the scalar
field. The top two rows show the initial velocity perturbation field that resulted in this final
state, these fields are shown at t = 0. The third row shows the perturbation velocity fields
in the vertical direction at the terminal time t = T .

Figure 10: All results here are for the case of  Re = P e = 50, i.e. P r = 1. Each column is

366



0 5 10 15 20 25

Pr = 0.1,    Re = 500
Pr = 0.33,   
Pr = 1,      Re = 50
Pr = 3.33,   Re = 15
Pr = 10,     Re = 5

0

0.2

0.4

0.6

0.8

1

Re = 166.66

V
a
r
θ

Terminal time T
0 105 15 20 25

0

2

4

6

8

10

12

14

16

ho
riz

on
ta

l w
av

en
um

be
r

Terminal time T

Pr = 0.1,    Re = 500
Pr = 0.33,   
Pr = 1,      Re = 50
Pr = 3.33,   Re = 15
Pr = 10,     Re = 5

Re = 166.66

(b)(a)

Figure 11: (a) For a constant Péclet number of 50 the optimized final variance of the scalar
field is shown for a series of terminal times. The Reynolds number is varied here from 0.1
to 10 in five steps indicated by the line color. (b) The number of horizontal modes observed
for all aforementioned cases.

time at which the mode 1 instability becomes dominant is just dependent on the Reynolds
number of the flow, which is constant in all these simulations. This is in agreement with
our results.

4.4 Constant Péclet number

In this second investigation, we are interested in studying the effect of the Reynolds number
on the optimal perturbations. To do so, we kept the Péclet number constant at 50 while
varying the Reynolds number over two decades from 5 to 500, thus obtaining a Prandtl
number range of 10 to 0.1, respectively. The results for the variance at terminal time T are 
depicted in Fig. 11(a). The trend with Reynolds number is as expected. For fixed terminal
time, the scalar variance decreases with increasing Reynolds number, or equivalently,
increased effect of stirring.

In order to check these results we can again look for internal consistenc  in the data.
We expect that for identical terminal times with increasing Reynolds numbers the scalar
variance at the terminal time should be lower in all cases. However, in Fig. 11(a) we see
that at least two data points, for P r = 1 and 0.33 at T = 15 and for P r = 3.33 and 10 at
T = 25, where this appears not to be the case. These results require further investigation
to understand what is happening for these cases.

Additionally, for this set of experiments we investigated the number of horizontal struc-
tures we observed in the initial velocity perturbation field. These results are shown in term
of the horizontal mode number in Fig. 11(b). The first thing to note here is the similar trend
of a decrease in the mode number with increasing terminal times, regardless of Reynolds
number. As in Sec. 4.3 we also see that (for sufficiently large Re, greater than 15) mode
2 becomes favored around T = 15. This result  deserves some more detailed investigation.
Perhaps the terminal time at which the mode number goes down to 1 is dependent on
Reynolds number.

We observe that the mode number increases with Reynolds number for short terminal

y
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time (T < 15). This result is also expected since the Reynolds number affects the momentum
diffusivity, therefore at lower Reynolds numbers, with the systems fixed amount of initial
energy, less stirring can be accomplished within a fixed time-horizon. Thus making it more
optimal to go for a reduced number of larger structures compared to a large number of low
energy ones.

5 Conclusion

We have successfully implemented the Direct Adjoint Looping algorithm and integrated it
in the existing PADDI code. Our code computes the optimal initial velocity perturbations
to the base Kolmogorov flow that result in the most mixed state, defined as the state that
minimizes the variance of the scalar field, at a given target time. Two scenarios were ex-
amined, one for constant Reynolds, and one for constant Péclet number while varying the
Prandtl number over the range from 0.1 to 10 in both cases.

The most significant finding is that the optimal perturbation to the background Kol-
mogorov flow that achieves maximum mixing in a finite time is almost never the fastest
growing mode of the base system. This result is quite counter-intuitive, and shows that
having the fastest growing kinetic energy, these perturbations are not particularly efficient
at mixing. Instead, we find that other kinds of perturbations can improve the mixing
efficiency significantly even though these modes might even be linearly stable.
We found three main regimes for the optimal perturbations depending on the terminal time
and Prandtl number. For short terminal times the optimal perturbations take the form
of small scale vortices concentrated at the gradients in the scalar field. This effect gets
enhanced at higher Reynolds and Péclet numbers. For longer terminal times and higher
molecular diffusivity the structures have a smaller horizontal wavenumber. For intermediate
terminal times we find that perturbations with mode 2 are the optimal choice. For even
larger terminal times we find that the system initially still prefers the mode 2 mode for op-
timal mixing. However, after a while it reverts back to the mode 1 structure corresponding
to the fastest growing mode.
When varying the Reynolds number and keeping the Péclet number constant the results
are in line with our expectations. The higher the Reynolds number the more mixing can
be achieved at any target time T . Over the examined Reynolds number range from 5 to
500 the size of the perturbation structures decreases for increasing Reynolds number. For
increasing terminal times the mode number becomes lower, for Re ≥ 50 it appears to con-
verge to the wavenumber 2 structure. For lower Reynolds number the structures appear to
tend towards the fastest growing mode for larger terminal times.

