
PREFACE 

The 2023 Geophysical Fluid Dynamics Summer Study Program started on June 20th on the 
topic of GFD on other worlds. The principal lectures were given by Professors Heather 
Knutson (Caltech) and Geoff Vallis (University of Exeter). Heather’s lectures described what 
we can find out about GFD on other worlds from observations of extrasolar planets, and 
reminded everyone of the power of well-designed blackboard talks in engaging their 
audience. Geoff’s lectures covered a number of ’hot’ theoretical topics on the atmospheric 
dynamics of our solar system planets as well as giant and terrestrial exoplanets. We also had 
two tutorials: a fun “DYNamics” demonstration of properties and instabilities of rotating 
fluids by Jonathan Aurnou (UCLA) and the now yearly “Dedalus tutorial” by Keaton Burns 
(MIT). 

Pascale Garaud (UC Santa Cruz) and Tiffany Shaw (University of Chicago) were co-
directors. They welcomed many long- and short-term visitors, and the atmosphere at 
Walsh Cottage was finally back to its pre-COVID self. Almost all of the long-term visitors 
were able to advise fellows, either individually, or in group.  

The fellows this year were: 

Nathan Magnan, University of Cambridge 
Yifeng Mao, University of Colorado Boulder 
Hao Fu, Stanford University 
Quentin Nicolas, University of California Berkeley 
Arefe Ghazi Nezami, University of Texas Austin 
Quentin Kriaa, Aix-Marseille University 
Nimrod Gavriel, Weizmann Institute of Science 
Ellie Ong, University of New South Wales 
Yaoxuan Zeng, University of Chicago 
Deborah Cotton, University of Oxford 

As usual, laboratory experiments were facilitated by able support from Anders Jensen. 
Janet Fields and Julie Hildebrandt made sure that the administrative side of the 
summer ran smoothly.  

This year's Distinguished Scholar Award was presented to Alexis Kaminski, for her 
academic excellence and dedication to mentoring the next generation of fellows. The 2023 
Sears Public Lecture was delivered by Professor Sara Seager, of the Massachusetts 
Institute of Technology, on ``Planetary Atmospheres, and the search for signs of life 
beyond Earth''.  

For the first time perhaps in the history of GFD, the staff vs. fellows softball game was 
replaced by a staff vs. fellows volleyball game. Only the future will tell whether this trend 
will catch on.  
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GFD 2023 Lecture 1: Exoplanet Demographics

Heather Knutson; notes by Yaoxuan Zeng and Deborah Cotton

January 31, 2024

Exoplanets are planets outside our solar system. Detecting exoplanets is a challenge due to
the fact that we are trying to spot a dim planet next to a high luminosity star. The challenge is
analogous to trying to spot a firefly by a spotlight in Hollywood, when you are taking measurements
from New York City. Nevertheless, more than 10,000 exoplanets and exoplanet candidates have
been found so far1. Here we introduce two major methods to detect exoplanets: the radial velocity
method and the transit method, and the categories and occurrence rates of exoplanets.

1 Techniques for Detecting Exoplanets

1.1 Radial velocity (RV) method

If the star has a planet, they will orbit around their common center of mass (Fig. 1a). If their
velocity has a radial component relative to us, this radial velocity will result in a Doppler shifting
in their spectrum. By analyzing the time series of radial velocity of the star (it is hard to observe
the planet), we can learn about the orbital period and mass of the planet. This is called the radial
velocity method to detect exoplanets.

Figure 1: (a): sketch of the star-planet system. (b) sketch of the radial velocity variation (ΔRV )
as a function of time. Notations can be found in the text.

1NASA Exoplanet Archive: https://exoplanetarchive.ipac.caltech.edu/
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Here, we consider a simple case that there is only one planet in the planetary system2, and the
eccentricity of the orbit is zero (Fig. 1). Therefore, we can learn the orbital period of the planet
from the period in the signal of radial velocity variation of the star. The amplitude of the variation
of the star’s radial velocity, Kstar, is a function of the mass of the star, Mstar, the mass of the
planet, Mplanet, and the orbital period, P . The distance between the star and the common center
of mass, r, is

r = d
Mstar

Mstar +Mplanet
, (1)

where d is the distance between the star and the planet. The equations for the motion of the star
can be written as,

Mstar

(
2π

P

)2

r =
GMstarMplanet

d2
, (2)

Vstar =
2πr

P
, (3)

where Vstar is the velocity of the star. If the orbital plane has an inclination angle i towards us
(i = 0 means the plate directly facing us) there will be a radial velocity component of the star,

Kstar = Vstar sin i. (4)

By solving Eq. 1 to 4, and assuming that Mplanet � Mstar, we have the relationship

Kstar ≈ (2πG)1/3MplanetM
−2/3
star P−1/3 sin i (5)

≈ 8.95 cm/s

(
Mplanet

MEarth

)(
Mstar

MSun

)−2/3( P

1yr

)−1/3

sin i, (6)

where MEarth and Msun are the mass of the Earth and the sun, respectively. Consequently, we can
infer the planet’s mass from the variation amplitude in the star’s radial velocity. The threshold to
detect the radial velocity variation is about 1 m/s. From Eq. 5 we learn that the radial velocity
method is most sensitive to massive planets orbiting close to the star.

1.2 Transit method

When the planet passes in front of the star, the radiation of the star will be partially obscured,
shown as a dip in the curve of solar flux as a function of time (Fig. 2). This is called transit and is
currently the most effective way to detect exoplanets3.

We can infer the radius of the planet based on the transit depth δ (decreasing amplitude of the
radiation flux) with the relationship

δ =

(
Rplanet

Rstar

)2

, (7)

2If there are more than one planet in the system, we can separate the signal for each planet as long as the planets’
gravitational fields are not affecting each other’s orbit.

3When the planet passes behind the star, the planet’s radiation will be obscured by the star and form another
dip, called occultation (Fig. 2). This signal is harder to detect.
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Figure 2: Sketch of transit method (taken from Fig. 1 in [5]).

where Rplanet is the radius of the planet and Rstar is the radius of the star4. The probability of
transit ptr is [5]

ptr ≈ Rstar

a
= 0.005

(
Rstar

Rsun

)( a

1AU

)−1
, (8)

where a is the semi-major axis of the planet’s orbit and Rsun is the radius of the sun. As a result,
similar to the radial velocity method, the transit method is most sensitive to planets that are close
to the host star.

2 Locations of Detected Exoplanets

Among the 10,000+ confirmed exoplanets and exoplanet candidates, most of them are within a few
hundreds of pc around the sun (for comparison, the sun is about 8 kpc from the center of the Milky
Way, Fig. 3). This is because the two main methods to find exoplanets, the radial velocity method
and the transit method, both require enough photons to be detected to distinguish the planet from
noise and distant planetary systems are too dim to detect. One way to detect the distant exoplanets
is the gravitational microlensing method, which uses the effect that the gravitational field of the
planets will bend the light from the star.

3 Categories of Detected Exoplanets

We can use a mass-period diagram to delineate the current extrasolar planetary catalogue (Fig. 4).
Exoplanets are broadly categorised into four different types:

• Hot Jupiters are planets with a mass close to or larger than the mass of Jupiter and with
small orbital period, meaning they are located close to the star they are orbiting.

4With both radial velocity and transit method, we can get the mass the radius and hence the bulk density of the
planet, from where we can infer the composition of the planet.
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Figure 3: The Milky Way and the Sun. Figure credit: NASA/JPL-Caltech/R. Hurt (SSC)

Figure 4: Categories of exoplanets. Exoplanets are split into giant planets (hot Jupiters and
warm/cold Jupiters) and small planets (super-Earths and sub-Neptunes). λ refers to the spin orbit
angle of the planet. The mass of each planet is plotted relative to the mass of Jupiter (MJ). The
right bottom part of the diagram are small and distant planets that are unexplored. Taken from
Fig. 5 in [4].
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• Warm/cold Jupiters are planets with a mass close to or larger than the mass of Jupiter and
with larger orbital period, meaning they are located further away from the star they are
orbiting.

• The small planets are categorised either as super-Earths or as sub-Neptunes. They are planets
with a significantly lower mass than that of Jupiter.

• For planets with a mass more than ∼ 13MJ , we categorise them as a Brown Dwarf and not
a planet.

3.1 Super-Earths and Sub-Neptunes

Super-Earths and sub-Neptunes both have a rocky core. In sub-Neptunes the rocky core is sur-
rounded by a gaseous envelope (Fig. 5). In sub-Neptunes, from measurements of outflows from
young sun-like stars and from detecting atmospheric absorption, it is likely that this envelope is
composed of hydrogen and helium gas. For sub-Neptunes orbiting around low mass stars there is po-
tential for the gaseous envelope to be a water envelope. However, currently there is no confirmation
that water worlds exist.

Figure 5: Sketch for the structure of the super-Earth and sub-Neptune.

3.1.1 Aside: on the formation of water worlds

For every planetary system we can define an ice line, where at closer radii, the water in the proto-
planetary disk is in the gaseous state and at larger radii the water is in the solid state5. For sun-like
stars, this line is very far from the star (1-2 AU); however, for smaller stars this line is closer in.
Planets are usually formed in the inner disk, close to the host stars. For smaller stars, it is possible
that the planet-forming region is outside the ice line, the planets are able to accumulate ice during
its formation, and a water envelope may form above the rocky core. As the sub-Neptune migrates
inward, the ice sublimates to create a gaseous, water atmosphere.

5The pressure of the planetary disk does not allow liquid water to exist.
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3.2 Potentially “habitable planets”

For a planet to be habitable we need liquid water on the surface. Therefore, we are searching
for roughly Earth-sized planets with Earth-like insolation rates. We define Earth-sized planets as
planets with a radius of 0.7 − 1.5RE , where RE is the radius of Earth. We choose an upper limit
of 1.5RE as, for planets with a radius higher than 1.5RE , the pressure and temperature in the
atmosphere becomes too thick for liquid water to exist on the surface. The lower limit of 0.7RE , is
partly determined by observational limitations and partly by the requirement that the planet must
be of a sufficient size to hold its atmosphere.

4 Occurrence Rates

4.1 Giant planets

Figure 6: The occurrence rate of giant planets as a function of the semi-major axis of the orbit.
Taken from Fig. 3 in [3].

The occurrence rate of hot Jupiters is about 1-2% for sun-like stars6. For sun-like stars, the
preferred region to find giant planets is about 3-5 AU from the host star (Fig. 6). There is much
discussion about what happens to the occurrence rate beyond ∼10 AU, see [3]. Cold Jupiters,
which are further away from the host stars (2-8 AU), have an occurrence rate of 14% for sun-like
stars. Hot Jupiters are likely to have formed further out in the solar system and migrated into their
current location.

Giant planets are less common around low-mass stars. This is because we require the mass of
the protoplanetary disk to be sufficiently large for giant planets to form. Further, as giant planets
commonly contain a rocky core, we need the disk to contain a certain amount of solid elements.
Generally, the mass of a disk is about 10% of the mass of the star and about 1% of the star disk is

6We define sun-like stars as stars with spectral types of F, G and K.
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composed of solid elements. However, as the distribution of elements in the star generally matches
the distribution of elements in the disk, giant planets can form around small, metal-rich stars. The
occurrence rate of giant planets broadly decreases with stellar mass, with the occurrence rate for
stars, 0.088–0.71M� found to be 0.194 ± 0.072% [1].

4.2 Super-Earths and sub-Neptunes

Figure 7: The occurrence rate of small planets as a function of the planetary radius. Lightly
shaded regions encompass our definitions of “super-Earths” (light red) and “sub-Neptunes” (light
cyan). Taken from Fig. 7 in [2].

Figure 8: Radius vs. period distribution of small planets. The lower group is super-Earths and
the upper group is sub-Neptunes. In between there is an “evaporation valley” where there are few
planet samples. Taken from Fig. 16 in [2].
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Super-Earths and sub-Neptunes have an occurrence rate of about 50% for sun-like stars, and
about 100% for M-dwarfs. There is a separation in the size between super-Earths and sub-Neptunes
(Fig. 7 and Fig. 8). If the planets are too close to the star (periods shorter than several days), the
X-ray and UV radiation from the star will expand the hydrogen and helium envelope and these
gases will escape. As a result, the sub-Neptunes, which have a hydrogen and helium envelope, are
further from the star (and larger) than the super-Earths7.

4.3 Earth-sized planets with Earth-like insolation rates

Earth-sized planets with Earth-like insolation rates have an occurrence rate of ∼ 10% for sun-like
stars and ∼ 30%± 10% for M-dwarfs. It is harder to observe these planets for larger stars because
the optimal region of insolation is further away. However, in order to determine if these planets are
habitable, we need to characterise their atmospheres.

5 Summary

In the RV method, the radial velocity of the star is Kstar ∝ M
−2/3
star . In the transit method, the

transit depth is δ ∝ R−2
star. Both methods are more sensitive to smaller stars. Among different

exoplanets, the super-Earths and sub-Neptunes are more common than the giant planets. As
a result, it is easier to find small planets around small stars. Table 1 gives a summary of the
occurrence rates of the different categories of exoplanets.

Giant planet Small planet
Occurrence rate (%) Hot Jupiter Warm/cold Jupiter Small planet ‘Potentially habitable planet’

Sun-like stars 1 14 50 10
M-dwarfs 0.2 100 30 ± 10

Table 1: Occurrence rates of different exoplanet categories.
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GFD 2023 Lecture 2: Techniques for Characterization, Bulk and

Atmospheric Compositions

Heather Knutson; notes by Arefe Ghazi Nezami and Quentin Kriaa

January 30, 2024

1 Introduction

This lecture focuses on the various techniques developed for characterizing the elements present
in planets. In the previous lecture, we learned that the mass of a planet can be determined using
radial velocity measurements, and the radius of a planet can be found using the transit technique.
With this information we can find the bulk density of the planet that can be used to determine
whether the planet is mostly rocky (i.e., dominated by a solid core) versus if it is mostly hydrogen
and helium gas. The bulk density gives more detailed information on the bulk composition of the
planet. By knowing the bulk density, we can estimate the relative proportion of hydrogen gas versus
heavier elements within the planet.

For gas giant planets, two extreme scenarios can be assumed for planets with the same bulk
density (which have mostly been measured for hot Jupiters); in one extreme, all the condensed
material (such as metal, rock, and ice) are in the core of the planet with an envelope of H and He,
another case is that the planet is a uniform mixture of these components. Both Jupiter and Saturn
lie in between these two cases, as they have both a solid core and heavier elements mixed into their
envelopes. It is not crucial to assume a specific extreme scenario when estimating the total heavy
element content of a giant planet from its measured mass and radius. Therefore, for the sake of
simplicity, in this discussion, we assume that all the heavy elements are located in the core, while
the surrounding envelope is composed only of H and He (although in reality, some of the heavy
elements may be dispersed in the atmosphere).

2 Planet Bulk Composition and Structure

Observationally, there is an empirical correlation between the masses of gas giant exoplanets and
the relative fraction of their mass that comprises elements heavier than H and He (often referred
to by astronomers as ‘metals’). More massive gas giants tend to have relatively small fractions of
their mass in the form of heavy elements, while less massive gas giants (analogous to Uranus and
Neptune) tend to have much larger fractional heavy element masses. To highlight this relationship,
Zplanet is used to indicate the number ratio of heavy elements other than H and He in the planet
and is normalized relative to the Z of its parent star, Zstar. Zplanet, referred to as the planetary
metal fraction, has been shown to have relationship with the mass of the planet. However, this
relationship is stronger when

Zplanet

Zstar
is considered, shown in figure 1. The metal fractions of the

stars are smaller than their giant planets; for reference, for the sun Z = 0.0134. It is believed that
almost all gas giant exoplanets are formed via core accretion, which is based on the fact that all of
these planets have enhanced heavy element contents relative to their host stars. Additionally, giant
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planets are more common around stars with higher metal abundances, indicating that metal-rich
protoplanetary disks (which are assumed to share the same starting composition as their host star)
are more likely to form giant planets.

Figure 1: The relationship between the inferred planetary metal fraction relative to its parent star
and planet mass in the units of mass of Jupiter. Figure adopted from reference [4]

When measuring the mass-radius relationship for smaller exoplanets (1 − 3 REarth), many
planets are well-matched by an Earth-like mixture of rock and iron. These planets are referred to
as ‘super-Earths’, as shown in figure 2(a). If these planets deviate from the Earth-like composition
model, we can increase the content of heavier (iron) or lighter (water, hydrogen gas) materials to
find the best match for the corresponding mass and radius. There is a second sub-population of
small exoplanets called ‘sub-Neptunes,’ which have lower bulk densities than super-Earths. Two
possible types of structures can be considered for these planets, which reflect a different potential
formation locations. The first type, shown in figure 2(b), consists of only a rocky core with an
envelope of H and He gas. The relative mass of the envelope to the planet mass is usually 1%.
The second type, shown in figure 2(c), has a rocky core with water envelope (typical super-critical
water with a steam envelope). Planets with envelopes of H and He are assumed to have formed
close to the star and accreted their atmospheres directly from the protoplanetary disk. While, in
case of the planets with water-dominated atmospheres, the planet presumably formed farther out,
beyond the water-ice line, and then migrated inward. In this case, the atmosphere is formed from
the melting of materials that were originally accreted as solids.

This information is obtained solely from the mass and radius data, which are obtained using
the radial velocity measurements and the transit technique measurements, respectively. However,
we are capable of measuring the atmospheric compositions of these planets using other methods,
which can provide us with more information.

2.1 Beyond bulk composition: open questions for exoplanet atmospheres

Here we list some current open questions and problems linked to studies of exoplanet atmospheric
compositions:

• Where in the disk did hot Jupiters originate based on the elemental abundances of their
atmospheres? In the outer part of the disc more heavy elements and noble gasses are con-
densed and can be accreted as solids that are then vaporized and mixed into the atmosphere,
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Figure 2: The possible atmospheric components for super-Earths and sub-Neptunes: (a) Rocky core
only, (b) Rocky core with an envelope of H and He, and (c) Rocky core with a water-dominated
envelope.

whereas in the inner disk most solids are either a mixture of rocks and metals, or (if beyond
the water-ice line) water ice.

• How much H and He gas can small planets (1-10x mass of the Earth) accrete? Which small
planets keep or lose their atmospheres? Additionally, how are their atmospheric compositions
modified by this mass loss?

• Do water worlds exist? If so, how common are they?

• What types of outgassed atmospheres (i.e. atmospheres formed by the vaporization of mate-
rials originally accreted as solids) do terrestrial planets have?

To answer these questions, further studies of the atmospheric compositions of exoplanets are
needed. The following sections present new techniques for observations to characterize exoplanetary
atmospheres.

3 Techniques to Characterize the Atmospheric Compositions of

ets

The previous section highlights the importance of identifying and characterizing the compositions of
exoplanet atmospheres. Numerous methods have been developed for this purpose, providing insights
into the dominant molecular and atomic content of these atmospheres, which, when combined with
temperature data, allow for a more comprehensive understanding of their composition. Most of
the methods developed for this purpose rely on observations of transiting planets, which pass in
front of their host stars as seen from the Earth. Here we will focus on two of these techniques
that have been successfully used in recent years. The first technique is transmission spectroscopy :
when the planet passes in front of the star during the transit, part of the star’s light is transmitted
through the planet’s atmosphere, imprinting a signature of atmospheric absorption. The second
technique is emission spectroscopy : when the planet passes behind the star during the secondary
eclipse, the decrease in light indicates the relative wavelength-dependent amount of light emitted
(infrared) or reflected (optical) by the planet. Furthermore, a phase curve can be extracted by
observing the changes in the planet’s brightness as a function of orbital phase, further enhancing
our understanding of the exoplanet’s atmospheric dynamics.
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Figure 3: Two representative transit light curves showing the decrease in light when a planet
atmosphere is passing in front of its host star, consider two different λ where the atmosphere is
either opaque (blue colour) or transparent (black colour).

3.1 Measurements by transmission spectroscopy

Transmission spectroscopy measures the wavelength-dependent transit depth when the planet
passes in front of its parent star. The amount of the star’s light blocked by the planet will vary at
different wavelengths if the planet possesses an atmosphere – this atmosphere will be transparent

at some λ and opaque at others. Therefore, when we measure the transit depth
(
Rplanet

Rstar

)2
, at a spe-

cific λ where the atmosphere is transparent (shown with black in figure 3), it will have a shallower
transit depth compared to a λ where the atmosphere is opaque (shown with blue line in figure 3).
Therefore, we can find the imprint of atmospheric absorption on the light of the star transmitted
through the planet’s atmosphere. If the planet does not have an atmosphere, the transit depth is
constant across all wavelengths.

The magnitude of this absorption signal during transit can vary significantly among different
exoplanets. Therefore, it is crucial to estimate the predicted depth of this absorption to find the
sensitivity of these measurements to different atmospheric compositions. One way of approaching
this question is to take the derivative of the transit depth with respect to the radius of the planet:

Δdepth =
2Rplanet

R2
star

dRplanet (1)

This equation gives the relative change in transit depth when comparing measurements at
wavelengths where the atmosphere is relatively opaque versus relatively transparent. The question is
then: What is a representative value for dRplanet for an arbitrary absorber? Because the thickness of
the annulus of the atmosphere of the planet determines the amount of absorption by the atmosphere
(e.g., a larger annulus has a bigger area for absorption and the opposite is true for a smaller
annulus), dRplanet is proportional to the atmospheric scale height. We will use the homogeneous
atmospheric height, H, as the scale height. We adopt dRplanet ≈ 1 − 5H, where 5 is used for a
highly absorbing atmosphere (no clouds, strong absorber) and 1 corresponds to a more conservative
case (some high clouds and/or a weaker absorber) as a reasonable rule of thumb based on published
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Figure 4: The transit depth of the planets as the function of λ for planets with atmosphere of
smaller μ denoted by pink, larger μ denoted by blue, and for planet with no atmosphere denoted
by black.

measurements of exoplanet transmission spectra. H is derived from the equation of pressure as a
function of height for an isothermal hydrostatic atmosphere, when applying the ideal gas law to
the hydrostatic pressure equation. H is given in equation 2, where R is the gas constant, T is the
temperature, μ is the mean molecular weight, and g is the gravity. In this equation, we can estimate
T based on the amount of light the planet receives from its host star, and can calculate g using
the planet’s measured mass and radius. Therefore, the only unknown that remains is μ. If the the
planet has a H and He-dominated atmosphere, μ is around 2 MH, and if it has a water-dominated
atmosphere, μ is around 18 MH. These two values are an order of magnitude different from each
other, indicating that the strength of the absorption in the transmission spectrum is very sensitive
to the mean molecular weight of the atmosphere.

H =
RT

μg
(2)

Based on the arguments above, the best candidates for this method are hot Jupiters, which
have relatively low μ (H and He rich atmospheres), large T , and large Rplanet. Figure 4 shown
the difference in the transit depth for a planet with a smaller or larger μ, and for a planet with
no atmosphere. Untill now, relatively few good measurements are available using this techniques
to measure the elemental abundances of C, O, etc.; this is now changing with the recent launch
of JWST. This method is also less sensitive to atmospheric absorption when clouds are present in
the atmosphere; since most hot Jupiters have clouds, this is another reason why there are not very
many good measurements available yet.
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3.1.1 Atmospheric mass loss

So far, our focus has been primarily on the bound part of the exoplanet’s atmosphere. However,
transmission spectroscopy can also be used to detect escaping gas from exoplanet atmospheres
and calculate the corresponding mass loss rate of the atmosphere over time. This escaping gas
is characterized by a very low density and corresponding low optical depth at most wavelengths.
However, specific wavelengths can be selected that exhibit high absorption even at low densities.
For instance, Lyman-alpha (Ly-α- absorbs in the UV) and certain meta-stable states of helium
(absorbs in the near infrared, around 1083 nm) are highly absorptive under low-density conditions
and can be utilized for this purpose. By measuring the absorption at these wavelengths, the planet
may appear larger (in some cases, as much as a factor of a few larger), indicating the presence of
unbound gas flowing away from the planet. By fitting these data with mass loss models, we can
estimate the mass loss rates of these planets.

Quantifying the mass loss rates of exoplanets is crucial for understanding various aspects of
their formation mechanisms. Transmission spectroscopy can be employed not only for studying
atmospheric composition but also for measuring atmospheric mass loss rates. This method has
enabled the observation of young sub-Neptunes transitioning into super Earths as they undergo
catastrophic atmospheric loss.

3.2 Measurements by emission spectroscopy

The atmospheric composition of exoplanets can be characterized during a secondary eclipse, when
the exoplanet passes behind the star it orbits around. Before the eclipse, the instrumentation
measures the total flux F∗ + Fp (in units of W.m−2.Hz−1)1 coming from the star (F∗) and the
exoplanet (Fp); during the eclipse, the planet is hidden and the flux that is measured now reduces
to F∗ only. As shown in figure 5, the relative amplitude of the flux decrease is given by:

Fp

F∗ + Fp
� Fp

F∗
, (3)

where the right-hand side of equation (3) is obtained under the assumption that the planet’s flux
is much smaller than the star’s flux. The signal-to-noise ratio of the quantity Fp/F∗ is maximized
for planets with relatively high values of Fp and stars with relatively small values of F∗. The ratio
Fp/F∗ varies with the wavelength because the fluxes of the planet and the star are not constant
in wavelength. This is illustrated using black-body spectra in figure 6. Assuming the star and the
planet are respectively a hot and a cold black body, figure 6 shows that the longer the wavelength,
the larger the planet flux becomes relative to the stellar flux. This implies that the ratio Rp/F∗
generally increases with the wavelength in the near- and mid-infrared (1 − 10 μm), so emission
spectroscopy is best-suited to infrared observations.

Finally, note that the slopes of the spectra in figure 6 follow the same asymptote at longer
wavelengths. This results in a plateau of the quantity Fp/F∗ at the longest wavelengths (the
Rayleigh-Jeans limit). In this limit, and under the assumption that both the star and the planet
are black bodies, one can derive the following relation (see equation 3 in Reference [3])

Fp

F∗
�

(
Rp

R∗

)2 Tp

T∗
, (4)

1Note that any alternative flux unit can be adopted since we will ultimately consider a flux ratio, thus cancelling
these units out.
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where Rp and R∗ are respectively the planet and the star radii, and Tp and T∗ are respectively the
planet and the star temperatures. Equation (4) reveals that, in the limit of long wavelengths, the
signal-to-noise of emission spectroscopy measurements is maximized for planets orbiting relatively
small cool stars, and has the advantage of being insensitive to the planet’s atmospheric mean
molecular weight μ. Therefore, by contrast with the transmission spectroscopy, this technique is
well-suited to characterize planetary atmospheres of both small and large mean molecular weights.

Figure 5: Sketch extracted from Reference [2]. Secondary eclipse of a planet (in pink color) passing
behind a star (in yellow color). The curvilinear dotted line corresponds to the planet’s orbit around
the star. The solid dark line corresponds to the total flux that is measured. The flux Fp corresponds
to the planet’s flux. The variable Fs corresponds to the star’s flux which we denote F∗ in the main
text.
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Figure 6: Figure extracted from Reference [1]. Spectra of surface fluxes (in units of W.m−2.Hz−1) of
black bodies of various temperatures, as a function of the wavelength (see Reference [1] for details).

3.3 Estimating the equilibrium temperature of the planet

We can predict the equilibrium temperatures of exoplanet atmospheres using a simple energy balance
argument. This assumes that the emitting layers on these planets are isothermal, that they are in
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radiative equilibrium with their parent star, and that their emission can be modelled as a blackbody.
Let us define F =

∫
ν Fdν as the total flux integrated over all wavelengths – or equivalently over all

frequencies ν in Hz. The power Pout = 4πR2
pFp going out to space from the planet’s atmosphere

is balanced by the fraction of incident power (1 − AB)Einc that is absorbed from the star – which
depends on the planet’s Bond albedo AB –, and by the power that the atmosphere receives from
the planet’s interior. The latter source of energy is negligible for most exoplanets, which orbit close
to their stars [1]. The energy balance equation then reads:

4πR2
pFp = (1−AB)πR

2
pF∗

(
R∗
a

)2

, (5)

where a is the semi-major axis of the planet’s orbit around the star. Note how the amount of
radiation that the planet absorbs from the star depends on the cross-sectional surface area πR2

p of
the planet. The term (R∗/a)2 is a geometric factor reflecting the solid angle that the star subtends
from the planet’s viewpoint [1]. Assuming that the planet and the star are black-bodies, the total
fluxes are proportional to the fourth power of temperature, and equation (5) yields [1, 3]

Teq = T∗

√
R∗
a

[
1

4
(1−AB)

]1/4
, (6)

where Teq is the planet equilibrium temperature. In this last equation, the unknown planetary
albedo plays a relatively minor role for hot Jupiters as their Bond albedos are usually lower than
10%. The albedo can therefore be considered negligible (AB � 0), and the equilibrium temperature
of the exoplanet can be estimated with equation (6).

With typical values that are relevant for different categories of planets, one finds that typical
hot Jupiters have an equilibrium temperature Teq ∼ 1000− 2000 K. Super-Earths can be as hot as
2000 K, which is sufficiently hot for them to be have magma oceans2 on the day side, in which case
they are called lava-worlds. Sub-Neptunes, in turn, are further out from the star and hence colder,
with temperatures typically in the range 500− 1000 K.

3.4 Predictions for the atmospheric compositions of H/He-dominated planets

Once we know the approximate temperature of a hydrogen-dominated atmosphere, we can predict
its expected equilibrium composition. Observationally, we are most sensitive to absorption from
H2O, CO, CO2, and CH4, which are predicted to be abundant in these atmospheres and have
relatively high opacities across a broad range of infrared wavelengths. Elemental abundances are
often estimated by scaling from the solar composition [3]. We can then translate these elemental
abundances into predicted molecular abundances by assuming that the atmosphere is in thermo-
chemical equilibrium. This equilibrium chemistry solution is determined by minimization of the
Gibbs free energy of the chemical system. The solution to this problem of optimization gives the
characteristic composition as a function of the temperature (and, to a lower extent, the pressure)
in each atmospheric layer. In this framework, the dominant reservoir for atmospheric carbon is
expected to transition from methane to carbon monoxide for temperatures higher than ∼ 1000K
in gas giant atmospheres, through the following chemical equation:

CO + 3H2︸ ︷︷ ︸
large T

↔ CH4 +H2O︸ ︷︷ ︸
low T

. (7)

2The typical value of the melting temperature of rocks is 1300− 1400 K for a pressure near 0 bar
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A similar transition is expected in the case of nitrogen, which is primarily bound up in the form of
ammonia in cooler atmospheres and then transitions to N2 when the temperature increases above
∼ 500K, as captured by the chemical equation:

N2 + 3H2︸ ︷︷ ︸
large T

↔ 2NH3︸ ︷︷ ︸
low T

. (8)

Surprisingly enough, the abundances of these molecules measured in exoplanet atmospheres do not
always match the predictions based on these models. In the case of equation (7), methane should
be more abundant than carbon monoxide for sufficiently cold planets, but many relatively cool exo-
Jupiters show no clear signatures of CH4 absorption, probably due to vertical mixing that advects
some deep warm CO-laden layers upward, reducing the abundance of methane in the uppermost
layers of the atmosphere [3].

There is a broad range of species that can be detected in the atmospheres of hot Jupiters. For
ultra-hot Jupiters, their high temperatures (T � 2000K) enables many refractory species like Li,
Mg, Ca, V, Cr, Mn, Fe, Ni, Sr, Ti, Al to remain in gas phase. For most hot Jupiters, water, carbon
monoxide and carbon dioxide are usually measured. Recent observations by the James Web Space
Telescope also revealed the presence of SO2 in the atmosphere of a hot Jupiter. The existence of
this molecule, which is a product of photochemical reactions, is another example of disequilibrium
chemistry in these atmospheres. This is an increasingly promising direction to take for future
studies of the atmospheric composition of gas giant exoplanets.

3.5 Clouds and hazes

Clouds are key elements of a planet’s atmosphere that notably control its climate and play a part in
the atmosphere dynamics [5]. Since they control the planet’s Bond albedo, they also determine the
energy balance between the planet and its parent star (see section 3.3), and they alter measurements
of transmission spectra by masking the planet’s atmosphere during its transit, particularly when
they are located at relatively low pressures (high altitudes) near the planet’s day-night terminator.

Although clouds are complicated to model, they cannot be ignored since most hot Jupiters
appear to have clouds. The compositions of condensate clouds can be inferred by combining mod-
els of thermochemical equilibrium, which predict the gas-phase abundances of various condensible
species, along with the condensation curves for those species as a function of pressure and tem-
perature. For a given pressure P in the planet atmosphere, when the local temperature Tp(P ) is
lower than the condensation curve of a given element (say, MgSiO3), the latter condenses. Cloud
particles can be present in all regions that are cooler than the local condensation temperature –
see an illustration for four planets in figure 7.

In order to determine the likely compositions of the clouds observed in hot Jupiter atmospheres,
we must first search for species that can condense in the uppermost layers of these planets,and that
are sufficiently abundant to produce an optically thick cloud mass, and sufficiently high in the atmo-
sphere to substantially modify the transmission spectra through the atmosphere. Several promising
candidates have been identified, as shown in figure 7. This figure reveals that the temperature has
a decisive impact on the type of clouds that can form. Most hot Jupiters likely have some form of
silicate clouds (enstatite MgSiO3, forsterite Mg2SiO4) between 1500 − 2000 K. Metal clouds (Fe,
TiO2, Al2O3) can form at higher temperatures near ∼ 2000 K, while salt clouds (KCl) form at
somewhat lower temperatures around ∼ 1000 K. Discriminating between different condensates is
important since they control the clouds’ reflectivity, thus modifying the planet albedo, and the
aerosol scattering and absorption modify the transmission spectra of the atmosphere [5]. Since
some of these clouds have distinct spectral features in the mid-infrared, we expect that future
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Figure 7: Figure extracted from Reference [5]. Solid dark lines show the temperature-pressure
profiles of different planets. Dashed and dotted lines show the condensation curves of various species.
These curves are obtained under the assumption that the composition is solar. See Reference [5]
for additional details.

observations with JWST will soon be able to measure such features in emission or transmission
spectra of these planets, confirming their compositions.

Finally, photochemical hazes are another important type of aerosol that may be present in these
atmospheres. Such aerosols can be found on Titan, where photochemistry converts methane into
long hydrocarbon chains, and when the temperature is sufficiently low for these chains to survive
(typically cooler than ∼ 1000 K).

As discussed above, hot Jupiters are the most favorable targets to characterize using these tech-
niques. Due to their hydrogen-dominated atmospheres, sub-Neptunes are the next most favorable
targets for transmission spectroscopy after hot Jupiters. Unfortunately, data on the atmospheric
properties of these relatively small planets remains scarce. Because the range of wavelengths that
was available for the Hubble Space Telescope was limited to < 1.6 μm, published observations of ex-
oplanet atmospheres using this telescope are primarily sensitive to the presence of water vapour in a
hydrogen-rich background atmosphere. There are currently no detections of atmospheric absorption
from planets with non-hydrogen-dominated atmospheres. Super-Earths are doubly challenging, as
they have small radii and high atmospheric mean molecular weights. To date, no one has detected
atmospheric absorption from this class of planets, either in transmission or emission.
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GFD 2023 Lecture 3: Structure and Circulation of Terrestrial
Planets: Atmospheric Structure and Circulation

Geoffrey K. Vallis; notes by Yifeng Mao and Hao Fu

July 6, 2024

1 Introduction

In this lecture, the first on the theory and dynamics of planetary atmospheres, we discuss terrestrial 
(also known as telluric) planets, which are, as the name implies, planets resembling Earth. More 
specifically, they are p lanets that have a  shallow gaseous atmosphere overlying a  solid or possibly 
liquid planetary surface. If such a planet is considerably larger than Earth it might be called a 
‘super Earth’, and if a planet is particularly similar to Earth it may be called ‘Earth-like’, but such 
distinctions do not especially concern us in this lecture. (A more complete taxonomy of planets can 
be found in Chapter 13 of [6].) In this lecture our goal is to informally introduce the equations of 
motion for such atmospheres and describe some of the most basic features of their circulation and 
structure.

2 Equations of Motion

We start with the Navier-Stokes equations. The momentum equation in a rotating frame is

∂v

∂t
+ (v · ∇)v + 2Ω × v = −1

ρ
∇p+ ν∇2v + g, (1)

and the mass continuity equation is

∂ρ

∂t
+∇ · (ρv) = 0. (2)

Here, v is the three-dimensional velocity, ρ is density, p is pressure, g is gravity and we omit viscous
terms. The term 2Ω×v in the momentum equation is the Coriolis force that results from the body
rotation and is perpendicular to the velocity, and the centrifugal term is absorbed into gravity. The
term ν∇2v represents the effects of molecular viscosity; its direct effects on large scales are nearly
always negligible and we will nearly always omit the term in what follows.

The equation for the internal energy I per unit mass (i.e., the specific internal energy, but we
shall usually omit the ’specific’ qualifier) is

DI

Dt
+
p

ρ
∇ · v = Q, (3)
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Figure 1: A schematic diagram for the illustration of Coriolis force and the shallow layer around
planets. The traditional approximation of the Coriolis parameter takes f = 2Ω sin θk, which only
retains the component aligned with gravity. The figure also shows the meridional component,
2Ω cos θj, and i is the unit vector direction into the paper.

where D/Dt = ∂/∂t+ v · ∇ is the total derivative operator, Q is the total rate of diabatic heating
(per unit mass). In an ideal gas I = cvT where cv is the specific heat capacity at constant volume
and T is temperature.

We will simplify the equations of motion and think about how to apply them to Earth and
other terrestrial planets. On an Earth-like planet we have the following equation for the horizontal
velocity

Du

Dt
+ f × u = −1

ρ
∇p, (4)

where u is the horizontal velocity, and f ≈ 2Ω sin θk is the vertical component of the Coriolis term
(see fig. 1). Here k is the vertical unit vector (in the direction of gravity) and θ is the latitude.

Equation (4) has used a ‘traditional’ approximation of the Coriolis term by only retaining the
component aligned with gravity. This only works for a shallow layer of fluid on a sphere, with
the layer thickness much smaller than its horizontal extent. Examples of the layers are ocean and
atmosphere. In Fig. 1, we illustrate the direction of the Coriolis force and the aspect ratio of the
layer. Finally, we remark that it is common when dealing with terrestrial atmospheres to use a
Cartesian co-ordinate system, (x, y, z) where x is the coordinate in the zonal direction, y in the
meridional direction and z in the vertical direction, with corresponding unit vectors i, j and k and
velocities, u, v and w. On the sphere u, v and w are also used to denote the zonal, meridional and
vertical velocities.

3 The Boussinesq Approximation

The Boussinesq approximation presumes that the density is nearly constant, with only a small
variation δρ around its constant background value ρ0:

ρ = ρ0 + δρ, where ρ0 ≫ δρ(x, y, z, t). (5)

Pressure variations are correspondingly given by:

p = p0(z) + δp(x, y, z, t) (6)
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where the basic state pressure field is chosen to satisfy dp0/dz = −ρ0g. Variations of density are
then only allowed in the vertical momentum equation where they arise in conjunction with g. Thus,
beginning with the vertical momentum equation

ρ
Dw

Dt
= −∂p

∂z
− ρg, (7a)

giving

(ρ0 + δρ)
Dw

Dt
= −∂p0

∂z
− ∂δp

∂z
− ρ0g − δρg (7b)

whence, neglecting the δρ term on the left-hand side and cancelling the basic state pressure gradient
and density terms,

Dw

Dt
= −∂ϕ

∂z
+ b, (7c)

where

b = −g δρ
ρ0
, (7d)

is the buoyancy. If the equation of state is a simple one, for example ρ = ρ0(1− βT (T − T0)) where
βT is a coefficient of expansion and T0 and ρ0 are constants, then changes in buoyancy are directly
related to changes in temperature, b = gαT . Alternatively, if we are imagining an application to an
ideal-gas atmosphere then instead of b = −gδρ/ρ0 then b can be related to potential temperature,
ϑ, rather than density, and b = gδϑ/ϑ0 (see e.g.,[5]).

The three-dimensional momentum equation can then be written in compact form as

Dv

Dt
+ 2Ω × v = −∇ϕ+ bk, (8)

where k is the unit vector in the vertical direction (i.e., the direction aligned with gravity).
Another component of Boussinesq approximation is the simplification of the continuity equation

from mass conservation to volume conservation. Neglecting the variations of density, as they are
presumed small, (2) becomes

∇ · v = 0. (9)

In making this approximation we have also eliminated sound waves, which is an acceptable approx-
imation if the flow s peed i s much l ess t han t he s ound s peed, a s i s t he c ase f or many geophysical 
applications. An upshot of this is that the pressure in the Boussinesq equation acts as a medium to 
guarantee the volume conservation of a parcel. One consequence of this is that the internal energy 
is no longer connected to the kinetic energy — note that the divergence term in (3) vanishes — and 
the energy cycle of the system is between kinetic energy and potential energy. Spiegel and Veronis 
[4] and Vallis [5] provide more discussion. Although the Boussinesq approximation is not a particu-
larly good one for many problems in planetary atmospheres, it is a very useful approximation. The
essence of many problems can be understood by using it, and we will employ it frequently to obtain
understanding.

4 The Hydrostatic Approximation

4.1 What is it?

Hydrostatic balance, or hydrostasy, is the state in which the dominant balance in the vertical 
momentum equation lies between the pressure gradient force and gravity. Consider the vertical
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component of the momentum equation for the vertical velocity w,

Dw

Dt
+ Coriolis term = −1

ρ

∂p

∂z
− g. (10)

Often, in the case of the terestrial atmospherse and ocean, the large aspect ratio makes the vertical
acceleration Dw/Dt small compared to gravity, and the small relative shell depth compared to
Earth’s radius makes the Coriolis term negligible. (If the rotation vector is aligned with gravity and
so pointed in the vertical direction then the Coriolis term is identically zero in this equation.) With
these approximations, we arrive at the hydrostatic balance equation:

∂p

∂z
≈ −ρg. (11)

Let us know look at this approximation a little more systematically.

4.2 Scaling and the aspect ratio

We now show that hydrostatic balance is valid when the aspect ratio α (the ratio of vertical to
horizontal scales, α ≡ H/L) is low, and it is even better if the flow is geostrophic. We will use the
Boussinesq equations for simplicity and we will initially assume that the rotation vector is aligned
with gravity.

The mass continuity equation in the Cartesian coordinate can be rewritten as

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (12)

where u, v, w are the velocity components. Suppose the following scaling w ∼ W , u ∼ v ∼ U ,
x ∼ y ∼ L and z ∼ H.1 Matching the order of magnitude in equation (12) implies the scaling of
the vertical velocity with the horizontal velocity

nonrotating flow : W ∼ H

L
U = αU, (13)

where α = H/L is the aspect ratio. In most cases, we have H ≪ L so that W ≪ U . As we show
below, in the case of rotating flow, the magnitude of the horizontal divergence ∂u/∂x+∂v/∂y in (12)
is actually smaller than U/L because the horizontal flow is non-divergent to a first approximation.
Then, because W/H is given by the magnitude of the horizontally divergent wind, the vertical
velocity is smaller than the estimate HU/L.

Indeed, in rapidly rotating flow the magnitude of the horizontal rotational wind can be estimated
from the vertical vorticity equation which, to a decent approximation, is

Dζ

Dt
= f

∂w

∂z
, (14)

where ζ is the vertical relative vorticity, namely k · ∇ × v. (We have omitted various small terms.
See [5] chapter 4 for detail.) Suppose D/Dt ∼ U/L, and ζ ∼ U/L, we obtain

Rotating flow :
U2

L2
∼ f

W

H
⇒ W ∼ Ro

H

L
U. (15)

1What determines H? Hydrostatic balance relation and the ideal gas law yield ∂p/∂z = −ρg = −pg/RT where R
is the ideal gas constant. If T is constant the solution to this equation is p = p|z=0 exp(−z/H∗), where H∗ = RT/g
is the atmospheric scale height. This scale is often used as a representative vertical scale in studies of planetary
atmospheres and, at least on Earth, it is similar to the depth of the troposphere.

4
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where Ro = U/(fL) is the Rossby number (an important parameter that we return to later). This
scaling indicates that the vertical velocity is suppressed by the background rotation. (We may note
that other ways to arrive at a scaling for W are possible, invoking the thermodynamic equation.
See [5] for details.) Because the rotational scaling is valid only for Ro ≪ 1, we can combine (13)
and (15) to get a general scaling of W :

W ∼ min {Ro, 1}αU. (16)

Evidently, the background rotation tends to suppress vertical motion. Let us now consider how
these scalings determine whether the flow is hydrostatic or not.

4.2.1 An inertial scaling

In the absence of rotation the vertical momentum equation is, in the Boussinesq approximation,

Dw

Dt
= −∂ϕ

∂z
+ b. (17)

The hydrostatic approximation will hold when |Dw/Dt| ≪ |∂ϕ/∂z |, since then we must have
∂ϕ/∂z = b, which is hydrostatic balance for a Boussinesq system. To obtain a scaling for ϕ we use
the horizontal momentum equation (8), which gives

∂u

∂t
+ v · ∇u = −∇ϕ (18)

giving, assuming W is no bigger than U ,

U2

L
∼ Φ

L
=⇒ Φ ∼ U2. (19)

Thus,
∂ϕ

∂z
∼ U2

H
. (20)

If time scales advectively (so that T = L/U), the vertical momentum equation then scales as

Dw

Dt
∼ UW

L
∼ U2H

L2
. (21)

Thus, the ratio of the material derivative to the vertical pressure gradient term is

|Dw/Dt|
|∂ϕ/∂z | ∼ U2H/L2

U2/H
=
H2

L2
, (22)

implying that flows with a small aspect ratio, specifically with α2 ≪ 1, will be in hydrostatic
balance.

4.2.2 A geostrophic scaling

Let us now consider fluid in a rotating frame of reference, with gravity aligned with rotation (as
on a terrrestial planet). Let us assume that the leading-order balance in the horizontal momentum
equation is between the Coriolis force and the pressure gradient force; that is

f × u ≈ −∇ϕ. (23)

5
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This is known as geostrophic balance, or geostrophy, and we look at this in more detail in the next
section. From (23) we infer the scalings relating velocity, U , and pressure, Φ,

fU ∼ Φ/L ⇒ Φ ∼ fUL. (24)

From (15) we have, in the rotating case, W ∼ RoαU so that Dw/Dt ∼ RoU2H/L2. Using this
with (24) gives

|Dw/Dt|
|∂ϕ/∂z | ∼ RoU2H/L2

fUL/H
= Ro2

H2

L2
. (25)

That is, the criterion for hydrostatic balance is now

Ro2
H2

L2
≪ 1. (26)

This criterion is easier to satisfy than in the non-rotating case due to the suppression of vertical
motion by rotation. In both cases, flows with a small aspect ratio (α2 ≪ 1) tend to be in hydrostatic
balance.

4.2.3 Misaligned gravity and rotation

Except at the poles, the direction of gravity and rotation are, in truth, misaligned. Incorporating
this introduces the so-called nontraditional Coriolis terms (2Ω cos θw term in the zonal momentum
equation and −2Ωu cos θ in the vertical momentum equation). Let us use scale analysis to see if
and when these terms can be neglected.

In a local Cartesian coordinate that treats the sphere as a local tangential plane, the zonal and
vertical momentum equations with nontraditional Coriolis terms are:

Du

Dt
− 2Ωv sin θ + 2Ω cos θw︸ ︷︷ ︸

nontraditional

= −∂ϕ
∂x
, (27)

Dw

Dt
−2Ω cos θu︸ ︷︷ ︸
nontraditional

= −∂ϕ
∂z

+ b. (28)

Here x denotes the coordinate along the west-east direction (i), and y (not appearing here) denotes
the coordinate along the south-north direction (j). Unlike the traditional Coriolis terms that vanish
at the equator (due to the sin θ factor), the nontraditional terms vanish at the poles (because of the
cos θ factor).

If the flow is in geostrophic balance at the large scale then pressure scales as in (19), namely
Φ = fUL. The relative magnitude of the nontraditional terms to pressure gradient terms in the u
and w equations are:

2Ωw cos θ

∂ϕ/∂x
∼ 2ΩW

fU
∼ 2ΩU

fU

H

L
Ro ∼ H

L
Ro, (29)

and
−2Ωu cos θ

∂ϕ/∂z
∼ 2ΩU

fUL/H
∼ H

L
, (30)

where we have used (16): W ∼ RoHLU to estimate W . Because H ≪ L and Ro ≪ 1, The
nontraditional terms in the u and w momentum equations can be neglected.
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At the tropics, or in weakly rotating systems, the flow is not strongly constrained by rotation,
and we need to use (18): the Φ ∼ U2 scaling. We get:

2Ωw cos θ

∂ϕ/∂x
∼ 2ΩW

U2/L
∼ 2ΩH

U
∼ Ro−1H

L
, (31)

2Ωu cos θ

∂ϕ/∂z
∼ 2ΩU

U2/H
∼ 2ΩH

U
∼ Ro−1H

L
. (32)

In deriving (31), we have used (13): W ∼ UH/L, which is more appropriate for flows that are not
rotationally constrained. On Earth, using 2Ω ∼ 10−4 s−1, H = 104 m, and U = 10 m.s−1, we
get 2ΩH/U ∼ 10−1. Thus, the nontraditional Coriolis term is small but not wholly negligible in
the Earth’s tropics. In other planets where the atmosphere is much deeper, this term may become
important, and not only in the tropics. We refer the readers to [7] for more details on nontraditional
Coriolis terms.

In summary, the nontraditional Coriolis terms are non-negligible for a very deep fluid layer and
they play a key role in deep convective layer of a gas giant, as will be discussed in Chapter 3.
The traditional and nontraditional Coriolis terms work together to guarantee the Taylor-Proudman
theorem, which states that the flow tends to have little variation in the rotating axis direction. In
this case, a cylindrical coordinate whose axis is aligned with the rotation axis is useful for studying
the general circulation of the planet.

4.3 Pressure coordinates

Knowing that pressure, in most cases, has a one-to-one correspondence with the vertical coordinate
z and varies monotonically with z, it is often useful to express the equations of motion in pressure
coordinates. This provides a useful simplification and a more direct connection with observations
that are often taken at fixed values of pressure. Here we just provide an extremely brief introduction
by writing down a few key equations without derivation. The reader interested in the derivations
of these equations will find it in a number of textbooks, for example [5].

The horizontal momentum equation in pressure coordinates is

Du

Dt
+ f × u = −∇pφ =

(
∂φ

∂x

)

p

i+

(
∂φ

∂y

)

p

j, (33)

where the advective derivative is given by D/Dt = ∂/∂t+u ·∇p+ω∂/∂p, φ ≡ gz is the geopotential
(note the difference from ϕ), and ω ≡ Dp/Dt is the pressure velocity. The subscripts indicate that
the derivatives are taken at constant p. The mass conservation in pressure coordinates is simplified
as (

∂u

∂x

)

p

+

(
∂u

∂y

)

p

+
∂ω

∂p
= 0. (34)

The hydrostatic equation in height coordinates ∂p/∂z = −ρg is written in pressure coordinates
using the ideal gas law as

∂ϕ

∂p
= −RT

p
. (35)

4.4 Aside: surface pressure in a deep atmosphere

For a thin-layer atmosphere, hydrostatic balance indicates that the surface pressure ps is propor-
tional to the total mass in the air column above the ground:

ps = g

∫ H

0
ρdz. (36)
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Figure 2: A schematic of, on the left, a thin atmosphere with high density, and on the right a thick 
atmosphere with low density. The inner radius of the shell is fixed to R1, and the outer radius R2

is different. A  shell thickness parameter may be defined as  δ ≡ R2 /R1. The blue shading denotes
density, with the deeper blue denoting higher density. The arrow illustrates the normal stress at
the wedge.

Integrating over the surface of the planet then suggests that the integral of surface pressure is 
essentially equal to the total weight of the atmosphere. For a thick atmosphere in a spherical shell, 
does (36) still hold (discounting the effect that gravity diminishes with h eight)? And does surface 
pressure integrated over the surface area still equal the weight of the atmosphere?

In fact, hydrostatic balance still holds (there is absolutely no reason it should not if the atmo-
sphere is static) but the the integral of pressure over the surface does not equal the weight of the 
atmosphere, as might be envisioned by shrinking the planet to the size of a tennis ball. This is 
because the curvature of the atmosphere leads to partial cancellation of the stress (Fig. 2). The 
mechanism is similar to why an arch bridge (or a wedge) can hold more load than a flat b ridge. Let 
us explore this a little more in a simple case with both gravity (g) and fluid density constant.

Consider the atmosphere in a spherical shell with a lower radius R1 and an upper radius R2, as 
in Fig. 2, with gravity constant. The atmospheric density ρ is assumed to be uniform within the 
shell, and the total atmospheric mass Ma is fixed to:

Ma = ρ
4π(R3

2 −R3
1)

3
. (37)

Letting R1 be fixed, we consider two cases: a small R2 with a dense atmosphere and a large R2 with
a thin atmosphere but the same atmospheric mass. As noted, the hydrostatic approximation still
holds even in a stationary, thick atmosphere (with R2 ≫ R1) so that the surface pressure depends
only on gravity and the mass of atmosphere above it. As R1 diminishes the surface pressure will
increase linearly as R2−R1 increases. However, at the same time the integral of the surface pressure
will diminish rapidly, since the surface area varies as R2

1 What then ‘holds up’ the atmosphere? The
answer is that the atmosphere holds itself up, in the same way as an arched bridge holds itself up,
as in the right-hand panel of Fig. 2.

In the more general case gravity diminishes with height, but this does not change the above
argument in any essential way. If the rock below the atmospheric lower surface contributes to most
of the planetary mass (Mp) the gravitational acceleration g is given by

g =
GMp

r2
, (38)
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where r is the distance from planet’s center and G is the gravitational constant. Now, hydrostatic
balance is expressed as

∂p

∂r
= −ρg ⇒ ps =

∫ R2

R1

ρgdr. (39)

Note that ps equals the integral for mass at each vertical layer (dr) without a weight factor of the
surface area that scales as r2. This means the contribution of atmospheric mass to the surface
pressure gets smaller and smaller as r increases.

Substituting (37) and (38) into (39), we get an expression of ps:

ps =

∫ R2

R1

ρgdr = GMp

∫ R2

R1

ρ

r2
dr = GMpρ

(
1

R1
− 1

R2

)
=

GMpMa

(4π/3)(R3
2 −R3

1)

(
1

R1
− 1

R2

)
. (40)

Introducing a shell thickness parameter δ ≡ R2/R1, we rewrite (40) as:

ps =
GMpMa

R2
1︸ ︷︷ ︸

gravity

1

4πR2
1︸ ︷︷ ︸

surface area

3

δ(δ2 + δ + 1)︸ ︷︷ ︸
thickness factor

. (41)

Equation (41) shows that ps is determined by the gravity imposed on a given surface area, weighted 
by a thickness factor that decreases as δ increases. When the shell gets thicker, δ increases while 
holding R1 constant, the surface pressure ps reduces. This is because the lateral normal stress 
partially cancels out the gravity, analogous to an arch bridge.

When δ ≈ 1, the problem reduces to a thin atmosphere. The gravitational acceleration reduces
to g ≈ GMp/R1

2. Substituting this approximate expression of g into (41), we get:

δ ≈ 1 : ps ≈
gMa

4πR2
1

. (42)

That the surface pressure is proportional to the total mass in the air column is recovered. Note,
though, that the essential result that the integral of surface pressure does not necessarily equal the
mass of the atmosphere does not depend on the gravity diminishing with distance; it is true even
for a constant value of g.

5 Geostrophic and Thermal Wind Balance

We now consider the scaling of the horizontal momentum equation

∂u

∂t
+ (v · ∇)u+ f × u = −1

ρ
∇p. (43)

The advective terms scale as (v · ∇)u ∼ U2/L and the Coriolis term scales as f × u ∼ fU . The
ratio of the magnitudes of the advective and Coriolis terms is given by the Rossby number,

Ro =
|Inertial (or advective) term|

|Coriolis term| =
U

fL
, (44)

just as encountered in the previous section. When the Coriolis term is much larger than the advective
terms (Ro ≪ 1), the dominant balance of the horizontal momentum equation is then between the
Coriolis term and the horizontal pressure force. This is called geostrophic balance (and ‘geostrophy’
is the state of geostrophic balance). In this case, rotation effects are important.
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The geostrophic velocity components in Cartesian coordinates (x, y, z) are

fu = −1

ρ

∂p

∂y
, fv =

1

ρ

∂p

∂x
. (45)

where u is the velocity in the zonal, or x direction and v is the velocity in the meridional, or y,
direction. The velocity in the vertical, or z direction is conventionally denoted w. In the Boussinesq
approximation, geostrophic balance is

fu = −∂ϕ
∂y
, fv =

∂ϕ

∂x
. (46)

In pressure coordinates, the corresponding equations are

fu = −
(
∂φ

∂y

)

p

, fv =

(
∂φ

∂x

)

p

. (47)

Combining geostrophy with hydrostasy ∂ϕ/∂z = b, a vertical derivative of (46) yields

f
∂u

∂z
= −∂b

∂y
. (48)

In pressure coordinates the corresponding equation is

f
∂u

∂p
=
R

p

∂T

∂y
. (49)

An important implication is that the vertical shear is proportional to the horizontal buoyancy
gradient, which in the Boussinesq approximation is proportional to the temperature gradient.

zonal shear : f
∂u

∂z
∼ R

p

∂T

∂y
: meridional temperature gradient. (50)

Thus, a meridional temperature gradient (as is common on many planets) is associated with a
vertical shear of the zonal wind.

6 The Thermal Rossby Number

We now introduce a key parameter for studying the atmospheric general circulation - the thermal
Rossby number RoT, which depends on the meridional temperature difference ∆T . This is most
easily done in pressure coordinates

The thermal wind balance in pressure coordinates, f∂u/∂p = (R/p)∂T/∂y, suggests the scaling

fU

∆P
∼ R

P

∆T

a
(51)

where U is the zonal velocity scale, P is the surface pressure, ∆P the vertical pressure difference,
R is the gas constant, and a is the planet’s radius. If we take ∆P = P (since we are considering
the whole depth of the atmosphere) we obtain

U ∼ R∆T

Ωa
, (52)

30



Substituting (51) into the definition of Rossby number (U/fL), and using Ω in place of f and a
(the planet’s radius) in place of L, we obtain

RoT ≡ R∆T

Ω2a2
(53)

This is the thermal Rossby number, one of the most important nondimensional numbers in planetary
science.

For Earth we have, approximately,

RoT =
R∆T

Ω2a2
≈ 300 m2 s−2 K−1 × 40 K

(10−4 s−1)2 × (6× 106 m)2
≈ 1

30
≈ 0.03, (54)

which is quite small, indicating that geostrophy dominates the atmospheric general circulation. In
section 1.5, we study the zonally symmetric overturning in the tropics - the Hadley Cell. We will
show that the latitudinal span of the Hadley Cell is proportional to RoT

1/2.

7 The Hadley Cell

The Hadley Cell is the meridional overturning circulation in the Earth’s tropical and subtropical
atmosphere. It is driven by the meridional gradient of solar heating, which generates a thermally
direct circulation (i.e., it is directly driven by heating and cooling). Here we briefly introduce a model
of the Hadley Cell width developed by [2] following work by [3]. It is shown to be constrained by
a dynamical requirement from angular momentum conservation and a thermodynamic requirement
from radiative equilibrium. One feature of this model is that it can be expected to apply fairly
generally to terrestrial atmospheres with low obliquity; indeed, it may be more applicable to slowly
rotating (high thermal Rossby number) planets than it is to Earth, for baroclinic instabilities in the
mid-latitudes (neglected in the model) are then less important. We leave the effects of such eddies,
as well a description of planets with a high obliquity, to another day.

7.1 Angular momentum conservation

We will construct an axisymmetric model of the Hadley cell in a shallow atmosphere in which parcels
above the boundary layer conserve their angular momentum. The specific angular momentum, m,
of a parcel around a planets axis of rotation is

m = (u+Ωa cos θ)a cos θ, (55)

where u is the zonal wind, Ω is Earth’s rotating angular velocity, a is Earth’s radius, and θ is the
latitude. We assume that the parcel is initially at rest high in the planet’s tropopshere and then
moves poleward, conserving its angular momentum. This is illustrated in Fig. 3. The parcel’s
angular momentum takes its initial (equatorial) value:

meq = Ωa2 (56)

assuming u = 0 at θ = 0. Letting m = meq gives, at some latitude θ

m(θ) = (u+Ωa cos θ)a cos θ = Ωa2 (57)

giving

u =
Ωa2(1− cos2 θ)

a cos θ
= Ωa

sin2 θ

cos θ
. (58)

31



Figure 3: Schematic diagram showing the zonal velocity of a parcel that conserves its angular 
momentum as it moves poleward from the equator.

That is, u increases as the parcel moves poleward (i.e., as θ increases), giving rise to an eastward 
flow.

The expression of u can also be derived from the zonal momentum equation that is equivalent 
to angular momentum conservation. Under the assumption of axisymmetry and with no vertical 
advection the u equation may be written, in a steady state, simply as

(f + ζ)v = 0, (59)

where ζ is, as before, the vertical component of the relative vorticity, and in spherical coordinates
ζ = −1/(a cos θ)∂(u cos θ)/∂θ. (The derivation of (59) is left to the reader.) Because the meridional
velocity v is nonzero the absolute vorticity, ζ + f , must be zero, which yields the simple expression:
ζ = −f = 2Ω sin θ. We can solve u from ζ:

− 1

a cos θ

∂u cos θ

∂θ
= −2Ω sin θ giving u = Ωa

sin2 θ

cos θ
, (60)

as before.
Because the poleward edge of the Hadley Cell is, on Earth, at about θ ∼ 25◦N, then sin θ ≈ θ

and cos θ ≈ 1, so that u can be simplified as:

u ≈ Ωaθ2. (61)

7.2 The thermodynamic budget

Now we solve the meridional temperature of the poleward-moving parcel, invoking the thermal wind
balance. As we recall, the thermal wind relation denotes the change of geostrophic wind with height
due to horizontal temperature gradient, a consequence of the geostrophic balance and hydrostatic
balance. Supposing the height of the polewards motion is H and that the wind increases from
a state of rest at the surface, an approximate vertical finite-difference form of the thermal wind
relation is

2Ω sin θ
u

H
∼ − g

T0

1

a

∂T

∂θ
. (62)
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Figure 4: A schematic diagram for how the width of the Hadley Cell is calculated in the Held-Hou 
theory [2]. The blue line denotes the angular momentum temperature, and the red line denotes the
radiative equilibrium temperature. Because there should not be net diabatic heating in a steady 
Hadley Cell, the area of the yellow region must equal that of the blue region.(In the text ϑ is used
for temperature.)

Now, the wind, u, is given by (61), and for small values of θ sin θ ≈ θ. Using these values and
integrating from the equator, (62) gives

T (θ) = T (0)− Ω2θ0
2gHa2

y4, (63)

where y = aθ is the meridional distance away from the equator. (A similar expression may be
obtained in pressure coordinates.) We might call this temperature the ‘angular momentum temper-
ature’, because it is determined by the conservation of angular momentum in conjunction with the
thermal wind relation.

At the same time the atmosphere is forced by radiation, and if the atmosphere is at rest the
temperature is given by the radiative equilibrium temperature TR, which rather approximately is
given by

TR(θ) = Teq −∆TR

(y
a

)2
, (64)

where Teq is the radiative equilibrium temperature at the equator.

7.2.1 Solving for the Hadley Cell width

At very low latitudes the atmospheric temperature is lower than the radiative equilibrium tempera-
ture, yielding diabatic heating. Further polewards, in the subtropics, the temperature is higher than
the radiative equilibrium, yielding diabatic cooling. If the Hadley Cell is a steady, closed circulation,
there can be net diabatic heating within it, as illustrated in Fig. 4. Thus, to close the budget we
require ∫ yH

0

T − TR
τ

dy = 0, (65)

where yH = aθH defines the poleward edge of the Hadley Cell, and θH is as yet undetermined.
Poleward of this the atmosphere is in radiative balance and T = TR. We can then determine the
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latitude of the edge of the Hadley Cell by solving the following constraints:
∫ yH

0
Tdy =

∫ yH

0
TRdy = 0, (66)

T (yH) = TR(yH) (67)

where T and TR are given by (63) and (64) respectively. After some algebra we obtain

θH =
yH
a

=

(
2∆TgH

Ω2a2T0

)1/2

, (68)

which indicates that the Hadley Cell increases as Ω decreases. This may be written as

θH =

(
RoT

2gH

RT0

)1/2

=

(
RoT

2H

H∗

)1/2

(69)

where RoT is the thermal Rossby number written as R∆T/(Ω2a2)and H∗ = RT0/g is the atmo-
spheric scale height.

7.2.2 A Variation

In the original formulation of the model above, the temperature is required to stay continuous at
the edge of the Hadley Cell but its meridional gradient is discontinuous with the consequence that
the zonal wind is discontinuous. An alternative formulation [1] posits that the zonal wind remain
continuous and the temperature is allowed to have a discontinuity. Numerical simulations show
that continuity of both fields is achieved by the presence of an overturning circulation poleward of
the point of maximum zonal wind. Zonally symmetric simulations generally fall between the two
sets of theoretical scalings. Three-dimensional simulations, which allow for the eddy motion that is
missing from both theoretical models, tend to fall closer to the scalings of the variant model than the
original theory, although neither theory is quantitatively satisfied even by axisymmetric simulations.
At very low rotation rates the maximum zonal wind falls with falling planetary rotation rate, and
is zero at zero rotation. The interested reader is referred to [1] for more detail.

7.3 Remark

Although the analysis above is informal and approximate, there is one robust conclusion, and it is
that the extent of the Hadley Cell diminishes as the rotation rate of the planet diminishes. Thus,
we might expect the Hadley Cell to extend further polewards in a planet like Venus, that has a
slower rotation rate than Earth but is otherwise similar. In fact this is observed to be the case.
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GFD 2023 Lecture 4: Circulation of Tidally -ocked Planets

Geoff Vallis; notes by Ellie Ong and Nathan Magnan

September 5, 2024

1 Introduction

This lecture focuses on the dynamics of UJEBMMZ locked planets. These are planets that take just as 
long to rotate around their own axis as they do to orbit around their host star, and so have one 
side facing their host star at all times (the day side) and a side that never does (the night side). 
Tidal locking is almost inevitable for planets that are close to their host star. The process can be 
explained in the following way, as illustrated in Fig 1: (i) the gravitational pull from the star is not 
uniform over the planet, it is stronger on the star-facing side; (ii) this deforms the planet, which 
becomes an ellipsoid; (iii) if ever the major axis of this ellipsoid is not aligned with the star, the 
tidal forces add up to a net torque on the planet; (iv) the state that emerges is one of tidal locking, 
with the planet’s major axis being aligned with the star.

Tidally locked planets can, in principle, be giant planets (’hot giants’ in this case), or terrestrial 
planets, or some other form of planet. Many of them thus far are likely to be hot giants, although 
much of the theoretical and numerical development concerning their circulation has treated them 
more as terrestrial planets, partly for ease of numerical simulation. Although this may seem a little 
perverse, tidally locked planets are, like terrestrial planets, heated from above and it is this heating 
that drives the circulation that observations detect. This circulation is likely to penetrate only a 
small fraction of the planet’s radius into the interior, although how far, and what the appropriate 
boundary conditions are at the base of the circulation, are not known. Since this lecture is but 
a first i ncursion i nto t he dynamics o f s uch s ystems l et u s not b e overly a mbitious. The objective 
of the present lecture is simply to estimate the broad circulation pattern that emerges from the 
permanent day-night forcing. It may later serve as a leading-order background flow upon which to 
study more intricate and dynamical effects.

In keeping with the Geophysical Fluid Dynamics (GFD) tradition, our strategy is to simplify 
the situation enough that we can study aspects of the problem analytically (where possible) and 
understand the relevant physics. First we work where possible in Cartesian coordinates (and in 
particular on the β-plane centered on the equator, a construction that will be described more fully 
later on) rather than on a true sphere. Then we assume the atmosphere is thin compared to the 
radius of the planet and use the shallow water equations (again, as explained more fully below). 
Finally we model the radiative heating from the star by imposing a high temperature in a circular 
patch positioned at the origin (0, 0). This setup might remind some readers of the Matsuno–Gill 
problem, in which the atmospheric circulation responds to a sea surface temperature anomaly over 
the Earth’s tropical Pacific [ 1]. But the other readers need not be scared, these lecture notes do not 
assume any prior knowledge of Matsuno & Gill’s work.

First in §2 we study how the hot spot’s information is transmitted eastward by Kelvin waves, 
then in §3 we show that information is also transmitted westward by Rossby waves. This is enough 
to estimate the steady state circulation induced by a small hot spot, in a simplified solution to the
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Figure 1: Schematic diagram of tidal torque. In orange is the star, in gray is the star-planet axis, and 
in black is the planet whose ellipsoid is misaligned with the star. The red arrows, which represent 
the tidal forces exerted at different p oints o f the p lanet’s surface, add t o a  non-zero t orque acting 
in favor of alignment. A perfectly spherical planet with a uniform distribution of density would 
experience no tidal torque and would not become tidally locked.

Matsuno-Gill problem. In §4 we use this work to draw some basic conclusions about the circulation 
of tidally locked exoplanets. We also validate and extend our simple model using a global circulation 
model, and briefly discuss the effect of superrotation.

2 Kelvin Waves and the Kelvin Lobe

A single-layer, shallow water model is sufficient to  capture the circulation induced by  the hot spot. 
So, we remind the reader of the shallow-water equations in §2.1. Essentially, the hot spot is an 
unbalanced perturbation that pumps all sorts of waves, which then propagate away and transmit 
the hot spot’s influence to the far fi eld. In §2.2 we show that in the eastward direction the information 
is carried by Kelvin waves. To balance the constant input of energy from the hot spot, we need to 
invoke a dissipative process. In §2.3 we find that this dissipation damps the Kelvin waves, thereby 
limiting the hot spot’s impact to a localized region called the Kelvin lobe.

2.1 The shallow water equations

Shallow water models consider the evolution of vertical fluid columns, thus reducing the dimension of 
the problem from 3D to 2D. Conventional shallow water models make three key hypotheses: that the 
fluid is of constant and uniform density ρ , that the fluid is  in  hydrostatic equilibrium, and that the 
horizontal velocity u = (u, v) only depends on the horizontal coordinates (x, y). These assumptions 
are not always satisfied but nevertheless provide a  model that can make useful predictions.

There is a whole zoo of shallow water models: one could include topography, several fluid layers, 
or a lid at the top. But for the purpose of this lecture, we only need the simplest model, whose set-
up is depicted in Fig. 2. Using Cartesian coordinates, x, y, where x increases in the zonal direction 
and y increases in the meridional direction, the equations of motion are

∂h

∂t
+ u · ∇h+ h∇ ·u = 0, (1a)

Du

Dt
− fv = −g∂h

∂x
, (1b)

Dv

Dt
+ fu = −g∂h

∂y
. (1c)

On the sphere the Coriolis parameter, f , is a function of latitude and f = 2Ω sin θ. We approximate
that in Cartesian coordinates by letting f = f0 + βy and β is a constant; this is known as the β-
plane approximation. Also, h is the height of the fluid layer, g is the acceleration due to gravity,
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Figure 2: A shallow water model. We consider a single layer of density ρ, mean thickness H, local
thickness h and elevation anomaly η. It sits on top of a solid surface of negligible topography, and
below a fluid layer of negligible mass.

and the gradients ∇ are taken within the horizontal plane. If there is no bottom topography (as
we assume) then ∇h = ∇η. These equations cannot capture sound waves, but can describe many
of the large-scale phenomena that are of interest to geophysicists.

Since here we study a small-amplitude phenomenon, we can linearize these equations around
the state of rest {h = H,u = 0} giving

∂h

∂t
= −H∇ ·u, (2a)

∂u

∂t
− fv = −g ∂h

∂x
, (2b)

∂v

∂t
+ fu = −g ∂h

∂y
. (2c)

2.2 Equatorial Kelvin waves

Our shallow water model can potentially support both geostrophically balanced waves (and in
particular Rossby waves, discussed below) and gravity waves (and in particular Kelvin waves) that
may be out of geostrophic balance. In the linear approximation these waves will not interact with
each other. Kelvin waves are a particular form of gravity wave that exists in the presence of rotation
and a boundary, such as the equator, and let us first discuss them.

