
Preface

The 2018 GFD Program theme was Sustainable Fluid Dynamics with Professor Andrew 
Woods of the University of Cambridge serving as principal lecturer. Andy showed the 
audience in the cottage and on the porch how to find similarity solutions everywhere, from 
deep in the earth to high in the atmosphere. He expanded on his lectures with the fellows 
during “Andy time”, and stayed on throughout the summer to participate in the traditional 
debates on the porch with participants old and new. Andy also contributed enthusiastically 
to the supervision of the fellows, particularly when there was an opportunity to squirt food 
dye into an experiment.

The first ten chapters of this volume document these lectures, each prepared by pairs of 
the summer’s GFD fellows. Following the principal lecture notes are the written reports of 
the fellows’ own research projects. This summer’s fellows were:

• Neeraja Bhamidipati, University of Cambridge

• Laura Cope, University of Cambridge

• Edward Hinton, University of Cambridge

• Christopher Howland, University of Cambridge

• Andrea Lehn, Massachusetts Institute of Technology

• Sara Lenzi, University of Turin

• Thomas Le Reun, Aix-Marseille Université

• Tyler Lutz, Yale University

• Sutirtha Sengupta, University of California, Santa Cruz

• Rohit Supekar, Massachusetts Institute of Technology

• Bowen Zhao, Yale University

In 2018, the Sears Public Lecture was delivered by Professor John Dabiri of Stanford
University on the topic of “Biological Propulsion in (and of?) the Ocean”. Over a hundred
listeners filed into Redfield for the occasion, and then enjoyed refreshments in the evening
air afterwards outside the auditorium.

Neil Balmforth and Colm-cille Caulfield acted as the co-directors for the summer, and
once the FIFA Men’s World Cup was over, did their best to ensure the smooth running
of the summer. A large number of long-term staff members ensured that the fellows never
lacked for guidance, and the seminar series was filled by a steady stream of visitors, talking
about topics as diverse as sneezes, squeezes and shear. Anders Jensen worked his usual
magic in the Lab, dealing inventively with lava, fountains and recalcitrant plumes with
typical good humour, and Janet Fields and Julie Hildebrandt smoothly ran the program
as always, with all delays to (and omissions from) the Proceedings Volume being entirely
Colm-cille’s fault...
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Lecture 1
Turbulent, Buoyancy-driven Flows:

Plume Dynamics

Notes by Andrea Lehn and Tyler Lutz

June 18, 2018

1 Introduction

Buoyancy-driven plumes appear in a diverse range of environmental phenomena: from
hydro-thermal vents on the sea floor to the transport of microbes through a hospital venti-
lation system. Buoyant plumes develop when a buoyant fluid is released from a local source
into an ambient environment, which may be stratified or rotating, especially in a geophysi-cal

contexts. Above Reynolds number order 103, these plumes become turbulent, meaning the
molecular properties of the fluid are unimportant. In many cases, the buoyancy of the plume
may become reversed, creating a fountain.

The interaction of turbulent plumes with their environments is dominated by via mixing
through the action of turbulent entrainment. The transportation of mass, energy and
particulate matter via buoyant plumes underpins many environmental phenomena, a few of
which are illustrated below:

• the upwelling of buoyant oil from undersea oil spills and the plumes of smoke generated
if the oil catches fire at the surface;

• hydrothermal plumes at the sea floor releasing hot gas, generating a buoyant plume;

• buoyancy driven flows in buildings such as the cooling or heating of walls, or plumes
of relatively hot or cold air forced from building HVAC systems; and

• eruptions of magma, basalt and ash into the atmosphere from volcanoes.

In this first lecture, the classic plume equations describing mass, momentum and buoy-
ancy are developed using two key assumptions: a self-similar top-hat profile and a linear
entrainment velocity. We begin from dimensional analysis for a simple case, assuming a lin-
ear relationship between buoyancy and the density difference. A more formal development
employing an integral approach follows. A turbulent plume in an unstratified environment
has a self similar shape that varies in amplitude with distance away from the source, which
is shown in section 2.2. The self similar profile has the scaling predicted by dimensional
analysis. Fountains are not discussed in this lecture, but a scaling for the equilibrium height
of a plume in a density stratified ambient is derived. For buoyant plumes, it is important
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to note that fluid mass, chemical mass (e.g. salt) and total thermal energy flux are con-
served in buoyant plumes. When these quantities evolve as the plume undergoes mixing
they generate buoyancy, which impacts the dynamics of the plume.

2 Plume Theory

2.1 Dimensional aanalysis

An important quantity in plumes is the buoyancy flux, which represents the density deficit
driving the flow. The buoyancy flux is conserved in the special case where a linear relation-
ship exists between density and buoyancy. Assuming changes in density are small and can
be linearized, one can write the buoyancy flux simply. Changes in buoyancy may be due to
changes in salinity or temperature

Δρ = −ρ0αΔT,

Δρ = ρ0βΔS

where α, β are thermal expansion and salinity contraction coefficients, respectively, and
ρ0 is a reference density. Consider a plume with a volume flux Q0 and a buoyancy flux
g′ = gΔρ/ρ0, where ρ0 is the ambient density and Δρ is the difference between the plume
fluid density and ambient density. The buoyancy flux is B0 = g′Q0. By performing dimen-
sional analysis, we can learn how the plume evolves as a function of the buoyancy flux and
vertical position from the source.

Beginning from the two defining parameters, volume flux and buoyancy we have,

[Q] =
L3

T
and (1)

[g′] =
L

T 2
, (2)

and thus the buoyancy flux is written as

[B] ≡ [g′Q] =
L4

T 3
. (3)

Assume the properties of the plume only vary with vertical distance away from the source.
Using this information, we develop scalings for the velocity, volume flux and buoyancy of
the plume in terms of vertical height away from the source, z. Performing a dimensional
analysis to determine plume radius, b, velocity, u, volume flux integrated across the plume
area, Q, buoyancy, g′ and momentum flux M from the buoyancy flux B and vertical height,
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z yields the following

b ∼ z
[
L
]
, (4)

u ∼ B
1
3 z−

1
3

[L
T

]
, (5)

Q ∼ B
1
3 z

5
3

[L3

T

]
, (6)

g′ ∼ B
2
3 z−

5
3

[ L

T 2

]
, (7)

M ∼ B
2
3 z

5
3

[L4

T 2

]
(8)

Empirical relationships can be determined via experiments, although in reality plume prop-
erties varies in space and time. A key finding of dimensional analysis is that as the fluid rises,
its volume flux increases due to entrainment of the surrounding fluid. The growth in Q is
compensated by a growth in radius and a decrease in velocity. The momentum flux grows
with height as the buoyancy flux is released.

For the case of a plume rising in an unstratified ambient (N = 0), we do not expect the
plume to have any characteristic vertical scale since it will continue rising unabated. By
introducing stratification, we can estimate a scaling for the height at which the plume will
reach neutral buoyancy, H. The velocity of the plume is decreasing as it rises even though
the fluid is accelerating: the momentum flux is positive since fluid is being entrained into
the plume from the ambient. The buoyancy flux decreases with height because the density
of the ambient is changing.

In a stratified environment, we can quantify the stratification of the ambient, the Brunt-
Vaiasala frequency, in terms of ambient density, ρa, as

N2 ≡ − g

ρ0

dρa
dz

. (9)

This describes the strength of stratification in the ambient. Its dimensions are,

[N ] =
1

T
. (10)

From dimensional analysis, we anticipate the equilibrium plume height to depend on the
Brunt-Vaiasala frequency and buoyancy flux as

1

(11)H ∼ B 4N− 3
4 ,

which is validated with data as shown in Figure 1.

2.2 Conservation laws: Integral approach

This section establishes the conservation laws for fluxes of volume, momentum and buoy-
ancy. To accommodate for the effects of turbulence, we separate the state variables into
mean and perturbed components, writing, for instance u = û+ ū. In this notation,
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ρ = ρ0

(
1− α(Δ̄T − Δ̂T )

)
, (12)

where ΔT represents the temperature anomaly—the difference in the plume’s temperature
relative to its starting value—and α is the volumetric thermal expansion coefficient. Note
that this could equivalently be written for a salinity gradient using β and ΔS. The analysis
that follows considers a plume with thermally driven buoyancy.

Summing over the full area of the field, we find for 2D plumes the volume flux:

ρ0Q =

∫ ∞

0

∫ 2π

0
(û+ ū)ρ0

(
1− α(Δ̄T − Δ̂T )

)
rdrdθ, (13)

which, in the limit of small α, goes like

ρ0Q ≈ 2πρ0

∫ ∞

0
ūrdr. (14)

Proceeding likewise for the mean momentum flux yields

ρ0M =

∫ ∞

0

∫ 2π

0
(û+ ū)2ρ0

(
1− α(Δ̄T − Δ̂T )

)
rdrdθ

≈ 2πρ0

∫ ∞

0

(
(ū)2 + û2

)
rdr,

(15)

and similarly, for the heat flux (or buoyancy flux, more generally),

ρ0QH =

∫ ∞

0

∫ 2π

0
(û+ ū)(Δ̄T − Δ̂T )ρ0

(
1− α(Δ̄T − Δ̂T )

)
rdrdθ

≈ 2πρ0

∫ ∞

0

(
ūΔ̄T + ûΔ̂T

)
rdr.

(16)

We can simplify these equations still further by neglecting û and Δ̂T . In summary, for a
thermally driven flow, the simplified conservation laws may be written as

Q = 2π

∫ ∞

0
ūrdr, (17)

M = 2π

∫ ∞

0
ū2rdr, and (18)

QH = 2π

∫ ∞

0
ūḡ′rdr. (19)

2.3 Classic plume equations

Now, the conservation laws are utilized in conjunction with two key assumptions to write
the classic plume equations. To move forward, we consider the steady-state regime and
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posit that the flow profile remains self-similar at all times—i.e. they can be mapped onto
each other by an affine transformation. As our first assumption, we consider a simple“top
hat profile” of radius b, noting that the flux equations for more realistic profiles will dif-
fer from those for the hat shape by no more than a multiplicative constant. The second
assumption is that the entrainment into the plume is linearly proportional to the vertical
plume velocity. We model the entrainment as being linear in the mean velocity ū with an
entrainment coefficient ε.

Under these assumptions the fluxes can be written as:

Q = uπb2, (20)

M = uQ = u2πb2 and (21)

QH = ΔTQ = uπb2ΔT. (22)

Using our assumption that the entrainment scales linearly with the velocity and occurs only
on the boundary between the plume and the ambient fluid (i.e., it scales linearly with the
perimeter of a cross-sectional slice of flow)

dQ

dz
= 2πεub. (23)

Recognizing that g′ describes the change in momentum of a parcel of enplumed fluid, we
write the momentum flux as

dM

dz
= πb2g′L, (24)

where g′L is a local g′. Recalling that g′ ≡ g ρ−ρa
ρ0

for the heat flux derivative we write

duπb2g′

dz
= −uπb2N2. (25)

Thus, the set of equations, (23)-(25), represent the classic plume equations. The system is
analytically solvable if and only if there is no stratification (i.e. N = 0), which simplifies to

dQ

dz
= 2εM

1
2 (26)

M
dM

dz
= BQ (27)

These equations, (26) and (27), admit a self-similar solution which scales as

b ∼ z u ∼ B
1
3 g′ ∼ B

2
3 z−

5
3 . (28)

This is the same scaling derived by dimensional analysis as expressed in equations (4)-(8).
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Figure 1: The maximal height attained by plumes in a stratified ambient is consistent with
expectations from scaling arguments.
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1 Adjustment to SSelf-similarity

For a steady plume, self-similarity means that the solutions are singular at the source

(g′ → ∞ as z → 0). At the nozzle, z = 0, b = bo, M = Mo, and Q = Qo. We define

zjet =

(
Mo

π
(
9εB
10π

)2/3
)3/4

(1)

zmass =

(
Qo

6π
5ε

(
9εB
10π

)1/3
)3/5

(2)

If the flow initially has more momentum than the self-similar plume, it is considered
jet-like (zjet > zmass). The adjustment distance over which a plume with a given buoyancy
flux develops momentum comparable to the momentum flux at the source is known as the
jet length and is given by equation (1). On the other hand, if the plume has excess mass flux
at the source (zjet > zmass), we define an adjustment length given by equation (2) which
is the distance over which a plume with a given buoyancy flux develops a mass comparable
to the mass at the source. In this case, the plume is considered a lazy plume and has low
initial momentum at the source.

Depending on whether the plume is a jet-like plume or a lazy plume, the virtual origin,
zo, of the plume appears above or below the source respectively. The virtual origin may be
expressed as

zo = boF(zjet/zo; zmass/zo) (3)

2 Plume in a Stratified Ambient

In a stratified ambient, the buoyancy frequency, N is defined as

N2 = − g

ρo

dρ

dz
(4)

The equations for a steady plume are given by

dQ

dz
= 2εM1/2 (5)

Lecture 2

Confined Plumes and Mixing
otes by Neeraja Bhamidipati and Laura Cope

June 19 , 2018
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Figure 1: Variation of velocity, radius, and buoyancy profiles of a plume in a stratified
ambient. (Morton et al., 1956)

dM2

dz
= 2BQ (6)

dB

dz
= −N2Q (7)

In the previous chapter, we discussed the solutions to these equations where the ambient
is unstratified (N2 = 0) and therefore, the buoyancy flux, B, is constant. If N2 �= 0,
the buoyancy flux of the plume gradually reduces with distance from the source, z, and
eventually falls to zero at the neutral height. At this point, the plume still has vertical
momentum and therefore continues to rise. However, it is now a negatively buoyant fountain
beyond the neutral height and therefore the equations for a steady-plume no longer describe
the properties of the flow. §3 discusses the properties of fountains in uniform and stratified
ambients in more detail.

We rescale the parameters of the flow so that the following non-dimensional parameters
are obtained

z = a1Bo
1/4N−3/4ẑ (8)

u = a2Bo
1/4N1/4ẑ (9)

b = a3BoB
1/4N−3/4ẑ (10)

g′ = a4Bo
1/4N5/4ẑ (11)
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Figure 2: Height of rise compared to the scaling law for volcanic plumes with a range of
values of buoyancy flux and ambient stratification.

where ai for i = 1, 2, 3, 4 are constants obtained by reducing equations (5)-(7), using condi-
tions at z = 0 where Q = 0, M = 0, B = Bo (see Morton et al. (1956)). Figure 1 shows the
numerically obtained profiles for velocity, buoyancy, and radius of a plume in a stratified
ambient with a constant buoyancy frequency, N . As the velocity of the plume approaches
zero, the radius diverges to enable a finite mass flux at the top height of the plume. The
model for the steady-plume fails above the neutral height of the plume since beyond this
height, the descending flow is entrained back into the fountain through different dynamics
to that of the plume. In §3, we discuss the modeling for fountains which are negatively
buoyant and driven primarily by momentum until the momentum eventually falls to zero
due to the opposing buoyancy force.

Beyond the neutral height, the flow speed falls to zero and the plume reaches its max-
imum height. By dimensional analysis, the maximum height of rise of the plume scales
as

H = kBo
1/4N−3/4 (12)

which corresponds to the scaling for distance given by equation (8). Although the steady-
plume equations do not strictly apply beyond the neutral height, the value of k can be
estimated from experimental and observational data and has a value of approximately
5. Figure 2 shows the height of rise of volcanic plumes for a range of buoyancy fluxes
and stratification frequency, and illustrates the accuracy of dimensional analysis for the
predictions of height of rise for these plumes.

3 Fountains

In a stratified environment, the density difference between the plume and the ambient fluid
gradually reduces as the plume rises through the ambient entraining some fluid from the

9



Figure 3: Development of an initially neutrally buoyant fountain rising through a stratified
ambient illustrating the horizontal spreading at the intrusion height.
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ambient. Eventually, the plume reaches a height at which its density equals that of the
ambient, and above this neutral height, the plume is negatively buoyant. The steady-plume
equations do not apply beyond this height, however, the flow continues to rise above the
neutral height and behaves as a fountain which is negatively buoyant and is driven by its
momentum. The momentum of the fountain eventually falls to zero at its top height, causing
it to collapse, and leading to an intrusion at a certain height above the neutral height. In
the region between the intrusion height and the top height of the fountain, there is mixing
between the central inflow and the descending down-welling structures on the edge of the
fountain.

Figure 3 shows a fountain with zero initial buoyancy rising through a stratified ambient.
The fountain entrains the ambient fluid and gradually loses its momentum, and therefore
collapses back and spreads laterally at the intrusion height as shown in panel (c).

From experimental observations of plumes in stratified ambient, the maximum height
of rise was found to be

Hm = 5B1/4N−3/4 (13)

and the observed neutral height is given approximately by

HN = 3.8B1/4N−3/4 (14)

However, since the flow above the neutral height is analogous to that driven by mo-
mentum ([M ] = L4/T 2), we expect the height of rise can alternatively be expressed as
CM1/4N−1/2. The model equations are

dub2

dz
= 2εub;

du2b2

dz
= 2b2g′;

dub2g′

dz
= −N2ub2. (15)

Experimental evidence (see figure 4) suggests that the mean maximum height of rise of
the fountains is given by

Hm = 3M1/4N−1/2 (16)

while the height of intrusion of the horizontal spreading is given by

Hi = 1.5M1/4N−1/2 (17)

The empirically obtained entrainment coefficient for fountains is ε = 0.085−0.09. From
the scalings for a plume, the momentum of the fountain at the neutral height scales as
M ∼ BN−1 = kBN−1, and so

(Hm −Hi) = 1.5k1/4B1/4N−3/4 (18)

We expect the intrusion height to be halfway between the neutral height (equation (14))
and the maximum height (equation (13)), so 1.5k1/4 = 0.6, which implies that k ≈ 0.03
(measurements needed).

Figure 5 shows the observed data for the intrusion height of a plume in a stratified
ambient, which falls between the values of the top height and the neutral height estimated
from the theoretical model for the plume.

11



Figure 4: Experimental data for the mean maximum height of rise and the intrusion height

of fountains with different values of M
1/4
0 N−1/2.

Figure 5: Experimental data of the intrusion height of a single-phase plume rising through
a stratified ambient.
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Figure 6: (a), (c) False-colour image of a photograph of a typical fountain. (b), (d) The
time series of the instantaneous profile of light attenuation along the fountain centreline,
as well as the horizontally averaged profile in the region near the flanks of the fountain,
shown by the dashed white lines in (a) and (c) respectively. The inclined lines across which
the light intensity changes in these figures illustrate the upward and downward motion of
parcels of dyed fluid in the tank. In (e), solid and open circles are used to plot the average
velocities using the gradient of the upward- and downward-sloping lines in these images,
scaled by the characteristic fountain speed uf . (Mingotti and Woods, 2016)

Figure 7: Fluctuation of the maximum height of the fountain above its mean.
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Figure 8: Variation of the mean maximum fountain height with the appropriate scaling law
for the height of a fountain.

Figure 6(d) shows the presence of both an upflow and downflow at a certain distance from
the centreline of the fountain represented by the white dotted line in figure 6(b). Figure
6(e) shows that the upward speed of fluid reduces rapidly with height and falls to zero
eventually at the mean height of the dyed salt fountain. Figure 7 shows the fluctuation of
the mean top height of the fountain, and figure 8 shows the variation of the mean top height
of the fountain with the appropriate scaling law for the height of a fountain illustrating the
accuracy of the scaling law. Once again, dimensional analysis is proven useful for empirically
quantifying the behaviour of fountains. We shall consider a negatively buoyant (g′ < 0)
fountain rising in a uniform ambient fluid with no stratification (N2 = 0). At the source,
the momentum flux M0 and buoyancy flux B0 are respectively

M0 = πu2b2, B0 = πub2|g′|. (19)

If u2 � |g′|b (Fr � 1) at the source, then the height of rise of the fountain H � b.
For large Froude numbers, the fountain entrains enough fluid to become self-similar at a
certain distance from the source and forgets information about the source conditions. Since
[M ] = L4/T 2 and [B] = L4/T 3, the Froude number at the source is given by

Fr =
M

3/4
0

bB
1/2
0

(20)

For Fr = O(1), the fountain is less developed and we get a collapse, while for Fr � 1, we
have a turbulent entraining fountain. In this latter regime, we expect the maximum height
of rise of the fountain to be
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Figure 9: Cartoons illustrating the different mechanisms of collapse of a fountain. (Mingotti
and Woods, 2016)

H = Cf
M3/4

B1/2
, (21)

where Cf = 1.7, as determined empirically, and the frequency of oscillations about the top
height is to found be 0.5B/M . The average mass flux arriving at the top of the fountain
can be estimated from measurements of radius and velocity at the mean top height of the
fountain, which gives Q ≈ 1.07M5/4B−1/2

The oscillations at the top of the fountain arise from a balance between the flux of dense
fluid supplied to the top of the fountain and the settling of dense fluid at the top of the
fountain in the region above the mean height hm (Figure 9). When the downward flux of
fluid settling exceeds the volume flux supplied to the top of the fountain, then the discrete
parcel of fluid at the top of the fountain collapses downward, and the cycle repeats. If R
is the radius of one such discrete parcel of fluid, modelled as a sphere, then we expect that
the radius increases according to

d

dt

(
4

3
πR3

)
= Qf (22)

where Qf is the flux supplied to the top of the fountain. The fall speed of the discrete
parcel of fluid scales as

√
g′R, so the downward flux is given by Qd = απR2(

√
g′R) where

α = 0.6 ± 0.15 determined experimentally by Mingotti and Woods (2016). The radius of
the discrete parcel grows to a maximum radius Rcrit given by a balance of the two fluxes,
and then the parcel detaches from the top of the fountain and collapses downward.