Using the code we developed in this work we managed to obtain interesting results
regarding the fundamental nature of optimal mixing in two-dimensional shear flows. It
was found that, surprisingly, the fastest growing mode will not always provide the best
mixing. This result appears to not depend on the terminal time for sufficiently high Reynolds
and Péclet numbers, but appears to be quite robust and universal. This result can have
further implications for how mixing is approached in industrial applications and in the
understanding of mixing in environmental flows.
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Appendix A: Complete Derivation of the Adjoint Equations

In this appendix we will show how the adjoint equations as presented in Eqs. 14, 15 and 16
are obtained. We start from the constrained Lagrangian consisting of the cost functional
that we try to optimize and the equations imposing the constraints on the system, i.e. the
continuity, Navier-Stokes and advection-diffusion equations:

L =

∫
Ω
θ(x, T )2 dΩ︸ ︷︷ ︸

cost functional

−
∫ T

0

∫
Ω
p† ∇ · u︸ ︷︷ ︸

continuity

dΩdt

−
∫ T

0

∫
Ω

(
∂tu + U ·∇u + u ·∇U + ∇p− Re−1∇2u

)︸ ︷︷ ︸
Navier-Stokes

·u† dΩdt

−
∫ T

0

∫
Ω
θ†
(
∂tθ + U ·∇θ − Pe−1∇θ

)︸ ︷︷ ︸
advection-diffusion

dΩdt. (26)

Each of the constraint equations is multiplied by a Lagrange multiplier, denoted by a su-
perscript †, called the adjoint variables.
We are looking for an optimal solution that gives us the minimum value of the cost func-
tional. If a solution is optimal, then any perturbation at any point in time or at any position
in space will increase the cost functional. Therefore, we are are looking for a system state
where the first variation with respect to the forward variables p, u, and θ, has to be equal
to zero. Mathematically:

∂L

∂p(x, t)
≈ L (u, θ, p+ δp,u†, θ†, p†)−L (u, θ, p,u†, θ†, p†)

δp
= 0 (27)

∂L

∂u(x, t)
≈ L (u + δu†, θ, p,u†, θ†, p†)−L (u, θ, p,u†, θ†, p†)

δu
= 0 (28)

∂L

∂θ(x, t)
≈ L (u, θ + δθ, p,u†, θ†, p†)−L (u, θ, p,u†, θ†, p†)

δθ
= 0 (29)

We will go over each of these variations in the following sections.

1. Pressure

We will start with the first variation with respect to the pressure term, Eq. 27. The pressure
p only shows up in the Lagrangian (26), in the Navier-Stokes part of the constraints. Thus,
taking the first variation of equation with respect to the pressure we obtain:

∂L

∂p(x, t)
δp(x, t) ≈

∫ T

0

∫
Ω
u† ·∇δp dΩdt = 0 (30)

We want to use the fact that this should hold for any arbitrarily small perturbation δp.
Using integration by parts we obtain:∫ T

0

∫
Ω
∇ · (u†δp)− δp ∇ · u†dΩdt = 0. (31)
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Using the fact that our domain is periodic we know the that the integral of the underlined
term ∇ · (u†δp), is equal to zero, leaving us with second term. Since this should hold for
any arbitrary δp this means that for this to be true we need to satisfy:

∇ · u† = 0. (32)

This is identical to the continuity equation, for the adjoint velocity field.

2. Velocity

Next, we will consider the variation of the Lagrangian as given in Eq. 26 with respect to
the forward velocity u. We consider only the terms that contain the velocity:

Lu = −
∫ T

0

∫
Ω
p†∇ · u︸ ︷︷ ︸

I

+( ∂tu︸︷︷︸
II

+U ·∇u + u ·∇U︸ ︷︷ ︸
III

−Re−1∇2u︸ ︷︷ ︸
IV

) · u† + θ†U ·∇θ︸ ︷︷ ︸
V

dΩdt.

(33)
We will start with the first term. Using integration by parts we obtain:

(I) :
∂L I

u

∂u(x, t)
δu(x, t) ≈ −

∫ T

0

∫
Ω
∇ · (δup†) + δu ·∇p†︸ ︷︷ ︸

a

dΩdt. (34)

The underlined term is equal to zero because of divergence in a periodic domain. The term
designated by a remains and will be a part of the adjoint system of equations. Additionally,
no further algebra is required here since δu is already outside of any derivatives.
Moving on to term II in Eq. 33, this term is interesting since it contains the time-derivative.
Using integration by parts we now obtain the following two terms:

(II) :
∂L II

u

∂u(x, t)
δu(x, t) ≈ −

∫
Ω

[δu · u†]T0 dΩ +

∫ T

0

∫
Ω
δu · ∂tu†︸ ︷︷ ︸

b

dΩdt. (35)