Equatorial Kelvin waves are solutions of the equations with the property that v ≃ 0. This
characteristic allows us to simplify the equations to

∂h

∂t
= −H∂u

∂x
, (3a)

∂u

∂t
= −g ∂h

∂x
. (3b)

The Coriolis parameter does not appear in these equations. The equations combine to give

∂2u

∂t2
= gH

∂2u

∂x2
. (4)

This wave equation is extremely simple (it is sometimes called the wave equation), and it indicates
that two waves can propagate without dispersion and at velocity c = ±√

gH: one wave to the right
(eastward) and one wave to the left (westward). In the most general form, we write the solution as

uE(x, y, t) = c FE(x− ct, y), and uW(x, y, t) = c FW(x+ ct, y), (5)
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Figure 3: Schematic diagram of the situation. The black spot represent the hot spot, and Kelvin
waves propagate eastward from it. With no dissipation the Rossby waves propagate all the way to
infinity.

where FE and FW are dimensionless functions. Using either Eq. (3a) or Eq. (3b), we then get

hE(x, y, t) = H FE(x− ct, y), and hW(x, y, t) = −H FW(x+ ct, y). (6)

However, still need to satisfy the meridional momentum equation (2c), which gives

∂FE

∂y
=

−1

Ld
FE, and

∂FW

∂y
=

1

Ld
FE, (7)

where Ld =
√
gH/f is the ‘Rossby deformation radius’ (or just the deformation radius). However,

f is not a constant: on a tangent plane we have in general f = f0 + βy and if we center the plane
at the equator (giving the ‘equatorial beta-plane’) we take f0 = 0. Thus, Ld is not constant and it
is convenient to define the equatorial deformation radius,

Lβ =

(√
gH

β

)1/2
=

(
c

β

)1/2
, (8)

where c =
√
gH is the gravity wave speed.

Eq. (7) are
∂FE

∂y
= −βy

c
FE, and

∂FW

∂y
=
βy

c
FW, (9)

with solutions

FE(x− ct, y) = F̃E(x− ct) exp
[
−y2/(2Lβ)

2
]
, (10)

and
FW(x+ ct, y) = F̃W(x+ ct) exp

[
+y2/(2Lβ)

2
]
. (11)

The westward propagating wave is evidently unphysical, for its amplitude diverges with y, and only
the eastward propagating mode remains.

It is interesting to wonder why Kelvin waves can only propagate eastward. In the direction
perpendicular to the direction of travel of the wave, namely the meridional direction, the flow is in
geostrophic balance with

fu = −g∂h
∂y
. (12)

Consider the flow under a fluid crest in an equatorial Kelvin wave, as illustrated in Fig. 4. The
pressure gradient force is directed away from the equator and, if the wave is travelling eastward
the pressure force can balanced by the Coriolis force directed toward the equator. Under a trough
the fluid is flowing in the opposite direction to the wave itself, and both the pressure gradient force
and the Coriolis force are reversed and geostrophic balance still holds. If the wave were to travel
westwards, no such balances could be achieved.
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South Wall or equator North

Pressure gradient forcePressure gradient force
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K K

Figure 4: Balance of forces across a Kelvin wave. The solid line is the fluid surface and the phase
speed is directed out of the page. Beneath a crest the fluid flow is in the direction of the phase
speed and produces Coriolis forces as shown, so balancing the pressure gradient forces. If the wave
were travelling in the opposite direction no such geostrophic balance could be achieved.

2.3 The eastward Kelvin lobe

Section 2.2 might seem to imply that Kelvin waves would propagate from the hot spot all the way
to infinity. But it is much more reasonable to think that there is some dissipative effect of one form
or another that is going to damp the Kelvin waves as they propagate. So let us adopt a crude model
of the dissipation: we assume it scales with the amplitude of the wave and a single parameter the
dissipation rate α. The shallow water equations become

∂h

∂t
= −H∇ ·u− αh, (13a)

∂u

∂t
− fv = −g ∂h

∂x
− αu, (13b)

∂v

∂t
+ fu = −g ∂h

∂y
− αv. (13c)

The secular dynamics of the system seem quite simple: as we ‘turn on’ the hot spot, the Kelvin
waves start to propagate eastward and dissipate as they travel. The layer thickness, which may be
taken as a proxy for temperature, increases in the region just east of the hot spot until a balance
between the heating and dissipation is reached. At steady state and in the absence of meridional
motion, Eqs. (13) become

αh = −H ∂u

∂x
, (14a)

αu = −g ∂h
∂x
, (14b)

fu = −g ∂h
∂y
. (14c)

We can combine (14a) with (14b) to obtain

∂2h

∂x2
=
(α
c

)2
h, (15)

whose general solution is
h(x, y) = h̃+(y) e

−αx/c + h̃−(y) e
+αx/c. (16)
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Figure 5: Schematic of a steady Kelvin lobe (in green), east of the forcing location (dark circle).
In Fig. 3 we sketched a propagating wave; once we include dissipation, we obtain a steady pattern
called the Kelvin ‘lobe’.

In order to ensure that the wave amplitude is bounded the h̃− term must be null. (This is the
same argument that we used to discard the westward wave in Eq. (10).) Therefore, the steady-state
solution is

∀x > 0 : h(x, y) = h0 e
−1/2(y/Lβ)

2
e−αx/c. (17)

This elevation pattern is called the Kelvin lobe, and is illustrated in Fig. 5. Note that we have 
not provided a full solution here – we have not specified the nature of the wave source for example, 
so the above solution applies eastward of that source source.

3 Rossby Waves and the Rossby Lobes

As announced earlier, we need to understand how the hot spot’s information is transmitted west-
ward. The key actors in that regard are Rossby waves, which are most easily extracted from the 
quasi-geostrophic shallow-water equations in an equatorial setting. So let us first derive these equa-
tions §3.1, then the Rossby wave solution in §3.2, and finally turn on the α damping in §3.3.

3.1 The equatorial quasi-geostrophic shallow water equations

We can start again from the linearised shallow water equations:

∂u

∂t
− fv = −g ∂h

∂x
, (18a)

∂v

∂t
+ fu = −g ∂h

∂y
, (18b)

∂h

∂t
= −H∇ ·u. (18c)

These are, respectively, the zonal-momentum equations in the x- and y-directions and the height
equation, which is the thermodynamic equation for this system. As before, the Coriolis parameter
varies as f = βy, and c2 = gH is the gravity wave speed. Following [7] we take the curl of the
(vectorial) shallow water momentum equation (18a, 18b) and arrive at

∂ζ

∂t
+ f

(
∂u

∂x
+
∂v

∂y

)
+ βv = 0, (19)

where ζ = ∂xv − ∂xy and f = βy. By substituting the divergence term in (19) with the time
evolution of surface elevation in (18c), we arrive at the linearized shallow water potential vorticity
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equation
∂

∂t

(
ζ − f

H
h

)
+ βv = 0. (20)

We now assume the flow is divergence free. This is identially true if the flow is geostrophically
balanced with a constant Coriolis parameter, but since the Coriolis parameter varies here this
should be regarded as an additional assumption. We can then define a stream function ψ such that

u = −∂ψ
∂y

and v =
∂ψ

∂x
. (21)

The relative vorticity is then given by

ζ = ∇2ψ (22)

and, if the flow is also in geostrophic balance, the height field is given by

h =
f

g
ψ. (23)

Substituting these expressions into the potential vorticity equation (20) gives

∂

∂t

(
∇2ψ − f2

gH
ψ

)
+ β

∂ψ

∂x
= 0, (24)

which is a linearized, quasi-geostrophic, shallow-water, potential vorticity equation, although here
we are allowing f to vary as f = βy.

3.2 Rossby waves

We can seek wavelike solutions of this in the form

ψ = ψ̃(y)ei(kx−ωt), (25)

and (24) becomes
d2ψ̃

dy2
−
(
k2 +

βk

ω
+
β2y2

c2

)
ψ̃ = 0. (26)

Some algebra is required to obtain a solution (the reader may consult [6]) but we finally obtain

ω =
−βk

(2m+ 1)β/c+ k2
, (27)

(where c is still
√
gH), which is a dispersion relation for equatorial Rossby waves. The phase speed

is always negative, meaning that Rossby waves only propagate westward, as in Fig. 6.

3.3 The westward Rossby lobe

Following the same method as in §2.3, now we want to add a linear damping term in the momentum
and thermodynamic equations. This is explicitly written as

∂u

∂t
− fv = −∂ϕ

∂x
− αmu, (28a)

∂v

∂t
+ fu = −∂ϕ

∂y
− αmv, (28b)

∂ϕ

∂t
= −gH∇ ·u− αϕ ϕ−Q, (28c)
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Figure 6: Schematic diagram of the situation, using the same drawing rules as Fig. 3 but adding
that anything red is related to Rossby waves. At this stage of the derivation, they simply carry the
hot spot’s influence all the way to the western infinity.

where the αs are damping rates, ϕ = gh is proportional to layer thickness, and Q is a thermodynamic
source. We keep the time-dependence for familiarity, but will shortly seek steady solutions. For
now we assume the momentum and thermal damping rates are equal and that there is no heating,
but we will relax these assumptions later on.

Applying the same method as in §3.2, we obtain the vorticity equation(
∂

∂t
+ α

)(
ζ − (βy)2

c2
ψ

)
+ βv = 0. (29)

where, as before, f = βy. Let us now suppose that the divergence is small and that the velocity,
vorticity and height fields can all be written in terms of a stream function,

u = −∂ψ
∂y

, v =
∂ψ

∂x
, ζ = ∇2ψ, ϕ = fψ, (30)

giving (
∂

∂t
+ α

)(
∇2 − (βy)2

gH

)
ψ + β

∂ψ

∂x
= 0. (31)

This equation may be put into a standard form by using the substitution ψ = Ψexp(−ŷ2/2) (and
we may note the connection to the solution for the stationary Kelvin wave). With this substitution,
(31) becomes

d2Ψ

dŷ2
− 2ŷ Ψ+

(
k̂2 +

k̂

α̂
− 1

)
Ψ = 0. (32)

Eq. (32) is known as Hermite’s equation. If we let λ = (k̂2 + k̂
α̂ − 1) then the solution is Hermite

polynomials Ψ(ŷ) = Hm(ŷ) with λ = 2m and

(H0, H1, H2, H3, H4) = (1, 2ŷ, 4ŷ2 − 2, 8ŷ3 − 12ŷ, 16ŷ4 − 48ŷ2 + 12). (33)

The values of k are quantized by this condition; that is to say(
k̂2 +

k̂

α̂

)
= 2m+ 1, (34)

or, in dimensional form, (
c2k2 + βc2

k

α

)
= (2m+ 1)βc. (35)
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This is analogous to the dispersion relation for low frequency waves when time-dependence but not
dissipation is included, namely

−c2k2 − β
kc2

ω
= (2m+ 1)βc. (36)

The difference is that (36) is generally regarded as an equation for the frequency, given the spatial
dependence. In (35) the decay rate, α, is a given physical parameter and the equation then yields
the spatial rate of decay.

The solutions are symmetric or antisymmetric around y = 0 according as to whether m is even
or odd, respectively. If we recall that ψ = ϕ/f then mirror symmetry (i.e., ϕ(y) = ϕ(−y)) implies
that m has to be odd. The solution for the gravest mode, m = 1, then has the form,

ϕ = ϕ0 exp(−βy2/2c)y2 exp(kx), (37)

where k is given by the solution of (36), and ϕ = 0 for x > 0 to satisfy boundedness at infinity. If
we further simplify to the small-wavenumber case, and neglect the term in k2 (36), then, for any m
have k = (2m+ 1)α/c and for the gravest mode k = 3α/c. The solution is then

ϕ =

{
ϕ0y

2 exp(−βy2/2c) exp(3αx/c), x < 0

0. x > 0.
(38)

In this case the decay rate is precisely three times as rapid as it is for the decaying Kelvin mode
given by (17). Also, and importantly, the solution decays in the westward direction, reflecting the
westward propagation of Rossby waves. East of the wave source there is no disturbance, and there
is no Rossby wave propagation at the equator.

Taken together, (38) and (17) comprise the Gill solution away from the source region; that is,
they are the solution to the homogeneous problem. These, and as the full solution obtained by
adding the particular solution with a particular source confined about the origin, are illustrated in
Fig. 8.

Combining the Rossby and Kelvin wave solutions to the localized hot spot on a hypothetical
tidally locked planet, we obtain an approximate solution of the Matsuno-Gill problem. Qualitatively,
the equatorial Kelvin waves induce eastward propagation originating from the hot spot and decaying
at a rate of c/α, forming a Kelvin lobe extending East from the origin. The Rossby wave carries
influence westward but decays more quickly than the Kelvin wave and forming two smaller Rossby
lobes, one on each side of the equator: the leading order Rossby wave solution is null at the equator,
but has a maximum offset from the equator by y ≈ 2c /β. The upper panel of Fig. 8 shows the
approximate solution to the Gill problem, treating the Rossby and Kelvin waves separately, and the
lower panel shows the complete solution, including the solution in the vicinity of

4 Exo-Planet Considerations

The situation on tidally locked exoplanets differs in a number of ways from that considered above
(and from the original problems considered by Matsuno and Gill). The main differences are likely
to be:

• The thermal forcing is quite large scale. Heating can be expected to be at a maximum at the
sub-stellar point, but extending considerably in both the zonal and meridional directions from
there.

the source.
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Figure 7: Schematic diagram of the solution to the Gill problem, using the same drawing rules as
Fig. 3 and Fig. 6.

Figure 8: Top: Approximate solution to the Gill problem, treating the Kelvin and Rossby Wave
solutions separately and approximately. Bottom: The complete solution. Solutions are given away
from the origin in the top plot, and everywhere in the bottom plot. The approximate solution is
that obtained in the text here and is a ’far-field’ solution that does not depend on the details of
the forcing. The full solution requires considerably more algebra and depends on the precise form
of the forcing. See [1].

• Most tidally locked planets, unless they are in an extremely close orbit to their host star, will
have a slower rotation rate than Earth, with a correspondingly large radius of deformation.
The mid-latitude deformation radius in a stratified atmosphere is NH/f , where N is the
Brunt-Väisälä frequency and H is a characteristic vertical scale. In a shallow water model
the corresponding deformation scale is

√
gH/f where H is the thickness of the layer. Similar

considerations apply to the equatorial deformation radius. In all cases, the deformation radius
increases as rotation rate diminishes.

• The momentum dissipation may be noticeably weaker than the thermal dissipation. On a
gas giant the fluid in the gaseous weather layer overlays another fluid (or simply gets more
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Figure 9: Analytic solutions of the linear shallow water equations showing the steady response of 
the height field to a  s tationary, t idally l ocked, thermal f orcing with zero momentum damping and 
various values of thermal damping coefficient, αϕ and deformation radius Leq, relative to the size of 
the planet. Length scales are nondimensionalized by Leq, so that larger values in the x and y axes 
indicate a larger planet or smaller deformation radius. The red contours show the location of the 
heating, with solid contours positive, and the lighter shading (the yellows) correspond to higher 
temperatures.

dense with depth) rather than overlaying a solid or liquid with a rough surface. The frictional 
dissipation may then be relatively small, whereas the thermal dissipation may remain large. 
This difference can lead to noticeable differences in the phase of the Rossby wave response. In 
some contrast the Kelvin wave response may be only quantitatively altered: with separate 
damping coefficients for momentum (αm) and he ight αϕ then the only change in  the Kelvin-
wave solution is that α2 is replaced by αϕαm.

• The stratification of exo-planetary atmospheres is not known and will depend on both the
level at which solar heating occurs and the composition of the atmosphere. This then affects
the deformation radius.

We will now discuss some of these effects.

4.1 Approximate Analytic Solution
To explore parameter space generally requires a numerical approach, but we can make some headway 
by obtaining an approximate analytic solution in some special cases. We will assume that the zonal
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wind is in geostrophic balance with the meridional pressure gradient (this is called the longwave
approximation, for reasons we do not delve into), but we allow different thermal and momentum
damping rates. The governing equations are then, for a steady state and in the linear approximation,

αmu− fv +
∂ϕ

∂x
, fu+

∂ϕ

∂y
= 0, αϕϕ+ c2

(
∂u

∂x
+
∂p

∂y

)
= Q, (39a,b,c)

where αm and αϕ are the momentum and thermal damping rates, respectively, and we imagine 
Q(x, y) to be a heating term provided by the planet’s star, and thus centered at the substellar point 
which we take to be at x = y = 0. With a little bit of algebra we obtain a single equation for ϕ, 
namely

f2

c2
αϕϕ− β

∂ϕ

∂x
− αm

∂2ϕ

∂y2
+ αm

2β

f

∂ϕ

∂y
=
f2

c2
Q. (40)

On the equatorial β-plane f = βy and keq = (β/c)1/2 = L−1
eq so that the above equation may be

written

k4eqy
2αϕϕ− β

∂ϕ

∂x
− αm

∂2ϕ

∂y2
+ αm

2β

f

∂ϕ

∂y
= k4eqy

2Q. (41)

This equation is hard to solve in full generality, but we can at least eliminate the explicit x depen-
dence by expanding ϕ and Q as Fourier modes; that is, we let

ϕ(x, y) = ℜϕ̃(y) exp(ikx), Q(x, y) = ℜQ̃(y) exp(ikx), (42)

or a sum of such Fourier modes, whence (and henceforth omitting the ℜ decorator)

(
αϕk

4
eqy

2 − ikβ
)
ϕ̃+ αm

∂2ϕ̃

∂y2
+ αm

2β

f

∂ϕ̃

∂y
= k4eqy

2Q̃(y). (43)

Let us now neglect the friction terms involving αm, giving(
αϕk

4
eqy

2 − ikβ
)
ϕ̃ = k4eqy

2Q̃(y), (44)

with solution

ϕ̃ =
Q̃ϕ(y) k

4
eqy

2

αϕk4eqy
2 − ikβ

, (45)

or with nondimensional variables

̂̃
ϕ =

Q̃ϕ(y) ŷ
2

α̂ϕŷ2 − ik̂
. (46)

Approaching the equator the variations thus become completely out of phase with the forcing,
although at the same time the response weakens. For small enough thermal damping the height
field will be in quadrature with the thermal forcing over most of the planet. Various solutions with
different damping can be seen in Fig. 9 and Fig. 10. The length scales are nondimensionalized
by the equatorial deformation radius

√
c/β, so solutions with apparently smaller scales can be

considered to be either more slowly rotating or to be smaller, or to be more strongly stratified.
For comparison, Earth with a rotation period of about 24 hours and a stratification corresponding
to a buoyancy frequency of about 10 minutes has a gravity wave speed of about 20 m s-1 and an
equatorial deformation radius of about 1000 km, giving an equatorial circumference of about 40 such
radii.
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Figure 10: Similar to Fig. 9, but now showing full numerical solutions to the linear shallow water 
equations for various values of thermal and momentum damping coefficients αϕ and αm . The panels 
with αm = 0 have the same parameters as the equivalent panels in Fig. 9.

5 Super-rotation

Super-rotation, or superrotation, is the term used to describe the situation where the relative 
equatorial flow i s e astward, o r e quivalently w hen e quatorial fl uid pa rcels ro tate fa ster th an the 
planet. Such a flow might be expected to displace the hottest regions East of the sub-stellar point, 
as in Fig. 10. These displaced hot spots on hot Jupiters have also been predicted in various more 
complete simulations (e.g. [4]) and observed [3].

Prograde equatorial jets can be generated by Rossby waves propagating away from the region 
of their generation. However, we need to generate Rossby waves for this to be a viable mechanism. 
In midlatitudes on Earth-like atmospheres Rossby waves arise as a product of baroclinic instability, 
but there is no obvious mechanism to generate Rossby waves at the equator. In slowly rotating 
planets it seems that superrotation arises because of an interaction between Rossby waves and 
Kelvin waves that generates an instability that converges eastward momentum toward the equator. 
Specifically, stationary patterns i llustrated in Fig. 10 suggest that off equatorial eddies may have a 
tilted structure and thus might converge momentum toward the equator, as in Fig. 11. Interested 
readers should consult the report by Q. Nicolas in this volume.

6 Conclusion

In this lecture we gave an introduction to the circulation of tidally locked planets, and among them 
will be hot Jupiters, super-Earths and sub-Neptunes. We spent most of our time on a horizontal cir-
culation pattern similar to [1]. These patterns can, in some circumstances, give rise to superrotation 
and that superrotation is often posited to be responsible for (or is be least consistent with) the ob-
served shift between the hottest point and the sub-stellar point [3]. A schematic of the components
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wave-source region and a westward acceleration must occur in
the region of wave breaking or dissipation. This can lead to the
formation of zonal (east–west) jet streams.5

Rossby waves correspond to latitudinal oscillations in sur-
faces of constant potential vorticity6; thus, any process that trig-
gers such oscillations at large scales will tend to excite Rossby
waves. In Earth’s atmosphere, one of the predominant sources
is baroclinic instability, which occurs in the midlatitude tropo-
sphere where latitudinal temperature gradients are large. Spa-
tially varying tropospheric heating and cooling (e.g., due to
land–sea contrasts) or flow over topography also perturb the
potential vorticity contours and can therefore trigger Rossby
waves. In the atmospheres of tidally locked, hot exoplanets, on
the other hand, the day–night heating pattern constitutes the
overriding dynamical forcing. For such planets, we expect this
heating/cooling pattern to trigger Rossby waves at low latitudes
(Figure 1).

The above theory is for free waves. Consider now the ex-
tension to an atmosphere forced by vorticity sources/sinks and
damped by frictional drag. The zonal-mean zonal momentum
equation of the barotropic system reads

∂u

∂t
= −∂(u′v′)

∂y
− u

τdrag
, (6)

where overbars denote zonal means and primes denote devia-
tions therefrom. The equation states that accelerations of the
zonal-mean zonal flow result from convergences of the lati-
tudinal eddy momentum flux and from drag, which we have
parameterized as a term that relaxes the zonal-mean zonal wind
toward zero over a drag time constant τdrag. The relationship
between the eddy acceleration in Equation (6) and the vorticity
sources/sinks can be made in two steps. First, we note that the
definition of vorticity implies that v′ζ ′ = −∂(u′v′)/∂y. Second,
we multiply the linearized version of Equation (2) by ζ ′ and
zonally average. This leads to an equation for the budget of the

5 The dynamical picture outlined above is not limited to small-amplitude
disturbances, as can be shown with a simple argument described, for example,
in Held (2000) and Vallis (2006). Imagine an initially undisturbed latitude,
where the absolute-vorticity contour initially aligns with the latitude circle, and
suppose a disturbance—of any amplitude—propagates into that latitude from
elsewhere. The disturbance will perturb the absolute vorticity contours, causing
northward transport of air in some regions and southward transport in others.
Because absolute vorticity generally increases northward, the northward
advection carries with it air of low absolute vorticity, whereas the southward
advection carries with it air of high absolute vorticity. Thus, this process will
generally cause a southward flux of absolute vorticity, thereby decreasing the
areal integral of the absolute vorticity over the polar cap bounded by the
latitude circle in question. By Stokes’ theorem, this implies that the
zonal-mean zonal wind decelerates (i.e., accelerates westward) because of this
vorticity flux. In the absence of dissipative processes, this deceleration would
reverse if the disturbance exited the region. However, when mixing occurs
(e.g., if the wave breaks), or if the disturbance is damped before air parcels can
return to their original latitudes, then the areal integral of the vorticity inside
the latitude circle has been irreversibly decreased, and the westward impulse
cannot be undone. Thus, we again recover the result that westward
acceleration occurs in the region of wave dissipation; if momentum is
conserved, eastward acceleration would then occur in the wave-source region.
6 Potential vorticity is a quantity related to vorticity that is conserved in
adiabatic, frictionless, stratified flow. For the barotropic system it is simply the
absolute vorticity ζ + f , for the shallow-water system it is absolute vorticity
over layer thickness (ζ + f )/h, and for a 3D stratified atmosphere it is given
by ρ−1(∇ × v + 2!) · ∇θ , where ρ is the density, Ω is the planetary rotation
vector, and θ is the potential temperature. For discussion of the conservation of
potential vorticity and its uses in dynamics, see Pedlosky (1987) or Vallis
(2006).

Figure 1. Illustration of the dynamical mechanism for generating equatorial
superrotation on tidally locked short-period exoplanets, including hot Jupiters
and super Earths. The intense day–night heating gradient generates standing,
planetary-scale Rossby and Kelvin waves. These waves develop a structure
with velocities tilting northwest-to-southeast in the northern hemisphere and
southwest-to-northeast in the southern hemisphere (yellow and red ovals).
In turn, these patterns transport eddy momentum from high latitudes to the
equator (dashed arrows). Equatorial superrotation therefore emerges (thick,
right-pointing arrow).
(A color version of this figure is available in the online journal.)

so-called pseudomomentum (Vallis 2006, p. 493):

∂A
∂t

+ v′ζ ′ = ζ ′F ′

2(β − ∂2u
∂y2 )

. (7)

For the two-dimensional nondivergent model, A = (β −
∂2u/∂y2)−1ζ ′2/2 is the pseudomomentum, which is a measure
of wave activity. By combining Equations (6) and (7) and
supposing that the wave amplitudes and zonal-mean zonal wind
are statistically steady, i.e., ∂A/∂t ≈ 0 and ∂u/∂t ≈ 0, we
obtain

u

τdrag
= ζ ′F ′

2(β − ∂2u
∂y2 )

. (8)

This equation relates the vorticity sources/sinks and drag to
the zonal-mean zonal wind, u. When eddy sources/sinks of
relative vorticity on average exhibit the same sign as the vorticity
itself (i.e., ζ ′F ′ > 0), the eddy acceleration is eastward, and in
steady state results in an eastward zonal-mean zonal wind. When
sources/sink of relative vorticity tend to exhibit the opposite sign
as the vorticity (ζ ′F ′ < 0), the eddy acceleration is westward,
and in steady state results in westward zonal-mean zonal wind.7
In analogy with the free solutions, this behavior is typically
interpreted in terms of the generation, latitudinal propagation,
and dissipation of Rossby waves.

This mechanism is thought to be responsible for the eddy-
driven jet streams (and the associated eastward surface winds)
in Earth’s midlatitudes: baroclinic instability generates Rossby
waves that radiate away from the midlatitudes, causing eastward
eddy acceleration there and leading to eastward surface flow

7 These arguments assume that β − ∂2u/∂y2 > 0, which is generally the case.

3

Figure 11: Schematic of the generation of superrotation in a tidally locked planet. The tilted off-
equatorial eddies, perhaps similar to those in Fig. 10, converge eastward momentum toward the
equator, so producing superrotation, provided that nonlinear effects are included. (From [5].)

of the general circulation on a tidally locked planet is given in Fig. 12.

Figure 12: Schematic diagram from [2], outlining the rotational and divergent components of circu-
lation on a tidally locked planet, driven by the horizontal temperature gradients.
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GFD 2023 Lecture 5: Observations of Atmospheric Circulation on

Short-period Gas Giants

Heather Knutson; notes by Nimrod Gavriel and Quentin Nicolas

March 27, 2025

This lecture focuses on the observations of short-period gas giants, also known as hot Jupiters 
(HJs). More specifically, we ask what aspects of the global atmospheric circulation of 
these planets can be inferred from these observations.

1 Comparing the Properties of Our Jupiter and Hot Jupiters
Being faraway from its host star, Jupiter receives little external radiation, and its dynamics 
are thus also driven by comparable internal heating. Hot Jupiters, in contrast, are so strongly 
irradiated that any internal heat flux is negligible in their global energy balance. The thermal 
structure of gas giants can be approximated by a layer in radiative equilibrium overlying a 
deep convective layer. The depth at which the transition occurs is widely different between 
Jupiter and HJs: In Jupiter, the internal heat flux and weak irradiation keep its radiative 
layer above P ≃ 1 bar. By contrast, in HJs, it reaches as deep as 100 to 1000 bar. The 
infrared photosphere for Jupiter lies around 300 mbar, which means we do see through its 
convective layer [7]. Comparatively, we cannot“see” deeper than 0.1 bar in the atmospheres of 

HJs, i.e. observations are limited to the very top of their radiative layers1.
HJs are widely believed to be tidally locked due to their close proximity with their host star. 

Their rotation period is thus equal to their orbital period, typically around 1 to 3 days. Combined 
with estimates of characteristic large-scale wind speeds from GCMs (and observations, see section 
3.2) and using the radius of Jupiter as a characteristic length, this yields a Rossby number estimate 
of

1000 m/s

RoHJ ≃ 
7× 107 m× 1.4× 10−5 s−1 

≃ 1. (1)

In contrast, Jupiter’s rotation period is around 0.4 Earth days, which puts it in a strongly rotating 
regime:

RoJ ≃ 40 m/s

7× 107 m× 3.6× 10−4 s−1
≃ 0.02. (2)

Jupiter and HJs are thus in a vastly different dynamical regime.

1The optical depth profile of a planet’s atmosphere can be inferred from assumptions on the chemical species that
compose it (themselves predicted from elemental abundances in the host star) and its temperature structure. For
HJs, unit optical depth is usually around 0.1 bar.
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Figure 1: Taken from Showman et al., (2009)[8]. Simulation results for a hot Jupiter (from a coupled
radiative-dynamical general circulation model at ∼ 2.5◦ resolution). Color is the temperature (in
◦K). Black arrows are velocity vectors; equatorial wind speeds are on the order of 3000 m s−1. The
panels represent three pressure levels. Longitude 0◦ is the substellar point.

52



2 The Thermal Structure of Hot Jupiters

2.1 Model characterization

General circulation models (GCMs) are important tools for estimating the thermal distribution and 
flow structure on hot Jupiters. Figure1 shows mean temperature and winds at three different 
depths from one such GCM run. The most prominent feature is a strong zonal temperature 
contrast due to tidal locking: the dayside to nightside temperature difference is on the order of 

several hundred K. Because this simulation (and most others) features equatorial superrotation2, 
the warmest spot is located east (downstream) of the substellar point. This location is 
determined by a balance between heat advection and radiative cooling. While the advective 
timescale is similar at all depths considered here, the radiative cooling timescale increases with 
depth. Hence, the hotspot ventures farther from the substellar point as we look deeper, and the 
day-night temperature difference at the equator strongly decreases.

2.2 Observational characterization

The hemispheric temperature contrast predicted for HJs can be detected in observations. Consider 
a system composed of a star and its counterclockwise orbiting HJ. Suppose the ecliptic plane is 
oriented such that the planet passes in front of the star once per orbit for the observer. The 
radiative flux coming from the star+planet system undergoes variations according to the orbital 
phase. These variations are sketched in Figure 2. Two dips are observed per orbit: the larger one 
when the planet eclipses the star (the “transit”), and a smaller one, termed a “secondary eclipse”, 
when the planet transits behind the star from the observer’s perspective. As the planet orbits the 
star, the temperature of the hemisphere facing the observer varies. Before and after the transit, 
we are primarily facing its cold nightside, resulting in a lower overall flux, approaching the flux 
emitted only by the star (dashed line in Figure 2); around the secondary eclipse, the flux is higher 
as we also observe emissions from the planet’s dayside. The fact that the maximum flux occurs 
slightly before the secondary eclipse indicates that the hotspot is shifted off the substellar point in 
the planet’s prograde direction.

Taking into account the orbital period and phase, the brightness curve sketched in Figure 2 can 
be translated into a longitude-dependent brightness of the planet (Figure 3). Assuming blackbody 
radiation, one can infer a longitudinal temperature profile from this brightness map. The amplitude 
of its primary harmonic informs us of the day-night temperature contrast. Its phase gives the offset 
of the hotspot from the planet’s substellar point.

More precise information on the longitude, and importantly the latitude of the hotspot can be 
inferred from detailed observations of the secondary eclipse, precisely the phases where the planet 
progressively disappears behind its star (the ingress) and later re-appears (egress). With a planet 
of uniform temperature (or a hotspot collocated with the substellar point), the ingress and egress 
flux curves would be mirror images of each other (Figure 4). If the hotspot is located east of the 
substellar point, then the flux will decrease quickly during the ingress (for a clockwise-orbiting 
planet) and increase quickly during the egress, creating asymmetry between the ingress and egress 
slopes (see Figure 4). If the planet passes above or below the star’s equator, then an off-equatorial 
hotspot location will further distort the flux curve. Thus, assuming a given temperature structure 
around the hotspot, its precise location can be inverted from the ingress and egress slopes.

2
Superrotation refers to the presence of zonal-mean prograde wind at the equator
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Figure 4: An illustration of a planet's radiative flux as a function of orbital phase, zoomed around the 
secondary eclipse. Note that the planet is orbiting clockwise on this figure. The black curve 
corresponds to a planet whose hotspot is located on the substellar point. A shifted hotspot results in 
asymmetries between the ingress and egress slopes (blue curve). 

3 Existing Observations and Key Takeaways

Due to Earth's rotation, continuous observations of distant star systems are limited to a few hours. As 
observing phase curves ( as sketched in Figure 2) requires continuous observations over several days, 
space telescopes such as Spitzer, Hubble, and James Webb are required. Because of this, current 
phase curve observations only amount to several dozen observations for Hot Jupiters. Most of these 
observations are in the infrared, with some in visible light ( thus allowing to build longitudedependent 
albedo maps). The ingress and egress phases (Figure 4) only last around 30 minutes, and several 
observations of these precise time frames are needed to filter out the noise. As such, secondary 
eclipse maps are only available for two HJs. 

We now provide five key takeaways from these existing observations. 

3.1 Zonal energy transport 

One key element to characterize the zonal energy transport on tidally locked HJs is its efficiency, 
which can be defined as the fraction of the energy received by the dayside being redistributed to the 
nightside (varying between O and 0.5). Observations indicate that this efficiency is a decreasing 
function of the irradiation received by the planet, or equivalently that the hottest HJs are less 
efficient at redistributing the stellar energy absorbed on the dayside than their colder analogs. One 
theoretical argument supporting this finding was given by Perez-Becker and Showman (2013)[5]. 
They argue that similarly to Earth's tropics, gravity waves are a primary mechanism for temperature 
homogenization in Hot Jupiters. The efficiency is thus set by a competition between radiative heating/
cooling and heat redistribution by waves, and as the radiative timescale decreases faster with 
temperature than the time scale of gravity waves, the efficiency of zonal heat transport decreases 
with temperature. 
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Figure 5: Sketch of the procedure used to measure larg&scale winds during the transit. As the planet passes in front of the star, its atmosphere absorbs part of the incident light. Absorption lines pertaining to the star and the planet's atmosphere can be discriminated from Doppler shifting (see text), and anomalies in this Doppler shifting relative to a quiescent atmosphere are used to infer atmospheric winds. 
3.2 Structure of the large-scale winds 

Observations indicate that most HJs have their hotspot shifted in the prograde direction relative to the substellar point, suggesting that they likely have superrotating winds at the equator. Measurements of transmission spectra during the transit offer a more direct way to probe atmospheric winds. As the planet passes in front of its star, its atmosphere absorbs part of the radiation originating from the star before it reaches the observer, as illustrated in Figure 5. The measured radiation spectrum contains various absorption lines, some originating from the star and some from the planet's atmosphere. During the transit, the planet will transition from moving towards the observer (phase 1 in Figure 5) to moving away from them (phase 3). Thus, the atmospheric absorption lines will be blueshifted in phase 1, and redshifted in phase 3. This allows us to discriminate these from the star's absorption lines, which should not significantly move during the transit. Because the planet's orbital characteristics are known, the expected blueshifting and redshifting can be predicted assuming a quiescent atmosphere. Any deviation from this prediction indicates larg&scale atmospheric motion. Planetary-scale energy transport tends to favor winds directed from dayside to nightside (black arrows drawn in phase 2 of Figure 5), creating an anomalous blueshifting of the lines for the observer. Transmitted radiation primarily comes from shallow regions of the atmosphere, and different depths can be probed from different absorption lines. 
3.3 Clouds 

Despite the larg&scale energy redistribution, dayside and nightside temperatures differ by hundreds of K in HJs (e.g., Figure 1). These differences can lead to some chemical species existing in both vapor and condensed phases in different regions of the atmosphere. The most likely type of clouds are silicate clouds (e.g., MgSi03), which are very reflective. Given the typical thermal structure of HJs (and in accordance with model predictions), one would expect cloud structures having very large scales, with hemisphere-sized cloud patches and cloud-free regions. The best evidence we have 
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for the existence of patchy clouds in HJs comes from phase curve observations of the planet Kepler-
7b [1]. The visible light phase curve for Kepler-7b has its maximum flux after the secondary eclipse.
This indicates a westward shift in its brightest spot. This visible light signal is unlikely to come
from thermal emission—in that case, the brightest spot could correspond to the hot spot, which
one expects to be shifted eastward. The most likely explanation is that highly reflective clouds west
of the substellar point account for the longitude of the flux maximum. This is consistent with the
western part of the dayside hemisphere being generally cooler than the eastern part (see Figure 1).

For HJs, Kepler-7b is an outlier: it has a high geometric albedo of 0.3, whereas 90% of HJs
have low albedos on the order of 0.05. This does not, however, mean that most HJs are cloud-free,
and several lines of evidence from transmission spectroscopy indicate otherwise. For most HJs,
absorption spectra do not strongly depend on wavelength in the infrared range, which is indicative
of the presence of high clouds. At optical wavelengths, Rayleigh scattering by small cloud particles
implies a strongly wavelength-dependent opacity [9]. Hence, HJs with low albedos are unlikely to
be cloud-free but are simply devoid of widespread, highly reflective clouds.

Clouds are expected to alter the large-scale atmospheric circulation. For example, nightside
clouds trap thermal emissions, lowering the hemispheric temperature gradients. A lower dayside-
nightside temperature contrast would also lower the strength of equatorial winds, yielding a smaller
offset of the hotspot relative to the substellar point. Observed HJs do have smaller hotspot off-
sets than cloud-free GCMs. Recent GCM simulations including simple cloud parameterizations
confirmed that the presence of clouds can reduce the eastward shift of the hotspot [4, 6].

3.4 Large-scale chemical gradients

Different physical properties between the dayside and the nightside of HJs should also yield varying
chemical compositions. In the hot dayside, carbon is expected to be present in the form of CO and
CO2. In contrast, nightside temperatures would favor CH4 in equilibrium. However, the timescale
for this chemical transition is slow enough that GCM models that allow disequilibrium chemistry
due to transport predict CO-dominated atmospheres, even on the nightside [10]. Some nightside
spectra have been observed and confirm that methane concentrations are low, even in conditions
where methane should dominate at equilibrium.

In ultra-hot Jupiters (whose equilibrium temperatures are higher than 2000 K), chemical reac-
tion timescales decrease. Hence, chemical reactions should be in a local equilibrium state throughout
the atmosphere. If the dayside is hot enough, H2 can be dissociated into atomic H (H2 −→ 2H). Its
recombination on the nightside (2H −→ H2) releases heat, providing a means of cross-hemispheric
energy transport.

3.5 Magnetic fields

Some HJs are hot enough that parts of the atmosphere get ionized. For example, sodium and
potassium are ionized around 1500 K. Assuming a background dipolar magnetic field, ions in the
equatorial jet would feel a Lorentz drag as they travel across field lines. This could reduce the
overall strength of the jet, and therby the hotspot offset. There is potential observational evidence
for this effect, with a couple of highly irradiated HJs having small hotspot offsets.

Some HJs (though very few) have a westward-shifted hotspot, which may be a manifestation
of magnetohydrodynamic effects. Indeed, some MHD models do feature westward (more generally
retrograde) equatorial flow [2], an effect attributed to the westward-tilting nature of equatorial
magneto-Kelvin waves. Bounds on the strength of the background field and equilibrium temperature
required to drive this effect were proposed by Hindle et al. (2019) [3], with lower thresholds of
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approximately 2000 K and 1 G. Although the strength of the magnetic field remains an unknown
parameter (no observations of exoplanet magnetic fields exist to date), this second bound is not
unrealistic.
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GFD 2023 Lecture 6: Cold Giants; Jets, Deep Convection and
Shallow Weather

Geoff Vallis; notes by Quentin Kriaa and Yaoxuan Zeng

September 5, 2024

1 Introduction

We now turn our attention to gas giants, and in particular to ‘cold’ gas giants. All the giants
in the solar system – Jupiter, Saturn, Uranus and Neptune – are cold. Jupiter and Saturn are
‘gas giants’, composed mainly of hydrogen and helium (even in their interiors), with only traces of
methane, ammonia, water and some other elements, whereas Uranus and Neptune are ‘ice giants’,
with ammonia, methane and water (commonly if somewhat confusingly known as ‘ices’) forming
much of the planets’ mass. We will mainly focus on the gas giants here. The interior flux of energy
of Jupiter and Saturn is comparable to the solar radiation, typically of order 5 W/m2. The internal
flux for Uranus and Neptune is smaller, about 0.04 and 0.4 W/m2 respectively, although that for
Neptune is comparable to the radiation received from the Sun.

The case of Jupiter (see its radial structure in Fig. 1) has received considerable attention from
the scientific community due to the structures that are manifestly visible in its atmosphere, and the
large amount of data that have already been collected by space missions and that will be extended
by the upcoming measurements from the Juice mission. Jupiter is the largest planet in the Solar
System with a radius, a, of about 71,000 km, a gravitational acceleration, g, of about 25m s−2 (near
the surface) and a period of rotation 2π/Ω of about 10 hours. Consider the thermal Rossby number

RoT =
R∆T

Ω2a2
, (1)

where R is the specific gas constant. Compared to Earth’s properties which we denote with the
symbol ⊕, we have Ω ≃ 2.5Ω⊕ and a ≃ 11a⊕ so that for the same ∆T the thermal Rossby
number on Jupiter is considerably lower than that of the Earth. (In fact, ∆T is also much smaller
on Jupiter than Earth, making RoT smaller still, but the winds on Jupiter are not directly a
consequence of thermal wind balance with an equator–pole temperature gradient.) Consequently,
Jupiter’s dynamics are much more constrained by the influence of planetary rotation, as evidenced
by its zonal winds that organize as jets – see Fig. 2. Those jets alternate as bands of prograde and
retrograde winds, which balance out when averaged over all latitudes, but which still evidence a net
superrotation near the equator. Several candidate models can explain this equatorial superrotation,
but none has yet been definitively identified as being the relevant mechanism responsible for this
observation. Saturn also has superrotation, over a broader range of latitudes near the equator,
and with zonal velocities that are about twice larger. In contrast, Uranus and Neptune both have
retrograde equatorial jets.

How do these jets form? What sets their direction near the equator? Are they deep jets that
are present in the deep convective zone? Or do they belong in the surface shallow weather layer,
perhaps forced by turbulence and emerging when rotation overcomes stratification? Or do they

, 

---

59



M
o

le
cu

la
r 

h
y

d
ro

g
e

n
 sh

e
ll

M
e

ta
llic m

a
n

tle

(se
a o

f e
le

ctro
n

s an
d

 p
ro

to
n

s)

D
ilu

te
d

 co
re

(co
n

ce
n

tratio
n

 o
f h

e
av

y e
le

m
e

n
ts)

Helium rain clouds

Outer atmosphere

Weakly conducting layer

Highly conducting layer

Deep atmosphere

Silicate
droplets

  Earth’s
radius

4

Figure 1: Possible radial structure of Jupiter. The plot on the right, from [6], incorporates data 
from the Juno mission that suggests that the rocky core is quite dilute.

exist in both layers and interact? The next sections discuss these guiding questions, considering 
first the weather layer jets and second the deep jets.

2 Weather Layer Jets

Rossby waves are likely a major agent driving the formation of zonal jets in stratified environments. 
Their ability to induce a zonal flow from a statistically uniform flow can be illustrated with the fol-
lowing simple model. Consider a flow that is barotropic, presumably hydrostatic, two-dimensional, 
incompressible, and with an infinite Rossby deformation radius. In that case, the inviscid vorticity 
equation boils down to

∂ζ

∂t
+ u · ∇ζ + βv = 0, (2)

where u = (u, v) is the horizontal velocity field with u the zonal velocity and v the meridional
velocity, β is the gradient of the Coriolis parameter along the meridional direction (and we will
assume β to be constant), and

ζ =
∂v

∂x
− ∂u

∂y
(3)

is the vertical component of vorticity. Eq. (2) may also be written as

Dq

Dt
= 0 (4)

where q = ζ+f and f = βy. The variable q is the potential vorticity in this two-dimensional system
(other more general, and three-dimensional, forms are possible) and evidently (in the absence of a
dissipative term on the right-hand side) it is a Lagrangian invariant.

The flow being incompressible, let us introduce the stream function ψ such that

u = −∂ψ
∂y

; v =
∂ψ

∂x
; ζ = ∇2ψ . (5)
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Figure 2: Zonal jets on a giant, Jupiter-like, planet according to simulations of [1] in a spherical
shell of inner radius 0.9a, where a is the planetary radius. Colors correspond to the velocity field:
red jets are eastward, blue jets are westward.

Using the stream function, Eq. (2) can be linearised and reads:

∂

∂t
∇2ψ + β

∂ψ

∂x
= 0 . (6)

Since the coefficients of this equation are constant, we can look for solutions in the form

ψ = ℜ[ψ0e
i(kx+ly−ωt)] , (7)

where ψ0 is the amplitude, k is a zonal wavenumber, l is a meridional wavenumber, and ω is an
angular frequency. Injecting the solution (7) into (6) readily yields the dispersion relation of Rossby
waves without mean background flow:

ω = − βk

k2 + l2
, (8)

whose minus signs indicates that this wave propagates westward with respect to the mean zonal
flow. Suppose Rossby waves are triggered by a uniform band of perturbations along the longitude –
either baroclinic instabilities if radiative heating is sufficient or, more likely for Jupiter, due to the
effects convection below the weather layer. The Rossby waves then propagate energy away from the
source. This transport is performed by the meridional component cg,y of their group velocity

cg,y =
∂ω

∂l
=

2βkl

(k2 + l2)2
. (9)

Assuming β > 0, because energy is transported away from the source, we can infer from Eq. (9)
that kl > 0 northward of the perturbation and that kl < 0 southward of the perturbation – see the
blue text in Fig. 3.

Let us show that the velocity fluctuations (u, v) transport momentum eastward in the region of
stirring, and westward on either side. From the definitions (5), the following expressions of u and v
are readily obtained

u = −ψ0ile
i(kx+ly−ωt); v = ψ0ike

i(kx+ly−ωt) . (10)
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Figure 3: When a region stirs the fluid, Rossby waves are generated that transport energy outward
along the meridional direction. This results in the formation of an eastward jet – see main text for
details.

We finally deduce
uv∗ = −ψ2

0kl ∝ −kl , (11)

where v∗ is the complex conjugate of v. Considering the zonal average ⟨uv⟩ of this product (we
thereafter drop the star for simplicity), the latter proves to be negative northward of the stirring
region, and positive southward, meaning the momentum converges towards the source of the per-
turbations. Let us show that this converges and nourishes an eastward zonal flow. With the same
assumptions as above, the momentum equation for the two-dimensional flow reads

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = 0 , (12)

with f the Coriolis parameter. Under the assumption that the flow is incompressible, this equation
simplifies as

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
− fv = 0 . (13)

After noticing that the v component of the solenoidal velocity field is the zonal derivative of a stream
function, and then taking the zonal average ⟨·⟩x of the last equation, we end up with

∂⟨u⟩x
∂t

= −∂⟨uv⟩x
∂y

> 0 , (14)

which confirms the emergence of an eastward jet in the stirring region – see Fig. 3.
The key remaining question is: what is the latitudinal scale of these jets? The forcing, which

nourishes the jets in the first place, and planetary rotation that constrains their dynamics, can both
influence this length scale. If the forcing region is sufficiently wide, the meridional scale of the jets
can be expected to result from a balance between the inertial term u ·∇ζ and the Coriolis term βv.
The simplest assumption to make is that the turbulent motion embedded within the jets (which will
tend to be at a somewhat smaller scale than the jets) is approximately isotropic. A simple scaling
argument then gives

|u · ∇ζ| ∼ |βv|, (15)
U2

L2
R

∼ βU, (16)

Rossby waves i $ $ ----~ ~ 
kl< 0 

(uv)x > 0 

Zonal velocity 
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Figure 4: Left: Zonal average of the zonal winds on Jupiter at cloud top. The blue line is the Cassini
profile in late 2000 [2], the red line is from Voyager in 1979 [5], the black line is from the Hubble
Space Telescope in 2015 [4], from which the figure is adapted). Right: Atmosphere of Jupiter in
the visible light (photo from the Cassini mission) showing ammonia clouds. The dark ‘belts’ are
relatively warm downwelling regions, whereas the light ‘zones’ are relatively cool upwelling regions.

where LR is the meridional scale of the jets, giving

LR =

√
U

β
. (17)

The scale LR is known as the Rhines scale, following [3]. Note that U is the velocity scale of the 
eddying flow in the jet, not the magnitude of the jet velocity itself. Other derivations of this scaling 
are possible, and other scalings are also possible, for example L ∼ Z/β where Z is the mean 
amplitude of the vorticity, or L ∼ (ε/β3)1/5 where ε is the energy cascade rate [8]. This last 
expression is useful if the energetic forcing rate is known independently as an external parameter 
(for the Rhines scale requires knowledge of the solution, i.e., the magnitude U). However, the 
Rhines scale is a very useful practical measure, as U may often be observed.

The flow that is of a smaller scale than LR is dominated by turbulence (i.e., advective terms in the 
vorticity equation) but scales larger than this tend to be dominated by the Rossby waves (i.e., linear 
terms). A typical order of magnitude of the Rhines scale of Jupiter is LR ≃ 5000 km, which is 
consistent with the typical length scale deduced from the 10◦-wide jets observed in Fig. 4, up to a 
prefactor ∼ 2.

Another perspective of jet formation arises if we think about the problem in physical space and 
the evolution of potential vorticity. This perspective is valuable both for deep and shallow jets, so 
let us turn our attention to this.

3 Potential Vorticity: Homogenization and Staircases

Although the principles we shall describe in this section are actually quite general it is easiest to 
describe them by way of a simple example of two-dimensional incompressible flow with an infinite 
deformation radius.
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Figure 5: An idealized potential vorticity staircase on a β-plane with β = 1. The left panel shows 
homogeneous regions of potential vorticity of meridional extent Lh separated by potential vorticity 
jumps. The right panel shows the corresponding zonal flow, c alculated u sing ( 25) with u0 chosen 
to be such that the averaged zonal flow i s z ero. Taken f rom Fig. 12.6 in [7].

The potential vorticity, q, of such a flow on a β -plane is q = ζ +βy, where ζ = ∂v/∂x−∂u/∂y is 
the relative vorticity and β = ∂f/∂y is the meridional gradient of the Coriolis parameter, f (Eq. 2).

The premise made is that in a turbulent flow, the gradients of a scalar that is both advected 
and diffused will become smeared out as much as possible: diffusion will dissipate any extrema and 
advection cannot recreate them. Potential vorticity is a scalar, so we might expect it to become 
homogenized, but it is not passive and therefore the process of homogenization will affect the flow 
itself, preventing complete homogenization. One reason for that may be the boundary conditions, 
another that the process of homogenization requires more energy than the flow contains. To see 
this, consider a freely evolving flow on a beta-plane obeying the barotropic vorticity equation

∂ζ

∂t
+ J(ψ, ζ + βy) = ν∇2ζ, (18)

where ν is sufficiently small that energy is well conserved over the timescales of interest. If potential
vorticity, q = ζ + βy, is to be homogenized over some meridional scale L then, in the homogenized
region, ζ ≈ −βy. If the flow is predominantly zonal then this gives the estimate U ∼ βy2 and the
energy in the region is, very approximately,

1

2

∫
u2 dx dy ≈

∫
(βy2)2 dx dy, (19)

giving the estimate U2L ∼ β2L5. If we suppose that the initial root-mean square velocity is also
U , and that the flow becomes predominantly zonal, then solving the above estimate for L suggests
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that the potential vorticity will become homogenized over the scale

Lh ∼
(
U

β

)1/2

. (20)

This is the same as the Rhines scale given previously, as it has to be by dimensional analysis,
although now it is supposed that much of the energy lies in the zonal flow. Although the scale is the
same, this way of looking at the problem adds something to the physical picture — an asymmetry
between eastward and westward flow, as we now discuss.

In the idealized staircase of Fig. 5 potential vorticity is piecewise continuous and given by

q = ζ + βy = q0, 0 < y < Lh, (21a)
q = ζ + βy = q0 + βLh ≡ q1, Lh < y < 2Lh, and so on. (21b)

In any one of the homogenized regions the flow is given by solving

∂u

∂y
= βy − qn giving u =

1

2
βy2 − qny + constant, (22)

where qn = βLh/2 + nβLh. The constant may be determined by requiring continuity of u across
the regions, and we then obtain

u =
1

2
β(y − Lh/2)

2 + u0, 0 < y < Lh, (23)

u =
1

2
β(y − 3Lh/2)

2 + u0, Lh < y < 2Lh, (24)

or in general,

u =
1

2
β (y − (n− 1/2)Lh)

2 + u0, (n− 1)Lh < y < nLh, n = 1, 2, 3 . . . , (25)

where u0 is a constant. Relative to u0, the flow is weakly westward in the homogenized regions, 
whereas in the transition region the flow has a sharp eastward peak, as shown in Fig. 6.

Potential vorticity homogenization may also play a role in the formation of deep jets, so let us 
now discuss those.

4 Deep Convection and Jets

An alternative viewpoint to supposing that the jets on giant planets are shallow and confined to a 
weather layer at most a few hundred kilometers thick, is to suppose that they are deep, extending 
a few thousand kilometers into the interior, with cores that are aligned with the rotation axis. The 
foundation for this lies with the Taylor–Proudman result, which we now describe.

4.1 Taylor-Proudman result

Recall from Lecture 3 that the equation of motion for an inviscid fluid is1

Dv

Dt
+ 2Ω × v = −1

ρ
∇p+ g. (26)

1As usual we use v to indicate 3-D velocity (u, v, w) and u to indicate 2-D velocity (u, v). Also, strictly speaking,
the viscous term in (26) is not exact unless ρ is constant, but we will subsequently ignore viscous effects.
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Figure 6: Sketch of the local Cartesian coordinate. The z direction is parallel to the rotation axis,
the y direction is pointing inwards and perpendicular to the rotation axis, and the x direction is
the prograde direction. Note that the gravity has components on both y direction (g cos θ) and z
direction (−g sin θ).

If the flow is in geostrophic and hydrostatic balances, and ρ is constant (so that ∇ · v = 0) the
equation is reduced to

2Ω × v = −∇ϕ+ g, (27)

where ϕ = p/ρ. By taking the curl of (27), and noting that g and Ω are constant, and that the
flow is non-divergent, (27) reduces to

2Ω
∂v

∂z
= 0, (28)

where z is taken to be the direction parallel to the rotation axis. Eq. (28) suggests that all three 
components of velocity, u, v, and w, are uniform along the rotation axis. In realistic settings this 
result will not hold exactly, but it does suggest that the flow may form columnar structures.

4.2  The topographic β-effect and jet formation

4.2.1 Column geometry

Assuming that in a rapidly rotating planet like Jupiter the flow does form into columns, let 
us first look at how column height, such as the one labeled H in Fig. 7, varies with latitude ϑ.

From the figure, f or a column within the tangent cylinder, the f ollowing two equations connect 
the column height, h, its latitudes, θ and ϕ, the radius of the whole sphere, a, and the thickness of the 
outer region, d:

a sin θ = (a− d) sinϕ+ h, (29a)
a cos θ = (a− d) cosϕ. (29b)
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Figure 7: Geometry of columns in the convective zone in a spherical shell. For columns poleward of
latitude θ the column height diminishes with latitude and ∂H/∂y < 0, whereas the column height
increases with latitude outside the tangent cylinder and ∂H/∂y > 0. The consequence is that the
beta parameter, β∗, is positive inside the tangent cylinder (i.e. at higher latitudes) and negative
outside the tangent cylinder in the tropical region.

From these we easily find that

H = a sin θ − (a− d)

[
1−

(
a

a− d

)2
cos2 θ

]1/2

. (30)

If the shell is sufficiently thin then this expression reduces to

H ≈ d

sin θ
, (31)

as can be seen from Fig. 7. The rate of change of column height with latitude is, in this approxi-
mation,

∂H

∂θ
≈ −d cos θ

sin2θ
. (32)

This expression reflects the fact that the column shrinks in height as it approaches the pole. We
may also note that

1

H

∂H

∂θ
≈ − 1

tan θ
. (33)

For columns outside of the tangent cylinder the geometry is easier and we simply have, without
approximation,

H = 2a sin θ, (34)

and
∂H

∂θ
= 2a cos θ. (35)
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We also have
1

H

∂H

∂θ
≈ 1

tan θ
, (36)

which is just the negative of (33).

4.2.2 Dynamics
Let us now suppose that we can model the convective region as a layer of shallow water, obeying 
the shallow-water equations

momentum:
Du

Dt
+ f × u = −g∇η, (37)

mass continuity:
Dh

Dt
+ h∇ · u = 0, or

∂h

∂t
+∇ · (hu) = 0, (38)

where u is the horizontal velocity, h is the total fluid thickness and η the surface height. If there
is topography at the bottom then h(x, y, t) = η(x, y, t) − ηB(x, y). The above equations give the
potential vorticity equation

DQ

Dt
= 0, Q =

(
ζ + 2Ω

h

)
. (39)

In the planetary context, quantity h is the thickness of the convecting layer and we write this as
h = H+h′, where H is the mean shell thickness and h′ are small, time-dependent, deviations of that
due to fluid motion, and H ≫ h′. From Fig. 7 we see that H varies in the y direction, decreasing
toward the pole in the region poleward of the intersection with the tangent cylinder, but decreasing
toward the equator in the region equatorward of the intersection with the tangent cylinder. It is
this variation with mean thickness, and hence the variation of the background potential vorticity,
that gives rise to a ‘topographic beta effect’ and hence to zonal jets. To see this explicitly, we make
two more assumptions:

1. The small Rossby number assumption, that |2Ω| ≫ |ζ|.

2. The variations in mean height occur on a larger scale than the variations in vorticity.

The potential vorticity is then given by

Q =

(
ζ + 2Ω

h

)
≈

(
ζ + 2Ω

H

)
, (40)

and, using the assumptions above, its evolution is given by

DQ

Dt
≈ 1

H

Dζ

Dt
+ 2Ω

D

Dt

(
1

H

)
=

1

H

Dζ

Dt
− 2Ω

H2
v · ∇H, (41)

and (39) becomes
Dζ

Dt
+ β∗v = 0 where β∗ = −2Ω

H

∂H

∂y
, (42a,b)

where v is the velocity in the y-direction (see Fig. 7). We see that β∗ is positive in the region inside
the tangent cylinder (the extra-tropics) and negative outside the tangent cylinder, in the tropics.
Using (33) we obtain, inside the tangent cylinder,

β∗ ≈ 2Ω

a tan θ
, (43)
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and the negative of that outside the tangent cylinder.
The topographic β∗ is thus

β∗ =


− 2Ω

a tan θ
, if |θ| < |θc|

2Ω

a tan θ
, if |θ| > |θc|.

(44)

taking y ≈ aθ.  The topographic effective β∗ thus changes sign from inside to outside the tangent 
cylinder. Depending on the layer thickness, it may be of the same order of magnitude as the traditional 
β in the weather layer (namely 2Ω cos θ) but will have quantitatively different values.

4.2.2.1 Tropical superrotation

In the tropical region the zonal flow on Jupiter i s prograde, that is, in the direction of the planetary 
rotation, and the atmosphere superrotates. The analogous jet on Saturn is also prograde. Why should 
this be so? The mechanism must involve eddy motion and a plausible explanation is related to the 
nature of the beta effect in this region. In the tropical region outside the tangent cylinder the 
beta parameter, β∗ given by (42b), is negative because the length of the convecting column 
increases with the y-coordinate. (In this region it is given by H = 2a sin θ, where θ is latitude 
and a is the planetary radius.) To simplify matters, let us suppose that β∗ in (42) is a constant in 
which case we can write, again using Cartesian co-ordinates

DQ∗

Dt
= 0, Q∗ = ζ + β∗y, (45)

where y is the direction toward the axis of rotation. If the dynamics are turbulent in the tropical
region (for example, if they are stirred by convection) then they will seek to homogenize the potential
vorticity and the zonally-averaged flow is given by

∂u

∂y
+ |β∗|y = A, or u = Ay − 1

2
|β∗|y2 +B, (46)

where A and B are constants. If ∂u/∂y = 0 at y = 0 then A = 0 and u takes its maximum value
at y = 0; that is, we expect the flow to be prograde, or super-rotating, at the equator.

5 Remarks

The atmospheres of giant planets differ in significant ways from those of terrestrial planets, yet are
similar in some others. A robust feature of the gas giants in our Solar System is the presence of
superrotation. We have given one model for that in this lecture, but other mechanisms are possible.
In particular, the interaction of the deep convective layer and the shallower weather layer, and
whether and how the jets in the former imprint themselves on the latter, has not been properly
determined. Another challenge is to better understand the causes of the differences between the gas
giants and ice giants in our Solar System, for the latter do not exhibit superrotation. To see some
preliminary investigations of these problems see the report by Y. Zeng in this volume.
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GFD 2023 Lecture 7:

Atmospheric Characterization of Young, Hot, Gas Giant Planets

and Brown Dwarfs

Heather Knutson; notes by Yifeng Mao and Nathan Magnan

June 27, 2023

In the first few lectures we focussed on planets that are quite close to their stars, detected either
through the radial velocity method or the transit method, or both. It is now time to focus on young
gas giant planets on wide orbits, which are harder (but not impossible) to detect and characterize.

1 The Direct Detection Method

The transit technique is not suitable for studying planets that are located far away from their star.
We may require alternative detection methods.

We will see a planet transit in front of its star only if its orbital plane is aligned so that the planet
passes in front of its host star relative to our line of sight. The exact criterion depends on the star’s
radius and the planet’s orbital distance. Planets in close proximity to their star have a high chance
of transiting. However, those located at distances similar to Jupiter’s only have a tiny probability
of transiting. Additionally, Jupiter’s orbital period of 12 years means that we must wait for a
once-in-a-decade opportunity if we want to detect such a widely separated planet.

There are also limitations to the radial velocity method. For instance, we generally require obser-
vations over a full orbital period in order to confirm that the orbiting companion is planetary in
nature and to determine its precise mass and orbital period. However, there are relatively few stars
that have been observed with this technique over multi-decadal timescales, limiting our sensitivity
to long-period planets using this technique.

Instead, we need to revisit a concept discussed in the first lecture, called direct detection. The idea
is to obtain an image of the star and the planet, where we can resolve the planet separately from
its star [1]. Although technically challenging, this is not impossible.

1.1 Principles and challenges

The key is to obtain high-resolution images so that the star and planet can be resolved. The
main limits on resolution are diffraction and atmospheric turbulence. They can be mitigated by
employing large telescopes equipped with adaptive optics, or by utilizing interferometers. Another
constraint involves the planet-star contrast ratio and projected star-planet separation in the sky,
which can be overcome by using big telescopes and selecting appropriate sources.
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1.2 Preferred sources

The easiest planets to image are typically the ones that are far from their star and relatively bright.
However, the equilibrium temperatures and corresponding luminosities of planets decrease with in-
creasing orbital separation. A planet located farther away from the star is colder, and consequently
less luminous. Therefore, our preferences for planets being far from their star and being luminous
are two competing wishes that need to be balanced.

Fortunately, temperature is not entirely fixed by the distance of the planet to its star. Exploring
very young planetary systems allows the acquisition of both orbital distance and brightness. In-
deed, the accretion of material onto young planets converts gravitational potential energy to kinetic
energy, heating the planet’s interior and atmosphere. This energy is then gradually radiated away
once accretion ends, so young planets can be quite warm. Ideally, we aim to observe planets that
are still forming or just formed. Therefore, we need to consider stars that are ∼ 107-8 years old.
We also aim for big gas giant planets, because size also factors into luminosity.

We might also try to maximize the planet-star brightness ratio by looking for planets with relatively low albedos, and/or those

that orbit relatively small, dim stars. However, varying the albedo between 0-0.5 has a relatively small effect on the equilibrium

temperatures of these planets. Although small stars are favorable targets for this technique, it is relatively rare for them to

host gas giant planets.

2 Demographics of Directly Imaged Exoplanets (DIEs)

We use sophisticated instruments to observe young nearby sun-like stars. There are approximately
500 such stars within a few hundred parsecs of the Sun. Because we are biased towards big and
hot companions, some will be planets but some will be low-mass stars. We address this problem in
§2.1, then move on to planetary statistics.

2.1 Caveat: How to differentiate between a big planet and a small star?

We need to draw a boundary between planets and brown dwarfs, which is the name given to the
lowest mass stars. There are two competing criteria in that regard.

Stars generate energy through fusion, while planets are too small to do so. The first element to fuse
is deuterium, so the boundary between stars and planets could be set by whether or not the object
is massive enough to fuse deuterium in its core. This boundary is around ∼ 13 MJ . Companions
more massive than this value would then be called brown dwarfs, while smaller/less massive com-
panions would be classified as planets.

This criterion is straightforward to apply, because it only requires us to estimate the companion
mass. But it creates unnecessary complexity down the line, because there are examples of objects
less massive than 13 MJ that live in isolation (without a host star), and big ”brown dwarves” that
are found in orbit around stars with relatively small companion-star mass ratios.

Maybe considering the formation mechanism of these companions may provide a better classifica-
tion. We could decide that planets are objects that are formed in a proto-planetary disk, while
brown dwarfs form like stellar binaries.
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Stars form within dense molecular clouds, which contain filaments of high-density gas. Within
these filaments are dense cores that may collapse under their own weight and become stars. If two
cores are close to each other, they can be gravitationally bound and form a stellar binary. The
initial separation between these cores is typically at least a0 � 500 au. By contrast, planets form
in proto-planetary disks, which rarely extend beyond a few hundred au.

Therefore, the second common criterion sets a limit at a � 200 au, where a is the companion’s
semi-major axis. Companions located beyond that value are considered too far away to be formed
within the disk, and are called stars. Usually, the mass ratio q between the companion and the
primary is also included in that criterion. The value q � 0.025 is indicative of a planet rather than
a stellar binary system [1].

2.2 Raw demographics

Using both of these criteria, there are only 20 or so objects that are both directly detected and
classified as planets. There are also several dozen directly detected companions categorized as
brown dwarfs, but they are either too large or too distant to be considered planets. Only ∼ 1%
of surveyed stars, which were selected to be young and are typically Sun-like, possess a directly
imaged exoplanet (DIE). The occurrence rate of gas giant exoplanets decreases with increasing
planet mass. For example, super-Jupiters are less common than Jupiters, which are less common
than Saturns. The occurrence rate of gas giants is also maximized between ∼ 1−10 au, and declines
at wider separations. Most direct imaging surveys are only sensitive to planets that are � a few
times more massive than Jupiter (most directly imaged planets are closer to 10 MJ) on relatively
wide (� tens to hundreds of au) orbits [2]. This is an intrinsically rare type of planet.

These planets typically have host stars ranging from 10 to 100 million years old. For ages between
1 − 10 million years, some objects are still embedded in their protoplanetary gas disks and are
actively accreting hydrogen-rich gas. At ages of 10 − 100 million years, the architectures of these
systems may evolve due to dynamical three-body interactions. The majority of the 20 planets have
a host star that is heavier than the sun.

These planets have masses ranging from 2 MJ to 13 MJ , and semi-major axes ranging from 10 au
to 100 au.

2.3 Observables and estimates

There are a few quantities that we can measure directly once we have imaged a planet:

• First, we can measure the projected separation between the planet and the star. After ac-
counting for uncertainties in the planet’s orbital inclination and eccentricity, this can be
converted into a constraint on the planet’s semi-major axis a.

• Then, Kepler’s third law gives a straightforward conversion between the semi-major axis and
the period, a3

P 2 = GM�
4π2 , where a is the semi-major axis, P is the period, G is the gravitational

constant and M� is the mass of the host star.

• Independently, we can sum the number of photons received by each pixel from the planet,
and obtain the planet’s luminosity L. Or we can break this down into wavelengths and obtain
a spectrum F (λ).
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There are a few other quantities that we can estimate but not measure precisely:

• One is the age of the planet. One could assume it is close to the age of its host star, and try
to estimate the age of the star. There are a few ways to do that, reviewed in [3]. A simple one
is to look at the size of all the stars in the parent cluster. Bigger stars have shorter lifetimes,
so if we assume (i) that all the stars in this cluster formed at the same time, and (ii) that all
clusters in the galaxy form the same proportions of heavy and light stars, then the number
of ”missing” big stars tells us how old the remaining stars are. This is not the best method,
especially for young stars, but it gives an idea of how indirect these ”measurements” are. One
key takeaway from [3] is that if the cluster contains a big population of young stars, the age
estimates tend to be more accurate.

• We cannot directly measure the planet’s radius on the image, because the point spread func-
tion of the image is much larger than the angular size of the planet in the image. We can
calculate radius if we know the luminosity and the effective temperature of the planet as
L = 4πσR2

pT
4
eff , if we assume it radiates as a blackbody. Alternatively, the same evolution

models shown in Fig. 1 also provide us with a predicted radius along with the planet mass
for a given luminosity and age.

• From there, we can estimate the effective temperature Teff , which is the temperature a black-
body would need to have to match the observed luminosity. This is a proxy for the tempera-
ture in the emitting layer of the atmosphere, more on that in §3.1.

• Finally, we want to estimate the planet’s mass, but this is challenging for DIEs. One way
is to convert luminosity into mass using a model that describes how luminosity changes
with age, as illustrated in Fig. 1. If we know the age of the system and the luminosity of
the companion, we can determine its mass by identifying the intersecting line on the plot.
However, the uncertainty in the age of the system leads to uncertainties in the estimated
masses. Plus, there are uncertainties in the model, which requires assumptions about the
planet’s starting mass, starting temperature and starting entropy, all of which are poorly
constrained because we do not know the exact formation process of these planets. All of this
is in contrast to transiting planets, for which we can measure precise dynamical masses using
the radial velocity technique.

10−3
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106 108

2MJ
4MJ

8MJ

Time (yr)

Luminosity ( )L/L⊙ Age of star

Figure 1: Luminosity of planets as a function of time. The system’s age and the planet’s luminosity
establish a range for the planet’s mass. Details can be found in [4].
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2.4 Population diagram

Figure 2 presents a population diagram of most planets detected to date. It depicts their measured
mass and semi-major axis, and from there makes three groups. Group I contains the giant planets
that we studied in the previous lectures, including hot Jupiters, warm Jupiters and cold Jupiters.
Group II is the population of small, close-in planets including super-Earths and sub-Neptunes. The
majority of planets in groups I and II were discovered using the transit method, with a smaller
subset being detected through the radial velocity measurement. All group III planets were identified
through direct imaging, although it is important to note that some of the dots are low-mass stars.

I

II
III I. Hot Jupiters, warm Jupiters,

cold Jupiters

II. Super-Earths, sub-Neptunes

III. Directly imaged planets

Figure 2: Demographics of planetary-mass companions detected with the transit method and radial
velocity in groups I and II, and direct imaging in group III. The original plot is from [1].

2.5 Some notable DIEs

The HR 8799 system (see Fig. 3-left) is the most well-known DIE system, with four planets that
have been directly imaged. The host star has a mass of approximately 1.5 M�, and the planets have
masses ranging from 5 MJ to 10 MJ and orbital semi-major axes from 15 au to 70 au. Notably,
these planets are in a 1:2:4:8 orbital resonance chain. This indicates that the planets formed in a
flat gas disk.

The 51 Eri system (see Fig. 3-middle) contains the DIE that is the closest to its star. It has a semi-
major axis of ∼ 13 au, similar to the gas giants in the solar system. The mass of the companion is
not accurately known, but is around a few MJ . The mass of the primary star is ∼ 1.8 M�. The
system is about 20 million years old.

PDS 70 is a famous two-planet system (Fig. 3-right). The star is young enough (about 5 million
years old) that it is still surrounded by its proto-planetary disk. Interestingly, the outer planet is
located just inside the inner edge of the disk, maybe indicating that this planet is carving the disk.
At any rate, these planets are known to be actively accreting, thanks to emission lines of infalling
hydrogen gas. The planets’ mass are somewhere between a few MJ to 10 MJ , and their semi-major
axes are 20 au and 34 au.
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Figure 3: Three notable DIE systems. Left : HR 8799. Credit: Marois et al (2010). Middle: 51
Eri. Credit: Wang and De Rosa (2015). Right : PDS 70. Credit: ALMA A. Isella; ESO.

3 Atmospheric Properties of DIEs

Considering the difficulties we already face detecting these objects or measuring their bulk prop-
erties, it might come as a surprise that we are able to say anything about their atmospheres. Yet,
by plowing through the data, we find that DIEs are hot, cloudy and rotating quickly.

3.1 High temperatures

Temperature is a tricky quantity to measure, because it is not uniform nor independent of time. It
varies between the equator and the pole, between the interior and the upper atmosphere, and as a
newly formed planet cools down. With the current instrumental resolution, we can at best discuss
averaged forms of temperature.

One such averaged form of temperature, which we have already met in previous lectures, is the
equilibrium temperature Teq.. It is the temperature the planet (seen as a blackbody) needs to have
in order to radiate away exactly as much energy as it receives from the star.

Unfortunately, this quantity is not very relevant for DIEs. Indeed, these planets (like any other)
formed through a collapse or accretion process of some sort, which transformed a lot of gravita-
tional potential energy into a lot of internal energy. DIEs are young, so they are still in the process
of radiating this extra heat away. This radiation is what makes DIEs bright enough that we can
detect them.