4 Applications

4.1 Deep-sea mining

There are many applications of turbulent plumes and fountains in nature. One area of
application is in deep-sea mining where saline water is pumped into the surface of the ocean,
and produces a descending plume which may either sink all the way past the thermocline or
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Figure 10: Experimental data illustrating the transition from trapping to breakthrough at
λ = 1 for a plume at the thermocline.

might get arrested at the interface of the thermocline. From the solutions to steady plume
equations, we have

Q ≈ 0.1B1/3H5/3, g′p =
B

Q
≈ 10B2/3H−5/3 (23)

where g′p is the plume buoyancy at the interface, relative to the upper layer. The constants
of proportionality in the above equations are obtained empirically from measurements of
the entrainment coefficient of the plume. The buoyancy of the lower layer relative to the
upper layer is given by

g′l = g
ρl − ρu

ρu
(24)

With the above definitions for the buoyancy of the plume and the buoyancy of the lower
layer, we predict that the plume penetrates the thermocline if g′l < g′p, and that it gets
arrested in the thermocline if g′l > g′p. We define λ = g′l/g

′
p, which is the control parameter

in determining the entrapment-breakthrough transition. Figure 10 illustrates the evidence
of this result for a range of experiments.

If the plume does get arrested at the thermocline, it becomes a negatively buoyant
fountain at that height. If the plume has a volume flux Q(H) at this height H, from plume
theory, the buoyancy flux and the momentum flux of the fountain at this height are given
by

BF = Q(H)(g′l − g′p) = Bo(λ− 1),M(H) = λmB2/3
o H4/3 (25)

We can then estimate the depth of penetration into the lower layer from fountain theory.
If the Froude number of the fountain at the interface is significantly larger than one (Fr �
1), we get overshoot, and the depth of penetration is given by
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Figure 11: Photograph of a hydrothermal plume in the ocean.

z = 1.7
λ
3/4
m M3/4

B1/2(λ− 1)1/2
= λ3/4

m H(λ− 1)1/2 (26)

4.2 Hydrothermal plumes

Hydrothermal plumes are an interesting example for plumes in which both temperature and
salinity vary within the plume. Measuring source conditions in a hydrothermal plume in
the depths of the ocean is not feasible because of the high source temperature conditions
and pressure at these depths. The density also varies non-linearly with temperature at
such high temperatures, and the aim is therefore to predict the heat flux at the source of
these plumes from estimates of height of rise of these plumes. The ambient fluid can be
stratified in salinity with a solutal buoyancy frequency N2

s = −gλsdsa/dz, and stratified
in temperature with a thermal buoyancy frequency N2

T = −gλTdTa/dz. The solutal and
thermal buoyancy fluxes evolve according to

dub2g′s
dz

= −ub2N2
s ,

dub2g′T
dz

= −ub2N2
T (27)

with the total buoyancy evolving according to the sum of these two equations,

dub2g′

dz
= −ub2N2 (28)

The effective stratification frequency and buoyancy are given by,

N2 = N2
T +N2

s , g′ = g′s + g′T (29)

By calculating the effective buoyancy and buoyancy frequency of the ambient fluid,
we can then use the results above to estimate the rise height of a hydrothermal plume.
However, the salinity and temperature of the hydrothermal plume may evolve at different
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Figure 12: Summary of hydrothermal temperature anomalies observed along the crest of
the Juan de Fuca Ridge, including Axial Volcano, from 1985 to 1989.

rates through mixing owing to the different values of NT and Ns in the ambient and also
owing to different source values for temperature and salinity in the plume. Indeed, in some
parts of the ocean, it is possible that overall, the fluid may be stably stratified although
either the temperature or the salinity may, in isolation, be unstably stratified. This can
lead to very different evolutions of T and s with height in the plume. If the properties T
and s are then measured at the neutral height z = zn, and if the stratification of each of
Ta and sa is known, as well as the total height of rise, one can then invert the model to
determine the heat flux at the sea-floor. This is done by writing down integral expressions
for the heat flux and the salt flux of the form

Qs(z) = Qs(0) +
dsa
dz

∫ z

0

dQ

dz
zdz (30)

Combining the above equation with an expression relating the total buoyancy B with∫ z
0

dQ
dz zdz gives the expression for the heat flux at the source of the hydrothermal plume,

QT (0) = ρCp

(
dTa

dz

B(0)

N2
+Q(z)(T (zn)− Ta(zn))

)
(31)

The above approximations are valid as long as the scale over which stratification varies
significantly is much larger than the scale over which the plume readjusts to self-similarity.
With a volcanic plume, if we are to adopt the simple formula to estimate the height of rise
of the eruption column, we need to work with the thermal energy of the plume. However,
since the plume is so hot initially, the change in density does not vary linearly with mixing
and so we cannot make many of the approximations used in the idealised modelling above.
Nonetheless, we can estimate the height of rise by assessing the buoyancy flux of a flux of
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Figure 13: Series of five images illustrating the structure of a two-dimensional plume, and
its evolution with time for (a) 15 s, (b) 16 s, (c) 17 s, (d) 18 s and (e) 19 s, using a false
colour mapping of concentration to highlight the eddies. (Rocco and Woods, 2015)

air which is 1C warmer than the background temperature, and which has the same total
heat flux as the volcanic plume. This will lead to an approximate estimate for the height
of rise.

5 Dispersion and MMixing in Two-dimensional Plumes

The dynamics and dispersion in a two-dimensional plume is of particular interest since the
eddies grow in both longitudinal and transverse directions within the plume (figure 13). In
the experiment shown in figure 13, a dyed salt plume is released into a confined tank of
fresh water . The tank has dimensions 70 cm x 70 cm x 1 cm so the flow can be assumed
to be two-dimensional. The tank was open on the sides and base and was immersed in a
larger reservoir tank, so that plume fluid could leave the tank on reaching the base, and
ambient fluid could enter the sides as fluid was entrained by the plume. Figure 13 shows
the eddies growing in size along the vertical direction as they entrain ambient fluid into the
plume. Figure 14 shows a series of photographs which illustrates the irregular motion of
eddies within the steady plume which leads to large dispersion at the leading edge of the
dyed fluid.

In order to develop an understanding of the flow, we consider the time-averaged steady
motion in which we assume the eddies entrain ambient fluid at a rate proportional to the
mean speed of the eddies (Morton et al., 1956). If the ensemble time-averaged steady plume
has vertical speed w(x, z) and concentration c(x, z), where x is the horizontal position in
the plume relative to the centreline of the plume and z is the vertical distance from the
source then we can write the volume flux, specific momentum flux and specific buoyancy
flux per unit distance in the y direction as
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Figure 14: Photograph of an evolving two-dimensional line plume, illustrating how red dye,
injected into the established steady plume, evolves with time for (a) 1.3 s, (b) 2.3 s, (c) 3.3
s, (d) 4.3 s and (e) 5.3 s. (Rocco and Woods, 2015)

Figure 15: (a) Photograph of the instantaneous structure of a typical two-dimensional
steady state plume. (b) Locations of the two bounding lines, defined as the points at which
the concentration falls to a value of 1/e of the maximum concentration on each horizontal
line; the distance between these lines is denoted A∗. (c) Time-averaged concentration profile
within the plume. (d) Horizontal distance from the centreline at which the time-averaged
concentration has a value of 1/e times the time-averaged centreline concentration as a
function of the distance from the source (d). Also shown is a characteristic cross-plume
length scale (A). At each height, this scale is determined by first measuring the horizontal
distance between the two points at that height for which the concentration equals 1/e times
the maximum concentration at that level, A∗ (b), and then finding a time average of these
values. (Rocco and Woods, 2015)

20



Figure 16: (a) Time series of the pixels along a vertical line at a distance x = 3Do from
the centreline of the plume, shown using false colour, to illustrate the passage of the front
of successive eddies. (b) Variation of the speed of the front of the plume (we) for a large
number of different buoyancy fluxes, as determined from figures such as (a) for x = 0. The
data collapse to the simple relation w1(0, z) ≈ 1.30f1/3. (Rocco and Woods, 2015)

q = w̄b̄ =

∫ +∞

−∞
wdx, m = w̄2b̄ =

∫ +∞

−∞
w2dx, f = ḡw̄b̄ =

∫ +∞

−∞
wg′dx (32)

where b̄ is the effective width of the flow, w̄ is the horizontally averaged vertical speed, g′ is
the local buoyancy and ḡ is the horizontally averaged buoyancy. The conservation of mass,
momentum, and buoyancy fluxes takes the form

dq

dz
= 2εw̄, m

dm

dz
= kqf, f = const. = fo (33)

where fo is the source buoyancy flux. These equations have a self-similar solution given by

w̄ =

(
kf

2ε

)1/3

, b = 2εz (34)

Note that the buoyancy flux f has dimensions L3T−3, so the eddy speed we scales as
f1/3 by dimensional analysis, so the vertical speed of the plume is constant and does not
vary with height z. The size of the eddies scales with distance z from the source and is
independent of the source buoyancy flux. Analysis of the ensemble-averaged concentration
of the plume shows that the horizontal distance d(z) over which the concentration reduces
to a fraction 1/e of the centreline value varies linearly with height (figure 15(c), (d)).
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Figure 17: (a) Experimental data showing the horizontally integrated concentration of dye
in the plume as a function of z at five times after the start of steady injection of red dye into
the plume at t = 0. (b) Integral of the concentration at different time steps as a function
of η = z/(tf1/3). (Rocco and Woods, 2015)

On each horizontal line in the plume, we define A∗(z, t) as the horizontal distance
between the two points where the concentration of the plume has decreased to a fraction
1/e of the maximum concentration on that horizontal line (see figure 15(a),(b)), at a specific
time instant. The time average of A∗(z, t), defined as A(z), for each value of the vertical
distance z from the source is plotted in figure 15(d). A is estimated to be considerably
smaller than d, the width of the ensemble time-averaged flow. This is since d captures the
horizontal distance over which the plume oscillates, where as A is an average instantaneous
measure that is smaller than the distance over which plume fluctuates over the duration of
the flow.

Figure 16(a) illustrates that there is a regular series of fronts which migrate through the
tank, and that as each front migrates, the colour contrast across the front decreases; these
correspond to the leading edges of successive eddies, which mix and become diluted with
ambient fluid. In figure 16(b), the measured speed of the front of the plume (we) is plotted
as a function of the buoyancy flux at the source, illustrating that the data is consistent with
the model predictions for a constant vertical velocity with distance from the source (Rocco
and Woods, 2015).

The eddy dispersivity of the plume D is given by a function of the size z and speed we

of the eddies, and the mixing is driven by the stretching and mixing of these eddies. We
have

D ∼ wz ∼ f1/3z (35)

The horizontally averaged concentration in the plume at a distance z from the source is
given by C(z, t) =

∫ +∞
−∞ c(x, z, t)dx, which evolves according to
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∂C

∂t
+ αf1/3∂C

∂z
=

∂

∂z

(
βzf1/3∂C

∂z

)
(36)

We define a similarity parameter η = z/(tf1/3) and look for similarity solutions for
equation (36). The horizontally averaged concentration is given by

C(z, t) =
Qc

f1/3
H

(
z

f1/3t

)
(37)

where Qc is the volume flux of dye released into the plume. H satisfies the equation

−η
dH

dη
+ α

dH

dη
= β

d

dz

(
η
dH

dη

)
(38)

For global conservation of dye in the plume, we have∫ ∞

0
H (η)dη = 1 (39)

Solving equations (38) and (39) gives

H (η) =

∫∞
η ζ(α/β)−1exp

(
− ζ

β

)
dζ∫∞

0 ζα/βexp
(
− ζ

β

)
dζ

(40)

where H → 0 as η → ∞.
Now consider a finite pulse of dye of volume Vc released into the steady plume. We

expect similarity solutions of the form

C(z, t) =
Vc

f1/3t
G (η) (41)

where the global mass conservation of dye implies that∫ ∞

0
G (η)dη = 1 (42)

Substituting this into equation (36) gives

− d

dη
(ηG ) + α

dG

dη
= β

d

dz

(
η
dG

dη

)
(43)

which has the solution

G (η) =
ηα/βexp

(
− η

β

)
∫∞
0 ηα/βexp

(
− η

β

)
dη

(44)

The values of constants α and β can be estimated from experimental data for constant
volume flux and finite release of dye into a steady plume (figure 18). The residence time
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Figure 18: (a) Mean integral of the concentration obtained by averaging the mean integral

concentrations of 15 experiments as a function of z/(tf1/3); the position of the centre of mass
has been identified with a blue cross. (b) Variation of the horizontally averaged concentra-
tion as a function of time, passing the point z0 = 1, which results from an instantaneous
release of a finite mass of tracer at z = 0. (Rocco and Woods, 2015)

distribution provides information about the variation with time of the horizontally averaged
concentration of the tracer passing a horizontal plane above the source. Such information
can be key to modelling the products of chemical reactions in the plume produced, especially
when the reaction time is comparable to the travel time through the plume, so that the
distribution of travel times lead to different degrees of partial reaction (Rocco and Woods,
2015).

6 2-D MMomentum Jet

For two dimensional momentum-driven jets, the conserved quantity is the momentum flux of
the jet. The flow parameters for a jet scale with the momentum flux, M , and distance from
the source, z, which leads to a different rate of spread of concentration in a jet compared
to the rate of spread in plumes. The momentum and radius of the jet are given by

M = u2b, b = λz (45)

where λ is an empirical constant that is a function of the entrainment coefficient of a jet.
From equation (45), the velocity of the jet is

u =
M1/2

(λz)1/2
(46)

-

24



Figure 19: (a) Picture of a jet rising in a tank. The average dye edges are plotted with
black lines. (b) Passive tracers shown as streaks in a typical jet. (c) Trajectories of the
passive tracers shown in (b). (d) Instantaneous velocity field (arrows) of the jet shown in
(b). (e) Trajectories of virtual particles seeded at the same initial locations as the particles
identified in (c) and evolving as passive tracers in the time-dependent velocity field shown
in (d). (Landel et al., 2012)

and the eddy diffusivity for mixing in the jet scales as

D ∼ uz ∼ M1/2z1/2 (47)

The horizontally averaged concentration in the jet is given by

C(z, t) =

∫ +∞

−∞
c(x, t)dx (48)

Substituting the above scalings into the relation for horizontally averaged concentration
yields the equation

∂C

∂t
+ α

M1/2

z1/2
∂C

∂z
= β

∂

∂z

(
M1/2z1/2

∂C

∂z

)
(49)

6.1 Dispersion and mixing in two-dimensional jets

For two-dimensional steady-state jets, the self-similarity argument still applies but with
different scalings appropriate for a jet. The structure of a well-established jet is shown in
figure 20(a), and 20(b) shows the instantaneous positions of passive tracers in the jet. A

25



Figure 20: Evolution in time of the virtual particles seeded in the velocity field shown in
the left panel as they are advected by the flow (each colour corresponds to a particular time
instant): (a) cluster initially distributed at the centre of an eddy and shown in light grey
in the left panel (b) cluster initially distributed at the interface between the eddy and the
core and shown in grey in the left panel (c) cluster initially distributed in the core of the
jet and shown in dark grey in the left panel. Each colour corresponds to a time period of
0.2 s. (Landel et al., 2012)

particle tracking algorithm can be used to identify the trajectories of the Lagrangian tracer
particles in the jet at the same instant, and this is represented in figure 20(c). Figure 20(d)
shows the instantaneous velocity field of the experimental jet, and figure 20(e) shows the
trajectories of virtual particles advecting with the velocity field shown in figure 20(d). The
good agreement between the positions of passive tracers in figure 20(b) and the positions
of virtual particles in figure 20(d) shows the importance of advection for tracer dispersal
within a jet.

In order to understand the interaction between the core and the eddies of a jet, virtual
particle tracking technique is applied to track particles seeded into the jet at three positions
within the jet - in the centre of an eddy, at the interface between an eddy and the core of
the jet, and at the core of the jet. Figure 20 shows the movement of the virtual particles
released with a time period of 0.2 s. The figure shows that the particles in the core of the
jet are transported quickest (figure 20(c)), and the particles in the eddy go in loops and
therefore travel upwards slower than the particles in the core (figure 20(a)). On the other
hand, the particles at the interface between the eddy and the core (figure 20(b)) take a
more complicated path and can be transported from the eddy to the core, or from the core
to the eddy, as is illustrated by the presence of a loop when the particle is drawn into the
eddy from the core of the jet.

Figure 22 illustrates the accuracy of theory in predicting the profiles of the horizontally
averaged concentration with time and distance from the source of the jet (Landel et al.,
2012).
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Figure 21: Comparison between the concentration profiles of horizontally averaged data
and theoretical model for a jet illustrating the accuracy of theory.
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Figure 22: Comparison of the solution for the concentration of tracer in a two dimensional
jet, following the supply of tracer at a constant rate for t > 0.
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1 Aside: Transient EEffects in Plumes

Figure 1: (a) Cartoon illustrating the motion of fluid within a starting plume and the
motion of ambient fluid around the plume head. The motion of fluid within the plume head
shown is in the frame of reference of the plume head. (b) Illustrating various dimensions
and velocities. (Bhamidipati and Woods, 2017)

The vast majority of the problems discussed so far have assumed self-similarity of plumes
and some sort of steady state. However transient effects, such as the initial growth of
a plume, can be important in geophysical applications. For example, when observing a
volcanic eruption, measurements of the plume become difficult once a statistically steady
state is reached due to the large ash cloud that intrudes at a certain height in the atmosphere.
In this case, knowing how the initial measurable growth of the plume relates to factors such
as the eruption rate can be very useful.

Lecture 3
Plumes in Confined Spaces

otes by Christopher J. Howland, Thomas Le Reun

June 20, 2018
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We call such a problem where a source of buoyancy flux is switched on a ‘starting plume’.
The key difference between a starting plume and a steady plume is that there is now a front
at the top of the plume (z = zf ) which mixes with the ambient fluid ahead of the plume.
Experimental data from Bhamidipati and Woods (2017) shows that behind this front, in the
‘head’ of the plume, recirculation occurs which leads to an accumulation of approximately
60% of the total buoyancy released from the source. This recirculation also leads to the
front of the plume ascending at 60% of the characteristic speed of the fluid in the steady
plume that forms at later times. Figure 1 illustrates the entrainment and recirculation
processes in the transient starting plume using a simple schematic. Figure 2 visualises one
of the experiments from the study and shows the difference between the speed in the plume
(indicated by the motion of the black dye) and the speed of the front.

Using dimensional analysis as before, treating the buoyancy flux B ∼ L4T−3 as a con-
served quantity, we expect the velocity of the front to take the form

uf = ξfB
1/3
0 z

−1/3
f . (1)

Since uf = dzf/dt, we expect from this that z
4/3
f ∼ ξfB

1/3t, and it is then possible to
deduce the prefactor

ξf =
z
4/3
f − z

4/3
0

4
3B

1/3
0 t

. (2)

Bhamidipati and Woods (2017) show that this prefactor is approximately constant (and
equal to 2), and the plumes collapse to a self-similar shape.

There are still many open problems relating to transient effects in plumes. It is likely,
for example, that a sudden increase in the flux of an existing plume may lead to structures
similar to that of a starting plume. The ensuing interaction between the new structures
and the existing plume may however, exhibit new phenomena.

Figure 2: Propagation of a pulse of dye through the plume and accumulation of dye in the
plume head. The dashed lines indicate the positions of the front (zf ) and back (zb) of the
plume head, with zb = 0.71zf . (Bhamidipati and Woods, 2017)

,
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2 Confined PPlume with No Ventilation

2.1 Experimental configuration

In the previous sections, we have studied in detail the case of an isolated plume in un-
bounded environments. We consider here plumes in confined environments: although the
dynamics of the plume is not spatially constrained, the constant influx of buoyant fluid
and its accumulation leads to a progressive change of the ambient conditions. The problem
addressed here is related to the everyday experience of unventilated rooms and halls subject
to a heat source close to the ground. In particular, we would like to know the typical time
elapsed before people standing on the ground start to feel uncomfortable.

We therefore consider the idealised set-up as depicted in figure 3 which has been inves-
tigated both experimentally and theoretically in the seminal study of Baines and Turner
(1969). A source of buoyant fluid is located at the bottom of a closed box, and the plume
develops in an environment which has initially a uniform density.

Figure 3: Schematic representation of a buoyant plume in a confined environment. This
set-up was produced experimentally by Baines and Turner (1969)

2.2 Qualitative analysis of the experiment

At early times the plume rises through the uniform ambient air, before hitting the top the
of the box and giving rise to a layer of warm air which is constantly fed by the plume. The
density of this layer should be intermediate between the density of the plume fluid at the
source and the initial cold ambient air: as the plume rises, it entrains ambient air which is
then mixed with the buoyant plume as it penetrates the top layer. Due to the persistent
addition of buoyancy flux at the source, the front formed between the two layers propagates
downwards and the warm upper layer grows.