Note that the first term is evaluated at the initial and final times only. None of the other
terms will give us contributions containing u† evaluated at t = 0 or t = T . Therefore, we
directly obtain the following two relations:

u†(x, 0) = 0 (36)

u†(x, T ) = 0. (37)

The relation in Eq. 36 is the convergence criterion, which is used to update the guess for
the new initial perturbation velocity field. The second relationship, Eq. 37, gives us the
initial state for adjoint velocity field used in the backwards time integration. The term in
Eq. 35 labeled as b is ready for use and added to the final adjoint equation.
The terms designated by (III) in Eq. 33 are just the extended version of U ·∇U . We treat
both these terms together:

(III) :
∂L III

u

∂u(x, t)
δu(x, t) ≈ −

∫ T

0

∫
Ω

((u + δu + ū) ·∇(u + δu + ū) ...

− (u + ū) ·∇(u + ū)) · u† dΩdt (38)

≈ −
∫ T

0

∫
Ω

(δu ·∇U︸ ︷︷ ︸
1

+U ·∇δu︸ ︷︷ ︸
2

) · u† dΩdt. (39)
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Now we first we deal with term 1:

−
∫ T

0

∫
Ω

(δu ·∇U) · u† dΩdt. = −
∫ T

0

∫
Ω

(u† ·∇UT ) · δu︸ ︷︷ ︸
c

dΩ. (40)

Note, that we had to transpose the matrix ∇U because we had to move δu to the back so
all dot products with this vector are on the same side. Term c is ready and will be used in
the final expression of the adjoint equation.
The second term from Eq. 39 becomes:

−
∫ T

0

∫
Ω

(U ·∇δu) · u† dΩdt = −
∫ T

0

∫
Ω
U ·∇(δu · u†)− (U ·∇u†) · δu︸ ︷︷ ︸

d

dΩ. (41)

For which the first term can be expended as:

−U ·∇(δu · u†) = −∇ · (U(δu · u†)) + (δu · u†)∇ ·U , (42)

both of these underlined divergence terms are equal to zero and just drop out due to the
doubly periodic domain. Thus the only remaining contribution, the term designated as d
in Eq. 41, is added to the adjoint equation.
Now we will deal with the second to last term, term IV in equation 33:

(IV ) :
∂L IV

u

∂u(x, t)
δu(x, t) ≈ −

∫ T

0

∫
Ω
Re−1∇2δu · u† dΩdt. (43)

We isolate the term ∇2δu and focus on rewriting it. First:

−∇2δu · u† = −(∇(∇ · δu)−∇× (∇× δu)) · u†. (44)

The underlined term is equal to zero due to divergence and a periodic domain. We impose
the identity δω = ∇× δu. Continuing expanding the term on the right we obtain:

(∇× δω) · u† = ∇ · (δω × u†)− δω · (∇× u†). (45)

The underlined term is again equal to zero. Substituting in the identity ω† = ∇× u† and
expanding further:

−(∇× δu) · ω† = −∇ · (δu× ω†) + δu · (∇× ω†). (46)

The underlined term drops out, and the final term can be rewriten as follows:

δu · (∇× ω†) = ∇× (∇× u†) · δu = ∇2u† · δu (47)

Thus giving us the following final expression for term IV that will be added to the adjoint
equations:

∂L IV
u

∂u(x, t)
δu(x, t) ≈ −

∫ T

0

∫
Ω
Re−1∇2u† · δu︸ ︷︷ ︸

e

dΩdt. (48)
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The final term V in Eq. 33 comes from the advection-diffusion equation and gives us the
following contribution:

(V ) :
∂L V

u

∂u(x, t)
δu(x, t) ≈ −

∫ T

0

∫
Ω
θ†∇θδu︸ ︷︷ ︸

f

dΩdt (49)

Now compiling all the terms, a through f , obtained in Eqs. 34, 35, 40, 41, 48, and 49 we
obtain the complete form of the first variation with respect to the velocity u:∫ T

0

∫
Ω

(
∂tu
† + U ·∇u† − u† ·∇UT +∇p† +Re−1∇2u† − θ†∇θ

)
· δu dΩdt = 0. (50)

This should hold for any arbitrary δu, thus we obtain the adjoint equation for u†:

∂tu
† + U ·∇u† − u† ·∇UT +∇p† +Re−1∇2u† = θ†∇θ. (51)

3. Scalar Field

Finally, we take the first variation of Eq. 26 with respect to the scalar field θ. Note that this
is the only term that appears in the first term of L . Our Lagrangian with terms containing

θ looks as follows:

Lθ =

∫
Ω
θ(x, T )2︸ ︷︷ ︸

I

dΩ−
∫ T

0

∫
Ω
θ†( ∂tθ︸︷︷︸

II

+U ·∇θ︸ ︷︷ ︸
III

−Pe−1∇2θ︸ ︷︷ ︸
IV

) dΩdt. (52)

Starting from term I:

(I) :
∂L I

θ

∂θ(x, t)
δθ(x, t) ≈

∫
Ω

(θ(x, T ) + δθ(x, T ))2 − θ(x, T )2 dΩ (53)