Since the internal heat flux is orders of magnitude larger than stellar irradiation, we could try to
estimate the temperature from the initial amount of internal energy (which is related to mass),
the energy lost since formation (which is related to age), and the average heat capacity (which is
related to composition). But we just saw that none of these bulk properties are easy to measure.

What we can do is define the effective temperature Teff as the temperature a blackbody would need
to have to explain the observed luminosity. This is the temperature of the radiating layer of the
atmosphere, and as such it only provides indirect information about the temperature structure in
the interior. We find Teff ≈ 1000 − 2000 K for typical directly imaged exoplanets.
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To measure the effective temperature we need a direct observable (the luminosity) but also an indirect observable (the radius

of the planet), which is unideal. An alternative would be to look for a blackbody that has the right temperature to match the

shape of the observed spectrum. But it turns out that this is also challenging, because the characteristic shape of the blackbody

spectrum is polluted by broad and strong absorption bands from water, carbon monoxide, and other species. This problem is

further exacerbated by scattering from small aerosols.

3.2 Patchy clouds

The first evidence we have for clouds is linked to the point of detail made above: we see features
in the spectrum that hint at scattering by silicate particles in the upper atmosphere.

Specifically, we see a reddening of the spectrum due to scattering. This is a reasonably intuitive
concept: (i) The planet has a certain temperature, and so must radiate away a fixed amount of
energy; (ii) At the surface, we can expect blackbody radiation. (iii) But if there are clouds in the
upper atmosphere, they will scatter the short wavelengths preferentially; (iv) The atmosphere com-
pensates by radiating more long wavelengths than it receives; (v) As a consequence, the observed
spectrum is biased to the red compared to a blackbody. A diagram of the resulting spectrum is
provided in Fig. 4-left.

Figure 4: Left: Overly simplified diagram of the effect of silicate clouds on the spectrum. The black
line is the surface’s pure blackbody spectrum, and the orange line is the spectrum radiated from the
upper atmosphere, after scattering. Right: Schematic diagram of a typical DIE light curve, L(t).
The light curve, in blue, varies over two different timescales. The short time scale corresponds to
the planet’s ”day” and is evidence of patchy clouds. The long time scale corresponds to the planet’s
weather evolution. Just like on Earth, the weather takes a few days to evolve significantly.

A second piece of evidence comes from plotting the planet’s total observed luminosity over time,
L(t). As shown in Fig. 4-right, we find that it varies on the timescale of the planet’s day-night cycle.
Since the brightness comes mainly from the planet’s thermal emission, and since we believe the deep
atmosphere to be relatively uniform in temperature, we do not expect any brightness variation in
the deep. The observed variation must therefore be due to an upper atmospheric structure. The
easiest explanation is clouds, but they must be patchy, not uniform.

It has been known for a while that brown dwarfs also exhibit rotational light curve variability [5]. The magnitude of this

rotational variability can be as high as 30% [6]. These studies conclude that most of this rotational variability is likely due to

inhomogenous clouds in the atmosphere, but temperature variations could play a minor role.
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3.3 Fast rotation

The same light curve also gives the planet’s spin period. We find that DIEs typically rotate in 4 to
20 hours, which is similar to Jupiter. This is quite a fast rotation, especially considering how big
these planets are. As a consequence, we expect circulation in those planets’ atmosphere to happen
at a very low Rossby number, Ro � 1. This is in opposition to hot Jupiters (HJs), for which we
expect Rossby numbers closer to unity, since they are often tidally locked.

Another method to estimate the spin period of these planets

is to use the Doppler broadening of emmission lines. Due to

rotation and at any given time, one side of the planet is coming

towards us, and one side is going away from us. If we find a

thin molecular line that is absorbed or emitted in the upper

atmosphere, we expect it to broaden from the purple shape to

the green shape in the figure opposite. The level of broadening

is dictated by v sin (i), where v is the speed of the planet’s

surface and i the inclination of the planet’s spin axis with re-

spect to the observer’s line of sight. Since v = Ωp tp, this can

be used to estimate a lower bound on Ωp, provided we have an

estimate of the planet’s radius. Reassuringly, the two methods

give spin periods that are consistent with each other.

4 What Does This Imply for the Atmospheric Dynamics?

Besides this difference in Rossby number, the other difference between HJs and DIEs is that the
latter are internally heated instead of irradiated, as shown in Fig. 5. Let us explore the consequences
of this novelty on atmospheric dynamics.1

Figure 5: Approximate position of HJs, gas giants and DIEs in the (Irradiation, Internal flux)
plane. This figure is inspired by [7].

1”Explore” being the key word here.
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4.1 Convection-dominated atmospheres

First, we can expect the planet’s interior to be quite hot and the upper layers of the atmosphere
to be cooler. This implies that the vertical gradient of temperature is steep, which will inevitably
lead to convection. Quantitatively, we expect most of the atmosphere to be convective, except the
uppermost P < 1 bar layer.

This is very different from the atmospheres of HJs, whose vertical temperature gradient is quite
small since they are heated from the top by stellar radiation. It is thought that in HJs, the radiative
zone extends quite deep.

4.2 Origin of the patchy clouds

On Earth, clouds are ultimately due to horizontal temperature gradients. But the temperature of
DIEs is dictated by their internal flux, which is uniform over the interior. As such, the process
behind cloud formation on DIEs is worthy of some reflection.

One line of thinking invokes radiative instability. Imagine an infinitesimal ”cloud seed”. As shown
in Fig. 6, this cloud bars some of the surface’s blackbody radiation from reaching space. This heats
up the column, which puffs up. In consequence, the cloud rises, and as it rises, it encounters a
colder environment, so some of its molecular content condensates. The cloud seed grows, which
closes the positive feedback loop. The end result of this instability is a full-fledged cloud [8].

Figure 6: Schematic diagram of radiative transfer in a cloudy column. The planetary surface emits
a certain amount of radiation (in blue). Usually, these rays will reach space, as happens on the left
and the right. But if there is a cloud (in orange) on its way, only part of the ray is transmitted (in
green), and the rest is reflected (in red). This heats up the column below the cloud (in grey).

4.3 First insights from a Global Circulation Model (GCM)

As far as the lecturer is aware, the literature only contains one global circulation model (GCM)
paper on directly imaged exoplanets and brown dwarfs that includes the aforementioned radiative
feedback loop [9]. The results are presented in Fig. 7.

Essentially, these simulations validate the radiative instability intuition, it does indeed lead to
patchy clouds. The size of this cloud correlates with the spin period, which is perhaps not surpising
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since the Rossby deformation radius is proportional to the spin period. The author also checked
that these clouds lead to the variability of the right magnitude in the light curve.

The simulation also show a global circulation pattern, with an equator band whose width also
correlates to the spin period. By opposition to Jupiter and Saturn, there is no other band North
and South of the Equator.

5 Conclusion

DIEs live in a peculiar forcing regime, different from that of the solar system’s gas giants or HJs.
This will lead to different and interesting dynamics that have not yet been explored in any amount
of detail. And, for once in astrophysics, this is not by lack of observational constraints. There are
a few quantitative measurements that could be used to discriminate between models, for instance
the light curve variability.
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Figure 7: Temperature (on the left) and humidity (on the right) outputs from the GCM run at
different spin frequencies [9]. In all simulations, we see patchy clouds, but their size correlates
with the spin period. In the fastest rotators, we see an equatorial band. We never see as many
meridional bands as in Jupiter or Saturn.
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GFD 2023 Lecture 8: Atmospheric Characterization of Terrestrial

Planets

Heather Knutson; notes by Hao Fu and Ellie Ong

April 13, 2025

In the previous lecture we discussed the atmospheric composition of gas giants, methods of
measuring their atmospheric properties, and notable exoplanetary systems. In this lecture, we
move on to terrestrial/rocky planets and their atmospheric characteristics. In §1 we review the
types of small rocky planets: sub-Neptunes, super-Earths, and water worlds. In §2 we look at
the evidence for the existence of water worlds and their hypothesized atmospheric properties. In
§3-4, we discuss predictions and detection methods of super-Earth atmospheres and in §5 we look
at notable measurements of super-Earths in a few examples. Finally, in §6 we look at possible
atmospheric circulations on super-Earths as a precursor to Lectures 9 and 10.

1 Types of Small Terrestrial Exoplanets

Small exoplanets are categorised as those of radius R ∼ 1−3R⊕, with mass M ∼ 1−10M⊕. They
can be classified further into:

• sub-Neptunes, with H-He atmospheres and a rocky core;

• super-Earths, with a rocky core and an outgassed atmosphere; and

• Water worlds, characterized by an atmosphere rich in H2O.

Due to the methods used to measure the mass and radius of exoplanets, smaller exoplanets
around smaller stars are easier to characterize. The transit method, which is used to measure the
radius of exoplanets relative to their host star, and the radial velocity method, which is used to
measure the mass of the planets, are most effective when the host star is small, as detailed in the
previous lecture.

In Luque and Palle, 2022 [1], observational data has been aggregated for exoplanets around
small stars, with mass and radial measurements. Comparing the theoretical mass-radius relation
for planets with an Earth-like mixture of rock, exoplanets that lie near this line are super-Earths,
and they likely have a similarly rocky core with little atmosphere. For exoplanets of larger radii
(∼ 2 − 3R⊕) but similar mass to Earth, we deduce that the presence of a less dense H and He
atmosphere increases the radius of the exoplanets. Hence, we can classify them as sub-Neptunes.
However, if we plot a line of the bulk density of planets with a 50% H2O and 50% rock ratio, we
find that there is a third sub-population of planets with masses between ∼ 2 − 5M⊕ that appear
to lie along this line. This line characterizes the bulk density of candidate water worlds but these
could also be planets composed of a rocky core and thin H-He atmosphere [2].

As we have already covered exoplanets with H-He atmospheres in the previous lecture, we will
skip over sub-Neptunes and discuss only water worlds and super-Earths in this lecture.
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Figure 1: Plot of mass vs. radius of exoplanets, along with lines of bulk density corresponding to
Earth-like planets and those with 50% H2O composition. Replicated from Luque and Palle, 2022
[1]

2 Water Worlds

All currently known candidate water worlds are found on relatively close-in orbits, with an orbital
period of < 100 days. It is thought that these planets likely formed near or outside the water-
ice line and then migrated inward to their current locations. They can have up to 50% of their
mass in the form of water, as this is the maximum water content that can be held by the solids
located outside the water-ice line. It is thought that these water worlds may be more likely to
form around cool, dim stars, as smaller host stars have a water-ice line closer to the star, making
a water-rich atmospheric composition more likely. Please refer to Lecture 1 for further explanation
of the water-ice line.

The second line of evidence for the existence of water worlds relies on models of atmospheric
mass loss. Smaller, hotter water world candidates are predicted to have lost any primordial H +
He envelopes, leaving behind a water atmosphere. This mass loss is driven by high-energy photons
from the host star, in the form of the extreme UV of short wavelengths (EUV) and X-ray flux in
flares, which cause the upper atmosphere of the planet to heat and expand, eventually becoming
unbound [3]. In addition to their steady-state emission, small stars also flare frequently, which can
further increase the mass loss rates of orbiting planets. These flares arise from the magnetic field
around stars, where short energetic events can release high energy particles from the upper layer
of the star. As the absorption of high-energy photons causes the atmosphere to heat and expand,
and the uppermost layers become unbound, atmospheric mass loss occurs, and is considered the
photoevaporative escape of the atmosphere (also called “hydrodynamic escape”). An illustration of
this process is in Figure 3, and this outflow is also enhanced by stellar winds sculpting the flow of
the atmosphere and inducing instabilities, but not a key outflow process, as further highlighted in
§4. Additionally, low-mass stars are more magnetically active than sun-like stars, emitting a larger
fraction of EUV and X-ray flux. This magnetic activity might make it harder for smaller planets
to retain the atmosphere around these stars.

Assuming no albedo and treating the planet as a black body, the typical equilibrium tempera-
tures of water worlds are Teq ∼ 300−1000 K as seen in lecture 1, where H2-dominated atmospheres
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Figure 2: Transmission spectrum of Trappist-1 b and c (in black dots), compared to predicted
spectra from atmospheres of different compositions. The predicted spectrum with the water world
composition (in blue) has a low scale height compared to that of the H2 composition (in red and
brown). Replicated from Wordsworth and Kriedberg, 2021. [4]

are more susceptible to loss as Teq is increased. Predicted photoevaporative mass loss rates for
these planets depend on the assumed value of η, the fraction of the high energy flux FEUV that
is converted to heat, which depends on the unknown atmospheric composition. These estimates
of energy flux and equilibrium temperature allow us to predict the escape rates of a hydrogen-rich
atmosphere, and mass loss models suggest that the most highly irradiated water world candidates
are unlikely to have retained any primordial hydrogen-rich atmospheres.

These predicted mass loss rates, however, have uncertainties of up to a factor of 10, but mea-
surements will soon be able to directly confirm the existence of water worlds. The James Webb
Space Telescope can detect water absorption from the atmospheres of water worlds. Using the
transmission spectroscopy method, the magnitude of the absorption signal during transit from
water world atmospheres is expected to be much smaller than those of exoplanets with H-He atmo-
spheres, as water world atmospheres have a higher mean molecular weight than H-He atmospheres.
This results in transmission spectra with a smaller scale height based on the equation for transit
depth: H = kT/µg where k is the Boltzmann constant, T is the atmospheric temperature (as-
sumed isothermal), µ is the molecular weight of the atmospheric species, and g is the gravitational
acceleration.

Clouds or hazes can, however, result in featureless transmission spectra due to the increased
opacity of the atmosphere. If the transmission spectra were extended to include the visible light
spectrum, we would be able to detect clouds due to their scattering in spectra of the visible light
wavelengths. Detecting and correcting for the effects of clouds in these exoplanetary atmospheres,
therefore, remains an active area of research.

3 Predicting Atmospheric Compositions of Super-Earths

Now moving onto the atmospheric composition of super-Earths: these exoplanets have an Earth-
like bulk density, without a thick H2O or H2 atmosphere, but may still have atmospheres of heavier
molecules, such as CO2, N2, etc. that would not significantly increase their measured radii. For
example, Venus’s atmosphere is only 1% of its planet’s radius, and its atmosphere consists mostly of
carbon dioxide. Therefore, we aim to understand the types of atmosphere that these super-Earths
have.

85



Figure 3: A schematic diagram for the hydrodynamic escape of planetary atmospheres.

The atmospheric composition of exoplanets can be greatly influenced by atmospheric escape
processes, even when they are too cool for hydrodynamic escape. High energy photons provide
energy to atmospheric molecules and raise their thermal velocity. Whether a given particle tends
to escape depends on the relative magnitude of gravitational escape speed vesc and the thermal
velocity vth. When a particle is at vesc, the centrifugal force balances the gravity:

m
v2esc
RP

=
GM⊕m

R2
P

⇒ vesc =

(
GM⊕
RP

)1/2

, (1)

where G is the gravitational constant, M⊕ is the planetary mass, and m is the molecular mass.
The thermal velocity, which has to exceed the escape velocity, is expressed with temperature:

1

2
v2th = kT ⇒ vth =

(
2kT

m

)1/2

, (2)

High energy photons from the host star heat the exoplanetary atmosphere. Lighter atoms (with a
smaller m) in the exoplanets’ atmosphere, such as H and He, tends to have a high vth and escapes
more easily.

Taking atmospheric escape into account can help us infer the atmospheric composition of exo-
planets. Even more fundamentally, we want to confirm if these exoplanets even have atmospheres.
Super-Earths around cool stars can experience even stronger atmospheric mass loss than those
around warmer stars. The greater mass loss is due to cool stars having higher X-ray and EUV
fluxes as a fraction of their total (bolometric) flux, resulting in higher predicted hydrodynamic
mass loss rates. Some super-Earths have equilibrium temperatures of up to ∼ 2000 K, and at such
high temperatures, it is difficult for planets to hold on to their atmosphere.

To predict the existence and atmospheric composition of rocky planets without observational
constraints (yet), we can go back to planet formation models and observations of solar system
terrestrial planets. We assume that matter is accreted as solids and then heated, releasing gases,
with H, C, N, O, and S combined to form a variety of gas phase molecules. Outgassing from
meteorite samples, representative of materials from planetary building blocks, have been found to
include water, CO2, CO, and trace amounts of H2, H2S and N2 [5]. Photoionization of water and
other hydrogen-bearing molecules can result in the preferential loss of hydrogen atoms to space over
time. However, upward mixing in the atmosphere can replace the lost H2O until all the H2O is lost.
Together with the knowledge that lighter H-He molecules are easily lost through hydrodynamic
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escape, we can therefore assume for now that CO2, CO and N2 are likely to be dominant in
terrestrial exoplanets at later times.

This process in action can be seen in planets in our own solar system, looking at the three rocky
planets:

• Venus: 92 bar surface pressure, 700K surface temperature, and a thick atmosphere of 92%
CO2 and 3% N2

– Venus likely formed with a lot of water but lost >99% of the initial water mass. Evidence
of this process is found in the concentration of D in the atmosphere of Venus. D will
escape more slowly than H, and the presence of a high D/H ratio in the sulphuric acid
in Venus’ atmosphere indicates that most of the H mass has been lost.

• Earth: 1 bar surface pressure, 78% N2 and 21% O2

– We said earlier that H2O and CO2 are likely produced by outgassing, but Earth does
not have a high concentration of these in the atmosphere. Atmospheric H2O is instead
condensed into oceans, while CO2 is incorporated into the Earth’s crust and ocean
via the ocean-driven carbonate cycle and is also sequestered into carbonate rock. The
larger proportion of O2 in the Earth’s atmosphere is produced by photosynthesis and is
therefore relatively recent (began 2.4 Gyr ago) [6] 1

• Mars: 7 mbar surface pressure, with 140-300K surface temperature and an atmospheric com-
position of 95% CO2 and 3% N2.

– Again, we would have expected higher concentrations of H2O. However, present-day
Mars is so cold that atmospheric water is largely condensed onto the surface as ice.
There is evidence of liquid H2O on the surface of Mars 3.56 years ago, which required
a > 0.5 − 1 bar CO2 atm in order to create sufficiently warm surface conditions. This
early CO2 atmosphere was likely either lost due to non-thermal escape processes, e.g.
photochemical or stellar wind processes, and/or sequestered on the surface in the form
of CO2 ices and carbonate rocks.

4 Detecting Atmospheres of Super-Earths

What about exoplanets? We focus on super-Earths orbiting small stars, which typically denote M
dwarfs. These are the only exoplanets we can characterize. Because the planets are close to the
star, they are tidally locked.

Recall from previous lectures, that near the secondary eclipse, the ratio of planetary emission
to the star emission is:

FP

F∗
≈

(
RP

R∗

)2 TP

T∗
. (3)

where RP is the planetary radius, R∗ is the star radius, TP is the planetary temperature, and T∗ is
the star temperature. The TP /T∗ is the ratio of emission power at the longwave limit (Rayleigh-
Jeans limit). This means that small planets orbiting small stars, which have smaller radii and lower
temperatures than Sun-like stars, are easier to characterize than their counterparts orbiting hotter
stars.

1For an interesting Earth related sidenote on the effect of tides and planetary rotation on oxygen levels, see Klatt
et al. 2021, Possible link between Earth’s rotation rate and oxygenation, Nature Geosciences.
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For planets with different RP , the change of transmission spectrum FP
F∗

is proportional to the

change of
(
RP
R∗

)2
, which equals ∆depth ≈ 2Rp

R2
∗
dRp. Here dRp is the perturbation radius of the

planet, which is between 1 to 5 scale height H. The H is expressed as H = kT/(µg) as in §3. This
indicates that a smaller R∗ leads to a higher ∆depth that makes the planet’s atmosphere easier to
detect when it orbits a small star.

We next ask: Do rocky super-Earths keep or lose their outgassed atmosphere? There are two
possible scenarios:

• Scenario 1: From Sub-Neptune to Super-Earth.

• Scenario 2: Some planets, like the solar system’s territorial planets, are born rocky.

In the first scenario, where sub-Neptunes transform into super-Earths, the uppermost layers of
the planetary atmosphere are heated by X-ray and UV photons from the host star. This drives
hydrodynamic escape, which can strip away the atmosphere of a sub-Neptune and turn it into a
super-Earth. This hydrodynamic escape is expected to remove heavier molecules along with the
molecular hydrogen and thus would also remove any initial inventories of outgassed water, CO2,
N2, and other similar molecules. If these planets have atmospheres, they must comprise materials
outgassed after the initial H-rich envelope was lost. For planets that formed without primordial
H-rich atmospheres (i.e., analogous to the terrestrial planets in the solar system), it may be easier
to form a thick atmosphere since primordial outgassed materials are retained.

5 Super-Earth Atmospheric Measurements

For tidally locked planets, we can infer the presence or absence of a thick atmosphere using phase
curves of the emission flux (Fig. 4). For a planet without an atmosphere, the total emission of
the star and the planet is periodic with respect to the orbital phase, except at the transition (the
planet is in front of the star) and the secondary eclipse (the star is in front of the planet). During
the transition, the planet blocks the star’s light. At the secondary eclipse, the planet is hidden, so
the emission flux equals the star’s basic level flux.

For a planet with a thick atmosphere, the atmosphere can reduce the day-night side temperature
difference by its circulation, so the amplitude of the phase curve is reduced. In addition, the
atmosphere may have super-rotation, which makes the hot spot shift eastward (suppose the planet
rotates anti-clockwise). This causes the peak in the planet’s emission flux to occur early, before the
secondary eclipse, as sketched in Fig. 4.

Let’s see an example where these measurements can be used to infer the atmospheric composition
of an exoplanet: LHS 3844b, as documented in [7]. The planet has a radius of 1.3R⊕ and an orbital
period of 11 hours. The star’s mass is 0.15M⊙. The equilibrium temperature Teq is diagnosed to
be around 800 K, with a 3.5 µm emission flux (assuming blackbody). The day-side temperature
is Tday = 1000 K, and the night-side temperature is Tnight = 700 K. On the day side of LHS
3844b, the hottest temperature is at the substellar point, which indicates a lack of superrotation.
Reaching Tday = 1000 K requires a low day-side albedo, possibly due to dark basaltic crust, and a
large temperature difference compared to the night side indicates a lack of atmospheric circulation,
with no energy distribution to the night side. Thus, the atmosphere must be absent or tenuous,
likely with an atmospheric pressure of P < 0.06 bar with O2 or N2 dominating. 2 However, such
an atmosphere is unstable (due to the hydrodynamic escape) and must be constantly replenished.

2Note that O2 could be the remnant of a primordial H2O-rich atmosphere.
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Figure 4: The upper panel is a schematic diagram for the emission flux of the star for a planet with
no atmosphere (solid black line) and a planet with a thick atmosphere (solid red line). The dashed
grey line denotes the flux from the star only, which does not change with the orbital phase. The
lower panel illustrates why the emission flux is periodic - analogous to the moon phase.

Figure 5: A schematic diagram for the Trappist-1 system. The spacing between the planets is found
by Agol et al. (2021) [8] to be near orbital resonance.
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LHS 3844b is relatively hot, and therefore may be more likely to have lost its atmosphere. Are
there colder rocky planets with atmospheres? Let’s consider an example - Trappist-1, which is a
star with 0.1M⊙. The system is illustrated in Fig. 5. All planets are between 0.8 − 1.1R⊕, and
the period is between P = 1.5 − 18 days. The three planets closest to the star are named a, b,
and c. Assuming tidally locked exoplanets, we can use the brightness temperature Tbright from
each of these planets, relative to their expected equilibrium temperatures, to infer the existence of
atmospheric circulation. 3

Going back to the planets of Trappist-1, the day-side brightness temperatures measured by
JWST are Tbright are:

• Planet b: Tbright ≈ 500± 30 K [9] .

• Planet c: Tbright ≈ 380± 30 K [10].

Therefore, the brightness temperatures for both planets are higher than their predicted equilib-
rium temperatures for the efficient circulation case. Why is it? We can therefore infer that both
planets have low albedos and weak day-night circulation, implying that they likely have little to no
atmosphere.

6 Possible Circulation on Temperate Super-Earths

We assume synchronous rotation for close-in rocky planets orbiting M-dwarf stars (a cold, low-
mass star). What effect does this have on their ability to potentially retain liquid water on their
surfaces? The incident heating concentrates on one side of the planet (a permanent day-side),
driving a convergent circulation at the lower level and a divergent circulation at the upper level
(Fig. 6). The circulation also excites Rossby waves, which converge momentum to the equator
and generate a super-rotating jet. The convergent circulation can produce water clouds at the
sub-stellar point if the atmosphere is cool enough. This can increase the day-side albedo, making
the temperature there cooler and could maintain surface liquid water at higher solar incident fluxes
than the Earth-Sun analog. Thus, the clouds could make the inner edge of habitable zone closer to
the star.

Meanwhile, if the night side is sufficiently cold, the circulation can trap condensible species
(e.g., CO2 and/or H2O) at the anti-stellar point. This could lead to a collapse of the atmosphere,
as probably has occurred for Mars and Pluto.

3As a review, for a well-mixed atmosphere with no day-night temperature difference, the brightness temperature
Tbright should equal the equilibrium temperature Teq of the exoplanet. However, the equilibrium temperature of the
planet’s day side can be higher if the planet is tidally locked with weak day-night energy transport. For a planet with
no day-night temperature gradient (efficient heat tranpsort by a thick atmosphere), the Teq is given by:

Efficient day-night circulation: 4πR2⊕σT 4
eq = πR2⊕S(1− α) ⇒ Teq =

[
S(1− α)

4σ

]1/4

. (4)

where S is the solar heating power at the planetary orbit, α is the albedo, R⊕ is the planetary radius. A lower α makes
Teq higher because more solar heating is reflected. For a tidally locked planet with weak day-night energy transport
(e.g., little to no atmosphere), the day-side temperature can be much higher than the night-side temperature. In this
case, the area for radiative cooling (compared to the left-hand side of (5)) is halved, yielding:

Weak day-night circulation: 2πR2⊕σT 4
eq,day = πR2⊕S(1− α) ⇒ Teq,day =

[
S(1− α)

2σ

]1/4

, (5)

where Teq,day ≈ 21/4Teq ≈ 1.2Teq.
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Figure 6: A schematic diagram for a tidally locked planet with clouds. The review of rocky
exoplanets by Wordsworth and Kreidberg (2022) [11] provides more details.

7 Concluding Remarks

Throughout this lecture series, we have explored the current literature on exoplanet types and their
atmospheric compositions. We have explored methods used to observe their atmospheres and their
limitations in sampling exoplanetary systems. Especially in §6, we see how even with very limited
observations, an inference can be made about the atmospheric circulation on these planets, and we
look forward to the final two lectures on the circulation and atmospheric processes occurring on
exoplanets.
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GFD 2023 Lecture 9: Exo-Oceans and Icy Moons

Geoffrey K. Vallis; notes by Deborah Rhee (née Cotton) and Nimrod Gavriel

September 6, 2024

1 Introduction

With the recent launch of the JUICE (Jupiter Icy Moon Explorer) mission by ESA, and the up-
coming Clipper mission, the various icy moons of Jupiter will be the subject of new and exciting 
observations. It seems almost certain that both Europa, orbiting Jupiter, and Saturn’s icy moon 
Enceladus contain a subsurface water ocean beneath an icy shell (Fig. 1). It is also speculated that 
all of the Galilean moons of Jupiter (Io, Europa, Ganymede, and Callisto) have (liquid) water oceans 
between their icy surface and a rocky interior, as may Titan, Jupiter’s largest moon. These moons 
can form the archetypes of a planetary class of icy moons and exo-ocean worlds, motivating the 
development of theoretical models that would predict their physical characteristics. In this lecture, 
a basic level of the current understanding of large-scale flows i n  s u ch m o ons a n d p l anets i s  laid 
out. We focus on general issues such as how the ocean energetics depend on the location (and in 
particular the altitude) of the heating and cooling, rather than on considering particular icy moons. 
There are, perhaps surprisingly, many similarities between the circulations of icy moons and those 
of gas giants, for both are rotating, spherical objects driven in part by heating from below, with 
the dynamics determined by various non-dimensional numbers such as the Rayleigh and Rossby 
numbers. Let us begin with a description of a particular icy moon, Enceladus.

1.1 Enceladus

The icy moon Enceladus was observed by Voyager 2 (1981) and during the Cassini mission 
(2004-2017). It orbits around Saturn every 1.4 days. As it is tidally locked (to Saturn), this is also its 
rotation period around itself. The moon is only 500 km in diameter (small compared to our moon that 
has a diameter of 3200 km), and accordingly, the surface gravity is only 0.113 m s−2. In terms of heat 
balance, the surface of Enceladus is highly reflective, and thus the equilibrium surface temperature is 
745 K. However, tidal and geothermal interior heating account for a total global heat flux of 20GW 
(0.02Wm−2), 10 GW of which is thought to escape through the warmer south pole region [1]. The 
structure of the moon (Fig. 1) is currently thought to be composed of three layers: an icy shell, whose 
thickness is modulated by heat to vary between 5-30 km (average 20 km, thinner in the south pole)[2], 
a global ocean and a rocky core.

While the existence of a subsurface ocean on Enceladus is still unproven, multiple arguments 
suggest that it indeed exists. One piece of evidence is that there are crater-free regions on the 
moon’s surface. This indicates resurfacing by plumes, plate motions, and ice-breaking. On the 
south pole, plumes of water vapor and dust are ejected, suggesting pressurized subsurface chambers 
of liquid water, similar to Earth’s 'geysers.'
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Figure 1: An artist’s impression of the internal structure of Enceladus. Credit: NASA/JPL-Caltech.
In the illustration, a rocky core is surrounded by a global ocean and by a thick icy shell.

1.2 Europa

Europa, the icy moon of Jupiter, was observed by Pioneer 10,11 (1973-4), the Voyager 1&2 flybys
(1979), and the Galileo mission orbiting around Jupiter (1995-2003). Europa is much larger than
Enceladus, with a diameter of 3100 km and gravity of 1.3 ms−2. A weak magnetic field was measured
for Europa, which was suggested to result from saltwater in a subsurface ocean. Another evidence
for a subsurface ocean is the largely crater-free surface with cracks due to tidal forcing. Current
estimates for the layering of Europa are of a 100 km deep ocean and a 10-17 km ice cover [6]. The
internal heating of Europa, also due to tidal and geothermal forcing, amounts to a total of 1.6TW,
or 0.05 W m−2, whereas the temperature varies between 60–130K.

1.3 Snowball Earth

In Earth’s past climate, it is commonly thought that there was an era (or multiple periods) of
runaway glaciations of the ocean. This state, termed "snowball Earth" can happen due to the
positive ice-albedo feedback, in which a climate cooling leads to increased ice coverage that in turn
increases the Earth’s albedo and drives more cooling, and so on. There may still be a meridional
temperature gradient (Fig. 2) due to the inclination of the Sun’s radiation, but that temperature
gradient is likely to be much smaller than today simply because the meridional gradient of incoming
solar radiation will have been small. Rather like the case on icy moons, it is thought that the oceans
on Snowball Earth were not frozen all the way down; rather, there was a layer of ice on top, perhaps
up to a kilometer deep, underneath which was liquid water. At low latitudes there may have been
no ice cover at all, with liquid water at the surface, but observations (or really the interpretation of
proxy data) are somewhat ambiguous. Nevertheless, the resemblance to icy moons is clear.
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Figure 2: A sketch of possible heat transport in an ice-covered world with a horizontal heat gradient. 
Taken from [3]. Qg is the heating from below, ∆T is the meridional temperature contrast, κi is the 
thermal diffusivity and hi is the thickness of the ice cover.

2 Energetics of a Thermally Driven Ocean

To model the ocean circulation on icy moons, we consider a simple case with no atmosphere and, 
in the first instance, with interior heating. That is, we consider a case with thermal forcing at the 
surface arising from insolation from the host star, and with no wind stress. As such we model the 
circulation on icy moons as horizontal convection, driven by a horizontal heat gradient at the surface 
(Fig. 2). We assume exo-oceans on icy planets can be modeled using the Boussinesq approximation. 
This ignores density differences except i n cases where t erms are multiplied by g . This i s generally 
a good approximation for exo-oceans because very large pressures are required to significantly alter 
the density of water. We ignore centrifugal terms and assume rotation is aligned with gravitational 
forces and obtain,

Dv

Dt
+ f × v = −∇ϕ+ bk̂ + ν∇2v. (1)

The notation is conventional, with f = 2Ω being the Coriolis parameter which we take to be
constant. (It plays no role in the energetics.) The variable b is the buoyancy, b = −gδρ/ρ0 and as
before, ϕ = p/ρ0. With an equation of state of the form ρ = ρ0(1 − βT (T − T0)), where βT is a
coefficient of expansion with respect to temperature, then δρ/ρ0 = −βT δT and b = gβT δT .

The other equations in the Boussinesq approximation are,

Db

Dt
= Q = J + κ∇2b, (2)

∇ · v = 0. (3)
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Using (v · ∇)v = ω × v − 1/2∇(v2) (where v2 = v · v) we can write (1) as,
∂v

∂t
+ (2Ω + ω)× v = −∇B + bk̂+ ν∇2v, (4)

where B = v2/2 + ϕ is the Bernoulli function for this system.

3 Energy Budget and Statistically Steady States

Taking v· (4) and using v = (u, v, w) and ∇ · v = 0, we obtain an energy equation,

1

2

∂|v|2

∂t
= −∇ · (vB) + wb+ νv · ∇2v, (5)

= −∇ · (vB) + wb+ ν∇ · (v × ω)− νω2, (6)

where the last expression was derived using the fact that for the divergence-free velocity field,
∇2v = −∇× (∇× v) = −∇× ω and the fact that ∇ · (A×B) = B · (∇×A)−A · (∇×B) for
any two vector fields A, B.

We assume periodic boundary conditions or equivalently that v = 0 on the boundary and take
the volume average over the whole domain to obtain,

1

2

∂⟨|v|2⟩
∂t

= ⟨wb⟩ − ε, (7)

where ε = ν⟨ω2⟩ is the average dissipation rate of kinetic energy. Here, the kinetic energy of the
system is increased by hotter-fluid with a lower density rising (so ⟨wb⟩ > 0), leading to a decrease in
the overall center of gravity of the fluid. This decrease in gravitational potential energy leads to an
increase in kinetic energy of the system. Kinetic energy is dissipated by friction. In the statistically
steady state ε = ⟨wb⟩.

We can use (2) and the fact that w = Dz/Dt to obtain an equation for the potential energy
budget of the system,

D(bz)

Dt
= z

Db

Dt
+ b

Dz

Dt
= zQ+ bw. (8)

Again, taking a volume integral over the whole domain,
D⟨bz⟩
Dt

= ⟨zQ⟩+ ⟨wb⟩. (9)

Here, energy increases from heating and buoyant rise. In the steady state ⟨zQ⟩ = −⟨wb⟩. Combining
this with our steady state condition from (7) we require,

⟨zQ⟩ = −ε. (10)

Since ε ≥ 0, for a steady state to exist in which kinetic energy is dissipated, we require that z and
Q are anti-correlated. Thus, in order to maintain a circulation in which kinetic energy is dissipated,
the heating (including diffusive heating) must occur, on average, at lower levels than the cooling.
This effect was pointed out, using very different reasoning, about a century ago by Sandström and
is known as Sandström’s effect. In Earth’s ocean most of the heating occurs predominantly at the
surface and (except for the small effects of hydrothermal vents) and the difference in height between
where cooling and heating occurs is small. As a consequence, thermal forcing is, of itself, a very
inefficient way to drive a circulation and Earth’s ocean relies heaving on winds to drive it. (In part
the winds directly drive the circulation, and in part the winds give rise to small-scale turbulent flows
that in turn give rise to large turbulent diffusivities that enable the thermal effects to be larger.)
On the icy moon there are no winds and buoyancy effects are the main driving force and as a
consequence the circulation is considerably weaker than that in Earth’s oceans, as we now explore.
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Figure 3: Heating and cooling at two levels in a box.

4 Strength of the Circulation

We start off by modelling our heating and c ooling by c onsidering two s ource t erms approximated 
as delta distributions, with a cooling term, Qc located at zc and a heating term, Qh located at zh, 
as in Fig. 3.

From (10), and remembering that we are supposing that the Q terms include all the diabatic
terms including diffusion, we have

1

H

∫
z
zQdz = −ε, (11)

where the overbar denotes a horizontal average and H is the total depth of the domain.
Suppose there is heating, Qh > 0 over a small thickness centered around one height, zh and

cooling, Qc < 0 at another height, zc, both being within the domain, and there is no heating
elsewhere (Fig. 3). Idealizing this with a δ-function we write

Q = HQcδ(z − zc) +HQhδ(z − zh), (12)

so that Qc and Qh are the magnitudes of the heating and cooling, and the factor of H simply
provides the correct dimensionality. Substituting into (11) gives

(Qhzh +Qczc) = −ε. (13)

If Qh is the heating and is taken to be positive, and Qc = −Qh, in order that no heat (buoyancy)
is added to the system overall, we have

ε = Qh(zc − zh) = Qhh, (14)

where h = zc − zh. That is to say, the potential energy generation (and consequent conversion to
kinetic energy) is proportional to the height difference between heating and cooling.
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Figure 4: Sketch of sideways convection. The fluid i s differentially heated and cooled along it s top 
surface, whereas all the other walls are insulating. Taken from [5], which in turn is modeled on a 
figure by [4].

5 Sideways Convection

We now consider the case when h = 0 but there is some lateral differential h eating a t t he top 
boundary. We consider a 2D model of the ocean of length L and height H (Fig. 4) where v =
(0, v(y, z), w(y, z)) and b = b(y, z). We use the Boussinesq approximation and assume no rotation 
and interior heating,

∂v

∂t
+ ω × v = −∇B + bk̂ + ν∇2v, (15)

Db

Dt
= κ∇2b, (16)

∇ · v = 0. (17)

Taking the curl of (15), and using (17), we obtain the vorticity equation

∂ζ

∂t
+ v · ∇ζ =

∂b

∂y
+ ν∇2ζ, (18)

where ζ = ∂w/∂y−∂v/∂z. We assume that the motion is dominated by vertical diffusion to obtain
characteristic length and time scales,

ŷ =
y

L
, ẑ =

z

H
, t̂ =

t

H2/κ
, b̂ =

b

∆b
, (19)

where ∆b is a measure of the buoyancy difference across the top surface. Defining w = ŵ/(H/κ),
v = v̂/(H2/Lκ) and ζ = (κ/HL)∂ŵ/∂ŷ − (Lκ/H3)∂v̂/∂ẑ = (Lκ/H3)

[
(H2/L2)∂ŵ/∂ŷ − ∂v̂/∂ẑ

]
=
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(Lκ/H3)ζ̂. We non-dimensionalize (18) as

Lκ2

H5

{
∂

∂t̂

[
γ2T∂ŵ/∂ŷ − ∂v̂/∂ẑ

]
+ v̂ · ∇̂

[
(H2/L2)∂ŵ/∂ŷ − ∂v̂/∂ẑ

]}
=

∆b

L

∂b̂

∂ŷ
+

νLκ

H5

[
∂2

∂ẑ2
[
(H2/L2)∂ŵ/∂ŷ − ∂v̂/∂ẑ

]
+ γ2T

∂2

∂ŷ2
[
(H2/L2)∂ŵ/∂ŷ − ∂v̂/∂ẑ

]]
, (20)

which we can write as

∂

∂t̂

(
γ2T

∂ŵ

∂ŷ
− ∂v̂

∂ẑ

)
+ v̂ · ∇̂

(
γ2T

∂ŵ

∂ŷ
− ∂v̂

∂ẑ

)
= Raσγ5T

∂b̂

∂ŷ
+ σ

[
∂2

∂ẑ2

(
γ2T

∂ŵ

∂ŷ
− ∂v̂

∂ẑ

)
+ γ2T

∂2

∂ŷ2

(
γ2T

∂ŵ

∂ŷ
− ∂v̂

∂ẑ

)]
, (21)

where

Ra =
∆bL3

νκ
, σ =

ν

κ
, γT =

H

L
. (22)

There are two limiting cases.

Case 1: H ≲ L
In the case where H ≲ L, we obtain

∂ζ̂

∂t̂
+ v̂ · ∇̂ζ̂ = Raσγ5T

∂b̂

∂ŷ
+ σ

[
∂2ζ̂

∂ẑ2
+ γ2T

∂2ζ̂

∂ŷ2

]
. (23)

Recall that the only way the fluid is forced is by the buoyancy gradient at the surface, and in order
for this to drive the flow we require

Raσγ5T ∼ σ. (24)

If the buoyancy term is smaller than this, then buoyancy cannot drive the flow. If it is larger than
this then there is nothing to enable the flow to reach statistically steady state. Given this, we can
obtain an approximation for H, the vertical length scale for the motion of the fluid,

H ∼ Ra−1/5L,∼
(
L2νκ

∆b

)1/5

. (25)

If Ra ≫ 1 then H ≪ L so that the vertical length scale is always much less than the horizontal
length scale. But let us see what happens if we assume H ≫ L.

Case 2: H ≫ L
In the case where H ≫ L, where H is the scale of the fluid motion and not the depth of the
container, γT ≫ 1 so letting ζ̂ ≃ γ2T∂ŵ/∂ŷ in (21) we obtain

∂(∂ŵ/∂ŷ)

∂t̂
+ v̂ · ∇̂(∂ŵ/∂ŷ) = Raσγ3T

∂b̂

∂ŷ
+ σγ2T

∂2(∂ŵ/∂ŷ)

∂ŷ2
. (26)

In this case in order for buoyancy to drive the flow we require

Raσγ3T ∼ σγ2T . (27)

We can again obtain an approximation for H,

H ∼ L/Ra (28)

We see that the condition H ≫ L is incompatible with the assumption Ra ≫ 1, suggesting that
this scaling cannot be achieved and thus the true scaling for H is, in fact, given by (25).
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6 Conclusions and Challenges for Icy Moons

There are many, many complications regarding the study of ocean circulation in icy moons. Here
we have mainly concentrated on the constraints imposed by the fact that there is no wind forcing
from above so that the motion is purely thermally forced. The relative locations of the heating and
cooling (including diffusive effects) then makes a big difference to the circulation, for its strength is
proportional to the height difference between the two.

If this difference is small then the ocean will fall into the regime of sideways convection, in which
the circulation is driven purely by diffusive effects, because diffusion is the only way that buoyancy
can enter the ocean and there is no wind to mechanically force the ocean. In this case we obtain
an approximate scaling for the vertical motion of the fluid as H ∼ LRa−1/5. In such cases, or more
generally when the thermal forcing is small, saline effects will almost certainly play a role and these
have not been considered in this chapter.

For Enceladus, the ice is thicker at the equator than at the poles (Fig. 1), creating a pressure
difference across the ocean and providing some thermal forcing to the system, potentially driving
sideways convection. However, Enceladus also has internal heating from the core ∼ 0.1Wm−2, which
is likely to drive Rayleigh-Bénard-like convection in the interior. This can be much more efficient
than sideways convection, since the height difference between heating and cooling is essentially the
depth of the ocean. If we include the effects of internal heating, we might calculate that the velocity
of the fluid is ∼ 1 cm/s. Putting this all together, we conclude that one possible way to model
Enceladus would be to include the effects of internal heating driving some Rayleigh-Bénard-like
convection in the interior, combined with some sideways convection at the top where the strength
of the convection depends on the variation in thickness of the ice, the changing in depth of the
ocean, the overall depth of the ocean and the strength of the internal heating, as well as saline
effects. Putting all these factors together in a coherent form is a significant challenge.
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GFD 2023 Lecture 10: Steam Atmospheres and Runaway
Greenhouse

Geoffrey Vallis; notes by Arefe Ghazi Nezami and Quentin Nicolas

September 6, 2024

Some exoplanets have densities that are compatible with a water-rich composition. These can-
didates orbit close to their host stars and any hydrogen in the atmosphere may well have been 
stripped away through hydrodynamic escape, implying that their atmospheres could be mainly 
composed of water vapor. This lecture aims to present a few aspects of the atmospheric circulation 
on these “water worlds” with “steam atmospheres”. We then consider briefly one other aspect of 
water vapor, namely its greenhouse effect leading to possible runaway greenhouse.

1 Neutral Lapse Rates in Dry and Moist Atmospheres

We start this section by recalling some basic thermodynamics rules that will be used throughout. 
We will assume that all gases considered follow the ideal gas law:

p = ρRT, (1)

where p is pressure, ρ is density and T is temperature. R = R∗/M denotes the specific gas constant,
with R∗ the molar gas constant and M the molar mass of the gas. This relationship can be re-
written pα = RT , where α = ρ−1 is the specific volume. (Unfortunately it is standard practice to
use α to mean both aspect ratio and specific volume, but the context should make the meaning
clear.)

The first law of thermodynamics states that the internal energy of a body changes when work
is done on it, when heat is added to it or when its chemical composition changes. For a gas at fixed
chemical composition, this reads

dI = d̄Q− p dα = T dη − p dα, (2)

where I is the specific internal energy of the fluid, η is the specific entropy, d̄Q denotes the amount
of heat added per unit mass of fluid, and p dα is the work done on it. The second equality stems
from the second law of thermodynamics, which states that in a reversible process the change in
specific entropy, dη is given by d̄Q/T , where d̄ is a so-called imperfect differential. (Ideally, the
development of thermodynamics would avoid the use of d̄, and some thermodynamic texts use the
notation δQ where δ denotes an infinitesimal quantity. But we will let such nuances pass us by
here.)

Supposing hydrostatic balance, equation (2) can be used to infer the vertical structure of temper-
ature in an idealized atmosphere. We proceed to determine this vertical structure for three limiting
cases: a dry atmosphere, an atmosphere with a small amount of one condensible substance, and a
steam atmosphere (which is composed exclusively of a condensible substance).
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1.1 Dry atmosphere

In the absence of external diabatic sources, the first law reduces to

dI = −p dα. (3)

Let us suppose that the atmosphere is composed of a perfect gas, for which I is related to temper-
ature by a constant factor cv (called the heat capacity at constant volume). In reality, cv is a weak
function of temperature. Equation (3) becomes

0 = cvdT + p dα

= cvdT + d(αp)− α dp

= (cv +R)dT − α dp,

(4)

where we have used the ideal gas law to obtain the last equality. The quantity cv + R is another
constant, called the isobaric heat capacity, and denoted cp. We deduce that in an adiabatic process

dT

dp
=

α

cp
. (5)

Combining this with hydrostatic balance, dp/dz = −ρg, we obtain the vertical temperature gradient
in an adiabatic dry atmosphere:

dT

dz
= − g

cp
. (6)

The negative of this quantity, which here is g/cp, is called the dry adiabatic lapse rate and in Earth’s
atmosphere it is about 9.8 K/km. Any temperature profile that decreases more steeply with height
is unstable, as exemplified by the red profile in Figure 1. A parcel of air lifted adiabatically from
z1 to z2 cools by g(z2 − z1)/cp, following the dashed blue line. It is warmer than its environment
when it reaches z2, which means it is positively buoyant and will keep rising. Conversely, any
perturbation to the yellow temperature profile will be damped (a parcel lifted from z1 to z2 will
be negatively buoyant and sink back down), meaning this profile is stable. It should be noted that
the viscous effects are negligible since we are away from the boundaries.

1.2 Earth-like moist atmosphere

The presence of a condensible substance in an atmosphere has two effects: variations in its amount
yield changes in the density of the fluid (e.g., in Earth’s atmosphere, water vapor has a smaller
molar mass than dry air, so a moist parcel will be lighter than a dry one with equal temperature and
pressure), and its phase changes release or take up latent heat into/from the surrounding air. On
Earth, where water vapor makes up a small fraction of the atmosphere, the second effect dominates
over the first one in setting the atmosphere’s temperature structure.

We will use q to denote the specific humidity of an air parcel, defined as the ratio of the mass
of vapor (i.e. the condensible substance) to the total mass of the parcel, and e to denote the
partial pressure of the condensible. There is an upper limit to the vapor pressure that a parcel can
achieve without condensing, called the saturation vapor pressure denoted es, with corresponding
saturation specific humidity (qs). The quantity es is a function only of temperature – for a range of
temperatures es increases almost exponentially with temperature — and the expression determining
this is called the Clausius–Clapeyron relation and it is derived in the appendix.

As an unsaturated air parcel rises, it cools following equation (6), and in the absence of any
mass transfer it conserves its specific humidity. Once it reaches saturation, any cooling will lower
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Figure 1: Stability of various temperature profiles with respect to dry convection. A temperature
profile that follows the dry adiabatic lapse rate (Eq. (6)) is represented in blue. The yellow and
red lines show, respectively, examples of stable and unstable temperature profiles.

qs and lead to condensation of the excess water vapor, a process that releases latent heat. As a
result, in a saturated Earth-like atmosphere, temperature decreases less steeply with height than
in a dry atmosphere. The expression of its lapse rate, valid only for a dilute atmosphere (meaning
the concentration of water vapor in the atmosphere is small) is (for a derivation see [3])

dT

dz
= − g

cp

1 + Lqs/(R
dT )

1 + L2qs/(cpRvT 2)
, (7)

where L is the latent heat of condensation, Rd is the specific gas constant of dry air and Rv is the
specific gas constant of vapor. At 300 K, this lapse rate is around 4 K/km, i.e. much less steep
than its dry counterpart! This means that a moist atmosphere is likely to be more unstable than 
a dry one, and this accounts for the prevalence of convection in Earth’s tropics where the moisture 
content is high.

All of the above relations are independent of the presence or otherwise of another gas in the 
volume. If (as on Earth) a noncondensing gas is present alongside the condensible one then pressure 
is the just the partial pressure. In that case, when the temperature increases so that the partial 
pressure equals the ambient pressure any condensible liquid present will boil. If the condensible is 
the only substance present then its partial pressure is also the total pressure, and if the volume is also 
saturated the temperature profile with height is determined by the Clausius–Clapeyron relation.
Atmospheres composed only of a single condensible are sometimes called ‘steam atmospheres’, a 
variation of the common usage in which steam refers to a mixture of water vapor, condensed water 
and air at temperatures near the boiling point. Atmospheres (like that of Earth) with a small 
proportion of condensible material are called dilute, and those with a large proportion are called 
nondilute. Finally, is common in the atmospheric sciences to write the vapor pressure as e, and es
for its saturation value, to distinguish it from the total or ambient pressure p.

In the Solar System the only other body that has a hydrology cycle at all resembling that of
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Figure 2: The equilibrium (or saturation) vapor pressure of water vapor as a function of temper-
ature. The inset plots the same quantities on a log scale over a smaller range. The plot is made
using (42) with e0 = 6.12hPa, L = 2.44×106 J kg−1 and R = 462 Jkg-1K -1. Using a more accurate
empirical formula that accounts for changes in L makes little difference over the range shown.

Earth is Titan, where the condensate is methane and the surface pressure about 1.5×105 Pa. (On
Earth, surface pressure is about 105 Pa.) The surface temperature of Titan is around 95K, not
far from the triple point of methane, and methane rain collects in liquid lakes on Titan’s surface.
On Mars, about 95% of the atmosphere is carbon dioxide and in winter up to 25% of that carbon
dioxide will condense over the polar caps. However, the surface pressure is so low (about 600 Pa)
that the gas condenses into a solid, often forming dry ice sheets over a meter thick; the sheets
sublime back into the atmosphere in the warmer summer and there is little if any liquid carbon
dioxide on Mars today. The atmosphere of Mars generally behaves like a dilute one, but can be
nondilute when extensive condensation occurs.

1.3 Lapse rate in a steam atmosphere

Let us now consider the limit where an atmosphere is made up entirely of one condensible substance
like water vapor. Consider a mixture of liquid water and water vapor in thermodynamic equilibrium
at some temperature T and pressure p. In this case equilibrium is achieved when the pressure of the
gaseous substance and its temperature are related by the Clausius–Clapeyron relation, as derived
in the appendix to this chapter, namely

dp

dT
=

Lp

RT 2
. (8)

A direct consequence of equation (8) is that in a saturated steam atmosphere pressure uniquely
depends on temperature. Although this is only true in a saturated atmosphere, a large fraction
of a steam atmosphere can be expected to be saturated. A steam atmosphere is thus constrained
to be barotropic, meaning isolines of pressure and density are parallel. To the atmosphereic scien-
tist or GFDer, this result has a lot of unintuitive consequences such as the absence of baroclinic
instabilities, or even more fundamentally the absence of a thermal wind balance (see next section).

Combining equation (8) with hydrostasy, dp − ρgdz, one obtains the lapse rate in a steam
atmosphere:

dT

dz
= −gT

L
. (9)
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The temperature scale height (i.e. the characteristic length scale over which the temperature de-
creases with height) is given by L/g, which for an Earth-sized planet is about 250 K/km. Evidently,
the temperature would be nearly constant in a 10-km thick column.

2 Large-scale Winds in a Steam Atmosphere

One of the fundamental relationships governing the dynamics of a rotating atmosphere is the 
thermal wind balance. This relationship between vertical wind shear and horizontal temperature 
gradients arises when combining geostrophic and hydrostatic balances. In pressure coordinates, the 
meridional component of geostrophic balance reads

fu = −
(
∂Φ

∂y

)
p

, (10)

with the p subscript stressing the fact that the partial derivative is taken on a constant pressure
surface, f is the Coriolis parameter and Φ = gz is the geopotential. Hydrostatic balance reads:

∂Φ

∂p
= −RT

p
, (11)

which can be obtained by combining the classic form ∂p/∂z = −ρg with the ideal gas law, p =
ρRT . Combining equations (10) and (11) yields the thermal wind balance equation in pressure
coordinates:

f
∂u

∂p
=

R

p

(
∂T

∂y

)
p

. (12)

Now, remember from section 1.3 that in a steam atmosphere, temperature is solely a function of
pressure (they are related by the Clausius-Clapeyron equation). Hence, (∂T/∂y)p = 0, meaning
that there is no thermal wind balance in a steam atmosphere.

Although there is no thermal wind, large scale winds will likely still be generated, and an
estimate of the large-scale zonal wind speed can be obtained from geostrophic balance alone. This
scaling is best illustrated in height coordinates, where geostrophic balance reads

fu = −1

ρ

∂p

∂y
= −1

ρ

dp

dT

∂T

∂y
= −L

T

∂T

∂y
, (13)

where to obtain the last equality we have used the Clausius-Clapeyron equation. Denoting by ∆T
the pole-to-equator temperature difference, the geostrophic wind in a steam atmosphere is thus of
order

ug ∼ L

fT0

∆T

a
, (14)

where T0 is a mean temperature scale and a is the planet’s radius. In an equivalent atmosphere
where thermal wind balance holds, and with the same ∆T and a, one would obtain from (12):

uT ∼ R

f

∆T

a
, (15)

where we have assumed ∂u/∂ log p ∼ uT . Using L = 2.5× 106 J kg−1, R = 460 J kg−1 K−1 (for a
steam atmosphere) and T0 ∼ 300 K, one obtains

ug =
L

fT0

∆T

a
∼ 700m s−1, (16)
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and
ug
uT

∼ L

RT0
∼ 20. (17)

The geostrophic wind in a steam atmosphere is thus about an order of magnitude larger than the 
thermal wind of a hypothetical equivalent planet with a dry atmosphere.

3 Runaway Greenhouse Effect

Let us now switch gears, and consider another large effect of water vapor, namely that it is an 
efficient absorber of infra-red radiation and hence gives rise to a greenhouse effect. A runaway 
greenhouse is a state where the concentration of greenhouse gases is high enough that the surface 
fails to cool by longwave emission, leading to a dramatic temperature increase and a runway state. 
This section presents the simplest physical picture that describes the concept of runaway greenhouse 
effect. We will assume the atmosphere to be gray, meaning that it absorbs and emits similarly at 
all wavelengths in the infra-red. This assumption is quantitatively poor (spectroscopic effects are 
important) but the essential physics is still captured. We begin by introducing some elementary 
radiative transfer concepts.

3.1 Elements of Radiative Transfer

Radiative transfer is a complex subject and in order to make progress we will simplify it in two 
main ways:

1. Rather than treating an entire spectrum of wavelengths, we suppose that the radiation exists
only in two well-separated bands, namely solar (or shortwave) radiation and infra-red (or
longwave) radiation. In each band the absorption is not a function of wavelength, and this
is called the gray approximation (or the semi-gray approximation, considering that there are
two bands of radiation). We will suppose that the planet only emits longwave radiation, and
its host star only emits shortwave radiation.

2. We suppose that the radiation travels only vertically (up or down) through the planetary
atmosphere. This is the two-stream approximation.

Consider a beam of radiation propagating through a thin slab of gas, as in Fig. 3. Some of the
incoming radiation may be absorbed, some reflected, and the slab may emit radiation of its own. In
the three-dimensional problem some radiation may also be scattered into the beam from radiation
travelling in other directions. Let us neglect scattering and reflection, a good approximation for
longwave radiation. The difference between the outgoing and incoming radiation is then

dI = Iout − I in = −dτ I + dE, (18)

where I is the irradiance or radiant intensity (with units of power per unit area, or Wm−2), the term
−dτI is the absorption and dE is the thermal emission. The quantity dτ is the nondimensional
optical depth; it may be written as dτ = eLds where ds is the slab thickness, and eL is the
emissivity of the medium. The minus sign on dτ in (18) is appropriate when τ increases in the
direction of the beam. The emission of radiation is, in thermal equilibrium, the Planck function, B,
such that dE = B dτ . If the atmosphere is gray (as in assumption 1 above) then B = σT 4 where
σ = 5.67× 10−8Wm−2K−4 is Stefan’s constant. With all this, (18) becomes

dI = −dτ(I −B) or
dI

dτ
= −(I −B). (19)
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Iin

ds dI = Iout − Iin

Iout = Iin − I dτ + dE
Figure 3: Radiative transfer across a thin slab, with no scattering or reflection and the 
radiation travelling in a single direction only, here denoted s. I is the radiative flux, τ is the 
optical depth and E is the emission by the slab.

In planetary atmospheres it is common to choose τ increasing downward, from 0 at the top 
of the atmosphere. The downward (D) and upward (U) irradiances are then

dD

dτ
= B −D ,

dU

dτ
= U −B . (20a,b)

These equations are sometimes known as the Schwarzchild equations. The net flux of radiation is
N = U −D and the radiative heating is proportional to the net flux divergence, −∂N/∂z .

The gray assumption is not particularly accurate for many planetary atmospheres but for con-
ceptual or approximate calculations it is often useful to suppose that the atmosphere is gray in the
infra-red, in which case (20) applies to infra-red radiation. Similar but separate equations (that
would normally include reflection, but not thermal emission) are then used for solar radiation. In
Earth’s atmosphere the absorption of solar radiation in the atmosphere is quite small, and although
there is considerable reflection due to clouds most of the net incoming solar radiation is absorbed
at the surface.

3.2 Radiative Equilibrium

A radiative equilibrium state has, by definition, no net radiative heating. If the atmosphere is
transparent to solar radiation then the condition implies that the vertical divergence of the longwave
radiation (denoted with a subscript L) is zero:

∂(UL −DL)

∂z
= 0 implying

∂(UL −DL)

∂τ
= 0. (21a,b)

This condition is normally not satisfied in the atmosphere because the air moves. But if it were
satisfied then (20) and (21b) form three equations in three unknowns, UL, DL and B, and a solution
can be found as follows.

Consider an atmosphere with net incoming solar radiation Snet and suppose the planet is in
radiative equilibrium with the incoming solar radiation balanced by outgoing infra-red radiation.
That is, ULt ≡ UL(τ = 0) = Snet where ULt is the net outgoing longwave radiation (OLR) at the
top of the atmosphere. The downward infra-red radiation at the top of the atmosphere is zero, so
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that the boundary conditions on the radiative transfer equations at the top of the atmosphere are

DL = 0, UL = ULt at τ = 0. (22)

A little algebra reveals that a solution of (20) and (21b) that satisfies (22) is

DL =
τ

2
ULt, UL =

(
1 +

τ

2

)
ULt, B =

(
1 + τ

2

)
ULt, (23a,b,c)

as can be easily verified by substitution back into the equations.
It remains to explicitly relate τ to z, and one approximate recipe is to suppose that τ has an

exponential profile,
τ(z) = τ0 exp(−z/Ha), (24)

where τ0 is the optical depth at z = 0 and Ha is the scale height of the absorber. In the Earth’s
atmosphere the optical depth is determined by the concentrations of water vapor (primarily) and
carbon dioxide (secondarily), and τ0 (the scaled optical depth) typically varies between 2 and 4,
depending on the water vapor content of the atmosphere, and Ha ≈ 2 km, this being a typical scale
height for water vapor. Using (23c) with B = σT 4 the temperature then varies as

T 4(z) = ULt

(
1 + τ0e

−z/Ha

2σ

)
. (25)

Of specific interest to us is the relation between surface temperature and outgoing IR, namely

T 4
s =

ULt

2σ
(1 + τ0) =

1

2
T 4
e (1 + τ0), (26)

where Te is the emission temperature. The expression for the ground temperature turns out to be
slightly different and is given by

T 4
g =

ULt

σ
(1 + τ0/2) = T 4

e (1 + τ0/2). (27)

This temperature is defined as the temperature that a black surface needs to have to provide the
same upwards radiative flux as is given by the solution of the radiative transfer equations at z = 0,
namely (23). A slightly different form was written down in a paper by Komabayasi (1967) [2],
namely

σT 4
g = ULt(1 + 3τ/4). (28)

While quantitatively inaccurate because of the numerous approximations made, these equations 
will allow us to elucidate the mechanism behind the runaway greenhouse effect, as described below. 
We emphasize that the emission temperature, Te is to be regarded as given: the outgoing longwave 

radiation is given by σTe
4 and if the planet is in radiative equilibrium with its host star then the

outgoing longwave radiation is equal to the net incoming solar radiation.

3.3 The runaway greenhouse effect

Let’s consider an atmosphere containing some greenhouse gas (such as CO2) and water vapor. We 
suppose that the surface optical depth is proportional to the concentration of greenhouse gases, and 
that the water concentration is proportional to es(Tg), the saturation vapor pressure at the surface. 
Following Clausius-Clapeyron, es depends approximately exponentially on temperature, and we
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Figure 4: Ground temperature Tg as a function of emission temperature Te (equivalent to the
absorbed solar shortwave radiation at equilibrium), in radiative equilibrium. The atmosphere is
supposed to contain a fixed concentration of one infra-red absorbing species, and a concentration
of water vapor that scales exponentially with Tg.

will assume es(Tg) ∝ exp(γTg), which is a rather approximate solution to the Clausius–Clapeyron
equation (cf., equation (42)), valid over a limited range of temperatures, as the reader may verify.
Thus, one can write

τ0 = A+BeγTg , (29)

where A and B are two constants. A is the longwave optical depth of the atmosphere excluding
water vapor, and B exp(γTg) scales the optical depth due to water vapor. Combining this equation
with (27), one obtains a relationship between Tg and Te:

T 4
g

1 + 1(A+BeγTg)/2
= T 4

e , (30)

with a very slightly different expression if (28) is used in place of (27). The left-hand side is 
positive and goes to 0 for small values of Tg and also as Tg → +∞; therefore, it is bounded 
by a threshold value of Te from above, in which no surface temperature permits radiative 
equilibrium to be attained. (What might happen in reality would be that Tg strongly 
increases until the planet can cool by radiating outside of the absorption bands of water 
vapor, but let us omit that effect here.)

One can represent this situation graphically by plotting the equilibrium Tg as a function of Te 

(Figure 4). For purposes of illustration, we choose A = 1. An approximate value of γ can be 
obtained by linearizing the expression for es(T ) around a basic state temperature T0, resulting in 

γ = L/(RvT0
2) ≃ 0.06 K−1. B is chosen such that BeγTg = 1 at 300 K. It can be seen that at 

low values of Te, there are two radiative equilibrium values of Tg: a case with lower value that has 
small amount of water vapor that is stable, and a case with high values of Tg with a large water 
vapor content that is unstable. To better understand the instability, consider a slight increase in
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Tg around its high equilibrium value. In response, Te decreases, hence longwave cooling decreases. 
This further drives an increase in Tg, and the runaway greenhouse effect o ccurs. As mentioned 
above, there are no equilibrium values of Tg for sufficiently high emission temperatures, and so for 
sufficiently high solar forcing. This is a runaway state. In reality, an equilibrium is reached through 
processes neglected in this simple model, namely emission outside of the absorption band of the 
greenhouse gases that are present.

4 Remarks

In this lecture we have considered two extreme consequences that the presence of water vapor, or 
any other condensible, might have on the climate of a planet. The first occurs when water vapor is 
the sole constituent of an atmosphere, giving rise to what is sometimes called a steam atmosphere. 
In this case, if the atmosphere is everywhere in equilibrium with liquid water (i.e., the atmosphere 
is ‘saturated’) the pressure is determined solely by temperature. This means there is no thermal 
wind – that is, unlike on Earth, a meridional temperature gradient is not accompanied by a vertical 
shear of the zonal wind. Similarly, because isosurfaces of pressure do not intersect isosurfaces of 
density, the atmosphere is not baroclinic and baroclinic instability thus does not occur.

A second consequence can occur if the condensible is a greenhouse gas – as water vapor. If 
the planet moves sufficiently close to its host star then the planet will warm. This increases 
the amount of water vapor, in accord with the Clausius-Clapeyron equation. The greenhouse
effect increases, warming the planet still more, and the temperature ’runs away’. This is the 
famous runaway greenhouse effect, first described independently by Komabayasi [2] and Ingersoll
[1] (who coined that most evocative phrase). Venus, in our Solar System, is believed to have passed
through such a state. If the Earth were to move closer to the Sun (fortunately a very unlikely
occurrence) it too could undergo a runaway greenhouse effect.

Appendix: the Clausius-Clapeyron Relation

In this section we ascertain what conditions need to be satisfied in order that equilibrium be 
maintained between two phases of the same substance. Suppose that, for example, water and water 
vapor are in contact with each other in a closed, isolated container; under what conditions is there 
no net transfer of material from one phase to another? And how might that change if heat is added 
and the temperature changes?

The energy per unit mass, Q, required to pass from one phase to another at constant temperature 
and pressure is given by

Q = T (ηv − ηl), (31)

where T is the temperature, ηv is the specific entropy in the vapor phase and ηl the specific entropy
in the liquid phase. In the phase-change context, the energy Q is denoted L and is called the ’latent
heat of condensation’ and, for water and water vapor, it is approximately a constant, decreasing
by about 10% as temperature increases from 0° C (where L ≈ 2.5× 106Jkg−1) to 100° C.

Suppose that an amount of substance ∆M changes phase then the energy required or released
is given by

L∆M = T∆M(ηv − ηl) = ∆M(Iv − Il) + ∆Mp(αv − αl), (32)

where I is the internal energy, p is the pressure and αv and αl are the specific volumes of the vapor
and liquid. Eq. (32) may be written as

L = T (ηv − ηl) = (Iv − Il) + pαv − pαl. (33)
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The quantity I + pα is the enthalpy, h, so we obtain a well-known expression

L ≡ T (ηv − ηl) = hv − hl. (34)

That is to say, the latent heat of condensation is equal to the difference in enthalpies of the two
states, a useful result that we will use later on. It is not a general result that changes in entropy
and enthalpy are so related, but it is true here because the temperature and pressure are constant.

Re-arranging (32) gives
Tηv − pαv − Iv = Tηl − pαl − Il. (35)

The expression I+pα−Tη is known as the Gibbs function, and we have established that the Gibbs
function for two phases of a substance in contact with each other and in equilibrium are equal to
each other.

Let us now perturb the system slightly, for example adding some heat to it or displacing the
parcel. If it then forms a new equilibrium the changes in temperature and pressure are, using (35),
related by

Tδηv + ηv δT − p δαv − αv δp− δIv = Tδηl + ηl δT − p δαl − αl δp− δIl. (36)

Using δI = Tδη − pδα (the first law of thermodynamics) the above expression simplifies to

δTηv − αvδp = δTηl − αlδp, (37)

or, in differential form
dp

dT
=

ηv − ηl
αv − αl

. (38)

Since, by definition, L = T (ηv − ηl) we have

dp

dT
=

L

T (αv − αl)
. (39)

This is the Clausius–Clapeyron equation, which tells us how the pressure of a vapor that is in
thermodynamic equilibrium with an adjacent liquid varies with temperature. In most circumstances
αv ≫ αl (i.e., the density of the liquid is much greater than the density of the gas), and using the
ideal gas relation (αv = RT/p) gives

dp

dT
=

Lp

RT 2
. (40)

This is the most common form of the Clausius–Clapeyron equation, and it gives the relation between
temperature and vapor pressure of an ideal gas when the system is in equilibrium. If a system is in
equilibrium and the temperature falls (perhaps because the system is cooled) then the system falls
out of equilibrium. Some of the vapor then condenses into liquid form, reducing the vapor pressure.
This is how rain forms. At the temperature at which the saturation vapor pressure of a substance
equals that of the ambient pressure then any liquid present will boil. Note that p is the pressure
due to the condensate, namely the partial pressure of the vapor, not the total pressure due to all
gases present, and R is the specific gas constant of the condensate. When set in the context of an
atmosphere that contains a non-condensible substance (such as Earth’s atmosphere) p is commonly
denoted es to distinguish it from the total pressure, commonly denoted p.

Eq. (40) may also be written
dp

dT
=

Lρ

T
. (41)

111



If L is constant then (40) can be solved analytically, giving

ps = 00 exp

[
L

R

(
1

T0
− 1

T

)]
, (42)

using ps to denote the pressure at saturation of the condensible, and where p0 is the pressure at T0,
a value that is normally determined by experiment. These values come in pairs of values, since p0
and T0 are any values on the phase boundary. In many circumstances the increase in equilibrium
vapor pressure with temperature is approximately exponential (inset to Fig. 2). (It is common in
the atmospheric sciences, especially when dealing with dilute gases, to write the vapor pressure as
es, with the subscript s denoting saturation.)

We can invert the above relation to give

Ts(p) =
T0

1− (RT/L) ln(p/p0)
, (43)

using Ts to denote a ’saturation temperature’ at pressure p. This is the temperature below which
condensation will normally occur and is known as the dew point or frost point temperature. If the
temperature falls below Ts, or the pressure rises above ps, and condensation does not occur because
thermodynamic equilibrium is not achieved, the gas is said to be supersaturated.
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1 Introduction

1.1 Icy moons

The Solar system contains numerous icy moons. The ones we have the most data on are
Europa and Enceladus, which, respectively, orbit Jupiter and Saturn. Other large icy moons
include Ganymede and Callisto around Jupiter, Titan and Rhea around Saturn, Titania and
Oberon around Uranus, or Triton around Neptune.

Icy moons get their name from their thick ice shell. Most of it is water ice, although
there are always pollutants. In fact, Callisto’s ice shell may only be 50% water [53, 54, 78].
For some moons this shell is in direct contact with space, but Ganymede, Callisto, Europa,
Titan, and Triton all have an atmosphere [18, 24, 31, 32, 34, 37]. Triton is also covered by a
thin crust of nitrogen ice [56].

There is also some variation in the deep internal structure of icy moons. Ganymede,
Europa and Triton are fully differentiated, meaning that they have an iron core and a
silicate mantle [2–4, 23, 56, 72]. From theory and modelling, we would expect that all icy
moons have a similar structure [12]. Yet Callisto, for which we have good data, appears to
only be weakly differentiated, i.e. its core still contains water ice [23].

Between the core and the ice shell, there may be a liquid water ocean. It is on Enceladus
that we can make the strongest case for this idea. Indeed, the moons’s south polar plumes,
its moment of inertia and its libration pattern all hint at a hidden ocean [40, 55, 69, 70,
86]. Another moon for which we have compound evidence is Europa. Indeed, Galileo’s
magnetometric data, the moon’s cycloidal surface features and its south polar plumes all
suggest an ocean [43–45,60,75,82]. Magnetometric data, which signals an ocean on Callisto
[89]and maybe one on Ganymede [46], could also be used on Triton in the future [60]. Finally,
there is some tentative evidence for an ocean on Titan from Huygens’s detection of certain
electromagnetic waves in the atmosphere, as well as from the moon’s obliquity and response
to tides [11,13,14,39].

This possible large body of liquid water makes icy moons prime candidates in the search
for extra-terrestrial life. Consequently, space agencies have devoted considerable ressources
to learning more about those worlds. Voyager, Galileo, Huygens and Cassini all spent part
of their mission collecting data on Jupiter and Saturn’s icy moons. This trend will continue
in the near future with JUICE and Europa clipper [29,38,67].
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1.2 Why we care about convection in the ice shell

Whether those oceans host life or not depends on whether the ice shell is convecting or not.
First, because if the shell is convecting, then heat is efficiently transported upward

and lost to space. Now if the shell loses more energy than it gains from tidal heating
and conduction, then some water must freeze to release latent heat. Therefore, convection
diminishes the ocean’s life expectancy [74]. This can be compensated by the presence of
antifreeze compounds such as amonia in the ocean [51].

Second, biochemistry requires oxidants, which are mostly produced at the surface by
photochemistry. So, we need convective downdrafts to carry oxidants from the surface to
the ocean [33]. Conversly, if there is life in the ocean, then updrafts could carry biochemicals
to the surface were we could see them [1]. That being said, detecting those biotracers in the
plume seems easier.