As discussed earlier, one important problem is to look for the typical time scale for the
warm layer to fill the box. We recall from plume theory that with a typical buoyancy flux
B and a typical height H (as in figure 3) the volume flux Q in the plume feeding the layer
is

Q ∼ B1/3H5/3. (3)
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Figure 4: Plot of the time evolution of the position of the front zf as a function of a
dimensionless time t/τ for λ = 1 as described in (9).

With a box of cross-sectional area A, a typical timescale τ after which the warm upper layer
fills the box is therefore

τ =
AH

Q
∼ A

B1/3H2/3
. (4)

From this we can also deduce a typical front velocity

wf ∼ H

τ
=

B1/3H5/3

A
. (5)

2.3 Front dynamics: a refined calculation

We wish to refine our understanding of the dynamics of the front using plume dynamics.
The scaling described above already contains key ideas to describe the time evolution of
the top buoyant layer. This layer is indeed fed by the plume at the height of the front zf .
As the plume is rising in ambient cold air of constant density before it penetrates the layer,
the volume flux input Qinput inferred from plume theory is

Qinput = λB1/3z
5/3
f , (6)

where λ is a dimensionless geometric factor. With flux conservation, the velocity of the
front wf , which is assumed to be uniform all over the box, is

wf =
dzf
dt

= − Qinput

A−Ap(zf )
, (7)

where Ap(zf ) is the area of the plume as it hits the top layer. For simplicity’s sake, we
restrict our calculation to the case where the area of the plume is small compared to the
area of the box. We then get a simple differential equation for the front position zf :

dzf
dt

= − λ

A
B1/3z

5/3
f . (8)
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It is then straightforward to infer zf as a function of time:

zf (t) = H

(
1 +

2λ

3

t

τ

)−3/2

. (9)

The latter time evolution satisfies the initial condition zf (0) = H and the expected be-
haviour zf (t → +∞) = 0 The function zf (t) is plotted in figure 4: we can notice that for
λ = O(1), the top layer fills about 80 % of the box after a time τ .

2.4 Density inside the top layer

The last paragraph has given us hints about the dynamics of the top layer front; nevertheless
we have not described properly the density inside this layer. This requires addressing the
plume dynamics inside the top layer where the ambient ρa density is a function of height
and time, and is part of the unknowns. One key assumption that allows us to make progress
here is that the density gradient changes slowly in time.

The plume equations, taking into account slowly-varying ambient buoyancy variations
and assuming that all quantities only depend on time and height z, read⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂Q

∂z
= 2εM1/2

∂M

∂z
= 2BQ

∂B

∂z
=

g

ρ0

∂ρa
∂z

Q

(10)

where ε is the entrainment rate, g is the gravity intensity, ρ0 is a reference density and ρa
is the unknown background density. The equations (10) must be coupled to another one
describing the evolution of ρa as the front moves downward:

∂ρa
∂t

+ wf
∂ρa
∂z

= 0 (11)

where wf = Q/A is the velocity of the front. This last equation essentially describes
advection of density as the front moves downward. The boundary and initial conditions for
this problem with initial uniform background density ρI are:⎧⎨⎩

ρa(H, t) = ρp(H, t),
Q(0, t) = Q0,
ρa(z, 0) = ρI .

(12)

The full problem (10,11) has been solved analytically using asymptotic analysis and numer-
ically in Caulfield and Woods (2002); these solutions are presented in figure 5.

We can notice that once the front has reached the bottom of the box, the plume then
mixes the ambient towards buoyancy homogeneisation. This long time mixing is controlled
by the ventilation flux Q0 and takes a typical time scale τ	 = AH/Q0 (provided that this
time scale is much larger than the filling time scale defined in (4)). A simple well-mixed
model captures most of the physics of the long term density evolution. Over a time dt the
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Figure 5: Numerical and asymptotic solutions of the full problem (10,11) presented in
Caulfield and Woods (2002), from which this figure has been adapted.

mass inside the box varies of an amount AHdρa; the input mass is ρinQ0dt where ρin is the
density of the incoming fluid while the output mass is ρaQ0dt. The long term evolution of
the fluid can be therefore modelled with simple first order differential equation:

dρa
dt

=
1

τ	
(ρin − ρa) (13)

with simple solution:
ρa = ρin + (ρI − ρin)e

−t/τ� (14)

which captures most of the dynamics without delving into the details of the density profile
inside the box (Caulfield and Woods, 2002).

3 Confined Plume with Natural Ventilation

The last section was devoted to plumes in a confined environment with no ventilation. We
review here a simple natural ventilation that can be implemented in a confined hall and
propose a simple analysis of its efficiency.

3.1 Natural ventilation of a warm hall

Let us consider a room, for instance a concert hall, which is warm and well mixed. As a
first idea to lower the temperature inside, an architect may think to use cold outside air
and buoyancy contrast to force natural convection and air exchange with the exterior. This
can be implemented as depicted in figure 6 with two stacks allowing the cold air in and the
warm air out.
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Figure 6: Schematic picture of a well-mixed warm box with two stacks ensuring natural
ventilation driven by density contrast with the outside air. A is the area of the box cross-
section. ρ and ρ−Δρ are the densities of the outside and inside air respectively.

3.2 Heuristic analysis: time evolution of the density contrast in a well-
mixed hall

We aim to characterise the time evolution of the density contrast Δρ in the set-up depicted
in figure 6 with simple heuristic arguments, as proposed in Kuesters and Woods (2011).
This model is based on the assumption that the cold plume sinking in the box ensures
strong mixing of density and that the ambient density is uniform throughout the box. The
flow in this system is driven by the pressure difference in the stack providing outflow, which
arises because of the difference in density of the air outside and inside the domain.

Let us call Qi and Qo the volume flux of cold air (input) and warm air (output). If the
volume of the box is V = AH, then the mass of air inside the box is

mb = (ρ−Δρ)V. (15)

The time variation of this mass is given by the inward and outward fluxes; over a time dt the
cold air mass input is ρQidt and the warm air mass output is −(ρ−Δρ)Qodt. The values
of Qi and Qo are given by the typical free-fall velocity v driven by the density contrast and
the effective gravity g′ = gΔρ/ρ:

v =
√
g′h and Qi = Qo = S

√
g′h . (16)

where h and S are the height and the surface of a stack. We therefore infer the following
time evolution equation for the density contrast:

V dΔρ

dt
= −ΔρS

√
g′(Δρ)h (17)
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which can be equivalently translated into an equation on the effective gravity g′:

V dg′

dt
= − g′S

√
g′h . (18)

The solution of this last equation is then:

g′(t)
g′(0)

=

(
1 +

t

τ0

)−2

, τ0 =
2V

S√g′(0)h
(19)

where τ0 is the typical time scale of the natural ventilation process, which is based on the
typical free-fall velocity of the cold plume and on a typical length V/S. This time scale
therefore merely translates the fact that all the warm air initially contained in the volume
V has to go through the outlet of surface S with a typical free-fall velocity.

A more refined model including plume equations in a stratified environment, very sim-
ilarly to what has been presented in the previous section, can be developed. This work
has been done in Kuesters and Woods (2011), both theoretically and experimentally, and
demonstrates that a stratification sets in the box. The mean buoyancy then decreases with
almost constant stratification.

4 Confined Plume with Forced Ventilation

⇒

⇐

Qa (forced)

Qa (open)

z = 0

z = h

z = H

B

Figure 7: Schematic of a forced ventilation problem, where cool ambient air is pumped
through a low inflow into a domain with a localised buoyancy source.

It is important to understand how localised heat sources can affect building ventilation
by air conditioning. For example, a computer may produce a strong local source of heat
which will change how well the air in a room is mixed by air conditioning.

To model this problem, we consider the setup as shown in figure 7, where a localised
heat source at the bottom of a rectangular domain produces a warm plume, and the air
conditioning system is modelled by a prescribed inflow (of cold air) at the bottom corner
of the domain. An opening in the top corner of the domain also allows fluid outflow. In a
steady state, this setup will produce a two-layer system with a warm layer above a region
where the plume flows through the cool ambient. We denote the height of the interface
between these two layers as h.
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As shown in earlier lectures from dimensional analysis and experimental data, the volume
flux of the plume at the interface will be

Q(h) = 0.1B1/3h5/3. (20)

Since the system is assumed to be in steady state, the volume flux out of the domain must
be equal to this, and volume conservation imposes that the volume flux through the inflow
Qa also takes this value:

Qa = 0.1B1/3h5/3. (21)

Prescribing the volume flux of the air conditioning system (Qa) and the buoyancy flux of
the heat source (B) then tells us the interface height

h =

(
10Qa

B1/3

)3/5

(22)

Comparing this interface height with the height of the domain H allows us to describe
whether a room is over- or under-ventilated:

• h > H: the room is over-ventilated, so the air conditioning is doing more work than
is necessary to cool the room;

• h < H: the room is under-ventilated (as shown in figure 7), so a warm layer persists
in the upper part of the room.

5 Detrainment and Distributed Heat Sources

Figure 8: A sketch of the experimental apparatus used in Gladstone and Woods (2014).

In reality, not all heat sources are located at the bottom of a room. For example in large
office buildings, external glass walls are increasingly common, and when these are heated

37



Figure 9: Schematic showing (left) the density profile in the plume ρp and the ambient
ρa, with (right) the flow pattern that develops when a vertically continuous line source of
buoyancy is placed in a ventilated enclosure. (Gladstone and Woods, 2014)

by the sun, a vertically distributed source of buoyancy is produced. To understand how a
distributed source affects the inflow/outflow ventilation system described in the previous
section, Gladstone and Woods (2014) performed the following experiment.

As shown in figure 8, a tank is immersed in a larger reservoir, with a line source in
the centre of the tank supplying relatively dense fluid at a prescribed (small) volume flux
QS at various heights. An outflow pumps fluid out of the tank at a prescribed (larger)
volume flux, and since the top of the tank is open this drives a uniform flow into the tank
at a volume flux QV . This inflow dominates the net volume flux into the tank, with QS

contributing less than 10% of the total.
At early times, the ambient fluid in the tank is uniform and less dense than the plume

fluid so the plume entrains the ambient fluid and a filling box process is observed. However
at later times the system adjusts to the steady state shown in the schematic of figure 9. In
the upper region of the domain a classical plume still persists, but below a transition height
hi the width of the plume does not change with height, and the ambient fluid becomes
linearly stratified.

To analyse this steady state, it is useful to consider these two regions separately.
In the upper region of the domain, we can use dimensional analysis and the plume

equations to make progress and determine hi. Unlike in previous problems, there is now
a distributed source of buoyancy and the conserved quantity is therefore the gradient of
buoyancy flux with height which we denote by f , and not the buoyancy flux itself. By
definition, f will have units

[f ] = L3/T 3, (23)

which leads us to expect the following forms for velocity, plume radius and buoyancy:

u = C1f
1/3, b = C2z, g′ = C3f

2/3z−1. (24)
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Figure 10: Illustration of the time-averaged buoyancy profile across the vertical line plume.
A buoyancy surplus is created at the centre of the plume but a buoyancy deficit develops
at the edge of the plume due to the stratified ambient. The buoyancy deficit leads to
the intermittent detrainment of fluid from the plume, as the plume descends through the
stratified ambient. (Gladstone and Woods, 2014)

The plume equations are now

d(ub2)

dz
= 2εub,

d(u2b2)

dz
= g′b2,

d(ub2g′)
dz

= f, (25)

and yield the following solutions consistent with the dimensional analysis:

u =

(
f

2ε2

)1/3

, b = εz, g′ =
2

z

(
f

2ε2

)2/3

. (26)

This provides an expression for the volume flux

Q = (f/2)1/3ε4/3z2, (27)

from which the transition height hi can be deduced

hi = Q
1/2
i (f/2)−1/6ε2/3. (28)

Here Qi is the volume flux of the plume at the transition height which can be found through
analysis of the lower layer. We can re-define the concept of over/under-ventilation for this
problem using the transition height:

• hi > H: the domain is over-ventilated;

• hi < H: the domain is under-ventilated and the lower layer persists below the classical
plume.

Injecting a small amount of dye into the lower layer at a specific height near the plume
shows that the lower layer displays interesting behaviour at odds with classical plume theory.

39



The dye disperses horizontally near the edge of the plume, indicating both entrainment and
detrainment. There is no vertical motion of the dye, which indicates that the lower layer
does not develop by a filling box-type process, and that the vertical volume flux is all
contained in the plume in the lower layer. This means that the volume flux in (28) must
be equal to the volume flux being pumped out at the bottom of the tank Qp = QV + QS ,
and the transition height hi can be predicted using this. One important consequence of the
volume flux being constant in the lower layer is that the net entrainment must be zero in
this equilibrium state. Entrainment and detrainment occur intermittently and seemingly
randomly, and a potential mechanism by which this occurs is shown in figure 10.

The buoyancy gradient in the lower layer plume can be calculated since the volume flux
is constant:

f =
dB

dz
=

d(Qpg
′)

dz
= Qp

dg′

dz
⇒ dg′

dz
=

f

Qp
. (29)

We therefore get a linear stratification in the plume which mirrors the linear stratification
measured in the lower ambient as shown by figure 9. The buoyancy contrast between the
plume and the ambient fluid Δg′ = F(Qv, f) is now what drives the down-flow of the plume
in the lower layer. Although the combined (upper and lower) buoyancy profile of the plume
appears statically unstable, the ambient stratification in the lower layer prevents this from
convecting.

It is clear that in this problem of a distributed buoyancy source, the classical plume
models do not apply over the whole domain. There are many open problems regarding this
type of flow - in particular, there is no current model for the rate or control of detrain-
ment. It is also unknown which other flows may exhibit a combination of entrainment and
detrainment, and how to design experiments to test what controls detrainment rates.
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1 Mixing by a entilated lume

We continue our discussion on plumes in building environments by now considering the
problem of natural ventilation in the presence of a plume that is generated by a localized
heat source. An example of such an environment is a room with a heater on the floor and
an opening at the ground level and at the roof. In this problem, we do not drive the mass
flux of ventilation. The ventilation is driven by the buoyancy differences in the interior and

exterior.

Figure 1: Top: schematic of the natural ventilation problem. Bottom: the experimental
setup of the release of fresh water (red) in a salty ambient (clear). The arrows indicate the
inflow and the outflow that is not forced but arises due to buoyancy differences.

Consider a box of total height H with an opening at the bottom and the top as shown
in figure (1). There is inflow at the bottom and outflow at the top due to buoyancy
differences. This is the modified version of the problem that we considered in the previous
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lecture where the inflow was forced with the volume flux Qa. The localized heat source
provides a buoyancy flux B and creates a plume as shown. Warm fluid rises up in the
plume and starts creating a buoyant layer of height H − h at the top of the box. Because
of the buoyancy difference, a ventilation flow begins (outflow at the top and inflow at the
bottom). Eventually, the system comes to a steady state when the ventilation volume flux
equals the volume flux through the plume. In other words, the plume entrains a volume
flux that is equal to the inflow volume flux. The top layer becomes well mixed with reduced
gravity g′ which is the reduced gravity of the plume at height h.

Let us first consider the steady state. Let the area of the inlet be A1 and the outlet be
A2. Since there is no forced volume flux for ventilation, the volume flux Q is proportional
to the gravitational head given by

Q = cA1(λg
′(H − h))1/2 = cA2((1− λ)g′(H − h))1/2. (1)

Here, c is a loss factor and λ is a fraction that splits the gravitational head between the
inlet and the outlet. From equation (1), we can solve for λ, and it is given by

λ =
A2

2

A2
1 +A2

2

. (2)

The volume flux of ventilation is thus given by

Q = c
A1A2

(A2
1 +A2

2)
1/2

(g′(H − h))1/2 = cA∗(g′(H − h))1/2, (3)

where we replace the area factor with A∗. As we have seen earlier, the volume flux through
the plume at height h is given by

Qp = 0.1B1/3h5/3. (4)

In steady state, Q = Qp and the buoyancy flux is conserved. Hence,

B = g′Q = cA∗g′(g′(H − h))1/2. (5)

Combining equations (3), (4) and (5), we can obtain an expression for the interface
height as the solution of the following equation:(

h

H

)5

= 10

(
cA∗

H2

)2(
1− h

H

)
. (6)

Note that the interface height h is a function of other geometric quantities alone and is
not dependent on the buoyancy flux B. This is expected since there is no forced volume
flux in this case and the volume flux is decided by the buoyancy itself. Hence, the only
other length scales in the problem come from the geometric factors. There is no concept
of under-ventilation or over-ventilation as we saw in the case of forced ventilation. The
interface is always present and is inside the room. We must also note that as the area of
the openings is increased, the interface height increases due to the increased ventilation. If
the area is decreased, the height of the interface decreases and the ambient fluid is localized
to a very small layer at the bottom of the room. For further details of this problem, refer
to reference [4].
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Figure 2: Schematic of the process when the buoyancy flux is increased. The original fluid
in the steady state is marked by green and the more buoyant (or hotter) fluid is marked by
red. Arrows indicate the flow directions.

Figure 3: The experiment done by [1] and experimental results of the layer height plotted on
the left. The fluid colored in blue is the more buoyant (fresher) fluid that is being released
into the less buoyant (saltier) fluid that is colored in red.

1.1 Transients

1.1.1 Increasing the buoyancy flux

Let us now suppose that the steady state is perturbed by increasing the buoyancy flux (or
equivalently, increasing the heating in the room). The schematic of this process is shown
in figure (2).

As the buoyancy flux is increased, buoyant fluid starts rising as a plume and hits the
interface. Since it is more buoyant, it keeps rising through the upper layer until the top
where the fluid starts forming a new layer. This new layer is show in red in figure (2). While
the more buoyant fluid is rising up, it also entrains the less buoyant fluid shown in green.
The process of entrainment continues until the less buoyant fluid is completely drained out
of the system leading to a new steady state with the new buoyant fluid. The new interface
height is still given by equation (6), that is, it is the same as the old height. This problem
was investigated by [1] and the results from their experiment are shown in figure (3).

To model this transient problem, let consider the new interface height hn and the old
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Figure 4: Schematic of the process when the buoyancy flux is decreased. The original fluid
in the steady state is marked by green and the less buoyant (or cooler) fluid is marked by
blue. Arrows indicate the flow directions.

interface height h0, and write the following equations by mass conservation:

A
dhn
dt

= Qv −Qp(hn) (7)

A
dh0
dt

= Qv −Qp(h0) (8)

Here, A is the cross sectional area of the box and Qv is the ventilation volume flux. The
equation for buoyancy conservation is as follows:

A
d(H − hn)g

′

dt
= Bn + (Qp(hn)−Qp(h0))g

′
0 −Qvg

′ (9)

Here, g′0 is the reduced gravity of the original fluid and g′ is the changing reduced gravity of
the new layer that is being formed. The ventilation volume flux, that is driven by buoyancy
differences is given by:

Qv = Ac(g
′(H − hn) + g′0(hn − h0))

1/2. (10)

Here, Ac is some area factor that arises as in equation (3). The above four equations can
be numerically integrated to obtain the evolution of the interface heights that are plotted
in figure (3).

1.1.2 Decreasing the buoyancy flux

In the case where we decrease the buoyancy flux, less buoyant fluid starts rising as a plume
and hits the interface of the original fluid. Since it less buoyant than the original fluid, it
doesn’t keep rising up but acts as a fountain that entrains some of the old fluid and spreads
out at the interface. Subsequently, a new layer starts to build up below the original fluid
which is pushed out through ventilation. This process is shown as a schematic in figure (4).
The corresponding experiments in [1] of this problem are shown in figure (5).

This problem can be modeled in a similar fashion as earlier. The volume conservation
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Figure 5: The experiment done by [1] and experimental results of the layer height. The fluid
colored in blue is the more buoyant (fresher) and the one in red is less buoyant (saltier).

equations are as follows:

A
dhn
dt

= Qv −Qp(hn) (11)

A
(H − h0)

dt
= −Qv −Qfountain (12)

Buoyancy conservation gives us

A
d(h0 − hn)g

′

dt
= Bn + g′0Qfountain (13)

The ventilation volume flux is given by

Qv = Ac(g
′(h0 − hn) + g′(H − h0))

1/2 (14)

As earlier, the above equations can be integrated numerically to find the interface heights
that are plotted in figure (5), which match very well with experimental data collected by

[1].

2 Plumes in a ube

So far in this lecture series, we have looked at plumes from a localized source of buoyancy
in confined spaces, but the cross sectional area of the plume was much smaller than the
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Figure 6: Left: schematic of the setup where the buoyancy source at the top creates a plume
in a confined tube. Right: Colormap of the concentration of an evolving plume from the
experiments by [6].

confined space. There is another class of problems where the confined space, for example
a tube, is small enough so that the evolving plume hits the sides of the plume. Beyond
this point, the plume is unable to evolve and the advancement of the plume depends on the
mixing caused by the eddies in the tube. A schematic and an experimental realization of
such a plume is shown in figure (6).

Figure (7) shows the results of the experiments performed by [6]. One striking feature
of these results is that the gradient of g′ is roughly constant at all times. If B is the input
buoyancy flux and d is the tube diameter, from dimensional arguments we can say that

Δg′0
h

∼ B2/3

d8/3
. (15)

Here, Δg′0 is net change of the reduced gravity in the tube. This is a hypothesis that is
inspired from the experiments. Equating the total buoyancy change in the tube, we have
that

d2Δg′0h ∼ Bt. (16)

From equations (15) and (16), we find that

Δg′0 ∼ B5/6d−7/3t1/2, (17)

h ∼ B1/6d1/3t1/2. (18)

Above two equations provide scalings for the net change in the reduced gravity in the tube
and the height the plume is able to penetrate as time progresses.