≈
∫

Ω
2θ(x, T )δθ(x, T )︸ ︷︷ ︸

a

+h.o.t. dΩ. (54)

Note that similar to Eq. 37 this term is evaluated at the terminal time. However in this
case this is not the only contribution that is evaluated at time t = T . The second term
from Eq. 52 will also give a contribution:

(II) :
∂L II

θ

∂θ(x, t)
δθ(x, t) ≈ −

∫ T

0

∫
Ω
θ†∂tθ dΩdt. (55)

Using integration by parts we obtain:

−
∫ T

0

∫
Ω
θ†∂tθ dΩdt =

∫
Ω

[δθ θ†]T0 dΩ +

∫ T

0

∫
Ω
δθ ∂tθ

†︸ ︷︷ ︸
b

dΩdt. (56)

The second term designated as b is a term that we use in the adjoint equation for the scalar
field. The first term on the right hand side is evaluated at time t = 0 and t = T and gives
us the following relationship:

−
∫

Ω
[δθ θ†]T0 dΩ =

∫
Ω
−δθ(x, T )θ†(x, T )︸ ︷︷ ︸

c

+ δθ(x, 0)θ†(x, 0)︸ ︷︷ ︸
d

dΩ (57)
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The condition for θ at time zero, designated by d in Eq. 57 is not relevant in our case, the
backwards θ† value at this time is not used to update the initial conditions for the forward
fields. On the other hand the term c is very important. Combined with term b from Eq.
56 this gives us the following condition:

θ†(x, T ) = 2θ(x, T ) (58)

This relation provides the initial condition for θ† for the backwards loop based on the final
field of θ from the forward time integration.
Moving on to term (III) from Eq. 52, this results in the following contribution:

(III) :
∂L III

θ

∂θ(x, t)
δθ(x, t) ≈ −

∫ T

0

∫
Ω
θ†U ·∇δθ dΩdt. (59)

Using integration by parts we obtain:

−
∫ T

0

∫
Ω
θ†U ·∇δθ dΩdt =

∫ T

0

∫
Ω
−∇ · (θ†Uδθ) + δθ∇ · (Uθ†)︸ ︷︷ ︸

e

dΩdt. (60)

The underlined term is equal to zero due to divergence in a periodic domain. Term e can
be rewritten as∫ T

0

∫
Ω
δθ∇ · (Uθ†) dΩdt =

∫ T

0

∫
Ω
U · (∇θ†)δθ︸ ︷︷ ︸

f

+θ†∇ ·Uδθ dΩdt. (61)

The underlined term drops out, leaving only the term f which will contribute to the adjoint
equation. The final contribution comes from the term IV in Eq. 52:

(IV ) :
∂L IV

θ

∂θ(x, t)
δθ(x, t) ≈ −Pe−1

∫ T

0

∫
Ω
θ†∇ · (∇δθ) dΩdt (62)

≈ −Pe−1

∫ T

0

∫
Ω
∇ · (θ†∇δθ)−∇δθ ·∇θ† dΩdt (63)

≈ Pe−1

∫ T

0

∫
Ω
−∇ · (δθ∇θ†) + δθ∇2θ†︸ ︷︷ ︸

g

dΩdt. (64)

The underlined terms again drop out and only the term labeled by f will contribute. Now
we combine all the terms labeled by a, b, f , and g from Eqs. 54, 56, 61, and 64 to obtain
the following expression:∫ T

0

∫
Ω
δθ(∂tθ

† + U ·∇θ† + Pe−1∇2θ†) dΩdt = 0, (65)

which needs to hold for any arbitrary perturbation of δθ. Thus we obtain our adjoint
equation for θ. This is very similar to the regular advection diffusion equation except for
the sign in front of the diffusive term:

∂tθ
† + U ·∇θ† + Pe−1∇2θ† = 0 (66)
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Appendix B: Determining the fastest growing mode in the
system

We start with the periodic forcing velocity corresponding to the 2D Kolmogorov flow defined
as:

ū = sin(z)êx (67)

The linearized versions of the Eq. 7 in 2D thus become:

∂ui
∂t

+ ūj∂jui + uj∂j ūi = −∂ip+ Re−1∂jjui. (68)

Substituting in the forcing as defined in Eq. 67 we obtain:

∂tux + sin(z)∂xux + uz∂z sin(z) = −∂xp+Re−1∂jjux

∂tuz + sin(z)∂xuz = −∂zp+ Re−1∂jjuz.