Another reason to care about convection is that it can explain some confusing surface
features. For instance, we see chaos regions, lenticulae, bands and domes on Europa. Those
structures could all be caused by convective updrafts in the ice shell [58, 64, 71]. Similar
reasons have been advanced for why the south polar terrain (SPT) of Enceladus is deformed
and has a high heat flux [59]. Additionally, the weirdly low number of craters on Europa
and Enceladus indicates surface renewal, possibly by tectonics [20, 69]. More precisely, the
distribution of surface ages on Enceladus hints at episodic tectonics [62]. This concurs
with the observation that Europa’s different types of surface features have different ages,
indicating temporal variation in the updrafts’ characteristics [71].

1.3 What we know (and ignore) about convection in the ice shell

At this stage, one may question how a solid like ice can exhibit fluid motions like convection.
This is because the words ‘solid’ and ‘liquid’ do not qualify a material, but its behavior.

Any given material can behave both like a solid or a liquid, depending on the timescale:
"everything flows if you wait long enough" [8]. For example, the typical flow speed for
terrestrial ice sheets and glaciers is of order 10−5 m/s [57].

So, ice can flow. Now, since the interior of icy moons are hotter than their surface, and
since ice is less dense when it is hot, ice may convect within the shell. This is called solid-
state convection, and it also happens in the Earth’s mantle. In some respects, solid-state
convection is less complex than standard convection. Indeed, the extremely high viscosities
make turbulence unlikely, though not impossible [88].

Unfortunately, this good news is largely compensated by how tricky it is to model ice:
First, its rheology is complicated. Indeed, the macroscopic flow is due to an accumulation

of microscopic deformations, which can arise from four different creep mechanisms: disloca-
tion creep, grain boundary sliding, basal slip and volume diffusion [9,27]. Which mechanism
prevails depends on the stress, temperature and grain size in your system [35, 68]. And of
course, it is challenging to constrain the size of ice grains hidden deep in the shell of a distant
world. Plus, it is risky to extrapolate viscosity laws derived from laboratory experiments to
the extremely high-pressures and low-stress conditions relevant to icy moons [81].

Second, the thermodynamics of ice are hard to constrain. This is partly linked to the
previous point in that the rates of tidal and shear heating in the shell depend on viscosity [87],
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which comes with a large error bar. But another difficulty is that the thermal properties (heat
capacity, conductivity, expansivity) of ice are temperature-dependent [19,66]. Conductivity
is particularly treacherous because it depends on how the ice has crystallized [15, 47], and
we do not know that for icy moons.

Third, the viscosity of ice is temperature-dependent. This non-linearity makes convec-
tion a sub-critical instability [10, 80]. Thus, the shell’s convection status depends not only
on the shell’s current characteristics, but also its history. Moreover, viscosity gains twenty
orders of magnitude between the bottom and the top of the shell [27,77].1 This high dynamic
range increases the cost of numerical simulations. Finally, the enormous viscosity of the up-
per shell prevents it from convecting, creating a stagnant lid [79] which eliminates the link
between convection and surface features. It may be restored by allowing the stagnant layer
to fracture [62], but that adds new physics and poorly constrained coefficients to the model.

For all of those reasons, we remain unsure of whether ice shells convect or not.
Indeed, surface features are not strong evidence. For example, Europa’s chaos regions

may be due to convection in the shell, but also to oceanic hydrothermal plumes deforming the
shell [28,30]. Even though we have good observations of the chaos regions, we have not been
able to disprove either option. That is because they make similar qualitative predictions,
and our models of surface feature creation are crippled with so many uncertainties that we
cannot make quantitative predictions.

We are also unlucky that the Rayleigh numbers of Europa and Enceladus’ shells are close
to the critical Rayleigh number for the onset of convection [60]. It means we would need very
precise modelling to answer the convection question from the shell’s global characteristics.

1.4 Objectives of the present work

Another way to detect convection is to quantify how convection would affect the shell’s
observables and parse the data for such patterns. Here we focus on the first step: we perform
a suite of simulations of solid-state convection, incorporating various physics relevant to the
shells of icy moons. We aim to determine the observable consequences of these effects.

Specifically, we consider the possibility that convective updrafts warm the surface, thereby
inducing spatial variations in surface temperature. If so, one could search for periodic pat-
terns in Galileo and Cassini’s surface temperature data [73,84,85]. To test our hypothesis, we
run 2D simulations of Rayleigh-Benard convection [52], but we replace the fixed-temperature
boundary condition at the surface by a radiative boundary condition. It allows the surface
temperature to respond to what happens below in the shell. There is already a few papers on
convection under a simplified version of the radiative boundary condition called the Robin
boundary condition [17,22,83], but none cover the solid-state regime.

We also study how the radiative boundary condition affects other observables. Those
include the size of the convective cells, their flow rate, the diffuseness of the drafts, and other
things that might be measured by the radars on JUICE and Europa clipper [29, 38, 41, 67].

1Actually, this figure was derived from an experimental law, but the experiments were all performed
above 200K. Since the surface is near 100K, it is possible that the law fails in the upper shell, in which case
the viscosity contrast may be less than 1020. Yet the experiments showed a viscosity range of 104, so that
much is undeniable.
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Our observables also include the heat exchange rate between the ocean and the shell, be-
cause it determines whether the ocean freezes. Finally, we include the critical Rayleigh
number, first unstable mode and growth rate of convection because those things matter to
fluid dynamicists.

The plan of the report is as follows: we start in §2 by describing how we represent the
ice shell; then §3 presents our numerical solver, Dedalus, and the exact equations that we
feed it; The results are presented in §4, and discussed in §5; Finally, we conclude in §6.

2 Model of the Ice Shell

Let us first describe our model of the ice shell. It includes a radiative boundary condition at
the surface, accounts for the high viscosity of ice, and includes the temperature dependence
of viscosity. However, it does not include tidal heating.

We start in §2.1 by choosing the internal equations and the boundary conditions. Then
in §2.2 we solve those equations in the case of a static shell. This provides us with orders of
magnitude for all the variables, helping us adimensionalise the governing equations in §2.3.

2.1 Governing equations

We want a model that is as simple as possible. So, let us make several simplifications right off
the bat: we work in a 2D rectangular box of dimensions (L,H) and axes (x, z); we assume
that the gravitational field is uniform and along z; we pretend that ice is a Newtonian
fluid; we neglect the temperature dependencies of heat capacity, thermal conductivity and
expansivity; and we do not include internal heating.

2.1.1 Internal equations

Since the density of ice does not vary by more than 1% between the top and the bottom of
the shell [66], we can safely make the Boussinesq approximation. It leads to the Oberbeck-
Boussinesq equations

∇ ·u = 0, (1a)

∂tu+ u ·∇u = − 1

⟨ρ⟩
∇p+ b ez +∇ · (ν∇u), (1b)

∂tb+ u ·∇b = κ∇2b, (1c)

where u is the ice’s velocity, ⟨ρ⟩ its average density, p its pressure, b its buoyancy, ν its
kinematic viscosity, and κ its thermal conductivity.

Now, because the viscosity of ice is enormous, we can simpify things further. Indeed, let
us compare the sizes of the inertial, advective and viscous terms in Eq. (1b). If we choose
a lengthscale l and a timescale t, and if we assume the velocity scales as l/t, the ratio of
the r.h.s. terms to the viscous term is l2/t ν. The buoyancy equation gives us l2/t = κ, so
the ratio simplifies to κ/ν. For ice, ν > 1011m2s−1 and κ ∼ 10−6m2s−1 [66, 81], so we can
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neglect the inertial and advective terms in (1b). The internal equations become

∇ ·u = 0, (2a)
0 = −∇h+ b ez +∇ · (ν∇u), (2b)

∂tb+ u ·∇b = κ∇2b (2c)

where h = p/⟨ρ⟩ is a convenient pseudo-pressure. Those are the archetypal equations of
solid-state convection. Physically what happens is that velocity diffuses much faster than
buoyancy. As such, we can work on the slow buoyancy timescale and assume that, at
each instant, the velocity instantly relaxes to a viscous steady state that accommodates the
current buoyancy distribution. This inertia-less regime is called the Stokes regime.

2.1.2 The temperature dependence of viscosity

As stated in the introduction, the macroscopic flow of ice is due to an accumulation of
microscopic deformations. Those are less frequent at low temperature, so the viscosity of
ice skyrockets in the upper shell. We want to include this leading-order effect in our model,
so we follow [19,27,77] and use the Arrhenius law

ν = νm eNν (Tm
T

−1), (3)

where T is the local temperature, Tm is the melting temperature of ice (accounting for an-
tifreeze coumpounds), νm is the viscosity of ice at that temperature, andNν = Ea/RTm ∼ 22
is a dimensionless constant linked to the activation energy Ea of the creep mechanisms.

Note that the internal equations (2) apply to h, u and b, whereas Eq. (3) introduces T .
Therefore, we need a link between T and b. Assuming that the variations in density are
entirely due to thermal expansion, the Boussinesq definition of buoyancy leads to

db =
gα

⟨ρ⟩
dT,

where g is the gravitational acceleration and α the thermal expansivity of ice. Now since b
is only defined up to a constant, we can integrate the equation above to obtain

b = bm +
gα

⟨ρ⟩
(T − Tm), (4)

where bm is an arbitrary constant setting the freezing-point buoyancy.

2.1.3 Boundary conditions

We try to inherit as many of our boundary conditions as possible from the standard Rayleigh-
Benard setup [52]. As such, we use periodic boundary conditions for all the variables on the
sides of the box (Eq. 5a), no-normal-flow boundary conditions at the top and the bottom
of the box (Eq. 5b), and a fixed-temperature boundary condition at the bottom (Eq. 5d).
Indeed, the base of the shell is in phase equilibrium with the ocean, so it must be at the
melting temperature Tm.
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One difference between our setup and Rayleigh-Benard’s is that we use stress-free rather
than no-slip boundary conditions (Eq. 5c). This is because the ocean acts as a lubricant,
and because the shell’s surface is in contact with space.

But the main novelty is in the upper boundary condition on temperature. We want to
study how surface temperature responds to convection, so we need a boundary condition
which reflects the physics that set the surface temperatures of ice shells. The surface layer
receives energy from below by conduction, receives energy from the Sun, and loses energy via
blackbody radiation. Since the layer is infinitely thin, it cannot store energy. So, the influxes
and outfluxes must compensate each other, leading to the radiative boundary condition

−k ∂zT |z=H + F∗ = ϵσ T 4(z = H),

where ϵ is the emmisivity of ice (accounting for pollutants), σ is the Stefan-Boltzmann con-
stant, and F∗ is the portion of the solar flux that enters the shell. Note that if the blackbody
term dominates over the conductive term, we get a fixed-temperature boundary condition.
Conversly, if the conductive term dominates, we get a fixed-flux condition. The radiative
boundary condition covers the continuum between those two common models.

Bringing everything together into a single equation, our boundary conditions are

∀f ∈ {h,u, b}, f(x = 0) = f(x = L), (5a)
uz(z = 0) = 0 and uz(z = H) = 0, (5b)
∂zux|z=0 = 0 and ∂zux|z=H = 0, (5c)
T (z = 0) = Tm, (5d)

k ∂zT |z=H + ϵσ T 4(z = H) = F∗. (5e)

Nota bene: Clarté et al. [22] studies the effect of a slightly simpler boundary condition
called the Robin condition. To obtain it, they introduce a nominal temperature field Tn(z)
that satisfies Eq. (5e). Typically, one would choose for Tn the temperature profile of the
conductive shell. By linearizing the radiative boundary condition around Tn, they get

k ∂zδT |z=H + 4ϵσ T 3
n (z = H) δT (z = H) = 0, (6)

where δT = T − Tn is the deviation to nominal temperature.

2.2 The conductive shell

Our research focuses on the effects of convection, so we need to compare the convective shell
to something else. The relevant point of comparison is the static, conductive ice shell. Let
us derive its characteristics by solving Eqs. (2-5).

The shell is static, so u = 0 and the energy equation (2c) becomes ∆2b = 0. From the
symmetries of the system, it is reasonable to expect that nothing depends on x. Therefore,
the energy equation becomes d2zzb = 0, whose general solution is b = c1 + c2z, where c1 and
c2 are constants. The lower thermal boundary condition (5d) gives c1 = bm, and if we call bs
the surface buoyancy of the conductive shell, we get b = bm + (bs − bm) z/H. Injecting that
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into the momentum equation (2b) gives dzh = bm + (bs − bm) z/H, whose general solution is
h = hm + bmz + (bs − bm) z2/H. Since pressure is only defined up to an additive constant,
we are free to choose hm. So, the only thing left to do is determine bs.

To do so, we inject the buoyancy solution into Eq. (4). It gives T = Tm + (Ts − Tm) z/H,
where Ts is the surface temperature of the conductive shell. The upper thermal boundary
condition (5e) gives

k
Ts − Tm

H
+ ϵσ T 4

s (z = H) = F∗, (7)

which is a fourth-degree polynomial equation. It has an analytical solution, but it looks ter-
rible and does not give much insight. We prefer to solve the equation numerically, using the
insight from Fig. 1-left that Ts ∈ [0, Tm]. These bounds allow us to use iterative root finding
algorithms (dichotomy, Newton, ...) to find Ts. Finally, Eq. (4) gives bs=bm+ gα

⟨ρ⟩ (Ts−Tm).
We define the irradiation temperature T∗ as the temperature the surface of the shell

would take in the absence of conduction: F∗ = ϵσ T 4
∗ . Figure 1-right shows that for icy

moons, Ts is within one Kelvin of T∗. This explains why T∗ is a convenient notation, and
indicates that the conductive term in Eq. (7) is subdominant. This may change in the
presence of internal heating or convection.

Figure 1: Left: Graphical solution to Eq. (7). The equation can be seen as the search for
the intersections between a quartic (heat loss, in yellow) and a line (heat gain, in blue).
There are two such points, one corresponds to a negative temperature (in red) and the
other to a positive temperature (in green). Of course, only the latter matters. As long as
the shell does not receive too much energy from the Sun, Ts is below Tm. Right: Surface
temperature of the conductive shell Ts as a function of the shell’s thickness H and of the
irradiation temperature T∗. The two white dots indicate roughly the positions of the Europa
and Enceladus within that plane. Notice how icy moons are in the regime where Ts ≈ T∗.
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2.3 Adimensional equations

The conductive shell gives us an idea of the size of the different variables. Let us use those
estimates to adimensionalise the equations. We shall use a tilde ˜ to denote adimensionalised
quantities.

First, we choose Ts as our temperature scale, meaning that we define T̃ as T = Ts T̃ .
This choice makes the radiative boundary condition (5e) look simple. Second, we set
∆b = gα

⟨ρ⟩(Tm−Ts) as our buoyancy scale, meaning that we define b̃ as b = ∆b b̃. This choice
leads to the standard definition of the Rayleigh number and makes the link between buoyancy
and temperature (4) look simple. Third, we saw in §2.2 that the important lengthscale is
the vertical size of the box H, so we set x = Hx̃. Similarly, we saw in §2.1.1 that solid-state
convection happens on the thermal diffusion timescale t = H2/κ, so we set t = t t̃. With
those scales and if we adimensionalise velocity as u = [H/t] ũ, the energy equation (2c)
looks simple. Fourth, we choose the basal viscosity νm as our viscosity scale, because it
makes the viscosity law (3) look simple. Finally, we choose h = νm/t as our pressure scale,
because it makes the momentum equation (2b) look simple.

• With all those choices, the internal equations (2) adimensionalise to

∇̃ · ũ = 0, (8a)

0 = −∇̃h̃+ Ra b̃ ez + ∇̃ · (ν̃ ∇̃ũ), (8b)

∂ t̃ b̃+ ũ · ∇̃b̃ = ∇̃2b̃, (8c)

where Ra = gα(Tm − Ts)H
3/κνm is the Rayleigh number of the shell.

• Similarly, the Arrhenius law for viscosity (3) becomes

ν̃ = e
Nν

(
NT
T̃

−1
)
, (9)

where NT = Tm/Ts is a dimensionless number encoding the temperature contrast between
the base of the shell and the surface. This equation is nice because it gives ν̃ = 1 at the
bottom of the box.

• Next, remember that bm is a free parameter. We choose bm = ∆b so that the link between
buoyancy and temperature (4) becomes

b̃ =
T̃ − 1

NT − 1
. (10)

This equation is nice because it gives b̃ = 1 at the bottom of the box, as well as b̃ = 0 at the
top in the conductive case.

• Finally, the adimensional forms of the boundary conditions (5) are

∀f ∈ {h̃, ũ, b̃}, f(x̃ = 0) = f(x̃ = Ar), (11a)
ũz(z̃ = 0) = 0 and ũz(z̃ = 1) = 0, (11b)
∂ z̃ ũx|z̃=0 = 0 and ∂ z̃ ũx|z̃=1 = 0, (11c)

T̃ (z̃ = 0) = NT , (11d)

∂ z̃ T̃ |z̃=1 +
Bi
4
T̃ 4(z̃ = 1) =

Bi
4
N∗, (11e)

where Ar = L/H is the aspect ratio of the box, N∗ = (T∗/Ts)
4 is a dimensionless number

encoding the amount of energy received from the Sun, and Bi = 4ϵσHT 3
s /k is called the
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Biot number. The factor 4 is traditional, it makes the Robin condition look nicer. Figure 2
indicates the typical values of all those dimensionless numbers for icy moons.

Figure 2: Top left: Rayleigh number Ra as function of the shell’s thickness H and of the
irradiation temperature T∗. The white dots indicate roughly the positions of Europa and
Enceladus within that plane. Top right: Same, but for NT . Bottom left: Same, but for N∗.
Bottom right: Same, but for the Biot number Bi.
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3 Numerical Methods

To solve the system formed by Eqs. (8-11), we use the pseudo-spectral code Dedalus [16].
The goal of the present section is to explain briefly how Dedalus works.

We start in §3.1 by explaining how Dedalus discretizes the internal equations using
spectral methods. Then in §3.2 we present the tau method that handlies the boundary
conditions, and in §3.3 we show how the spectral element method helps us deal with the huge
dynamic range in viscosity. Finally, we describe in §3.4 our algorithms to solve initial value
problems (IVPs), boundary value problems (BVPs) and eigenvalue value problems (EVPs),
and we produce in §3.5 some test results that validate our code.

3.1 Spectral, Galerkin, ultra-spherical and pseudo-spectral methods

Computers can only deal with discrete quantities, whereas our equations (8-11) apply to
continuous functions. This problem arises whenever one tries to solve numerically a set of
differential equations of the form A(f) = a, where A is a differential operator. But first, to
keep things simple, let us assume that A is linear, so that Af = a

Spectral methods adress the issue by expanding the solution f over a basis of ‘trial’
functions {ϕj}j∈N and truncating the expansion at some finite order N . If f is infinitely
differentiable, this gives a very precise approximation,

f ≈
N−1∑
j=0

f̂j ϕj .

Indeed, the truncation error goes to zero exponentially, which is the beauty of spectral
methods.

To solve the differential equation, one still needs to find the coefficients f̂j . Galerkin
methods do so by introducing a second basis of ‘test’ functions {ψi}i∈N [61]. The solution
makes Af − a the null function, so ∀i ∈ N, ⟨ψi | Af − a⟩ = 0. We only keep the N first
equations so as to have a well-constrained N ×N linear problem,

∀i < N,
N−1∑
j=0

⟨ψi | Aϕj⟩ f̂j = ⟨ψi |a⟩. (12)

The art is in finding a pair of bases (ϕ, ψ) that makes the matrixMi,j = ⟨ψi | Lϕj⟩ sparse.
The ultra-spherical method is a particular choice of bases that leads to a banded matrix.

In our case, we decompose the solution f(x̃, z̃, t̃) into a sum of separable terms of the form
fx(x̃, t̃)× fz(z̃, t̃). Since the boundary conditions on the sides of the box are periodic, we
use Fourier modes of the form ϕj(x̃) = e2iπ(jx̃/Ar) for fx. Naturally, the test functions that
those trial functions interact best with are themselves. As for fz, our trial functions are the
Chebyshev polynomials of the first kind Tn(z̃) and our test functions are the Chebyshev
polynomials of the third kind Un(z̃). Note that this is only a spectral transform in space,
not time. Consequently, A can only contain spatial derivatives. We will see how to deal
with time derivatives in §3.4.

If the operator A is not linear, we enter the realm of pseudo-spectral methods. To keep
things brief, those methods represent each function twice: once in the spectral domain, once
on a spatial grid. They try to work in the spectral domain as much as possible, but when
they need to evaluate a non-linear term, they (i) use a fast spectral transform to switch to
the spatial domain, (ii) evaluate the non-linear term on the grid points, and (iii) use the
inverse spectral transform to return to the spectral domain.
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3.2 The tau method

The ultra-spherical spectral method gives an approximate solution to the internal equations
Af = a, but we also have boundary conditions. The periodic ones are automatically satisfied
by the Fourier modes used to expand fx, but the top and bottom boundary conditions are
of the form [Bf ](x)=b, where B is a linear functional and x a point on the boundary of the
domain. Each such boundary condition adds a row to matrixM,

∀i < K,
N−1∑
j=0

[Biϕj ](xi) f̂j = bi. (13)

Therefore, the matrix becomes of size (N +K)×N where K is the number of boundary
conditions. M is not square anymore, indicating that the linear problem is over-constrained.

The τ method adresses this issue by adding degrees of freedom called ‘tau terms’ [50].
The internal equations become Af + τ 1 g1 + τ 2 g2 + ...+ τK gK = a, where the τ k are the
extra variables and the gk are linear combinations of the test functions {ψ0, ψ1, ..., ψN−1}.
gk=ψN−k is a good option, because the rows representing internal equations remain sparse:

N−1∑
j=0

⟨ψi | Aϕj⟩ f̂j = ⟨ψi |a⟩ if i < N −K,

N−1∑
j=0

⟨ψi | Aϕj⟩ f̂j + τ k = ⟨ψi |a⟩ if i = N − k.

In fact, we can drop the rows N −K to N − 1, because all they do is give the values of
τ k that allows us to enforce the boundary conditions. So in essence, this version of the tau
method replaces the K last ‘internal equation’ rows (12) by ‘boundary condition’ rows (13).
This is what we use for the numerical experiments with temperature-dependent viscosity.

But in general, this is not the best option. In fact, there is no general theory of what
is the best choice for the gk, only rules of thumb deduced from optimising the solution
to Poisson’s equation in a particular domain. In most of our numerical experiments, we
let Dedalus apply those rules of thumb. But to do so, we need to reframe the internal
equations (8) into their first-order formulation

Tr[G̃u] + τgauge h = 0, (14a)

0 = −∇̃h̃+Ra b̃ ez+∇ · (ν̃ G̃u)+τmom. g(z̃)+τgauge u ex, (14b)

∂ t̃ b̃+ũ · ∇̃b̃+τener. g(z̃) = ∇̃ · G̃b, (14c)

G̃u = ∇̃ũ− ez ⊗ τu g(z̃), (14d)

G̃b = ∇̃b̃− τb g(z̃) ez, (14e)

where the G̃ terms are new variables representing the spatial derivatives of ũ and b̃, they
make the problem first-order in z̃. The tau terms τmom., τener., τu and τb are linked to
the top and bottom boundary conditions on ũ and b̃, the tau term τgauge h enforces the
gauge condition

∫
dx̃ dz̃ h̃ = 0, and τgauge u deals with the gauge condition

∫
dx̃ dz̃ ũx = 0.

The incompressibility condition (8a) is managed by the pseudo-pressure h, which acts as
a Lagrange multiplier. The viscosity law (9), the buoyancy-temperature link (10) and the
boundary conditions (11) remain unchanged.
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3.3 The spectral element method

The viscosity increases by twenty orders of magnitude between the bottom and the top of
the shell. Most of this variation is in the vertical direction, where we expand variables over
the Chebyshev polynomials Tn. For polynomials to cover such a large dynamic range, we
would need their maximal degree N − 1 to be enormous, but that would be expensive.

The spectral element method adresses this problem by breaking the domain into several
cells. The solution f can be seen as a piece-wise function, with one piece f ℓ per cell ℓ. Each
piece f ℓ can then be expanded over the cell’s own trial functions ϕℓi [65]. Interface conditions
at the border between cells ensure that the global solution f is continuous, differentiable,
etc. The benefit of this method is that we keep the fast convergence of spectral methods,
but now each piece of the solution f ℓ only deals with a small dynamic range.

In our case, since the variations in viscosity are mostly vertical, we decompose the box
into L horizontal layers extending from z̃ = ℓ/L to z̃ = (ℓ+ 1)/L. Within each layer, we
use Fourier modes as test and trial functions for f ℓx and (Un, Tn) as test and trial functions
for f ℓz . We only need to impose the continuities of h̃, ũ, b̃, ∂ z̃ ũx and ∂ z̃ b̃ at the interfaces
between layers, because the continuities of ∂ z̃ ũz and ∂ z̃ h̃ follow from the continuity and
momentum equations. To do so, we apply the row-replacement method of §3.2 in each cell.

Note that we only use the spectral element method if viscosity is temperature-dependent.

3.4 Solvers

3.4.1 Initial value problems

Most of our simulations are IVPs: we start from the conductive shell plus a small perturba-
tion, and we watch the perturbation grow over time. The spectral decomposition of §3.1 is
only spatial, so we still need to determine how the coefficients f̂ ℓ

j depend on time. Since the
system (14) is first-order in time, we need a way to solve systems of the form CḞ = D(F)
where F is a vector containing all the f̂ ℓ

j , D is an evolution operator that may contain spatial
derivatives, and C is a matrix indicating which equations contain a time derivative.

IMEX methods separate the linear L and non-linear N parts of the evolution operator,
so that the system becomes CḞ = LF+N (F). The idea is then to discretize time into steps
of finite duration ∆t̃, and to propagate F from m∆t̃ to (m+ 1)∆t̃ using an implicit scheme
for L but an explicit scheme for N . Thanks to the implicit treatment of the linear terms,
IMEX methods tend to be numerically stable.

We use the IMEX method from section 2.6 of Ascher 1997 [6], which is second-order ac-
curate, meaning that its truncation error scales with

(
∆t̃

)2. This Runge-Kutta-like scheme
decomposes each timestep into 6 successive instructions:

F∗
0 ← Fm, (15a)

N1 ← N (F∗
0), (15b)

L1 ← LF∗
1 where CF∗

1 = CFm+γ∆t̃ L1+γ∆t̃ N1, (15c)
N2 ← N (F∗

1), (15d)

L2 ← LF∗
2 where CF∗

2 = CFm+(1− γ)∆t̃ L1+δ∆t̃ N1+γ∆t̃ L2+(1− δ)∆t̃ N2, (15e)
Fm+1 ← F∗

2, (15f)

where γ = (2−
√
2)/2 and δ = (1−

√
2)/(2−

√
2). As advertised, steps (15b) and (15d) are

explicit whereas steps (15c) and (15e) are implicit.
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3.4.2 Boundary value problems

The high viscosity of ice and the low Rayleigh numbers of icy moon shells ensure that
convection does not lead to turbulence. Rather, the instability drives the transition from
one steady state to another.2 Some of our simulations look for this final steady state directly,
by setting the time derivatives to zero.

This leaves a non-linear BVP of the form D(F) = 0. Ideally, we would want a set of
coefficients f̂ ℓj and tau terms τk that solves all the internal equations and all the boundary
conditions. Unfortunately, the non-linear terms mean it is possible that no exact solution
exists. So in practice, we search for a vector F that minimizes the norm of D(F).

Dedalus uses Newton’s method to minimize this ‘error’. One benefit of providing the
symbolic form of the equations is that Dedalus can compute the Jacobian of D symboli-
cally. Precisely, it computes a band-limited approximation of the Jacobian. The algorithm
terminates once the Newton steps have become smaller than a value chosen by the user.

The key is to make a good initial guess F0 that will help the Newton solver converge
quickly to the desired steady state. Our strategy is to start by solving an IVP all the way to
steady state, and use that state as our initial guess. If the parameters of the IVP’s ice shell
are too far from the parameters of the BVP’s shell, we take small steps in parameter space.
The solution of BVPn becomes the initial guess of BVPn+1.

3.4.3 Eigenvalue problems

To study the onset of convection, we consider whether an infinitesimal perturbation to the
conductive shell can grow exponentially over time. To do so, we linearize all the equations
around the conductive shell solution f0, and we assume that the perturbations f1 grow
exponentially in time, f1(t,x) = f ′(x) e−i ω̃ t̃. The internal equations (14) become

Tr[G̃′
u] + τ ′gauge p = 0, (16a)

0 = −∇̃h̃′ + Ra b̃′ ez +∇ · (ν̃0 G̃′
u) + τ ′

mom. g(z̃) + τ ′gauge u ex, (16b)

−i ω̃ b̃′ − ũ′z + τ ′ener. g(z̃) = ∇̃ · G̃′
b, (16c)

where ν̃0 = e
Nν

(
z̃

1−z̃ +1/(NT−1)

)
is the conductive shell’s viscosity. Similarly, we linearize the

boundary conditions (11) to

∀f ′ ∈ {h̃′, ũ′, b̃′}, f ′(x̃ = 0) = f ′(x̃ = Ar), (17a)
ũ′z(z̃ = 0) = 0 and ũ′z(z̃ = 1) = 0, (17b)
∂ z̃ ũ

′
x|z̃=0 = 0 and ∂ z̃ ũ

′
x|z̃=1 = 0, (17c)

T̃ ′(z̃ = 0) = 0, (17d)

∂ z̃ T̃
′|z̃=1 + Bi T̃ ′(z̃ = 1) = 0 (17e)

and the link between buoyancy and temperature (10) to

b̃′ =
T̃ ′

NT − 1
. (18)

2Namely, from the conductive shell to the convective shell.
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The structure of this set of equations is −i ω̃ CF = LF where C and L have the same
abstract meaning as in §3.4.1 (but different values, L ← L+ δN ). If the resolution N is low
enough, Dedalus solves such EVPs using the scipy.linalg.eig routine, which implements
a version of the QR algorithm [25, 26, 48]. Otherwise, Dedalus combines a shift-and-inverse
method with the scipy.sparse.linalg.eig routine, which relies on Arnoldi’s algorithm [5].

3.5 Tests

To verify that our equations and codes are correct, we remove the temperature dependence
of viscosity by setting Nν = 0, and we replace the radiative boundary condition (11e) by a
fixed-temperature boundary condition (in a sense, we take Bi = +∞). This simplifies the
setup to one that has been studied for more than a century: 2D Rayleigh-Benard convection
with fixed-temperature and stress-free boundary conditions. That gives us a wealth of results
against which to validate our code.

3.5.1 Onset of convection

Let us start with the onset of convection. We show in §A that, with the present set of
boundary conditions, (i) the linear instability appears when Ra > 27

4 π
4 ≈ 658 and (ii) the

horizontal wavenumber of the fastest-growing (or most-slowly-decaying) mode is

k̃2x =

3

√√
729Ra4π4 + 27Ra3 + 27Raπ2

3
− Ra

3

√√
729Ra4π4 + 27Ra3 + 27Raπ2

− π2.

We use those two predictions to validate our EVP solver in Fig. 3. Note that for each
Rayleigh number Ra, we vary the aspect ratio Ar to maximise the growth rate Im(ω̃).
Indeed, our finite box only allows a discrete set of modes k̃x = j/Ar, j ∈ N, which does not
contain the fastest growing mode unless Ar is optimal.

It is also possible to use an IVP simulation to estimate the growth rate. Indeed, there
exists a period3 during which plotting ln (

√∫∫
dx̃ b̃21 ) against t̃ gives a straight line whose slope

is the growth rate. At Ra = 103, we find a growth rate of Im(ω̃) = 7.5± 0.5. This in good
agreement with the analytical prediction, Im(ω̃) = 7.96, so we see this as a first validation
of our IVP solver. The numerical result is a bit low because we cannot optimise Ar for an
IVP simulation, the best we can do is take Ar large so that one of the allowed mode is close
to the fastest growing mode. We took Ar = 64.

3.5.2 Convective steady state

The infinitesimal perturbations grow exponentially in time, until they are so big that the
quadratic term in (14c) becomes significant, causing the instability to saturate. Since we
consider low Rayleigh numbers, convection should saturate in a steady state. We verify this

3Once the fastest growing mode dominates all others, but before the non-linear effects become relevant.
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Figure 3: Left: Growth rate Im(ω̃) of the fastest-growing (or most-slowly-decaying) in-
finitesimal perturbation as a function of the Rayleigh number Ra. The growth rate becomes
positive when Ra = 658, exactly as expected for Rayleigh-Benard convection (with fixed-
temperature and stress-free boundary conditions). Right: Horizontal wavenumber k̃x of the
fastest-growing infinitesimal perturbation as a function of the Rayleigh number Ra. The
agreement between our numerical results and linear theory is excellent.

by introducing the steadiness parameter

S(t̃) =

√∫∫
dx̃

[
b̃1(x̃, t̃)− b̃1(x̃, t̃− 1)

]2
√∫∫

dx̃ b̃21(x̃, t̃)

(19)

and checking that it is below 10−2 throughout the last time unit of our IVP simulations.
The updrafts of hot ice and downdrafts of cold ice accelerate heat exchanges between

the base and the surface. This is characterised by the Nusselt number

⟨Nu⟩ =
∫

dx̃

Ar
dz̃ Tconv.|z̃=0

dz̃ Tcond.|z̃=0
. (20)

We average over x̃ because, at steady state, layers cannot store energy, so
∫
dx̃ dz̃T becomes

independent of z̃. And indeed, the conductive and convective shells are both steady. We
show in Fig. 4-left that our numerical predictions for ⟨Nu⟩ are in excellent agreement with
the results of [36]. This is a second validation of our IVP solver.

We also quantify the horizontal size of the convective cells by locating the zeros of

R(x̃) =

∫
dz̃ b̃1 −

∫∫
dx̃

Ar
dz̃ b̃1.

They indicate the boundaries between updrafts and downdrafts, so we can use the distance
λ̃ between a zero and the second next to measure the horizontal size of a convective cell.
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Different cells might have different λ̃, so we plot the mean and standard deviation of λ̃
in Fig. 4-right. We use Ar = 64 to get many cells and thus good statistics. We find that
once Ra is large enough, the cell size increases with Ra. This may be surprising, since the
wavelength of the fastest growing mode always decreases with Ra. What happens is that
cells merge to form convective superstructures [21,49,63]. Reproducing this well-established
behavior validates our IVP solver in a third, independent way.

Figure 4: Left: Mean Nusselt number at steady state ⟨Nu⟩ as a function of the Rayleigh
number Ra. The agreement with [36] is tight, even though we used WebPlotDigitizer to
recover the data in their figure 5.14. Right: Mean horizontal size of the convective cells at
steady state λ̃ as a function of the Rayleigh number Ra. Once Ra is large enough, the cell
size increase with Ra, indicating the formation of convective superstructures.

In theory, we could also use a BVP solver to predict the rate of heat transport and the
size of the convective cells. Unfortunately, we found that Newton’s algorithm very easily
diverges when faced with Eqs. (14). Consequently, we could not validate nor use the BVP
solver described in §3.4.2.

4 Results

Let us now replace the fixed-temperature boundary condition used during testing by the
radiative boundary condition (11e).4 This will allow us to quantify the effect of convection
on surface temperature, and also to characterise the effect of a radiative boundary condition
on the onset of convection (4.1), the structure of convective rolls (4.2), and the rate of heat
transport (4.3).

4We use a uniform viscosity (Nν = 0) in this section.
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4.1 Onset of convection

First, let us study how the radiative boundary condition affects the onset of convection.
This will inform future studies of shell thickness evolution(e.g. [76])

First, the radiative boundary condition contains a highly non-linear term (T 4) that could
make the instability sub-critical. To check this idea, we plot in Fig. (5) some transition
diagrams for convection. However, we find that whatever the value of the Biot number,
the transition remains super-critical. We will see in §4.3 that this is because the surface
temperature perturbations remain small, so the T 4 term can safely be linearized.

Figure 5: Transition diagram for three values of the Biot number Bi. The horizontal axis
gives the Rayleigh number Ra and the vertical axis measures the strength of convection
at steady state via the maximum bouyancy perturbation b̃1. The dots represent our IVP
simulation data and the lines indicate the critical rayleigh numbers for the onset of con-
vection Rac (as given by our EVP solver). In all three cases, the perturbations become
infinitesimal as we approach Rac from above, meaning that the instability is super-critical.

Since the transition remains super-critical, we study how the critical Rayleigh number
and fastest growing mode are impacted by the radiative boundary condition. Specifically,
we consider the effect of Bi, because N∗ does not appear in the linearized equations (16)
and (17). We find in Fig. 6 that the fastest growing mode is almost independent of Bi.

However, the critical Rayleigh number lowers from 658 in the large-Biot (fixed temper-
ature) limit to 390 in the small-Biot (fixed flux) limit. This does not necessarily mean that
small-Biot shells are less stable. Indeed, Fig. 2 indicates that if the small Biot number is
obtained by reducing the shell thickness H, then the Rayleigh number drops by so much
that the shell actually gains stability. Conversely, if the small Biot number is achieved by de-
creasing the irradiation temperature T∗, then the Rayleigh number remains nearly constant,
and a stable shell can become convective.
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Figure 6: Left: Critical Rayleigh number for the onset of convection Rac as a function of
the Biot number Bi. Rac is 40 % higher in the fixed-temperature limit (Bi≫ 1) than the
fixed-flux limit (Bi≪ 1). The transition between the two regimes occurs from Bi = 10−1

to Bi = 102. Icy moons typically live outside this transition zone (Bi > 103, see Fig. 2).
Right: Horizontal wavenumber k̃xof the fastest growing mode as a function of Ra, for two
extreme values of Bi. The radiative boundary condition has little impact on this observable.

4.2 Bulk structure observables

The radars on JUICE and Europa clipper may detect the horizontal ice density variations
that characterise convection. The goal of the present subsection is to quantify how the
radiative boundary condition affects the structure of those convective rolls. It will help
interpret the upcoming radar data.

We start with the amplitude of the density perturbations in Fig. 7-left. Since dρ= ⟨ρ⟩
g db

and b = gα
⟨ρ⟩(Tm − Ts) b̃, we have ρ1 = α(Tm − Ts) b̃1. Therefore, b̃1 is a proxy for the density

variations, with the added benefits of adimensionality. We find that b̃1 is unaffected by N∗
but is almost 40% higher in the fixed-flux limit than the fixed-temperature limit. The true
density perturbations ρ1 can gain even more percentage points if the small Biot numbers
are achieved by decreasing T∗, because then Ts decreases and Tm − Ts increases. That being
said, the icy moons of the Solar System live well into the fixed-temperature regime. Using
Tm = 273K, Ts = 100K, α(Tm) = 6× 10−5K−1, and α(Ts) = 10−5K−1 [66], we predict rel-
ative density perturbations of 0.4% in the lower shell and 0.07% near the surface.

We also study the horizontal size λ̃ of the convective cells in Fig. 7-right. We find that
the cells grow by about 10% from the fixed-temperature regime to the fixed-flux regime.
But once again, the icy moons of the Solar System live in the fixed-temperature limit, so
using a radiative boundary condition does not lead to significantly better predictions than
a Dirichlet boundary condition.

18

130



Figure 7: Left: Amplitude of the horizontal fluctuations in ice density due to convection, as
a function of the Biot number Bi and the irradiation number N∗. We use b̃1 as a proxy for
the density perturbation because ρ1 = α(Tm − Ts) b̃1. If Ts is kept constant, the variations in
ice density are ∼40% larger in the fixed-flux limit than in the fixed-temperature limit. The
transition between the two regimes occur between Bi = 10−2 and Bi = 102. Right: Mean
horizontal size λ̃ of the convective cells as a function of Bi and N∗. Cells are ∼10% larger
in the fixed-flux limit, and the effect of N∗ is not significant.

Figure 8: Left: Example of diffuse drafts (top) and sharp drafts (bottom). The color scale
represents temperature, with red being hot and white being cold. To give a point of reference,
the diffuseness parameter of the top shell is D̃ = 0.55, that of the bottom shell is D̃ = 0.25.
Right: Mean diffusinesss of the convective drafts D̃ as a function of Bi and N∗. Drafts are
more diffuse in the fixed-flux limit, and the effect of N∗ is not significant.
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Finally, convective cells of similar size can be more or less diffuse, as shown by Fig. 8-left.
To quantify this, we introduce a diffuseness parameter D̃. Specifically, we define a convective
cell as the region between a zero of R(x̃) and the second next zero. Within a given cell, we
consider

T (x̃) = b̃1(z̃ = 0.25)−
∫

dx̃

Ar
b̃1(z̃ = 0.25)

and define D̃ as the full width at 75% maximum of that quantity. This definition is by
no means perfect, but it is robust enough for our purposes. We find in Fig. 8-right that
convective drafts are already quite diffuse in the fixed-temperature limit (D̃ = 0.55 is a high
value, as shown by Fig. 8-left). Yet, they become even more diffuse in the fixed-flux limit,
by 25%. The increase in cell size accounts for half of those twenty-five percents, but the
other half represent genuine variations of the cell structure with Bi.

4.3 Thermal observables

Convection is a heat transport mechanism, so we can expect it to strongly affect thermal
observables. The heat flux from the ocean to the shell is particularly important, because
it controls whether the ocean freezes and how quickly. We already know from Fig. 4-left
that in the fixed-temperature limit, convection increases by 70% the rate of vertical heat
transport. In the fixed-flux limit, the vertical heat flux is imposed by the upper boundary
condition, so convection cannot affect it. Figure. 9-left confirms those predictions, shows
that the transition between the two regimes is monotonous, and indicates that the typical
Biot number of icy moons, Bi = 103, is well inside the fixed-temperature regime.

Finally, remember that the main motivation for the present study is studying surface
temperature. We hope that convection has a strong enough effect on this observable that
we could detect it in Cassini’s spectrometric data. Alas, Figure 9-right indicates that the
mean difference in surface temperature between a convective shell and a conductive shell is
less than 1K, and the order of magnitude remains identical when we consider the maximal
difference. Cassini’s uncertainties in surface temperature were of order 10K [84], so the
signal-to-noise ratio is 0.1. The prospects of recovering the convective signal are bleak.

5 Discussion

The previous section gave a factual account of our numerical experiments. Let us now
analyze the meaning of our results (§5.1), and show that they correspond to intuition (§5.2).

Of course, our numerical model overlooks several important physical effects. So, the goal
of the present section is also to examine critically the robustness of our results. We shall
focus on the two missing effects we believe are most relevant: the temperature-dependence
of viscosity (§5.3), and internal heating (§5.4).

5.1 Meaning of our results

First, we found that convection has almost no impact on the surface temperature of icy
moons. This implies that we cannot use Cassini’s data to detect convection. Indeed, its
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Figure 9: Left: Mean Nusselt number at steady state ⟨Nu⟩ as a function of the Biot num-
ber Bi and irradiation number N∗. As expected, in the fixed-flux limit, the vertical heat flux
is fixed by the boundary conditions. In the fixed-temperature limit, convection accelerates
heat transport by a factor 1.7. This regime starts when Bi > 102. N∗ does not affect heat
transport. Right: Difference in mean surface temperature between conductive shells and
convective shells, as a function of shell thickness H and irradiation temperature T∗. Those
simulations were all run with radiative boundary conditions and Rayleigh number Ra = 103.
The impact of convection on Europa and Enceladus’ surface temperature is less than 1K.

signature is drowned by the instrument’s noise, and is dwarfed by other uncertainties (over
ice conductivity, shell thickness, etc.).

Second, we found that the radiative boundary condition has almost no impact on the
onset of convection, heat transfert efficiency, or bulk structure. This means that, in order to
minimize complexity, future models can safely use a fixed-temperature boundary condition.

5.2 Rationale for our results

The underlying reason for our two results is the same: the transition between the fixed-
temperature and fixed-flux regimes occurs between Bi = 10−2 and Bi = 102. Since icy moons
typically have Bi > 103, they are well inside the fixed-temperature regime.

Another, perhaps more intuitive way to phrase this is that the surface layer of icy moons
receives much more energy from the Sun than from the lower shell. For instance, on Ence-
ladus the Solar flux is of order 101W/m2, whereas the conductive flux is ∼ 10−2W/m2.
Therefore, even though convection nearly doubles the condutive term of Eq. (5e), this term
remains negligible. Consequently, the blackbody term is slaved to the Solar term, and that
fixes the temperature.
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5.3 Temperature-dependence of viscosity

Even though our equations (8-11) cover the temperature dependence of viscosity, we only
present constant-viscosity results in §4. This will need to be improved before publication.

Indeed, the extreme viscosity of ice in the cold upper shell has a leading-order effect on
bulk structure (it creates a stagnant lid [79]), and the strong non-linearity of ν(T ) has a
leading-order effect on the onset of convection (it makes the transition sub-critical [10,80]).

We only had time to investigate the effect of a temperature-dependent viscosity on the
linear onset of convection. We find in Fig. 10 that the effect of the radiative boundary
condition, which was already small in §4, becomes minuscule. We suspect this is due to the
stagnant lid creating a diffusive buffer between the surface of the shell (where the boundary
condition acts) and its lower layers (where convection occurs). If our interpretation is correct,
then we expect the effect of the radiative boundary condition on any observable to be weaker
when viscosity depends on temperature.

Figure 10: Critical Rayleigh number for the onset of convection Rac as a function of the
viscosity number Nν , for two extreme values of the Biot number Bi. When Nν > 5, the small
effect of the radiative boundary condition on the linear onset of convection disappears.

5.4 Internal heating

We said in §5.2 that the radiative boundary condition (5e) has little effect because the
conductive term is tiny compared to the Solar term. In our current model, the conductive
term directly reflects the transfer of energy from the ocean to the shell. But in reality, the
shell has access to another source of energy: internal heating.

The dominant source of internal heat is tidal friction, although shear friction and ra-
dioactive decay also play a role. If we combine figures 2 and 3 of [87], we find that tidal
heating could amplify the conductive flux at the surface from 10−2W/m2 to 10−1W/m2.

This value remains small compared to the Solar flux (101W/m2), so internal heating
should not be sufficient to drive the shell out of the fixed-temperature regime. Therefore, we
believe that our conclusions on surface temperature and the futility of a radiative boundary
condition will remain valid in the presence of internal heating.
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6 Conclusion

In this report, we present simulations of Rayleigh-Benard convection in the Stokes regime
and with a radiative boundary condition. Our goal was to investigate the impact of solid-
state convection on the surface temperature of icy moons.

Our logic was that convection is a heat transport process. As such, it should bring warm
material close to the surface, thereby increasing the mean surface temperature and creating
temperature anomalies above updrafts. If those effects are strong enough, we could use the
surface temperature data from Cassini’s composite infraRed spectrometer (CIRS) to detect
convection (or eliminate the possibility of it).

A dataset making a convincing case for or against convection would be extremely valu-
able. Indeed, by regulating heat transport, convection controls the life expectancy of a pos-
sible ocean before complete freezing. Additionally, by regulating the delivery of oxidants,
convection controls the maximum biomass that the ocean could support.

Alas, we find that solid-state convection in the ice shell has very little impact on the
surface temperature of icy moons. The signal is at most 1K, small compared to CIRS’ 10K
noise level. Therefore, we conclude that surface temperature measurements will not help
answer the convection question.

We were also wondering what effect the radiative boundary condition has on other ob-
servables. Specifically, we focused on the onset of convection, the rate of heat transport, and
bulk structure. Once again, we find all effects to be tiny. Therefore, we conclude that the
radiative boundary condition is futile: a fixed-temperature boundary condition is simpler,
and precise enough for any practical purpose. This should marginally simplify the analysis
of JUICE and Europa Clipper’s data.

Our models ignore many physical effects. Our simulations are 2D; the geometry is
Cartesian instead of spherical; the ice shell cannot deform, melt, or fracture; there is no
Equator-to-pole mean flow like on Europa and Enceladus [7, 42]; etc. We think that the
most important missing effects are the temperature dependence of viscosity and internal
heating. But as discussed in §5.3 and 5.4, we expect that the former will strengthen our
conclusions, and that the latter will be too weak to affect our findings.

Of course, at the moment, those claims lack credibility. Before submitting our results to
a journal, we will run new simulations and verify that internal heating and the temperature
dependence of viscosity do not overturn our conclusions.
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A The linear onset of Rayleigh-Benard convection

In §3.5.1 we made some statements about the onset of 2D Rayleigh-Benard convection with
stress-free and fixed-temperature boundary conditions. Let us now justify those statements.

We decompose each variable f into a background term f0 and a perturbation term f1.
We will take the conductive shell structure as our background. This leads to the linear
perturbation equations of Rayleigh-Benard convection,

∇̃ · ũ = 0, (21a)

0 = −∇̃h̃1 + Ra b̃1 ez + ∇̃2ũ1, (21b)

∂t̃b̃1 − ũ1,z = ∇̃
2b̃1. (21c)

We still have periodic boundary conditions on the sides of the box, so we can decompose
any solution in Fourier modes of the form f1(x̃, t̃) = f̂1(z̃) e

i (k̃xx̃−ω̃t̃), where k̃x is a horizontal
and adimensionalised wavevector. Equations (21) become

i k̃xû1,x + dz̃û1,z = 0,

0 = −i k̃x ĥ1 − k̃2x û1,x + d2z̃z̃û1,x,

0 = −dz̃ ĥ1 + Ra b̂1 − k̃2x û1,z + d2z̃z̃û1,z,

−i ω̃ b̂1 − û1,z = −k̃2x b̂1 + d2z̃z̃ b̂1,

which, after four lines of linear algebra, combine to{k̃2x − d2z̃z̃ − iω̃
}
×

{
k̃2x − d2z̃z̃

}2

Ra k̃2x
− 1

 û1,z = 0. (23)

This is a 6th-order, linear ordinary differential equation (ODE) with constant coefficients.
As such, if the characteristic polynomial has distinct roots, the general solution is

û1,z(z̃) =

6∑
i=1

Ci e
i k̃z,i z̃,

where the Ci are integration constants and the k̃z,i are the natural vertical wavenumbers of
the system. And if we consider only the non-travelling modes, for which ω̃ is real, then the
ODE has only real coefficients, so the general solution simplifies to

û1,z(z̃) =
3∑

i=1

Ai cos (i k̃z,i z̃) +Bi sin (i k̃z,i z̃).

Now we need to meet the (linearized) boundary conditions. They become, after the
Fourier decomposition and a few algebraic simplifications,

û1,z(z̃ = 0 or 1) = 0, (24a)

û
(2)
1,z(z̃ = 0 or 1) = 0, (24b)

û
(4)
1,z(z̃ = 0 or 1) = 0. (24c)

136



If we inject the (real) general solution into those boundary conditions, we obtain the linear
problem 

1 1 1 0 0 0

k̃2z,1 k̃2z,2 k̃2z,3 0 0 0

k̃4z,1 k̃4z,2 k̃4z,3 0 0 0

m1,1 m1,2 m1,3 1 1 1

m2,1 m2,2 m2,3 k̃2z,1 k̃2z,2 k̃2z,3
m3,1 m3,2 m3,3 k̃4z,1 k̃4z,2 k̃4z,3





A1

A2

A3

sin (k̃z,1)B1

sin (k̃z,2)B2

sin (k̃z,3)B3


= 0,

where the mi,j coefficients are irrelevant. Indeed, the matrix is lower triangular, with both
diagonal blocks being Vandermonde matrices. Since we assumed that the vertical wavenum-
bers are all different, the matrix must be invertible. As such, the only non-trivial solutions
appear when one of the k̃z,i = nπ, n ∈ Z∗.

Consequently, we decompose any solution to Eqs. (21) into full Fourier modes of the
form f1(x̃, t̃) = f̂1 sin (nπz̃) ei(k̃xx̃−ω̃t̃). This automatically verifies the boundary conditions,
and Eq. (23) becomes{k̃2x + (nπ)2 − iω̃

}
×

{
k̃2x + (nπ)2

}2

Ra k̃2x
− 1

 û1,z = 0,

which leads to the dispersion relation

ω̃ = −i

k̃2x + (nπ)2 − Ra k̃2x{
k̃2x + (nπ)2

}2

 . (25)

This shows an instability if Im(ω̃) > 0, i.e. if

Ra >

{
k̃2x + (nπ)2

}3

k̃2x
≥ 27

4
π4

From Eq. (25) we also get the wave-numbers of the fastest growing mode as a function of
Ra. This involves solving a cubic equation, but eventually we get

k̃2x =

3

√√
729Ra4π4 + 27Ra3 + 27Raπ2

3
− Ra

3

√√
729Ra4π4 + 27Ra3 + 27Raπ2

− π2.
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1 Introduction

Chemical transport in stars can be intricately related to the star evolution process. Trans-
port plays a crucial role in the redistribution of elements within a star, affecting its overall
evolution and lifecycle. One of the mechanisms driving the chemical transport in stars can
be internal gravity waves (IGWs). Internal waves are ubiquitous phenomena observed in
planetary atmospheres and oceans. They play a critical role because they transport angular
momentum and can contribute to chemical mixing. Cores of main-sequence intermediate-
and high-mass stars exhibit convective behavior, which is responsible for the excitation of
IGWs [1, 2, 3, 4]. These waves are believed to be involved in physical processes including
stellar rotation, chemical mixing, and magnetism.

Main-sequence intermediate and high-mass stars feature a radiative envelope that pro-
vides a supportive environment for the propagation of IGWs [5]. To better understand these
environments, we must consider the properties of the radiative zones in stars. Figure 71
in the review paper by Jermyn, et al. (2022), predicts the Prandtl number (Pr) for main-
sequence stellar models, revealing that the Prandtl number is very small for these stars
[6]. This indicates that chemical diffusivity D is much smaller than radiative diffusivity
κ with an order of D/κ ∼ 10−5. Low-frequency waves are strongly impacted by radiative
effects as they propagate, with radiative diffusivity being of major importance since it is
the primary mechanism that damps the waves. Another property of the radiative zone is
its low viscosity ν ∼ D, which is a relatively minor effect in our problem consideration.

The internal gravity waves in stars are found to be weakly nonlinear. The prediction
of amplitude spectra of internal gravity waves from simulations in [5, 7] suggests that the
amplitude of internal gravity waves in the radiative zone decays quickly with radius away
from the convective core. Nonlinear effects linked to large amplitude IGWs may be relevant
just near the boundary of the convective core. Therefore, we do not consider strongly
nonlinear waves or wavebreaking in our problem, which is different from the problems in
oceans where wavebreaking happens frequently. However, the observation of IGWs excited
by turbulent convection in stellar interiors is challenging.

In our project, we are particularly interested in the chemical mixing induced by IGWs
in stars. Previous work has explored how fresh hydrogen fuel can be mixed into the core
through convective near-boundary mixing [8, 9, 10, 4]. However, a critical question remains:
does the mixing in the radiative zone occur solely due to IGWs [11, 12, 13]? Chemical
transport in the radiative zone can influence whether chemical elements generated in the
nuclear burning region are transported to the surface and whether fuel is brought back to
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the burning region, potentially leading to a more massive core. These processes could have
significant implications for the evolution and observable properties of the main-sequence
intermediate and high-mass stars.

To understand the overall transport processes in stellar interiors, it is crucial to focus on
the vertical transport of concentration and consider the horizontal mean of concentration.
A stellar structure model is fundamentally a one-dimensional, spherically symmetric repre-
sentation of a star, aiming to determine the spherically-averaged concentration of various
elements. This model typically solves a reaction-diffusion equation of the form:

∂c

∂t
=

1

r2
∂

∂r

(
r2D

∂c

∂r

)
+R(c),

where R(c) represents the reaction term, D denotes the diffusivity, and c = c(r, t) is the
concentration as a function of radius and time. The objective is to determine the diffusivity,
which generally varies with radius. Given that c is the spherically-averaged concentration,
it is essential to ascertain the evolution equation for the spherical average of c.

There have been several previous studies on the amount of chemical mixing by IGWs,
though their results have shown considerable variation. Rogers & McElwaine (2017) intro-
duced tracer particles in their 2D simulation to study whether wave mixing can be treated
diffusively, showing that diffusion is proportional to the square of the wave amplitude, i.e.,
D ∝ a2 [11]. A follow-up study by Varghese, et al (2022), indicated that the radial diffusion
profile depends on the simulation time [12]. When comparing these two studies for the
mid-main sequence stars with nominally similar parameters, for example, figure 2 in [11]
and figure 7 in [12], the diffusion rates differed by an order of magnitude approximately 105.
Additionally, Jermyn (2022) conducted a theoretical calculation that retained both thermal
and chemical diffusivity Dµ, yielding the result of D ∝ D2

µa
4 [13]. This is a different con-

sideration from our problem, which focuses on determining how much transport is caused
by radiative diffusion only.

In the following report, we will first discuss the problem setup and provide a brief review
of the IGW solutions within the framework of the Boussinesq approximation. Section 2 will
describe our methods, including the quasilinear decomposition of chemical transport, the
Lagrangian framework, and the simulation setup. Section 3 will present the theoretical
results of chemical transport by IGWs using multiscale asymptotic analysis. Transport is
quantified as a diffusive equation. Section 4 will present the simulation results of transport
and compare these findings with our asymptotic predictions. Finally, Section 5 will discuss
the implications of our results and directions for future research.

Problem setup

We consider a 2D model with a passive tracer field in a non-rotating, stratified medium
within a uniform gravitational field −gez. In the linearized Boussinesq approximation when
the fluid buoyancy is subject to a small variation b = b0 + b′ and pressure is also perturbed
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as p = p0 + p′, we obtain the following normalized system

∂u

∂t
+∇p− bez = −u · ∇u, (1a)

∂b

∂t
− κ∇2b+N2w = −u · ∇b, (1b)

∇ · u = 0, (1c)

where the prime notation is dropped for simplicity, u = (u, v) is the velocity field, p is the
pressure perturbation, b is the buoyancy, κ is the radiative diffusivity, and N2 = db/dz is
the buoyancy frequency. The transport equation for chemical concentration c is given by

∂c

∂t
+ u · ∇c = 0, c(x, t = 0) = c0, (2)

which describes the evolution of the chemical concentration over time due to advection by
the fluid flow, without considering chemical diffusivity.

Background of IGWs

To understand the behavior of internal gravity waves (IGWs) in such environments
[14, 15, 16, 17], we start with the case of κ = 0 and neglect the nonlinear terms on the right
hand side of the linearized Boussinesq approximation (1). In this case, the solutions are

u = u′ exp(i(kh · x+ kzz − ωt)), b = b′ exp(i(kh · x+ kzz − ωt)) (3)

where kh represents the horizontal wavenumber, kz is the vertical wavenumber, and ω is
given by the dispersion relation

ω2 = N2 k2h
k2h + k2z

, |ω| < N.

In stars, radiative diffusion transports energy but also dampens waves. Next, we consider
the linear system with κ > 0, where radiative diffusion is present. In this case, the solution
of the system is

u = u′ exp(i(kh · x+ kzz − ωt))e−z/µ. (4)

With fixed wavenumber kh and frequency ω, we have the dispersion relation for vertical
wavenumber kz = kz(kh, ω) and damping rate µ = µ(kh, ω) (see, e.g. [17]). In the limit of
weak dissipation and ω ≪ N , the damping rate can be approximated as

µ ≈ 2ω4

κN3k3h
.

Several important properties emerge from this framework. The group velocity vg is per-
pendicular to the phase velocity vph, and the velocity u is perpendicular to the wave vector
k. Notably, plane waves are also exact solutions to the nonlinear Boussinesq system (1).
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2 Method

2.1 Quasilinear decomposition

The quasilinear decomposition considers a theoretical framework used to simplify the anal-
ysis of fluid dynamics by separating the variables into mean fields and fluctuating compo-
nents. This is realized by linearizing the small fluctuations around the mean fields. To
analyze the transport processes in our study, we decompose c(x, t) into a horizontal mean
and a fluctuating component

c(x, t) = c0(z, t) + c1(x, t).

Substituting it into the transport equation (2) and after manipulations, we obtain the
equations governing the mean and fluctuations of c in the absence of mean flow

∂c0
∂t

+
∂

∂z
⟨wc1⟩ = 0 and

∂c1
∂t

+ w
∂

∂z
c0 = 0, (5)

where ⟨·⟩ represents the horizontal average. Consider a single plane wave solution of the
form

w = a cos(khx+ kzz − ωt)e−z/µ.

The ansatz for c1(x, t) is taken as

c1(x, t) = α1 sin(khx+ kzz − ωt)e−z/µ + α2 cos(khx+ kzz − ωt)e−z/µ.

Solving Equation (5) yields α1 =
w1
ω ∂zc0(z, t) and α2 = 0. In this case, ⟨wc1⟩ = 0, indicating

that c0(z, t) = c0(z, 0), meaning the mean concentration remains constant over time.
Leveraging the method of quasilinear decomposition, we observe that a single plane

wave does not contribute to transport in either linear or nonlinear systems due to the fact
that plane waves are exact solutions to the Bousinessq systems and u · k = 0. This means
that there is no net transport in such configurations. However, beams, or interactions of
waves with different wave numbers, introduce complexities that allow for the possibility of
transport.

2.2 Lagrangian framework

The theoretical study of transport by waves utilizes the Lagrangian framework to analyze
the flow field [18, 19]. The Lagrangian framework involves tracking specific fluid parcels as
they move through space and time. This approach contrasts with the Eulerian framework,
which observes fluid motion at fixed points in space. However, to analyze mean velocities
accurately, corrections known as Stokes drift must be applied [20]. Stokes drift refers to the
correction needed for the mean velocity due to wave-induced motion and is defined as

uS = (ξ · ∇)u,

where (·) is average over time, u is the fluid velocity, and ξ = ξx̂ + ζẑ represents the
displacement of fluid parcels. This displacement evolves according to ∂ξ/∂t = u with
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ξ0 = 0 as the initial condition. The Lagrangian mean velocity uL is then composed of the
Stokes drift velocity uS and the Eulerian mean velocity uE , i.e.,

uL = uS + uE .

Here, uS can be derived from the linear system which we will show in the next paragraph,
while uE arises from the nonlinearity in the system and will be obtained using multiscale
asymptotic analysis in Section 3.

The Stokes drift arises when we impose two plane waves propagating at an angle. Con-
sider, for instance, waves with wavevectors k = khx̂ + kzẑ and k = −khx̂ + kzẑ [13], so
that

w(x, z, t) = a
[
cos(khx+ kzz − ωt)e−z/µ + cos(−khx+ kzz − ωt)

]
e−z/µ, (6)

where the wavenumber kz = kz(kh, ω) and damping rate µ = µ(kh, ω) satisfy the dispersion
relation. This configuration results in the following expressions for the Stokes drift velocities

uS =
1

2π/ω

∫
(ξ∂xu+ ζ∂zu) dt =

2a2kz
khµω

e
− 2z

µ sin(2khx), (7a)

wS =
1

2π/ω

∫
(ξ∂xw + ζ∂zw) dt =

2a2kz
ω

e
− 2z

µ cos(2khx). (7b)

To understand the transport equation for linear motion in terms of the Stokes drift using the
quasilinear decomposition (5), consider again the superposition of two waves propagating
in opposite directions as described by (6). We assume an ansatz for solving c1(x, z, t) in (5)
in the form

c1(x, z, t) = [α1 cos(khx+ kzz − ωt) + α2 sin(khx+ kzz − ωt)

+α3 cos(−khx+ kzz − ωt) + α4 sin(−khx+ kzz − ωt)] e−z/µ.

Solving Equation (5) yields α1 = α3 = 0 and α2 = α4 =
a
ω∂zc0(z, t). Consequently, we have

u · ∇c1 = uS · ∇c0. However, the zero horizontal average of ⟨uS · ∇c0⟩ indicates there is no
vertical transport at the leading order.

When considering the interaction of waves, we note that in the linear system, the Stokes
drift is the mechanism that drives the transport of particles. In the nonlinear system, the
interaction of wave vectors, u1 ·k2+u2 ·k1+ · · · ̸= 0, indicates a more complex mechanism
where we expect wave interactions can provide transport as also suggested in [13].

2.3 Simulation

We use the DEDALUS pseudo-spectral code simulation [21] to investigate the chemical
transport induced by IGWs in stars. We solve the Boussinesq equations (1) in 2D with
boundary conditions to make waves from the boundary z = 0 and solve the transport
equation (2) simultaneously in DEDALUS.

For the linear Bousinessq system, we impose boundary conditions for waves as

w(x, z = 0, t) =
∑
n

an cos(k
(n)
h x− ωt)F (t), w(x, z = L, t) = 0, (8a)

F (t) =
1

2

(
tanh

t− t0
T0

− tanh
t− t1
T0

)
, (8b)

149



where [0, L] is the domain for z, t0 and t1 represent the times at which the wave forcing
is turned on and off, respectively. The function F (t) ensures a smooth transition of wave
forcing with constant T0. To assess net transport, we will compare the chemical concentra-
tion before and after the wave is turned on and off, respectively. Initially, we simulate two
waves, but this can be extended to multiple pairs of interactions for further analysis. The
linear boundary condition at z = 0 for the buoyancy b in (1) satisfies

∂b

∂t
+N2w = 0,

where diffusion is excluded at the bottom boundary. Near the top boundary z = L, we
apply a damping layer to absorb the waves at the top and avoid wave reflection so that

∂b

∂t
− κ∇2b+N2w = −bG(z), G(z) =

1

2
[1 + erf((z − z0)/σ)], (9)

where σ is constant to smooth the function andG(z) is a localized damping function ensuring
that b is fully damping at the top. Thereby, we apply the top boundary condition to be
b(x, z = L, t) = 0.

To analyze the chemical transport, we initialize the concentration field as c(z, 0) = z2

in the following results and examine its evolution over time. Our simulation tracks the
initial concentration c(z, t = 0) and compares it with the concentration profile after the
wave forcing is terminated. In addition, the horizontal mean of ⟨c(z, t)⟩ is obtained to
understand the vertical transport mechanisms, thereby mimicking the transport processes
within the stellar radiative zone. To deal with the unknown boundary conditions at z = 0
and z = L for c, we avoid the boundaries and solve c in a specific domain as a subset of
[0, L]. Let

∂c

∂t
= − (u · ∇c)H(z), H(z) =

1

2
[erf((z − z0)/σ)− erf((z − z1)/σ)] . (10)

In the following analysis, we will avoid the boundaries for c and focus on the central domain
z ∈ [z0, z1] ⊂ [0, 1], where c is solved.

To illustrate the simulation setup, we present the propagation of a single linear wave.
Figure 1 demonstrates the wave dynamics in the vertical velocity w(x, z, t), concentration
distribution c(x, z, t), and the horizontal mean of the concentration difference compared to
the initial value cinit(x, z, 0) = z2 at an intermediate time when the wave is fully turned on.
The simulation incorporates a damping layer as described in (9) and the central zone given
in (10) that avoids the boundary issues, where the analysis of c(x, z, t) will be performed.
During wave propagation, the concentration distribution changes and oscillates with the
wave. However, once the wave is fully turned off, we observe a difference in concentration
c(x, z, tend) − cinit(x, z, 0) of order 10−10, indicating there is no vertical transport to the
precision that we achieve.

The boundary condition described by (8a) introduces certain complexities in our sim-
ulation due to the exclusion of radiative diffusivity at the boundary. This results in the
generation of two distinct modes in the simulation: a gravity mode and a diffusive mode.
The dual-mode wave phenomenon arises because the boundary condition allows for different
solutions that can satisfy the imposed constraints. For example, when fixing the parameters
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(amplitude a, horizontal wavenumber kh, and frequency ω) at the boundary, the solutions
of vertical wavenumber kz and the damping rate µ can have multiple branches. One of these
branches corresponds to the gravity mode, which can be calculated to have an amplitude
of approximately 0.95a to 0.99a, depending on the specific wave parameters. The other
branch corresponds to the diffusive mode, characterized by a small amplitude and very
rapid damping. While this effect is minimal, it can impact the quantification of chemical
transport, especially when considering small transport phenomena.

To solve the nonlinear Boussinesq equations, we modify the equations used in the linear
system by introducing nonlinearity above z = 0. The modulated equations are

∂u

∂t
+∇p− bez = − (u · ∇u)H(z),

∂b

∂t
− κ∇2b+N2w = − (u · ∇b)H(z),

where H(z) is defined in (10).

3 Multiscale Asymptotic Analysis

To analyze the wave dynamics in the Boussinesq system given by (1), we consider the
nondimensionalized equation and apply multiple scales analysis t→ t̃+ at̄ [19]. Herein, we
introduce two distinct time scales: the fast time scale t̃ and the slow time scale t̄. The fast
time scale t̃ captures the rapid oscillations of the internal gravity waves, while the slow time
scale t̄ describes the changes in the wave envelope. By replacing the time derivative with
∂t 7→ ∂t̃ + a∂t̄, where a ≪ 1 represents the small amplitude of the waves, we can separate
the dynamics at different temporal scales.

We define the fast-time average of a function f(t̃) as

f(t̃) =
1

T

∫ T

0
f(t̃)dt̃,

where T is the period of f(t̃).

3.1 Wave dynamics

We will first focus on the wave system which is decoupled from the transport equation. The
background states u0 = 0, b0 = b0(z, t̄), p0 = p0(z, t̄) are perturbed as

u(x, t) = au1(x, t̃) + a2u2(x, t̃, t̄),

b(x, t) = b0(z, t̄) + ab1(x, t̃, t̄) + a2b2(x, t̃, t̄),

p(x, t) = p0(z, t̄) + ap1(x, t̃, t̄) + a2p2(x, t̃, t̄).

In the following calculations, we will also separate each quantity, including concentration
c(x, t), into a fast-time component which is a function of the fast-time t̃, and a slow-time
component which averages over t̃ and therefore, independent of t̃. The fast- and slow-time
quantities will be noted using the subscripts f and s, respectively.
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At the leading order O(1), we obtain the base states

∇p0 − b0ez = 0, −κ∇2b0 = 0

so that the solutions are given by b0(z, t̄) = zβ1(t̄) + β2(t̄) and p0(z, t̄) =
z2

2 β1(t̄) + zβ2(t̄) +
β3(t̄), where βj(t̄), j = 1, 2, will be solved at the next order and the pressure is up to an
arbitrary function β3(t̄).

At the next order O(a), the system incorporates the effects of wave motion and is linear.
The governing equations at this order are

∂u1

∂t̃
+∇p1 − b1ez = 0, (12a)

∂b0
∂t̄

+
∂b1

∂t̃
− κ∇2b1 +N2w1 = 0, (12b)

∇ · u1 = 0. (12c)

where N2(t̄) = ∂b0
∂z = β1(t̄) and N

2
c (t̄) =

∂c0
∂z . As discussed in Section 2, the only possibility

for transport by internal gravity waves is through the nonlinear interaction of waves with
different wavenumbers. Therefore, we enforce the first-order velocity to be composed of
different wave fields. We start with the simplest case of two plane waves with the same
magnitude of the horizontal wavenumber kh > 0 but in the opposite direction and the same
frequency ω. In the x− z plane, in this case, the two waves propagate towards each other
in the x direction but travel upwards with the same vertical wavenumber kz < 0. Consider
the first-order velocity

w1(x, z, t̃) = e−z/µ
[
cos(khx+ kzz − ωt̃) + cos(−khx+ kzz − ωt̃)

]
, (13)

where µ(kh, ω) is the damping rate. Taking the z−component of the curl of the curl of the
first-order momentum equation (12a)

∂

∂t̃
(−∇2w2) +∇2

hb2 = −∇× (∇× (u1 · ∇u1))z, (14)

we obtain the slow-time requirement of b1(x, t̄) so that ∇2
hb1s(x, z, t̄) = 0 and the fast-time

component

b1f (x, z, t̃) =
2ω

k2hµ
2
e
− z

µ cos(khx)
[ (
k2hµ

2 + k2zµ
2 − 1

)
sin(kzz − ωt̃)

+ 2kzµ cos(kzz − ωt̃)
]
.