We will not proceed to obtain a diffusion equation for g′ in the tube. The mixing is
driven by the turbulent eddies that have a length scale d. Thus, ue ∼

√
Δg′d is the typical
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Figure 7: Experimental results by [6]. Left: Time series of the concentration in the tube
when salty water is released at the top. Right: evolution of the profiles of horizontally
averaged g′ in the tube. The darker lines correspond to earlier times.

eddy velocity in the tube. Here, Δg′ is the difference in g′ across the tube that is also given
by:

Δg′ ∼ ∂g′

∂z
d. (19)

The buoyancy flux is then given by

F ∼ Δg′ue ∼ (Δg′)3/2d1/2 ∼ d2
(
∂g′

∂z

)3/2

. (20)

We now add a constant λ2 such that F = λ2d2
(
∂g′
∂z

)3/2
. The conservation equation for g′

can now be written as:
∂g′

∂t
=

∂F

∂z
= λ2 ∂

∂z

(
k
∂g′

∂z

)
. (21)

The above equation is a nonlinear diffusion equation where the diffusion coefficient k is
given by

k = d2
(
∂g′

∂z

)1/2

. (22)

In the case where there is no background flow, equation (21) admits self-similar solutions
of the following form

g′(z, t) = B5/6d−7/3t1/2f(η), (23)

where η is the similarity variable given by

η =
z

B1/6d1/3t1/2
. (24)
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Figure 8: Rescaled data from the experiments by [6]. Here, f = ḡ′/(B5/6d−7/3t1/2) and
η = z/(B1/6d1/3t1/2), where ḡ′ is the horintally averaged g′ obtained from the experiments.

Substituting equation (23) into equation (21) gives us the following equation for the shape
function f(η):

f(η)− η
df

dη
= 2λ2 d

dη

((
df

dη

)3/2
)
. (25)

One of the boundary conditions to solve the above equation is found by enforcing a constant
buoyancy flux at the top. Thus,

df

dη

∣∣∣∣
η=0

=
1

λ4/3
. (26)

The other boundary condition is that f → 0 as η → ∞. This is valid as long as the
bottom of the plume doesn’t hit the bottom of the tube and the plume is still evolving.
The parameter λ is found to be 1 by fitting experimental data to solutions of equation (25).
The profiles of ḡ′ (horizontally averaged g′) form the experiments by [6] as shown in figure
(7) are rescaled as per the similarity solution and compared with the function f(η) in figure
(8). It is quite clear that the experimental data fits very well with the similarity solution.

2.1 Passive tracers

We now approach the case in which we add some passive tracers at the top of the domain
observing their movements along the tube.
A passive tracer doesn’t interact with the surrounding fluid (change in density, tempera-
ture, dynamics or others...) and for this reason it could be an optimal marker for the fluid’s
behavior.
In this case we add cold (salty) tracers in a hot (fresh) fluid and, as in the previews ex-
ample, we observe the whole system evolves in time reaching a time-average steady state
characterized by a finite mixing zone.
Experiments show the zone length changing at different Froude numbers (Fr = v√

gL
=

inertialforces
buoyancyforces) see figure (9).
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Figure 9: Different experiments : the steady state shows different lengths for the mixed
zone at increasing Froude number.

We are interested now in calculating the mixing zone length using the following :

∂ḡ′

∂t
+ uu

∂ḡ′

∂z
= λ2d2

∂

∂z

(
∂ḡ′

∂z

)3/2

(27)

−λ2d2
∂

∂z

(
∂ḡ′

∂z

)3/2
∣∣∣∣∣
z=0

= −Bs

d2
(28)

ḡ′(−hs) =
∂ḡ′

∂z

∣∣∣∣
z=−hs

= 0 (29)

where (27) is the ḡ′ conservation while the (28) and the (29) are the boundary condition
for the flux at the top and zero buoyancy condition at bottom respectively.
From the previews we obtain :

ḡ′st =
�u2u

27λ4d4
(z + hs)

3 (30)

hst =
3B

1/3
s d2/3λ4/3

�uu
(31)

which are the steady state value of the mean buoyancy profile and the length of the mixed
layer.
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In figure (10) experiment’s and model’s results are compared showing a very good ac-
cordance.

Figure 10: Rescaled profiles for g’ and depth are shown, we observe a quite constant slope
for the depth in function of g’ with varying (increasing) Fr numbers.

Figure 11: Rescaled profiles for g’ and depth are shown, we observe a quite constant slope
for the depth in function of Fr g’ with varying (increasing) Fr numbers.

We point now our attention to develop a mathematical model for the passive tracer .
How does the tracer move?
Is the diffusivity controlling the passive tracer’s movements in the mixed layer ?
We can describe the mean tracers concentration with the following where we used the

preview results of a cubic buoyancy gradient which gives us :
√

∂g
∂z = 1 + z.

∂c̄

∂t
+

∂c̄

∂z
=

∂

∂z

[
kv

∂c̄

∂v

]
=

∂

∂z

[
(z + 1)

3

∂c̄

∂z

]
(32)

In the eq.(32) the second term on the left represents the mean flux and the terms on the
right are two equivalent forms for the diffusion term.
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Figure 12: Experimental data : images show the time-evolution of the system (top) and
temporal energy profile (bottom).

We can also consider the behavior for the symmetric problem or the case in which a passive
tracer is added from the bottom.
Results show again a symmetric behavior, with the development of a finite length mixed
layer and the reaching of a steady state. This behavior is shown in figure (13).

Figure 13: Symmetric problems are shown : tracers added ad bottom of the tube (top) and
tracers added at top of the tube (bottom)
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2.2 Tilted tube

We consider now the case of a tilted tube calling θ the angle with the vertical as shown in
figure (14).

Figure 14: Tilted tube problem, being θ the tilting angle.

In this case the system is subject both to gravity and buoyancy due to density’s difference.
What we observe is that, in the case of a tilted tube, a mean circulation develops and this
net shear enhances the net transport.
Indeed, analyzing the phenomenological behavior, we immediately observe the faster evolu-
tion of the tilted tube’s dynamics respect to the non-tilted one in figure 15(a)-(b)-(c)-(e)-(f)
due to the interaction of gravity with the angle of titling shows in figure 15(d).

Figure 15: Tilted and non-tilted tube: simulations (top) and experiments (bottom).
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In figure 15(d) the eddies-dominated environment in the case of θ = 0 (top) and the
mean circulation’s development for the case of the tilted tube figure 15(d) (bottom) are
shown.
We develop now a new mathematical model for the description of the tilted tube system
using λ(θ) as diffusion coefficient depending on the tilting angle θ.
Using an analog form of the (27) we write for the mean buoyancy gradient:

∂〈g’〉e
∂t

= λ2d2
∂

∂z

(
∂〈g’〉e
∂z

)3/2

(33)

〈g’〉e = B5/6d−7/3t1/2f(η) (34)

η =
x

B1/6d1/3t1/2
(35)

f(η)− η
df

dη
= 2λ2 d

dη

((
df

dη

)3/2
)
. (36)

df

dη

∣∣∣∣
η=0

=
1

λ4/3
. (37)

∫ 1

0
fdη = 1. (38)

where we assumed a self similar mixing state.
Comparison with experiments give some interesting results for η and λ as shown in figure
(16)-(17).
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Figure 16: η values in function of f at increasing tilting angles

Figure 17: η in function of time (a) and λ in function of θ (b). Figure (b) shows the faster
mixing (λ) at increasing tilting angle.
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3 Study of entilation ows through uildings/ onfined paces

In this section, we shall present a framework to study flows in confined spaces (e.g. au-
ditoriums, buildings) with multiple openings/ventilations. This is exemplified through a
unexpected flow case study through the ventilated Contact theater in Manchester with four
such ventilation outlets that went through a flow state of where the temperature of the
air through one of the openings was found to lock on to the ambient temperature for a
considerable duration, as shown in Fig 18. We present here a simple model of a double
ventilation enclosure with a single source of air inflow to study the different possible states
and its dependence on the initial conditions of the system in consideration.

3.1 Modeling approach for ventilation with two openings

We present a simplified approach to understand ventilation flow states possible for an enclo-
sure with multiple openings allowing for inflow/outflow of air, based on the study through
flow models as well as real experiments performed and described by [2]. The model described
here accounts for the simplest scenario with two ventilation openings and one inlet for a
rectangular enclosure and explains the flow states depending on the geometry of this simple
setup illustrated in Fig 19, which can easily be generalized to more complicated real situ-
ation to help understand these different realizable flow states that controls the ventilation
and help in more efficient design of the building.

3.1.1 Case a: Inflow-outflow

The volume flux through each of the three openings in Fig 19 may be expressed as

Q0 = cA0

(�p

ρ0

) 1
2

,

Q1 = cA1

(
g′(H + h1)− �p

ρ0

) 1
2

,

Q2 = cA2

(�p

ρ
− g′H

) 1
2

. (39)

Conservation of buoyancy flux gives

g′Q1 = B,

g′2
(
g
′
(H + h1)− �p

ρ0

)
=

B2

A2
,

�p

ρ
=

(
g
′
(H + h1)− B2

A2
1g

′2

)
. (40)

For convenience, we can rescale g′ as

g′ =
(

B2

A2
1H

) 1
3

ĝ, (41)
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Figure 18: (Top)The Contact theater in Manchester designed for ventilation using air from
outside; (Bottom) Data for the temperature inside over the summer of 2004.
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Figure 19: Flow diagram for a building model with with a inflow flux (Q0) and opposite
flows through two ventilation on top.
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using which the last relation of (40) reduces to

�p

ρ
=

(
B2

A2
1H

) 1
3

H

(
(1 + ĥ1)ĝ − 1

g′2

)
(42)

with ĥ1 =
h1
H .

Volume flux conservation implies

Q0 +Q2 = Q1

1

ĝ′
=

A0

A1

(
(1 + ĥ1)ĝ − 1

ĝ′2

)
+

A2

A1

(
ĥ1ĝ − 1

ĝ′2

)
A0

A1

(
(1 + ĥ1)ĝ

3 − 1
) 1

2
+

A2

A1

(
ĥ1ĝ

3 − 1
) 1

2
= 1. (43)

Limiting case (Q2 = 0 and ĝ =
(

1
h1

) 1
3
) occurs when

A0 = A1h
1
3 . (44)

3.1.2 Case b: Outflow-inflow

This is the analogous situation but with the direction of flow through the top openings
reversed compared to the situation in Fig 19.

3.1.3 Case c: Outflow through both openings

For this situation as illustrated in Fig 20, the volume flux through each of the three openings
is given by

Q0 = cA0

(�p

ρ

) 1
2

,

Q1 = cA1

(
g′(H + h1)− �p

ρ

) 1
2

,

Q2 = cA2

(
g′(H + h2)− �p

ρ

) 1
2

. (45)

The buoyancy flux is given by
B = Q0g

′. (46)

Volume flux conservation in this case implies

Q0 = Q1 +Q2

�p

ρ
=

B2

A2
1g

′2 . (47)
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Figure 20: Flow diagram for a building model with a inflow flux (Q0) and two outflows
through ventilations on top.
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Figure 21: The different possible flow states (a,b and c) as described in Section 3.1 in the
h1 −A0 parameter space depending on the initial conditions of the ventilation setting.

Rescaling as before, we obtain

A0

A1
=
(
(1 + ĥ1)ĝ

3 − 1
) 1

2
+

A2

A1

(
ĥ1ĝ

3 − 1
) 1

2
. (48)

Hence, the limiting case in this situation occurs for

ĝ′ = (1 + h1)
− 1

3 (49)

which requires

A0

A1
=

A2

A1

(
1 + ĥ2

1 + ĥ1
− 1

) 1
2

=
A2

A1

(
ĥ2 − ĥ1

1 + ĥ1

)
. (50)

Similar results are obtained with the two openings interchanged.It is to be noted that for

3.2 Ventilation with wind-driven flow

In the preceding model of ventilation flow, we neglected the contribution of wind on driving
the pressure change across the walls of the confined space, which can even dominate and
thereby control ventilation dynamics. To take into account the possible effects of ventilation
flows in a building which is subject to wind pressure, we can consider the case in which the
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Figure 22: Flow along direction of wind

building has a high level opening upwind and a low level opening downwind with a pressure
difference of �pw between the two sides of the building.
For the case illustrated in 22, with the wind blowing along the direction of flow through the
upper opening, the pressure at the top opening drop from �pw to �pw −�p leading to a
volume flux given by

Qtop = cA

(�p

ρ

) 1
2

. (51)

At the lower opening, the pressure drop from �pw −�p − ρg′H to 0 leading to a volume
flux given of

Qlower = cA

(�pw −�p

ρ
− g′H

) 1
2

. (52)

Matching the volume fluxes, we get

�p =
1

2

(�pw
ρ

− g′H
)
. (53)

The buoyancy flux is given by

B = 2−
1
2 cAg′

(�pw
ρ

− g′H
) 1

2

. (54)

Similarly, for flow against wind (as in Fig 23), the corresponding heating rate is given by

B = 2−
1
2 cAg′

(
g′H − �pw

ρ

) 1
2

. (55)

The above relations for B are plotted in Fig 24 (with heat flux used as a proxy for buoyancy
flux on the x-axis) . The corresponding time-dependent evolution for the buoyancy within
the building each case is given by

V
dg′

dt
= B − 2−

1
2 cAg′

(
g′H − �pw

ρ

) 1
2

if g′H >
�pw
ρ

V
dg′

dt
= B − 2−

1
2 cAg′

(�pw
ρ

− g′H
) 1

2

if g′H >
�pw
ρ

(56)
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Figure 23: Flow against direction of wind
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Figure 24: Illustration of the competition between buoyancy and wind, with the wind
dominated and buoyancy dominated flow regimes (see 3) given by . The measured values
are from a series of experiments presented in [5].
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1 Transient NNatural Ventilation of a Space with Distributed
Heat Source

Transient flows in naturally ventilated spaces occur when the space adjusts from one tem-
perature to another. We consider the problem of a space with both high-level and low-level
openings for natural ventilation, where the space is heated from below by a uniformly
distributed source of heat. Depending on the difference between the initial and final tem-
perature of the room and the difference between the internal and external temperatures,
three regimes of ventilation are possible (figure 1).

Regime 1 corresponds to a well-mixed interior which is a result of the interior tempera-

ture lying between the equilibrium temperature of the room and the ambient temperature.

This is shown experimentally in figure 2. In this experiment, the space was heated using a

uniformly distributed heat source at the bottom of the tank, and the interior fluid was dyed

red. The interior fluid is assumed to be supplied with a buoyancy flux B and this leads

to the generation of buoyancy g′ of the fluid inside the space. This buoyancy produces a

pressure difference between a vertical line inside and outside the space of magnitude ρog
′H

such that at the base of the space the pressure inside the space is lower than that outside, by
an amount Δp, while the pressure at the top of the space is greater than that outside by an

amount ρog
′H − Δp. The pressure change across each of the openings drives a flow through

that opening, given by the relation Q = cAo(Δρ/p)1/2where Ao is the area of the opening, as
described earlier. Since the flow into the base of the space matches the flow out of the top of
the space, it follows that if the openings have areas AT and AB and loss coefficients cT and cB at
the top and base of the space then the condition that the flow through the two openings Q1

andQ2 are the same leads to the relation for the flow given by

Q = Q1 +Q2 =
cTAT cBAB(g

′H)1/2

(c2TA
2
T + c2BA

2
B)

(1)

and we can define an effective area Av and loss coefficient c for the combined openings so
that Q = cAv(g

′H)1/2. If the system is in steady state, then the buoyancy flux supplied
through the base of the space, B, matches the buoyancy flux which is vented from the space,
g′Q, and so

B = cAvH
1/2g′3/2 (2)
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Figure 1: Schematic diagram of a room with heating at the base and vents at the top and
bottom for ventilation. The three regimes correspond to (a) well-mixed upflow ventilation,
(b) stratified upflow ventilation, and (c) stratified downflow ventilation. (Fitzgerald and
Woods, 2007)

which leads to the prediction that in equilibrium the buoyancy is given by

g′e =

(
B

cAvH1/2

)2/3

(3)

The data from the thermocouples in the tank (see figure 2) show that the temperature
in the tank is roughly uniform, and the small fluctuations correspond to the temperature
difference arising due to turbulent plumes going past the thermocouples which convect heat
within the tank (figure 2(a)). The tank remains well-mixed due to the mixing caused by
convection. Figure 2(c) shows a good agreement of model with experimental data.

If the buoyancy flux is changed then the system ceases to be in equilibrium. An increase
in buoyancy flux to value B(1+λ) will tend to increase the buoyancy of the overlying fluid,
and so we expect that the system remains well mixed as it adjusts to the new equilibrium.
The rate of change of buoyancy will then be given by the time dependent conservation of
buoyancy

V
dg′

dt
= −g′Q+B(1 + λ) (4)

where V is the volume of the space, and −g′Q is the loss of buoyancy associated with the
outflow. By scaling the buoyancy with respect to the original equilibrium value, g′e, so that
ĝ = g′/g′e, and the time with respect to the time scale V g′e/B, so that s = tB/V g′e, then
equation (4) takes on the dimensionless form

dĝ

ds
= 1 + λ− (ĝ)3/2 (5)
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Figure 2: (a) Measured temperatures as a function of time in the tank heated by a dis-
tributed source. Different symbols represent signals from each of the thermocouples. (b)
Photographs taken 1 and 20 minutess after commencement of ventilation showing that the
room remained well-mixed throughout the duration of the experiment. (c) Dimensionless
temperature of the interior derived from experimental data (thin noisy line) compared with
the theoretical prediction (solid line). (Fitzgerald and Woods, 2007)
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Figure 3: (a) Schematic of the process of mixing and penetrative convection at the interface
between the lower heated layer and the hot upper layer, as observed in the experiments.
(b) Illustration of the definition of the temperature and depth variables in the model.
(Fitzgerald and Woods, 2007)

Figure 4: (a) Photographs taken at a series of times after commencement of the experiment,
indicating that the upper layer of fluid originally in place is displaced vertically upwards
during the transient evolution of the room, creating a two-layer stratification. (b) The
vertical temperature profile in the experimental tank at a series of times. A clear thermal
front is seen to rise through the room. (Fitzgerald and Woods, 2007)
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This illustrates how the buoyancy gradually adjusts to the new equilibrium value

ĝ = (1 + λ)2/3 (6)

In contrast to the above relatively simple case, if the buoyancy flux at the plate is
decreased to value B(1λ) > 0 then the buoyancy in the space will decrease to a smaller
value. This decrease in the buoyancy leads to a smaller equilibrium ventilation flow rate.
On reducing the buoyancy flux, the ventilation rate will initially be higher than the new
equilibrium value, and so as new fluid enters the base of the space, its buoyancy will remain
smaller than the original fluid in the space. It will therefore form a new layer and as the flow
continues, this new lower layer will deepen, while the original fluid will vent from the space.
To model this situation, we introduce a new lower layer, of depth hn and buoyancy g′n and
we follow the evolution of this layer in time. The new layer deepens at a rate proportional
to the ventilation flow

A
dhn
dt

= cAv(g
′
nhn + g′e(H − hn))

1/2 (7)

while the buoyancy of this layer evolves according to the buoyancy flux from the base of
the space

A
dg′nhn
dt

= B(1− λ) (8)

Meanwhile the upper layer of the original fluid gradually vents from the space while its
buoyancy remains approximately constant. At early times, equations (7) and (8) imply that
g′ ∼ g′e(1 − λ) showing that the buoyancy of the new lower layer is less than the original
layer, and hence the system is stably stratified. Similarly, this model suggests that λ < 1
corresponding to a decrease in the buoyancy, and therefore the lower layer would be hotter
than the upper layer, leading to overturn and mixing.

Regime 2 corresponds to this case where the interior is initially warmer than the equi-
librium temperature. The inflowing air from below forms a well-mixed lower layer which is
colder than the temperature of the space, leading to a two-layer stratification of the space
(figure 3(a)). The upflow of the cold air in the lower layer displaces the warm air upwards
and out of the space. The temperature in the lower layer gradually tends to equilibrium
temperature. In an experiment, the interface between the two layers can be tracked using a
shadowgraph. The photographs in figure 4(a) show a well-defined front rising through the
tank, and figure 4(b) shows the temperature profile within the tank. The thermal profiles
show a layer of finite depth (O(5 cm)) where the temperature gradually varies between the
hot and cold layers. This is due to the mixing at the interface by the plumes rising up
through the tank and entrainment from the upper layer to the lower layer.

In order to accurately model this regime, it is important to consider the effects of
penetrative convection occuring at the interface between the two layers. The entrainment
of the fluid from the upper layer into the lower layer leads to a slightly warmer lower layer
and also causes the interface height to grow faster in time. The energy to add this potential
energy comes from the kinetic energy of the convective plumes rising up through the lower
layer from the heat source at the bottom of the space. This energy is a function of the
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buoyancy flux per unit area, Q, of the source and the height of the lower layer, hi. The
height of the lower layer grows according to

ρCp(Tu − Tl)
dhi
dt

= kQ (9)

where Tu and Tl are the temperatures of the upper and lower layers, and Cp is the specific

heat capacity of air. k is the rate of entrainment of buoyant fluid from the upper layer into
the lower layer.