Assuming an ansatz of the form ∝ eikxx+λt for all dependent variables, we get

λux + ikx sin(z)ux + uz cos(z) = −ikxp+ Re−1
(
∂zz − k2

x

)
ux

λuz + ikX sin(z)uz = −∂zp+Re−1
(
∂zz − k2

x

)
uz

Eliminating p between these two equations yields

λ (∂zux − ikxuz) + ikx (cos(z)ux + sin(z)∂zux) + cos(z)∂zuz − sin(z)uz

−(ikx)2 sin(z)uz = Re−1
(
∂zz − k2

x

)
(∂zux − ikxuz)

Using the continuity equation we have ux = −(ikx)−1∂zuz. Thus we obtain the following
expression:

λ
(
−(ikx)−1∂zzuz − ikxuz

)
− sin(z)∂zzuz−uz sin(z) + k2

x sin(z)uz =

Re−1
(
∂zz − k2

x

) (
−(ikx)−1∂zzuz − ikxuz

)
. (69)

Now let:

uz =

N∑
n=−N

wne
inz. (70)

Substituting this expression into Eq. 69:

λ

(
−(ikx)−1

∑
n

wn(−n2)einz − ikx
∑
n

wne
inz

)
− sin(z)

(∑
n

wn(−n2)einz

)
−
∑
n

wn(1− k2
x) sin(z)einz = Re−1

∑
n

(n2 + k2
x)
(
−(ikx)−1n2wne

inz + ikxwne
inz
)

(71)

Using Euler’s identity we rewrite sin(z) = (eiz − eiz)/2i, so

λ
∑
n

(
n2wn
ikx

− ikxwn
)
einz +

∑
n

n2wn
ei(n+1)z − ei(n−1)z

2i

−
∑
n

wn(1− k2
x)
ei(n+1)z − ei(n−1)z

2i
= Re−1

∑
n

(n2 + k2
x)

(
ikx −

n2

ikx

)
wne

inz

375



0

0.05

0.1

0.15

0.20

0.25
0.248

0 0.2 0.4 0.5 0.6 0.8 1

gr
ow

th
 r

at
e

k

Figure 12: In this figure we show the analytical results for the growth rate as a function of
wavenumber. k = 0.5 corresponds to a wave length of 4π, which exactly fits into our com-
putational domain once, i.e. the mode one structure. The wavenumber k = 1 corresponds
to the mode 2 structures, and does not have a positive growth rate.

Multiplying everything with ikx we get

λ
∑
n

(
n2wn + k2

xwn
)
einz +

∑
n

n2kxwn
ei(n+1)z − ei(n−1)z

2
−
∑
n

wnkx(1− k2
x)
ei(n+1)z − ei(n−1)z

2
.

= −Re−1
∑
n

(n2 + k2
x)(k2

x + n2)wne
inz

Projecting this equation onto each Fourier mode, we get

λwn(n2 + k2
x) +

(n− 1)2kxwn−1

2
− (n+ 1)2kxwn+1

2
− kx(1− k2

x)wn−1

2

+
kx(1− k2

x)wn+1

2
= −Re−1(n2 + k2

x)2wn (72)

rewriting:

λwn =− Re−1(n2 + k2
x)wn

+
kx
2

[(
(n+ 1)2 − (1− k2

x)
) wn+1

n2 + k2
x

+
(
(1− k2

x)− (n− 1)2
) wn−1

n2 + k2
x

]
. (73)

In order to reconstruct an initial velocity field based on the wave-number with the
maximum growth rate, we pick k = 1/2 which corresponds closely to the fastest growing
mode and fits periodically in our domain. Because the horizontal extent of our domain is
4π a wavenumber of k = 0.5 fits exactly once in this domain. Thus:

ux(x, z) = Re

(
−nwn
kx

(cos(nz + kxx) + i sin(nz + kxx))

)
(74)

uz(x, z) = Re ((cos(nz + kxx) + i sin(nz + kxx))) (75)
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Structure and Stability of Flow Around Noncircular Islands

Wenjing Dong

August 22, 2019

1 Introduction

1.1 Motivation

Closed flows around an island can form in the ocean in several situations: first, when an
island posseses a sufficiently steep bottom slope, potential vorticity contours can be closed
due to the topographic effect; second, island-trapped inertial or subinertial waves induced
by tidal or planetary waves may cause currents around islands; finally, wind with lateral
shear blowing over an island can also lead to closed flows. In these situations, the flow
around islands can be be unstable to perturbations. In [6], it is shown that vortex dipoles
can be shed from circular islands when the steady state is unstable. Since coastal waters
near islands are rich in chemical and biological material, vortex dipoles shed from an island
can transport the biogeochemical material. Thus, the stability of flow around islands is
important to biogeochemical tracer transport.

Previous studies on stability of flow around islands can be two-dimensional or three-
dimensional. In [6], the stability of two vorticity rings attached to a circular island with
zero net vorticity is studied in a two-dimensional setting. Depending on the ratio of the
outer radius of the two layer vorticity, the flow can be unstable. In [12], the stability of
two-dimensional quasi-geostrophic circular flow around a circular island with bottom slope
is investigated. They find that sufficiently steep bottom slope can stabilize the flow because
the absolute vorticity dominates the relative vorticity. However, islands are never circular
in the real world. One natural question is how the shape of islands affect the steady state
and stability of the flow. This will also provide insight on whether a circular island is a
good approximation to a noncircular island. To answer these questions, we start studying
the steady flow and its stability around a noncircular island in a two-dimensional domain.