(15)

For periodic BCs, ∇2
hb1s(x, z, t̄) = 0 means that b1s = b1s(z, t̄). In the first-order buoyancy

equation (12b), we let ∂b0/∂t̄ compensate the slow-time variations in (12b) so that

∂b0
∂t̄

= zβ′1(t̄) + β′2(t̄) = κ∇2b1, (16)

where b1s(z, t̄) := b1 remains to be solved at the next order. In addition, equating the
fast-time component of (12b) with the solution (15) yields the dispersion relation.
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We proceed to the next order O(a2). At this order, the system now includes nonlinearity
from the first-order interactions. The governing equations are

∂u2

∂t̃
+∇p2 − b2ez = −u1 · ∇u1, (17a)

∂b1
∂t̄

+
∂b2

∂t̃
− κ∇2b2 +N2w2 = −u1 · ∇b1, (17b)

∇ · u2 = 0. (17c)

We work from the second-order momentum equation first. Taking the z−component of the
curl of the curl of (17a) and averaging over fast time yields ∇2

hb2 = −∇× (∇× (u1 · ∇u1))z
so that the slow-time component b2s(x, z, t̄) is given by

b2s(x, z, t̄) := b2 =
2k2ze

− 2z
µ cos(2khx)

µk2h
+ f(z, t̄),

where f(z, t̄) will be determined later from the buoyancy equation. Next, we take the
fast-time average of (17b) and obtain

∂b1
∂t̄

− κ∇2b2 +N2w2 = −u1 · ∇b1. (18)

Notice that

−u1 · ∇b1 = −
2µN2e

− 2z
µ
(
κ
(
µ2

(
k2h + k2z

)
− 1

)
+ kzµ

2 cos(2khx)(µω − 2κkz)
)

κ2
(
µ4

(
k2h + k2z

)2 − 2µ2(kh − kz)(kh + kz) + 1
)
− 4κkzµ3ω + µ4ω2

, (19)

consisted of a horizontal mean part and an oscillation part, we require κ∂zzf(z, t̄) to com-
pensate the horizontal mean term in (19) for continuity, i.e., κ∂zzf(z, t̄) = ⟨u1 · ∇b1⟩. This
solves the only remaining unknown part of b2s so that

f(z, t̄) =
µ3N2e

− 2z
µ
(
µ2

(
k2h + k2z

)
− 1

)
2
(
κ2

(
µ4

(
k2h + k2z

)2 − 2µ2(kh − kz)(kh + kz) + 1
)
− 4κkzµ3ω + µ4ω2

) .
Meanwhile, we require ∂b1/∂t̄ = 0, i.e., b1 = b1f (x, t̃). Otherwise, b1s in (18) should behave
like b1s ∼ e−2z/µ which does not satisfy (16). Consequently, we have ∂b0/∂t̄ = 0 implying
β′1(t̄) = 0 and β′2(t̄) = 0. In stars, the buoyancy profile b0(z) originates from the stellar
structure model which can be complex as shown in figure 1 of [22]. Despite such a profile,
thermal equilibrium κ∇2b0 = 0 can still be maintained because, in stars, the diffusivity κ
varies with radius r causing significant changes in the buoyancy gradient.

Now we obtain the Eulerian mean velocity wE := w2 from (18). While the full expression
for wE is quite extensive, we can simplify it under the assumption that κ ≪ 1 and µκ =
O(1). The dominant terms are then

wE =− 2kze
− 2z

µ cos(2khx)

ω

+
2κkze

− 2z
µ cos(2khx)

(
κµN2

(
k2h + k2z

)2 − 2kzN
2ω − 4kzω

3
)

µN2ω3
+ . . .

(20)
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In the absence of radiative diffusion κ = 0, we find the Eulerian mean exactly cancels
out with the Stokes drift, i.e., wE = −wS in (7b). Hence, in addition to the nonlinear
interactions between waves of different wavenumbers, radiative diffusion is another key
mechanism for chemical transport.

Remark. We notice that wE in (20) exponentially decays and does not oscillate in z. This
is because we have a fixed frequency and the same magnitude of kh for the wave pair. Given
in (18), we have N2wE = −u1 · ∇b1 + κ∇2b2s(x, z, t̄) and u1 · ∇b1 ∼ e−2z/µ[cos(2khx) +
cos(2kzz−ωt)+sin(2kzz−ωt)]. Therefore, averaging over fast time eliminates the phase in
z. However, in the case that we have wavenumbers of different magnitudes, wE is expected
to oscillate in both x and z.

One last piece that we need at this stage is the fast-time component of the wave field
w2f (x, z, t̃). The fast-time component of the momentum equation (17a) and the buoyancy
equation (17b) give, respectively,

∂

∂t̃
(−∇2w2f ) +∇2

hb2f = 0, (21a)

∂b2f

∂t̃
− κ∇2b2f +N2w2f = e−2z/µ

[
λ1 cos(2kzz − 2ωt̃) + λ2 sin(2kzz − 2ωt̃)

]
, (21b)

where

λ1 =
2µN2

(
κ
(
µ2(kh − kz)(kh + kz)− 1

)
+ kzµ

3ω
)

κ2
(
µ4

(
k2h + k2z

)2 − 2µ2(kh − kz)(kh + kz) + 1
)
− 4κkzµ3ω + µ4ω2

,

λ2 =
2µ2N2

(
κkz

(
µ2

(
k2h + k2z

)
+ 1

)
− µω

)
κ2

(
µ4

(
k2h + k2z

)2 − 2µ2(kh − kz)(kh + kz) + 1
)
− 4κkzµ3ω + µ4ω2

.

Because the right-hand-side of (21b) is x−independent, by continuity we require

w2f (x, z, t̃) = 0. (22a)

Using (21a), we obtain

b2f (x, z, t̃, t̄) = e−2z/µ
[
a1 cos(2kzz − 2ωt̃) + a2 sin(2kzz − 2ωt̃)

]
, (22b)

where a1, a2 are constant that can be solved by (21b). Again, to avoid the tedious expres-
sions of a1 and a2, they are not shown here. Instead, by assuming κ ≪ 1 and µ ∼ 1/κ, we
reduce the constants to

a1 ≈
N2

(
κkzµ

(
k2h + 3k2z

)
− ω

)
µω3

, a2 ≈ −kzN
2

ω2
.

3.2 The transport equation

The concentration field c0 = c0(z, t̄) is perturbed as

c(x, t) = c0(z, t̄) + ac1(x, t̃, t̄) + a2c2(x, t̃, t̄) + a3c3(x, t̃, t̄).

155



At each order, we collect the governing equations as

O(a) :
∂c0
∂t̄

+
∂c1

∂t̃
+N2

cw1 = 0, (23a)

O(a2) :
∂c1
∂t̄

+
∂c2

∂t̃
+N2

cw2 = −u1 · ∇c1, (23b)

O(a3) :
∂c2
∂t̄

+
∂c3

∂t̃
+N2

cw3 = −u1 · ∇c2 − u2 · ∇c1, (23c)

where N2
c (z, t̄) = ∂c0(z, t̄)/∂z. Taking the fast-time average of (23a) yields ∂c0

∂t̄ = 0 so that
c0(z, t̄) = z2 and N2

c = 2z. The fast-time component of c1 can be solved at O(a) whereas
the slow component of c1 remains to the next order, i.e.,

c1(x, z, t̃, t̄) =
2

ω
N2

c e
− z

µ cos(khx) sin(kzz − ωt̃) + c1s(x, z, t̄). (24)

Then taking the fast-time average over (23b) gives the net transport in c1 as

∂c1s
∂t̄

:=
∂c1
∂t̄

= −u1 · ∇c1 −N2
cw2 = −uS · ∇c0 −N2

cw2 = −N2
c (w

S + wE),

where u1 · ∇c1 = d(ξ1)/dt · ∇c1 = uS · ∇c0 is derived using integration by parts. With no
radiative diffusion, we know wE = −wS so that there is no net transport in c1 as expected.
With diffusion, we obtain

c1s = −
2κkzN

2
c e

− 2z
µ cos(2khx)

(
κµN2

(
k2h + k2z

)2 − 2kzN
2ω − 4kzω

3
)

µN2ω3
t̄+ h.o.t.,

and c− c0 = O(a2t). In this case, the first-order transport is purely driven by the Eulerian
mean of the wave field. On the other hand, notice that taking the horizontal mean of c1,

∂⟨c1⟩
∂t̄

= 0.

Although c1 changes vertically, the horizontal mean of c1 does not transport. We also
comment that the asymptotic expansion is valid so long as a2t ≪ 1, which is sufficient
considering the small amplitude waves in stars and the stochastic generation of waves due
to convection.

Since the goal is to obtain vertical transport with a nonzero horizontal mean, we will
continue to the higher-order transport equations to solve for ⟨∂c2/∂t⟩. Given the variables
c1, u1 and w2 already solved in (23b), c2f (x, z, t̃) can be derived at O(a2) easily, and the
full expression is omitted here for brevity. Now proceed to the next order O(a3) in the
transport equation to solve for ⟨∂c2/∂t̄⟩. Taking the fast-time average and horizontal mean
of (23c) and using u1s(x, z, t̄) = 0, u2f (x, z, t̃) = 0, we obtain

⟨∂c2s
∂t̄

⟩ := ⟨∂c2
∂t̄

⟩ = −⟨u1f · ∇c2f ⟩ − ⟨uE · ∇c1s⟩ (25a)

=⇒ ⟨c2s⟩ ∼ γ1e
−4z/µ(z − γ2)t̄

2, (25b)

where γ1, γ2 are solved constants. Therefore, at a fixed position z, concentration changes
as ⟨c− c0⟩ = O(a4t2).
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3.3 Multiple wavenumbers

To gain a more general understanding of vertical chemical transport, we extend our analysis
to waves with different horizontal wavenumbers (kh, nkh), n ∈ R, instead of the previously
simplified case (kh,−kh). Specifically, we examine the forcing of waves from the boundary
with these two different wavenumbers but at the same frequency. The approach and the
governing equations are the same as given in the previous sections, and the procedure at
each order follows the same methodology. In this section, we will highlight the differences
in the solutions that arise from this setup. Consider

w1(x, t) = cos(khx+ kz1z − ωt)e−z/µ1 + cos(nkhx+ kz2z − ωt)e−z/µ2 , (26)

where (kz1, µ1) = (kz1(kh, ω), µ1(kh, ω)) and (kz2, µ2) = (kz2(nkh, ω), µ2(nkh, ω)) satisfy the
dispersion relation for each individual wave. The Eulerian mean velocity is derived as

wE := w2 ∼ e
−z/( 1

µ1
+ 1

µ2
)[
cos(ϕ) + sin(ϕ)

]
, (27)

where ϕ(x, z) = (1 − n)khx + (kz1 − kz2)z. In this case, the Eulerian mean velocity still
cancels with the Stokes drift in the absence of dissipation. However, in contrast with the
case when n = −1, now the Eulerian mean oscillates in both x and z. At this stage, we find
the first order transport as

c1f (x, z, t̃) ∼ e−z/µ1 sin(khx+ kz1z − ωt) + e−z/µ2 sin(nkhx+ kz2z − ωt). (28a)

and

c1s ∼ wEN2
c t̄. (28b)

Similarly, ⟨c1s⟩ = 0 indicates that there is no vertical transport of the horizontal average.
To obtain the vertical transport, we proceed to the next order. We first focus on the

fast-time component of (17a) and (17b)

∂

∂t̃
(−∇2w2f ) +∇2

hb2f = −∇× (∇(u1 · ∇u1))z +∇× (∇(u1 · ∇u1))z (29a)

∼ e
−z/( 1

µ1
+ 1

µ2
)
[cos(ψ − 2ωt) + sin(ψ − 2ωt)]

∂b2f

∂t̃
− κ∇2b2f +N2w2f = −u1 · ∇b1 + u1 · ∇b1 (29b)

∼ e
−z/( 1

µ1
+ 1

µ2
)
[cos(ψ − 2ωt) + sin(ψ − 2ωt)] , (29c)

where
ψ(x, z) = (1 + n)khx+ (kz1 + kz2)z.

Therefore, instead of a zero w2f and an x−independent b2f as the previous n = −1 case,
we take the ansatz

w2f , b2f ∼ e
−z/( 1

µ1
+ 1

µ2
)
[cos(ψ − 2ωt) + sin(ψ − 2ωt)] . (30)
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Figure 2: Change of ⟨c̄⟩ in different wavenumbers nkh in the weak dissipation and small
frequency limit.

Note the difference in the phase ϕ(x, z) and ψ(x, z). Now we are ready to solve the higher-
order transport equations (23b, 23c) and obtain

⟨c2s⟩ = Dce
−z/( 1

µ1
+ 1

µ2
)
(
2(µ1 + µ2)N

2
c (z)− µ1µ2

d

dz
N2

c (z)

)
t̄2. (31)

Most importantly, let us rewrite (31) in the diffusive form

⟨c− c0⟩ = a4Dc∇
(
e
−z/( 1

µ1
+ 1

µ2
)∇c0(z)

)
t2, (32)

where N2
c (z) = ∂c0(z)/∂z and Dc = Dc(kh, nkh, kz1, kz2, µ1, µ2, κ,N

2) is constant. Equa-
tion (32) provides a general form for quantifying the chemical transport by the nonlinear
interaction of internal gravity waves with different wavenumbers. We find that transport is
proportional to a4t2 and also depends on the initial concentration distribution.

To determine the conditions under which chemical transport is maximized, we analyze

the system using equation (32). The wavenumber is given by kz as kz = −
√

k2h(N
2−ω2)

ω2 .
In the limit of weak dissipation and considering waves with ω ≪ N , we approximate µ as
µ = 2ω4

κN3k2h

√
k2h
. By fixing the parameters, e.g., a = 0.001, kh = 0.4π, ω = 0.2, κ = 5 · 10−4,

N2 = 1, and t̄ = 1, we plot ⟨c⟩(nkh; z) in figure 2. Our results indicate that long waves
propagating in opposite directions may result in a higher magnitude of chemical transport.

Remark. Consider waves with the same horizontal wavenumber but different frequencies,
for instance,

w1(x, t) = cos(khx+ kz1z − ωt)e−z/µ1 + cos(khx+ kz2z − nωt)e−z/µ2 .

Using trigonometric identities, we expect the terms from the interaction modes all average
out over time, indicating that such wave interactions do not contribute to net transport.
Therefore, we consider equation (32) to be sufficiently general to encompass all scenarios of
transport driven by nonlinear wave interactions.
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x
z

Figure 3: Simulation results at an intermediate time for solving the nonlinear Boussinesq
equation and the transport equation with the boundary forcing (33). Column 1 shows
the vertical velocity w, Column 2 is the change in concentration driven by the IGWs, and
Column 3 is the horizontal mean of the concentration change. Inside the black dashed lines
indicates the regions where analysis is performed.

4 Simulation Results

In this section, we present the results of our simulations on transport by nonlinear wave
interactions using the method described in section 2.3. We first consider the case where two
plane waves are forced at the boundary with wavenumbers k = khx̂+ kzẑ and k = −khx̂+
kzẑ. Additionally, we examine the scenario with two different wavenumbers kj = khjx̂+kzj ẑ,
j = 1, 2, generated from the boundary. The results from the 2D simulations will be shown
and analyzed, and we will compare these findings with the asymptotic predictions provided
in section 3.3.

4.1 Transport by waves with opposite wavevectors

According to the predictions in section 3.2, the net transport by nonlinear wave interactions
is described by c− c0 ∝ a2t and ⟨c− c0⟩ ∝ a4t2. Considering how small the transport is,
we opted to use larger amplitude and radiative diffusivity in our simulations. However, it is
crucial to balance these parameters to avoid numerical issues and to maintain values that
are physically realistic.

Figure 3 shows the simulation of the nonlinear Boussinesq equation (1) with the trans-
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Figure 4: Temporal evolution of the concentration change in c at fixed x = 5 and z = 5.
The red dashed line indicates the predicted c1s from the multiscale asymptotic analysis (24),
and the black dashed line is a line with slope 0 for comparison.

port equation (2) forced by the boundary data

w(x, z = 0, t) = a
[
cos(khx− ωt) + cos(−khx− ωt)

]
F (t), (33)

with parameters a = 0.001, kh = 0.4π, ω = 0.2, radiative diffusivity κ = 5 × 10−4, and
buoyancy frequency N2 = 1. The function F (t) is given in (8b) to turn on and turn off the
wave field. The first column in Figure 3 shows the vertical velocity field at an intermediate
time. The wave is damped due to the radiative diffusivity, consisting of multiple waves and
therefore appearing as oscillating blocks while propagating upwards with a positive group
velocity. The second column in Figure 3 shows the change in concentration that is purely
driven by the traveling waves. It is noticeable that there are some boundary issues near
z = 0 that we need to ignore due to the turning on of the nonlinearity and solving c only
slightly above z = 0. Nevertheless, the central region is not affected by these boundary
issues. The third column in Figure 3 shows the change in the horizontal mean of c, defined
as

⟨c⟩ = 1

Lx

∫ Lx

0
c(x, z, t) dx,

where Lx is the domain size in x.
The primary objective is to identify the net transport in c, which represents the overall

transport over time despite the intermediate oscillations. To investigate this, we analyze
how c evolves with time while keeping x and z fixed. Figure 4 illustrates the concentration
change at x = 5 and z = 5. The oscillations observed in the figure correspond to the
fast-time component of c1 as described in (24), while the envelope of these oscillations
represents the slow-time component c1s in (24). The red dashed line in Figure 4 represents
the predicted c1s from the multiscale asymptotic analysis, which is expected to be linear in t
and has the order O(a2t). The simulation results show good agreement with the asymptotic
predictions, thereby validating the quantification of the first-order transport by IGWs.

Next, we examine the vertical transport in the simulation presented in figure 3 by
analyzing the horizontal mean of c. Figure 5(a) shows a 2D plot depicting how ⟨c⟩ changes

160



(a) (b)

Figure 5: (a) Two-dimensional plot showing the evolution of the horizontal mean of the
concentration, ⟨c⟩ − cinit, as a function of height z and time t. (b) Zoomed-in view of the
region z ∈ [4, 8] after the wave is turned off.

with z and t. It is clear that the wave turns on and starts to propagate around t = 900,
initiating transport, and is turned off around t = 4000, allowing the chemical to return to
its original position. More transport occurs at smaller z due to wave damping. We then
focus on the concentration distribution after the wave has fully turned off to determine how
it differs from the initial value, which indicates net transport. Figure 5(b) zooms into the
region z ∈ [4, 8] after the wave has turned off. We observe a difference of 10−7, indicating
that there is indeed net transport of the horizontal mean by the nonlinear wave interactions.

We proceed to compare the vertical transport observed in the simulation with the second-
order asymptotic results. In figures 6(a-c), we analyze the temporal evolution of the hori-
zontally averaged concentration, ⟨c⟩, at fixed vertical locations z = 5, 6, 7. The focus is on
the envelopes of ⟨c⟩, which signify the net transport over time. These envelopes are then
compared with the slow-time component of the horizontal mean, ⟨c⟩ = ⟨c2s⟩, as described
by the asymptotic prediction in (25b). The results demonstrate good agreement across the
examined vertical locations, validating that the change in ⟨c⟩ is indeed of the order O(a4t2).
Additionally, a comparison is performed in figure 6(d) between the simulation results at the
final time t = 4700 and the transport solution given in (25b). This comparison focuses on
the spatial variation of the time-average and horizontally-averaged concentration ⟨c⟩ in the
vertical direction z. Despite minor deviations, probably attributed to numerical issues, the
second-order asymptotic solution (25b) accurately captures the transport dynamics within
the examined range.

4.2 Transport by waves with different wavevectors

In this section, we examine the scenario of transport induced by two plane waves with
distinct wavenumbers kj = khjx̂ + kzj ẑ, j = 1, 2, but with the same frequency ω at the
boundary. Each wave is associated with a different vertical wavenumber kzj = kzj(khj , µ)
and a corresponding damping rate µzj = µzj(khj , µ), both of which satisfy the dispersion
relation independently. To enhance the transport for better visualization and easier analysis,
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(a) z = 4

(b) z = 5

(c) z = 6

(d) t = 4700

Figure 6: (a-c) Evolution of the horizontal mean concentration ⟨c⟩ at different fixed vertical
positions z over time t. The right column provides a detailed view of the envelopes from
the left column. The blue lines represent the simulation results, while the red dashed lines
indicate the theoretical predictions based on the slow-time component of the horizontal
mean, ⟨c2s⟩, from the asymptotic analysis. (d) Change in ⟨c⟩ as a function of z at the final
time after wave terminates.
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(a)

(b) t = 4700 (c) z = 5

Figure 7: (a) Vertical transport ⟨c − cinit⟩ plotted against z and t. Boundary issues are
observed due to the wave addition and damping as well as the solution domain for c. (b)
The net transport ⟨c− cinit⟩ at t = 4700. (c) Temporal evolution of ⟨c− cinit⟩ at z = 5.

we conduct simulations with the following parameters: a = 0.001, kh1 = 0.4π, kh2 = −0.2π,
ω = 0.2, radiative diffusivity κ = 5× 10−4, and buoyancy frequency N2 = 1.

Figure 7(a) depicts the vertical transport ⟨c⟩ as a function of z and t. Some boundary
issues are present where nonlinearity is introduced, the waves are damped, and the transport
c is solved. Despite these issues, the region between the black lines in figure 7(a) provides a
suitable area for analyzing the net transport over time. In figure 7(b), the horizontal mean
of the concentration field’s change from its initial value is illustrated after the wave is fully
turned off at t = 4700. This plot indicates the overall transport driven by wave propagation
as a function of z. The results show more transport at smaller z values, decreasing as z
increases. The simulation result is then compared with the multiscale asymptotic prediction
⟨c− c0⟩ in (32). Despite the deviations, which will be explained later, the observed values
follow the predicted order of O(a4t2) as given in (32).

In figure 7(c), we fix the location at z = 5 and observe how the horizontal mean of the
concentration field changes with time. The oscillations in ⟨c⟩ are driven by the periodic wave
oscillations and correspond to the fast-time changes, reflecting the circulatory behavior of
the waves. The envelope in figure 7(c) represents the net transport associated with the
slow-time change, which is of primary interest. We observe a shift in ⟨c⟩, which we verified
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Figure 8: Illustration of vertical transport induced by the interaction of two nonlinear wave
beams.

is related to the process of turning the wave on and off in the simulation. This shift is
not present in the previous case shown in figure 6, likely due to the opposing wavenumbers
kh and −kh, causing the shifts to cancel out. Comparing our simulation with the second-
order prediction (32) at z = 5, we note an accumulating deviation over time. we are still
investigating why there appears to be a discrepancy in these cases. Nevertheless, the order
of the net vertical transport O(a4t2) appears to be correct.

5 Discussion

In this study, we investigated the coherent transport induced by internal gravity waves
(IGWs) using both Dedalus simulations and multiscale asymptotic analysis. The Dedalus
simulations were employed to solve the nonlinear Boussinesq equations along with the trans-
port equation, allowing us to observe the wave dynamics and concentration changes directly.
The multiscale asymptotic analysis provided a theoretical framework to compare with the
simulation results. By induction, we derived the main equation describing the net vertical
transport, as given by (32). This equation primarily addresses the transport due to two
interacting nonlinear waves but can be extended to scenarios involving multiple waves.

Our analysis shows that the leading-order transport is negligible, and the primary con-
tribution to transport arises from the Eulerian mean velocity in the presence of diffusivity.
When there is no diffusivity, the transport by the Eulerian mean velocity cancels out with
the Stokes drift, a phenomenon potentially related to the pseudo-momentum [23]. With
diffusivity, the concentration change ∆c scales as ∆c ∝ a2t, and the horizontal mean of the
concentration change scales as ⟨∆c⟩ ∝ a4t2, in the asymptotic limit t ≪ 1/a2. The net
vertical concentration change is in one direction, meaning the effects from multiple waves
should be added constructively, consequently yielding an effective diffusion coefficient that
scales like a4. We then expect our effective diffusivity to be proportional to the radiative
diffusivity. These findings are consistent with simulation observations and are expected to
align well with results from three-dimensional calculations.

When comparing our results with previous studies, we find that Rogers & McElwaine
(2017) reported a diffusion scaling of a2 [11], whereas Jermyn (2022) identified a diffusion
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scaling of D2
µa

4 [13]. Our study examines these findings by providing a more detailed
understanding of the transport mechanisms and the scaling of diffusion coefficients under
different wave interaction scenarios.

In the context of stellar interiors, particularly within the radiative zones, our study
provides insights into the transport purely driven by weakly nonlinear wave interactions.
The primary focus is on quantifying the amount of vertical transport driven by these in-
teractions. This study on nonlinear plane wave interactions can be further extended to
beam interactions, where each beam consists of waves with multiple different wavenumber.
Figure 8 illustrates the interaction of wave beams and the resulting transport processes.
Beam interactions are more related to the physical scenarios of stellar interiors. Finally, we
aim to compare the transport equation that we obtained in (32) with the observation data
of internal gravity waves excited by the stellar convection core in [3].
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A Transport by the Stokes drift

The Stokes drift arises from interactions of linear internal gravity waves. As derived in
section 3, the Stokes drift cancels out with the Eulerian mean velocity in the absence of
diffusivity, which aligns with the concept of wave propagation being probably a reversible
process. In this section, we will consider the interaction of two linear waves with an opposite
wavenumber kh = ±0.4π and the same frequency ω = 0.3. We solve for the Stokes drift
from the linearized Boussinesq system using multiscale asymptotic analysis by introducing
t = t̃+ at̄ and compare the theoretical results with simulation.

Considering the first-order velocity (13), in the linear system, the equations at O(a)
remain the same as (12). Thus, the leading-order solutions for u1, b1, c0(z, t̄) = z2, and

c1(x, z, t̃, t̄) =
2N2

c
ω e

− z
µ cos(khx) sin(kzz − ωt̃) + c1s(x, z, t̄) are consistent with the previous

derivations in section 3. Here, c1s(x, z, t̄) remains an unknown function that will be solved
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at O(a2). However, the equations at O(a2) are collected as the following system

∂u2

∂t̃
+∇p2 − b2ez = 0,

∂b1
∂t̄

+
∂b2

∂t̃
− κ∇2b2 +N2w2 = 0,

∇ · u2 = 0,

∂c1
∂t̄

+
∂c2

∂t̃
+N2

cw2 = −u1 · ∇c1. (34)

Note that (34) is the same as (23b) in the nonlinear system. Given the linear boundary
forcing, we take u = au1, implying uj = 0, bj = 0, and pj = 0 for j = 2, 3, . . .. Consequently,
taking the fast-time average of (34) yields

c1(x, z, t̃, t̄) =
2N2

c e
− z

µ cos(khx) sin(kzz − ωt̃)

ω
− 2kzN

2
c e

− 2z
µ cos(2khx)

ω
t̄ (35)

and ⟨c1(x, z, t̃, t̄)⟩ = 0. The theoretical predictions are compared with observations from
our simulation. Figure 9(a) depicts the concentration field c− cinit(x, z) at an intermediate
time t when the wave is actively propagating. In figure 9(b), the position is fixed at z = 5
and a 2D contour plot of c(x, t) is presented. The waves are initiated at approximately
t ≈ 500 and deactivated at around t ≈ 2200, leading to c oscillating in conjunction with
the wave field during this interval. Finally, to validate our theoretical prediction (35), the
position is fixed at x = 5 and z = 5 in figure 9(c). The red line represents the slope ∂c1/∂t̄
as derived in (35), which aligns well with the envelope of the simulation result for c(t).

We proceed to higher orders to solve for a nonzero vertical transport. Subtracting the
fast-time average from (34), we derive

∂c2

∂t̃
= −(u1 · ∇c1 − u1 · ∇c1),

so that the fast-time component of c2 (noted as c2f ) can be solved. For solving c2s(x, z, t̄),
we appeal to the third-order transport equation (see also (23c))

∂c2
∂t̄

+
∂c3

∂t̃
+N2

cw3 = −u1 · ∇c2 − u2 · ∇c1,

where w3 = 0 and u2 = 0. Taking the fast-time average yields ∂c2
∂t̄ = −u1 · ∇c2 = −u1 · ∇c2f

and consequently,

c2s(x, z, t̄) = t̄2
2k2ze

− 4z
µ

(
µ cos2(2khx)

dN2
c

dz − 2N2
c

)
µω2

. (36)

Apply the initial condition N2
c = 2z, the horizontal average of c2(x, z, t̃, t̄) is

< c2 >=
1

µω2
e
− 2z

µ (2kzµz sin(2kzz − 2ωt̃) + (2z − µ) cos(2kzz − 2ωt̃))

+ t̄2
2k2ze

− 4z
µ (µ− 4z)

µω2
.

(37)
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Figure 9: (a) Simulation of the concentration field c − cinit at an intermediate time t
induced by the linear wave interaction generated using a = 10−4, kh = ±0.4π, ω = 0.3, and
diffusivity κ = 10−5. The black dot indicates the position x = 5, z = 5 used for further
analysis. (b) 2D concentration field at z = 5. (c) Comparison of the theoretical prediction
for the slow-time component ∂c1/∂t̄ in (35) (red dashed) with the simulation result at x = 5
and z = 5 (blue solid).
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Figure 10: (a) Evolution of the horizontal mean change ⟨c − cinit⟩ extracted from the
simulation of the linear wave interaction. (b) Comparison of ⟨c− cinit⟩ at an intermediate
time t = 1500 (blue solid) with the fast-time component of the theoretical prediction (37)
(red dashed), showing the oscillatory behavior. (c) The slow-time component of (37) and
net transport of ⟨c − cinit⟩ at the final time t = 3000. (d) Evolution of ⟨c − cinit⟩ at fixed
z = 5, with the envelope agreeing with (37).

Figure 10(a) illustrates the change in ⟨c⟩ over z and t extracted from the simulation shown
in figure 9. To validate our simulation results, we conduct three comparisons with the
second-order asymptotic prediction (37). Firstly, by fixing an intermediate time t = 1500,
we can compare ⟨c⟩ with the fast-time component of (37) as shown in figure 10(b). Secondly,
in figure 10(c), we fix the final time t = 3000 to compare with the slow-time component
of (37) and analyze how the net transport changes with z. Finally, by fixing z = 5, we
compare the slow-time ⟨c2s⟩ with the envelope of the change in ⟨c⟩ in the simulation, as
depicted in figure 10(d).

In summary, the transport in c by the Stokes drift generated from the interaction of two
linear plane waves is of order O(a2t) and the vertical transport in ⟨c⟩ is of O(a4t2).

B Chemical diffusivity

Although chemical diffusivity is very small compared to radiative diffusivity in stars and
has minor effects on chemical transport, it is still valuable to include it for code validation.

168



< c > − cinit

<c
>−

c in
it

(a)

< c > − cinit

<c
>−

c in
it

(b)

Figure 11: (a) Evolution of the horizontal mean concentration field ⟨c⟩ − cinit. The trans-
port is driven by a single plane wave with parameters a = 10−4, kh = 0.4π, ω = 0.3, in
the environment of radiative diffusivity κ = 10−5 and chemical diffusivity D = 10−3. (b)
Comparison of the simulation result (blue curve) with the solution of the quasilinear de-
composition (orange line).

In this section, we use the quasilinear decomposition to incorporate chemical diffusivity and
analyze its impact on the transport equations.

We decompose the transport equation into the horizontal mean c0(z, t) and the fluctu-
ating component c1(x, z, t)

∂c0
∂t

+
∂

∂z
⟨wc1⟩ = 0, (38a)

∂c1
∂t

+ w
∂c0
∂z

= D∇2c1, (38b)

where D is the chemical diffusivity. We consider only a single plane wave with the vertical
velocity given by

w = a cos(khx+ kzz − ωt)e−z/µ.

Using the quasilinear decomposition in section 2.1, we know there is no transport at the
leading order c0 when there is no diffusivity. However, after including chemical diffusivity,
we will observe that c0 changes with time. Assuming an ansatz for c1(x, z, t):

c1(x, z, t) = [α1 sin(khx+ kzz − ωt) + α2 cos(khx+ kzz − ωt)] e−z/µ,

where α1 and α2 are coefficients to be solved using (38b). Once these coefficients are
determined, we can numerically solve for c0(z, t) from (38a).

We performed the simulation for solving the linearized Boussinesq system with a single
plane wave forcing at the boundary z = 0 with wave parameters a = 10−4, kh = 0.4π, and
ω = 0.3, and radiative diffusivity κ = 10−5. The transport equation was incorporated with
chemical diffusivity D = 10−3. Figure 11(a) shows the simulation result for the horizontal
mean of the transport ⟨c(z, t) − cinit⟩. Transport occurs as ⟨c(z, t)⟩ ∼ a and accumulates
over time. We then extract ⟨c − cinit⟩ at a fixed location z = 5 to compare with the
solution obtained from the quasilinear decomposition (38). In figure 11(b), the blue curve
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represents the transport observed in the simulation, with the flat platforms indicating the
regions before the wave initiation and after the wave termination. We observe that the
transport increases linearly over time, with a fitted slope of 1.88 × 10−7. The solution
derived from the quasilinear decomposition (38), shown in orange, exhibits a consistent
slope of 1.89 × 10−7. This agreement between the simulation result and the quasilinear
decomposition confirms the validity of the simulation in capturing the transport dynamics.
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Boiling Stratified Flow:

A Laboratory Analogy of Atmospheric Convection

Hao Fu

December 29, 2023

1 Introduction

Simulating weather in a beaker is the dream of many generations of scientists. When the first
author was a fresh graduate student at Stanford University, Prof. Leif Thomas performed
a demonstrative experiment of atmospheric convection using a two-layer configuration with
freshwater on salty water and imposed heating from below. The two layers represent the
stratosphere and troposphere, respectively. This elegant demonstration, originally designed
by Turner [70], still has space to improve - it lacks an important factor in atmospheric
convection - moisture. When ascending parcels are cooled by adiabatic expansion, water
condensates from vapor to liquid and releases latent heat. This provides extra buoyancy
that makes parcels penetrate the stably stratified free troposphere. As a result, in-cloud
saturated parcels are unstable, but clear-sky unsaturated parcels are stable, rendering the
conditional instability [8]. When a cumulus cloud is deep enough, the re-evaporation of
liquid water in the dry atmosphere produces a downdraft. The downdraft brings down
dry air and shuts the convection. The updraft and downdraft couplet renders a convective
lifecycle [13, 50, 25, 40, 17].

Even though observation and numerical simulation has been the main tool for studying
clouds, efforts to simulate clouds in the lab has never stopped. At the cloud microphysics
scale, people have been studying particle-laden flow in a cloud chamber, where real droplets
and ice interact with turbulence [66]. The dynamics of the whole cloud as an entity, named
cloud dynamics, is much harder to reproduce. This is because the lifting condensation
requires an apparatus as tall as the scale height of the saturated vapor mixing ratio, which
is around 3 km [61]. To study cloud dynamics in the lab, a rule of thumb is finding analogies
and being aware that no analogy is complete. There are three perspectives on the nature
of moist convection, which guide people to create corresponding experiments.

In the first view, an individual cloud is considered a buoyant plume or bubble driven by
a prescribed internal buoyancy source. Candidate sources include chemical reaction heat
[69], gas bubbles [72], heating coil [47], and radiation [79]. This setup suits problems where
feedback to the heat source can be neglected, e.g., the entrainment process or the circulation
response to diabatic heating.

In the second view, moist convection is treated as a hydrodynamic instability, essentially
an extension of the Rayleigh-Bénard convection problem to include moisture [7, 58, 14]. Re-
searchers built models of conditional instability, which qualitatively reproduced the length
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scale of a cloud system: with narrow ascent and a wide descent [36, 10, 11, 56, 73]. Krish-
namurti [35] came up with an experiment of conditional instability using selective radiation
absorption of chemicals.

In the third view, people realized that moist convection as a heat transfer mechanism
tends to be in a quasi-equilibrium state (QE), especially in the tropics where radiative cool-
ing balances condensation heating [4, 23, 77]. The QE is essentially a highly nonlinear state
where conditional instability is self-regulated. It still lacks an experimental analogy. Let’s
briefly review the boundary layer quasi-equilibrium thinking (BLQE), which is convective
quasi-equilibrium in a narrow sense [21, 59]. Whether convection can occur is sensitive to
moisture in the boundary layer. Convection induces mixing that brings up moist air and
brings down dry air. As a result, the boundary layer moisture is equilibrated by convection,
and convection is a “valve” that releases the extra moisture. One open question attract-
ing us is: what controls the vertical mixing near the boundary layer top, and how does it
influence the adjustment to equilibrium? Mixing can be undertaken by the entrainment
of boundary layer convective cells [38, 18, 4] and the transport by cumulus updraft and
downdraft. One intriguing question posed by Thayer-Calder and Randall [68] is how the
cumulus updraft and downdraft produce turbulence at the boundary layer top that may
indirectly influence mixing.

An ideal experiment of cloud dynamics should reproduce both conditional instability
and QE. The boiling phenomenon is a candidate that has not been considered seriously.
First, the explosive buoyancy production during vaporization is analogous to the threshold-
dependent latent heat release in conditional instability. Second, the boiling point is analo-
gous to the humidity or sea surface temperature threshold for deep convection to outbreak
[30, 12, 33]. Boiling limits the water temperature around the boiling point by absorb-
ing vaporization heat and mixing the superheated water with the cold water above [15, 54],
analogous to QE. However, simply boiling water is still far from an analogy to moist convec-
tion because the atmosphere is stratified. Stratification traps the moisture in the boundary
layer, making convection intermittent. What about combining boiling with the two-layer
convection experiment of Turner [70], making a boiling stratified flow? We have only seen
studies on the boiling of two layers of immiscible fluids, with potential applications to heat-
ing and cooling device [44, 45, 31, 67, 26, 53, 34]. We have not seen research on the boiling
of two separate layers of miscible fluids, likely because they are too easy to homogenize.

In this report, we use water to mimic the free troposphere and a thin layer of diluted
syrup to mimic the atmospheric boundary layer (Fig. 1a). The question to study is:

• How does moist convection favor the entrainment of dry air into the boundary layer?

• How does the dry air influence moist convection?

We let the water temperature represent the atmospheric humidity and let the syrup con-
centration represent the atmospheric potential temperature. Translating the questions into
the context of lab experiments, we ask:

• How do boiling plumes favor the entrainment of cold water into the syrup layer?

• How does the cold water influence boiling?
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Figure 1: (a) The experimental setup. (b) The temperature map taken by an infrared
camera (model: FLIR 435-0004-03-NA), with a few centimeters of water in the breaker. A
lighter color denotes a higher temperature.

The report is organized in the following way. Section 2 introduces the experimental
setup. Section 3 analyzes the flow evolution of the reference experiment, which inspires a
theoretical framework in section 4. Section 5 applies the theory to understand experiments
that sample the parameter space. Section 6 extends the theory to study the transition
between two types of boiling. Section 7 concludes the report.

2 The Experiment

2.1 Experimental setup

The experimental setup is shown in Fig. 1a. The experimental beaker has a volume of
2000 ml (model: Karter Scientific 213D20), made of 3.3 borosilicate glass. The diameter is
17.48 cm. The beaker is heated on an electric hot plate (model: SUNAV-HP102-D2, 1500
W power for 110 V voltage). The heating power is controlled by a voltage regulator (brand:
VEVOR), which has a ±2 V fluctuation. For the working fluid, we use dark corn syrup
(brand: Golden Barrel) with a dextrose equivalent of 42 and a density of ρs,max = 1.4× 103

kg m−3. We use tap water, which has a density of ρw = 103 kg m−3, as the upper-layer
fresh water and for diluting the syrup to the desired concentration.

The system is required to be statically stable at the onset of boiling. The vertical gra-
dient of syrup concentration stabilizes the two-layer configuration against the destabilizing
effect of the temperature gradient. The buoyancy b (unit: m s−2) is defined as:

b = g

(
ρs − ρw

ρw
+ γTT

)
= g (−γsS + γTT ) , (1)

where S ≡ (ρs − ρw)/(ρs,max − ρw) is the concentration of syrup that ranges from 0 to 1, T
(unit: K) is temperature, γs ≡ (ρs,max−ρw)/ρw = 0.4 is the syrup concentration coefficient,
γT ≈ 6 × 10−4 K−1 (taken as the value of 75◦C pure water) is the volumetric thermal
expansion coefficient of the solution, and g = 9.8 m s−2 is the gravitational acceleration
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constant. At the onset of boiling, the water layer temperature is around 30◦C (slightly above
the 20◦C room temperature), and the syrup layer is around the boiling point (100◦C). We
let the temperature difference be ∆T = 100◦C− 30◦C = 70◦C. To make the system stable,
S must be above a minimum value Smin:

Smin ≡ γT∆T

γs
≈ 0.11. (2)

The temperature in the experiment represents the vapor mixing ratio in the atmosphere.
Vapor is not only a triggering factor of moist convection but also a component of buoyancy
that makes a parcel lighter [76], analogous to the temperature in the experiment that con-
trols boiling and influences buoyancy via thermal expansion. The (1−S) in the experiment
represents the potential temperature in the atmosphere, which increases with height. As
the initial S of all our experiments is much larger than Smin, the buoyancy from syrup plays
the dominant role.

Why use syrup? This is because syrup has a higher density than water and relatively
high viscosity. Both effects suppress interfacial heat and mass transfer [71], enabling the
syrup layer to reach the boiling point before the two-layer stratification is eroded by tur-
bulence. The kinematic viscosity of syrup increases approximately exponentially with its
concentration (Table A1.8 of [43]). We have tried a sodium chloride (NaCl) solution, whose
saturated density is around 1.15× 103 kg m−3. Even for a nearly saturated NaCl solution,
the two-layer stratification is eroded before boiling due to its much smaller viscosity than
syrup. The high viscosity does not have a direct analogy to the atmosphere. It might be
thought of as an amplifier of the stratification effect.

The other point to note is that the phenomenon is sensitive to the geometry of the
beaker. Ideally, we need a beaker whose bottom is not uniformly heated and permits local
superheating. For our beaker, heating is strongest on a ring near the lateral boundary
(Fig. 1b). This steady heating ring produces large bubbles that mix efficiently, leading to
intermittent boiling. We have tried a 3000 ml beaker from another brand (model: ULAB,
UBG1029) with a more uniform surface and an electric kettle with a perfectly uniform metal
surface (model: COSORI, GK172-CO). They steadily produce tiny bubbles, a regime to
be classified as steady boiling in section 6. Because we are particularly interested in the
intermittent boiling regime, which is relevant to cumulus convection, we decided to use the
beaker with a more nonuniform surface. Despite the sensitivity to the container, once we
stick to the beaker, the experimental result is quite robust.

Video and temperature are recorded, with the video information for quantitative com-
parison and temperature information for qualitative reference. The illumination is provided
by a desk lamp diffused by a 3 mm white acrylic sheet. The light transmitted through the
beaker is recorded by a cell phone camera (model: iPhone 11). The temperature is recorded
with four K-type thermocouples (model: NUZAMAS) plugged into a temperature recorder
(model: Gain Express). According to the manufacturer of the temperature recorder, the
temperature resolution is 0.1 ◦C, and the accuracy is ±(1◦C+0.3%rdg) between 18 ◦C and
28 ◦C. The four sensors are bound by heat-shrink tubes and fixed to a portable retort stand.
The sensors are located at z = 1 cm, 3 cm, 5 cm, and 7 cm above the bottom of the beaker.
Only the z = 1 cm and 5 cm temperature data are used in this report.
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2.2 Experimental procedure

First, we add 1400 ml of tap water to the beaker. Then, we use an injector to manually add
syrup to the bottom of the beaker. The injecting process unavoidably causes mixing and
dilutes the syrup. As a rule, the injection stops when the syrup layer reaches the desired
height, even if the injected syrup is less than expected. The syrup “saved” due to mixing
is typically < 25% of the expected injection volume. To reduce mixing, it is critical to
work slowly (usually longer than 1 minute), avoid wiggling, and push the injector’s piston
continuously rather than intermittently. Once the two-layer stratification is set, we use
a portable resonant density meter (model: Anton Paar, DMA 35) to measure the syrup
density near the bottom of the beaker.

Second, we move the beaker onto the heating pad and put the temperature sensor array
into it. Then, we turn on the heating pad, which is at its maximum level. The level
controls the temperature of the heating pad. The power is automatically shut off when
the temperature reaches an unknown desired temperature. The power rarely shuts off in
the experiments, so the heating power is approximately fixed and controlled by the voltage
regulator. In a specially designed experiment with 86 V heating, 1000 ml of water, and the
beaker’s top capped by a plastic membrane to insulate heat, the surface heat flux at the
bottom of the beaker is measured to be around 19 kW m−2.

Third, after an experiment is finished, we cool down the heating pad to be close to the
room temperature before starting another experiment. An experimental cycle takes around
two hours.

2.3 Experimental list

Several parameters govern the system:

1. The surface heating flux Fs. It is analogous to the solar heating power in the atmo-
sphere.

2. The syrup layer thickness h0. It is analogous to the atmospheric convective boundary
layer thickness.

3. The syrup concentration S0. It is analogous to the atmospheric stratification strength
near the boundary layer top.

4. The water layer thickness. It is analogous to the tropospheric depth.

We decided to leave the investigation on the water layer thickness for future work by keep-
ing it around 14 cm, which is much thicker than the convective penetration height. We
performed four groups of experiments that changed Fs (F1-F5), h0 (T1-T7), S0 (S1-S7),
and S and h0 together (ST1-ST4), as shown in Table 1. Note that the labels (F3, S5) and
(T7, ST2) share the same experiments. Experiment S3 is the reference experiment that will
be analyzed in detail.

Note that S0 or h0 cannot be precisely aligned in an experimental group due to the
fluctuation introduced in preparing the two-layer fluid. We strive to align them and report
the measured values in Table 1. The S0 and h0 are measured with the density meter and
the video (using a pixel-to-length scale).
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Table 1: A table of experimental parameters, which include heating voltage, surface heat
flux Fs, initial syrup density ρs, initial syrup concentration S0, initial syrup thickness h0.
The post-boiling syrup thickness h1 is shown in the rightmost column, with the diagnostic
procedure introduced in section 5.1. For experiments in the steady boiling regime (section
5.4), their h1 is denoted as “-”. The experiments shared by different groups are marked
with brackets.

Name Voltage (V) Fs (kW m−2) ρs (×103 kg m−3) S0 h0 (cm) h1 (cm)

F1 50 6.4 1.188 0.47 2.00 5.84
F2 60 9.3 1.190 0.48 2.10 5.45

F3 (S5) 86 19.0 1.184 0.46 2.05 4.35
F4 100 25.7 1.205 0.51 1.93 4.35
F5 120 37.0 1.197 0.49 1.80 3.52
S1 86 19.0 1.070 0.18 1.76 1.98
S2 86 19.0 1.112 0.28 1.83 4.74
S3 86 19.0 1.124 0.31 1.91 5.48
S4 86 19.0 1.138 0.35 1.96 5.32

S5 (F3) 86 19.0 1.184 0.46 2.05 4.35
S6 86 19.0 1.218 0.54 1.94 4.13
S7 86 19.0 1.272 0.68 1.89 4.04
T1 86 19.0 1.205 0.51 0.80 4.19
T2 86 19.0 1.203 0.51 1.20 3.90
T3 86 19.0 1.199 0.50 1.50 4.14
T4 86 19.0 1.218 0.54 1.94 4.13
T5 86 19.0 1.211 0.53 2.64 4.74
T6 86 19.0 1.204 0.51 3.40 5.24

T7 (ST2) 86 19.0 1.204 0.51 4.13 -
ST1 86 19.0 1.204 0.51 3.40 5.24

ST2 (T7) 86 19.0 1.204 0.51 4.13 -
ST3 86 19.0 1.136 0.34 4.08 6.61
ST4 86 19.0 1.133 0.33 4.74 -

177



Figure 2: The flow snapshots at t = 650 s, 750 s, and 850 s of the reference experiment
(S3), showing the initial two-layer stage, the boiling stage, and the post-boiling two-layer
stage.

3 Basic Physics

We let S3 be the reference experiment for demonstrating the basic physics of boiling strat-
ified flow. Figure 2 shows that the flow has three stages: the initial two-layer stage, the
boiling stage, and the post-boiling two-layer stage.

Before boiling starts, the syrup layer temperature gradually rises, and the water layer
temperature remains close to the initial temperature (Fig. 3a). This is because density
stratification suppresses heat transfer by suppressing eddy mixing [70]. Boiling begins at
around t = 700 s by which the syrup temperature reaches 100 ◦C (Fig. 3b). Bubbles
erupt from the bottom and mostly quench before leaving the syrup layer (Fig. 2b). This
is because the upper part of the syrup is still below the boiling point. It can be viewed
as a sub-cooled nucleate boiling phenomenon (section 4.4.4 of [15]), with the sub-cooling
substantially amplified by the two-layer stratification. Though the bubble quenches, its
momentum can drive a vortex ring that rises into the freshwater layer and mixes with
freshwater and sediments on the interface, producing a middle mixed layer. The middle
mixed layer can also be produced by a bubble plume penetrating a two-layer stratification
interface [49].

Boiling only lasts about 1 minute, during which the z = 1 cm temperature drops to 60◦C
and the z = 5 cm temperature slightly rises (Fig. 3b). The bubble-induced mixing brings
cold freshwater to the syrup layer and quenches boiling. Such a self-regulating behavior is
analogous to moist convection on Earth and gas giants [25, 78, 37, 28]. At t = 850 s, the
system still has kind of a two-layer stratification, but the interface rises from the initial 2
cm to 6 cm, and the syrup layer is significantly diluted (Fig. 3c).

Next, we use the horizontally averaged video pixel value to track the interface height,
denoted as h. The printed scale of the beaker is excluded from the averaging slot. The video
records the pixel values of red, green, and blue light. Because the syrup appears red, the
red light is more transmissible than the green and blue light. As the interface is essentially
an outline of the syrup layer, we use the less transmissible green light. Figure 3c shows
boiling significantly lifts the interface from the initial value h0 to a post-boiling value h1.
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Figure 3: Quantitative measurements of the reference experiment (S3). (a) The temperature
time series at z = 5 cm (blue line) and z = 1 cm (red line). The dashed black lines denote
t = 650 s, 750 s, and 850 s, where the snapshots in Fig. 2 are taken. The origin of the time
coordinate is the heating start time. (b) The same as (a), but zooming into the boiling slot.
(c) The zoom-in time evolution of the video’s horizontally averaged green light pixel value.
The solid white line annotates the internal interface between the bottom and middle mixed
layer.

Thus, boiling can be viewed as a mixing event. We ask:

• What controls the boiling duration time ∆t?

• What controls the interface’s rising rate dh/dt?

With ∆t and dh/dt, we will be able to predict the net effect of mixing: h1 − h0,

h1 − h0 ≈ ∆t
dh

dt
. (3)

A closer look at the green light pixel value (Fig. 3c) shows an internal interface between
the bottom and middle mixed layers. The internal interface splits from the outer interface
at the onset of boiling and touches the bottom at the end of boiling. The vortex rings carry
syrup from the bottom mixed layer and deposit it in the middle mixed layer. Thus, the
bottom mixed layer gets thinner and finally disappears, letting the relatively cold middle
mixed layer touch the bottom and quench the boiling. This indicates ∆t is essentially the
time needed for vortex rings to eliminate the bottom mixed layer:

∆t ≈ h0
w+

, (4)

where w+ (unit: m s−1) is the horizontally averaged syrup volume flux across the internal
interface, analogous to the mass flux of atmospheric convection [4]. The w+ ultimately
depends on the surface heating rate.
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Figure 4: Examples of the vortex ring’s two life paths, using the reference experiment S3.
The first row shows an escaping vortex ring, and the second row shows a trapped vortex
ring, with a time interval of 0.17 s.

4 A Theoretical Framework

This section builds a theoretical framework of how h1−h0 depends on the system’s control
parameters, e.g., Fs, h0, and S0. Modeling dh/dt is equivalent to modeling the ensemble
effect of vortex rings, which comes down to modeling the mixing of individual vortex rings
and their nonlinear interaction. The mixing by individual vortex rings has been investigated
by Olsthoorn and Dalziel [51], but the nonlinear interaction has not been addressed. The
boiling stratified flow provides a unique setup to study this fundamental problem.

4.1 The two life paths of vortex ring

By inspecting the video, we identified two typical life paths of vortex rings: escaping and
trapping. The first row of Fig. 4 shows an example of escaping. The bubble quenches in
the syrup layer, leaving a vortex ring that rises into the water layer and sinks. The second
row of Fig. 4 shows an example of trapping. The initial bubble has a similar size to the
escaping case, but the vortex ring crashes near the interface, producing a wide turbulent
patch. The two paths are summarized in Fig. 5. The escaping path has a relatively long
mixing length, characterized by the vortex ring’s penetration depth l. The trapping path,
however, has a shorter mixing length, and its ability to bring down cold water is limited.
Thus, we speculate that the escaped vortex rings are mainly responsible for the thickening
of the middle mixed layer.

We define the escape ratio E to quantify the fraction of the vortex rings that could
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Figure 5: A schematic diagram of two life paths of a vortex ring: escaping and trapping.

escape the middle mixed layer and rise into the water layer. What determines E? We
hypothesize that the stratified turbulence on the path of a vortex ring causes trapping.
The turbulence can be induced by the wake of ascending vortex rings [32] or the baroclinic
vorticity generated at the interface [52]. The turbulence could tilt the orientation of the
vortex ring, causing an oblique incidence onto the interface. The experiments of Pinaud
[57] showed that an oblique incidence could significantly tilt the vortex ring and turn it
horizontal due to the interaction between the vortex ring and the baroclinically generated
vorticity at the interface. Because a smaller vortex ring is more easily tilted by an eddy,
and a thicker syrup layer (h0) increases the chance of tilting, we heuristically parameterize
E as:

E = e−
CEh0

R , (5)

where CE is a nondimensional escaping parameter depending on the turbulent kinetic energy
in the syrup layer. In section 4.3, CE will be shown to be equivalent to a drag coefficient.

We further hypothesize that CE is smaller for a higher Fs because stronger surface
heating reduces the time interval between vortex rings. The turbulent wake of the current
vortex ring could trap the next one, causing stronger turbulence and, therefore, a pileup of
vortex rings. This hypothesis will be tested in section 5 where experiments with different
Fs are introduced.

4.2 The vortex ring penetration depth l

A hotter surface temperature generally increases the initial bubble radius R in boiling
[5]. A bubble is highly buoyant but quenches (condensates) quickly once it leaves the
hot bottom. A hotter fluid interior makes the bubble condensate more slowly and yields
a longer acceleration path h∗ for buoyancy. Combining these arguments, we see that h∗
should increase with the bubble radius. For simplicity, we assume:

h∗ ≈ βR, (6)

where β is a nondimensional bubble acceleration coefficient. The bubble exerts pressure
on the environment and accelerates the surrounding liquid. The added mass theory [24]
indicates that for a spherical bubble, the surrounding liquid moving with the bubble has
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half of its volume (Fig. 6). Ignoring the mass of vapor, the mean density of the bubble and
the surrounding liquid is approximately 2

3ρw. The initial velocity of the vortex ring, w0, is
estimated with a free-fall scaling:

w0 ≈
(
2
2

3
gh∗

)1/2

. (7)

After the bubble quenches, the moving liquid turns into a vortex ring of radius R.
Let’s make a force analysis of an escaped vortex ring and let its vertical velocity be w.

In the syrup layer, the vortex ring has neutral buoyancy, only influenced by drag:

dw

dt
= −CD

R
w2, w|t=0 = w0, (8)

where CD is the nondimensional drag coefficient. This drag parameterization is taken from
Maxworthy [41], which is also used in modeling the drag of thermals in clouds [62, 63]. It
works for a turbulent vortex ring. Let us estimate the Reynolds number Re of our problem.
Most of our experiments use S0 ≲ 0.6 with a kinematic viscosity of ν ≲ 10−5 m2 s−1 (Table
A1.8 of Mohos [43]). Combining the ν with w ∼ 0.05 m s−1 and R ∼ 0.01 m (Fig. 4), we
find Re = wR/ν ≳ 50. Because Re ≫ 1, this estimation confirms that the vortex ring is
turbulent. When the vortex ring rises to the water layer, the vortex ring is influenced by
both drag and negative buoyancy:

dw

dt
= −CD

R
w2 − gγsS ≈ −gγsS. (9)

For simplicity, we only consider the buoyancy effect after the vortex ring has escaped because
the vortex does not have a maximum height without considering buoyancy. The buoyancy
is assumed to be controlled by S, as discussed in section 2.1.

We can solve for the kinetic energy of the vortex ring when it crosses the interface and
the negative buoyancy work done in the water layer. They are linked with the interface
crossing velocity w+:

2

3
gh∗e

− 2CDh0
R =

w2
+

2
= gγsSl. (10)

Equation (10) yields an expression for the vortex ring penetration depth l:

l =
2

3

h∗
γsS0

e−
2CDh0

R . (11)

The theory predicts that a more diluted syrup (smaller S0) makes the vortex ring lighter and
penetrates a longer distance. A thicker syrup layer (higher h0) induces more accumulated
drag and reduces l.

4.3 The post-boiling syrup layer thickness h1

The dh/dt depends on detrainment and entrainment across the syrup-water interface. De-
trainment denotes the mass leaving the syrup layer, and entrainment denotes the mass
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Figure 6: A schematic diagram of the vortex ring initiation and development processes.
The syrup layer includes both the bottom and middle mixed layers.

entering the syrup layer. Vortex rings detrain first and then entrain. There is some net
mass gain, which is related to the vortex ring’s fractional entrainment rate ε (unit: m−1),
escape ratio E, mean volume flux w+, and the penetration depth l:

dh

dt
= −Ew+︸ ︷︷ ︸

detrain

+Ew+e
2εl︸ ︷︷ ︸

entrain

≈ 2εEw+l, (12)

where e2εl is the volume expansion factor of a vortex ring, and we have used e2εl ≈ 1+ 2εl.
Following Morton et al. [46], the ε is expressed as:

ε =
2α

R
, (13)

where α is the nondimensional entrainment coefficient.
Our model is consistent with the experimental result of Olsthoorn and Dalziel [51], who

studied successive vortex rings impinging onto a stratification interface. Their experiments
showed the ratio of net entrainment to detrainment, essentially the e2εl − 1 factor in our
formulation, is proportional to Ri−1. Here, Ri is the bulk Richardson number that obeys:

Ri ≡ g
ρs − ρw

ρw

R

w2
+

= gγsS0
R

w2
+

, (14)

which shows Ri ∝ S0. Substituting the expression of l (11) into e2εl − 1, we get:

e2εl − 1 ≈ 2εl ∝ S−1
0 ∝ Ri−1, (15)

which explains the Ri−1 scaling of their measured entrainment rate.
Next, we apply the knowledge of an individual vortex ring to understand the collective

effect of many vortex rings, i.e., the interface rising. Combining (3), (4), (5), (11), (12), and
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(13), we obtain the expression of h1:

h1 = h0

(
1 +

8

3

αβ

γsS0
e−

2CD+CE
R

h0

)
. (16)

Note that the mean vertical volume flux of vortex rings, w+, is eliminated. The expression
of h1 has two uncertain nondimensional parameters:

1. αβ, the product of the entrainment parameter α and the bubble acceleration param-
eter β.

2. The effective drag coefficients 2CD + CE , representing the bulk effect of the physical
drag and the trapping by turbulence.

We still need to parameterize the vortex ring radius R to close the theory of h1.

4.4 The bubble radius R

The R is the “cloud radius” in this experiment, which depends on how superheated the syrup
layer is. We let the syrup layer temperature be T , and the boiling point be T∗ = 100◦C.
When T ≪ T∗, there is no boiling, so R = 0. When T ≳ T∗, the water is superheated, and
Narayan et al. [48] showed that R has an upper bound with respect to T − T∗, which we
take as Rm. Thus, we parameterize R as an error function of T − T∗:

R = Rm
1

2

[
1 + erf

(
T − T∗
δT∗

)]
, (17)

where δT∗ is the temperature range of the transition zone.
The T depends on the heat balance of the syrup layer, which involves the surface heat

flux Fs, the ventilation by the interfacial heat transfer, and the vaporization and mixing
caused by boiling. For simplicity, we use the equilibrium temperature without considering
boiling to approximate T :

dT

dt
≈ Fs

ρwcwh0︸ ︷︷ ︸
surface heating

− T − Tw

h0
wi︸ ︷︷ ︸

ventilation

≈ 0, (18)

where ρw is the density of pure water, cw is the specific heat of pure water (ρwcw could
approximately represent the volumetric heat capacity of syrup solution, see Table A1.8 of
[43]), wi is the characteristic eddy vertical velocity at the syrup-water interface, and Tw is
the water temperature that is around the room temperature. One might be concerned that
T could be unrealistically large without considering the cooling by mixing. We argue its
consequence is limited because T only controls the bubble radius R, an error function of
T with an upper bound. The R is only sensitive to T where the superheating is weak and
boiling is not vigorous. Thus, an overestimation of T in the vigorously boiling regime yields
little error in R.

Equation (18) shows that T depends on wi, with more efficient ventilation reducing T .
What determines wi? The syrup-layer eddy is driven by convection. It is analogous to
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Rayleigh-Bénard convection (RBC), with the beaker’s bottom as the warm plate and the
syrup-water interface as the cold plate. In our setup, the Rayleigh number (Ra) and Nusselt
number (Nu) are defined as:

Ra ≡ gγT (T − Tw)h
3
0

νκ
, Nu ≡ wi

κ/h0
, (19)

where ν is the kinematic viscosity and κ is the thermal diffusivity. The Ra represents the
relative strength of convective instability and the diffusive damping. The Nu represents the
ratio of convective to conductive heat transfer. For the regime where the heat transfer is
diffusive in the boundary layer of RBC (a thin layer attached to the beaker’s bottom) and
turbulent in the syrup interior, Nu obeys:

Nu ≈ cRa1/3, (20)

where c = 0.085 is an empirical factor reported in [70]. Substituting (19) into (20), we
obtain an expression of wi:

wi = cRa1/3
κ

h0

≈ c

[
gγT (T∗ − Tw)

νκ

]1/3
κ. (21)

The wi depends on T −Tw, ν, and κ. Physically, T should be around T∗ for most situations
of interest, so we let ∆T ≡ T∗−Tw ≈ T−Tw and consider it a fixed quantity. For syrup, κ is
insensitive to S0 (Table A1.9 of [43]). However, ν is very sensitive to S0 and approximately
obeys an exponential function (Table A1.8 of [43]):

ν ≈ νwe
S
Sν , (22)

where νw (unit: m2 s−1) is the reference kinematic viscosity of water and Sν is the critical
syrup concentration to feel the change of viscosity. Substituting (22) into (21), we get:

wi = wi,refe
− S

3Sν , wi,ref = c

[
gγT (T∗ − Tw)

νw

]1/3
κ2/3, (23)

where wi,ref is a reference convective velocity scale for S0 = 0 (water). Equation (23)
indicates that a denser syrup suppresses heat transfer.

Equation (23) shows the heat transfer ability of RBC, and (18) shows the requirement
on wi to make the syrup-layer temperature steady without boiling. Combining them yields
a critical wi and, therefore, a critical S0 for boiling, S∗:

S∗ = 3Sν ln

[
ρwcw(T∗ − Tw)wi,ref

Fs

]
. (24)

For S > S∗, convective heat transfer is too weak to keep the syrup temperature steady,
and boiling must occur. Substituting (24) into (18), we obtain the relationship between
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Figure 7: A schematic diagram for the parameterization of the bubble radius R as a function
of T , which is ultimately linked to S0.

supercritical syrup concentration (S0 − S∗) and the superheated temperature (T − T∗):

T − T∗ =
Fs

ρwcwwi,ref
e−

S0
3Sν −∆T

=

(
e

S0−S∗
3Sν − 1

)
∆T

≈ S0 − S∗
3Sν

∆T, (25)

which indicates a denser syrup increases the superheating by increasing viscosity and sup-
pressing heat transfer.

Substituting (25) into (17), we express R as a function of S0:

R ≈ Rm
1

2

[
1 + erf

(
S0 − S∗
δS∗

)]
, δS∗ ≡ 3Sν

δT∗
∆T

, (26)

where δS∗ is the width of the transition zone for the initial syrup concentration. Equation
(26) indicates that a denser syrup makes bubbles larger. The conversion from R vs. T
relation to R vs. S0 relation is illustrated in Fig. 7.

Equations (16) and (26) render a closed theory of how h1 depends on h0 and S0:

h1 = h0

1 + 8

3

αβ

γsS0
exp

− h0
hDE

2

1 + erf
(
S0−S∗
δS∗

)
 . (27)

Here, hDE is the vortex ring dissipation length scale:

hDE ≡ Rm

2CD + CE
, (28)

which represents the bulk effect of drag and trapping. The system has four uncertain
parameters: αβ, hDE , δS∗, and S∗. In section 5, we validate the theory using experiments
with varying Fs, S0, and h0.
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5 Validation of the Theory

This section analyzes the h1 diagnosed from horizontally averaged green light pixel value
and applies it to validate the theory. We first introduce the diagnostic method and then
discuss experiments with varying Fs, S0, and h0.

5.1 Diagnosing the post-boiling interface height

The diagnosis has two steps. First, we identify the syrup-water interface, essentially the
top of the middle mixed layer. At each time snapshot, we vertically smooth the image pixel
value with a Gaussian filter whose stencil spans 20 pixels. The width of a pixel depends
on the distance of the camera to the beaker, which is around 0.03 cm. The height where
the vertical gradient of the smoothed pixel value is the largest is identified as the interface.
This operation renders a time series of the interface height, h(t), shown as the solid black
line in Fig. 8.

Second, we identify the boiling start time. We make a temporal Gaussian filter on h(t)
with a stencil of 20 snapshots (a time span of 101.8 s) and denote it as h̃(t). The initial
value of h̃(t) is taken as h0. The boiling start time is taken as the time by which h̃(t) first
rises above 1.1h0.

Third, we identify the boiling end time using h̃(t). We build a moving window spanning
20 snapshots (101.8 s) and move it from the boiling start time. The range (maximum minus
minimum) of h̃(t) in the window gradually decreases as the window approaches the post-
boiling stage. We let the time by which the range first drops below 0.3 cm as the boiling
end time and denoted it as h1. The h1 is shown as the dashed red line in Figs. 8 and
summarized in Fig. 9. There are two exceptions. One is experiment S1 (Fig. 8f), where
no significant boiling occurs, and the system directly transitions to a well-mixed state after
a long time (about 1400 s). The h1 is taken as h0. The other is experiment T7 (Fig. 8s),
where boiling is steady, and no boiling end time is found.

5.2 Experiments with varying Fs

The different surface heat fluxes (Fs) simulate the effect of different solar radiative heating
rates on the atmospheric boundary layer. The theory (27) shows that Fs influences h1 in
two competing ways:

1. A higher Fs reduces the critical syrup concentration necessary to initiate boiling, S∗.
It should make bubbles larger and increase h1.

2. A higher Fs reduces the time interval between vortex rings and increases the turbu-
lence intensity in the syrup layer. It should reduce CE , trap more vortex rings, and
reduce h1.

For the experimental results, h1 is generally smaller for a larger Fs (Fig. 8). It indicates
that the enhanced trapping should be an important factor. For future work, we plan to
perform quantitative modeling of how CE depends on Fs, which involves a careful analysis
of vortex ring interaction.
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Figure 8: Evolution of the syrup layer thickness shown with the horizontally averaged green
light pixel value of the video. The first row shows experiments F1-F5, where Fs is changed
by varying the heating voltage. The solid black lines show the diagnosed height of the
syrup-water interface. The dashed red lines show the diagnosed h1. The second row is
for experiments S1-S7 that change the initial syrup concentration S0. The third row is for
experiments T1-T7 that change the initial syrup thickness h0. The T7 experiment is in the
steady boiling regime without a well-defined h1.

Figure 9: The post-boiling interface height h1 of (a) experiments F1-F5 that change the
surface heat flux by changing the heating voltage, (b) experiments S1-S7 that change the
initial syrup concentration S0, and (c) experiments T1-T7 that change the initial syrup
thickness h0. The blue circles denote the experimental data, and the solid red lines denote
the theoretical prediction. The blue shadings show the h0 < 0.5 cm regime where the
post-boiling state lacks a clear interface, and the h0 > 4 cm regime where the boiling is
steady.
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5.3 Experiments with varying S0

The initial syrup concentration (S0) is analogous to the atmospheric stratification near the
boundary layer top. The theory predicts that S0 influences h1 with two competing factors:

1. A higher S0 reduces the convective ventilation of the syrup layer, enhances the super-
heating, and increases the vortex ring radius R. A higher R makes the vortex ring
feel less drag and trapping, penetrate deeper, and increase h1.

2. A higher S0 makes the vortex rings more negatively buoyant, penetrate shallower, and
reduce h1.

For the experimental results, h1 first increases with S0 and then decreases, yielding an
optimal S0 around 0.3 (Fig. 9b). Thus, for the relatively dilute regime (S0 ≲ 0.3), the
radius effect dominates. For the relatively dense regime (S0 ≳ 0.3), the buoyancy effect
dominates.

The red lines of Fig. 9b show the quantitative prediction of h1. We use h0 = 2 cm.
The value of the four uncertain parameters is prescribed as αβ = 0.375, hDE = 1.33 cm,
δS = 0.05, S∗ = 0.25. This is a set of best-fit parameters, which makes the theory agree
well with the experiments. The sensitivity to the four parameters is tested in the first row
of Fig. 10, showing the trend is robust. The optimal S0 mainly depends on S∗ and δS∗,
with a higher S∗ and higher δS∗ shifting the optimal S0 higher.

5.4 Experiments with varying h0

The initial syrup thickness (h0) represents the thickness of the atmospheric boundary layer.
The theory predicts that h0 influences h1 with two competing factors:

1. A higher h0 increases the boiling duration time ∆t because it takes longer to eliminate
a thicker bottom mixed layer by detrainment. This effect increases h1.

2. A higher h0 increases the path for a vortex ring to be influenced by the drag and
turbulence in the syrup layer, reducing its penetration depth l and escape ratio E.
Thus, vortex rings entrain less and should yield a lower h1.

For the experimental results, h1 slightly increases with h0 (Fig. 9c), indicating that the
two factors roughly balance each other, and a smaller h0 yields a more efficient dilution of
the syrup layer by boiling. Experiments with h0 ≲ 0.5 cm yield a too-dilute post-boiling
state that directly transitions to a well-mixed state. The post-boiling interface in our T1
experiment is marginally distinguishable. Experiments with h0 ≳ 4 cm, including our T7
experiment (Fig. 8s), are in a steady boiling regime where boiling is continuous and the
interfacial rising rate is steady. We name the regime with a clear end-of-boiling state the
intermittent boiling regime.
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Figure 10: The first row shows the theoretical prediction of the h1 vs. S0 relation with
perturbed parameters. The experimental results are blue circles, and the theoretical curves
are solid red lines. (a) Changing hDE . (b) Changing δS∗. (c) Changing αβ. (d) Changing
S∗. The second row is the same as the first but for the h1 vs. h0 relation. The blue shadings
show the h0 < 0.5 cm and h0 > 4 cm regimes.
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6 Transition Between the Intermittent and Steady Boiling
Regimes

6.1 Solving the transitional h0

Section 5.4 reveals a steady boiling regime for a relatively high h0, a regime beyond the
theoretical framework of section 4. This section extends the theoretical framework to include
the steady boiling regime and studies the mechanism of the transition.

In the steady boiling regime, the thick syrup layer sufficiently dissipates the vortex
rings, reduces its penetrating depth, and limits the entrainment of cold water. As a result,
entrainment is maintained at the minimum rate that keeps the syrup temperature around
100◦C:

dh

dt
=

Fs

ρwcw∆T
. (29)

Latent heating does not appear in (29) because all bubbles condense in the syrup layer,
balancing the latent heat absorption and release. Using Fs ≈ 20 kW m−2, ρwcw ≈ 4× 106

J m−3 K−1, and ∆T = 70◦C, we predict a 5.7 cm rise of the interface in 800 s, which is
close to the approximately 5 cm rise in 800 s shown in Fig. 8s.

What controls the transitional h0? If the entrainment rate by vortex rings (shown in
(12)) is higher than that required to keep the syrup temperature around 100◦C, boiling
should be intermittent:

Intermittent when : 2εEw+l >
Fs

ρwcw∆T
, (30)

where we have used (12) and (29). Here, we must solve for the mean detrainment flux from
the bottom mixed layer, w+, a quantity canceled out in solving h1. The w+ depends on the
vaporization rate at the bottom, which ultimately depends on the surface heat flux (Fs) and
the heat transfer between the bottom and middle mixed layers. We parameterize the ratio
of vaporization cooling rate to Fs as a vaporization efficiency χ, an uncertain parameter.
The vertical flux of bubble number density, N (unit: m−2 s−1), should obey:

N =
Fsχ

4
3πR

3Lvρv
, (31)

where Lv = 2.5 × 106 J kg−1 is the vaporization heat and ρv = 0.6 kg m−3 is the density
of vapor. The added mass argument introduced in section 4.2 indicates that the volume of
moving syrup around a bubble is half its volume (23πR

3), so w+ obeys:

w+ =
2

3
πR3N =

Fsχ

2Lvρv
. (32)

We need to constrain χ from experiments. Figure 2c shows that the interface between
the bottom and middle mixed layers drops from 2 cm to 0 cm in around 60 s, indicating
w+ ≈ 3.3× 10−4 m s−1. To let it meet (32), there should be χ ≈ 0.05. Thus, vaporization
should play a minor role compared to eddy mixing in cooling the syrup layer’s bottom.
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Figure 11: The same as Fig. 8, but for experiments ST1-ST4 that vary both S0 and h0
to study the critical h0. ST2 and ST4 enter the steady boiling regime at the first boiling
surge. ST1 and ST3 enter it at the second surge.