Regime 3 occurs when the room is initially cooler than the exterior, then on opening the
vents, the original air is displaced downwards and a layer of warm ambient air deepens from
above. As this lower layer drains and becomes gradually thinner, it is eventually heated to
the ambient temperature by the heat source below. Meanwhile, the convective plumes rising
from the heat source at the base of the room, and through the lower layer of cold air are
typically able to entrain some of the overlying layer of warm air, in a somewhat analogous
fashion to the penetrative convection described for Regime 3. Eventually, as the lower layer
approaches the same temperature as the exterior, the air within the room becomes well-
mixed. The height of the lower layer, in this scenario, reduces because of ventilation from
the top and into the room, but as the buoyancy of the lower layer increases towards that of
the upper layer and overturn occurs, the flow direction reverses and the system adjusts to
regime 1 above.

2 Gravity Currents

Figure 5: A dense ash flow on Mount St. Helens.

Turbulent gravity currents are produced when a finite volume of dense fluid is rapidly
released from a source above a horizontal boundary into an environment of lower density.
The dense fluid propagates horizontally under gravity along the lower boundary of the flow
domain by displacing the original fluid. Gravity currents are important in many geophysical
and environmental flows, with applications in the spread of dense gas following release from
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Figure 6: Pyroclastic density current on 8 January 2010 at Soufriere Hills Volcano, Montser-
rat.

a vessel and volcanic ash flows, and also in understanding the dynamics of cold fronts, (see
figures 5 and 6). In the context of the above flows, the propagation speed and the density
structure of the flow as it spreads from the source are of considerable interest.

During short lived volcanic eruptions, dilute turbulent pyroclastic density currents are
often observed to spread laterally from a collapsing fountain. These flows entrain and heat
air while also sedimenting particles. Both processes lead to a reduction in the bulk density
and since these flows often become vertically stratified, the upper part of the flow may then
exhibit a reversal in buoyancy and lift off. In order to assess the mass of air required to
reduce the buoyancy of the flow and generate lift off, we need to understand the mixing
into these currents.

The time for a volcanic explosion to generate a small cloud of ash particles, which rises
several hundred metres above the vent followed by column collapse and generation of a dilute
pyroclastic density current, will be between 1 and 10 seconds. For thermal equilibrium, the
thermal diffusion time should be smaller than the timescale of the initial collapse, requiring
ash particles of radius smaller than about 1 mm. We assume that the density of the ash
and air mixture is given by the relation

ρ =

(
n

ρg
+

1− n

ρs

)−1

, (10)

where n is the gas mass fraction in the flow, ρs is the density of the ash, and ρg is the
density of the gas in the flow (ρg = P/RT ). Assuming that we reach thermal equilibrium
during the initial mixing phase, conservation of thermal energy requires that

nρgCpg(T − Ta) + (1− n)ρsCps(T − Ta) = (1− n)ρsCps(To − Ta). (11)

As the mass of air mixed into the flow increases, the density of the mixture decreases;
this is illustrated schematically in figure 7. Buoyancy is generated once sufficient air has
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Figure 7: Schematic showing the density of a dilute pyroclastic density current propagating
in valley. When the density of the mixture becomes equal to that of the surrounding air,
the flow becomes buoyant.

been mixed in, causing lift-off.
Theoretical and experimental studies of gravity currents have revealed that their evolu-

tion can be described by two distinct phases. We shall look at each in turn, by considering
the release of a finite volume of fluid of uniform density from behind a lock gate.

2.1 Adjustment from a homogeneous to a stratified flow

In the initial adjustment phase of the flow, we find that the leading part of the head of the
gravity current is composed of original lock gate fluid and has a nearly constant depth, so
that it advances with a constant speed. During this phase, a circulation develops as fluid
at the front of the current mixes with some of the ambient fluid displaced by the current.
The mixed fluid rises over the head, and supplies a dilute wake behind the flow.

2.1.1 Evolution of the reduced gravity, depth and position of the current

Figure 8 illustrates the time evolution of a gravity current where false-colour images cor-
respond to the concentration of the fluid in the tank at 10 times after release of the lock
gate. The current initially adjusts after removing the lock gate and as it advances through
a region up to 7 times the original lock gate length, it has a nearly constant density head
region, followed by a growing tail, in which the density decreases with distance behind the
front and with height above the base of the current. As the current continues to lay down a
dilute tail, the region of near constant density at the front of the flow becomes progressively
smaller, and eventually dissipates as it advances beyond the point 7 lock gates. As the flow
continues, the buoyancy everywhere in the flow becomes progressively smaller with time,
with the buoyancy increasing from the lock gate towards the head.

To help visualise the changes in the flow as it advances along the tank, in figure 9 we
present a false-colour image of the vertically averaged current concentration as a function
of position and time. This image illustrates how the speed of the head is constant up
to a distance of 7 lock gates, and, in this near lock gate region, the fluid directly behind
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Figure 8: Photographs of a saline gravity current illustrating the evolution of the salinity.
Images are taken at equal dimensionless time intervals in each case. The x-axis scale shows
the position in the current as a function of the number of lock lengths beyond the lock gate.
The colour scale denotes concentration of salt. (Sher and Woods, 2015)
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Figure 9: Evolution of the depth-averaged concentration of the current as a function of
position and time. The horizontal axis represents position ahead of the lock and the vertical
axis is time. The colours represent the depth-averaged salt concentration of the gravity
current. The figure illustrates how the concentration varies with position and with time in
the current and shows that the head of the flow becomes progressively more dilute, with
the initial buoyancy in the flow being dispersed from the lock gate up to the head of the
flow. (Sher and Woods, 2015)

the front of the current has reduced gravity equal to that of the fluid behind the lock
gate. However, downstream of this point, the speed and the reduced gravity of the head
gradually decrease with distance. The figure also shows how an ever-growing tail develops
in which the concentration gradually increases from the lock gate towards the head of the
current. Finally, the figure shows how, at a given position in the tank, behind the head,
the concentration gradually decreases with time.

Figure 10 shows the position of the front of a variety of gravity currents as a function
of time. The data collapse to a universal curve, labelled front, independent of aspect ratio,
buoyancy and current volume. To illustrate how the size of the region of fluid behind the
head whose reduced gravity equals that of the fluid behind the lock gate evolves in time,
the position of the rear of this region has been plotted. Whilst these measurements exhibit
some scatter, they also collapse onto a line.

2.1.2 Mixing at the head of the current

In order to build up understanding of how the mixing occurs, it is possible to conduct a
series of experiments in which we inject and then track a small volume of dye in both (i)
the current and (ii) the ambient fluid.

Figure 11 illustrates a gravity current of originally clear fluid advancing into a yellow
ambient fluid. In this experiment, a pulse of blue dye was injected into the current, at the
position 2.4 lock lengths when the front of the current was at position 2.6 lock lengths.
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Figure 10: Diagram illustrating the position of the front and rear of the head of the current
(whose reduced gravity equals that of the fluid behind the lock gate), as a function of time.
(Sher and Woods, 2015)

Figure 11: (aj) Series of photographs illustrating the migration of a point release of blue dye
and red dye into a clear gravity current propagating through a yellow environment. (ko)
Series of false-colour images of the concentration measured in an experiment with identical
initial conditions, at five different times. (Sher and Woods, 2015)
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Later a pulse of red dye was injected at the point 2.3 lock lengths when the front was at
position 3.7 lock lengths. Panels (aj), taken at equal dimensionless time intervals, illustrate
how the blue and the red dye pulses migrate with time. In panels (ko), we illustrate the
density structure in an equivalent current, at five times, as obtained from a second identical
experiment. As the flow continues along the flume, the blue dyed fluid catches up with the
nose of the current. The front region of the current becomes blue and feeds a rising stream
of dyed fluid which passes up over the top of the continuing gravity current. This forms
a streak of blue fluid which propagates backwards relative to the nose of the continuing
current. As the current advances the intensity of the blue dye decreases. Also, the red dye,
which is initially injected in fluid further upstream in the current, progressively catches up
with the front of the current.

Figure 12: Characteristic diagram in which (a) the trajectory of the leading edge of a series
of parcels of dye injected within several of the experimental currents are followed. In this
panel, the solid and dotted red lines correspond, respectively, to the front and back of the
head of the gravity current. (b) The trajectories followed by a series of parcels of dye which
are injected into the ambient fluid ahead of the current. The dye begins to move backwards
as the front of the current arrives, and it continues to move backwards until the rear of the
head passes by. The dye then slows down substantially, as the stratified tail of the current
passes by. (Sher and Woods, 2015)

In figure 12(a), the trajectories of the leading edge of a series of dye pulses injected into
the currents which formed during different experiments have been plotted. It is seen that,
to a reasonable approximation, the dye streaks from the different experiments advance with
a uniform speed, approximately 1.35± 0.05 times the speed of the front of the current.

We now look at the motion of the ambient fluid as the gravity current passes by, since
this provides a complementary perspective on the mixing in the head region of the flow. In
figure 13 we illustrate the evolution of three regions of dyed ambient fluid originally located
ahead of the current. As the undyed gravity current reaches each of the patches of dyed
ambient fluid, it is seen that the ambient fluid rises over the current and mixes with some
of the fluid at the front of the current. Panels (ac) show the mixing of the blue dye. Owing
to the stratification in the wake, there is a weak shear flow which develops, and causes the
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Figure 13: Illustration of the motion of three parcels of dye initially injected upstream of
the gravity current. The fluid in the gravity current initially has no dye. (Sher and Woods,
2015)

Figure 14: Illustration of the motion of three parcels of dye initially injected upstream of
the gravity current. The fluid in the gravity current initially has no dye. (Sher and Woods,
2015)
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blue dyed region to shear out in the wake. Very little blue fluid appears to enter the head
region. Panels (d,e) show the evolution of a patch of yellow dye. After rising over the top
of the current, some of this yellow dyed fluid is mixed back into the head, which appears to
include an anticlockwise vortex, and the remainder of the yellow fluid is dispersed into the
wake. Panels (eg) illustrate the mixing associated with a red patch of dye. This mixes in a
similar manner to the yellow dye, leading to further dilution of the head and growth of the
wake immediately behind the head.

For comparison with the motion of the fluid originally in the current (figure 12(a)), in
figure 12(b) we show the trajectory of a series of parcels of dye injected into the ambient
fluid initially ahead of the current. The leading edge of this dye appears to move backwards
as the head passes. In the main figure, for comparison, we also show the position of the
front of the current (solid red line) and the rear. Figure 14 summarises the flow patterns
discussed during this initial mixing regime.

2.1.3 Entrainment coefficient during the mixing of the original lock fluid

Figure 15: Variation of (a) the volume and (b) the height of the current head as a function
of distance travelled. As the flow advances, there is a near linear increase in volume while
the depth of the flow approaches a near constant value. (Sher and Woods, 2015)

How much mixing occurs in the head region during this initial phase of the flow? Mea-
surements from experiments of the instantaneous volume of the gravity current and the
depth just behind the front as a function of the distance travelled by the nose of the current
are plotted in figure 15. While the depth remains constant in time, we see that the volume
increases linearly with time, or distance travelled. Considering entrainment into the head
of the current,

dV

dx
= αh (12)

where it can be inferred that α = 0.65 ± 0.1. Once all of the original lock fluid has been
mixed through the head, does a self-similar regime develop in the second phase?
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2.2 The long-time self-similar regime

2.2.1 Experimental measurements

Having studied a gravity current during the initial mixing phase until the point at which
it becomes fully stratified, we now consider its evolution during the second phase. From
dimensional arguments, the position of the flow front should follow the scaling relation

xn(t) ∼ B1/3(t− t0)
2/3 (13)

where t0 is an adjustment zone used to accommodate any difference in the rate of dilution of
the flow during the initial mixing phase. Figure 16(a) plots the ratio xn(t)/[B

1/3(t+ t0)
2/3]

against time for a series of experiments, where we see that after an initial transient period,
this ratio approaches the constant value of 1.6. For these same experients, figure 16(c)
shows the depth of the head of the current against time. The mean depth appears to be
approximately constant with time, and we observe that hn(t) ∼ 0.4H where H is the initial
depth of fluid behind the lock gate.

Figure 16: Data from experiments showing the time evolution of (a) the position of the
nose of the current xn(t)/[B

1/3(t+ t0)
2/3], (b) g′nH(t+ t0)

2/3B−2/3 and (c) the depth of the
current behind the flow. (Sher and Woods, 2015)

If we assume that the depth of fluid in the head of the current remains approximately
constant in time, then by conservation of buoyancy we would expect the reduced gravity
to decrease in proportion to the horizontal extent of the flow. We expect the vertically
averaged reduced gravity at the head of the flow to follow a relation of the form

g′n ∼ B2/3

H(t+ t0)2/3
. (14)

Figure 16(b) plots g′nH(t+ t0)
2/3B−2/3 against time; this approaches the value of 4 for long

times.
Averaged values of the three quantities plotted in figures 16(a-c) across multiple exper-

iments (and different times) are plotted in figure 17. In addition, averaged values of the
Froude number Fr, defined by dxn/dt = Fr(g′nhn)1/2, are plotted for the same experiments.
We see that Fr → 0.95.

Figure 18 shows data from a series of experiments. In figure 18(a), the vertical integral
of the reduced gravity, normalised by the length of the current, is plotted while in figure
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Figure 17: Averages of the data from the experiments plotted in figure 16 along with the
Froude number Fr. (Sher and Woods, 2015)

Figure 18: Variation of (a) the reduced gravity and (b) the depth of the current, normalised
by the length of the current, for a series of experiments. (c) and (d) show the respective
time-averaged structures. (Sher and Woods, 2015)
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Figure 19: Schematic of the along-current flow and circulation. In this regime, self-similar
solutions arise with the reduced gravity being carried further forwards. (Sher and Woods,

2015)

18(b), we can see the variation of the depth of the current, again normalised by the length of
the current. These have been time-averaged in figures 18(c) and 18(d) respectively.

The data shown in figure 18 suggest that further downstream, as the influence of the
initial conditions becomes less important and the current becomes fully stratified, then the
depth and vertical integral of the buoyancy adjust to a particular profile along the length of
the flow. A circulation develops, with the denser fluid in the current being supplied to the
front of the current from the lower part of the flow where the speed is a maximum. This
fluid, along with ambient fluid ahead of the current, rises over the top of the head, mixes
and feeds the rear of the head and the tail of the flow with fluid of intermediate density (see
figure 19). Since the reduced gravity of the fluid in the lower part of the flow exceeds that
higher in the flow, we expect the vertical integral of the flux of reduced gravity to exceed the
product of the vertically averaged velocity and the vertical integral of the reduced gravity
at any point in the flow. As a result, surfaces of constant buoyancy travel faster than the
mean flow speed and this may lead to the salinity being a maximum at the front of the
current. Furthermore, the scalings for the evolution of the speed and buoyancy at the head
of the current, combined with the details of the stratification in the flow, suggest that the
flow is self-similar, with the mixing being a key part of the evolution. This motivates a
simple, depth-averaged model for the gravity current in this second phase of the flow.

2.2.2 Structure of the current

Let us consider a finite mass of buoyancy, B, released from the origin, x = 0. We will
assume that the mixing occurs in the head of the flow. The horizontal momentum equation
is given by

ρ
∂u

∂t
+ ρ(u · ∇)u = −∂p

∂x
, (15)

the equation for the conservation of buoyancy is given by

∂g′

∂t
+ u · ∇g′ = 0 (16)
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and the flow is assumed to be incompressible, ∇.u = 0. Integrating ∇.u = 0 across the
depth h of the flow and using the fact that

∂h

∂t
+ u(h)

∂h

∂x
= vh (17)

we find that

∂h

∂t
+

∂hu

∂x
= 0. (18)

We will assume that the vertical pressure gradient is hydrostatic:

p(x, y, t) = p0 +

∫ h

y
ρ0g

′dy. (19)

Integrating equation 15 across the depth of flow h, and using hydrostatic balance leads to
the result∫ h

0
ρ
∂u

∂t
dy +

∫ h

0
ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
dy = −

∫ h

0

∂

∂x

[∫ h

y
ρg′dy

]
dy − h

∂p0
∂x

(20)

Combining this with ∇ · u = 0 and equation 17, we can express this equation in the form

∂(hu)

∂t
+ β

∂(hu2)

∂x
= −γ

∂(h2g′)
∂x

− h

ρ0

∂p0
∂x

(21)

Integrating equation 16 across the depth of the flow and combining this with ∇.u = 0 and
equation 17, we find that

∂(hg′)
∂t

+ α
∂(hg′u)

∂x
= 0, (22)

where, for constant coefficients α, β and γ,

hu =

∫ h

0
udy ; hg′ =

∫ h

0
g′dy ; βhu2 =

∫ h

0
u2dy (23)

αhg′u =

∫ h

0
ug′dy ; γh2g′ =

∫ h

0

∫ h

y
g′dy. (24)

We will seek solutions of the equations 18, 21 and 22 once the current has adjusted to a
self-similar form. As an approximation, we consider the mixing to occur at the front of
the flow. We shall solve these equations subject to appropriate boundary conditions at the
head of the flow and the constraint that a finite mass of buoyancy, B, is released from the
origin. The volume of the current is given by

V =

∫ xn

0
h(x, t)dx. (25)

Differentiating equation 25 by time and combining with equation 18 gives

dV

dt
=

(
dxn
dt

− un

)
hn. (26)
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We will define the entrainment coefficient E as the fraction of the ambient fluid displaced
by the flow that is mixed into the flow. Then

dV

dt
= Ehn

dxn
dt

and so un = (1− E)
dxn
dt

. (27)

We will assume that E is constant in the self-similar flow regime, to be determined experi-
mentally. By conservation of buoyancy, we require that

B =

∫ xn

0
g′(x, t)h(x, t)dx. (28)

For a self-similar flow, we expect that the speed at the nose of the flow is given in terms of
the Froude number Fr, where

dxn
dt

= Fr(g′nhn)
1/2 (29)

We will now seek self-similar solutions for this model. Our solutions shall take the form
(ansatz):

h(x, t) = HH(η) ; g′(x, t) =
B2/3

t2/3H
G(η) ; u(x, t) =

B1/3

t1/3
U(η) (30)

where H, G and U are shape functions, η = x/xn(t) and xn(t) = B1/3t2/3. Substituting this
ansatz into equations 18 and 22 reveals the pair of ordinary differential equations:(

−2η

3
+ U

)
dH
dη

= −HdU
dη

(31)

−2η

3

d

dη
(GH) + α

dGHU
dη

= 0. (32)

We expect that the pressure p(x, t) will follow a scaling of the form p(x, t) = ρ0B
2/3t−2/3F(η)

where ρ0 is a reference density. Substituting into equation 21 gives

−λ

3
UH − 2λη

3

dHU
dη

+ β
dHU2

dη
= −dH2G

dη
+HdF

dη
. (33)

Motivated by the profiles in figure 18, we will seek a solution of the form

U =
4λη

9α
(34)

It follows that

H = H0η
2/(3α−2) and G = G0η

6((α−1)/(3α−2)) (35)

where H0 and G0 are constants. We see that, when α > 0, the depth and reduced gravity
increase towards the front of the flow.
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2.2.3 Mixing during the self-similar regime

In figures 20(a,b), the normalised experimental data from figures 18(c,d) is compared with
predictions from the theoretical model. Although the general trend in the experimental
data is similar to the model prediction, there appears to be a systematic difference between
the data and the model in the tail of the flow in figure 20(a). This difference suggests that
some of the buoyancy released from behind the lock gate becomes detached from the front
of the gravity-driven flow, particularly from the rear of the current.

Figure 20: Variation of (a) the vertical integral of the salt concentration, normalised by
the vertical integral of the salt concentration at the nose as a function of position in the
current. For comparison, the model solution is also shown with the thick black curve. (b)
Time average of the depth of the current as a function of the position within the current,
again compared to the theoretical model prediction. (c) A colour image in which the fraction
of the total buoyancy of the current in the region of the current between the rear of the lock
gate and each point in the current, is plotted as a function of the dimensionless position in
the current and dimensionless time. (d) A colour image of the fraction of the total volume of
the current in the region of the current between the rear of the lock gate and each position
in the current, as a function of the dimensionless position and dimensionless time. (Sher
and Woods, 2015)

In order to demonstrate this slow loss of buoyancy from the rear of the current, figure
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20(c) presents a colour image in which the fraction of the total buoyancy of the current in
the region of the current between the rear of the lock gate and each point in the current,
as a function of the dimensionless position in the current (x-axis) and dimensionless time
(y-axis). It is seen that, gradually, the dimensionless position of each contour representing
a constant fraction of the buoyancy migrates backwards in the current. This redistribution
of the buoyancy is consistent with a slow loss of buoyancy from the rear of the current.

For comparison, figure 20(d) shows a colour image of the fraction of the total volume of
the current in the region of the current between the rear of the lock gate and each position in
the current, as a function of the dimensionless position (x-axis) and dimensionless time (y-
axis). The image shows that to good approximation the volume contours are independent
of the dimensionless position of the current. This suggests that even though there is a
slow loss of buoyancy from the dense lower part of the flow, the current shape remains
approximately the same as the current advances. Together, these figures show that strictly
the flow is not self-similar owing to the slow redistribution of buoyancy from the front to
the rear of the flow. However, this redistribution of buoyancy is a slow process and so the
self-similar depth-averaged model seems to provide a reasonable approximate description of
the overall dynamics of the gravity current following the initial transition of the flow.