In 2D, a single elliptic vortex patch (called Kirchhoff vortex) rotates at a constant
angular velocity. The vortex patch is stable to small perturbations when a/b < 3 (see [8]),
where a and b are, respectively, the long and short axes of the ellipse. This result suggests
that for an elliptic island the aspect ratio is an important factor to the stability of the steady
states around islands. Thus, we restrict our attention to elliptic islands. The method used
is very general and applicable to islands of any shape.

The report is organized as follows: in §2 we compute the steady state around a slightly
perturbed circular island using asymptotic analysis; in §3 we compute the evolution of a
small azimuthal mode n perturbation added to the steady circular flow around circular is-
lands. The results are used to verify the contour dynamics code and the simulated annealing
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Next, we expand boundary conditions for ψ. The boundary condition at r = 1 is ψ(r +
ξ cos(nθ), θ) = const. After expansion, it becomes

ψ0(1, θ) = const, (7)

ψ1(1, θ) +
d

dr
ψ0(1, θ)ξ cos(nθ) = const, (8)

ψ2(1, θ) +
d

dr
ψ1(1, θ)ξ cos(nθ) +

1

2

d2

dr2
ψ0ξ

2 cos2(nθ) = const. (9)

The boundary condition at r = b+ η is

∂tη +
v(b+ η, θ)

b+ η

∂η

∂θ
= − 1

b+ η

∂ψ

∂θ
. (10)

For steady state, the boundary conditions become

v0(b)
dη1

dθ
+
∂ψ1

∂θ
(r, θ) = 0, r = b (11)

v0(b)
dη2

dθ
+
∂ψ2

∂θ
(r, θ) = −[v′0(r)η1 + v1(r, θ)]

dη1

dθ
− ∂r∂θψ1(r, θ)η1, r = b. (12)

Solving ψ0, we find

ψ0(r, θ) =

{
r2

4 −
b2

4 + a0 ln(r/b), r < b
(a0 + b2/2) ln(r/b), r > b,

(13)

where a0 is determined by the circulation on the island (determined later).
According to equation (5), we write ψ1 as

ψ1(r, θ) = cos(nθ)

{
b0(r/b)n + b1(r/b)−n, r < b
b2(r/b)−n, r > b,

(14)

After applying boundary conditions to ψ1, we have

b0 = − b

2n
η̂1, b1 = −

(
a0

b
+
b

2

)
η̂1 +

b

2n
η̂1, b2 = −

(
a0

b
+
b

2

)
η̂1, (15)

and

η̂1 =
(1 + 2a0)n

(2a0bn−1 + bn+1)n− bn+1 + b1−n
ξ. (16)

By boundary condition (12), ψ2 consists of azimuthal modes 0 and 2n. Thus, we write
ψ2 = φ0(r) + φ2(r) cos(2nθ). Substituting this into equation (6), we have

1

r
(rφ′0)′ = eδ(b− r)− 1

4

d

dr
δ(r − b)η̂2

1, (17)

1

r
(rφ′2)′ − 4n2

r2
φ2 = fδ(b− r)− 1

4

d

dr
δ(r − b)η̂2

1. (18)

Solving these two equations in regions r < b and r < b, we have

φ0(r) =

{
c1 + c2 ln r, r < b
c3 ln r, r > b,

(19)
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φ2(r) =

{
d1(r/b)2n + d2(r/b)−2n, r < b
d3(r/b)−2n, r > b.

(20)

Next, we determine the matching conditions for φ0 and φ2. For any smooth function h(r)
with compact support, we introduce the notation < f, h >=

∫
r>1 h(r)g(r). Then〈

1

r
(rφ′0)′, h

〉
=

〈
φ0,

(
r

(
h

r

)′)′〉
. (21)

By splitting the integral domain into (1, b) and (b,∞), we find〈
φ0,

(
r

(
h

r

)′)′〉
= h′(b)[φ0(b−)− φ0(b+)]

+h(b)

[
φ0(b+)− φ0(b−)

b
+ φ′0(b+)− φ′0(b−)

]
. (22)

Using equation (17), we also have〈
1

r
(rφ′0)′, h

〉
= eh(b) +

1

4
h′(b)η̂2

1. (23)

Therefore, by the two equations above, we have

1

4
η̂2

1 = φ0(b−)− φ0(b+), e = φ′0(b+)− φ′0(b−)− η̂2
1

4b
. (24)

Repeating the process for φ2, we have

1

4
η̂2

1 = φ2(b−)− φ2(b+), f = φ′2(b+)− φ′2(b−)− η̂2
1

4b
. (25)

Applying matching conditions to φ0 and φ2, we have

c1 =
1

4
η̂2

1, c3 = c2 +
η̂2

1

4
+ eb, (26)

d1 + d2 − d3 =
1

4
η̂2

1, −d1 + d2 − d3 −
fb

2n
=

1

8n
η̂2

1. (27)

Applying boundary condition for ψ2 at r = 1, i.e., equation (9), we have

d1

b2n
+ d2b

2n = −1

2

[(
1

4
− a0

2

)
ξ2 +

(
nb0
bn
− nb1bn

)
ξ

]
. (28)

Next, we apply boundary condition for ψ2 at r = b, i.e., equation (12). The RHS of equation
(12) is

RHS =
n

2
η̂1 sin(2nθ)

{ (
1
2 −

a0
b2

)
η̂1 + 2nb (b0 − b1), r = b−(

−a0
b2
− 1

2

)
η̂1 − 2n b2b , r = b+.