In other words, the mechanical removal of superheating is more important than the phase
change effect. Substituting the expression of w+ (32), R (26), l (11), and E (5) into (30),
we obtain the critical h0 for transitioning to steady boiling:

Steady when : h0 > h⊥(S0), h⊥(S0) = hDE ln

(
4αβχ

3γsS0

ρwcw∆T

Lvρv

)
, (33)

where h⊥(S0) is the transitional h0 that is a function of S0. In deriving (33), we have
assumed the non-boiling regime (S < S∗) is sufficiently separated from the steady boiling
regime by letting R = Rm. Substituting in estimated values (αβ = 0.375, χ = 0.05,
γs = 0.4, ρwcw ≈ 4 × 106 J m−3 K−1, ∆T = 70◦C, Lv = 2.5 × 106 J kg−1, and ρv = 0.6
kg m−3), we get h⊥(S0 = 0.5) = 4.2 cm. It is close to the experimental results where the
critical h0 lies between h0 = 3.40 cm (T6) and h0 = 4.13 cm (T7).

Equation (33) predicts that the critical h0 for steady boiling is proportional to the
dissipation length scale hDE , a quantity inversely proportional to the maximum bubble
radius Rm. The proportional factor is higher for a smaller S0 because a lighter syrup
penetrates deeper and entrains more. To verify the dependence of the critical h0 on S0,
we performed experiments ST1-ST4, as shown in Fig. 11. For S0 ≈ 0.5, the critical h0
lies between h0 = 3.40 cm (ST1) and 4.13 cm (ST2). For S0 ≈ 0.35, the critical h0 lies
between h0 = 4.08 cm (ST3) and 4.74 cm (ST4). This confirms that a more dilute syrup
yields a higher critical h0 for steady boiling. In summary, a smaller h0 and S0 increase the
entrainment in boiling and make it more intermittent.

The next step is to test the sensitivity to the bubble radius. We have performed prelim-
inary experiments with an electric kettle where the bottom is a uniform metal plate (not
shown). Strong superheating is prevented. The bubbles are much smaller, and boiling is
always steady.

6.2 System evolution in the phase space

The above discussions are for the first surge of boiling. We can analyze the second surge
using the same theoretical framework by taking h1 as the new initial condition h0. Some
experiments enter steady boiling after the syrup-layer temperature recovers to the boiling
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point. They include T5, T6, ST1, and ST3, where either S0 or h0 is relatively large (Fig.
8). For other experiments, the post-boiling syrup layer is too dilute to restore enough heat
and boil again (i.e., S < S∗).

We summarize the system evolution in the phase space of the instantaneous syrup
concentration S and syrup-layer thickness h, as shown in Fig. 12. Assuming the syrup
layer is diluted by entraining freshwater and no syrup is released into the water layer, there
should be:

Sh = S0h0, (34)

which sets the system’s trajectory in the phase space as an inverse proportional function.
The parameter space is divided into four regimes:

1. The single-layer regime (S < Smin), where a two-layer configuration is convectively
unstable.

2. The non-boiling two-layer regime (Smin < S < S∗), where the ventilation by convec-
tive heat transfer prevents the syrup layer from boiling.

3. The intermittent boiling regime (S > S∗ and h < h⊥).

4. The steady boiling regime (S > S∗ and h > h⊥).

7 Conclusion

This report presents a novel experiment, boiling stratified flow, to investigate the vertical
mixing induced by atmospheric moist convection. A thin layer of syrup is heated below a
thick layer of freshwater in a beaker. The syrup layer represents the atmospheric boundary
layer, and the water layer represents the free troposphere. The temperature in the exper-
iment is analogous to the atmospheric humidity, and the boiling point is analogous to the
saturated vapor mixing ratio.

When the initial syrup concentration S0 and the syrup layer thickness h0 are relatively
small (but S0 is not too small, see Fig. 12), the system is in the intermittent boiling regime.
The bubbles generated at the bottom quench on their way up and drive vortex rings that
penetrate the syrup-water interface, mix with water, and sink to the interface, producing a
middle mixed layer that lies above the bottom mixed layer. The bottom mixed layer grad-
ually diminishes due to the mass detrainment by vortex rings. The relatively cold middle
mixed layer then touches the bottom and ends boiling. Boiling is intermittent because more
cold water is entrained into the syrup layer than needed to remove superheating.

We built a theoretical framework to model the entrainment amount in a boiling surge,
which is quantified with the interface rising distance h1 − h0. Key quantities include the
escape ratio E, which measures the fraction of vortex rings that escape the syrup layer
against the disturbance by turbulence, and the vortex ring penetration depth l, which
determines the amount of freshwater a vortex ring can entrain. The theory can explain
the trend of experiments with varying Fs (surface heat flux), S0, and h0. The post-boiling
interface height h1 drops with increasing Fs because the higher surface heating raises the
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Figure 12: The system evolution in the S-h phase space. The yellow zone denotes the
single-layer regime (S < Smin), and the red zone denotes the non-boiling two-layer regime
(Smin < S < S∗). The white zone denotes the two boiling regimes, with the upper zone
denoting the steady boiling regime (h > h⊥) and the lower zone denoting the intermittent
boiling regime (h < h⊥). Phase trajectories of experiments S1-S7, T1-T7, and ST1-ST4
are plotted. Blue trajectories denote the experiments with intermittent boiling at the first
surge. Red trajectories denote the experiments with steady boiling at the first surge, and
no ending of the trajectory is set. The trajectories are assumed to obey h = h0S/S0, with
the dots denoting h = h0 and the circles denoting h = h1. Generally, a smaller h or S
enhances the boiling entrainment.
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bubble number density and the turbulent strength in the syrup layer and traps more vortex
rings. The h1 is non-monotonic with S0. For S0 ≲ 0.3, the h1 increases with S0 due to the
higher superheating and the larger bubble radius. For S0 ≳ 0.3, the h1 decreases with S0

due to the more negative buoyancy of the vortex ring. The h1 is relatively insensitive to h0
because a thicker syrup layer raises the dissipation path of a vortex ring, reducing E and l.
We quantitatively modeled the dependence of h1 on S0 and h0. When the four uncertain
parameters take the best-fit values, the agreement with experiments is very good.

When S0 and h0 are relatively large, E and l get smaller, and the entrainment rate drops
to the minimum value for removing superheating in the syrup layer. We call it a steady
regime, where boiling is continuous. The overshooting vortex rings continuously entrain
cold water into the syrup layer. We match the intermittent and steady regimes theory and
predict a transition curve. The theory predicts that a smaller S0 raises the transitional h0
to steady boiling, qualitatively agreeing with experiments.

The key aspects of comparing boiling stratified flow and atmospheric convection are
their lifecycle and influence on environmental stratification. Moist convection in the at-
mosphere generally exhibits a self-regulating behavior, i.e., a lifecycle, primarily with three
mechanisms. First, the re-evaporation of liquid droplets drives downdrafts, which brings
the middle-level dry air into the boundary layer [59]. Second, the net latent heat release in
condensation and evaporation, measured by surface rainfall rate, stratifies the atmosphere
and reduces the convective instability [75, 10]. Third, the mechanical stirring effect of up-
drafts weakens the stratification at its overshooting top [39], and the mechanical stirring of
evaporation-driven downdrafts could potentially weaken the stratification at the boundary
layer top [68]. The mechanical stirring converts kinetic energy to potential energy, making
the updrafts and downdrafts penetrative [74, 60, 3]. The ratio of stratifying to de-stratifying
effects generally increases from zero as the cloud transitions from shallow cumulus to deep
convection. For a shallow cumulus (Fig. 13), whose cloud top is ≲ 3 km high and has little
precipitation, the condensation of vapor produces liquid droplets that will re-evaporate and
cause little net heating [21, 2]. Its primary role is to mix moisture vertically.

In the intermittent boiling regime of the experiments, the stirring of the syrup-water
interface by vortex rings de-stratifies the system and brings down cold water, ending boiling.
This is analogous to the third mechanism of the self-regulating behavior of moist convection.
The dehydration effect of vaporization slightly increases the S in the syrup layer, and the
S in the freshwater layer is slightly increased by gaining water from condensed bubbles.
However, the bubble’s vapor mass is much smaller than the syrup moving with it. The
de-stratifying effect of boiling is much stronger than its stratifying effect. Thus, shallow
cumulus is closest to the intermittent boiling regime among all types of moist convection.

Further analogies exist in the flow structure, parameter sensitivity, and regime transi-
tions. As for the flow structure, the subcooled feature of the boiling, i.e., the quench of
bubbles when in contact with the liquid below the boiling point, is analogous to the entrain-
ment cooling of a shallow cumulus, where the liquid droplets mix with dry air, evaporate,
and reduce the parcel’s buoyancy [19]. The middle mixed layer resembles the trade cumulus
layer in the subtropics, a humid layer produced by the mixture of the boundary layer and
free-tropospheric air [22, 29].

The trend in experiments also yields interesting analogies with shallow cumulus. The
reduction of h1 with increasing Fs in the experiments implies that the stratified turbulence
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Figure 13: Shallow cumulus in Puerto Rico, USA, December 2022, photographed by Hao
Fu. This report shows the analogy between shallow cumulus and the laboratory boiling
stratified flow.

produced by updrafts and downdrafts at the atmospheric boundary layer top may not always
favor mixing. It might suppress a more efficient mixing mechanism - the organized updrafts
and downdrafts. One possible future work is using large-eddy simulations to study whether
a similar mechanism exists in the real atmosphere. The optimal S0 in entrainment has an
analogy to the atmosphere. Parker [55] studied the response of moist convection to the
stratification strength. He found that a stabler stratification not only suppresses convection
but also dry air entrainment. This leads to the build-up of convective available potential
energy (CAPE) and deeper convection, with implications for continental convection in the
midlatitude [20].

Is the transition of boiling type analogous to the transition of convective type in the
atmosphere? The steady boiling regime is analogous to a strict boundary layer quasi-
equilibrium (BLQE) state in the atmosphere, where the entrainment of dry air instanta-
neously balances the surface heat flux [59]. The nearly boiling temperature in the syrup layer
requires the atmospheric analogy to be a nearly saturated atmospheric boundary layer, i.e.,
a stratocumulus or fog layer [42, 27]. The negligible dehydration in boiling syrup further re-
quires the atmospheric analogy to be nonprecipitating, i.e., no net latent heat release. This
analogy might be weird - does it mean “shallow cumulus” transitions to “stratocumulus” as
the surface heating proceeds? The opposite is true in the atmosphere. In a diurnal cycle or
for a growing sea surface temperature, stratocumulus breaks up into shallow cumulus and
then transitions to precipitating deep convection [22, 16, 6]. The re-evaporation of raindrops
drives gravity currents in the boundary layer, which aggregates vapor and triggers deeper
convection [9, 65]. The paradox lies in the prohibition of precipitation required by the anal-
ogy. For a nonprecipitating atmosphere, we speculate the next stage of shallow cumulus
should be the gradual saturation of the lower troposphere, essentially a deep stratocumulus
close to our steady boiling regime. This suggests future research for the convective tran-
sition in a severely polluted atmosphere with a high concentration of aerosol, where the
conversion from suspending cloud droplets to falling raindrops is suppressed [64, 1].

196



8 Acknowledgements

I am grateful to my advisors, Claudia Cenedese, Adrien Lefauve, and Geoff Vallis, for
their insightful guidance that led to this report. They taught me how to design and do
experiments professionally, helped me solidify the theoretical framework, and inspired me to
dig the link to the real atmosphere. I am grateful to Yunjiao Pu for providing experimental
support at the kitchen stage of this project. I thank Jim McElwaine, Anders Jensen, and
Bruce Sutherland for critical experimental support. I thank Keaton Burns for teaching us
softball and helping me run the Dedalus model at the early stage of this project. The great
summer wouldn’t be possible without the administration of the program by Tiffany Shaw,
Pascale Garaud, and Julie Hildebrandt. I received guidance from numerous GFD faculties
and visitors. I thank Wanying and my roommates, Yaoxuan and Quentin, for their care in
life. Finally, I would like to thank the 2023 Class fellows for their kind help throughout the
summer.

References

[1] T. H. Abbott and T. W. Cronin, Aerosol invigoration of atmospheric convection
through increases in humidity, Science, 371 (2021), pp. 83–85.

[2] AMS-Glossary, Glossary of meteorology, American Meteorological Society, URl:
http://glossary.ametsoc.org, (2012).

[3] J. K. Ansong and B. R. Sutherland, Internal gravity waves generated by convective
plumes, J. Fluid Mech., 648 (2010), pp. 405–434.

[4] A. Arakawa and W. H. Schubert, Interaction of a cumulus cloud ensemble with
the large-scale environment, part I, J. Atmos. Sci., 31 (1974), pp. 674–701.

[5] S. Barathula and K. Srinivasan, Review on research progress in boiling acoustics,
Int. Commun. Heat Mass Transf., 139 (2022), p. 106465.

[6] G. Bellon and O. Geoffroy, Stratocumulus radiative effect, multiple equilibria of
the well-mixed boundary layer and transition to shallow convection, Q. J. R. Meteorol.
Soc., 142 (2016), pp. 1685–1696.

[7] H. Bénard, Les tourbillons cellulaires dans une nappe liquide propageant de la chaleur
par convection: en régime permanent, Gauthier-Villars, 1901.

[8] J. Bjerknes, Saturated-adiabatic ascent of air through dry-adiabatically descending
environment, Quart. J. Roy. Meteor. Soc., 64 (1938), pp. 325–330.
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Abstract

Planetary atmospheres with excess angular momentum relative to the planet’s equatorial
surface are said to be superrotating. Superrotation is a common feature of both fast ro-
tating gas giants (e.g., Jupiter), slowly rotating planets (e.g., Venus) planets, and tidally
locked planets. While the mechanisms of superrotation in slow rotators and tidally locked
planets share some commonalities, they have to date not been studied jointly. Here, we
explore the physics of superrotation for a wide range of planetary sizes, rotation rates,
and insolations, in a hierarchy of model complexities. We focus on atmospheres that can
be modeled as thin shells, and all of our models have a finite number of fixed pressure
levels extending from a solid surface (or quiescent layer) to the top of the atmosphere.
Our simplest model is composed of two vertical levels, and is able to produce realistic su-
perrotation on both tidally locked planets and slow rotators, without the need for specific
tricks required by shallow-water models. We also show that some classes of tidally locked
planets, specifically at low thermal Rossby numbers and large radiative relaxation times,
may have subrotating atmospheres. Linearizations of this model elucidate the wave-mean-
flow interactions responsible for the establishment of superrotation. They further allow an
understanding of the regime transition from subrotating to superrotating atmospheres.
Finally, we explore the transition in the mechanisms of superrotation from non-tidally
locked to tidally locked planets by applying a progressively stronger standing asymmet-
ric equatorial forcing. We show that a standing Gill-like pattern quickly dominates over
travelling planetary Kelvin-Rossby waves in forcing superrotation. These results allow
for a unified understanding of superrotation mechanisms across a wide range of planetary
bodies.

1 Introduction

Axisymmetric motion in planetary atmospheres cannot produce an angular momentum
maximum away from a surface or an interior quiescent layer, a consequence of Hide’s
theorem (Hide, 1969; Vallis, 2017). As a consequence, equatorial winds must be retro-
grade when the flow is purely axisymmetric. Despite this constraint, Venus, Jupiter,
Saturn, Titan, and many planetary atmospheres beyond the solar system have prograde
equatorial winds; they are said to superrotate. On these planets, non-axisymmetric wave
processes presumably flux momentum from extratropical and subtropical regions towards
the equator.
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Three broad classes of planets exhibit superrotation (e.g. Imamura et al., 2020): fast-
rotating gas giants (Jupiter and Saturn), slowly rotating terrestrial planets (e.g., Venus
and Titan), and tidally locked planets. Most observed exoplanets belong to the latter
group. Indeed, current detection techniques favor planets orbiting close to their host
star, which tidal stresses are expected to rapidly bring to a state of tidal locking (Barnes,
2017). This group can be subdivided into terrestrial planets and gas giants, the latter
often referred to as hot Jupiters.

Many attempts at explaining superrotation on fast-rotating gas giants used shallow
atmospheric models (both shallow-water and primitive equation) (e.g., Lian and Show-
man, 2010; Liu and Schneider, 2011), developed and extensively used for the study of
Earth’s atmosphere. These models assume that the depth of the layer in which atmo-
spheric flows take place is small compared to the planet’s radius, which happens if the
flows are confined to an upper stratified layer (O(100 km) deep for Jupiter and Saturn).
One important consequence of this assumption is that the flows primarily aligns with the
local gravity. Another approach assumes that the flow extends to a much deeper con-
vective layer (e.g., Busse, 1976). In such a scenario, the flow primarily aligns with the
rotation axis, and the dynamics cannot be adequately described by shallow atmospheric
models. Recent measurements from the Juno mission confirmed that the latter hypoth-
esis was true on Jupiter and Saturn (Kaspi et al., 2020). On hot Jupiters, however, the
internal heat flow is expected to be very weak compared to the stellar irradiation. The
upper atmosphere is thus likely to be stably stratified and the depth of the flow is likely
shallower there (following Showman et al. (2008), one might estimate this depth using the
density scale height, which is a factor at least 20 smaller than the planetary radius). On
terrestrial planets, it is customary to assume that the shallow atmosphere approximation
holds, as higher molecular masses yield small scale heights. Thus, all classes of superro-
tating atmospheres except “cold” gas giants can be modeled in a single framework, that
of thin or shallow atmospheres, or at least that is the approach we shall take here.

Different classes of waves have been proposed to drive superrotation on slow rotators
and tidally locked planets. For the former, when the heating is axisymmetric in the time
mean, an instability of the zonally symmetric basic state is likely required to create eddies.
One such instability (termed Rossby-Kelvin – or RK – instability) arises in the presence
of strong enough midlatitude jets. These allow midlatitude Rossby waves to phase lock
with fast-travelling equatorial Kelvin waves and produce momentum-converging wind
patterns (Iga and Matsuda, 2005; Wang and Mitchell, 2014). For tidally locked planets,
Showman and Polvani (2010, 2011) proposed that the steady linear response to non-
axisymmetric heating, a Matsuno–Gill-like solution, could itself spin-up superrotation if
vertical momentum transport from a low-level quiescent layer was also taken into account.

While the mechanisms of superrotation are often examined using linearized versions
of shallow water models, producing realistic superrotation with these models has proved
challenging. The vertical momentum transport parameterization employed by Showman
and Polvani (2011) requires some amount of retrograde flow at the equator for super-
rotation to exist. This prevents the emergence of pan-equatorial superrotating flows, as
predicted by global circulation models (GCMs) of tidally locked planets (e.g., Showman
et al., 2009; Pierrehumbert and Hammond, 2019). For slow rotators, Zurita-Gotor and
Held (2018) have shown that a 1.5-layer shallow water model, even with vertical momen-
tum transport, struggles to produce superrotation despite representing the RK instability.
One goal of the present work is to present a modeling framework that contains the sim-
plest physical processes (and allows for some analytical treatment of linear waves to be
carried), but has rich enough behavior to produce realistic superrotation, and then to
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explore the mechanisms involved.
We use a hierarchy of models to understand the mechanisms of superrotation on 

tidally locked planets and slow rotators in a unified framework. We seek to answer several
questions: Do all tidally locked planets superrotate? If not, for what sets of parameters 
(size, rotation rate, insolation, surface drag ...) do they? What mechanisms govern 
the appearance of superrotation across the parameter space? Are the mechanisms of 
superrotation on tidally locked planets and slow rotators related? Can both coexist?

In order to answer these questions, we first explore the response to steady thermal
forcing in tidally locked planets, which consists in the sum of a thermally direct ax-
isymmetric flow and a Matsuno-Gill type response, using a linear two-level model.
This allows us to make qualitative predictions about the strength of the superrotating 
jet as a function of input parameters. Fully nonlinear integrations of the two-level 
model with varying thermal Rossby number and thermal relaxation scales are conducted 
to verify the predictions made using linear dynamics. They confirm a weakening 
equatorial jet with increasing thermal relaxation scale, and feature subrotation at high 
values of this parameter. The robustness of the two-level results is investigated using a 
10-level version of the same model, which constitutes a simplified GCM. We also
present two-level simulations with axisymmetric thermal forcing, both subrotating and
superrotating, and investigate the eddies causing superrotation at high thermal Rossby
numbers. Finally, we explore the interplay between the superrotation mechanisms
characteristic of slow rotators and tidally locked planets with a set of simulations
that bridge the two cases, applying a progressively stronger zonal asymmetry in the
thermal forcing.

2 Methods

The numerical models used in this study are all part of the same class of pressure-level 
models on the sphere. They are extensions of the models of Held and Suarez (1978), Suarez 
and Duffy (1992), and Saravanan (1993), who used two-level versions. We start with the 
dry primitive equations in pressure coordinates, and make approximations suitable for a 
thin atmosphere: the acceleration of gravity g is constant, the atmosphere is hydrostatic, 
and we only retain the component of planetary rotation that projects on the local vertical 
direction in calculating the Coriolis acceleration (the traditional approximation). The 
horizontal momentum, hydrostatic, thermodynamic, and continuity equations read

∂u

∂t
+ u · ∇u+ ω

∂u

∂p
+ fk × u = −∇Φ + Fu, (1)

∂Φ

∂Π
= −cpθ, (2)

∂θ

∂t
+ u · ∇θ + ω

∂θ

∂p
= Fθ, (3)

∇ · u+
∂ω

∂p
= 0, (4)

where u = (u, v) is the horizontal velocity vector, ω the pressure velocity, θ the potential
temperature, Φ the geopotential height, f = 2Ω sinϕ is the Coriolis parameter (Ω is the
planet’s rotation rate), and Π = (p/p0)

R/cp the Exner function, where R is the specific gas
constant and cp the isobaric heat capacity. In the remainder of this work, R/cp = 2/7,
as for a diatomic gas. We include forcing terms in the momentum and thermodynamic
equations; those represent the effects of surface friction and thermal relaxation.
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Figure 1: Sketch of the vertical discretization of the N-level atmospheric model

The atmosphere is divided into N ≥ 2 pressure levels, evenly spaced between the p = 0
and p = p0 levels. p0 is taken as the mean surface pressure on a terrestrial planet. On a
gas giant, it is the pressure level at which horizontal flows become negligible (compared
to weather-layer flows) due to magnetic drag or Ohmic dissipation in the planet’s interior.
The variables are represented on a staggered vertical grid. Pressure velocities ωi are
defined on the full levels i∆p (0 ≤ i ≤ N), where ∆p = p0/N is the vertical grid spacing.
ui, θi, Φi are defined on the half levels (i − 1/2)∆p, for 1 ≤ i ≤ N . We will henceforth
refer to these levels by their value of σ := p/p0. A schematic of this vertical discretization
is provided in Fig. 1. A Rayleigh mechanical damping, with a timescale τdrag, is applied
in the lowermost layer. The thermodynamic forcing term consists in a relaxation towards
a prescribed potential temperature profile θE(ϕ, λ, p), where ϕ and λ denote latitude and
longitude, on a time scale τrad. We use

θE(ϕ, λ, p) =

{
(∆Θh −∆Θv lnΠ) cosϕ max(0, cosλ) for tidally locked planets,

(∆Θh −∆Θv lnΠ) cosϕ
1

π
for non tidally locked planets.

(5)
The vertical structure specifies an approximately constant static stability ∂θE/∂z in
height. The meridional structure is taken proportional to that of the stellar irradia-
tion in the absence of axial tilt (i.e., ∝ cosϕ). The same goes for the zonal structure on
tidally locked planets: it varies as cosλ on the day side and vanishes on the nightside.
The structure of this reference potential temperature profile is illustrated in Fig. 2. The
first panel shows the vertical and meridional structures, common to tidally locked and
axisymmetrically forced planets (we choose nondimensional values of ∆Θh and ∆Θv that
correspond to those used henceforth.). The second panel illustrates the latitude-longitude
structure on tidally locked planets. The factor 1/π in the second expression of (5) ensures
that the mean θE, a proxy for the stellar irradiation, is the same for tidally locked and
non-tidally locked planets for given ∆Θh and ∆Θv. We pause here to note that the as-
sumption of a zonally symmetric forcing for non-tidally locked planets is adequate when
the thermal relaxation scale τrad is much longer than the planet’s rotation period 2π/Ω.
This is not the case, for example, on Venus: there, the effect of thermal tides is of primary
importance (, e.g)[]Takagi2007.

Two versions of this model are used in this work. The first one emphasizes simplicity
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Figure 2: (a) Latitude-height structure of the reference potential temperature θE — i.e.,
(∆Θh − ∆Θv lnΠ) cosϕ — with ∆Θh = 1 and ∆Θv = 0.05. (b) Reference potential
temperature structure at the surface — i.e., ∆Θh cosϕ max(0, cosλ) — again with ∆Θh =
1.

and has two levels (i.e., N = 2); it is the simplest model that allows to obtain physical
insights on the mechanisms of superrotation while retaining enough complexity (including
vertical momentum transport) to have a rich behavior. Some analytical treatment of a
linearized version of this model is presented in section 3. The other model has N = 10
levels. We use it to validate the results found with the two-level model. Proper evaluation
of the 10-level model, namely the Held and Suarez (1994) benchmark, is carried out in
Appendix A. Numerical integrations are performed using Dedalus (Burns et al., 2020), an
open framework for solving partial differential equations. We use a fourth-order horizontal
hyperdiffusion (but no vertical diffusion) in the momentum and thermodynamic equations
to ensure numerical stability.

In order to reduce the number of input parameters to this model, we nondimen-
sionalize equations (1)–(2) following Potter et al. (2014). Using a length scale a (the
planetary radius), a time scale (2Ω)−1, a geopotential scale cp∆Θh, a horizontal velocity
scale cp∆Θh/(2Ωa) (from geostrophic balance), and a vertical velocity scale consistent
with continuity, the governing equations become

∂u

∂t
+RoT

(
u · ∇u+ ω

∂u

∂p

)
+ f̂k × u = −∇Φ− Eu, (6)

∂Φ

∂Π
= −θ, (7)

∂θ

∂t
+RoT

(
u · ∇θ + ω

∂θ

∂p

)
=
θE − θ

Trad
, (8)

∇ · u+
∂ω

∂p
= 0, (9)

where f̂ = sinϕ and three nondimensional control parameters appear: a thermal Rossby
number, an Ekman number, and a nondimensional thermal relaxation time scale, given
respectively by

RoT =
cp∆Θ

(2Ωa)2
, E =

1

2Ωτdrag
, Trad = 2Ωτrad. (10)

A fourth nondimensional control parameter controls the vertical structure of θE: S =
∆Θv/∆Θh. In (6)–(9), all variables are nondimensional. The friction term in (6) is only
effective in the lower layer in the discretized models.
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For completeness, we now give the nondimensional governing equations of the two-level
model, obtained by discretizing (6)–(9) in the vertical:

∂ui

∂t
+RoT (ui · ∇ui + ω(u2 − u1)) + f̂k × ui = −∇Φi − δi2Eui, i = 1, 2, (11)

Φ2 − Φ1

π2 − π1
= −θ1 + θ2

2
, (12)

∂θi
∂t

+RoT (ui · ∇θi + ω(θ2 − θ1)) =
θiE − θi
Trad

, i = 1, 2, (13)

∇ · u1 + 2ω = 0, (14)

∇ · u2 − 2ω = 0, (15)

We note that the pressure scale used in the nondimensionalization is the lowermost
pressure level of the model, p0.

3 Processes Driving Superrotation in a Two-level Model

In this section, we explore linear wave processes that can drive superrotation on tidally
locked planets and slow rotators. We do so using a two-level model, which is the simplest
model containing all the necessary processes for superrotation. Indeed, superrotation
cannot be sustained in the absence of vertical momentum transport (e.g., in one-level
models) if the circulation is symmetric about the equator at all times (Showman and
Polvani, 2011). This is best understood in the framework of the Eulerian-mean momentum
equation: denoting zonal averages with an overbar, the zonal-mean zonal momentum
equation can be arranged into

∂u

∂t
= (f̂ +RoT ζ)v −RoT ω

∂u

∂p
− Eu, (16)

where ζ is the relative vorticity. For an equatorially symmetric circulation, v = 0 at
the equator, hence the only term that can positively accelerate the equatorial jet is the
vertical transport term. In the two-level system, (16) reads in the frictionless upper layer:

∂u1
∂t

= (f̂ +RoT ζ1)v1 −RoT ω(u2 − u1). (17)

Hence, superrotation requires ω(u2 − u1) < 0 at the equator, meaning that vertical motion
generates a flux of eastward momentum from the lower to the upper layer. We now explore
which planetary waves in tidally locked planets and slow rotators meet this condition.

3.1 Tidally Locked Planets

Tidally locked planets are driven by a zonally varying thermal forcing. Because the
cooling is uniform on the nightside, while the heating is stronger near the equator on the
dayside, there is also a zonal-mean heating gradient between the equator and the poles.
Formally, one can expand the equilibrium potential temperature profile (5) in Fourier
series in longitude:

θE(ϕ, λ, p) =

(
1

π
+

1

2
cosλ+ . . .

)
(1− S lnΠ) cosϕ, (18)
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(in nondimensional terms) and understand the total circulation as a sum of the response
the first term (an axisymmetric thermal forcing) and the second term (a wavenumber-1
forcing), neglecting higher-order terms in the expansion.

The axisymmetric part of the forcing leads to a thermally direct circulation, which
exports momentum away from the equator and accelerates midlatitude jets. Using a
simple angular-momentum conserving model of this circulation (e.g., Held and Hou, 1980),
one can show that the speed of the jets scales as

U∗ ≃ Ωa
gH

Ω2a2
(19)

where gH is a representative squared gravity wave speed, which corresponds to cp∆Θv in
our model. Hence, a nondimensional jet speed is

U ≃ Ωa cp∆Θv/Ω
2a2

cp∆Θh/(2Ωa)
≃ 2S (20)

The linear response to the wavenumber-1 forcing part is the well-known Matsuno–
Gill circulation pattern (Gill, 1980, discussed in the context of tidally locked planets by
Showman and Polvani (2010)). The Matsuno–Gill problem is obtained in the two-level
system by linearizing (11)–(15) about a state of rest with uniform potential temperatures
Θ1 and Θ2, with Θ1 −Θ2 = S:

f̂k × u1 +∇Φ1 = 0, (21a)

f̂k × u2 +∇Φ2 + Eu2 = 0, (21b)

−SRoTω =
θ1E − θ1
Trad

, (21c)

−SRoTω =
θ2E − θ2
Trad

, (21d)

along with continuity and hydrostasy. Here, θiE = cosϕ cosλ (1− S lnΠi)/2 for i = 1, 2.
A sample solution of the Matsuno-Gill problem (21a)–(21d), solved on the sphere with
E = 0.02, S = 0.05, and RoTTrad = 10, is shown in Fig. 3. The lower layer geopotential
field illustrates the classical structure of the response to equatorial heating, composed
of an equatorial Kelvin wave and two off-equatorial Rossby waves, which together form
an eastward-pointing chevron pattern. The arrows show the horizontal eddy momentum
fluxes u2u2, the meridional convergence of which forms part of the total eddy acceleration
(17). They are directed equatorward, indicating that the horizontal eddy flow accelerates
the mean equatorial flow eastward. In the upper layer, the eddy geopotential field is
uniform at the equator, as mandated by the absence of drag. Horizontal eddy momentum
fluxes are still, however, mostly equatorward. The total upper-layer eddy momentum flux
convergence (which is mostly contributed to by the horizontal eddy flow, not shown) is
shown in Fig. 4 (cyan line) as a function of latitude.

Our goal is to understand how this eddy acceleration depends on the various control
parameters, especially RoT and Trad. One first observation is that the solution to this
system only depends on three parameters: E, SRoTTrad, and S (because the form of θ1E
and θ2E depends on S). Second, from continuity and the thermodynamic balance, one
finds u1, u2 ∼ ω ∼ (SRoTTrad)−1. Hence, the magnitude of the eddy momentum flux
convergence terms is expected to scale as (STrad)−2Ro−1

T (see (17)).
The Matsuno–Gill problem is solved for a second value of RoTTrad, both with and

without drag. We compute the eddy momentum flux convergence (17) from these so-
lutions, shown as a function of latitude in Fig. 4 (and scaled by (STrad)2RoT ). Every
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Figure 3: Solution of the Matsuno-Gill problem (21a)–(21d) with E = 0.02, S = 0.05,
and RoTTrad = 10. The left panel shows the upper-layer geopotential Φ1 (shading) and
eddy fluxes of zonal momentum u1u1 (arrows). The meridional component of these eddy
fluxes is increased by a factor 10 relative to its zonal component for clarity. The right
panel shows Φ2 (shading) and u2u2 (arrows).

case contains one equatorial maximum and two off-equatorial maxima, and the latter two
maxima shift poleward as RoTTrad is increased. This poleward shift can be understood
as follows: thermal relaxation is most effective at high latitudes, where potential temper-
ature gradients can be balanced by the Coriolis force. A very effective thermal relaxation
(small Trad) yields small vertical motion at high latitudes (through (21c)–(21d)), hence
weak meridional wind (through the vorticity balance, 2f̂ω = β̂v1 where β̂ = ∂yf̂). Both
of these effects lead to a small eddy momentum flux convergence at small Trad.

A second observation is that the equatorial eddy momentum flux convergence strength-
ens relative to the off-equatorial peaks as RoTTrad is decreased, but vanishes in the absence
of lower-layer drag (E = 0 case). The latter fact can be understood by combining the
vorticity equation ∇×(21a) with continuity, which gives 2ω = −∂ϕu1/a at the equator.
Hence,

ωu1 = 0 (22)

In the absence of drag, we similarly obtain ωu2 = 0, and equatorially symmetric linear
motions cannot drive superrotation as ω(u2 − u1) = 0.

In the presence of drag, the low-level wind pattern can shift eastward relative to the
vertical motion pattern, which allows for positive vertical momentum transport. Specifi-
cally, one can show (see Appendix B) that the equatorial eddy momentum flux convergence
is

−RoTωu2 =
1

STrad
(θ1E + θ2E)u2 (23)

In Fig. 5, we show patterns of u2(ϕ) at the equator (obtained by solving the linear
Matsuno-Gill problem on the sphere) for two values of the control parameter RoTTrad, for
fixed E = 0.02 and S = 0.05. We also show a solution with E = 0 for reference. In the
latter case, θ1E + θ2E and u2 are exactly in quadrature and ωu2 = 0. When friction is
included, the low-level wind pattern shifts eastward (solid blue lines in Fig. 5), and more
so as RoTTrad is decreased. This shift can be understood in the beta-plane shallow water
model of the Gill problem (Vallis, 2017). As damping is increased, the Kelvin wave cannot
propagate as far to the east and shifts westward. The converse happens to the Rossby
component. Because the Rossby feels a stronger damping than the Kelvin component, a
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Figure 4: Scaled eddy momentum flux convergence in the two-level Gill problem on the
sphere.

given increase in damping shifts it further than the Kelvin wave. This leads to an overall
eastward shift in the zonal wind pattern. This explains the increase in the magnitude of
the equatorial acceleration with decreasing RoTTrad, relative to the off-equatorial peaks.

Figure 5: Equilibrium potential temperature and lower-level zonal wind at the equator in
the two-level Gill problem on the sphere.

In summary, the response to the zonally asymmetric heating that characterizes tidally
locked planets can be broken down in two main parts. The first one is an axisymmetric,
thermally direct circulation. A simple theoretical picture of this circulation predicts two
midlatitude jets whose speed is independent of RoT and Trad. The second part is the
response to the zonal wavenumber-1 component of the heating. When treated linearly,
this response gives rise to a positive eddy momentum flux convergence at the equator,
provided friction is present at low levels. This eddy acceleration also features two off-
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equatorial peaks that shift poleward and strengthen relative to the equatorial maximum
as RoTTrad increases. The overall strength of this acceleration pattern is proportional to
Ro−1

T T−2
rad. Hence, high Trad leads to weak eddy momentum flux convergence, and one may

expect a circulation dominated by the midlatitude jets spun up by the thermally direct
circulation. Indeed, these jets would likely become baroclinically unstable and radiate
Rossby waves that deposit westward momentum when breaking at low latitudes (see, e.g,
Vallis, 2017), leading to a weak, or even subrotating, equatorial jet. Low Trad and low
RoT , on the contrary, lead to a strong and equatorially-focused eddy acceleration, and
likely to superrotation. This linear picture is unlikely to inform us about the high-RoT ,
low Trad case due to stronger nonlinearity. Section 4 explores the equilibrated state of
fully nonlinear simulations across a wide range of RoT and Trad to test these ideas.

3.2 Slow rotators

In our idealized picture, non-tidally locked planets have an entirely zonally symmetric
forcing. Thus, one needs an some other mechanism, for example an instability, to produce
non-axisymmetric eddies that can accelerate the equatorial atmosphere. Iga and Matsuda
(2005) showed that in a spherical shallow water model, various profiles of background
zonal wind yield an unstable mode that results from the interaction of a midlatitude
Rossby wave and an equatorial Kelvin wave (hereafter called “RK mode”). While this
is reminiscent of the Matsuno-Gill pattern, this mode does not arise as a response to a
standing forcing and has a fast eastward propagation speed. Wang and Mitchell (2014)
extended this linear analysis using a primitive equation model with a wide range of zonal
wind profiles. They found that an unstable RK mode exists whenever the midlatitude
jets Doppler-shift the Rossby wave phase speed to match that of the equatorial Kelvin
wave.

Being symmetric about the equator, the RK mode cannot converge momentum there
in the absence of vertical momentum transport. Consequently, single-layer shallow water
models cannot produce superrotation if that process is not parameterized (Zurita-Gotor
and Held, 2018). Here, we show that RK modes can be captured in the 2-level model
and produce equatorial acceleration. We linearize (11)–(15) about a state of horizontally
uniform potential temperatures Θ1 and Θ2 (with Θ1 −Θ2 = S), with a barotropic back-
ground zonal wind U = (U(ϕ), 0), and without friction (the modes still appear in the
presence of friction — we are merely trying to show that it isn’t a necessary component).
The equations read:

∂tui +RoT (U · ∇ui + ui · ∇U ) + f̂k × ui +∇Φi = 0, i = 1, 2, (24)

∂tθi +RoT (U · ∇θi − Sω) + θi
Trad

= 0, i = 1, 2, (25)

along with continuity and hydrostasy. ui, θi and Φi are perturbation quantities. Follow-
ing Zurita-Gotor and Held (2018), U(ϕ) is taken as angular momentum-conserving wind
between the equator and a given latitude ϕ0, and tapers off to 0 at the poles, thus having
two broad midlatitude jets.

We solve for zonal-wavenumber-1 eigenmodes of the system (24)–(25) with two differ-
ent background wind profiles, using RoT = 10, Trad = 200, and S = 0.05. We show the
upper-level winds and geopotential perturbation in the left panels of Fig. 6. In the first
case, the zonal jets are close enough to the equator that the midlatitude Rossby wave can
phase-lock with the equatorial Kelvin wave. This produces an eastward pointing chevron
pattern. We compute the two components of eddy momentum flux convergence (see (17)),
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shown on the right-hand panels. As expected, v1ζ1 vanishes at the equator, but the verti-
cal momentum transport term produces equatorial acceleration. Both Rossby and Kelvin
waves are also observed in the second case (bottom panels), but they do not interact
as strongly, as the jets are farther poleward. This results in a weaker growth rate, and
weaker equatorial momentum flux convergence, relative to the midlatitudes.

Figure 6: (Top) Most unstable eigenmode with the imposed basic-state wind shown in blue
on the left panel and horizontally uniform potential temperature. The maximum speed
of the basic-state zonal wind is 0.04, attained at 50◦. The left panel shows upper-level
geopotential (shading) and wind (arrows), and the right panel shows the two components
of the eddy momentum flux convergence. These are normalized by the maximum absolute
value of v1ζ1, attained in midlatitudes. (Bottom) Same as the top row, with a different
basic-state zonal wind that attains a maximum of 0.08 at 65◦. The mode shown is the
most unstable RK-like eigenmode. The growth rates for these modes are respectively
0.10 and 0.0072, and their frequencies are respectively 0.11 and 0.19 (the positive sign
indicates eastward propagation).

This result indicates that the two-level model could be one of the simplest frameworks
to be able to produce superrotation in the presence of axisymmetric forcing. We verify
this claim in the next section.

4 Nonlinear Models of Superrotation

In this section, we perform fully nonlinear integrations of the 2-level model, with both
tidally locked and axisymmetric thermal forcings, for a wide range of input parameters.
Our goal is to test the qualitative, quasi-linear mechanisms presented in section 3, in-
cluding the behavior of superrotation as a function of RoT and Trad and the importance
of surface friction for superrotation on tidally locked planets. Another goal is to assess
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whether this simple framework can produce superrotation on slow rotators. The nonlin-
ear 2-level model is envisioned as a step of intermediate complexity between simple linear
models and GCMs, as it contains many of the processes of the latter (such as wave-mean-
flow interactions and transient eddies) with the simplest possible vertical structure. The
robustness of some of the results presented is verified using the 10 level model, which is a
simple GCM.

4.1 Tidally locked planets in a 2-level model

All of the runs presented (except for the runs without friction at the end of this part) use
E = 0.02 and S = 0.05. These are both relatively low values. E is more representative of
gaseous planets than rocky planets, and the low value of S represents relaxation towards
a profile that is nearly neutral to convection. The presence of condensible species would
likely increase this value. We perform a total of nine runs, spanning three values of RoT
(0.2, 1, and 5) and three values of Trad (10, 50 and 250). Each run is integrated for
500 rotation periods (i.e., until t = 2000π). A statistically steady state is reached after
about 200, and steady-state values are obtained by averaging over the last 250 rotation
periods. Finally, the hyperdiffusion coefficient is taken as 1.5 × 10−7 for all runs except
the RoT = 5, Trad = 10 run which uses 3× 10−7.

Figure 7 shows the equilibrated potential temperature and winds in the upper layer.
The zonal-mean wind fields possess numerous interesting features, some of which are
consistent with the predictions from section 3. The most notable is that while all the
simulations superrotate for Trad ≤ 50, all of the high-Trad runs subrotate1. This is consis-
tent with the behavior of the linear Gill pattern, which features weaker eddy momentum
flux convergence at all latitudes, and more so at the equator, at high Trad. The strength
of the overall circulation, and in particular of the superrotating jet, is confirmed to be
a decreasing function of both RoT and Trad. Midlatitude jets are present at high Trad,
and we verified (not shown) that the westward acceleration of the equatorial region in
the high-Trad runs is produced by transient eddies, whereas stationary eddies accelerate
the equatorial flow eastward in all cases. It remains to be shown, however, whether the
eddies responsible for this westward acceleration are indeed Rossby waves radiated from
the midlatitudes.

Unsurprisingly, some of the features of these simulations are not consistent with the
linear picture. In the nonlinear runs, increasing RoT while keeping Trad fixed tends to
make midlatitude jets disappear. This seems at odds with the fact that the Gill solution
produces stronger midlatitude acceleration at high RoT (relative to the equator), and that
the Held and Hou (1980) model of the axisymmetric component of the circulation predicts
a jet speed that does not depend on RoT . One thing we can note is that at high RoT ,
the temperature field is more strongly homogenized by gravity waves across the entire
planet, as the tropical band, as defined by the region where the local Rossby number is
larger than 1, significantly expands (e.g., Sobel et al., 2001; Potter et al., 2014). It is
thus expected that midlatitude jets, which must respect thermal wind balance and thus
require strong meridional temperature gradients, should be weaker.

The temperature field also shows some interesting features, starting with the above-
mentioned fact that it becomes more homogeneous as RoT increases (see the range of the
color scales). Evidently, temperature homogeneity also increases with Trad, as the ratio
of the advective timescale to the temperature relaxation timescale decreases. Each runs

1We observed in another test that the RoT = 5, Trad = 250 run has a second stable configuration,
which superrotates.
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Figure 7: Mean upper level potential temperature and winds over the last 250 rotation
periods of a set of fully nonlinear two-level simulations. For each simulation, E = 0.02
and S = 0.05, while RoT and Trad are given above each panel. Note that each panel uses a
different color scale for temperature. Thick orange lines show the zonal-mean zonal wind,
with a scale shown on the top axis (the same scale is used for each panel).

still features a hot region on the day side, but the hottest point (hotspot) is not always
shifted eastward in the presence of superrotation. A full understanding of the position of
this hotspot requires careful analysis of the response of the stationary Gill pattern to the
presence of the mean flow (Hammond and Pierrehumbert, 2018), and is out of the scope
of the present manuscript.

One important prediction from the linear solutions is that the Gill pattern does not
accelerate superrotation in the absence of low-level drag. We re-run the Trad = 50 sim-
ulations with E = 0 to test this idea in fully nonlinear runs. We show the equilibrated
zonal-mean u1 in simulations with and without drag in Fig. 8. The superrotating jet
indeed disappears in the low-RoT simulations, but remains present (albeit weaker) at
RoT = 5. This may indicate that the Gill model is less relevant to describing the accel-
eration of superrotation at high RoT , where nonlinearities play a much more important
role. At low RoT , however, the linear prediction is largely confirmed.
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Figure 8: Upper level zonal-mean zonal wind in two-level runs with (solid lines) and
without (dashed lines) surface drag.

4.2 Sensitivity of tidally locked integrations to the vertical res-
olution

Despite their rich behavior, the truncated vertical structure of the 2-level runs may affect
the spin-up and maintenance of a superrotating jet. Here, we perform 10-level runs with
the exact same parameters as in 4.1 to test the robustness of the 2-level results. One
important difference between the two setups is in the surface friction: In both the 2-level
and 10-level runs, it is applied in the lowermost layer only. Friction is thus felt through
a much deeper layer in the 2-level runs. We have not explored the dependence of these
results to the addition of a deeper friction layer in the 10-level runs. All of the 10-level
simulations presented here use a fourth-order hyperdiffusion with a coefficient of 5×10−7.

Fig. 9 displays zonal-mean u averaged in the upper half of the atmosphere in the 2-
level and 10-level runs. Enhancing the vertical resolution results in stronger superrotating
jets for all the parameters shown, and a switch from subrotation to superrotation for all
of the Trad = 250 runs. The explanation for this discrepancy can be twofold: it could
suggest a prominent role for vertical eddy momentum flux convergence in accelerating the
jet, or point to the effect of the depth of the layer that feels the surface drag. We were
not able to obtain subrotating steady-states in sensitivity tests up to Trad = 1000 (not
shown).

The thermal structure and horizontal winds of the 10-level runs is shown in Fig. 10.
One main difference with the 2-level integrations is that the superrotating jets are more
zonally uniform: while all of the 2-level runs have regions of weak or reversed flow, none
but two of the 10-level runs do. This likely explains the fact that the hotspots are all
shifted eastward in the 10-level runs, as thermal advection is much stronger on the dayside.

Overall, this section suggests that further tests are needed to validate the conclusions
proposed on the basis of the 2-level runs and understand the mechanisms behind the
differences between these two models.
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Figure 9: Upper-tropospheric zonal-mean zonal wind in 2-level and 10-level runs. For
2-level runs, we select the upper level. For 10-level runs, we show an average of the upper
5 levels.

4.3 Axisymmetric forcing in the 2-level model

We now move away from the tidally locked configuration, towards axisymmetric thermal
forcing. We use the exact same setup and set of parameters as in 4.1, except for the
equilibrium potential temperature profiles, which are zonally symmetric — see (5). To
the best of our knowledge, superrotation in axisymmetric configurations has only been
produced in GCMs (see, e.g., Williams, 2003; Mitchell and Vallis, 2010; Potter et al., 2014;
Zurita-Gotor and Held, 2018). We seek to verify whether the simpler two-level model can
do so and whether the mechanism can be tied to RK instability.

For the sake of brevity, we only analyze simulations with Trad = 50. The equilibrated
u(ϕ) is shown in Fig. 11. Aside from a poleward shift of the midlatitude jets with in-
creasing RoT , the main observation is the progressive strengthening of the equatorial flow
until superrotation is reached for RoT = 5. While we have not evaluated the sensitivity
of these results to the vertical resolution, GCM simulations performed by Mitchell and
Vallis (2010) (albeit with higher Trad) were superrotating for RoT ≥ 1. This may suggest
that the 2-level model, as in the tidally locked case, does not superrotate as easily as
vertically resolved runs. Nevertheless, the general trend is captured and we proceed with
studying the modes responsible for eastward acceleration at the equator.

While the equilibrated profiles shown in Fig. 11 are averaged over the last 250 rotation
periods (out of 500), most of the acceleration takes place over the first 50. Starting with
(17), we decompose the acceleration into mean flow and eddy components:

∂u1
∂t

=
(
f̂v1 +RoT ζ1v1 −RoTω(u2 − u1)

)
+
(
RoT ζ ′1v

′
1 −RoT ω′(u′2 − u′1)

)
, (26)
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Figure 10: As in Fig. 7, but for 10-level runs with θ and u averaged in the upper 5 levels.

Figure 11: Upper layer zonal-mean zonal wind in two-level runs with axisymmetric ther-
mal forcing, with Trad = 50

where primes denote deviations from a zonal average. The first and second terms on
the right-hand side, respectively termed the mean meridional circulation (MMC) and
eddy momentum flux convergence (EMFC) components, are calculated every quarter of
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Figure 12: Upper layer zonal acceleration in two-level runs with axisymmetric thermal
forcing (averaged over the first 50 rotation periods). The yellow line shows the contribu-
tion of the mean flow, (f̂ + RoT ζ1)v1 − RoT ω(u2 − u1). The yellow line shows the eddy

contribution, RoT

[
ζ ′1v

′
1 − ω′(u′2 − u′1)

]
. The scale for these two quantities is shown on the

top axis. The black line shows the total acceleration ∂u1/∂t, and the blue line the total
acceleration diagnosed as the sum of the yellow and green lines. The scale for these two
quantities is shown on the bottom axis.

a rotation period and averaged over the first 50 rotation periods, and shown in Fig. 12.
We note that the contribution from zonal-mean transients (not shown) is negligible; in
other words,〈

f̂v1 +RoT ζ1v1 −RoTω(u2 − u1)
〉
≃ f̂⟨v1⟩+RoT ⟨ζ1⟩⟨v1⟩ −RoT ⟨ω⟩⟨u2 − u1⟩, (27)

where angle brackets denote a time average. The MMC and EMFC components mostly
cancel out, and their sum (smoothed with a Gaussian filter of standard deviation 3◦) is
shown as a blue line in Fig. 12 (note the different scale). The total acceleration, ⟨∂u/∂t⟩, is
shown in black for comparison. At high RoT , the contribution from short-time transients
increases and the true and diagnosed zonal accelerations differ in midlatitudes, but show
decent agreement at the equator. As expected from Hide’s theorem, the zonal-mean flow
causes westward acceleration at the equator in all cases. The eddy contribution is weak
for RoT = 0.2, suggesting the absence of any instability producing eastward equatorial
acceleration. It is positive for both RoT = 1 and RoT = 5, but only stronger than the
mean flow contribution in the latter case.

In order to identify the waves responsible for this eastward equatorial acceleration, we
compute cospectra of the eddy momentum flux convergence. Specifically, each field ψ is
Fourier-transformed in longitude and time:

ψ(t, λ, ϕ) = ℜ
N∑
k=0

eikλ
∫ +∞

−∞
ψ̃(ω, k, ϕ)e−iωtdω, (28)

and the correlation between two fields ψ and χ is decomposed as

⟨ψ′χ′⟩ = 1

2

N∑
k=0

∫ +∞

−∞
ℜ(ψ̃χ̃∗)(ω, k, ϕ)dω, (29)
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This way, we decompose the eddy momentum flux convergence at each latitude as

EMFC(ϕ) = RoT

(
⟨ζ ′1v′1⟩+ ⟨ω′(u′1 − u′2)⟩

)
=

N∑
k=0

∫ +∞

−∞
ẼMFC(ω, k, ϕ)dω,

(30)

where

ẼMFC(ω, k, ϕ) =
RoT
2

ℜ
(
ζ̃1ṽ

∗
1 + ω̃(ũ∗1 − ũ∗2)

)
(31)

denotes the contribution of waves of frequency ω and zonal wavenumber k to the eddy

momentum flux convergence at latitude ϕ. The cospectra ẼMFC are calculated for the
first 50 rotation periods, smoothed in frequency with a Gaussian filter of standard devia-
tion 0.01, and averaged over the 5◦S - 5◦N band. These are shown for the two simulations
that display positive equatorial acceleration, namely RoT = 1 and RoT = 5, in Fig. 13.
Both cases show several peaks at k = 2, with both positive and negative frequencies.
Weaker additional peaks are present at higher wavenumbers and, to a lesser extent, at
k = 1. While the positive frequencies (eastward propagating waves) are compatible with
RK waves, the presence of positive peaks at negative frequencies suggests that other types
of waves may contribute to the spin-up of superrotation.

Figure 13: Spectral decomposition of the upper-layer eddy momentum flux convergence
(see text for details), computed over the first 50 rotation periods, averaged over the
equatorial band (5◦S - 5◦N). The x-axis is zonal wavenumber k and the y-axis is frequency
ω. The black plus signs indicate the waves that are shown in Fig. 14.

In order to visualize the structure of the wave that yield the strongest positive EMFC
peak in the RoT = 1 simulation, we select the k = 2, ω = 0.05 component of the upper-
layer wind and geopotential fields, shown on the top-left panel of Fig. 14 (again, the
Fourier spectra are smoothed in frequency with a Gaussian filter of standard deviation
0.01). While the pattern is quite different from the canonical RK wave shown in Fig. 6,
one can clearly distinguish a Kelvin wave structure at the equator, along with midlatitude
Rossby waves. Unlike the pattern in Fig. 6, the Rossby waves are ahead of phase compared
with the Kelvin wave, but the two connect in a way to produce an eastward-pointing
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chevron pattern in the wind field. The resulting EMFC is positive across the 10◦S-10◦N
region.

The RoT = 5 simulation has two EMFC peaks at positive frequencies for k = 2
(corresponding to ω = 0.18 and ω = 0.25). Both have similar structures, hence we only
show the second mode in the second row of Fig. 14. Once again, the pattern connects an
equatorial Kelvin wave with midlatitude Rossby waves. It thus seems likely that a form
of RK instability is responsible for the appearance of these modes, both in the RoT = 1
and RoT = 5 simulation. This corroborates earlier studies by Wang and Mitchell (2014)
and Zurita-Gotor and Held (2018), in a simpler framework that does not involve a GCM.

Figure 14: Sample modes from the first 50 rotation periods of the RoT = 1 and RoT = 5
axisymmetric runs. The left panels show upper layer wind and geopotential, and the right

panel shows the EMFC of each mode as a function of latitude, namely ẼMFC(ω, k, ϕ).
The first row shows the k = 2, ω = 0.05 component of the RoT = 1 simulation. The
second and third row show, respectively, the k = 2, ω = 0.25 and k = 2, ω = −0.07
components of the RoT = 5 simulation.
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The EMFC cospectrum of the RoT = 5 simulation (right panel of Fig. 13) shows
a prominent peak at negative frequencies. This peak cannot involve equatorial Kelvin
waves, as the latter propagate eastward and thus must involve positive frequencies. We
plot the component of the dynamics that corresponds to this peak (k = 2, ω = −0.07) on
the third row of Fig. 14. The structure of this mode resembles a mixed Rossby-gravity
(MRG) wave, with two trains of Rossby waves (one in each hemisphere) that are out of
phase. A mode with similar structure, frequency and wavenumber (not shown) can be
obtained as an eigenmode of the (24)-(25) system, with a basic-state wind profile taken
from the RoT = 5 run. This mode has a weak negative growth rate; it conceivably become
unstable with slight modifications to the basic-state profile. Overall, this suggests that
RK modes may not be the only type of wave contributing to the spin-up of superrotation
on slow rotators.

This section has shown that superrotation can be achieved in a simple two-level model
of slow rotators. Some of the eddies that cause eastward equatorial acceleration resemble
RK modes, corroborating earlier studies. However, our model suggests that other types of
waves, resembling westward-traveling MRG waves, may contribute to the establishment
of superrotation on slow rotators.

5 Transition from a Slow Rotator to a Tidally Locked

Planet

We have now seen that the waves accelerating superrotation on tidally locked and ax-
isymmetrically forced planets are similar but distinct. Both involve a coupling between
midlatitude Rossby waves and equatorial Kelvin waves (although other types of waves
may contribute to the superrotation on slow rotators, see section 4.3); however, the waves
in the tidally locked case are predominantly forced standing waves wheres those on axi-
symmetrically forced planets arise from an instability and have a fast eastward propa-
gation. In this section, we explore the transition between these two cases. Specifically,
we fix all parameters and run a suite of simulations where we only vary the longitudinal
structure of the thermal forcing, forming a continuum between axisymmetric and tidally
locked thermal forcing. It is unlikely that any planet could, in reality, undergo such a
transition: the switch to tidal locking would likely be accompanied with a change in the
rotation rate, hence in RoT . Rather, our goal with this exercise is to understand the
interplay between RK waves and standing waves forced by zonal asymmetries. Using a
spectral decomposition of the equatorial EMFC, we identify the properties of the waves
that accelerate superrotation in the various cases and illustrate their structures.

In this section, we will be analyzing six simulations, all using S = 0.05, E = 0.02, RoT =
5 and Trad = 50. This set of parameters corresponds to the axisymmetrically forced sim-
ulation that superrotates in section 4.3. As in Section 4, all of the simulations are run
for 500 rotation periods, although we will mostly be studying the first 50 (when most
of the equatorial acceleration takes place). The runs only differ in the zonal structure
of their thermal forcing. The two end-members were already described in section 4: one
is axisymmetric (i.e., θiE = (1 − S lnΠi) cosϕ (1/π)) and the other one is tidally locked
(i.e., θiE = (1 − S lnΠi) cosϕ max(0, cosλ)). Four runs with increasingly stronger zonal
asymmetries bridge these two. Recalling that max(0, cosλ) expands in Fourier series as
1/π + (cosλ)/2 + . . ., we define a parameter ϵ such that θiE is given, in these runs, by

θiE = (1− S lnΠi) cosϕ

(
1

π
+ ϵ cosλ

)
, (32)
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Figure 15: Upper layer zonal-mean zonal wind in a suite of two-level runs with increasing
k = 1 heterogeneities in thermal forcing, with RoT = 5 and Trad = 50

and we use four values of ϵ: 0.05, 0.1, 0.25 and 0.5.
Figure 15 shows the equilibrated u1 in the six simulations of the suite. One can observe

a transition from a regime with two strong high-latitude jets and weaker equatorial flow
(axisymmetric or weakly zonally asymmetric cases) to a regime where the zonal wind
increases monotonously from the poles to the equator (ϵ ≥ 0.25 and tidally locked cases).
The jet strength increases with ϵ, which suggests that stronger forcing of a Gill-like pattern
leads to stronger superrotation. Finally, the ϵ = 0.5 and tidally locked simulations have a
very similar profile, indicating that the higher-order harmonics in the zonal structure of
the thermal forcing in this tidally locked case only play a weak role. This also justifies our
approach of studying the transition, by only varying the strength of the k = 1 component
of the forcing.

We now turn to the spectral decomposition of the EMFC, detailed in section 4.3.
Spectra are calculated over the first 50 rotation periods in each simulation and shown in
Fig. 13. One element that stands out is that while the spectrum of the axisymmetric
run is broadly distributed in frequency and zonal wavenumber, all of the other runs are
dominated by the standing k = 1 component. This is especially surprising for the ϵ = 0.05
and ϵ = 0.1 cases: while their u1 profiles are qualitatively similar to the axisymmetrically
forced (ϵ = 0) case and the zonal asymmetry in their forcing is weak, superrotation results
from a wholly different process that involves standing waves rather than travelling RK
waves or MRG waves. This suggests that weak zonal asymmetries are more efficient at
causing superrotation than instabilities of the axisymmetric dynamics.

Fig. 17 shows the structure of the standing k = 1 mode in all of the non-axisymmetric
runs. All of these patterns show a coupling between off-equatorial Rossby gyres (around
30◦ for ϵ ≤ 0.25 and 40◦ for the ϵ = 0.5 and the tidally locked case) and an equato-
rial Kelvin wave, reminiscent of the Matsuno-Gill pattern. The ϵ ≤ 0.25 runs show an
additional train of high-latitude Rossby wave that is likely due to the presence of high-
latitude jets (the ϵ = 0.25 case possesses high-latitude jets early in the simulation, before
the zonal wind profile shown in Fig. 15 arises). Indeed, these waves have a westward
phase propagation and need a Doppler shift to be able to phase-lock with the standing
pattern.

Despite the dominance of the standing k = 1 component in setting the total EMFC,
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Figure 16: Spectral decomposition of the upper layer EMFC (as in Fig. 13) in the suite of
two-level runs with increasing k = 1 heterogeneities in thermal forcing. The black “plus”
signs indicate the waves shown in Fig. 18.

Figure 17: Standing, k = 1 eddy component of the upper-layer geopotential and wind in
the non-axisymmetric runs of the suite.

a few secondary peaks are observed, especially in the ϵ = 0.05 and ϵ = 0.5 cases. We
investigate three of these (identified by the black signs in Fig. 16) in Fig. 18. The first
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Figure 18: Upper-layer geopotential and wind in sample modes from two runs of the suite.
The first two panels show propagating modes from the ϵ = 0.05 run, while the third panel
shows a standing k = 2 mode from the ϵ = 0.5 run.

panel shows an eastward-propagating k = 1 mode from the ϵ = 0.05 run. The structure
of this mode is very similar to the RK wave from Fig. 6, except for the coupling with
high-latitude wave trains. A similar mode exists in the ϵ = 0 case (not shown). The
second panel shows a westward-propagating k = 2 mode that is highly similar to the one
illustrated in the third row of Fig. 14, i.e., a coupling between k = 2 Rossby waves in
both hemispheres, with a westward phase propagation. Thus, some of the propagating
modes from the ϵ = 0 still exist in the presence of a weak zonal asymmetry — they simply
aren’t as efficient as the standing mode in accelerating superrotation.

Finally, the spectral patterns of EMFC in the ϵ = 0.5 and tidally locked case both
present a secondary peak in the k = 2, ω = 0 band. We illustrate the structure of this
mode in the ϵ = 0.5 run, noting that it is very similar in the tidally locked run. It has a
similar structure to the MRG-like waves already observed in the ϵ = 0 and ϵ = 0.05 cases,
although the two wave trains are in quadrature (not out of phase) in this case. These
relative positions of the gyres allow for the eddy wind to tilt in the Northeast-Southwest
direction, and because the northern wave train is closer to the equator than the southern
one, leads to eastward momentum flux convergence. The fact that this is a standing mode
may be a coincidence of the fact that its intrinsic westward propagation is cancelled by
the strong superrotating jet of the ϵ = 0.5 simulation: indeed, there is no standing k = 2
forcing in this run.

We have found that despite a seemingly continuous transition in wind patterns when
transitioning from an axisymmetrically forced (ϵ = 0) to a tidally locked planet, the pro-
cesses responsible for superrotation almost immediately switch when weak zonal asym-
metries are applied. Specifically, a standing Gill-like pattern soon dwarfs the contribution
from propagating waves seen in the ϵ = 0 case in setting the total EMFC. However, the
two processes can and do coexist (as seen for ϵ = 0.05), and some of the unstable modes
from the ϵ = 0 case may still be present when strong zonal asymmetries are applied (as
the MRG-like wave seen in the ϵ = 0.5 case suggests).

6 Discussion and Conclusions

This work seeks a unified understanding of superrotation on slowly rotating and tidally
locked planets. Our main tool for studying these planetary atmospheres is a two-level
model, in which the dynamics are driven by a relaxation towards a specified potential
temperature profile. This profile can model axisymmetrically forced slow rotators, tidally
locked planets, or cases in between, which involve weak zonal asymmetries. This model
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bridges the gap between single-layer shallow water models (which struggle to produce
superrotation in some cases, especially on slow rotators or without parameterizations of
vertical momentum transport) and GCMs. In addition to the thermal forcing profile, three
parameters govern the dynamics: a thermal Rossby number (RoT ), a radiative relaxation
time scale (Trad), and an Ekman number (which quantifies surface drag).

On tidally locked planets, the presence or absence of superrotation is the result of a
competition between a thermally direct Hadley circulation and a wavenumber-1 standing
eddy arising from the zonally asymmetric thermal forcing (Matsuno-Gill pattern). At
high Trad, the eddy momentum flux convergence is weak and focused in midlatitudes.
This leads to the appearance of subrotating states in fully nonlinear simulations. At
low Trad, the Gill pattern produces stronger equatorial EMFC provided surface friction
is present. This leads consistently to superrotating states in fully-nonlinear simulations.
The more strongly-nonlinear high-RoT cases seem to evade this simple picture, as high-
RoT nonlinear simulations without surface friction still superrotate. Preliminary tests
with a multi-level GCM indicate that some of these results may not be robust, as all
high-Trad cases superrotate.

On slow rotators, some known results are reproduced in the simple framework of
the two-level model. An unstable eigenmode of the zonally symmetric dynamics, which
couples an eastward-propagating equatorial Kelvin wave with two midlatitude Rossby
wave trains, is found when the model is linearized. A similar mode, albeit with higher
zonal wavenumber, is shown to cause eastward equatorial acceleration in the early stages
of a set of fully nonlinear simulations. However, a second, previously unidentified mode
(which couples two out-of-phase Rossby wave trains, one in each hemisphere) is also shown
to play a major role in the acceleration of superrotation in some runs.

Finally, we examine the interplay between the eddies causing superrotation on slow
rotators and tidally locked planets in a suite of simulations that connects these two cases.
It is shown that the traveling RK waves (and MRG-like waves) that cause superrotation
when axisymmetric thermal forcing is applied are still present in the presence of weak zonal
asymmetries. However, these play a relatively minor role compared to the standing eddies
forced by the zonally asymmetric thermal forcing, in setting the total eddy-momentum
flux convergence (even in cases with a weak asymmetry).

This work is a first step towards the sought-after unified understanding of superrota-
tion, and several results remain partial. A proper understanding of the differences between
two-level and 10-level results has not yet been reached. Proper evaluation of the results
on axisymmetric and weakly asymmetric cases, including the existence and importance of
the MRG-like mode, needs to be addressed using the multi-level model. Finally, a more
refined view of the parameter dependence of superrotation (both in terms of existence
and strength) needs to be established.
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Appendix A - Validation of the multi-level model

A 10-level model built in Dedalus is tested in the configuration proposed by Held and
Suarez (1994), which serves as a test bed for GCMs. As in our setup, the model is forced
with a Newtonian relaxation to a prescribed zonally symmetric potential temperature
profile. The relaxation coefficient varies in latitude and in the vertical. The momentum
equations contain a Rayleigh drag, which decreases linearly in strength until the σ = 0.7
level, above which it is absent. The hyperdiffusion coefficient is chosen, here, as 4×1015 m4

s−1, which corresponds to a nondimensional value of 3× 10−8, i.e., an order of magnitude
lower than used in Section 4.2. Using the same coefficient as in Section 4.2 does not
drastically change the results, but leads to a very weakly superrotating state in the mid-
troposphere and slightly weakens the temperature variance.

Fig. 19 shows the various diagnostics of the original Held and Suarez (1994) arti-
cle. The 10-level model is able to develop the expected circulation, with two midlatitude
jets peaking around σ = 0.2 at 45◦ latitude, easterlies in the tropics and polar regions,
and a relatively uniform temperature distribution in the tropics. The temperature vari-
ance shows the two expected midlatitude maxima, and the eddy zonal wind shows the
wavenumber 5-6 peaks just equatorward and poleward of the midlatitude jets. This anal-
ysis validates our use of the 10-level model as a simple GCM in section 4.2.

Figure 19: Set of diagnostics for the Held and Suarez (1994) test of the 10-level model.
All fields are collected over the last 25 days of a 100-day simulation. (a) Zonal mean
temperature T . (b) Zonal mean potential temperature θ. (c) Temperature variance,
[(T − [T ])2] where [·] represents a zonal and time average. (d) Zonal mean zonal wind u.
(e) Zonal power spectrum of the eddy zonal wind as a function of latitude. The eddy zonal
wind u− u is Fourier transformed in longitude, and the square of the Fourier coefficients
is averaged in time and in the vertical.
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Appendix B - Derivation of the eddy-momentum flux

convergence expression in the linear two-level model

We seek to obtain a simplified expression for the eddy momentum flux convergence at the
equator in the 2-level Gill model. As explained in section 3, this quantity simplifies to
−RoTωu2. Summing (21c) and (21d), one obtains

−RoTω =
θ1E + θ2E
STrad

− θ1 + θ2
STrad

(33)

Hence,

−RoTωu2 =
1

STrad
(θ1E + θ2E)u2 −

1

STrad
(θ1 + θ2)u2. (34)

We now proceed to show that (θ1 + θ2)u2 = 0. Subtracting the upper-layer momentum
balance from the lower-layer one at the equator (where v1 = v2 = 0), one obtains

1

cosϕ
∂λ(Φ2 − Φ1) + Eu2 = 0. (35)

Combining with hydrostasy,

π1 − π2
2 cosϕ

∂λ(θ1 + θ2) + Eu2 = 0. (36)

Hence,
(θ1 + θ2)u2 ∝ (θ1 + θ2)∂λ(θ1 + θ2) = 0 (37)

228



References

Barnes, R. (2017). Tidal locking of habitable exoplanets. Celestial Mechanics and
Dynamical Astronomy, 129(4):509–536.

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., and Brown, B. P. (2020). Dedalus:
A flexible framework for numerical simulations with spectral methods. Physical Review
Research, 2(2):023068.

Busse, F. (1976). A simple model of convection in the jovian atmosphere. Icarus,
29(2):255–260.

Gill, A. E. (1980). Some simple solutions for heat-induced tropical circulation. Quarterly
Journal of the Royal Meteorological Society, 106(449):447–462.

Hammond, M. and Pierrehumbert, R. T. (2018). Wave-mean flow interactions in the
atmospheric circulation of tidally locked planets. The Astrophysical Journal, 869(1):65.

Held, I. M. and Hou, A. Y. (1980). Nonlinear axially symmetric circulations in a nearly
inviscid atmosphere. Journal of Atmospheric Sciences, 37(3):515 – 533.

Held, I. M. and Suarez, M. J. (1978). A two-level primitive equation atmospheric model de-
signed for climatic sensitivity experiments. Journal of Atmospheric Sciences, 35(2):206
– 229.

Held, I. M. and Suarez, M. J. (1994). A proposal for the intercomparison of the dy-
namical cores of atmospheric general circulation models. Bulletin of the American
Meteorological Society, 75(10):1825 – 1830.

Hide, R. (1969). Dynamics of the atmospheres of the major planets with an appendix on
the viscous boundary layer at the rigid bounding surface of an electrically-conducting
rotating fluid in the presence of a magnetic field. Journal of Atmospheric Sciences,
26(5):841 – 853.

Iga, S. and Matsuda, Y. (2005). Shear instability in a shallow water model with impli-
cations for the venus atmosphere. Journal of the Atmospheric Sciences, 62(7):2514 –
2527.

Imamura, T., Mitchell, J., Lebonnois, S., Kaspi, Y., Showman, A. P., and Korablev, O.
(2020). Superrotation in planetary atmospheres. Space Science Reviews, 216(5):87.

Kaspi, Y., Galanti, E., Showman, A. P., Stevenson, D. J., Guillot, T., Iess, L., and Bolton,
S. J. (2020). Comparison of the deep atmospheric dynamics of jupiter and saturn in
light of the juno and cassini gravity measurements. Space Science Reviews, 216(5):84.

Lian, Y. and Showman, A. P. (2010). Generation of equatorial jets by large-scale latent
heating on the giant planets. Icarus, 207(1):373–393.

Liu, J. and Schneider, T. (2011). Convective generation of equatorial superrotation in
planetary atmospheres. Journal of the Atmospheric Sciences, 68(11):2742 – 2756.

Mitchell, J. L. and Vallis, G. K. (2010). The transition to superrotation in terrestrial
atmospheres. Journal of Geophysical Research, 115(E12).

229



Pierrehumbert, R. T. and Hammond, M. (2019). Atmospheric circulation of tide-locked
exoplanets. Annual Review of Fluid Mechanics, 51(1):275–303.

Potter, S. F., Vallis, G. K., and Mitchell, J. L. (2014). Spontaneous superrotation and
the role of kelvin waves in an idealized dry gcm. Journal of the Atmospheric Sciences,
71(2):596 – 614.

Saravanan, R. (1993). Equatorial superrotation and maintenance of the general circulation
in two-level models. Journal of Atmospheric Sciences, 50(9):1211 – 1227.

Showman, A. P., Cooper, C. S., Fortney, J. J., and Marley, M. S. (2008). Atmospheric
circulation of hot jupiters: Three-dimensional circulation models of hd 209458b and hd
189733b with simplified forcing. The Astrophysical Journal, 682(1):559.

Showman, A. P., Fortney, J. J., Lian, Y., Marley, M. S., Freedman, R. S., Knutson,
H. A., and Charbonneau, D. (2009). Atmospheric circulation of hot jupiters: Cou-
pled radiative-dynamical general circulation model simulations of hd 189733b and hd
209458b. The Astrophysical Journal, 699(1):564.

Showman, A. P. and Polvani, L. M. (2010). The matsuno-gill model and equatorial
superrotation. Geophysical Research Letters, 37(18).

Showman, A. P. and Polvani, L. M. (2011). Equatorial superrotation on tidally locked
exoplanets. The Astrophysical Journal, 738(1):71.