2.3 Mixing in continuous gravity currents

As gravity currents evolve, a considerable mass of ambient fluid is mixed into the flow,
primarily through the head and near to the source of the flux of fluid. Mixing can be
analysed experimentally, and this is what we shall discuss here. We shall consider the
motion of two-dimensional gravity currents produced by a constant source of buoyancy. For
these flows, the source Froude number is given by

Fr =
u0

(g′0h0)1/2
(36)

An example of such an advancing gravity current is shown in figure 21. The series of
false-colour images represent the evolution of the density in the flow, with the colour scale
representing the mass of salt in the fluid per unit mass of fluid. Just downstream of the
source, the current deepens and the upper part of the current becomes diluted by mixing
with ambient fluid. Further downstream, the current has a relatively dense lower region
which appears to reach the head of the flow, where a second region of mixing can be seen
in the upper part of the head of the flow. This also appears to contribute to a region of
relatively dilute fluid which forms on the upper surface of the flow.

In order to explore the mixing processes in more detail, figure 22 presents four panels
of images for currents with Fr=2.7 (a,b) and Fr=0.4 (c,d), in which (a,c) the source fluid
was initially dyed yellow, and then green, and (b,d) the ambient fluid initially ahead of the
current included parcels of fluid dyed red, green and yellow. Figures 22(a,b), where there
is a high Froude number input, indicate that once the source fluid is dyed green, the fluid
advances through the lower part of the current and rapidly catches up the with the head.
This fluid mixes with the ambient fluid originally ahead of the flow, to form an upper mixed
layer which gradually lags behind the head of the flow since it travels forward more slowly
than the continuing head. The strong vertical stratification in the flow is produced by a
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Figure 21: Series of images illustrating the evolution of the concentration field in the current
as it advances along the flume. The images are shown in false colour to illustrate the dilution
of the flow relative to the original source fluid. (Sher and Woods, 2017)

combination of mixing near the inflow and the head of the flow, where there appears to be
a second phase of mixing. As a result, the fluid in the current undergoes a net circulation
relative to the head as the current advances along the flume (see figure 23).

The process is similar when there is a low Froude number input(figures 22(c,d)) however
the green dye catches the nose much more slowly and there is greater entrainment and mixing
in the nose.

One of the key properties of a gravity current is the speed of the head of the current,
dxn/dt. This can be computed from figure 24(a), which plots results from different ex-
periments with different source Froude numbers Fr0. It can be seen that there is a weak

dependence on the source Froude number. Figure 24(c) plots estimates of the Froude num-
ber at the front of the current Frn as a function of the source Froude number, where we

see that Frn ≈ 1.1.

Once the saline water enters the base of the tank, a local zone of flow adjustment and
mixing develops. Examples of the inflow adjustment are shown in figure 25 for cases of high
source Froude number (top) and low source Froude number (bottom). When the source
Froude number is high, the current deepens over a fixed distance with a significant amount
of turbulent mixing apparent on the upper surface of the flow. Further downstream, the
depth then evolves more gradually. In contrast, for low source Froude numbers, the current
initially accelerates and thins out, but then it appears to deepen and mix across its upper
surface as in the case of the larger source Froude number. Again, it reaches a near constant
depth after a fixed distance, after which it evolves much more slowly downstream. The
figures on the left in figure 25 show the corresponding normalised velocity profile (dashed
lines) and concentration (solid line) as a function of the normalised height. For higher
Froude numbers (top), the concentration and velocity vary continuously over the full depth
of the current whereas for smaller Froude numbers, the current has a relatively uniform
concentration and velocity with height up to the point at which there is a transition to the
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Figure 22: (a) Series of images illustrating the path followed by the source fluid as a function
of time visualised by changing the colour of the source fluid from yellow to green 5s after
the start of the experiment. The sloping red line illustrates the advance of the green dye
front with time while the sloping dotted blue line indicates the advance of the head. (b)
Series of images illustrating the evolution of regions of green, yellow and red dye originally
located in the ambient fluid downstream of the current, in the case with Fr0 = 2.7. (c)
Series of images as in panel (a) but now with Fr0 = 0.4. (d) Series of images illustrating
the evolution of regions of green, yellow and red dye originally located in the ambient fluid
downstream of the current, with Fr0 = 0.4. (Sher and Woods, 2017)

Figure 23: Schematic of the flow processes in a steady gravity current. (Sher and Woods,
2017)
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Figure 24: Position of the dimensionless head of the current as a function of dimensionless
time for several experiments. (c) Variation of the Froude number of the head as a function
of the source Froude number. (Sher and Woods, 2017)

overlying ambient fluid.

Figure 25: (Left) Variation of the vertical profile of salt concentration normalised by source
salt concentration as measured just downstream of the inflow mixing zone (solid line) and
just behind the head of the flow (dotted line) and the horizontal speed, normalised by the
maximum horizontal speed just downstream of the inflow mixing zone (trianges, dashed
line) as a function of the normalised height. Top case represents a high source Froude
number while bottom case represents a low source Froude number. (right) Photographs
of the current just downstream of the source for (top) high source Froude number and
(bottom) low source Froude number. (Sher and Woods, 2017)

It can be seen that the upper part of the flow has a vertical gradient in velocity and
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Figure 26: Estimate of the gradient Richardson number in the current just downstream of
the inflow mixing zone as a function of the source Froude number. (Sher and Woods, 2017)

buoyancy, below the ambient fluid. The stability of such a region depends on the gradient
Richardson number, defined by Rig = dg′/dz/(du/dz)2 with the flow being stable for Rig >
0.25. Figure 26 plots the gradient Richardson number against the source Froude number.
We note that smaller source Froude numbers are associated with larger gradient Richardson
numbers limiting mixing in the main part of the flow.

Figure 27(right) plots estimates of the flux of ambient fluid, per unit width, that is
mixed into the current. Plotted against the Froude number, solid triangles represent the
total fractional mixing in the current, solid circles represent the fractional mixing in the
inflow region (ein) and open circles represent the fractional mixing in the remainder of the
current. We can see that for low Froude numbers, there is relatively little mixing in the
inflow mixing zone. There is a shifting balance between mixing near the source for large
source Froude numbers and mixing downstream for smaller source Froude numbers.

If we follow the classical parameterisation for the rate of entrainment of ambient fluid
into the upper surface of the flow and take it to be of the form α(Fr(x, t))u(x, t) per unit
area, where Fr is a local Froude number for the flow, then we would expect the total volume
of the current per unit width to increase according to the relation

dV

dt
= Q0 + einQ0 +

∫ L(t)−Ln

L0

α(Fr(x, t))udx+ ehQ0 (37)

where eh is the fraction of the mixing that occurs at the head of the flow and is L0 is
the length of the mixing zone near the inflow. The middle term on the right-hand side
then represents the entrainment along the upper boundary of the main part of the current
away from the inflow adjustment zone and the head. If this entrainment was significant in
experiments, then we would expect a gradual increase in the rate of change of volume with
time. This rate of increase of the total volume of the current is plotted in figure 27(left)
where the volume per unit width is displayed as a function of time. To good approximation,
the volume per unit width increases linearly with time as the current advances downstream.
It is inferred that, for the length scale of the currents explored here, any mixing on the upper
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surface of the flow is small compared with the sum of the mixing at the source and the nose
of the flow.

Figure 27: (a) Variation of the total fractional mixing in the current (solid triangles), the
fractional mixing in the inflow region, ein (solid circles) and the fractional mixing in the
remainder of the current, en (open circles) as a function of the source Froude number. (b)
Total volume of the current per unit width as a function of time. (Sher and Woods, 2017)

The fraction of the fluid displaced by the head of the gravity current that is mixed into
the current, E, can be expressed as

Ehn
dxn
dt

= enQ0, (38)

where en is rate of entrainment of fluid downstream of the near-source mixing zone as a
fraction of the source volume flux. The variation of E with Fr0 is shown in figure 28.
Currents for which Fr0 < 1 involve relatively little mixing near the inflow but have a much
larger entrainment at the head of the flow.

It could be anticipated that the currents take on a long-time asymptotic self-similar
structure in which the distribution of density and volume along the current is primarily a
function of the position relative to the nose, η = x/xn(t). Further, we might anticipate
that this structure depends on the source Froude number given the different partitioning of
the mixing between the inflow and the head and the different vertical structure of the flow.
Figure 29 shows the evolution with dimensionless time of contours of (ac) the fraction of
the total volume and (df ) the fraction of the total buoyancy of the current in the region
0 < ξ < η. Measurements are shown for three gravity currents, with input Froude numbers
of 0.4 (a,d), 1.5 (b,e) and 2.7 (c,f ). For each of the currents in figure 8, in (gi), we illustrate
the concentration field throughout the current at one instant in time. For low Froude
numbers, there is less mixing in the inflow adjustment region. A relatively dense region
of fluid at the base of the flow then advances towards the head of the flow. Here, it rises
and mixes with the displaced ambient fluid, forming the upper wake region of relatively
low density which extends backwards from the nose of the current. In contrast, with higher
inlet Froude numbers, there is much more mixing of ambient fluid in the near-source mixing
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Figure 28: Variation of the nose entrainment parameter E representing the fraction of the
fluid initially ahead of the current which is entrained by the current as it is displaced over
the head of the current. (Sher and Woods, 2017)

zone. This leads to a much more continuous vertical stratification and there is less mixing
of the displaced ambient fluid into the head of the flow.

2.4 Analytic solutions for entraining stratified gravity currents

For an entraining gravity current, the momentum flux and buoyancy flux are conserved,
whereas the mass flux increases owing to entrainment. Entrainment at the interface between
the gravity current and the ambient forms a mixing layer at the interface, which may
suppress further entrainment. As the mixing increases, the depth of the interfacial layer
gradually increases. Assuming that the pressure in the current is hydrostatic above a layer
of height h, the conservation equations are given by

∂

∂x

(∫ h

0
udy

)
= εu(x, h),

∂

∂x

(∫ h

0
u2 +

(∫ h

y
g′dy∗

)
dy

)
= 0,

∂

∂x

(∫ h

0
ug′dy

)
= 0

(39)
where u(x, y) and g′(x, y) are the velocity and buoyancy profiles within the current, and
ε is the entrainment parameter. The shape factors S1, S2, S3, S4 are defined in terms of
the particular structure of the velocity and buoyancy profiles. In accord with the numerical
experiments of steady gravity currents by Kneller et al. (2016) (figure 30), the upstream
profile is assumed to be uniform in velocity and buoyancy, similar to a plug flow, whereas
downstream, the flow is stratified and the depths of the velocity and buoyancy profiles are
assumed to be the same (Figure 31). The profiles of velocity and buoyancy are given by

u(xd, y) =

{
ud if 0 ≤ y ≤ φhd,

ud

(
hd−y

hd(1−φ)

)
if φhd ≤ y ≤ hd,

(40)
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Figure 29: The evolution with dimensionless time of contours of (a-c) the fraction of the
total volume and (d-f) the fraction of the total buoyancy of the current as a function of η.
(g-i) Concentration field throughout the current at one instant in time. Measurements are
shown for three gravity currents corresponding to (a,d,g) Fr0 = 0.4, (b,e,h) Fr0 = 1.5 and
(c,f,i) Fr0 = 2.7. (Sher and Woods, 2017)

Figure 30: (a), (b) The variation of density and velocity profiles with height in a gravity
current. The solid line corresponds to the theoretical model and the points correspond to
data from numerical experiments done by Kneller et al. (2016). The numerical experiments
consisted of bottom drag which led to a boundary layer at y = 0 as shown in (b).
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Figure 31: A schematic of the model gravity current. A uniform upstream profile at x = 0
evolves to a hybrid uniform-linear downstream profile via turbulent entrainment through
the interface and/or possibly through a hydraulic jump. The uniform flow fraction of the
velocity and density profiles is given by φ ∈ [0, 1]. The upstream volume flux is denoted Qu

and the downstream volume flux is denoted Qd. (Horsley and Woods, 2018)

g′(xd, y) =

{
g′d if 0 ≤ y ≤ φhd,

g′d
(

hd−y
hd(1−φ)

)
if φhd ≤ y ≤ hd,

(41)

The fluid is assumed to transition between the upstream and downstream state via
turbulent entrainment and mixing through the interface, or through a hydraulic jump, or a
combination of both. The following averaged quantities are defined

S1ūh =

∫ h

0
udy, S2ū

2h+ S3ḡ
′h2 =

∫ h

0
u2 +

(∫ h

y
g′dy∗

)
dy, S4ūḡ

′h =

∫ h

0
ug′dy (42)

where ū(x) and ḡ′(x) are the depth averaged velocity and buoyancy profiles, and h(x) is
the depth of the current. From the depth-averaged quantities (equations (42)) and the
conservation laws (equations (39)) we find that the transition from a uniform source at
x = 0 to the flow at a downstream location x = xd can be written in terms of the shape
factors at x = xd in the form

S1udhd − uuhu =

∫ xd

0
εu(x, h)dx, u2u +

g′uh2u
2

= S2u
2
dhd + S3g

′
dh

2
d, uug

′
uhu = S4udg

′
dhd

(43)
where uu = ū(0), ud = ū(xd), g

′
u = ḡ′(0), g′d = ḡ′(xd), hu = h(0), hd = h(xd) denote the

upstream and downstream velocities, buoyancies, and heights of the flow, respectively.
Substituting the ideal downstream profiles (equations (40, 41)) into the conservation

equations (42) leads to the following constraints on ud, hd as functions of φ and the upstream
flow uu, g

′
u and hu.

uug
′
uhu =

1

3
udg

′
uhd(1 + 2φ), u2uhu +

1

2
g′uh

2
u =

1

3
u2dhd(1 + 2φ) +

1

6
g′uh

2
d(1 + φ+ φ2) (44)

The downstream gradient Richardson number is defined based on the upper linearly
stratified portion of the flow as

92



Figure 32: These figures refer to the case with a lower uniform region overlain by an in-
terfacial linearly stratified mixing region. (a) A regime diagram illustrating the nature of
solutions for an upstream Froude number Fru and downstream uniform flow fraction φ.
Blue shaded areas are regions of no solution due to violation of conservation laws. Green
shaded areas are where Rid > 1/4 and the downstream flow is stable for both supercritical
and subcritical solutions. Red shaded areas are stable for subcritical solutions and unstable
for supercritical solutions. White areas are where Rid < 1/4 and the downstream flow is
unstable for all solutions. (b) The variation of downstream gradient Richardson number
with uniform flow fraction φ. Supercritical solutions are shown as solid lines and subcritical
solutions as dashed lines. The two solution branches converge when φ = φmin at Rid(φmin).
The turning point of the subcritical branch gives a maximal downstream gradient Richard-
son number Ridmax for each upstream Froude number Fru. Portions of both branches below
the black dotted line Rid = 1/4 are unstable. (Horsley and Woods, 2018)

Rid =
g′dhd(1− φ)

u2d
(45)

and the upstream Froude number is given by

Fru =
uu√
g′uhu

(46)

Note that the equations for the conservation of buoyancy and momentum lead to an
equation which is cubic in nature with three real roots. One of these roots is unphysical
since it requires hd < 0. However, the two remaining roots may be interpreted physically.
One root, denoted supercritical, can be thought of as evolving continuously away from the
upstream uniform flow by turbulent entrainment. The entrainment gradually erodes the
interface, creating a deepening interfacial mixing layer. The other root, denoted subcritical,
can be interpreted as the case in which the fluid undergoes a discontinuous hydraulic jump
to a conjugate flow state where the local Froude number is less than 1. This could possibly
occur after a period of supercritical interfacial entrainment. The case for which both super-
critical and subcritical branches are stable is shaded green in figure 32(a). The red shaded
area indicates where only the subcritical solution branch is stable and the supercritical un-
stable. We note that transition to a uniform flow downstream (φ = 1) is always unstable
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Figure 33: (a) Fru < 2.291. This figure represents the case with a lower uniform region

overlain by an interfacial linearly stratified mixing region. Dimensionless entrainment flux
ΔQ as a function of the downstream gradient Richardson number for a fixed upstream
Froude number Fru. Supercritical branch solutions are shown as solid lines and subcritical
as dashed lines. Maximal entrainment occurs at the convergence of the two branches φmin.
(b) Fru > 2.291. This refers to the case when the flow is fully modified and is linearly

stratified throughout. The downstream entrainment flux ΔQ as a function of downstream
gradient Richardson number Rid for a fixed upstream inflow Froude number Fru = 4. The

orange curve illustrates solutions from the subcritical interfacial mixing layer model, the
blue curve illustrates solutions from the supercritical interfacial mixing layer model, and
the green curve illustrates solutions from the fully modified layer model. Note that in both
figures, solutions to the left of the line Rid = 1/4 are unstable.

in that the gradient Richardson number tends to zero as the mixed layer thickness tends to
zero, with a non-zero jump in density and velocity across the layer.

Figure 32(b) illustrates the variation of the downstream gradient Richardson number
Rid as a function of the fractional depth of the well-mixed lower region of the flow φ for
a series of upstream Froude numbers Fru. The supercritical branch, denoted with solid

lines, converges to the subcritical solution branch, denoted with dashed lines, at the value
Rid(Fru, φmin). The dotted black line indicates Rid = 1/4, below which all downstream

flows are unstable.
Rewriting equations (44) in terms of the dimensionless parameter, the upstream Froude

number Fru from equation (46) leads to an understanding that there exists a minimal φ for
each upstream Froude number Fru, and this minimum decreases as Fru increases. If the

upstream Froude number is too small, the momentum of the flow may not be sufficient to
mix the current with large volumes of the ambient fluid, and this limits the possible range
of φ values downstream. Figure 33(a) shows the variation of the dimensionless entrainment
flux ΔQ as a function of the downstream gradient Richardson number for three fixed values
of the upstream Froude number F ru, all less than 2.291 which is the critical value of the
Froude number. For F ru< 2.291, the flow is never fully mixed, and for F ru> 2.291, the flow

may become fully mixed. In the latter case (figure 33(b)), very substantial dilution is possible,
which is consistent with experimental values. For upstream Froude numbers in excess of
2.921 the stratified zone may extend to the lower boundary of the domain, so that
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Figure 34: (Left) This refers to the case with a lower uniform region overlain by an interfacial
linearly stratified mixing region. The variation of dimensionless energy dissipation ΔE with
the downstream uniform flow fraction φ for a fixed upstream Froude number Fru = 2. The
blue line corresponds to the supercritical branch, which continuously moves away from the
φ = 1 solution where no transition occurs. The orange line corresponds to the subcritical
branch, which has finite dissipation at φ = 1 corresponding to a hydraulic jump with no
entrainment. This discontinuous transition can then dissipate more energy as a shear layer is
created by the entrainment of fluid up to a maximum value ΔE = 0.096. (Right) This refers
to the case when the flow is fully modified and is linearly stratified throughout. The variation
of dimensionless energy dissipation ΔE with downstream gradient Richardson number Rid
for a fixed upstream Froude number Fru = 4. The orange curve illustrates solutions from
the subcritical interfacial mixing layer model, the blue curve illustrates solutions from the
supercritical interfacial mixing layer model, and the green curve illustrates solutions from
the fully modified layer model. Solutions to the left of the black dotted line Rid = 1/4 are
unstable.

there is no uniform region of flow.
A clear way to illustrate the difference between the two solution branches is to consider

the energy dissipation ΔE(Fru, φ) across the transition. The steady energy flux lost per
unit distance through the transition is given by

∂

∂x

(∫ h

0
u

(
u2

2
+ g′y

)
dy +

∫ h

0
u

(∫ h

y
g′dy∗

)
dy

)
=

∂(ΔE)

∂x
(47)

Figures 34(a,b) show the variation of energy dissipation ΔE with the downstream uni-
form flow fraction φ and with downstream gradient Richardson number Rid for a fixed value
of the upstream Froude number.
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Lecture 6
Modeling Ash Flows and Volcanoes

Notes by Sutirtha Sengupta, Sara Lenzi and Andrea Lehn

June 25, 2018

1 Volcanoes

Figure 1: Pictures from the Monserrat eruption showing the explosive ash plumes, unstable
lava domes and associated seismic activity as a function of time since first eruption on July
30, 1997.
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2 Ash FFlows

Volcanic eruptions are often accompanied by flows in which material is lofting upwards
just behind the head of the flow, as shown in Fig 2. We can attempt to understand the
dynamics of such ash flows both through laboratory experiments and simplified models of
pyroclastic flows that will be the topic of the preliminary sections of this lecture, followed
by preliminary modeling approaches to understand the basic mechanism driving these giant

eruptions.