(29)

Using the formulae for b0, b1, b2, RHS(b+)−RHS(b−) = n
2 η̂

2
1 sin(2nθ). The LHS of equation

(12) is

LHS = −2n sin(2nθ)

[(
a0

b
+
b

2

)
f + φ2(b)

]
, (30)
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Figure 3: Left panel: η(θ, t) plotted in θ− t coordinate. Right panel: the Fourier transform

η̂(0, t). From top to bottom: Γ0 = 0, n = 1; Γ0 = 0, n = 2; Γ0 = 10, n = 1; Γ0 = 10, n = 2.
The red line is θ = ω/nt where ω = 2π/T is the frequency predicted in section §3. The
dashed black line denotes the predicted frequency.

386



5.1 Hamiltonian structure

2D Euler equation can be formulated in terms of a Hamiltonian system using the following
Poisson bracket (see [9] and [10])

{F,G} =

∫
q

[
δF

δq
,
δG

δq

]
, (59)

where [, ] is the usual Jacobian. The Poisson bracket defined above in an infinite domain is
anti-symmetric, bilinear, and satisfies the Jacobi identity. The Hamiltonian (also the finite
part of the kinetic energy) can be defined as

H[q] = −1

2

∫
dxq(x)ψ(x) = −1

2

∫ ∫
dx′q(x)G(x, x′)q(x′). (60)

By the symmetry property of the Green function G and evolution equation of vorticity,
qt = {q,H}.

Since integration by parts is used in many derivations and it is no longer possible to write
ψ(x) =

∫
q(y)G(x, y)dy, we need modify the Hamiltonian. Following the above approach,

we make use of the Green function for Ωc. By [7], there exists a Green function g(x, y) such
that

∆xg(x, x′) = δ(x− x′),∀x, x′ ∈ Ωc, (61)

g(x, x′) = const ∀x ∈ ∂Ω, (62)∫
∂Ω

∂g(x, x′)

∂n
dS(x) = 0, (63)

where ∂g(x,x′)
∂n is the outer limit of normal derivative of g(x, x′) with respect to x,

g(x, x′) ∼ 1

2π
ln |x− x′|+O(

1

|x− x′|
), when x→∞ (64)

g(x, x′)

∂n
∼ 1

2π

1

|x− x′|
+O(

1

|x− x′|2
), when x→∞, (65)

where g(x,x′)
∂n is the outer normal derivative on a large circle |x− x′| = c with respect to x.

Importantly, g(x, x′) is symmetric, i.e.,

g(x, x′) = g(x′, x). (66)

Physically, g(x, x′) is the streamfunction induced by a point vortex at x′ outside of an island
which has zero circulation.

Let ψ0 be the streamfunction induced by the circulation around the island alone. Then
ψ0 is subject to

∆ψ0 = 0, ∈ ∂Ωc, (67)∫
∂Ω

∂ψ0

∂n
= Γ0, (68)

= const, on ∂Ω. (69)
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5.3 The contour dynamics version of the simulated annealing method

For piecewise vorticity distribution with only one contour, the bracket of {F,H} becomes

{F,H} = q0

∫
A\Ω

[
δF

δq
,
δH

δq

]
= −q0

∫
A\Ω

∂1
δF

δq
∂2ψ − ∂2

δF

δq
∂1ψ (85)

= −q0

{∫
∂A
−
∫
∂Ω

}
δF

δq

∂ψ(y)

∂τ
dS(y) (86)

= q0

∫
dσ
δF

δq
∂σ
δH

δq
, (87)

where the integral on ∂Ω vanishes by integral by parts and ψ = const on ∂Ω, and (X(σ), Y (σ))
is a parametrization of the outer boundary of the vortex patch ∂A. In [4], a symmetric
bracket is defined as

(F,G)SA =

∫
dσ{F,Xi(σ)}{Xi(σ), G}, (88)

where (X1, X2) = (X,Y ). We note that smoothing is not used in this definition of the
symmetric bracket. Using the definition of {, }SA, we have

(H,H)SA = −
∫
dσ{X,H}2 + {Y,H}2 ≤ 0. (89)

The dynamics generated by Ft = α(F,H)SA evolves the Hamiltonian monotonically de-
pending on the sign of α. By evolving the contour by velocity ((X,H)SA, (Y,H)SA), we
evolve the dynamics under the symmetric bracket.