Sobel, A. H., Nilsson, J., and Polvani, L. M. (2001). The weak temperature gradient ap-
proximation and balanced tropical moisture waves. Journal of the Atmospheric Sciences,
58(23):3650 – 3665.

Suarez, M. J. and Duffy, D. G. (1992). Terrestrial superrotation: A bifurcation of the
general circulation. Journal of Atmospheric Sciences, 49(16):1541 – 1554.

Vallis, G. K. (2017). Atmospheric and Oceanic Fluid Dynamics: Fundamentals and
Large-Scale Circulation. Cambridge University Press, 2 edition.

Wang, P. and Mitchell, J. L. (2014). Planetary ageostrophic instability leads to superro-
tation. Geophysical Research Letters, 41(12):4118–4126.

Williams, G. P. (2003). Barotropic instability and equatorial superrotation. Journal of
the Atmospheric Sciences, 60(17):2136 – 2152.

Zurita-Gotor, P. and Held, I. M. (2018). The finite-amplitude evolution of mixed
kelvin–rossby wave instability and equatorial superrotation in a shallow-water model
and an idealized gcm. Journal of the Atmospheric Sciences, 75(7):2299 – 2316.

230



Stratified Turbulence,
A Black Hole for Internal Waves?

Arefe Ghazi Nezami

April 2024

1 Abstract
Numerical simulations of internal wave beams generated as a result of the barotropic tide passing over steep topography
show reflected wave beams upon interacting with the surface. However, observations do not capture such wave
reflection. Instead, they indicate that the incident wave beam exhibits high levels of turbulent dissipation and wave
energy in the upper ocean. We hypothesize that incident waves are absorbed by stratified turbulence near the surface,
inhibiting their reflection. In this study, we perform three-dimensional direct numerical simulations, where stratified
turbulence is generated in the top half and forcing is applied near the bottom, creating waves that travel toward the
turbulent layer. We apply the Hilbert transform, distinguishing the upward and downward traveling waves to diagnose
wave reflection, should it occur. We also examine the energy of turbulent flow, in the forms of the total kinetic energy
as it evolves in time and the spectrum of horizontal kinetic energy with respect to horizontal wave numbers. We
compare results for cases in which only turbulence is present with cases in which upward waves are launched in the
same domain. Based on our results, we observed minimal reflection of the waves off of the interface between the
turbulent and non-turbulent regions. No significant changes to the energy of the turbulent region are observed with
and without waves.

2 Introduction
The ocean mixed layer is the upper part of the ocean that is relatively uniform in temperature, salinity, and density due
to the mixing effects of winds, waves, and shear associated with large-scale circulations (Kara et al., 2000; D’Asaro,
2014). This layer varies in depth but is generally around 100 meters or less. The ocean mixed layer is critical to the
dynamics and circulations of both the atmosphere and ocean, mediating energy and mass exchange that drives climate
systems at a global and local scale (Roemmich et al., 2015; Moum et al., 2009; Ferrari and Wunsch, 2009; Kunze, 2017).
The scale variability within the ocean mixed layer is notable, ranging from large-scale phenomena approximately 100
kilometers in horizontal extent to more localized, finer-scale processes which remain under-investigated (Munk and
Wunsch, 1998; Sasaki et al., 2014; Riley and de Bruyn Kops, 2003; Thomson et al., 2016). Turbulence, generated from
different sources in the upper ocean layer (Hibiya and Nagasawa, 2004), significantly impacts the transport of various
tracers and particles, such as carbon and nutrients, therefore impacting the biological activity of this layer (Lévy et al.,
2012; Denman and Gargett, 1995; Balwada et al., 2018; Mahadevan, 2014). Understanding the dynamics within this
layer is crucial for unraveling its role in shaping atmospheric and oceanic dynamics.

Internal waves are oscillatory motions in a stratified fluid medium, and play an important role in ocean dynamics.
Internal tides are internal waves that are generated through the interaction of barotropic tides with bottom topography.
They propagate through the water column, contributing to mixing processes in the ocean, so influencing oceanic
circulations and transport phenomena (Polzin et al., 1997; Roemmich et al., 2015). Various regions have been identified
worldwide—such as oceanic islands, trenches, and mid-ocean ridges—where internal tides are prominently produced
(Egbert and Ray, 2000; Ray and Mitchum, 1996). Some regions, including the Hawaiian Ridge, are specifically
interesting as they serve as hot spots for the generation of internal tides (Martin et al., 2006).

Observations from satellite altimetry and in situ measurements reveal the extensive reach of internal tides, radiating
thousands of kilometers from their generation sites at prominent mid-ocean topographic features (Ray and Mitchum,
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1996, 1997; Kantha and Tierney, 1997; Dushaw et al., 1995; Lee et al., 2006). For example, in regions with steep
topography, ocean observations reveal significant variability in internal wave characteristics and turbulence along
with heightened turbulent dissipation and wave energy (Polzin and Lvov, 2011; St. Laurent et al., 2001; Pinkel et al.,
2000; Egbert and Ray, 2000; Rudnick et al., 2003; Martin et al., 2006). This is especially true for low-mode internal
waves (e.g. mode-1 internal tides (Rainville and Pinkel, 2006)). The waves exhibit spatial coherence and directional
propagation, making them essential components of the oceanic energy budget; and significantly impacting mixing
processes far beyond their point of origin (Ray and Mitchum, 1996; St. Laurent and Garrett, 2002).

Numerical and experimental simulations, where waves are generated by oscillatory flow over a ridge, have been
performed to increase the understanding of internal wave evolution, stability, and mixing in the ocean mixed layer
(Echeverri et al., 2009, 2011). While these studies offer valuable insight into the dynamics of internal waves and the
flow dynamics, they do not closely follow field observations. Numerical studies such as Tabaei et al. (2005); Diamessis
et al. (2014); Gayen and Sarkar (2014) and experiments such as those by Wunsch and Brandt (2012) demonstrate that
an upward propagating wave beam reflects when reaching a pycnocline or the surface. In contrast, in regions around
the Hawaiian Ridge, observations have shown increased turbulent dissipation rates and wave energy associated with
the upward propagating beam near the surface, but no signal of wave reflection (Cole et al., 2009).

This discrepancy points to a gap in our understanding of how internal waves interact with the turbulent ocean mixed
layer. In this study, we aim to address this gap by using direct numerical simulations to investigate the interaction of
internal waves with stratified turbulent layer, mimicking the stratified transition region of the mixed layer (Kaminski
et al., 2021). This report is organized as follows: in section 3, we discuss the governing equations and the numerical
setup. In section 4, we discuss simulations of waves launched in a stratified domain. In section 5, we explain how we
model the turbulence. We put all the pieces together, and in section 6, we present results of having both waves and
turbulence in the same domain. Finally, conclusions are presented in section 7.

3 Governing equations
We use direct numerical simulations (DNS) to model a linearly stratified domain using the set of Navier-Stokes equations
that characterize the motion of a Boussinesq fluid. The equations for momentum, internal energy, and incompresibility,
respectively, are:

𝐷u
𝐷𝑡

= −∇𝑝 + 𝜈∇2u + Fwu + F𝑇 + 𝑏ez + Du, (1)

𝐷𝑏

𝐷𝑡
= 𝜅∇2𝑏 − 𝑁2

0𝑤 + Fw𝑏
+ D𝑏, (2)

∇ · u = 0. (3)

In equation 1, u(x, 𝑡) is the vector of the fluctuating velocities with 𝑢, 𝑣, and 𝑤 being components of u in 𝑥, 𝑦, and
𝑧 directions, respectively, with 𝑧 being the vertical. 𝐷

𝐷𝑡
represents the material derivative. Since there is no mean flow

(i.e., ū = 0, the overbar represents the time average), we only include the fluctuating velocities. The buoyancy field is
𝑏 = −𝑔𝜌/𝜌0 , and the buoyancy frequency is 𝑁2

0 = − 𝑔

𝜌0

𝑑�̄�

𝑑𝑧
with �̄� being the background density profile and 𝜌0 being

the characteristic fluid density. 𝜌 and 𝑝 are the fluctuations to the density and pressure fields, and 𝑔 represents the
gravitational acceleration. We have non-dimensionalized the equations using characteristics time and velocity scales.
The time has been non-dimensionalized such that 𝑁2

0 was taken to be constant equal to 1 and therefore the inherent
time scale of the system being 𝑁−1

0 = 1. The constants 𝜈 and 𝜅 are the non-dimensionalized kinematic viscosity and
the diffusivity of the fluid, respectively. For all simulations, viscosity and diffusivity is selected to be 𝜈 = 𝜅 = 5× 10−4

with Prandtl number of 𝑃𝑟 = 1, to ensure the highest turbulent Reynolds number with low computation cost.
In this set of equations, F represents the forcing, whith subscript w indicating the wave forcing and 𝑇 indicating

the turbulence forcing. The details related to the forcing will be discussed further in the report: F𝑤 in section 4 and F𝑇

in section 5. A damping layer is applied at the bottom boundary to remove any reflection of the downward propagating
wave from the bottom boundary. D is applied to both buoyancy and velocity fields. The damping itself is adopted
from Slinn and Riley (1998) as D = exp( −(3.5(𝑧−𝑧𝑑 )/𝐿𝑑 )2

2 ). In this formula, 𝑧𝑑 is the location where the damping layer
is located, and 𝐿𝑑 is the depth of the damping layer. In all of our simulations, 𝑧𝑑 = 0.75 and 𝐿𝑑 = 𝑧𝑑 .
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The turbulent kinetic energy and the turbulent dissipation rate respectively are 𝐾𝐸 = ⟨u · u⟩ and 𝜖 = −𝜈⟨ 1
2
𝜕𝑢𝑖
𝜕𝑥 𝑗

𝜕𝑢 𝑗

𝜕𝑥𝑖
⟩,

in which the bracket indicates spatial averaging in the top half of the domain where turbulence is mainly present.
Two dimensionless numbers representing the strength of the turbulence can be defined. The Taylor Reynolds number
calculated as 𝑅𝑒𝜆 = 𝜆𝑢

𝜈
, where the Taylor microscale is 𝜆 =

√︁
15 𝜈

𝜖
𝑢𝑇 , with 𝑢𝑇 =

√
𝐾𝐸 being the turbulence velocity

scale calculated as the square root of turbulent kinetic energy, provides insight into the strength of the turbulence. The
buoyancy Reynolds number, calculated as 𝑅𝑒𝑏 = 𝜖

𝜈𝑁2
0
, characterizes the relative importance of buoyancy forces to

inertial forces in stratified flows.

Figure 1: Schematic of the setup of the simulation domain: The pink vortices indicate the turbulent layer located at the
top of the domain, the black lines represent the wave forcing, and the yellow part at the bottom of the domain represents
the damping layer.

3.1 Numerical setup
The simulations are carried out with Dedalus, a flexible framework for solving partial differential equations using
spectral methods (Burns et al., 2020). Our final goal is to simulate a density-stratified domain that is turbulent in the
top half of the domain with waves launched toward it from the bottom half, as shown in figure 1. We simulate each
component of this setup separately before integrating them into the complete system. Simulations with turbulence,
with and without waves, are constructed as a three-dimensional (3D) domain with size 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 where space scales
are non nondimensionlized so 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 2𝜋. Boundary conditions were free-slip and impermeable conditions
at the bottom and top boundaries, with periodic boundaries on the lateral sides to simulate a horizontally unbounded
oceanic environment.
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For the numerical discretization a combination of spectral methods tailored to the geometry and nature of the
problem, were used. For the vertical (𝑧) direction, Chebyshev polynomials were used due to their excellent properties
in resolving functions with steep gradients, which are common in stratified fluid dynamics due to density and velocity
fluctuations. Chebyshev discretization is particularly advantageous in dealing with boundary layer effects and capturing
the sharp interfaces between layers of different densities and velocities (e.g. turbulent and non-turbulent regions).
Fourier series were employed in horizontal directions to take advantage of their periodic nature. The number of
Chebyshev and Fourier modes in all direction, are set to be 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 256, and the number of grids are 1.5
times the number of modes. The resolution of simulations was set to ensure that the smallest scales of turbulence
were adequately resolved. This has been tested as to ensure the size of grids are close to the size of the Kolmogorov
length scale 𝜂, which means that the small scales of dissiption can be captured via our resolution. In our simulations

𝜂, calculated as
(
𝜂 = 𝜈3

𝜖

)1/4
, was around 0.02.

The time-stepping technique utilized is the Second-order Backward Differentiation Formula (SBDF2), which is an
implicit-explicit time-stepping scheme. This method is often chosen for its stability and accuracy . This method is used
to advance solutions in time while handling the nonlinear terms of the equations in a stable manner, especially when
the equations involve complex fluid dynamics. The Courant-Friedrichs-Lewy (CFL) condition is used to determine the
maximum time step that ensures the numerical stability of the simulations. In our setup, according to the stratification
and the domain size, the maximum time stepping is set to Δ𝑡max =

2𝜋
0.05𝑁0

with a safety factor of 0.2.

4 Internal wave forcing without turbulence
The first step in our investigation is to study upward propagating waves in a density-stratified fluid. This is simulated
in a two-dimensional domain (i.e. 𝑥 − 𝑧 plane) to simplify and reduce the numerical cost. Equations 1 and 2 in the
2-dimensional form are used here with the forcing included in them.

𝐷𝑤
𝐷𝑡

= − 𝜕𝑃
𝜕𝑧

+ 𝑏 + 𝜈∇2𝑤 + F𝑤 + D𝑤,
𝐷𝑢
𝐷𝑡

= − 𝜕𝑃
𝜕𝑥

+ 𝜈∇2𝑢 + F𝑢 + D𝑢,
𝐷𝑏
𝐷𝑡

= −𝑤𝑁2
0 + 𝜅∇2𝑏 + F𝑏 + D𝑏.

(4)

F𝑏 is directly applied to the buoyancy equation as F𝑏 = A𝑏𝑒
𝑖 (𝑘𝑥 𝑥−𝜔𝑡 ) , in which 𝑘𝑥 is the wave number in the

horizontal direction and 𝜔 is the wave frequency. The forcing amplitude is A𝑏 = 𝐴𝑏𝑒
−(𝑧−𝑧𝑤 )2

2𝜎2
𝑤 , where 𝐴𝑏 is the

magnitude and the exponential function is used to smooth out the introduction of forcing at location 𝑧𝑤 over a length
of 𝜎𝑤 . We have taken 𝑧𝑤 = 1.5 and 𝜎𝑤 = 0.25. 𝐴𝑏 is adjusted to ensure minimal growth of nonlinear terms in
simulations. The forcing is set so that |𝜉𝑧 | × 𝑘𝑧 < 0.2, where |𝜉𝑧 | is the vertical displacement (equal to 𝐴𝑏

𝜔
) and

𝑘𝑧 =
𝑘𝑥𝑁

𝜔
(Sutherland, 2010). Therefore, 𝐴𝑏

𝑘𝑥𝑁

𝜔2 should be less than 0.2. Here, we explored two cases: one with
𝜔 = 0.2, 𝐴𝑏 = 0.01, and 𝑘𝑥 = 1 leading to |𝜉𝑧 | × 𝑘𝑧 = 0.25 and the other with 𝜔 = 0.5, 𝐴𝑏 = 0.0025, and 𝑘𝑥 = 4
leading to |𝜉𝑧 | × 𝑘𝑧 = 0.04 .

Using the polarization relations for internal waves to relate buoyancy to the velocity fields, F𝑢 and F𝑤 are given by
F𝑤 = − 𝜔

𝑁 2
0
A𝑏𝑒

𝑖 (𝑘𝑥 𝑥−𝜔𝑡 ) ,

F𝑢 = −
(
1 − 𝜔2

𝑁2
0

) 1
2 1

𝑁0
A𝑏𝑒

𝑖 (𝑘𝑥 𝑥−𝜔𝑡 ) .
(5)

The forcing of waves increases in time as a hyperbolic tangent function given by 0.5(1 + tanh (2(𝑡 − 𝑇𝑤)/𝑇𝑤) in time,
which starts near zero increasing to F𝑏, F𝑢, and F𝑤 in time after a delay 𝑇𝑤 over time 𝑇𝑤 = 2𝜋

𝜔
. Figure 2 shows a 2D

simulation of the wave traveling in a square domain of size 2𝜋𝜋 with periodic boundaries in the 𝑥 direction and free
slip boundary condition at the top of the domain.
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(a)

(b)

Figure 2: 2D simulations of wave in a stratified domain with 𝑘𝑥 = 4, 𝜔 = 0.5 at dimensionless 𝑁0𝑡 time of a) 74 when
the waves have not reached the top boundary and b) 502 where waves upon reaching the top boundary have been are
reflected to the domain.

4.1 Damping length of the traveling wave
As the waves travel into the domain, they get damped by viscosity and diffusivity. In our simulations, we need to ensure
that the waves can reach the turbulent layer with negligible damping. Damping happens over a length in the vertical
direction as the waves travel, A𝑒 (−𝑧/𝑙𝑑 ) (𝑖 (k.x−𝜔𝑡 ) ) , where 𝑙𝑑 is damping length. Following the calculation in Appendix
1, the damping rate can be found as:

𝑙−1
𝑑 =

(𝜈 + 𝜅)𝑁3
0 𝑘

3
ℎ

2𝜔4 (6)

From equation 6, we can understand how far a wave travels before damping becomes non-negligible. An example
is shown in figure 3, where with 𝜔 = 0.2, 𝑘𝑥 = 4, 𝜅 = 𝜈 = 10−5, and 𝑁2

0 = 1, 𝑙𝑑 is 0.125. Thus, the waves get damped
close to where they were launched originally. Figure 3 illustrates how the choice of wave-forcing variables should be
scrutinized to have the waves travel further in the domain.
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Figure 3: Vertical velocity (𝑤) of 2D waves at 𝑁0𝑡=800 with damping rate of 𝑙−1
𝑑

in a stratified domain with 𝜔 = 0.2,
𝑘𝑥 = 4, and 𝑙𝑑 = 0.125.

The value of𝜔 also affects the angle at which waves travel in a stratified fluid, depending on their frequency relative
to the buoyancy frequency: 𝜔 = 𝑁 sin 𝜃 where 𝜃 is the angle of traveling waves with the horizontal direction. The
wave packet travels with the speed of group velocity cg = 𝜕𝜔

𝜕k . High-mode waves typically travel at shallower angles,
almost horizontally, since they have shorter vertical wavelengths and are more influenced by the ocean’s stratification
(St. Laurent and Garrett, 2002). As this angle decreases, the time required for the wave to travel in the horizontal
direction toward the turbulent layer increases, resulting in high computational costs.

We first chose 𝜔 = 0.2. However, based on equation 6, and as can be seen in figure 3, for high wave numbers
(e.g. 𝑘 =4), this does not work . As shown in figure 3, the waves are damped at a very short distance. Therefore, we
increase 𝜔 to 0.5, which results in 𝑙𝑑 = 5, eliminating this problem. This can also be achieved by reducing 𝜈. However,
reducing 𝜈 increases the cost of computations as higher resolutions are required to resolve the turbulence completely.

4.2 Hilbert transform: A method for decomposing wave signal
In various communication systems, information is often transmitted by modulated signal, and demodulation processing
is extracting information from the modulated signal. The Hilbert Transform (HT), referred to as a complex demodulation
process by Mercier et al. (2008), is a mathematical operation that provides a way to extract the envelope and instantaneous
frequency of a signal. It is a powerful tool for analyzing and extracting information from signals in both the time and
frequency domains. We use HT as a means to decompose the waves propagating in the positive 𝑧 direction from the
negative ones. Below is a brief description of the method introduced by Mercier et al. (2008).

Considering decomposing the signal,𝑈 in the 𝑧 direction into a superposition of two wave beams propagating with
the same wave number as the original signal, but in opposite directions,

𝑈 (𝑧, 𝑡) = 𝐴cos(𝜔𝑡 − 𝑘𝑧𝑧) + 𝐵cos(𝜔𝑡 + 𝑘𝑧𝑧). (7)

Assuming 𝐴 and 𝐵 are constant amplitudes in both space and time, equation 7 can be re-written as the sum of
exponentials with complex arguments (i.e. calculating a Fourier transform of the signal in time), 𝑈 (𝑧, 𝑡) = �̂�𝑒 (𝑖𝜔𝑡 ) +
𝑈∗𝑒 (−𝑖𝜔𝑡 ) . In this equation, �̂� =

(
𝐴𝑒−𝑖𝑘𝑧 𝑧 + 𝐵𝑒𝑖𝑘𝑧 𝑧

)
and ∗ represents the complex conjugate form. Now we can write

the real-values signal𝑈 to a complex values signal �̄�, which the real part is equal to the original signal𝑈.

�̄� (𝑧, 𝑡) = 𝐴𝑒 (𝑖𝜔𝑡−𝑘𝑧 𝑧) + 𝐵𝑒 (𝑖𝜔𝑡+𝑘𝑧 𝑧) . (8)
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(a) (b) (c)

Figure 4: Vertical velocity field in simulations of wave forcing with 𝑘𝑥 = 1, 𝜔 = 0.2 at 𝑁0𝑡 = 800; a) the original
vertical velocity field 𝑤, b) decomposed upward traveling, and c) downward traveling components.

By finding the Fourier transform of equation 8 in space, we can decompose the signal into upward propagating
and downward propagating components by isolating the negative values and positive values of 𝐴𝑒 (𝑖𝜔𝑡 )𝑒 (−𝑖𝑘𝑧 𝑧) +
𝐵𝑒 (𝑖𝜔𝑡 )𝑒 (𝑖𝑘𝑧 𝑧) .

To summarize the whole process, we first need to find the Fourier transform of the original signal in time, followed
by a Fourier transform in space. Then, we can decompose the signal into positive and negative wave numbers and
apply the inverse Fourier transform in space followed by an inverse Fourier transform in time. This procedure will
provide us with a decomposition of upward propagating and downward propagating waves. The result of applying HT
to this section’s 2-dimensional wave field simulations is shown in figure 4. Applying HT, we can observe the upward
traveling wave shown in figure 4b and the downward traveling waves that are shown in figure 4c.

5 Stratified turbulence
In our simulations, stratified turbulence in the upper part of the domain is generated by applying an artificial body force,
FT , to the momentum equation 1 using a method adopted from Maffioli (2017). The Craya-Herring reference frame
is utilized to input this force in the Fourier space (Godeferd and Staquet, 2003). Maffioli (2017) selected this method
over only forcing vortical modes 𝑘𝑧 = 0 to avoid exciting an arbitrary spectrum of internal gravity waves directly and
inducing a specific length scale in the vertical direction. Additionally, this forcing was found to reduce the growth of
energy in the shear modes compared to other methods, otherwise these shear modes would grow during the simulation
and dominate the total kinetic energy of the system (Maffioli, 2017).

To generate a divergence-free velocity field, the forcing must satisfy ∇ · FT = 0, which in Fourier space implies
k · F̂T = 0, where the top hat represents the Fourier transform. Maffioli (2017) chose the power spectrum in the
horizontal direction to be constant as 𝑃𝑤 (𝑘ℎ) = 1

2Σ(F̂ F̂ ∗) = 𝑐, with 𝑘ℎ = 3. 𝜃 is the random phase changing at each
time step to remove time dependency of the forcing. Based on these conditions, the forcing adopted by Maffioli (2017)
is

F̂T =

{
𝑐√

𝜋𝑘ℎ𝑒
𝑖𝜃

for 𝑘ℎ = 3,
0 for 𝑘ℎ ≠ 3.

(9)

The total power 𝑃𝑤 is kept constant to ensure smooth time evolution of velocity components and dissipation rates.
Change in the input power corresponds to a change in the strength of the turbulence. 𝑃𝑤 can be calculated as

𝑃𝑤 =
∑︁

𝑘𝑥 ,𝑘𝑦 ,𝑘𝑧

û∗ · F̂T + 1
2
F̂T · F̂ ∗

TΔ𝑡 = 𝑐𝑃uf + 𝑐2𝑃ff . (10)

Since 𝑃𝑤 is a constant value, 𝑐 should be calculated for each time step, as a quadratic function:
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𝑐 =
−𝑃uf ±

√︃
𝑃2

uf + 4𝑃ff𝑃𝑤

2𝑃ff
. (11)

A value of 𝑃𝑤 = 1.5 is selected as input forcing of the turbulence in all of our simulations.
As mentioned previously, the aim is to generate turbulence in the top half of the domain. To achieve this, we set

the force of turbulence to be zero at the bottom half of the domain. This is done by multiplying the turbulent forcing
by a hyperbolic tangent function of 𝑃𝑤 ×

(
1
2

(
1 + tanh 𝑧−𝑧F𝑡

𝜎F𝑡

))
, which introduces 𝜎F𝑇 , which is the transition width

from turbulent to non-turbulent region, as another variable related to turbulence forcing. 𝑧F𝑡
is the transition location

between the non-turbulent and turbulent region, which is equal to 𝜋 in our setup. If 𝜎F𝑡
is small, this transition happens

over a short length, mimicking a step-like function, which might introduce instabilities and numerical errors. After
trial and error, we found 𝜎F𝑡

= 0.25 works well with our setup.
The stratified turbulence is simulated in a three-dimensional domain. Figure 5 shows the snapshots of the dissipation

field and the buoyancy field of the 𝑥 − 𝑧 plane at 𝑦 = 𝜋 at 𝑁0𝑡 = 1 (figure 5a), and when it is 131 time units advanced in
the simulations (figure 5b). As can be seen from figure 5a, the forcing transition region is pronounced in the buoyancy
field at the beginning of the simulations. This bold transition fades away later. In figure 5b, the buoyancy field is active
in the bottom half of the domain, where the turbulent forcing was not applied. The turbulence at the top generates
internal waves that can be observed at the bottom half.

Table 1 presents the statistics regarding turbulence and the dimensionless number corresponding to the developed
flow in this layer, presented in details in section 3. The values of 𝐾𝐸 and 𝜖 are averaged from the time that turbulence
has fully developed, which is equal to 𝑁0𝑡 = 113, for 450 time units. Many of the important characteristics of the
stratified turbulence can be achieved when the 𝑅𝑒𝑏 is 𝑂 (10) (Bartello and Tobias, 2013); while our simulations can
only get up to 1.5. This value of 𝑅𝑒𝑏 might not suggest high values of turbulence but the flow shows non-linearity.

𝑃𝑤 𝐾𝐸 𝜖 𝑅𝑒𝜆 𝑅𝑒𝑏

1.5 3 10−4 50 1.5

Table 1: Statistics and dimensionless numbers of the turbulent region
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(a)

(b)

Figure 5: Buoyancy and dissipation rate fields at 𝑦 = 𝜋 in the simulations of applying turbulence forcing in the top half
of the domain at two different times of a) 𝑁0𝑡 = 1, which is the beginning of the simulations, and b) 𝑁0𝑡 = 131, where
turbulence is fully developed.

The development of turbulent kinetic energy and the dissipation rate of turbulent kinetic energy averaged in the
top half of the domain is shown in figure 6. From this figure, we can understand that after around 130 time units, the
development of turbulence is complete. This trend is very similar to the result presented by Maffioli (2017). Therefore,
if waves are launched, we need to ensure that they reach the turbulent layer after this point in the simulations so that
they reach a completely developed turbulent layer.
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Figure 6: Development of the averaged values of turbulent kinetic energy and turbulent dissipation rate normalized by
their maximum value during the simulations.

We also studied the spectrum of horizontal energy of the developed turbulence at the location 𝑧 = 3/4𝐿𝑧 (i.e.
middle of the turbulent layer). The spectrum of horizontal energy can be calculated based on the Fourier transform of
velocities 𝐸ℎ = 1/2(�̂�.�̂�∗ + �̂�.�̂�∗). The horizontal wave number is calculated as 𝑘ℎ =

√︃
𝑘2
𝑥 + 𝑘2

𝑦 . Figure 7 shows the
relationship between 𝐸ℎ and 𝑘ℎ along with the −5/3 slope, a representative slope of the inertial subrange in a turbulent
field. As expected, there is a peak in the plot of 𝐸ℎ shown in figure 7 around 𝑘ℎ = 3, which is the forcing wave number.

Figure 7: 𝐸ℎ in different horizontal wave number 𝑘ℎ, with the -5/3 slope.

6 Interaction of wave with a turbulent layer
Now that we have successfully simulated the turbulent layer and the wave traveling in a stratified domain, we can
simulate our final model. We integrate these components and model stratified turbulence and launch waves in the same
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(a)

(b)

Figure 8: Buoyancy and dissipation rate at 𝑦 = 𝜋 of simulations of applying wave forcing with 𝑘𝑥=1, 𝐴𝑏=0.01 and
𝜔=0.2 in a domain that with developed turbulence at two different times of a) 600, before introducing wave forcing,
and b) 632, after wave forcing is introduced.

of launched waves upon reaching the turbulent layer. Our observations suggest that the waves were absorbed into the
turbulent layer. This finding aligns with the observational studies on sites such as near the Hawaiian Ridge, originally
discussed in the introduction.
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Figure 9: KE of spatially averaged over the top half of the domain at simulations with a) only waves (shown in pink),
b) turbulence and wave with 𝑘𝑥 = 1 and 𝐴𝑏 = 0.01 and 𝜔 = 0.2 (shown in blue) turbulence and waves with 𝑘𝑥 = 4 and
𝐴𝑏 = 0.0025. 𝜔 = 0.5 (shown in black).

This problem can be investigated further by performing higher resolution simulations to achieve higher levels of
turbulence. This will allow to better mimic the oceanic environment. Additionally, as we only modeled waves with
a single wave number, this can be modified to model an incident wave beam. More analysis should be performed to
further increase our understanding of the dynamics of the interaction of waves with stratified turbulence. By changing
the amplitude and wave number, we can investigate a bigger parameter space. Finally, the energetics of the simulated
flow can be compared with the field observations.
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A Appendix: Damping length
To find the damping length, based on the Dr. Lecoanet’s personal notes, we take the curl of the curl of the linearized
momentum equation and take the 𝑧 component of it. Using the continuity equation, the resultant equation is

𝜕𝑡∇2𝑤 − 𝜈∇4𝑤 − ∇ℎ𝑏 = 0. (12)

Where ∇ℎ, is the derivative in the horizontal direction. Taking the horizontal derivative of the buoyancy equation 2,
and combine that with the time derivative of equation 12 and assuming 𝜅𝜈 is small, we will get
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(a) (b)

(c) (d)

Figure 10: 𝜔−𝑘 spectrum of horizontal energy in the non-turbulent region (left) and turbulent regions (right) calculated
for simulations with waves of a) & b) 𝑘𝑥 = 1, 𝜔 = 0.2, and 𝐴𝑏 = 0.01 and c) & d) 𝑘𝑥 = 4, 𝜔 = 0.5, and 𝐴𝑏 = 0.0025.

(a) (b) (c)

Figure 11: Buoyancy field in simulations of wave with 𝑘𝑥 = 1, 𝜔 = 0.2, and 𝐴𝑏 = 0.01 launched in a turbulent
domain at 𝑁0𝑡 = 682; a) the original buoyancy field 𝑏, b) decomposed upward traveling, and c) downward traveling
components.

𝜕𝑡 (𝜕𝑡 − (𝜈 + 𝜅)∇2)∇2𝑤 + 𝑁2
0∇ℎ𝑤 = 0. (13)
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(a) (b)

(c) (d)

Figure 12: Variations of 𝐸ℎ with regards to 𝑘ℎ (left figures) and 𝜔 (right figures) in at 𝑧 = 3/4𝜋 in the middle of
turbulent layer is available (shown in black) and at 𝑧 = 2.5 between the wave forcing and the turbulent layer (shown in
pink) with waves of a) & b) 𝑘𝑥 = 1, 𝜔 = 0.2, and 𝐴𝑏 = 0.01 and c) & d) 𝑘𝑥 = 4, 𝜔 = 0.5, and 𝐴𝑏 = 0.0025.

As stated in 4.1, 𝑤 follows A𝑒 (−𝑧/𝑙𝑑 ) (𝑖 (k.x−𝜔𝑡 ) ) . With this relationship, the derivatives can be found as, 𝜕𝑡 = −𝑖𝜔,
∇ = 𝑖kℎ + (𝑖𝑘𝑧 − 𝑙−1

𝑑
)e𝑧 , and ∇2 = −𝑘2 − 2𝑖𝑘𝑧 𝑙−1

𝑑
+ 𝑙−

𝑑
2. Substituting the derivatives in equation 13, we get

(−𝜔2 − 𝑖𝜔(𝜈 + 𝜅) (𝑘2 + 2𝑖𝑘𝑧 𝑙−1
𝑑 − 𝑙−2

𝑑 )) (−𝑘2 − 2𝑖𝑘𝑧 𝑙−1
𝑑 + 𝑙−2

𝑑 ) − 𝑁2
0 𝑘

2
ℎ = 0. (14)

This can be re-written as

𝑖(𝜔𝜈(𝑘4 + 𝑙−4
𝑑 − 4𝑙−4

𝑑 (𝑘2 + 𝑘2
𝑧)) − 2𝜔2𝑘𝑧 𝑙

−1
𝑑 ) − 𝜔2 (15)

−4𝜔(𝜈 + 𝜅)𝑘𝑧𝐿−1
𝑑 (−𝑘2 + 𝑙−2

𝑑 ) − 𝑁2
0 𝑘

2
ℎ = 0. (16)

This rearrangement, separates the imaginary and the real part of the equation 16, which then both should be equal to
zero. Using the real part we can find 𝑘𝑧

𝑘𝑧 =

(
𝜔2 − 𝑁2

0
𝑘2
ℎ

𝑘2 − 𝑙−2
𝑑

)
𝑙𝑑

4𝜔𝜈
. (17)
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Substituting this into the imaginary part of the equation 16, and assuming weak viscosity and diffusivity (i.e., 𝜈+𝜅 ≪ 1)
we can find an equation that 𝑙−1

𝑑
=

𝜈𝑁4
0 𝑘

4
ℎ

2𝜔5𝑘𝑧
. Which with the assumption of 𝑁0𝑘ℎ = 𝜔𝑘𝑧 , we can find the damping rate.

𝑙−1
𝑑 =

(𝜈 + 𝜅)𝑁3
0 𝑘

3
ℎ

2𝜔4 . (18)
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Turbidity Currents
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Experiments are performed to gain an understanding of the transport of microplastics
by turbidity currents. The first series of experiments analysed the detrainment of positively
buoyant microplastics from saline gravity currents of varying Reynolds number. The non-
uniform flows within the gravity current affected the detrainment of microplastics, whose rise
was delayed with respect to the motion of the current’s nose. A second series of experiments
focused on the interaction between the same positively buoyant microplastics and glass
spheres. Idealised controlled experiments revealed that these two types of particles adhered
when mixed together, leading to the formation of aggregates whose modified buoyancy can
turn the microplastics into negatively buoyant aggregates. Finally, we analysed the settling
and transport of microplastics from microplastics-bearing turbidity currents driven by the
negative buoyancy of glass spheres. We verified that this flow also produces aggregates of
microplastics and glass, resulting in the deposition of up to 17% of the plastic mass at the
bottom of the tank.

1 Introduction

Every year an approximate mass of plastic of 108 tons is produced [21], with about 20%
being released into rivers and the ocean [5]. Most of the plastic produced is expected to
be positively buoyant [10], and yet floating plastic waste and plastics washed onto shore
are estimated to have a combined mass of about 300 kilotons [25]. This represents less
than ∼ 2% of the expected mass which i s produced i n j ust one year. Since plastics can adsorb
toxic substances (e.g., hydrophobic marine pollutants, pesticides, heavy metals, etc. [22, 8]), 
it represents a threat to living organisms that might ingest them.

Due to turbulent and abrasive processes, large pieces of plastic waste are broken up into
smaller microplastics (MP) having sizes in the range 1 µm−5 mm [12, 21], the upper bound
corresponding to the minimum size that can be captured by trawling nets. These micro
particles are now present in hundreds of ecosystems, down to small aquatic organisms like
zooplanktons [6], and they can be transmitted through the food chain at many scales. On
top of that, present-day studies reveal how smaller plastic fragments called nanoplastics are
transported through the air [1] and can therefore be inhaled, reinforcing the need to further
study the dispersal of MP in the environment.
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Measurements on the sea floor have revealed the presence of MP deep in the ocean [23,
27]. Knowing that most produced plastics are expected to float, this raises the question of
what mechanism turns positively buoyant MP into negatively buoyant particles. A number
of mechanisms are linked to biology [24, 19]: MP can be transported deep in the ocean
when ingested by or after sticking to aquatic organisms; alternatively, biofilms can grow over
plastic fragments and turn the resulting ‘biolfouled’ assemblage into a negatively buoyant
structure.

The present work focuses on a novel inorganic process that turns positively buoyant
MP into negatively buoyant agglomerates. We show that glass spheres are attracted to
polyethylene plastic particles, making some of the plastics settle in stationary and turbulent
flows. The manuscript is organised as follows. Section 2 investigates the transport and 
detrainment of MP when passively advected by (saline) gravity currents. Section 3 reveals
how MP and sediments attach to one another when brought in contact in idealised controlled
experiments in beakers. Section 4 combines both aspects of transport and attachment: we
analyse the evolution of turbidity currents that are laden with glass spheres (they drive the
current through buoyancy) and MP (they are transported by the current), and show how
glass-plastic interactions alter the transport of the MP. Concluding remarks are presented
in section 5, and appendices are added to detail technical aspects of the experiments.

2 Transport of MP by Gravity Currents

2.1 Experimental setup

Figure 1: Setup used to generate gravity currents. The fresh tap water is shown in blue,
the dyed salty water is shown in red, the grey rectangle corresponds to the gate after lifting
it upward to release the dense gravity current, and light is shone from the right end of the
tank.

As shown in figure 1, experiments are performed in a 150.0 cm-long and 15.5 cm-wide
tank, filled with fresh tap water of density ρa = 998.5 kg m−3 up to a depth H = 20.0 cm.
At a distance of 15.0 cm from the left wall, a vertical gate seals the lock region of volume
Vlock = 4.65 L in which a small amount of food colouring and some salt water are added
until the density in the lock reaches a value ρ = ρa +∆ρ. Most gravity currents are laden
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with MP. In that case, a measured mass mp of MP, usually of 1.0 g, is injected in the lock
and stirred vigorously to homogenise the microplastics in the lock. When an experiment
starts, stirring is stopped at t ≃ −5 s and at t = 0 the gate is quickly lifted. The gate is left
partly underwater, with its lowest end 2 cm below the free surface to damp the formation
of surface waves that would otherwise affect the propagation of a gravity current. Once
the gate is lifted, the dense fluid from the lock is put in contact with the ambient fluid.
The density difference ρ− ρa = ∆ρ generates a horizontal pressure gradient that drives the
formation of a gravity current, whose nose rolls up, accelerates and quickly reaches a regime
of constant velocity, as shown in Figure 2. The flow is visualised with a colour camera that
faces the side wall of the tank over its entire length. Light is shone from the right end of
the tank, illuminating its length. The colouring is visualised by light absorption, while MP
are visualised as bright dots due to light scattering from the particles.

Microplastics are obtained by grinding light polyethylene beads with a cryogrinder until
particles become sub-millimetric. The particles obtained are rinsed and sifted through
stacks of sieves on a NORJIN lab vibrator. The particles used in this study have a maximum
dimension smaller than 425 µm and larger than 250 µm.

2.2 Governing numbers

The motion of the gravity current is essentially characterised by two dimensionless numbers.
The Froude number [4, 15],

Fr =
ẋf√
g′H/2

, (1)

compares the front velocity ẋ f of the current (i.e., the time derivative of the front position
xf ), with the characteristic speed 

√
g′H/2 given in terms of the reduced gravity g′ = g∆ρ/ρa

with g = 9.81 m.s−2. As visible in the second snapshot of both figure 2a and figure 2b, despite 
initial perturbations introduced by the shear that develops when the gate is lifted, gravity
currents have sufficient inertia to quickly reach a regime of constant front velocity. This so-
called inertial regime is characterised by a Froude number of order unity i.e., F r = O(1).
Therefore, the characteristic velocity

uc =
√
g′H/2 (2)

is a good estimate of the front velocity during experiments. Based on this estimate, the
input Reynolds number

Re =
ucH/2

ν
(3)

ranges in the interval [378, 2858], with ν = 10−6 m2.s−1, the kinematic viscosity of water.
To describe the motion of an individual buoyant particle in a flow, we assume that the

particle is only subject to buoyancy and drag, and that the particle response time is negli-
gible compared to all other timescales that characterise the fluid motion. A straightforward
consequence is that the particle velocity, vp, satisfies

vp(xp, t) = v(xp, t) + wsez, (4)
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(a) Re = 1459 (b) Re = 2843

Figure 2: Snapshots of gravity currents of Reynolds numbers (a) Re = 1459 and (b) Re =
2843, respectively. The time lapse between two snapshots is, respectively, (a) ∆t = 14.4 s and 
(b) ∆t = 7.2 s. The height of every snapshot is H = 20 cm.

with bold symbols corresponding to vectors, v(xp, t) is the fluid velocity at the particle
position xp(t), the upward vertical unit vector is denoted ez ≡ −g/g, and ws is the rise
velocity1 of a spherical particle of radius rp and density ρp, which we parameterise with the
Schiller-Naumann correction to the Stokes velocity [7]

ws =
wStokes
s

1 + 0.15Re0.687p

, (5)

where the particle Reynolds number is defined as

Rep =
2rpws

ν
, (6)

and the Stokes velocity is

1The subscript s is adopted from a general notation that defines ws as the settling velocity of the particle,
here in the upward direction.
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wStokes
s =

2gr2p(ρa − ρp)

9νρa
. (7)

In equation (5), the settling velocity is defined implicitly since the particle Reynolds number
depends itself on ws in equation (6). That is why the values of ws are obtained by numerical
integration of equation (5) for a given particle radius rp.

The particle velocity in equation (4) reveals that small microplastics move as tracers
along the horizontal direction, but they gravitationally drift upward in time, therefore
crossing trajectories of fluid parcels. For light-polyethylene particles, ρp = 930 kg.m−3.
With the mean radius rp = 169 µm, this leads to an estimated rise velocity, ws ≃ 3.6 ×
10−3 m.s−1. The order-of-magnitude velocity of gravity currents is uc ∼ 10−2 m.s−1 which
is much larger than ws. The relative rise speed of the particles can be characterised by a
non-dimensional number, the Rouse number, which we denote by

R =
ws

uc
. (8)

This number can be derived by rewriting equation (4) under the form |vp−v|/|v| = ws/|v| =
O(R). In typical experiments, R ∼ 10−1.

Exp. # Mass of MP (g) Mass surfactant (g) ∆ρ (kg.m−3) Re Buoyancy ratio

1 1.0059 0 0.107 725 0.1586
2 1.0014 0 0.238 1081 0.071
3 1.0035 0 1.662 2858 0.0102
4 0.9949 0 0.942 2151 0.0178
5 1.0004 0 0.029 378 0.5821
6 1.0046 0 0.425 1445 0.0399
7 0.9999 0 0.66 1800 0.0256
8 1.0014 0 0.338 1288 0.05
9 1.0015 0 0.199 989 0.0849
10 1.0043 0 0.151 861 0.1122
11 1.0006 0 1.566 2773 0.0108
12 7.998 2.1584 1.525 2737 0.0885
13 8.0513 2.3278 0.416 1429 0.3266
14 0 0 1.646 2843 0
15 0 0 0.434 1459 0
16 1.0039 0 0.8 1983 0.0212
17 1.0016 0 0.535 1621 0.0316
18 1.0002 0 0.683 1831 0.0247

Table 1: Experimental data on gravity currents with and without the addition of microplas-
tics and surfactants to the lock. The last column is the ratio of the buoyancy of microplastics
over the buoyancy of the saline current given by mp(1− ρa/ρp)/[(ρ− ρa)Vlock].

The contribution of suspended particles to the total buoyancy of the MP-bearing gravity
current is small (see Table 1). In addition, the microplastic particles are dilute. Due to
both reasons, we assume that the gravity current is uninfluenced by the presence of the MP
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and that the MP follow the horizontal motion of the current. However, along the vertical
direction, they additionally drift upward in time and ultimately rise above the current.

2.3 How do microplastics detrain from gravity currents?

In the reference frame of the nose of the gravity current which moves with constant speed,
one might assume that particles within the current rise vertically with no additional lateral
motion. We shall see that this is not the case.

We begin by assessing the influence of the current velocity on the detrainment of MP.
Since their buoyancy contributes little to the total buoyancy of gravity currents, changing
their total mass did not affect the process of detrainment. To modify the density contrast
∆ρ between the current and the ambient fluid, and therefore the velocity uc, we varied the
amount of salt water that was added in the lock. Figure 3 shows snapshots of MP-bearing
gravity currents that gradually detrain MP above and behind them over the course of their
propagation. Successive snapshots from high Reynolds number experiments show that MP
are initially detrained as a particle plume near the nose of the gravity current, but gradually
the source of the plume shifts upstream until the plume emanates from the tail of the gravity
current, as visible when comparing the third and the last snapshots in figure 3b. For the low
Reynolds number gravity current (figure 3a), the plastics detrain from the current shortly
after its release from the lock. This is expected: the time for microplastics to rise over the
current’s height ∼ H/2 is typically ∼ H/(2ws); during that time, the current propagates
over a distance ∼ ucH/(2ws) = Reν/ws. So for currents of low Reynolds numbers with
fixed ws, the microplastics rise before the current propagates far from the lock.

The current nose velocity is measured first by constructing time series plots of image
intensity over a horizontal slice through movie frames taken at a height z = H/12 above
the bottom of the tank, as shown for example in figure 4. The yellow crosses indicate
the position where the nose of the gravity current is detected. Figure 5a plots the front
position xf (t) as a function of time t for all the gravity current experiments. The slope of
the best-fit line through each trajectory provides a measurement of the front velocity ẋf ,
which is compared to the estimate

√
g′H/2 in figure 5b. We verify in this figure that the

Froude number Fr = ẋf/uc is approximately constant with an average value 0.69 ± 0.09
i.e. of order unity, which is consistent with section 2.3.

We measure the horizontal propagation velocity of the plume of MP, ẋplume. This
velocity corresponds to the Lagrangian velocity of the front of the plume as detected in
space-time diagrams of the light intensity recorded at mid-depth (z = H/2), as illustrated
in figure 6: yellow crosses show the position of the front of the plume of MP in time. Figure
7a plots these measurements for all gravity current experiments. Curves show no clear trend
of convexity nor concavity, meaning there appears no trend of acceleration or deceleration
of the plume in time. Some curves show oscillations for intermediate values of the Reynolds
number (near Re ∼ 1000) on a time-scale of order 50 s, which is due to the presence of
shear-induced billows that carry MP up-and-down the mid-water depth. Save for these few
experiments, the MP plume front position xplume increases relatively linearly in time. The
slope of the best-fit line through each trajectory gives the plume velocity ẋplume, which is
compared to the front velocity ẋf for all experiments in figure 7b.

Although the Reynolds number, Re, affects the value of the ratio ẋplume/ẋf for reasons
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(a) Re = 725 (b) Re = 2773

Figure 3: Snapshots of MP-bearing gravity currents of Reynolds numbers (a) Re = 725 and 
(b) Re = 2773, respectively. The time lapse between two snapshots is, respectively, (a) ∆t = 
11.52 s, and (b) ∆t = 5.6 s. The height of every snapshot is H = 20 cm.
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Figure 4: Space-time diagram showing the propagation of the MP-bearing gravity current
of Reynolds number Re = 1429 as measured at a depth z = H/12. Yellow crosses indicate
the front position of the current at different timesteps.

that remain yet to be clarified, figure 7b  manifests the comparatively slower propagation of
the plume of MP compared to the current’s front.

The reason for the slower relative advance of the particle plume is made evident by figure
8a, which shows successive snapshots that correspond to moving standard deviations of 
light intensity over periods of 1.33 s. In much the same way as long-exposure photographs,
these snapshots reveal the trajectories of MP during the experiments. These images show
that the motion within the gravity current is not uniform, but has significant shear that
carries MP downstream to the nose when they are close to the bottom, and conversely
carries them upstream away from the nose when they are located higher up in the
current. Such near-bottom noseward advected fluid has recently been observed by Sher
and Woods in saline gravity currents with no particles [20]. A schematic illustrating
this motion is shown in figure 8b. Due to the shear flow, as MP rise in a gravity current,
they initially sample large horizontal velocities near the bottom that carry them to the nose
of the current from which they detrain at early times. At later times, when MP have risen
sufficiently high within the current above the forward advancing flow, they rise upward
and backward in the reference frame of the nose. Consequently, the particles detrain
farther and farther away from the nose at late times. This sequence of events explains
why the plume origin drifts upstream in time. These observations and interpretations are
consistent with past measurements of the mean shear profile in a gravity current (see, 
e.g., [14, 26]) and the observations of Sher and Woods [20].

Another influence on the slower plume advance speed is that the head of the current
changes morphology in time. Once the gravity current forms, a perturbation at the interface
between the saline fluid and the ambient fluid in the lock propagates from the position of 
the gate to the left end wall where it is reflected. After reflection, this perturbation prop-
agates downstream as a bore (also called a rarefaction wave), that propagates faster than
the current nose, and therefore leads to a shrinking of the portion of the current located
between the bore and the nose [18]. This gradual reduction of the size of the current is
shown in figure 9. At the back of the head, where the bore is located, the fluid motions are
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Figure 5: (a) Time evolution of the front position of all MP-bearing gravity currents. After 
fitting a linear law on every curve in (a), the average current velocity is extracted, normalised 
by uc = 

√
g′H/2 and shown for each experiment of a given Reynolds number in (b). The

barely visible error bars in (b) correspond to the standard error of the regression in Python.

deflected downward (see the red arrow on the last snapshot of figure 9); therefore, as the head 
shrinks and as the plume of MP drifts upstream, the MP ultimately feel this downward 
deflection that delays their ascent. This enhances the discrepancy between ẋ f and ẋ plume.

3 MP-Sediment Interaction in Idealised Experiments

3.1 Experimental setup

When entering rivers from storm drains or municipal waste outflows, MP interact with sus-
pended sediments in a turbulent flow. The possible adhesion of relatively dense sediments 
to plastics is thought to lead to the ultimate deposition of plastics on the sea floor despite 
the possible positive buoyancy of the plastic. Because particle-particle interactions can be 
highly sensitive to the details of the particles’ size, shape and surface properties, idealised 
and controlled laboratory experiments are conducted to gain understanding into such in-
teractions. Specifically, we examine the interaction between polyethylene plastic particles 
and glass spheres.

Experiments are performed in beakers containing 900 mL of fresh tap water. A controlled
amount Csurf of the surfactant, TritonX 100, is added and systematically varied between
experiments. A fixed mass mp = 0.68 g of low density polyethylene MP of density ρp =
930 kg.m−3 and mean radius rp = 169 µm is introduced in the beaker. Then, as a laboratory
analog for sand, mg = 2 g of glass spheres of radius rg = 37.5 µm and density ρg =
2500 kg.m−3 are introduced. An electrical helical stirrer is then activated for a duration of
1 min before removing it from the beaker and rinsing it with a syringe containing the same
mixture of water and surfactant as that in the beaker. The beaker is then covered with
plastic wrap and left undisturbed for a minimum of 30 minutes as particles come to rest.
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Figure 6: Space-time diagram showing the propagation of the plume of MP at mid-depth,
for a Reynolds number Re = 1429. Yellow crosses indicate the front position of the plume
of MP at several timesteps.

Table 2 summarises the main parameter values used in these experiments.

3.2 Quantifying the deposition of MP

Once fluid motions in the beaker have come to rest, most MP are found at the water’s free
surface. However, some MP are also detected at the bottom of the beaker amongst the
glass spheres, where they stand out due to their larger size and difference in colour (glass
spheres are translucent and they brightly reflect the light, whereas MP are partly opaque
and white). This observation is illustrated with photographs, as shown in figure 10.

To quantify the deposition of MP at the bottom of the beaker, the mass of deposited
MP is measured. A syringe is used to remove all the MP that float at the free surface.
The absence of any MP particle in the meniscus is carefully inspected and confirmed by
shining light from different angles and visualising the meniscus with a camera. Then, the
rest of the beaker is flushed out onto moistened Whatman 8 micron filter paper sitting on
a strainer above a bucket. The beaker is thoroughly rinsed by clear fresh water and so are
the collected particles. The filter paper and its content are then placed in an oven for a
few hours to dry. Subsequently, all the particles are poured into a stack of several sieves
with mesh sizes (from top to bottom, in microns) 425-250-150-40. The first sieve essentially
removes dust from the pile of particles, while the smallest mesh only collects small glass
spheres. The mass of MP collected in intermediate ranges is measured on a scale with a
precision of 10−4 g.

Figure 11 shows the results as a function of the concentration of surfactant in the beaker.
These results show that the concentration of surfactant affects the total mass that deposits
at the bottom of the beaker. Circles correspond to experiments performed with a fast clock-
wise stirring in circles with the electric stirrer; on the opposite, diamonds correspond to
past experiments that were stirred slower with a wooden stick by hand, producing random
turbulent motions with no clear direction of the flow. Similar observations are obtained in
both cases: a lot of scatter at low concentrations of surfactant Csurf < 2 g/L, a small plateau
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Figure 7: (a) Time evolution of the MP plume front position as detected at mid water
depth. After fitting a linear law on every curve in (a), the average propagation velocity of
the plume ẋplume is extracted for all experiments and compared to the front velocity ẋf in
(b).

at large concentrations Csurf > 2 g/L, with a possible local maximum near Csurf = 1−2 g/L.
Stirring faster in circles usually leads to a lower mass of deposited MP (circles tend to have
lower ordinates than diamonds); this observation will be discussed below. Finally, additional
experiments have been performed with various amounts of glass to vary the glass-to-plastic
mass ratio. As a general trend, the larger this ratio, the more mass deposited at the bottom
of the beaker.

To understand why MP become negatively buoyant when stirred with glass spheres in
water, even in the absence of surfactant, the guiding hypothesis is that glass spheres and
MP stick to one another, forming aggregates that are negatively buoyant and therefore sink
to the bottom at the end of the experiment. To confirm this assumption, a WiFi digital
microscope of 1920× 1080 pixels magnifying up to 1000× (focus distance 3 mm) was used
to closely observe the negatively buoyant MP collected at the bottom of the beaker at the
end of an experiment. Figure 12 shows snapshots taken with the microscope that clearly
reveal the presence of large opaque microplastic particles coated with a number of glass
spheres that are easily identified due to their sphericity (the eight white stripes of light on
each glass sphere correspond to reflections of the eight LEDs of the microscope).

The number of glass spheres attached to a plastic particle varies greatly. By comparing
the density of fresh tap water with the average density of an aggregate of one plastic particle
and one or more glass sphere(s), we can estimate the number of glass spheres that must be
attached to a plastic particle for it to reach neutral buoyancy. Figure 13 shows how this
number varies with the microplastic radius. For the range of sizes explored in this study,
we find that if there are more than 2-9 glass spheres attached, the aggregate is negatively
buoyant and should deposit at the bottom of the beaker. Otherwise, microplastics can
be close to neutrally buoyant, or remain positively buoyant. Consistently, observations of
floating microplastics revealed the presence of a few glass spheres attached to them – not

259



(a)

(b)

Figure 8: (a) Standard deviation of the light intensity over a duration of 1.33 s, showing
in white the trajectories of MP in a gravity current of Reynolds number Re = 2773: MP
move downstream near the bottom of the tank, change direction near the nose and move
upstream near the upper edge of the current. (b) Sketch of the gradual drift of the plume
of MP (yellow circles) detrained from the gravity current (shown in red). Arrows in the
gravity current show the motion of MP; an illustrative sketch of the velocity profile in the
current’s reference frame is shown on the right of each row. First row: at early times, the
region laden with MP (shown with red-white hatchings) is still close to the bottom of the
tank where the velocity advects MP to the current’s nose. Second row: later on, MP have
risen and are advected to the front much slower, so that most of them detrain from the top
of the head rather than from the very front. Third row: MP have now risen in a region of
negative velocity and MP are detrained from the back of the current’s head.
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Figure 9: The space-time diagram on the left-hand side shows, in the reference frame of
a gravity current’s nose, the presence of white MP and blue dye at a distance z = 6.5 cm
above the bottom of the tank. The blue dye is indicative of the presence of the gravity
current’s head: its horizontal extension at the height z = 6.5 cm proves to shrink in time.
Each star corresponds to one of the four snapshots shown on the right-hand side. The
Reynolds number is Re = 2773.

enough for them to reverse buoyancy.
The exact interactions leading to the aggregation between MP and glass spheres remain

to be investigated. Possible candidates include capillary bridges, hydrophobic interactions,
depletion forces, friction, electrostatic interactions, or steric hindrance. As recently pointed
out by Al Harraq and Bharti [2], the interaction between microplastics and their environ-
ment can notably be determined by electrical double-layer effects, which stand as a plausible
candidate to explain our observations. Microplastics are usually close to neutrally charged
[29, 28] and hydrophobic [2]; when surfactant molecules are introduced in water, their long
hydrophobic chain tends to adsorb on the surface of microplastics [9, 16, 12], leaving their
hydrophilic part oriented towards the bulk [12]. The interaction between the glass spheres,
which are negatively charged in water [3, 12, 13], and the surfactant molecules that coat
the MP, determines the ability of glass spheres and MP to aggregate. Aggregation crucially
depends on the microplastic-glass distance and on their potential of interaction which, un-
der the Derjaguin Landau Verwey Overbeek (DLVO) theory, is the sum of the attractive
Van der Waals forces and the double-layer repulsion [11, 2, 8]. The ambient ionic strength
[11, 2], the distance between particles [29], their size and their surface roughness [12], the
ionisation of functional groups at their surface [13], the concentration of surfactant [12], the
vigour of the flow around particles and their collision rate can all affect the microplastic-
glass interaction, whether their potential of interaction has one minimum or two minima,
whether stable or fragile aggregates can exist in the flow. Measuring potentials of interaction
is beyond the scope of the present study, and we call for further analyses in dedicated setups.

Let us finally discuss the substantial scatter of data points in the range Csurf < 1.5 g/L in
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Exp. # mp (g) mg (g) Csurf (g/L) Mass of MP deposited (% of mp)

1 0.6819 1.9920 1.8233 0.2640
2 0.6749 1.9980 0.6142 0.4593
3 0.6780 2.0034 1.2283 0.5605
4 0.6790 2.0027 3.0911 0.1325
5 0.6785 2.0081 5.1291 0.1474
6 0.6808 2.0148 0.6191 0.1322
7 0.6778 2.0017 0.8337 0.1918
8 0.6804 2.0026 0.4098 0.0588
9 0.6814 1.9922 0.1318 0.4109
10 0.6810 1.9997 0.8659 0.6304
11 0.6776 1.9913 0 0.3542
12 0.6808 2.0041 0 0.2350
13 1.0003 11.9916 0 1.5895
14 0.6928 6.0155 0 0.6062
15 0.6806 5.9959 1.0598 0.5730
16 0.6806 12.0020 1.0667 1.1020
18 1.5054 2.0041 1.0802 0.1196
18 2.2927 2.0038 1.0542 0.0480

Table 2: Experimental data for the experiments perfomed in beakers with glass spheres,
microplastics and surfactant (TritonX 100).

figure 11. The experiments in beakers revealed that low concentrations of surfactant result
in fragile aggregates that are broken by extremely small degrees of turbulence. Indeed,
after an experiment with a low surfactant concentration, if a beaker is slowly and gently
transported from one table to another, some aggregates break and MP rise from the bottom
of the beaker up to the free surface. The fragility of the aggregates is clearly correlated
to the surfactant concentration: the lower the concentration, the more aggregates broken
when moving the beaker2. This observation is consistent with the previous statement that
stirring faster in circles usually leads to a lower mass of deposited MP than stirring slower
a wooden stick (compare circles and diamonds in figure 11).

Therefore, based on the results of figure 11 and our experimental observations, we con-
jecture that the lower Csurf , the more aggregates that form and the more fragile they are.
Under this conjecture, the substantial scatter that we observe at low Csurf is a consequence
of the intense turbulence that the stirrer produces in beakers, that breaks the aggregates
shortly after we stop stirring. The next section corroborates that a lower turbulence inten-
sity leads to more aggregates depositing during experiments in turbidity currents.

2After we observed this phenomenon, we decided never to transport the beakers nor even rotate them
to avoid the formation of any shear in the liquid; under these conditions, we verified that the aggregates
remained at the bottom of the beaker until we extracted them.
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(a) (b)

Figure 10: (a) Top photograph of the microplastics deposited at the bottom of a beaker 
at the end of an experiment. Most of the bottom is white due to the presence of glass 
spheres; some of the larger microplastic particles are highlighted by red semi-circles in four 
close-ups. (b) Microplastics gathered near the centre of a beaker after stirring, at the end 
of an experiment that contained only traces of surfactant.

4 Transport and Aggregation of MP in Turbidity Currents

Section 2 analysed how MP are transported by and detrained from a simple canonical flow, 
while section 3 revealed in idealised beaker experiments how MP-sediment interactions 
modify the coupling between fluid motions and MP by modifying their rise velocity. The 
present section focuses on MP-laden turbidity currents to investigate the combined roles of 
MP-sediment interactions and transport in a buoyancy-driven turbulent flow.

4.1 Experimental setup

The setup used to generate turbidity currents is the same as that described in section 2.1, 
except that before lifting the gate, the lock contains ambient fresh tap water of density ρa 
with no salt, a given mass mp of MP of density ρp = 930 kg.m−3 and radius rp = 169 µm, 
and a given mass mg of glass spheres of radius rg = 37.5 µm and density ρg = 2500 kg.m−3. 
An additional amount of surfactant and possibly of food colouring can be added in the lock 
or in the entire tank. The main information about experiments is summed up in table 3.

Initially, microplastics are vigorously stirred in the lock. Then, the mass mg of glass
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Figure 11: Evolution of the percentage of mass of microplastics deposited at the bottom
of beakers, as a function of the concentration of surfactant, for different masses of glass
introduced. Circles correspond to experiments with a fast clockwise stirring in circles by
the electric stirrer, while diamonds correspond to a slower random turbulent stirring with
a wooden stick.

(a) (b)

Figure 12: Photographs of microplastics – the large opaque grey or yellow particles – coated
with glass spheres – the small circles each containing 8 white lines due to the reflection of
the 8 microscope LEDs – when they are collected in a cup after sieving (a) or trapped in
the mesh of a sieve (b). The diameter of the spheres is in the range 63 − 90 µm, giving a
scale for the images.
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Exp. # mp (g) mg (g) Csurf (g/L) Mass of MP deposited (% of mp)
1 0 12.0033 0 -
2 0 11.9991 0 -
3 0 12 0 -
4 0 12.0008 0 -
5 0 11.9995 0 -
6 0 12.0065 0 -
7 0 12.004 0 -
8 0 12.0163 0 -
9 0 12.0069 0 -
10 0 12.0012 0.0582 -
11 0 12.0016 0.0577 -
12 0 12.0083 0.0519 -
13 0 12.0018 0.0519 -
14 0 12.0084 0.1142 -
15 0 12.0088 0.1147 -
16 0 12.0132 0.2287 -
17 0 12.0317 0.2290 -
18 0 10.0223 0.4545 -
19 0 12.0116 0.4544 -
20 0 11.9952 0.6900 -
21 0 12.0179 0.6899 -
22 0 12.0045 0.6899 -
23 0 12 0 -
24 4.8409 12.0071 0.5 -
25 2.4289 12.018 0.5 -
26 4.7458 12.0019 0.5 0.42563951
27 2.4327 12.0006 0.5 0.67003741
28 1.0077 11.9985 0.5 -
29 1 12.0002 0 15.15
30 1.0088 12.0066 0 -
31 1.0017 12.009 0 17.0210642
32 1.0001 11.9985 0 7.18928107
33 1.0001 12.0031 0 14.8085191
34 1.0045 12.0012 0 16.8342459
35 0.9982 11.9972 0.125 5.3095572
36 1.0025 12.0035 2 1.017456359
37 8.0279 12.0059 0.5 -
38 1.0014 11.9982 0 14.6095466
39 1 8.4023 0.5 -
40 1.0019 3.0035 0.5 -
41 1.0066 27.0157 0.5 -
42 1.0036 3.004 0.5 -
43 1.0069 27.037 0.5 -
44 1.001 27.0067 0 11.2987013
45 1.0019 2.9966 0 2.07605549

Table 3: Experimental data about turbidity currents.
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Figure 13: Evolution of the number N∗ = (rp/rg)
3(ρp − ρa)/(ρa − ρg) of glass spheres that

should attach to a MP particle of radius rp for it to become neutrally buoyant. The MP
particles used for our experiments are in the range without hatchings: between 2 and 9
glass spheres must attach to a plastic particle, depending on rp.

spheres is poured into the lock and stirred with the microplastics for about 10 s. At t = −5 s,
stirring is stopped, and at t = 0 the gate is lifted and left partly underwater over its lowest
2 cm to damp surface waves.

Figure 14: Time series showing, from top to bottom, the propagation of a turbidity current
as seen from above (mg = 12.1 g, in the lock Csurf = 0.229 g/L while the rest of the tank 
was devoid of surfactant). The time lapse between two snapshots is ∆t = 2.67 s and the
horizontal length of each image is 97 cm.

Another lighting procedure consists in shining light tapes below the tank and taking 
photographs from above the tank. This enables us to measure the light attenuation due 
to its absorption by food colouring or glass spheres. It also enables us to finely measure 
the deposition of the glass spheres at the bottom of the tank after an experiment. To do 
so, a reference picture of the light intensity is taken before the experiment. Figure 14 shows
the propagation of a turbidity current with no plactic particles that is filmed from above.
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Finally, at the end of the experiment, a second picture captures the deposition of glass
spheres at the bottom of the tank. This system enabled to verify that the stirring of lock
fluid and lifting of the gate are repeatable by quantifying the deposition of glass spheres at
the end of experiments of pure turbidity currents without MP (see Appendix A for details).
Our turbidity currents are not energetic enough for glass spheres that settle on the bottom
of the tank to be resuspended. Therefore, the total buoyancy of our turbidity currents
constantly decreases in time. A consequence is that after a brief acceleration, the currents
continuously decelerate in time until all glass spheres are deposited, as already visible from
the snapshots in figure 14.

4.2 Aggregates form and settle down in turbidity currents

Figure 15 shows the propagation of a turbidity current containing red food colouring, a
mass mg = 12.0 g of glass spheres and a mass mp = 1.0 g of MP. The current initially rolls
up and builds up velocity in a short transient. Then, the current continuously decelerates.
The red food colouring enables to track the fluid originating from the lock as well as all the
fluid that is entrained at the edge of the turbidity current. The diffuse white milky region
at the very front of the current near the tank floor corresponds to a concentrated region
of glass spheres that drive the propagation of the current near the nose. They can easily
be distinguished from the MP that are so large that they can be identified individually as
large bright white dots rising towards the free surface. A close inspection of the front of the
turbidity current at large times shows that several microplastics deposit onto the bottom
of the tank as eddies bring them close to it, confirming the formation and deposition of
aggregates.

To undoubtedly confirm that these large bright particles correspond to aggregates of
MP and glass spheres, after such an experiment, the tank is left untouched for 30− 60 min.
Then, a peristaltic pump is used to extract the MP from the free surface. Afterward, a
pipe is gently introduced in the tank near the right end wall, and water is slowly extracted
until only ∼ 5 mm of water are left in the tank. Then, a microscope is introduced in the
tank to record in situ photographs and videos that confirm the existence of aggregates: MP
and glass spheres are not juxtaposed, they do stick to one another, and aggregates move as
one solid body without deformation, as confirmed by videos that recorded the vibration of
aggregates when gently shaking the microscope to disturb the fluid around the sediments
(see figure 16).

As shown in table 3, the mass of aggregates found on the bottom of the tank was
measured after the end of several experiments on turbidity currents. Measuring this mass
required the following steps: (i) After mixing the lock fluid, lift the gate to initiate an
experiment; (ii) wait for all motions to dissipate after the propagation of a current; (iii)
extract all the particles found at the free surface, on the gate, and on the stick used to
stir the lock at times t < −5 s; (iv) take pictures of the deposit to locate aggregates;
(v) slowly extract most of the water out of the tank; (vi) image the aggregates with the
microscope; (vii) collect all the deposited particles (glass spheres and aggregates) on filter
paper in several iterations to rinse the tank and pipes; (viii) rinse the collected particles;
(ix) dry the particles in an oven. Due to the large size of the tank, the small size and
large number of microplastic particles, and the fragility of aggregates, these steps took 7-
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Figure 15: Time series of a turbidity current with microplastics. The glass spheres appear 
as a white milky region, in particular near the front of the current. The water initially 
in the lock is dyed red, and microplastics appear as large distinguishable white dots. The 
mass of glass spheres is mg = 12.0 g, the mass of plastic is mp = 1.0 g, and the time lapse 
between two snapshots is ∆t = 4 s.

8h. Particles could be sorted and their mass could be measured on the following day. Due 
to the complexity of this protocol and its duration, these measurements were performed 
for dedicated experiments, mostly at low surfactant concentration since it leads to more 
aggregation (see figure 17), confirming the conjecture of  section 3.2.

Changing the mass of plastic mp barely affected the percentage of MP deposited. This
was verified for Csurf = 0.5 g/L, where the mass of MP has been varied between {1, 2, 4} g
(the size of circles is proportional to the mass of MP). On the opposite, for a fixed mass
mp = 1 g, the larger the mass of glass spheres in the turbidity current, the larger the
percentage of mp that deposits (see the blue and red points). This is consistent with the
trends obtained in the beaker experiments, although data are lacking in both types of
experiments to confirm this trend. We note that additional beaker experiments performed
with a ratio mg/mp ∈ [8 − 18] and stirred by the electrical helical stirrer stirrer never led
to more deposition than 1.5% of mp. Conversely, for the ratio mg/mp = 12 in the turbidity
currents experiments, we obtain up to 17% of deposition. This order-of-magnitude difference
is consistent with our conjecture that a lower turbulence intensity leads to more deposition,
and that the vigorous stirring in beakers probably led to the breaking of aggregates.
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(a)

(b)

Figure 16: (a) Successive snapshots of an aggregate filmed in situ while shaking the micro-
scope. The aggregate orientation is determined by the dashed dark line that connects the
position of two attached spheres on the microplastic particle, and the corresponding angle is
written in the bottom right-hand corner of each snapshot. Each snapshot is then rotated by
an equal amount in the anti-clockwise direction, leading to (b). The latter figure evidences
that the glass spheres are actually attached to the plastic particle onto which they keep the
same position.

4.3 Aggregation affects the rise of MP

Within the range of masses, mp, of MP that we used, MP only marginally contribute to
the total buoyancy of the turbidity current, hence varying mp has no clear impact on the
dynamics of the turbidity current before full deposition of the glass spheres. The same
conclusion holds when varying the surfactant concentration Csurf . This is verified in figure
18a which shows the trajectory xf (t) of the front of the turbidity currents in time: within
a margin of uncertainty due to the sensitivity of the turbulent flow to initial conditions, all
currents follow the same trajectory.

This observation is consistent with section 2.2: MP essentially follow horizontal fluid mo-
tions like tracers, and their buoyancy is negligible in turbidity currents, hence the horizontal
position xf (t) evolves in time essentially due to the buoyancy of glass spheres. However,
along the vertical direction, MP eventually decouple from fluid motions due to their rise
velocity. As shown in section 3, the concentration of surfactant affects the amount of ag-
gregates that form, and therefore the distribution of rise velocities between rising plastic
particles and sedimenting aggregates that are denser than the ambient. Hence, we now
focus the analysis on the vertical motion of MP to identify a signature of the process of
aggregation.

Figure 19 qualitatively shows with snapshots that the surfactant concentration con-
siderably affects the rise time of microplastics: these two experiments reveal that, in the
absence of surfactant (see the red current), MP rise much slower than when the surfactant
concentration is large (see the blue current, and compare it with the red one on the three
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Figure 17: Evolution of the percentage of mass of MP deposited after experiments of tur-
bidity currents, as a function of the concentration of surfactant in the tank, for different
masses of glass introduced.

final snapshots of figure 19b). Figure 20 quantifies this phenomenon by showing the mea-
sured time of rise trise of MP along the water depth H (see Appendix B for details about
measurements), normalised by the estimate H/ws for pure MP, as a function of the total
mass of surfactant introduced in the tank. This figure confirms the conjecture of section
3.2: the more surfactant, the less aggregation, and the closer the ratio trisews/H is to unity.
Conversely, the less surfactant, the more aggregates form; those that are negatively buoyant
deposit on the ground and barely affect the measured time trise; those that are pure (i.e.
with no glass sphere attached) rise as fast as ws and contribute to reducing the measured
value of trise; those that are close to neutral buoyancy take a considerable amount of time
to rise, and they statistically contribute to an increase of trise. The increasing scatter in
figure 20 when the surfactant concentration diminishes is consistent with the sensitivity
of aggregation to details of the interaction between MP and glass spheres, which is itself
sensitive on the initial conditions of the flow.