Figure 2: Left: Flow fronts such as those formed during the eruptions at Mt Unzen
Right: Pyroclastic density current on 8 January 2010 at Soufriere Hills Volcano, Montserrat
(reproduced from [1], Fig 5.5b)

2.1 Experiments

2.2 What controls eruption?

The bulk density of the mixture is given by

ρm =

[
n

ρg
+

1− n

ρs

]−1

, (1)

where n is the gas mass fraction, ρg the gas density, and ρs the solid density. We assume a
gas mass fraction given by

n = ns − sp
1
2 if p <

n2
s

s
= 0 otherwise, (2)

and the gas pressure given by the ideal gas law:

ρg =
p

RT
. (3)

The magma compressibility is given by

βm =
1

ρm

∂ρm
∂P

. (4)
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Figure 3: Left: Evolution of an initially dense salt and salt powder gravity current propa-
gating through a flume filled with lemonade; Right: (top) Illustration of the time-dependent
mixing of ambient fluid (green) into the head of the flow (red) and the subsequent lift off of
mixed buoyant fluid from the rear of the head. (bottom). Schematic diagram illustrating
the process of mixing and lift off.[2]

In the magma chamber, the elastic crust leads to the relation

dV = V βcdp. (5)

Mass changes when pressure changes according to

V = ρmV

dM = (βm + βc)Mdp. (6)

If βm � βc, the eruption is controlled by magma compressibility.
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Figure 4: Basic model of a volcanic magma chamber

Figure 5: Plot showing the variation of magma compressibility (or the bulk modulus) with
depth of the magma chamber (proxy for pressure)
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3 Modeling Eruptions

Two main different kinds of simplified magma could be taken in account to describe the
eruptions behavior:

• Gas-poor magma, with very rapid increasing of pressure and when the chamber is
recharged with magma.

• Gas-rich magma, with more gradual increase in pressure as new magma recharges the
chamber.

Figure 6: S

We start now to develop a simplified model for a magma chamber using some equations for
heat exchange eq.(7), crystals eq.(8) and bubbles eq.(9) contents.

MbcpdTb = −Fdt (7)

xb =
(T − Tb)

200
(8)

nb = n0 − sP 1/2(1− xb) (9)

Where the subscript b relates to the basaltic magma, cp is the specific heat at constant
pressure and F is the heat flux from the magma chamber. The second equation means that
the crystal content depends on temperature and the third equation is also known as the
Henry’s Law where nb is the mass fraction of exsolved gas.
The principal driver for eruptions is the heat exchange and cooling of the magma. Erup-
tions take place when cooling of saturated basalt leads to formation of crystals, saturation
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Figure 7: Scheme of magma chamber.

of the magma with gas and exsolution of gas. This leads to an increasing the pressure of
the overall magma.
We also consider the following :

dP = −βc
dVb

V
(10)

Mb = ρbVb → dVb = −Vb
dρb
ρb

(11)

ρb =

(
nbRTb

P
+

(1− nb)

ρbm

)−1

(12)

where eq.(10) is the pressure evolution and βc is the crust compressibility, eq.(11) is mass
conservation just before the eruption and eq.(12) is the bubbles mixture evolution.
Combining these equations we obtain a relation between the pressure change and the tem-
perature change of the magma (cooling):[

V

β
+

Vb

ρb

dρb
dP

]
dP =

[
Vb

ρb

dρb
dTb

]
dTb (13)

A more realistic case is that of fig.(7) in which we consider the interaction between basalt
(subscript b) and silicic magma (subscript s) using the same conservation laws as follows :
The heat exchange relation:

MbcpdTb = −MscpdTs (14)

the crystal content of the basalt:

xb =
(T − Tb)

200
(15)
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the gas mass fraction of the basalt:

nb = n0 − sP 1/2(1− xb) (16)

the pressure of the chamber in terms of the volume of basalt and silicic magma, and the
compressibility of the crust:

dP = −βc
dVb + dVs

V
(17)

the mass of the basalt:

Mb = ρbVb → dVb = −Vb
dρb
ρb

(18)

the density of the basalt:

ρb =

(
nbRTb

P
+

(1− nb)

ρbm

)−1

(19)

Combining these equations leads to the overall relation between pressure and temperature
of the basalt: [

V

β
+

Vb

ρb

dρb
dP

+
Vs

ρs

dρs
dP

]
dP =

[
Vb

ρb

dρb
dTb

−Mb
Vs

Msρs

dρs
dP

]
dTb (20)

Figure 8: Different behavior for wet new magma (blue) and dry new magma (red):
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Figure 9: Density and pressure for saturated magma (blue) and initially unsaturated magma
(red) to basalt crystal content. Density is higher in saturated magma case (left) but pressure
increases for more hydrated magma. Eventually the unsaturated magma becomes saturated
and that magma then follows a similar trend as the blue saturated magma

We analyze now how an eruption can be triggered by mixing.
If the two magmas become of comparable density, there will be an overturn event, and the
magmas may mix. The basalt then cools crystallises and generates more bubbles, starting

a pressure increase. The maximum pressure increase is shown by the vertical black arrow
in Fig(10b).

Figure 10: Evolution of density and pressure in terms of crystal content due to overturn
and mixing.
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Figure 11: Overturn giving rise to Rayleigh-Taylor instabilities.

Laboratory experiments to reproduce this behavior have been developed as shown in Fig.(12)

Figure 12: Laboratory experiments showing the Rayleigh-Taylor instabilities rise.

The cooling of the magma can be quantified in terms of a turbulent Rayleigh number as
below. [

ρCp + ρL
dX

dT

dT

dt

]
= −F

udiff ∼ k

H

uconv ∼ gαΔTH2

ν

Ra =
uconv
udiff

=
gαΔTH3

νκ

(21)

where the Rayleigh number indicates the strength of convection.
If Ra � 1 the convection dominates and the heat flux is expected to be depth independent:

F ∼ λ
ρCpκΔT

H
Ra1/3 (22)
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Figure 13: Behavior of heat flux for high Ra numbers.

where the cooling and the buoyant time are :

τc =

(
κν

gαH3ΔT

)−1/3 HL

λκCp

dX

dT

τbuoy =
H

vs

(23)

and it’s possible to define two different regimes:
if τc � τb plumes dominate
if τc � τb overturn dominate
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Figure 14: Ascent of bubbles in a magma chamber leads to large increase of pressure,
making eruption more likely.

4 Bubble Ascent and Eruptions

Bubble ascent of gases in magma can lead to pressurization of the volcanic system. A dia-
gram showing bubble rise is presented in Figure 14. Using the ideal gas law and assuming
an elastic crust, the pressure increase with bubble rise can be calculated. Mass is conserved
in the magma-bubble system. The subscript b represents gaseous parameters and m repre-
sents magma.

The system of equations is as follows

p = ρRT ideal gas law (24)

dV

V
= βcdp elastic crust, βc is crust compressibility (25)

p(z) = p(H) + ρmg(z −H) (26)

ρb(H) = ρb(z)

(
p(H) + ρbg(z −H)

p(H)

)
(27)

d(ρbVb) = −d(ρmVm) conservation of mass (28)

By solving these equations and accounting for the ascent of bubbles through the magmas
we find that a 100 m ascent of bubbles generates an increase in pressure of 9-10 M Pa,
leading to eruption.

5 Eruption Duration

The eruption of magma from a single chamber may be modeled using a simple linear ar-
rangement using a friction factor, f , to capture frictional losses as the plug of magma rises
in the conduit to the surface vent. For a single chamber, there is an exponentially waning
eruption rate with time, Ve(t). A schematic for a single chamber eruption is shown in Figure
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Figure 15: The volume of erupted fluid from a single chamber can be modeled using a single
exponential decay function.

15.

ΔV = βmV0ΔP (29)

d(ΔV )

dt
= −fΔp (30)

Ve(t) = βmΔP0

(
1− exp

− ft
βmV0

)
(31)

Eruptions that involve multiple chambers of magma may involve the draining of the cham-
bers in succession, and this leads to multiple exponential functions to model the evolution of
the eruption. For example, multiple chambers erupted within the Icelandic Volcano Eyjaf-
jallajökull: deeper chambers erupted in response to the decompression caused by eruptions
from higher chambers. A diagram detailing the eruption cascade of Eyjafjallajökull is shown
in Figure 16. A schematic of a multi-chamber eruption is shown in Figure 17.

6 Crystal Yield Stress

During eruptions the formation of a volcanic plug regulates the rate of eruption. In a
crystal pack the yield stress develops when the crystals are all in contact. A critical stress
is necessary to create movement of the very viscous plug that forms, which has a viscosity
to the order of 1 Pa·s. Cracking of the crystalline layer can produce paths for bubbles to
de-gas, decreasing the pressure of the system. See Figure 18.

7 Eruptions: Ash Clouds vs. Pyroclastic Flows

Tall columns of ash can be generated if eruption speeds are sufficiently fast, forming what
is called a Plinian eruption column. Buoyant plumes of hot ash from erupting volcanoes
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Figure 16: Ongoing eruption at Eyjafjallajökull: subsequent eruption phases began in
deeper magma chambers as the decompression from prior eruptions propagated deeper
into the Earth.

can rise over 40 km into the atmosphere. The flux supplying these columns is in the range

of 106 − 109 kg/s. The temperature is very hot at 1000-1200 ◦C. The particulate ash or
pumice carried by the plume can be as small as microns, ranging from 10−6 − 10−2 m in
size. The height of rise of eruption columns, such as those shown in Figure 19, depends
on the eruption rate, atmospheric stratification, the thermal energy difference between the
plume and the surrounding air and the water composition of the atmosphere.

For the case of a small exit velocity or large mass flux, the erupted material will fall back to
the ground and spread laterally, forming a pyroclastic flow. Fountains that have collapsed
and are traveling laterally can sometimes become buoyant after mixing with the cooler
ambient air. The ash particles can rise up into the atmosphere many kilometers away from
the source. This occurred in the 1980 eruption of Mount St. Helens after the ash flow
traveled about 15 kilometers from the source before lifting off the ground. Ash clouds then
intrude laterally into the atmosphere once thermal equilibrium between the particles and
environment is achieved. Large, lateral clouds of ash are swept down wind and can rain
down on surrounding areas for weeks or months after initial eruption.

7.1 Simplified aapproach: Estimating intensity of eruption

The height of the plume comes from the classical plume model. Ambient stratification, N,
relative to adiabat provides scaling for height of column rise, H, as

H = 5B1/4N−3/4. (32)
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Figure 17: Viscous volcanic plug forms at vent during eruption. Deep recharge drives the
ongoing eruption.
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Figure 18: The formation of a crystal pack via simulation: the yield stress develops when
the crystals are all in good contact, as shown in panels a and d.

Figure 19: Eruption columns of hot ash rise high up into the atmosphere.

Figure 20: Left: a plume rises high up into the atmosphere and sediments fall out as the
column rises. Right: a pyroclastic flow occurs when a fountain occurs at the vent.
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Figure 21: Column height versus eruption rate.

Buoyancy flux is not conserved generally since density doesn’t vary linearly with tempera-
ture. Thermal and potential energy is conserved. Therefore, the effective buoyancy flux is
given as

B = g(αΔT )Veff =
QHg

(ρCp)aT0
, (33)

where (ρCp)a is the thermal capacity of the atmosphere. Data fits the model well even
though the model does not capture the variation in stratification experienced as plumes rise
in the atmosphere, as shown in Figure 21.

Explicitly accounting for heat exchange and particle content, whether a plume or ground
flow forms can be predicted. Thermal equilibrium occurs over a fast time scale, about 100
s. Moisture is key only in small plumes, and larger particles fallout of the rising cloud.
Mass conservation is,

dQ

dz
= 2πεuρab, (34)

where ε is the entrainment coefficient, u is the velocity, and b is the radius. Conservation
of momentum is,

dM

dz
= g(ρ− ρa)b

2. (35)

Heat flux balance with temperature θ is given by the steady flow energy equation,

d[Q(u2/2) + gz + Cpθ)

dz
= 2πεub(gz + Cpθa). (36)

Density of the mixture is,

ρ =

[
nRT

p
+

1− n

ρm

]
. (37)

The gas and air budget is,
dnQ

dz
= 2πεuρzb. (38)
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Figure 22: Higher eruption velocities form plumes while lower velocities tend to form ash
flows.

Finally, the mass and momentum fluxes are familiarly written as,

Q = ρub2 (39)

M = ρu2b2. (40)

A fast initial speed creates a buoyant plume that rises, but a slower plume becomes an ash
flow, as shown in Figure 22. This is because the erupting mixture is initially a dense particle-
laden flow, but as the mixture entrains air, the density decreases. If the mixture entrains
sufficient air it will become buoyant prior to the momentum falling to zero. Otherwise the
material will collapse to the ground and form an ash flow.

The height of the plume as a function of density and velocity can also be predicted. See
Figure 23. Once the thermal energy from the cloud has been exhausted, the cloud stops
rising and spreads laterally. At the top height adiabatic expansion occurs in the cold
atmosphere. This is what happened with the Mount St. Helens eruption of 1980: a large ash
cloud reached a top height and spread laterally, raining out particles over the Northwestern
United States, as shown in in Figure 24.
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Figure 23: Height related to plume density and velocity.

Figure 24: A neutrally buoyant cloud of ash from the Mount St.Helens eruption in 1980
travels across the Northwestern USA, distributing ash over the landscape as particles fall
out.
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Figure 1: Example of volcano eruption.

We begin with the case in which material rises as a dense fountain composed of particles
and relatively buoyant fluid. In the lab we can take a tank full of salt water and inject a
fresh water-particle mixture where the mixture is more dense than salt water. The mixture
comes out as a fountain but as it rises up particles moving with its fall speed may start
separating from the fluid. There are two characteristic speeds in these experiments: one is
the fall speed of particles while the other one is the rise speed of the fountain.

Depending on the particle size (fall speed), the fluid could undergo full collapse or partial
collapse. In situations where we have tiny particles, the particle fall speed is extremely
small while the fountain speed is higher so the flow behaves as a single-phase fluid. In other
situations, the initial particle fall speed is greater than the fountain speed. As we talked
about, the fountain is driven by its initial momentum and would gradually slow down to the
characteristic fountain speed. If the characteristic fountain speed is less than the particle
fall speed, particles would start separating from the fluid before reaching the total height.

Volcanic lumes and Porous ock

1 Volcanic Plumes

Volcano eruptions could inject ash well above the troposphere; for example, some eruptions
could reach as high as 35km, about three times the height of a commercial airplane’s flight.
The aim is to understand how these materials reach such a height. Sometimes large eruptions
rise continually higher into the atmosphere, spreading out and forming ash clouds (Fig.1
left), while other times the material coming out from volcano rises but subsequently collapses
to form a catastrophic flow (Fig.1 right).

Notes by Edward Hinton and Bowen Zhao

June 26, 2018
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After the separation, particles would necessarily start to fall out at some height whereas the
fluids, now being fresher than the ambient salt water and hence buoyant, would continue
rising up. The separation thus reverses the buoyancy of the flow and the flow subsequently
rises up.

We can conduct a series of experiments where we gradually increase the concentration of
water in the salt (and hence the density), or equivalently increase the number of particles in
the fresh-water-particle mixture but keep the mixture denser than the salt water. Starting
from a case where the flow fully collapses, at some point we would reach the situation where
only a certain fraction of the particle falling out is sufficient to make the rest of the flow
buoyant. In this case, some of particles would fall out while the rest of the mixture would
become buoyant and carry on rising. If we measure the fraction of particles that rise above
some specific height in this series of experiments, we see full collapse below some critical salt
content while above this critical salt content, a greater and greater fraction of the particles
rise in the fountain. The key feature of this multiphase flow is that some particles rise and
others drop out.

But this is not the whole story; one thing that is missing in the previous simple setup is
entrainment: the effect of entrainment in an ash flow. In volcanic eruptions, the rising flow
is very, very hot; the air entrained into the flow would be heated up, which would generate
additional buoyancy and change the whole dynamics. In above experiments, we fixed the
buoyancy of the injected freshwater. To conduct an analogous experiment considering
entrainment, we would need to use the lemonade or sprite approach that we talked about
for the ash flow: when mixing takes place, we can see bubbles generated and then we can
examine how the fraction of rising particles changes.

In a real volcanic system, one also needs to worry about the size distribution of particles
as well. Just to illustrate some of the complexity of the real system, we now look at a
fountain with two sizes of particles; again inject the mixture of freshwater and smaller and
larger particles into the salt water. We can tune the density of salt water to reach a situation
where large particles falling out completely compensates the negative buoyancy and the rest
of the mixture become neutrally buoyant. If we decrease the salt water density such that
losing large particles is not enough and hence both large particles and small particles would
collapse.

Next let’s do some dimensional analysis to look at some details of the volcano system.
The key question we want to address is how high volcanic eruptions can arise. Denote the
ambient atmospheric stratification relative to the adiabat (i.e. the well mixed plume) as N.
If the atmosphere stratification is neutrally buoyant relative to the adiabat then the plume
can rise up without any penalty. Dimensional analysis then predicts that the height of rise
(H) is proportional to the buoyancy flux (B) and inversely proportional to the ambient
stratification N as H = 5B1/4N−3/4. As the volcanic plume (rocks and ashes) is very dense
and hot at eruption and certainly not buoyant, it is not trivial to obtain the buoyancy flux
B. However we notice that the heat flux is conserved. In fact, the heat flux is what allows
the plume to rise high: as the ash transfers heat to the entrained air, the plume density
is reduced enough to be able to rise up. So we can estimate the effective buoyancy flux in
terms of heat flux. Recall that B = g(αΔT )Veff , where Veff is the plume volume. For air
with small temperature variations, we can show that its thermal expansion coefficient α is
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just 1
T :

ρ =
P

RT
=

P

R(T0 +ΔT )
=

P

RT0
(1− ΔT

T0
) = ρ0(1− αΔT )). (1)

Therefore without worrying about details of the source, the effective buoyancy flux B =
gα QH

(ρCp)a
= gQH

(ρCp)aT0
, where (ρCp)a denotes the density and heat capacity for air. The heat

flux of the volcano eruption is just product of the volume flux, the specific heat capacity,
the density and the actual temperature. So we can relate rise height and eruption rate. If
we plot the measured historical volcano eruption height versus the volume flux on a log-log
plot, we would find the slope to be roughly 1/4 (Fig.2). There is no account of stratification
and many approximations are involved to get the eruption rate and so on yet the model
seems to capture the general picture quite well.

Figure 2: Historical volcano eruption height versus eruption rate.

If we want to a little more details, we can try to develop a plume model for volcano
eruptions. First, we will relax the assumption of the entrainment coefficient being constant
but still assume the flow property evolves sufficiently slowly so it would keep the self-
similar structure although the self-similar structure will evolve with height. Then we have
the following set of equations:

d

dz
Q = 2πεuρab (mass conservation)

d

dz
M = g(ρ− ρa)b

2 (momentum conservation)

d

dz
Q(

u2

2
+ gz + Cpθ) = 2πεub(gz + Cpθa) (energy\ heat flux balance)

ρ = [
nRT

P
+

1− n

ρm
]−1 (density of mixture)

d

dz
nQ = 2πεuρab (gas and air budget)

(2)

where Q = ρub2 and M = ρu2b2 as before. Note that we used volume conservation before
but it’s better to use actual mass conservation for a plume rising to above 30km. The
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plume mass change is due to entrainment of air (ρa). The momentum also changes due
to the buoyancy force. The energy would also change due to the energy associated with
entrained air. Also note that the particle flux is constant but the gas flux is increasing due
to the entrainment of air. It might be worthy to point out that the increase rate of total
mass and of gas fraction mass is the same, both due to entrainment of air (the RHS of first
and last equation are the same).

There are some key assumptions made in the above set of equation. First, thermal
equilibrium is assumed. Since the plume rise time is ∼100s while the heat transfer time
for typical volcano particles (<1mm) is �1s, this assumption is valid. Second, we ignored
moisture and associated latent heat release in the atmosphere. For big eruptions reaching
30-40 km, their heat budget far exceed the latent heat of moist convection so we can ignore
the moisture to leading order. However, for small eruptions that only reach a few km such
as those on Hawaii, clouds and moist convection can be triggered by the volcanic heat flux
so we do need to worry about latent heat. Third, we ignored particles falling out. As we
have seen in above experiments, big particles may fall out near the bottom and not all
particles will rise up. Lastly, we did not consider aggregation.

Some aspects of the solution is shown in Fig. 3. As we can see, holding everything else
fixed, the velocity change with height is different for different initial speed. Flow with a
very high initial speed (say 140 m/s) would experience a monotonic decrease in velocity
as it rises. There is a very rapid deceleration initially, then the flow decelerate much more
slowly while later the flow decelerate very rapidly again. The density of the flow is also
changing: very dense initially, become buoyant later while finally become denser than the
ambient again (note relative density with respect to the air is shown). What happens is
that the volcano plume just came out is very dense and hence decelerate rapidly; as the
plume rise, it entrains a lot of air and decreases its density and becomes buoyant. The slow
deceleration part in the velocity profile corresponds to the buoyant plume, whose velocity
decays as v ∝ 1

z1/3
as we showed. The buoyant plume finally reaches its neutral height with

respect to the ambient stratification and starts to decelerate until stops. If the flow has a
much smaller initial speed (say 100 m/s), the flow would decelerate as it becomes less and
less dense until finally stops. In this case, the flow behaves like a fountain throughout the
whole process and then collapses to form a ash flow. In between these two cases, the flow
(say 120 m/s) would decelerate till almost zero velocity and then accelerates as it becomes
buoyant due to entrainment of air; finally it decelerates due to the ambient stratification.
We can summarize with the plot of speed versus flux (Fig. 3 bottom right). For a given
flux, we can predict that there exists a critical speed such that below the critical speed we
get an ash flow while above it we get an eruption plumes. Looking at the graph the other
way around, for a given speed increasing the flux makes the flow more tend to collapse
and form an ash flow. This is because entrainment only happens at the surface; it is more
difficult for the flow with larger fluxes to entrain enough air before the fountain runs out of
its momentum and hence more possible to collapse. Thus there seems to exist a paradox:
bigger eruption actually tends to collapse although you might expect the opposite.