Let {X,H} = ũ, {Y,H} = ṽ. By the definition of the bracket, we have

ũ =
Yσ

X2
σ + Y 2

σ

∂ψ

∂σ
=

Yσ√
X2
σ + Y 2

σ

un, (90)

ṽ = − Xσ

X2
σ + Y 2

σ

∂ψ

∂σ
= − Xσ√

X2
σ + Y 2

σ

un, (91)

where un is the normal velocity. Let ||Xσ|| =
√
X2
σ + Y 2

σ . We evolve the boundary of the
vortex patch by α(uSA, vSA):

uSA = (X,H)SA = q2
0

Yσ
||Xσ||2

∂σ

(
Yσ
||Xσ||2

ũ− Xσ

||Xσ||2
ṽ

)
= q2

0

Yσ
||Xσ||2

∂σ

(
un
||Xσ||

)
, (92)

vSA = (Y,H)SA = −q2
0

Xσ

||Xσ||2
∂σ

(
Yσ
||Xσ||2

ũ− Xσ

||Xσ||2
ṽ

)
= −q2

0

Yσ
||Xσ||2

∂σ

(
un
||Xσ||

)
. (93)

Equations (89), (90), and (91) implies

(H,H)SA = 0 if and only if

∫
dσu2

n

√
X2
σ + Y 2

σ = 0. (94)

Thus, a solution corresponding to (H, H)SA = 0 is a steady solution to vorticity field. 
Moreover, (H, H)SA = 0 if and only if (uSA, vSA) = 0. Indeed, equations (92) and

390



391



392



393



394



395



396



397



398



399



400



401



402



[5] G. Hsiao and R. C. MacCamy, Solution of boundary value problems by integral
equations of the first kind, SIAM Review, 15 (1973), pp. 687–705.

[6] Z. Kizner, V. Makarov, L. Kamp, and G. Van Heijst, Instabilities of the flow
around a cylinder and emission of vortex dipoles, Journal of Fluid Mechanics, 730
(2013), pp. 419–441.

[7] C. Lin, On the motion of vortices in two dimensions: I. existence of the kirchhoff-
routh function, Proceedings of the National Academy of Sciences of the United States
of America, 27 (1941), p. 570.

[8] A. Love, On the stability of certain vortex motions, Proceedings of the London Math-
ematical Society, 1 (1893), pp. 18–43.

[9] P. J. Morrison, Hamiltonian field description of two-dimensional vortex fluids and
guiding center plasmas, tech. rep., Princeton Univ., NJ (USA). Plasma Physics Lab.,
1981.

[10] , Poisson brackets for fluids and plasmas, in AIP Conference proceedings, vol. 88,
AIP, 1982, pp. 13–46.

[11] N. Muskhelishvili and J. Radok, Singular integral equations: boundary problems
of function theory and their application to mathematical physics., Courier Corporation,
2008.

[12] M. Rabinovich, Z. Kizner, and G. Flierl, Bottom-topography effect on the in-
stability of flows around a circular island, Journal of Fluid Mechanics, 856 (2018),
pp. 202–227.

403



REPORT  
DOCUMENTATION PAGE

1. Report No.

4. Title and Subtitle

7. Author(s)

9. Performing Organization Name and Address

12. Sponsoring Organization Name and Address

15. Supplementary Notes

16. Abstract (Limit: 200 words)

17. Document Analysis

18. Availability Statement

(See ANSI-Z39.18) OPTIONAL FORM 272 (4-77)
(Formerly NTIS-35)
Department of Commerce

See Instructions on Reverse

19. Security Class (This Report)

20. Security Class (This Page)

21. No. of Pages

22. Price

a. Descriptors

b. �Identifiers/ 
Open-Ended Terms

c. �COSATI Field/ 
Group

5. Report Date

8. Performing Organization Rept. No.

10. Project/Task/Work Unit No.

11. Contract(C) or Grant(G) No.

13. Type of Report & Period Covered

14.

(C)

(G)

6. 

2. 3. Recipient’s Accession No.
WHOI-2025-12

December 2025
2019 Program of Study: Stratified Turbulence and Ocean Mixing Processes 

National Science Foundation Program Manager Dr. Baris M. Uz 15 Eisenhower Avenue
Alexandria, VA 22314

Approved for public release, distribution unlimited
418

Geophysical fluid dynamics,   
Stratified Flows,  
Ocean Mixing Processes

This report should be cited as: Woods Hole Oceanographic Institution Technical Report, WHOI-2025-12 https://doi.org/

The 2019 Geophysical Fluid Dynamics Summer Study Program theme was Stratified Turbulence and Ocean Mixing 
Processes. Two principal lecturers, Stephanie Waterman (University of Victoria) and Colm-cille Caulfield (University 
of Cambridge), were our expert guides for the first two weeks. Colm covered the theoretical aspects of stratified 
turbulence, from simple scaling laws to sophisticated, modern numerical results. Stephanie kept the enthusiastic 
audience grounded with her lectures on ocean mixing processes, observations, and their many technical challenges.

Claudia Cenedese, Bruce Sutherland, and Karl Helfrich 

Woods Hole Oceanographic Institution

Technical Report

OCE-1829864