The previous two figures clearly show that after full deposition of glass spheres, the
fate of MP is controlled by the amount of aggregation that happened during MP-glass
interactions. The MP that remain in water for a long time are close to neutral buoyancy,
hence their residual motion is due to the residual inertia in the flow. This explains the drastic
deceleration of the trajectories xf (t) beyond a distance of about 0.7 m which corresponds
to the maximum distance reached by the glass spheres. Similarly, the residual inertia of the
fluid depends crucially on the initial conditions of the flow; this explains the large scatter
in the curves xf (t) beyond ∼ 0.7 m.

4.4 Deposition of aggregates up until the head’s stopping point

In a moving ambient like the ocean, those aggregates that are close to neutral buoyancy
will be advected away by the flow. Conversely, aggregates with a sufficiently large negative
buoyancy settle on the bottom of the tank and presumably stay there. The goal in this
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Figure 18: Time evolution of the position of (a) the front of turbidity currents, and (b) 
the plume of detrained microplastics detected at mid water height. Colours indicate the 
concentration of surfactant. Measurements are non-dimensionalised with the estimated time 
necessary for glass to settle over the current’s height, thalt = H/2ws,glass, and the distance 
travelled by the current during that time xhalt = ucthalt where uc is based on the reduced 
gravity in the lock at t = 0.

section is therefore to determine the spatial distribution of these aggregates in the deposit 
after the dissipation of all fluid motions in the tank. To do so, we vary the total mass of 
glass spheres that is introduced in the lock to vary the maximum distance reached by the 
turbidity current. Figure 21 shows snapshots to compare the transport of microplastics by
turbidity currents containing, respectively, mg ≃ 3 g, mg ≃ 12 g and mg ≃ 27 g of particles.
The results are in agreement with theoretical estimates (see Appendix A). The larger the
total mass of glass spheres, the larger the initial (negative) buoyancy in the current, and 
the farther away the current comes to a halt.

Once the fluid motions come to rest, all the MP at the free surface are removed with a 
peristaltic pump, and a photograph is taken from above to analyse the deposit. Figure 22a 
shows that a deposit contains a continuous large white region containing glass spheres, as 
well as some isolated bright dots that correspond to deposited aggregates. After processing 
photographs of the deposit (see Appendix C for details), the light scattered by the glass 
spheres can be subtracted, and figure 22b shows the resulting image. Every bright spot is 
assumed to represent one aggregate. Then, the image is split in 30 bins along the horizontal 
direction. Figure 23 shows a histogram of the number of bright spots in each bin along the 
direction x for the experiment whose deposit is visible in figure 22a. By comparing figure 
22a and figure 23, it appears that the maximum number of aggregates is found near the run 
out location of the turbidity current. As for the absence of aggregates at low values of x, it 
is an artefact due to the dilution of the signal of aggregates in glass spheres, which has been 
subtracted by image processing. Similarly in the context of MP burial by a turbidity current 
in the environment, plastic pollution might go unnoticed at such locations where too much
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(a) ∆t = 8.0 s

(b) ∆t = 24.0 s

Figure 19: Propagation of two turbidity currents without surfactant (red current; see char-
acteristics in the caption of figure 15) and with a high concentration of Csurf = 2 g/L in
the tank (blue current, mg = 12.0 g and mp = 1.0 g). The time lapse between consecutive
snapshots is shown above each figure. The last snapshot of figure (a) is the same as the
initial snapshot of figure (b).
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Figure 20: Time for microplastics to rise over the water height H due to their rise velocity,
for various masses of glass spheres initially in the lock, and several concentrations of sur-
factant.

Figure 21: Time series of three turbidity currents containing 1.00 g of microplastics and 
no surfactant, and driven by a mass of glass spheres equal to (left) 3.00 g, (middle) 12.0 g,
(right) 27.0 g, respectively. The time lapse between snapshots is ∆t = 8 s for all experiments.
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(a)

(b)

Figure 22: Deposit of glass spheres and microplastics after the propagation of a turbidity
current containing mg = 12.0 g of glass and mp = 1.0 g of microplastics. Figure (a) shows
a raw image while figure (b) shows the result after subtracting the large continuous white
region at the left of the deposit (the glass spheres) to evidence the presence of microplastics
(remaining white dots).

sand deposits with and above the plastic fragments, hampering their simple detection.
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Figure 23: Distribution of aggregates along the tank, as detected using figure 22b.

To circumvent this issue of detection using the photograph, after each experiment a
series of close photographs with a better resolution was recorded by moving a camera just
above the tank and sliding it from x = 0 to x = 1.5 m above a transparent window. Figure
24 shows the reconstruction of the deposit by putting together the various photographs of
a series. These photographs reveal the presence of aggregates at the bottom of the tank at
all locations before the stopping point of the turbidity current. After a similar processing
as described above, the new distribution of aggregates is shown in figure 25. The conclusion
remains that most aggregates are found near the run out location of the turbidity current,
but aggregates are also found in the tail. Further processing of all experiments will confirm
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whether this observation holds in general.

Figure 24: Stack of images taken at a short distance from the surface of the tank, showing
the deposit of the same turbidity current as in figure 22.
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Figure 25: Distribution of aggregates along the tank, as detected using figure 24.

5 Concluding Remarks

Section 2 showed that analysing the rise of MP offers an original way of sampling the com-
plex structure of a gravity current. Despite the fact that a gravity current is traditionally 
modelled as a fluid mass p ropagating w ith a  c onstant v elocity, t he c oupling b etween MP 
and the inner structure of a gravity current already makes it non-trivial to predict the de-
trainment of MP, and the gradual evolution of the current’s morphology adds yet another 
layer of complexity. It remains to be determined how much confinement a ffects th is ob-
servation, which could be assessed by performing similar experiments in a tank of different 
dimensions. Another intriguing question is: how would the dynamics of the current be 
altered if the buoyancy of the microplastics were non-negligible, for example by having a 
larger total mass of microplastics, or if their size were different and hence if they decoupled 
faster or slower from the gravity currents?

Section 3 revealed that when stirred together in fresh water, glass spheres can attach to 
microplastics and produce aggregates whose density is larger than the ambient, thus leading 
to their deposition. Although the literature provides some possible explanations that could 
be consistent with our observations, we were not able to investigate the physics at small scale 
that governs the attachment of glass spheres onto microplastics, thus calling for additional
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experiments with a dedicated setup that could quantify the microplastics-glass interactions. 
One may wonder how these interactions would be modified when considering microplastics 
interacting with sediments in rivers or seas. As an example, the interaction of microplastics 
with biological media could certainly alter the picture: nature organic matters smooth the 
surface of microplastics and growth media cover deposition sites, thus inhibiting aggregation, 
yet biofilms can also trap particles during collisions [8]. As microplastics are released from 
rivers into the sea, the ambient concentration in salt increases whereas the concentration 
in surfactant likely decreases, which might both affect their ability to aggregate with sand. 
Aside from biological factors, the size and the anionic/cationic/non-ionic nature of the 
surfactant used, the size of the microplastics, their density, the turbulence intensity are 
some of many factors whose impact on aggregation remains to be carefully quantified.

Finally, section 4 revealed that microplastics also aggregate with glass spheres when 
transported in turbidity currents. As we present experiments where microplastics barely 
affect the carrier flow, the dynamics of the turbidity currents is unaffected by aggregation. 
However, the reverse does not hold: as the rise velocity of aggregates is altered, the rise 
of microplastics is quantitatively delayed by the process of aggregation, and the 
population of microplastics then spans from buoyant microplastics to sinking 
aggregates, including neutrally buoyant aggregates that passively drift in the remaining 
fluid inertia after the glass spheres have deposited. The fragility of aggregates, and the 
amount of glass spheres that must attach onto a microplastic to neutralise its buoyancy, 
are two key aspects determining the fate of the MP. Can these aggregates form in 
rivers, seas or oceans? How resistant are they to the surrounding turbulence and to 
collisions? Would the neutrally buoyant aggregates drift with the currents, while those 
on the ground would be buried under sediments? In connection with section 2, where 
would the rising microplastics be detrained? All these questions are paramount and call 
for additional experiments with dif-ferent sizes and densities of both microplastics and 
sediments, and the presence or absence of an ambient shear or some pre-existing 
turbulence to assess how they can create or break aggregates.
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A Repeatability of initial conditions and runout distance

To verify the repeatability of experiments with pure turbidity currents, i.e., without mi-
croplastics, the same mass of glass spheres mg ≃ 12 g is introduced in the lock, stirred, and
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the gate is lifted as described in section 4.1. At the end of the experiments, glass spheres
have deposited at the bottom of the tank. Then, by shining an LED panel underneath the
water tank, the profile of light intensity going through the deposit is captured by a camera
located above the tank. Since the distribution is close to uniform along the y direction
(width of the tank), the intensity is averaged along this direction and the resulting average
intensity I(x) only varies along the length of the tank. A similar reference photograph is
recorded in the absence of glass spheres, and we denote Ibkg(x) this background intensity.
In figure 26, the ratio I/Ibkg proves to be lower than unity near the lock due to the absorp-
tion of light by the deposit. Beyond approximately half the length of the tank, the intensity
ratio reaches unity, meaning a negligible amount of glass spheres reaches this region. The
collapse of curves indicates that the release of these 14 turbidity currents is repeatable and
unaffected by the concentration of surfactant (see the colours in figure 26). To determine
the run-out distance, we calculate the average intensity ⟨I/Ibkg⟩ of the plateau near unity,
as well as its standard deviation σI . The run-out distance is then quantified as the position
where the intensity ratio reaches the value ⟨I/Ibkg⟩ − 2σI . From figure 26 we find that the
currents stop at x = 0.70± 0.06 m.
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Figure 26: Profile of normalised light intensity going through the deposit of 14 experiments 
having turbidity current containing only glass spheres. The profile i s u naffected by  the 
surfactant concentration.

B Time of rise of microplastics

To measure the time of rise of microplastics, movies of moving standard deviations are 
produced: over a time window of 1 s, the pixel-by-pixel standard deviation is computed to 
remove any information from the background and to highlight the slow motion of microplas-
tics. Then, space-time diagrams are extracted at mid-water depth, as shown in figure 27a. 
These diagrams show a quick ascent of many microplastics at early times when most of 
them are detrained from the turbidity current; subsequently, we observe the much slower 
rise of the remaining microplastics. The space-time diagram is smoothed by applying a 
Gaussian kernel of standard deviation equal to 10 pixels, and we average the information in
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the space-time diagram and obtain intensity profiles in time – see the dark curve in figure
27b. The light intensity of all profiles initially increases when microplastics first reach the
mid water height, and then decreases in time after a maximum at time tmax. We use two
methods to compute the time of rise: (i) we find the time when the light intensity decreases
from its maximum to a third of the maximum value; (ii) we fit an exponential decay (see
the dashed red line in figure 27b) and calculate the time of rise as the sum of tmax and the
e-folding time of the exponential. Both methods giving close results (see figure 27b), we
average these two results to compute the final times of rise shown in figure 20.
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Figure 27: (a) Space-time diagram of the light intensity recorded at mid water depth. Time
increases from the bottom up over a duration of 33.3 min, and the abscissa corresponds
to the x position over 0.85 m starting from the gate on the left. This turbidity current
contained mg = 12.0 g and mp = 1.0 g. (b) The solid dark line is the average intensity
as a function of time corresponding to (a), while the red dashed line is the exponential
fit performed to find the time of rise. The vertical dotted line shows the time when the
maximum is reached, and the horizontal dotted line is located at a third of the maximum
value.

C Detection of aggregates

To detect aggregates on a picture I0 of a deposit, a blurred version of the deposit is cal-
culated with a Gaussian filter of standard deviation 150 pixels, and then subtracted from
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the raw image to remove large-scale structures. Let us denote I1 the resulting image after
subtraction. Then, the image I1 is blurred with a Gaussian kernel of standard deviation
30 pixels to remove medium-scale structures, and another subtraction is performed. Let
us denote I2 the result. Finally, a blurred version of I2 based on a Gaussian kernel of
size 15 pixels is subtracted to remove small-scale structures. The remaining information
is binarised with Otsu’s method [17], and figure 22b illustrates a typical result. Isolated
clusters are then identified with the Python submodule Ndimage from the library Scipy,
and counted by bins to get figure 23.
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Can AI-based Climate Models Learn Rare, Extreme Weather

Events?

Nimrod Gavriel

April 24, 2025

1 Introduction

1.1 Motivation

Machine learning (ML) models are becoming prominent tools for weather prediction, re-
cently outperforming state-of-the-art physical weather models on several measures [6, 1]. 
However, these models are generally subject to a significant setback in ML generative mod-
els. After predicting a finite period, they become unstable and blow up. With current 
improvements in neural network (NN) architectures and more extensive training sets, the 
prediction is incrementally longer. However, the generation of long-period data sets for 
climate research is still far away. A recent study took the first step in this direction by 
pinpointing the sources of instability and addressing them directly, where a 2-layer QG 
model was used to train an ML model, which was able to run a long-duration emulation 
stably and reproduce the long-term statistics of the QG model [2]. Here, we build on this 
initial step to try and prove that such a stable ML weather emulator can, in principle, 
be used to generate valid long-term statistics of extreme weather events. Currently, such 
statistics, required to study the effects of climate change on weather, can only be acquired 
with computationally expensive hydro-dynamical models like the CMIP models (e.g., [3]). 
Here, we include moisture in the 2-layer QG model (see [7]) to generate the training data 
set. The moist QG model represents the dominant variables of the mid-latitude atmospheric 
dynamics well, and thus represents a good test case for the question of this project.

1.2 Extreme events under a changing climate

Climate change and its consequences on the human population and the weather system 
are a significant f ocus o f t he s cientific community [4 ]. One of  th e most us ed in dicators of 
climate change is the global mean temperature. However, fundamental aspects of climate 
change are the frequency and magnitude of extreme events [9]. Current studies already show 
significant anthropogenic changes in extreme events (Figure 1), stressing the importance of 
understanding how extreme events would change in a warmer climate and what are their 
actual re-occurrence periods in the current climate. In this project, we look at extreme 
events in terms of temperature and moisture in an idealized model, where ”extreme” refers 
to anomalies with magnitudes very far from the climatology (or temporal mean).
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Figure 1: Overview of already measured anthropogenic-related changes in extreme temper-
atures and precipitation, taken from [9]. For each region of the map, shown with squares,
is how statistically significant the observed change in extreme heat, cold, or precipitation
is. The circles in each region represent an assessment of how much of the change can be
attributed to human influence.

1.3 Layout

In the Methods section, the hydrodynamic model is presented, as well as the details of how
the prediction performance of NN models is measured for this study. Using this hydrody-
namic model, I generated large data sets to train and test an NN model. I used a hierarchy
of increasing complexity of NN models trained on this data, presented in the results section.
Finally, I tried to use the strategy of [2] to maintain stability, in addition to novel strategies,
to eliminate the evolution of instabilities in NN emulation.

2 Methods

2.1 A quasi-geostrophic 2-layer numerical model

In this project, A QG 2-layer moist model is used to generate three data sets. One set is
generated to train our NN model. A second set is generated for testing our NN model.
A third set is generated to produce long-term statistics that would be compared with
the NN-generated statistics. The reason for choosing a QG 2-layer moist model for this
project has two parts. For one, the model is simple enough and numerically light that
generating very long data sets for the purposes of the project is feasible, and the dynamics
are relatively simple to analyze. Second, the model is rich enough to represent long-term
behavior in Earth’s mid-latitudes and includes baroclinic instabilities, annular modes of the
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eddy-driven jet, and moist convection, coupled to the dynamics through a linear Clausius-
Clapeyron relation [7].

The model equations

Conservation of PV The model we used was created by Lutsko and Hell (2021) [7]
(Herein LH21). The PV (qk) for each layer k (k = 1(2) for the upper (lower) layer) is
defined by

qk = ∇2ψk + (−1)k (ψ1 − ψ2) + βy, (1)

where ψ is the stream function, and β is the β-plane approximation for the gradient of the
Coriolis coefficient with y (latitude). The equations solved by the model are the potential
vorticity (PV) conservation equation for the two layers as

∂qk
∂t

+ J (ψk, qk) = − 1

τd
(−1)k (ψ1 − ψ2 − ψR)−

1

τf
δk2∇2ψk − ν∇4qk + (−1)k LP, (2)

where J(a, b) ≡ axby − aybx is the Jacobian operator, here representing the advection of
PV. The first term on the right-hand side (RHS) represents solar radiation by relaxing the
temperature (T ≡ ψ1 − ψ2) towards a predefined profile

ψR ≡ −σA tanh (y/σ) , (3)

which is asymmetric around y = 0, τd is the relaxation time, and A and σ are constants.
The second term on the RHS represents surface friction at the bottom layer, where τf is a
friction time coefficient. The third term on the RHS is a hyperviscosity term. The last term
represents latent heating from precipitation, where L is a constant, and P is precipitation,
controlled by the moisture equation.

Moisture conservation of mass The moisture (m) in the model is assumed to advect
in the lower layer, such that the conservation equation for moisture is

∂m

∂t
+ J (ψ2,m) = E − P −∇ · u2, (4)

Where E and P are evaporation and precipitation, respectively, controlled by

E =

{
Ê |u2| (ms −m) m < ms

0 m ≥ ms

, P =

{
0 m ≤ ms

(ms −m) /τp m > ms

, (5)

where Ê is a constant, τp is the precipitation time constant, and ms is the saturation
moisture, determined by the linearized Clausius-Clapeyron relation

ms ≡ CT = C (ψ1 − ψ2) , (6)

where C is a constant. Thus, everywhere the moisture is larger than ms, precipitation
occurs by moving mass between the layers, while evaporation occurs in the rest of the
domain. The last term in Equation 4 is a divergence of the ageostrophic wind, which is
required for consistency of the QG formulation. For more information on the model, see
LH21.
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Figure 2: A snapshot from the moist two-layer QG model. The contours in the left panel
represent the stream function of the upper layer. The contours in the middle panel represent
the stream function of the lower layer. The contours of the right panel represent moisture.
All the values in this figure are non-dimensional.

Model runs

As the purpose of the project is to be able to emulate atmospheric dynamics stably for an
extended period using an ML emulator, rather than investigate the model itself, we ran the
model with one set of parameter choices, similar to the choices made in LH21. These are
(in order of appearance)

β = 0.2, τd = 100, τf = 15, ν = 10−6, L = 0.2, σ = 3.5, A = 1, Ê = 0.1, τp = 1, C = 2.
(7)

The model equations (Equations 1-6) are solved spectrally with domain size (72, 96) in the
zonal and meridional directions, respectively, and with 128 wavenumbers in both dimen-
sions. In Figure 2, a snapshot from the model output is presented. It can be seen that
the model produces an eddy-driven jet around y = 0, where the gradient of the imposed
solar flux (included as a relaxation term, according to the profile in Equation 3) is largest.
Looking at the moisture (Figure 2, right panel), the north-to-south zonal mean gradient is
also due to the relaxation term, where the hotter south can hold more moisture according
to the Clausius-Clapeyron relation (Equation 6). At this stage, it is important to note
that the moisture variable has considerable amplitudes on all scales (Fig. 2, right panel).
This fact would make the moist dynamics much more challenging to predict with an NN
emulator than the dry ones, which have dominant scales.

2.2 Result statistics

2.2.1 NN model performance

To evaluate the performance of our NN emulations, standard tests of ”root mean square er-
ror” (RMSE) and ”anomaly correlation coefficient” (ACC) are used. In these tests, we take
a snapshot of the state vector from the test time series and use it as an initial condition for
the ML emulator. ACC and RMSE are thus two ways to compare the prediction produced
from the ML emulator and the parallel ”truth” time series that the QG model produced.
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Here, the details of the calculation of these tests are explicitly described.

ACC We use ACC to evaluate how similar NN-predicted transient patterns are to the
”truth” patterns (from the QG model). We define a ”climatology” of any variable p as

pc(j,k) =
1

Nt

Nt∑
i=1

p(i,j,k), (8)

where Nt is the number of time steps in the time series, and (j, k) are the (y, x) indices.
Thus, for each time variable p and time step i (where i = 0 is the identical snapshot from
which the prediction starts), the ACC is calculated as the correlation,

ACCp,i =

∑Ny

j=1

∑Nx
k=1

(
ap,(i,j,k) · bp,(i,j,k)

)√∑Ny

j=1

∑Nx
k=1

(
ap,(i,j,k) · ap,(i,j,k)

)∑Ny

j=1

∑Nx
k=1

(
bp,(i,j,k) · bp,(i,j,k)

) , (9)

between the predicted anomalies

ap,i = ppred,i − pc −
1

NyNx

Ny∑
j=1

Nx∑
k=1

(
ppred,(i,j,k) − pc,(j,k)

)
, (10)

and the ”truth” anomalies,

bp,i = pi − pc −
1

NyNx

Ny∑
j=1

Nx∑
k=1

(
p(i,j,k) − pc,(j,k)

)
, (11)

where Nx and Ny are the number of grid points in the x and y directions, respectively.
This type of test neglects the amplitude difference between truth and prediction and only
accounts for the accuracy of predicted patterns. To account for the fact that some snapshots
may be harder to predict than others, we calculate the ACC over multiple initial conditions
and present the mean between them.

RMSE The RMSE is much less sensitive to pattern matching, but provides a sense of
the total error accumulated through the prediction. The RMSE is calculated simply as the
root mean square difference between the truth and the prediction of each variable at each
time step as

RMSEp,i =

√√√√ Ny∑
j=1

Nx∑
k=1

(
ppred,(i,j,k) − p(i,j,k)

)2
. (12)

3 Results

The results section starts with presenting the benchmark long-term statistics from the QG
model, which we aim to reproduce with NN-emulated data. Then, NN models of increasing
complexity are presented and evaluated.
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Figure 3: Long-term statistics of the zonal mean winds for moist (blue) and dry (grey) 
cases. a, The zonal mean, time-averaged, zonal wind at layer 1 as a function of latitude. 
b, The same as a, but for layer 2. c-d, The leading (c) and second (d) EOFs of the upper 
mean zonal wind (u1), as a function of latitude.

3.1 Benchmark QG model statistics

3.1.1 Mean state and EOFs

For this subsection, a dataset equivalent to ∼ 1000 years is generated with the QG model. It 
does not include the data used to train the NN models presented in the following sections. To 
begin, validating that the model is set up correctly, I also generated an equivalent ”dry” 
dataset with the moisture coefficients set to zero. Then, I calculated the zonal and temporal 
mean of the zonal wind (u1 and u2 for the upper and lower layers) per latitude for layer 1 
(Figure 3a) and layer 2 (Figure 3b) for the dry and moist cases. Also, I calculated the 
orthogonal empirical functions (EOFs) of the zonal mean winds over time, representing the 
modes of transient change in the winds, responsible for most of the temporal variance, with 
lower orders responsible for a greater percentage of the change (Figure 3c-d). Comparing 
with the results of the original model paper [7], we see that our results are indeed 
identical for the two tested cases (moist with L = 0.2 and dry). These results (Figure 3) would also
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Figure 4: Meridional mean zonal spectra for ψ1, ψ2 and m. The abscissa is a scaled 
wavenumber in the zonal (x) direction.

represent a benchmark for the long-term statistics generated by the trained NN emulator.

3.1.2 Zonal Spectra

One benchmark of the QG model is also important for the training stage. Training an ML 
model to reduce RMSE gives disproportionate weight to the large scales (in Fourier space) 
since the large-scale motion has exponentially larger amplitudes, as would be described in 
more detail in the model-training section. Thus, to train a more physically correct model, it 
assists to include the spectra of the state vectors in the model-training loss function. In Figure 
4, the spectra of ψ1, ψ2, and m are presented for 4 snapshots at different times. The spectrum 
for each time and each variable is calculated by performing a fast Fourier Transform (FFT) in 
the zonal direction at each y value and averaging it meridionally. It can be seen that the 
spectrum of m is more ”flat” than the spectra of the stream functions in that it has similar 
amplitudes at all scales.

3.1.3 PDFs and extreme events

In addition to the mean winds, we aim in this project to be able to generate valid long-term 
statistics of extreme events. In Figure 5, these statistics are presented in the form of a 
probability density function (PDF) for moisture (m, ordinate) versus temperature (T , abscissa). 
Here, the whole dataset of m(x, y, t) and T (x, y, t) is inserted into the PDF calculation as a 
string. Darker colors represent more frequent occurrences in the data, and lighter shades 
are rarer. The linear blue line represents the CC relation (equation 6) where values above 
it are over saturated. However, to better understand the distribution of extreme events, it
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Figure 5: Probability density distribution of moisture (ordinate) and temperature (ab-
scissa). A darker shade represents more occurrences in the data. The blue line represents
the linear Clausius-Clapeyron relation.

is helpful to normalize the data set per grid point by removing the climatology and dividing
the anomalies by the temporal standard deviation (STD) at that grid point. This normal-
ized distribution is presented in figure 6, and would be our benchmark for evaluating our
ML prediction of extreme events.

3.2 Training the ML model

In this section, the hierarchy of ML models that were trained in this study is described.

3.2.1 U-net

The first stage of our ML model, which is also the primary building block of all the following
stages, is the U-net architecture [8]. U-net is an AI architecture used for image segmentation,
like identifying different parts of an image, such as organs in medical scans, by leveraging
a network that learns to outline and distinguish these parts accurately. In our context, the
network is expected to take the state vector at time t (X(t)) and predict the state vector
at the next time step (X(t+∆t)), according to

X(t+∆t) = X(t) +

∫ t+∆t

t
F(X(t))dt ≈ M(X(t), ϕ), (13)
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Figure 11: The upper row shows the anomalies of ψ1, ψ2, and m from the moist QG 6 days
after an initial snapshot from which a prediction was initiated. In the middle row is the
model-predicted variables at the same time. The lower row is the spectra of the variables,
where black is the QG model’s spectra and blue is the spectra from the prediction.
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still accumulate exponentially over time (RMSE in Figures 7-9). Thus, collecting long-term 
statistics is impossible as the model is intrinsically unstable, and errors eventually arise that 
would blow the emulation, making the prediction non-physical. To achieve long-term sta-
bility, [2] suggested the FouRKS model, which adds to the FouRK model a self-supervision 
scheme that acts as viscosity and dissipates errors in the high wavenumbers. The way this 
was done is as follows. The AI model is let to progress forward with the FouRK architecture 
for a set number of steps, over which an error is accumulated on the small scales. Then, 
the current state variable is divided into two models that are retrained during this step to 
predict the small and large scales for the following snapshot in a manner that corrects the 
spectra of the variables to the mean spectra produced from the QG model in advance. Thus, 
the following snapshot is predicted with the errors removed so that the spectra are now cor-
rect relative to the QG model. This procedure repeats itself every few time steps (where 
the FouRK model progresses in between), and the AI model can remain stable indefinitely. 
However, the challenge is to get the AI model to maintain its ”physical integrity” while it 
goes through this correction stage. This method was successfully applied in [2] on a dry 
QG model, where the FouRKS model produced long-term statistics, correctly reproducing 
the mean and EOFs of the dry model (Figure 3 and Figure 3 in [2]).

I applied the self-supervision algorithm to the 3-net model (Figures 10-11). Although 
the spectra remain correct, as imposed by the self-supervision, the variables become ho-
mogenized and non-physical (Figure 11). The self-supervision here is enacted every 1 day 
of prediction; the first application of it can be seen in the jump in the ACC at 1  day (Figure 
11).

4 Conclusion

In this project, building on the recent achievement in NN stable and physical long-term 
integrator [2], I tried to expand the capability of the NN model to a more complex physical 
model, which now includes the moisture variable, and mainly, to assess the possibility 
of using such a NN integrator to generate long-term statistics of extreme events. In the 
project’s time frame, I have come a long way in these directions. Still, eventually, the 
most successful version of my NN model does not maintain physicality (Figure 11). This, 
however, does not mean that this is not possible. When designing and training the model, 
many choices and hyper parameters can affect the end result. Given more time and effort, a 
model can plausibly be devised to perform this time integration successfully and physically. 
As an indication that the aim of the project is within reach, we can see from the data of
[2] a comparison between the PDFs of ψ1 from 3 different data sets (Figure 1 2). Here, the
truth represents 1000 years of dry QG model simulation (black). The blue curve represents
the data that was used for training the FouRKS model, consisting of a 10-year time series
produced with the QG model. Finally, the red curve is the product of the FouRKS NN
emulation of 1, 000 years. Incredibly, the 1, 000-year NN emulation captures the long-term
statics much better than the shorter ”truth” data on which it was trained, and that was too
short to give an adequate account of the long-term behavior. This result provides the
motivation to try more adjustments with the NN and its training to achieve physical
emulation, like in the dry case, seeing that there, indeed, the NN emulating can predict
behavior with periods much larger than the period on which it was trained.
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Figure 12: PDF of ψ1 in a dry QG model [2]. The black curve represents the test data set,
consisting of a 1, 000-year time series generated by the dry QG model. The blue curve is a
10-year time series generated by the QG model to train the NN model. The red curve is a
1, 000-year time series emulated by the trained NN model.
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One aspect of this study that made successful long-term integration more difficult is the
multi scale nature of the moisture variable. There is still a lack of understanding of how to
correctly simulate such multi-scaled processes with an NN integrator. This is left for future
studies. Nevertheless, generalizing the self-regularization scheme on models of increasing
complexity can eventually lead to long-term emulation of data with a model trained on
the high-quality, highly dense ERA5 reanalysis data (representing, to a high degree of
accuracy, Earth’s climate over the recent 80 years). Such statistics can assist in climate
research, constraining the recurrence time of extreme events in the current climate. Lastly,
I developed a novel approach through this study, namely, using multiple NN models trained
in tandem to predict separate variables. This approach successfully increased the quality
of integration from step to step, increasing the overall accuracy of the NN integration.
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1 Introduction

The Gulf Stream is the surface-intensified, western boundary current of the subtropical

North Atlantic gyre. It also forms the upper limb of the Atlantic Meridional Overturning

Circulation. The Gulf Stream brings warm waters from the lower latitudes in the Caribbean

along the coast to the high latitudes offshore from the Northeast of the U.S. At 100km in

width, the Gulf Stream is a key conduit of heat transport northward, and its extension

across the North Atlantic towards western Europe has large effects on the region’s climate.

As the Gulf Stream travels north from the tropics and reaches Cape Hatteras at ∼ 35◦N ,

it is steered eastward and separates from the North American continent, where it separates

the cool Slope Sea on the Northeast continental shelf in the north from the warmer Saragasso

Sea in the south (see Figure 1 [14]). In this section of the Gulf Stream, the current also

flows over the New England Seamount Chain, topographic features that stretch across the

Gulf Stream. The Gulf Stream is also an incredibly turbulent current, with vortex rings

of scale of ∼100km enclosing parcels of different water masses breaking off on its north

and south side. Cold core rings form in the south, with cyclonic rings of cooler water in

the Saragasso Sea, while anticyclonic Warm Core Rings (abbreviated to WCRs) form in

the North. Shingles/streamers also feature in this region—where warm tongues of anti-

cyclonically flowing near surface water extended onshore from the Gulf Stream and are

folded backwards [10, 8].

Warm Core Rings have been formed in increasing frequency in recent years, and they

have been shown to contribute to maxima in salinity intrusions on the Northeastern conti-

nental shelf [5]. This can have ramifications on the biology in the region, affecting fish and

zooplankton populations, as well as squid catches [13]. Hence, understanding why these

WCRs are formed at increasing frequency, and the mechanisms behind their formation is a

key area of open research.

There has been research on the eddying Gulf Stream for decades, but recent research

has shown that the new England Seamount Chain plays an important role in how warm

core rings form. In a recent paper by Silver et al. 2022 [14], vortex rings formed west of

the seamount chain comprising Gulf Stream and slope water but not Saragasso Sea Water,
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Figure 1: SST plot of the Northeast US continental shelf replicated from Silver et al. 2022
[14], labelling the key topographic and eddying features of the Gulf Stream.

while vortex rings formed east of the seamount chain contain Saragasso Sea Water. This

implies that there are different ring formation mechanisms either side of the seamount chain,

each of which result in different water mass compositions in the WCRs.

The two mechanisms by which WCRs can form are pinch-offs and aneurysms (Figure

2). In pinch-offs, the Gulf Stream meanders in the North-South direction, and these large

meanders can break away from the Gulf Stream, pinching off a core of Saragasso Sea water in

the process. In aneurysms, the Gulf Stream itself expands on its northern flank, breaking

off into an anti-cyclonic eddy containing primarily Gulf Stream water. It is likely that

vortex rings formed west of the seamount chain are formed through aneurysms, while those

formed east of the seamount chain are formed through pinch-offs, matching the observations

by Silver et al. [14].

Previous research has been conducted on pinch-off formation using contour dynamics

[11, 12, 9, 4]. Under the contour dynamical framework, a jet is split into bands of constant

PV. The dynamics of a jet is therefore modelled by the dynamics of fronts between layers of

constant PV, where the jump in PV at the interfaces is determined by the jet velocity profile.

Flierl (1999) [4] in particular use this framework to understand jet instabilities, showing that

meanders grow initially through baroclinic instability, but final pinch-offs are dominated by

barotropic instability. However, there has not been any research conducted on the formation

of aneurysms. This project has therefore aimed to use the contour dynamical framework

to understand how aneurysms can be formed in the Gulf Stream, and supplemented this

with the use of a pseudospectral QGPV model and SST-Surface QGPV model to verify our

hypotheses.
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Figure 2: Schematic showing the different formation mechanisms of Warm Core Rings
(WCRs) in the Gulf Stream. (Left) WCRs form through Aneurysms as the Gulf Stream
bulges out on the northern boundary, detaching to form an WCR consisting of only Gulf
Stream water. (Right) WCRs form through pinch-offs when the Gulf Stream meanders
in the meridional direction, bringing Saragasso Sea water northwards. When the meander
breaks off into a WCR, Saragasso Sea water is also incorporated into the ring, resulting in
WCRS with both Gulf Stream water and Sargasso Sea water.

2 Theory and Methods

We primarily use the contour dynamical framework and linear stability theory. First, we

construct candidate jet profiles in the contour dynamical framework and predict which

produce WCRs through aneurysms. Using the predictions of linear stability theory, we run

a full pseudospectral QGPV model to verify if the jets predicted to produce WCRs through

aneurysms do so in reality. Section 2 will, therefore, first outline the contour dynamical

framework used in this study and its associated assumptions (Section 2.1). We then outline

the layered QGPV model (Section 2.2), linear stability theory developed and the eigenvalue

problem that allows us to obtain the most unstable mode of the jet system and predict

if eddies can be formed through aneurysms (Section 2.3). We finally describe the SST

Eady-like model used to produce WCRs through aneurysms in Section 2.5.

2.1 Contour dynamical model of the Gulf Stream

In contour dynamical models of jets, the jet is split into bands of constant potential vorticity

(PV) with fronts where discrete jumps in PV occur. Here, we have assumed an f -plane,

two-layer system with a flat bottom. In previous work by Flierl [4], a two-layer system

with a single PV front in each layer was used, allowing for a symmetric jet profile that

exponentially decayed away from the jet core. Pinch-offs formed on both sides of the jet.

As aneurysms are only formed on the northern side of the Gulf Stream, we hypothesize that
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Figure 3: Schematic showing the contour dynamical model of the Gulf Stream. The jet is
split into bands of constant PV qj , with jumps in PV at interface j of ∆Qj . ηj is the lateral
displacement of the PV interface about the mean location ȳi. A two-layered QGPV model
is used, with three fronts in each layer to allow for an asymmetry to be imposed on the jet
profile.

in linear stability theory, a jet that is asymmetric allows for eddies to form preferentially on

one side of the jet, as opposed to an equal probability in either side in the symmetric case.

We therefore opted to add two extra fronts in each layer, and the difference in the spacing of

the fronts allows the symmetry of the jet to be modified. We make the key assumption that

a modelled jet with a northern interface that is displaced more than the southern interface

will result in WCR formation through aneurysms, while a set up with equally unstable

interfaces results in pinch-offs. We generate candidate jet profiles that may produce WCRs

through aneurysms, informed by a parameter sweep, and test the stability of each interface

using linear stability theory outlined in Section 2.3. This contour dynamical model set

up is pictured in Figure 3, with three PV fronts in each fluid layer and discrete jumps in

PV at each interface, marked by ∆Qi, separating regions of constant PV. Under linearised

QGPV, we set up the contour dynamical model by prescribed PV jumps at each interface

using candidate jet profiles.

2.2 Two-layered quasi-geostrophic model

We first use the quasi-gesotrophic model as a starting point, using a two-layer system that

defines PV qi in layer i as:

q1 = ∇2ψ1 + F1(ψ2 − ψ1) (1a)

q2 = ∇2ψ2 + F2(ψ1 − ψ2) (1b)
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where F1 = f2/(g′H1) and F2 = f2/(g′H2) = H1/H2F1 = δF1 with g′ = g∆ρ/ρ0 as

the reduced gravity of the system, H1, H2 as the thicknesses of the upper and lower density

layer, respectively, and f = 10−4s−1 as the Coriolis parameter.

F1,2 can also be defined as F1 =
γ2

1+δ , and F2 =
δγ2

1+δ , where δ is the ratio between upper

and lower layer thicknesses, and γ2 = F1 + F2 = 1/R2
d, and the Rossby deformation radius

is Rd = 40km. In our model, we set δ = 0.2, obtained from profiles of stratification in the

Gulf Stream using methods in work by Flierl (1978) [3].

2.3 Linear stability theory

Under the framework of contour dynamics, we obtain an eigenvalue problem of phase speed

c with eigenfunction η, where η is the displacement of the PV contours, and c is the phase

speed of the displacement. We initially express everything in terms of a continuous field of

PV, and discretise them into the contour dynamical framework at the end.

Starting with the linearised QGPV equations.

∂q′

∂t
+ U

∂q′

∂x
+Qy

∂ψ

∂x
= 0, (2)

and substituting q′ ∼ −ηQy results in a kinematic condition that the displacement of

the PV contour, η, is a material line.

∂η

∂t
+ U

∂η

∂x
=
∂ψ

∂x
. (3)

The PV equation is then inverted to get an expression for ψ since Lψ = q′ as defined in (1);

since L is a linear operator,

ψ =

∫
−G(x, y, z|x′, y′, z′)η(x′, y′, z′)Qy(x

′, y′, z′)dx′dy′dz′, (4)

where the z′s represent which layer the particular interface occupies and G(y, z|y′, z′) is
derived from the definition of the two-layer QGPV system (1) (See Appendix for derivation).

Having linearised, we integrate in x, considering the perturbations in wavenumber k, η ∼
eik(x−ct). The stability equation becomes

U(y, z)η(y, z) +

∫
Gk(y, z|y′, z′)η(y′, z′)Qy(y

′, z′)dy′dz′ = cη(y, z). (5)

Now, we represent the basic state PV as piecewise constant bands, so that Qy is a set of

delta functions

Qy(y, zi) = ∆(yi, zi)δ(y − yi) (6)

with ∆ being the jump in PV in layer zi at the mean position yi of the contour. There-
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fore, the stability equation can be expressed in matrix form:

Mijηj = cηi (7)

whereMij = U(yi, zi)δij +G(yi, zi|yj , zj)∆(yi, zi)δ(y − yi). (8)

The procedure for obtaining an expression for G(yi, zi|yj , zj) is outlined in the appendix.

Hence, the kinematic equation for η can be reduced to an eigenvalue problem of phase speed

c, with eigenfunctions ηj .

2.4 Pseudospectral QGPV model

The fully non-linear pseudospectral model solves the two-layer QGPV equations as they

evolve in time, given an initial velocity field. The velocity field input is motivated by the

linear stability analysis, and candidate unstable zonal jets are interpolated to a velocity

field to be used to initialize the model, with a peak velocity of 75km/day or 86cm/s. The

pseudospectral model is run at 128 × 128 grid cell resolution in a doubly periodic domain

of dimensions 1000km × 1000km. A small initial perturbation in the PV field is added in

the top layer to induce an instability. A Gaussian bump perturbing the PV field was used,

but testing variations of this perturbation was outside the scope of this study.

2.5 Surface QGPV SST model

The SST model used surface quasi-geostrophy, where only the temperature evolution on

rigid boundary surfaces are modelled. This is an Eady-like model, where we have a region

of constant PV and stratification in between two rigid boundary surfaces, similar to the

setup used by Tulloch and Smith (2009) [16, 17]. In the boundary surfaces, potential

temperature θ is related to the streamfunction ψ by ∂zψ|z=0,−H = θ|z=0,−H . The governing

equations are:

∂θ

∂t
+ U

∂θ

∂x
+Θy

∂ψ

∂x
+ J(ψ, θ) = 0 for z = 0,−H (9a)

∇2ψ +
∂2ψ

∂z2
= q, (9b)

where we have set q = 0 in the domain, with boundary conditions of:

∂ψ

∂z
= θ1 at z = 0 (10a)

∂ψ

∂z
= θ2 at z = -H (10b)

These equations are solved in the same pseudospectral methods as in the layered QGPV

model. An initial streamfunction field is prescribed to represent an SST gradient, and the

surface θ fields are allowed to evolve from this initial condition.
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3 Results

3.1 Asymmetry in northern jet flank/formation of cyclonic WCR

We initially hypothesize that adding an asymmetry to the northern flank of the jet would

allow for a northern PV interface to be displaced the most in the most unstable mode.

Here we have increased the steepness of the northern jet flank by a factor of a as seen in

Figure 4. We run the linear stability analysis for a range of w and a values, find the most

unstable mode, and calculate the contribution of the northern interface to the amplitude of

the eigenfunctions. A summary of these results are shown in Figure 5, where we see that in

the symmetric jet, the northern (red line) and southern (blue line) interfaces are displaced

by the same amount, while in the asymmetric jet, the northern interface is displaced by

a factor of 8 more than the southern interface. This provides some support that adding

an asymmetry to a jet can form WCRs through aneurysms, as the northern interface is

displaced the most in the most unstable mode of the asymmetric jet.

However, when verifying whether aneurysms are formed in the asymmetric jet, the non-

linear psuedospectral model showed cyclonic eddies forming on the northern side instead.

Anticyclonic eddies were also formed on the southern side; this is not representative of the

Gulf Stream, where anticyclonic eddies are formed on the north, see Figure 6 (a). We found

a possible cause to this problem in the PV profiles of the GS in Figure 6 (b); the eddies

seen in the simulation were travelling from a local region of high PV to a region of low

PV, the downgradient transport of the fluid parcels caused them to be cyclonic to conserve

PV. Therefore, we attempted to adjust the PV profile to ensure that eddies formed were

anticyclonic, i.e., travelled from regions of low PV to high PV.

3.2 Positive PV jump in northern jet flank/formation of eddies through

pinch-offs

Based on results in section 3.1, we wanted to add a positive jump in PV on the northern flank

to ensure that anticyclonic eddies are formed, i.e., eddies are travelling up a PV gradient.

We do so by adding a positive PV jump in the jet profile on the northern side, instead of

pinning the velocity profile to zero, as shown in Figure 4. As ∆Q = ∂2U
∂y2

, by steepening the

jet profile at the location of the northern PV interface, we can impose a positive PV jump

at the interface, possibly allowing for anticyclonic eddies to form through aneurysms. We

again sweep the parameter space for values of w, a and Uoffset, finding the jet profiles that

result in a northern interface with the largest displacement under linear stability theory and

anticyclonic eddies forming by having a positive PV jump on the northern interface. As

some of these profiles have secondary jets on the northern flank, these have been omitted

from our study as they are not representative of the Gulf Stream. These candidate jet

profiles are then run in the pseudospectral layered QGPV model.

Snapshots from an example simulation are shown in Figure 8 (a). Anticyclonic eddies

are indeed formed, but they are taking up water from the southern side of the jet, in other
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Figure 4: Schematic showing upper layer jet profile in the (a) symmetrical and (b) asym-
metrical case. The yellow dotted lines represent the locations of the PV interfaces, where
the jumps in PV are calculated. The symmetrical case also shows the lower layer jet profile,
where the jumps in PV, and therefore velocities, are pinned to zero at the locations of the
PV interfaces.
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Figure 11: Schematic illustrating the SST-Surface QGPV model. There is constant strati-
fication and PV throughout the depth of the domain, with potential temperature θ defined
on the boundary surfaces where it can be advected. A streamfunction throughout the do-
main is prescribed using boundary conditions imposed by SST gradients, and the system is
allowed to evolve over time.

the jet. The snapshots from this experiment are shown in Figure 10. The experiment does

not show eddies forming, instead filaments are formed as the Gulf Stream bulges out at the

peak of each meander. Eddies do not detach, instead shearing out into filaments before the

double-periodic boundary conditions take over and cause the system to blow up. Here we

therefore reach the limitations of this experimental setup—there is too much shear in the

jet surroundings and eddies are unable to develop independent of the recirculating meander.

This could be addressed by modifying the experimental set up to have a set inflow into the

channel, but technical difficulties have prevented that work from being completed.

These filaments resemble the shingles/streamers present in the Gulf Stream, where they

have been observed on the northern side of the Gulf Stream, with effects on fisheries in the

continental shelf region (Silver et al., personal communication). Work by Stern (1985) [15]

was able to generate shingles in an equivalent barotropic model1, under sufficiently large

amplitude disturbances and in the presence of large cyclonic shear in the cold water engulfed

by the Gulf Stream. As an accidental extension to the previous work, we have found that

the necessary but insufficient conditions required for the aneurysms to form appear to also

facilitate anticyclonic filament formation in a layered QGPV model.

3.4 SST-Surface QGPV model/formation of WCRs through aneurysms

Given the limitations of the linearised QGPV model, we tried the SST-Eady-like model

outlined in Section 2.5 to model the Gulf Stream. We imposed an initial streamfunction

with a gradient representative of the meridional SST gradient in the Gulf Stream, with

highest temperatures in the centre, warmer in the south, and colder in the north, shown in

Figure 12 (c). Running the pseudospectral SST-Surface QGPV model of the Gulf Stream,

we see from snapshots in Figure 12 (a) that warm water from the center of the jet, the

1Equivalent Barotropic Model: a two-layer model where the jet is confined to the top fluid layer with a
motionless lower layer
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Figure 12: (a) Snapshots of the SST-Surface QGPVmodel of the Gulf Stream forming eddies
through aneurysms: temperature is represented by the warm colors, where the warmest
water in the centre of the GS break off and travel north in an anticyclonic WCR. (b) Initial
zonal jet velocity profiles in the top (purple) and bottom (cyan) boundary surfaces. (c)
Initial zonally averaged θ profiles in the top (blue) and bottom (orange) boundary surfaces.

region of the highest temperature, immediately breaks off northward in an anticyclonic

vortex. WCRs are therefore almost immediately formed through aneurysms when an SST

gradient is imposed on the boundary surfaces (see Figure 12 (c)).

To verify that the representation of SST is key to the generation of WCRs through

aneurysms, we use the initial jet velocity profile from the SST-Surface QGPV (Figure 12

(b)) model as the initial condition of the layered QGPV model. The profile was generated

using 2 PV fronts in the top layer, the minimum number required to create the profile

with the counterflow seen in the SST-Surface QGPV experiments. The results are shown

in Figure 13. WCRs are, however, formed through pinch-offs in this experiment, indicating

that the representation of SST could be necessary in aneurysms. Similar to other prelimi-

nary experiments, the counterflow in the jet of Figure 13 (b) does not seem to induce the

aneurysm formation mechanism as it does not result in a continuously increasing PV profile

meridionally, as in Figure 13 (c).

We also note that the formation of eddies through aneurysms is also possible even when

the temperature of the GS is lower than that of the Saragasso sea, indicating that only a

large SST gradient is important in the formation of aneurysms. This may also imply that the

eddy formation through aneurysms is independent of the seasonality of the Gulf Stream;

the Gulf Stream SST varies seasonally with a fall maximum in SST [7], but aneurysms

formations in our experiments do not appear to be affected by a lower SST in the warm

core.
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An extension of this project would be to combine the SST-Surface QGPV model and the

layered QGPV model, such that filaments, as well as WCRs, formed through aneurysms and

pinch-offs can all be represented. Modelling this numerically using similar pseudospectral

methods is a work in progress. Further work using linear stability theory to understand the

phasing of each PV interface displacement might also inform possible mechanisms of WCR

formation.

Although the initial attempt to generate WCRs through aneurysms in layered QGPV

was unsuccessful, we have found the possibility of generating filaments/shingles in layered

QGPV. The SST-Surface QGPV model, however, appears to facilitate the formation of

WCRs through aneurysms. Therefore, the development of an idealised Gulf Stream model,

which can encompass all these mechanisms of northward warm water transport, remains

within reach.
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A Evaluating the Green’s functions for the two layered QGPV

model

In the appendix we detail the steps taken to evaluate the Green’s function matrix, using

a two layered, two PV front system as an example. A significant portion of this section is

from Flierl, Meacham and Paldor, Instabilities and waves on thin jets: Linear Theory, in

prep.

A.1 Step 1: Find the QGPV equations that describe the system

For linearised two-layer QGPV:

q1 = ∇2ψ1+F1(ψ2 − ψ1) (11)

q2 = ∇2ψ2+F2(ψ1 − ψ2) (12)

F1 = f2/(g′H1) and F2 = f2/(g′H2) = H1/H2F1 = δF1, with γ = 1/Rd.

F1,2 can also be expressed as F1 = γ2

1+δ , and F2 = δγ2

1+δ . Expressed in terms of linear

operators Lψ = q, with ψ = Gq. When solving for a wave perturbation in ψ, we can write

the QGPV equations as

(∂2y − k2 + Lz)

(
ψ1

ψ2

)
=

(
q1
q2

)
(13)

The matrix defining Lz is therefore

Lz =

(
−F1 F1

F2 −F2

)
(14)

from the QGPV equations.

A.2 Step 2: Find the vertical eigenmodes of Green’s function

From the continuous form of the linear stability problem (2.3),

U(y, z)η(y, z) +

∫
Gk(y, z|y′, z′)η(y′, z′)Qy(y

′, z′)dy′dz′ = cη(y, z), (15)

whereGk(y, z|y′, z′) are Green’s function for disturbances of wavenumber k, η ∼ eik(x−ct).

Gk(y, z|y′, z′) =
∫
dx′G(x, y, z|x′, y′, z′)exp[ik(x′ − x)] (16)

Going back to the PV equations expressed in terms of linear operators (1), for pertur-

bations of η ∼ e−ik(x−ct) in wavenumber k the Green’s function should follow:

(∂2y − k2 + Lz)G
k(y, z|yi, zi) = δ(y − yi)δ(z − zi). (17)
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The notation now follows the location y, z in the domain and location yi, zi of the PV

interface i. Focusing on the vertical modes in the two layered problem, we can take the

difference between the two PV equations to get the definition of ψBC = ψ1 − ψ2 and

ψBT = δψ1 + ψ2, where

∇2ψBC − (F1 + F2)ψBC = ∇2ψBC − γ2ψBC = 0 (18a)

∇2ψBT = 0 (18b)

Therefore, the vertical baroclinic and barotropic eigenmodes have to satisfy LzGz =

−γ2Gz , where γ2 = F1 + F2 = 1/R2
d. This shows that the eigenvalue problem LzFm(z) =

λFm(z) of the two layered problem results in eigenvalues of λ = 0,−γ2, with vertical

eigenvectors of v1 = (1, 1) and v2 = (1,−δ), where m is the index for the eigenmodes.

We also chose to non-dimensionalise the horizontal and vertical length scales so that the

first non-zero eigenvalue is 1. It also follows that Lz = ZΩZ−1, where Z is the matrix

of eigenvectors and Ω is a diagonal matrix with eigenvalues. The Green’s function can

therefore be decomposed into vertical and horizontal eigenmodes of Gk
m and Fm(z), where

Gk(y, z|y′, z′) = Fm(z)×Gk
m(y, y′)× Fm(z′) (19)

with the orthogonality condition of

1

H

∫
dzFi(z)Fj(z) = δij (20)

A.3 Step 3 : Find Green’s functions for horizontal modes

From this point onwards, we will use an example with two fronts, one in each layer, to

illustrate the procedure used to find the Green’s functions. The Green’s function should

follow:

(∂2y − k2 + Lz)Fm(z)×Gk
m(y, yi)× Fm(zi) = δ(y − yi)δ(z − zi) (21)

, where yi, zi is the coordinates of the i-th PV interface in the contour dynamical prob-

lem.

We go back to this equation, multiplying by Fm(z) and averaging to get for each

wavenumber k (not summed)

(∂2y − k2 + Lz)G
k
m(y, yi) = δ(y − yi) (22)

The solution to Gk
m(y, yi) is

Gk
m(y, yi) =

1

2
√
k2 + γ2

exp(−
√
k2 + γ2|y − yi|), (23)
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with the special case of the barotropic, zero wavenumber mode being

G0
0(y, yi) =

1

2
|y − yi|. (24)

These form each matrix element of (2.3).

As an example for the two layer system, having already found the vertical modes of the

Green’s functions, the easiest way to find the Green’s functions in the horizontal modes is

to look at the Green’s function matrix of horizontal modes Gk for a two layer system:

Gk =

(
G11 G12

G21 G22

)
, (25a)

from LGk =

(
δ(y − yi) 0

0 δ(y − yi)

)
(25b)

at the GBC = G11 − G21 and GBT = δG11 + G21 for the upper layer solution. We first

focus only an upper layer anomaly in PV of ∆1δ(y)exp(ikx), with Green’s functions of G11

and G21. Physically, G11 represents the impact on q in layer 1 on ψ in layer 1 , with G21

representing the impact of q in layer 2 on ψ in layer 1. The upper layer problem for (25b)

can therefore be written as:

∇2G11 − F1(G11 −G21) = δ(y − yi) (26)

∇2G21 − F2(G21 −G11) = 0 (27)

There is no source term of PV on the RHS of the equation for G21, as the lower layer

does not exchange PV with the upper (analogous to multiplying by Fm(z) in the continuous

framework). We then sum and solve to get Gbt.

∇2 (δG11 +G21)︸ ︷︷ ︸
GBT

= δ δ(y − yi) (28)

(
∂2

∂y2
− k2)GBT = δ δ(y − yi) (29)

→ GBT =
δ

2k
e(−k|y−yi|) (30)

For the baroclinic mode GBC = G11 −G21

∇2GBC − γ2GBC = δ(y − yi) (31)

(
∂2

∂y2
− k2 − γ2)GBC = δ(y − yi) (32)
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→ GBC =
1

2
√
k2 + γ2

e(−
√

k2+γ2|y−yi|) (33)

Therefore, the matrix elements G11 and G21 are:

G11 = (GBC +GBT )
1

1 + δ
(34a)

= (
1

2
√
k2 + γ2

e(−
√

k2+γ2|y−yi|) +
δ

2k
e(−k|y−yi|))

1

1 + δ
(34b)

G21 = (GBT − δGBC)
1

1 + δ
(34c)

= (
δ

2k
e(−k|y−yi|) − δ

2
√
k2 + γ2

e(−
√

k2+γ2|y−yi|))
1

1 + δ
(34d)

Similar methods for a lower layer anomaly of ∆2δ(y)exp(ikx) allow us to find the Green’s

functions of G21 and G22:

G22 = (
δ

2
√
k2 + γ2

e(−
√

k2+γ2|y−yi|) +
1

2k
e(−k|y−yi|))

1

1 + δ
(35a)

G12 = (
1

2k
e(−k|y−yi|) − 1

2
√
k2 + γ2

e(−
√

k2+γ2|y−yi|))
1

1 + δ
(35b)

Having computed the matrix elements of the Green’s function matrix, we then find the

matrix for PV gradient ∆, using Green’s function G and basic flow U , and inverting the

matrix.

U = G0
y∆ (36)

We cannot just directly compute ∆ by integrating the chosen velocity profile because of

the jumps in potential vorticity.

We are then able to solve the eigenvalue problem in (2.3) to obtain the eigenvalues and

get the most unstable growth rate c

Mijηj = cηi (37)

With the most unstable growth rate, we find its corresponding eigenvector/eigenmode

ηi. We then take the amplitude of the eigenmode and look at their relative amplitude of

contributions from different layers as outlined in the main text.
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Qb Qs

107 1026 −2 −2 −2 Qb/Qs

19.0 5.44± 0.43 8.14± 0.40
5.68 2.01± 0.14 2.59± 0.12
0.868 0.042± 0.047 0.650± 0.046
1.02 0.433± 0.046 0.268± 0.025
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θ, φ, r θ φ r
x, y, z x y

z
θ x

Σ1 Σ2

Σ′1 Σ′2
H ′

1 +H ′
2 +H ′

b

H1+H2+Hb

Σ1 H ′
2+H ′

b H2+Hb

Σ2 H ′
b Hb

Σ′1 Σ1 η′1 η1
Σ′2 Σ2 η′2 η2
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Dv

Dt
+ 2Ωz × v = −∇Φ+ br + F ,

v Ω Φ = δp/ρ0 δp
ρ0 b = −gδρ/ρ0 g

δρ F

Dω

Dt
= (2Ωz + ω) · ∇v +∇× (br) +∇× F ,

ω = ∇× v z ζ = z · ω

Dζ

Dt
= (2Ω + ζ)

∂w

∂z
+ ωh · ∇w +∇b · (r × z) + F,

ωh

|ω| � 2Ω

∂w/∂z
ug = ugx+ vgy

Ψ vg = ∂Ψ/∂x ug = −∂Ψ/∂y

D∇2Ψ

Dt
=

∂∇2Ψ

∂t
+ J(Ψ,∇2Ψ) = 2Ω

∂w

∂z
+∇b · (r × z) + F,

J(Ψ,∇2Ψ) = ∂Ψ/∂x ∂∇2Ψ/∂y − ∂Ψ/∂y ∂∇2Ψ/∂x

D∇2Ψ̄

Dt
=

2Ω

H
(wt − wb) +∇b̄ · (r × z) + F̄ ,

H =
∫ zt
zb

dz

z Ā =
∫ zt
zb

Adz/
∫ zt
zb

dz t b
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Into the Mix:

How Biological Dynamics Affect Turbulent Transport

Deborah Rhee (née Cotton)

December 5, 2023

1 Introduction

In this report we aim to further the understanding of how the mean flux of biological tracers 
is linked to the mean tracer concentration in turbulent conditions.

Biological tracers are organisms passively transported in the ocean by turbulent flows. 
Examples of biological tracers are phytoplankton, zooplankton, mycoplankton and bacteri-
oplankton.

The concentration and flux of biological tracers in the ocean has significant local and 
global effects. Locally the concentration of biological tracers exerts a strong control on the 
taxonomic composition and ecological structure of the marine biosphere through their ef-
fects on the spatial distributions of nutrients, fixed carbon, and dissolved oxygen [4]. They 
are also important for mediating the transfer of fixed carbon from the marine photic zone 
to deeper waters and the seafloor [4]. Globally biological tracers play a significant role in 
the carbon cycle. It is estimated that carbon fixation by marine phytoplankton accounts 
for about half the Earth’s primary production [3]. The magnitude and nature of the carbon 
exported to the deep ocean depends on relative abundance and size of phytoplankton [1].

It is thus important to model the local concentration and flux of biological tracers. How-
ever, due to the multi-scale nature of turbulent flows, it is infeasible to fully simulate the 
dispersion of these tracers. Instead, a statistical method is often employed to calculate quan-
tities such as mean tracer fluxes and mean tracer concentrations. To model tracer fluxes, 
Earth system models require closure relations for the transport of non-local processes [5]. 
In a similar way to modelling heat flux, one possible closure relation would relate the mean 
flux of biological tracers to the mean gradient of the tracer concentration. The multi-scale 
nature of turbulent flows suggests this flux relation may be better modelled using non-local 
operators. Here, we examine mean tracer flux-gradient relations that result from combin-
ing the velocities generated by the stochastic Ornstein-Uhlenbeck process with biological 
growth processes. Although the Ornstein-Uhlenbeck process does not mirror a real ocean 
time-dependent velocity field, the conclusions made here about mean tracer flux-gradient
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The model suggests that at low tracer concentrations, when there is little competition for
resources the tracer concentration grows exponentially from its initial value θ0, θ ∼ θ0e

λt.
As the concentration of tracer increases and there is more competition for a finite number
of resources, the tracer growth rate decreases until the tracer concentration reaches its
maximum value, θmax. We introduce some spatial dependence to θmax = C(1 +∆cos(kx))
and define θmax as the local carrying capacity of our system.

2.3 Non-dimensionalising

We now have our full set of equations to model the change in concentration of biological
tracers,

∂θ

∂t
+

∂(uθ)

∂x
− κ

∂2θ

∂x2
= λθ

(
1− θ

C(1 + ∆cos(kx))

)
, (13)

du(t) = −ru(t)dt+
√
2KdW (t). (14)

We can write everything in terms of dimensionless variables,
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θ

C
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u√
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√
r

K
, t̂ = rt. (15)

We obtain,

Cr
∂θ̂

∂t̂
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⟨u2⟩C∂(ûθ̂)

∂x
− Cκ

∂2θ̂

∂x2
= λCθ̂

(
1− Cθ̂

C(1 + ∆cos(kx))

)
, (16)

√
⟨u2⟩dû = −

√
⟨u2⟩ûdt̂+

√
2r⟨u2⟩η(t̂)

√
dt̂

r
, (17)

where η(t) corresponds to Gaussian noise. We can simplify these to,

∂θ̂

∂t̂
+

√
⟨u2⟩
r

∂(ûθ̂)

∂x
− κ

r

∂2θ̂

∂x2
=

λ

r
θ̂

(
1− θ̂

(1 + ∆cos(kx))

)
, (18)

dû = −ûdt̂+
√
2dW (t̂). (19)

Removing the ŝ and letting U =
√
⟨u2⟩k/r, K = κk2/r and Λ = λ/r, we obtain the final

dimensionless equation discussed in the rest of this report,

∂θ

∂t
+ U

∂(uθ)

∂x
−K ∂2θ

∂x2
= Λθ

(
1− θ

(1 + ∆cosx)

)
. (20)

2.4 Testing parameters and solving the equations

For the cases discussed below we fix U = 1 and, as we expect molecular diffusivity not to
play a significant role, K = 10−3.
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We vary the relative timescale over which the biological processes act, Λ, 0.01 ≤ Λ ≤ 100
and the strength of the spacial variance of the carrying capacity, ∆, 0.1 ≤ ∆ ≤ 0.9.

To find the mean tracer concentration and tracer flux we take an ensemble average.
This means that we solve (20) with N different initial choices of u(t = 0). We let our
choices of u(t = 0) to be normally distributed with variance 1 and mean 0. In the limit of
averaging a single member over a large time period once the system has evolved for long
enough to reach the statistically steady state, taking the ensemble average should be the
same as taking a time average. Figure 2 demonstrates the ensemble averaging procedure for
Λ = 0.1, 1, 10. We can split θ and u into a fluctuating component, θ′, u′ and an ensemble
averaged component ⟨θ⟩, ⟨u⟩. We denote the ensemble averaged concentration by θ and
note that ⟨u⟩ = 0. By definition, the fluctuating components will have ensemble average
0. Subbing in θ = θ + θ′, u = u′ to (20) and taking the ensemble average we obtain an
equation for the mean tracer flux and the mean tracer concentration,

∂⟨θ⟩
∂t

+ U
∂⟨uθ⟩
∂x

−K∂2⟨θ⟩
∂x2

= Λ

〈
θ
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1− θ
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)〉
, (21)
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∂x

−K ∂2θ

∂x2
= Λθ

[
1− 1

1 + ∆cosx

(
θ +

⟨θ′2⟩
θ

)]
, (22)

where ⟨⟩ denotes the ensemble average.
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Figure 2: Demonstration of ensemble averaging for the case of ∆ = 0.7, U = 1. The grey
lines show the tracer concentration at t = 1000 for 250 ensemble members. The black line
gives the ensemble average at t = 1000, the blue line shows the time-averaged (averaged from 
t = 100 − 2000) tracer concentration for a single ensemble member, the red lines shows the
time and ensemble averaged tracer concentration. a) Λ = 0.1, b) Λ = 1.0, c) Λ = 10.0.

3 Initial Results

Figure 2 gives some qualitative suggestions about the influence of the stochastic mixing on
the tracer growth and decay. In the case where the timescale for the biological growth pro-
cesses is much shorter than the timescale over which the stochastic mixing occurs (Λ ≫ U),
the peak tracer concentration is much higher. The fluctuations are a lso much s maller. An
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explanation for this is given in §5.1. As Λ decreases, the size of the fluctuations seems to
increase and the peak tracer concentration decreases. We can understand this by the fact
that the velocity field works to smooth out the mean tracer concentration by causing ran-
dom fluctuations in the tracer field which will have time mean 0. The biological processes
cannot act fast enough to damp out these fluctuations.

Figure 3 demonstrates the competing effects of the two processes more quantitatively. In
a) we see that as the timescale over which the biological processes act decreases (Λ ≫ U), the
tracer concentration has much more spatial variance and closely matches c0 = 1 +∆cosx,
whilst when turbulence acts on faster timescales (Λ ≪ 1), the tracer concentration has very
little spatial variation and a much smaller magnitude. d) shows that the spatially averaged
tracer concentration has some dependence on the size of the spatial forcing ∆ for small
values of Λ. In b) and d) we note that the relative magnitude of the fluctuations is largest
around Λ ∼ 0.5 (vertical lines). Finally c) shows that the tracer flux is also largest around
Λ = 1. We can understand this by the fact that to have a large flux, we need some spatial
dependence to our tracer concentration (requires large Λ) but we also need our velocity to
not be too small (requires large U). f) verifies that the spatial average of the tracer flux
is indeed 0 as we would expect by symmetry (minor fluctuations result from not averaging
for long enough).

4 Testing ⟨uθ′⟩ ∝ −∇θ

As a first attempt to relate the gradient of the mean tracer concentration, we assume
that the magnitude of the tracer fluctuations ⟨θ′2⟩ is negligible and that the tracer flux is
proportional to the gradient of the mean tracer concentration multiplied by the variance of
the velocity, ⟨uθ′⟩ ≈ −⟨u2⟩∇θ. From (19) ⟨u2⟩ = 1, so (22) becomes,

∂θ

∂t
− (U +K)

∂2θ

∂x2
= Λθ

(
1− θ

1 + ∆cosx

)
. (23)

We can then test how well this approximation works for various choices of Λ and ∆.
From Figure 3 we choose to do our tests at Λ = 0.01, 0.1, 0.5, 1.0, 10.0, 100.0 where Λ = 0.5
is chosen to be close to the peak location where fluctuations become significant. From Fig-
ure 4, we see that for large Λ, the ensemble averaged mean tracer concentration (solid lines)
is matched fairly well with the approximation (dashed lines). For Λ ≲ 1, the approximation
becomes much worse. The success of the approximation for large Λ, may be down to the
fact that at these values of Λ, u has very little effect on the mean tracer concentration
so the parameterisation of ∂⟨uc⟩/∂x doesn’t really matter for calculating the mean tracer
concentration. However, whatever choice we make for Λ, our approximation does a very
bad job of reproducing the desired flux-gradient relationship, as shown in the lower panels.

We can however make some further conclusions about the flux-gradient relationship.
At large Λ, the relationship is close to bijective and from the plots for Λ = 10 and 100
in Figure 4, the flux-gradient relationship seems to have some dependence on Λ. As Λ
decreases, the relationship becomes surjective and potentially non-local.
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Figure 3: Analysis of the effect changing the timescale over which the biological processes act 
has on the tracers. a), b) and c) give the spatially dependent time and ensemble mean in the 
case of ∆ = 0.7, U = 1 of the, a) tracer concentration, b) magnitude of the fluctuations 
squared compared to the square of the tracer concentration and c) tracer flux. d), e) and f) 
give the spatially, time and ensemble mean in the case where U = 1 of the, d) tracer 
concentration, e) magnitude of the fluctuations squared compared to the square of the tracer 
concentration with the value of Λ at the maximum marked with the dotted lines and f) 
spatially averaged tracer flux.

5 Asymptotic Expansions

A slightly less naive assumption to work out how the gradient of the mean tracer concen-
tration relates to the tracer flux would be take l imits o f (20) in the case when Λ ≫ U  and 
Λ ≪ U . We first consider the l imit where Λ ≫ U .

5.1 Λ ≫ U

Physically, Λ ≫ U means that the biological processes act on much faster timescales than
the turbulent processes. As Λ ≫ U , we let θ = θ0 + Uθ1 + .... Letting c0(x) = 1 + ∆cosx,
we expand out (20) to increasing order of U . Our zeroth order equation in the statistically
steady state gives,

0 = Λθ0

(
1− θ0

c0(x)

)
⇒ θ0 = c0(x) = 1 +∆cosx. (24)
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Subbing in θ0 our O(U1) equation is,

∂θ1
∂t

= −Λθ1 − u(t)
∂c0(x)

∂x
, (25)

which we can solve to give,

θ1(x, t) = −e−Λt∂c0(x)

∂x

∫ t

−∞
eΛt

′
u(t′)dt′, (26)

u(t)θ1(x, t) = −e−Λt∂c0(x)

∂x

∫ t

−∞
eΛt

′
u(t′)u(t)dt′. (27)

We ensemble average to obtain,

⟨uθ1⟩ = −∂c0(x)

∂x

∫ t

−∞
eΛ(t

′−t)⟨u(t′)u(t)⟩dt′ (28)

= −∂c0(x)

∂x
⟨u2⟩

∫ t

−∞
eΛ(t

′−t)et
′−tdt′, (29)

= − 1

1 + Λ

∂c0(x)

∂x
, (30)

where we have used ⟨u2⟩ = 1.
We can also obtain an equation for θ21,

∂θ21
∂t

= −Λθ21 − θ1u(t)
∂c0(x)

∂x
. (31)

Again ensemble averaging,

∂⟨θ21⟩
∂t

= −Λ⟨θ21⟩ − ⟨θ1u(t)⟩
∂c0(x)

∂x
. (32)

In the statistically steady state,

⟨θ21⟩ =
U2∆2sin2x

Λ(1 + Λ)
. (33)

In summary we now have expressions for θ, ⟨uθ′⟩ and ⟨θ′2⟩ in the limit where Λ ≫ U .
Significantly we also have a way of relating the tracer flux to the gradient of the tracer
concentration,

θ = 1 +∆cosx, (34)

⟨uθ′⟩ = − 1

1 + Λ
∆sinx, (35)

⟨θ′2⟩ = U2∆2 sin2 x

Λ(1 + Λ)
, (36)

U⟨uθ′⟩ = − U

1 + Λ
∇θ. (37)
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6.5 Two-state system (corrected)

Making analytical headway with the second approximation for the finite-state average is
more challenging due to the Θ3 terms in (95). As such the analytical solutions are not
discussed in this report and left for later work.

7 Conclusion

This report focuses on furthering our understanding about how the flux of biological trac-
ers is related to the tracer concentration. The tracers are advected by a turbulent velocity
field and grow and decay under a logistic model of tracer growth. We model the turbu-
lent velocity field using the Ornstein-Uhlenbeck process. We have demonstrated that using
these methods to model the tracers results in a non-trivial relationship between the flux of
biological tracers and the gradient of the mean tracer concentration. In particular, that the
tracer flux cannot be assumed to be proportional to the variance of the stochastic velocity
field multiplied by the gradient mean tracer concentration.

We show that, in the limit where biological processes act on much faster timescales than
the turbulence, the mean tracer flux is proportional to the gradient of the tracer mean,
⟨Uθ⟩ = −U/(1 + Λ)∇θ̄. However, in the limit where the biological processes act on similar
or slower timescales to the turbulence, asymptotic expansions can no longer be easily em-
ployed as a method to obtain tracer flux-gradient relationships and instead we demonstrate
the power of finite-state averaging.

We first consider the case where turbulence acts on much faster timescales than the
biological processes. In this case we demonstrate that when the velocity field is discretised
into a large number of states, finite-state averaging works well to capture the flux-gradient
relationship but overestimates the tracer mean. We have analytically solved for the flux-
tracer relationship in the case when the velocity field is discretised into three states and
obtain a non-local tracer flux-gradient relationship, ⟨Uθ⟩ = U2(−∇θ̄ +∇2⟨Uθ⟩).

For intermediate relative timescales, we examine two different finite-state averaging
methods. In the first case we assume that the probability density functions for the velocity
discretised tracer concentration are sharply peaked, in the second case we relate the tracer
fluctuations to the inverse of the tracer concentration. Both methods do a very successful
job of capturing the tracer flux-gradient relationship as well as the tracer means (the second
method obtains the means correct to within ∼ 0.5% and the first to within ∼ 5%). The
second method is more challenging to obtain analytical tracer flux-gradient relationships
which are easy to interpret, but from the first method we can obtain relationships for both
the two state and three state system. Applying the relationship obtained using the three
state system in the limit where biological processes act on much slower timescales than
turbulence leads to a non-local gradient flux relationship. In the limit where biological
processes act on much faster timescales than turbulence the mean concentration enters the
equation for the effective diffusivity so Keff becomes non-linear. In both these cases we
recover the equations obtained by asymptotic expansions in the fast/slow timescale limits.
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Combining the fast/slow limit relationships gives an overall flux gradient relationship 
(113) that agrees within an order of magnitude to that obtained by averaging the full
stochastic model.
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