We can also employ the model to explain observations about volcano eruptions. Peo-
ple have been looking at the satellite images of plumes to derive plume top temperature.
Assuming the plume temperature same as its ambient, people then work out the plume
top height and predict the position of ashes in the atmosphere. However, sometimes they
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Figure 3: Solutions for the plume model. (Left top) Velocity of volcanic plumes with height
for different initial speeds and (left bottom) their normalized densities with respect to the
ambient. (Right) The initial speed of plumes versus the mass flux. Numbers in the left
column denote initial speed while numbers in the right column denote the gas mass in the
magma.

would yield two different height predictions while other times they observed plume tem-
perature colder than anywhere in the atmosphere. For example, Fig. 4 shows the satellite
image of Mt St Helens eruptions, where the plume top temperature is colder than anywhere
in the atmosphere. The plume model can however resolve this puzzle. According to the
model, the plume temperature decreases as it entrains air and reaches its neutral buoyancy
(density) height at some point. To compensate for the heavy particles in the flow, the
flow temperature is actually a little higher than the atmosphere temperature at its neutral
density height. Then the flow would overshoot and cools almost adiabatically; meanwhile
the atmosphere temperature stops decreasing at the Tropopause and starts increasing in
the stratosphere (Fig. 4 left bottom). The plume top temperature thus is decided by the
overshoot distance and can fall below the ambient temperature. As the ash clouds start
spreading into its ambient, its temperature would become more and more similar to the
ambient temperature, at which point the ambient temperature could be used to predict the
plume height.

2 Flow in Porous Rocks

The type of questions we will address here include oil recovery challenges, carbon seques-
tration, geothermal power production and Mixing. To put the oil recovery problem into
context, it is helpful to remind us that we currently face tremendous energy challenges.
Fig. 5 shows that oil and natural gas have supplied more than half of the global energy
consumption and will continue so for the next several decades. However, it is more and
more difficult to get the oil and natural gas out of the ground at least in part because we
don’t understand well the fluid mechanics governing the flow underground.

The challenges of oil recovery arise from facts that oil is viscous relative to water, that
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Figure 4: Satellite observation of temperature for Mt St Helens eruption.

Figure 5: Historic energy consumption by energy source types.
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oil is trapped by capillary forces and that rock is faulted and layered (compartments) and
also that shale baffles in deposit. It is however difficult to get data; we only have low-
resolution (20-30m) data inverted from seismic reflection measurements and sparse samples
from drilled wells (of order 0.1-1.0 km apart and ∼150 mm in diameter).

Based on these data, people have to estimate how much oil exists and how much oil
can be recovered from an oil filed (see Fig. 7 bottom right for a typical oil field). Next,
they have to develop an extraction Strategy. The work flow thus include gathering data to
generate pictures of the field, which is largely uncertain, building model of flow based on
force and mass balance and testing scenarios with different well-placement and flow rates
etc.

As oil is about three times as compressible as water, they can just drill a well and suck
out the oil; 8-9% oil can be generated in place simply from decompressing the oil. To get
more oil, people would inject water at one well and extract oil at second well after some
time (Fig. 6). Fig. 6 (bottom) shows the flow rate measured at a production well, which
reveals that at some point water would come out along with oil.

Figure 6: Oil extraction schematic.

The industry works on porous media have enormous supercomputers to simulate things
in great details (Fig. 7 top right), then what we can contribute by doing GFD-type, simple
analysis on subsurface flows in porous media? The problem is that they have tremendous
data gap especially away from the well (Fig. 7 left). This is where understanding of fluid
mechanics can play a role: we can parameterize the structures and look at the sensitivity
of predictions to these structures.

Considering the complexity of rock structures and multiple scales involved in the prob-
lem, we would need a composite model: a continuum model for a single layer and a series of
continuum layers on large scales, maybe also some faults cutting through the layers. In the
porous media flow, it is more convenient to work with the flux velocity u (“Darcy velocity”)
than the actual fluid velocity v:

u =
1

A

∫
vφdA, (3)

where φ denotes porosity. Note that tracers or temperature in the porous media would
move with the fluid velocity v instead of flux (volume) velocity u (more on this later). Flow
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Figure 7: Oil extraction schematic.

in the porous media is governed by “Darcy’s Law”:

u = −k

μ
∇P, (4)

where k is the permeability. This is just a low Reynolds number limit of Navier-Stokes
equation. The typical Reynolds number uδ

ν in the porous rocks is about 10−8 − 10−11: the
speed u is about 10−7 − 10−8 m/s, grain size δ is about 10−3 − 10−4 m, viscosity ν is about
10−1 − 10−2 m2/s. The permeability k in real rocks is actually a tensor as it depends on
both the direction of pressure gradient and the orientation of grains (anisotropic medium):

K =

⎡⎣K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤⎦ ;μu = −K · ∇P. (5)

However in the industry permeability is usually simplified to be a constant, k = φ3d2

180(1−φ)2
.

Now let’s look at a simple example to get a flavor of the challenge. Suppose we have
two rocks of same size but different permeability (k1, k2). The two rocks are placed either
in series or in parallel (Fig. 8). The flow in both scenarios can be worked out easily. Flow
in series:

u =
k1
μL

(Pa − Pb) =
k2
μL

(Pc − Pb)

u =
2k1k2
k1 + k2

Pa − Pc

2μL
.

(6)

Flow in parallel: pressure is continuous across layers

u =
k1 + k2

2

Pa − Pc

2μL
. (7)

Define permeability ratio α = k2
k1
, the effective permeability is thus k1

2α
1+α and k1

1+α
2 for

flow in the series and flow in parallel, respectively. The results are compared in Fig. 8

123



(bottom). It is seen that flows in parallel are generally larger than flows in series. However
in reality water comes out as well. In the case of “parallel”, initially oil would come out
quickly in the high permeability rock however water would soon come out in this rock too
(Fig. 9 top two panels). So the total production rate would be large initially but decrease
later (Fig. 9 middle blue line). While in the case of “series”, oil would come out slowly
but remain the same rate for a longer time (Fig. 9 bottom). Now if we further include the
consideration of an economic model for value that decays exponentially with time, we can
see that the case of parallel generate more values than the case of series (Fig. 10). But if
we change the discount rate or the size of the field we may get one or the other case being
more valuable: it is not clear a priori which one is better.

Figure 8: Simple flow in series versus in parallel.

Figure 9: Flows in series versus in parallel.

Next, we can generalize this model to include multiple layers in parallel. Suppose we ap-
ply a pressure gradient across all these layers (each layer i with a depth hi and permeability
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Figure 10: Flows in series versus in parallel.

ki), then the total flow is given by

Q(total) =

∑
hiki
μ

dp

dx
= u

∑
hi. (8)

The mean travel time, i.e. the time of flight for the center of mass is τ = φL
u . Flow in layer

i is given by

uihi =
kihi∑
kihi

Q, (9)

and the time of flight for layer i is given by

τi = τ
hi∑
hi

∑
hiki

hiki
. (10)

To get an idea of the situation, let’s assign random depths and permeabilities to 20 layers
(Fig. 11). After we pump in some water, different fluxes of oil would come out of each layer,
depending on the thickness and the permeability. As time goes on, each of these layers
would progressively run out of oil. So we get less and less oil while more and more water
(Fig. 11 bottom right). The low permeability layer would retain their oil for longer while
the water shooting through high permeability layer would bypass the oil.

However, we do not know the depths and permeabilities of layers in reality. To handle
on the uncertainty, let’s randomly distribute permeabilities to five layers of equal thickness.
We would pump one volume water (one volume of the reservoir size) and look at the time
by when water arrives at the well (i.e. water breakthrough time). As we can see from Fig.
12, with a factor of 10 variation in permeabilities in each layer, we get a huge envelop of
possible predictions. Note that a factor of 10 is a relatively small variation as k ∝ d2 (a
factor of 3 variation in grain size would lead to a factor of 10 variation in k). This calculation
illustrates the source of uncertainty in this simple example; with more complexity, we would
expect more uncertainty.

Next, let’s consider the effect of leakage through an impermeable layer or seal rock (such
as a layer of clay) as shown in Fig. 13. Suppose we have a layer of seal rock with depth b
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Figure 11: Flows in multiple layers in parallel.

Figure 12: Water breakthrough time.
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and permeablity kb separating a permeable upper layer (hu, ku) and a permeable lower layer
(hl, kl). If these layers are thin and long (i.e. L � h � b), we would expect a dominantly
parallel flow which slightly leaks through the seal rock layer. We have “Darcy’s Law” for
both the upper layer and lower layer; however, the two pressure gradient might be different
because of a lack of pressure communication. The pressure difference in the upper and lower
layer would necessarily drive a cross-flow, also governed by “Darcy’s Law”. The governing
equations are thus

uu = −ku
μ

∂p

∂x

ul = −kl
μ

∂p

∂x

∂huuu
∂x

= − kb
μb

(pu − pl)

∂hlul
∂x

=
kb
μb

(pu − pl),

(11)

where the last two equations are continuity or mass conservation equation applied to the
upper layer and the lower layer, respectively. After some algebra, we get

∂4pu
∂x4

− kb
b
(

1

huku
+

1

hlkl
)
∂2pu
∂x2

= 0. (12)

It therefore follows that the leakage flux is function of a dimensionless number Γ = kbL
2

bhk
,

where 1
hk

= 1
huku

+ 1
hlkl

. For seal to be effective, we want Γ � 1 or kb
k � hb

L2 . As shown in
Fig. 13, for typical values of oil fields, Γ would vary over from 1 to 100, which implies either
very effective or very ineffective seal effect.

Figure 13: Seal rock.

The next complexity we want to address is that strata often align in different directions,
which makes it nontrivial to calculate the effective permeability. Let’s consider a simple
example where the layer makes a θ angle to the pressure gradient force (Fig. 14), such that
we have two characteristic permeability along the layer (k1) and cross the layer (k2). The
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horizontal flow u is composed of a projection from along the layer direction k1
μ Px cos

2 θ and a

projection from cross the layer direction k2
μ Px sin

2 θ. Similar for the vertical flow. However,
there cannot exist vertical flow due to the seal lock (assumed perfect seal for simplicity).
That is, there must exist a vertical pressure gradient Py, whose induced vertical flow exactly
cancels the vertical flow from horizontal pressure gradient Px. The set of governing equation
are as follows:

u(Px) =
1

μ
(k1Px cos

2 θ + k2Px sin
2 θ)

v(Px) =
1

μ
(k1Px cos θ sin θ − k2Px sin θ cos θ)

u(Py) =
1

μ
(k1Py sin

2 θ + k2Py cos
2 θ)

v(Py) =
1

μ
(k1Py sin θ cos θ − k2Py cos θ sin θ)

v(Px) + v(Py) = 0.

(13)

After some algebra, we get

u =
Px

μ
(

k1k2

k1 sin
2 θ + k2 cos2 θ

),

keff =
k1k2

k1 sin
2 θ + k2 cos2 θ

.

(14)

The effective permeability keff is the average of k1 and k2 with geometric weighting. Fig.
14 (bottom) shows the ratio of keff

k1
as a function of angel θ.

Figure 14: Seal rock.

These simple calculations are aimed to illustrate on the complexity of flows in porous
rocks in the real fields.
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Lecture 8
Porous Media Gravity Currents

      Notes by Rohit Supekar and Tyler Lutz

1 Introduction

Sub-surface porous rocks are very heterogeneous. This is evident from the pictures of cliffs in
figure (1). Notice the different strata along which the rocks are aligned. These layers typically
have different values for their permeability and are separated by seals that have very low
permeability. Sometimes, the seals can also have fractures across them that allow the leakage
of a fluid. This heterogeneity in the structure becomes important in practical problems of oil
extraction and Carbon sequestration. Carbon sequestration is the process of pumping CO2

underground for its storage and reduction in the earth’s atmosphere. The way CO2 spreads in

the porous rocks depends highly on the details of the heterogeneity. If the gas is being
pumped into an aquifer, the CO2 gas spreads laterally in the layers between seals and acts a

gravity current. This is why the fundamental study of gravity currents in porous media is of
importance to the practical problem of Carbon sequestration.

Figure 1: Photographs of vertical cross-sections of cliffs showing the different layers in which
the rocks are arranged.

2 Gravity Currents in Porous Media

Consider a porous medium of permeability k containing an ambient fluid of density ρ2. A
fluid of density ρ1> ρ2 spreads as a gravity current. We want to analyze the dynamics of this

spreading gravity current. This configuration is shown as a schematic in figure (2).
As we have seen earlier, the momentum equations for flow in a porous medium are given

by Darcy’s law:

u = −k

μ
(∇p+ ρgẑ). (1)

June 27, 2018

129



Figure 2: A schematic of a gravity current propagating in a porous medium. Here, the top
and the bottom layers are assumed to be impermeable.

The continuity equation is given by
∇ · u = 0. (2)

For a long and thin gravity current, H/L � 1 which implies from the above equation that
v � u. We can thus assume a hydrostatic pressure gradient in the vertical direction. The
pressure is thus given by

P = PH +

∫ h

z
ρ1gdz +

∫ H

h
ρ2gdz. (3)

Substituting the above equation in the momentum equation, we obtain

u = −k

μ
(ρ1 − ρ2)g

∂h

∂x
. (4)

Globally, we can write the following equation for conservation of mass

Q(t) =

∫ L(t)

0
dx

∫ h(x,t)

0
φdz, (5)

where Q(t) describes the change of the total volume in the gravity current which may also
be assumed to be a constant in the case of a fixed volume release and φ describes the
porosity of the medium.

The local equation for conservation of mass is as follows:

φ
∂h

∂t
= − ∂

∂x

(∫ h

0
u(x, z; t)dz

)
. (6)

Replacing u by the expression obtained from Darcy’s law, we have

∂h

∂t
=

(
kΔρg

μφ

)
∂

∂x

(
h
∂h

∂x

)
. (7)
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Since there is no particular length scale in the problem, we can seek a similarity solution.
We assume that the flow rate is changing according to the power law Q(t) = Q0t

γ and try
a solution of the form:

h(x, t) = H(t/τ)αf

(
x

(t/τ)βH
)
, (8)

where the velocity scale is S = kgΔρ
μφ , the time scale is τ =

(
S2

Q0

) 1
γ−2

and the length scale is

H =
(
Q0

Sγ

) 1
2−γ

. Substituting the above equation into equation (7), we obtain the following

shape function that describes the shape of the gravity current:

3
d

dη

(
f
df

dη

)
= (2γ − 1)f − (γ + 1)η

df

dη
. (9)

Here, η = x
(t/τ)βH , α = 2γ−1

3 and β = γ+1
3 . The boundary conditions are given by f(λ) = 0

and
∫ λ
0 f(η)dη = 1, where λ = L

H marks the leading nose of the gravity current.
We now consider the special case of a finite volume release. In this case, the parameters

become: γ = 0, α = −1/3, β = 1/3 and the shape function becomes

2
d

dη

[
f
df

dη

]
= −f − η

df

dη
. (10)

The above equation has a simple solution given by

f(η) = (η20 − η2)/6, (11)

where, to satisfy the boundary conditions, η0 = (9/φ)1/3. In the dimensional coordinates,
the height of the gravity current takes the following form:

h =
H(t/τ)−1/3

6

(
η20 −

x2

H2(t/τ)2/3

)
(12)

The current length is given by

L(t) = η0H

(
t

τ

)1/3

(13)

Essentially, the height profile of the gravity current evolves through a series of parabolas,
which is represented in figure (3). For further details about this problem, the reader is
encouraged to read reference [1].

Porous media flows can be modeled in the laboratory with the use of a Hele-Shaw cell
which is an apparatus that is made of glass slabs that are separated from each other with a
very small gap. The flow along the gap of the Hele-Shaw cell is then directly proportional
to the pressure gradient in the cell (due to viscous effects) and thus serves as a proxy for
the porous media phenomena. Using such a Hele-Shaw cell, the results of a finite volume
release of a gravity current are shown in figure (4). The similarity solution compares well
with the experiments when the aspect ratio of the initial lock is 1:1.
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Figure 3: Evolution of the gravity current height as time progresses (from red to blue).

Figure 4: Evolution of a gravity current in a Hele-Shaw cell. The dotted lines indicate the
theoretical height profiles.
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2.1 Leakage

We will now consider the problem of porous media gravity current where the bottom surface
has some leakage. This is relevant when the seals separating rock layers are partially
permeable. The local equation for conservation of mass now becomes

∂h

∂t
= S

∂

∂x

(
h
∂h

∂x

)
− Λh. (14)

Here, Λ = kbS
kb , where kb is the permeability of the background, k is the permeability of the

lower layer, b is the width into the page and S is velocity scale we have encountered earlier.
Λ parameter takes the leakage into account. The total volume in the current is given by

V = φ

∫ L(t)

0
h(x, t)dx. (15)

and due to the leakage, we have
dV

dt
= Q(t)− ΛV. (16)

Integrating, we get

V (t) = exp(−Λt)

[
V (0) +

∫ t

0
Q(t′) exp(Λt′)dt′

]
. (17)

We now introduce a rescaled time τ given by τ = (1−exp(−Λt))
Λ . The height profile of the

gravity current is obtained as

h(x, t) =
V (0)2/3

6S1/3τ1/3
exp(−Λt)

(
92/3 − x2

V (0)2/3S2/3τ2/3

)
, (18)

and the length of the gravity current is given by

L(t) =

[
9V (0)kb

kb
(1− exp(−Λt))

]1/3
. (19)

As is clear from the above equation, the length asymptotically approaches a finite value,
which happens due to the leakage in this problem. Comparison of this theoretical prediction
with the experimental data is presented in figure (5). The slight deviation at long times
occurs when the gravity current becomes too thin and viscous effects start getting important.

2.2 Two-layer gravity currents

The displacement of one fluid by a second through a porous layer is an important process
in many natural and industrial flows through porous layers. It is of special interest for the
oil industry in which polymer-rich water or gas may be injected into an oil field to enhance
oil recovery.

We consider a problem of two immiscible fluids with different values for their density
and viscosity. The schematic of this problem is shown in figure (6), which is taken from
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Figure 5: Experimental results by [2]. The markers indicate the experimental results and
the solid line indicates the theoretical prediction.

Figure 6: Schematic of the problem taken from [4].

the paper by [4]. Various scenarios of the flow are possible depending on the initial volume
ratios and the viscosity ratio of the fluids. One possible scenario is shown in figure (7).

To model these two-layer flows, we proceed as before, but now we write separate equa-
tions for each layer. They are given by:

∂hu
∂t

=

[
kΔρug

μu

]
∂

∂x

(
hu

(
∂hu
∂x

+
∂hl
∂x

))
(20)

∂hl
∂t

=

[
kΔρug

μl

]
∂

∂x

(
hl

(
∂hu
∂x

+
Δρl
Δρu

∂hl
∂x

))
(21)

where the subscripts u and l refer to the upper and lower layers, respectively. These coupled
equations can be solved with the appropriate boundary conditions to obtain a regime chart
that is shown in figure (8). The solutions of height profiles in this case are given by parabolas
that are piecewise continuous.
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Figure 7: One particular scenario that is possible in two layer gravity current flows in porous
media. The fluid ii starts behind the fluid i but then ends up squeezing under it and fluid i
is left behind.

For more details about this problem, the reader is encouraged to refer to [4].

2.3 Capillary rretention

So far in our analysis of different problems, we have assumed that the fluid completely
drains the pores when it propagates through a porous medium. However, in reality, that
might not be the case due to capillary effects. Some fluid might remain trapped in the pores
as a fluid is draining out of the porous medium.

To study the effects of capillary retention on gravity current propagation, consider the
schematic in figure (10). We would like to model the propagation of a buoyant fluid along
a lateral boundary as shown where the fluid is partially retained in the pores. If h is the
height of the current, retention is important when ∂h/∂t < 0. Hence, we need a modified
equation in the regions where the condition is true. If the current is spreading in both the

directions laterally, there will exist a point xm where ∂h/∂t = 0. Let x+m and x−m be the
locations an infinitesimal distance after and before xm. For the region without retention,

we have
∂h

∂t
=

∂

∂x

[
h
∂h

∂x

]
if

∂h

∂t
> 0, (22)

and for the region with capillary retention, we have

(1− s)
∂h

∂t
=

∂

∂x

[
h
∂h

∂x

]
if

∂h

∂t
< 0. (23)
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Figure 8: Regime chart of the different scenarios that are possible based on the volume
ratio and viscosity ratio of the two fluids.

Figure 9: Experiments of two layer gravity currents in a Hele-Shaw cell by [4]. Two different
scenarios are indicated in the left and the right.
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Figure 10: Schematic of gravity current propagation. The blue fluid is buoyant and spreads
laterally along the upper boundary. The arrows indicate the direction of motion on the
interface locally. xm indicates the position where ∂h/∂t = 0.

Here, s is the retention factor. Across xm, the following jump conditions are implemented:[
Sh

∂h

∂x

]x+
m

x−
m

= 0, (24)

[h]x
+
m

x−
m
= 0. (25)

For the above above set of equations, the total volume of the current decreases as

V (t) = V0

(
t

τ

)−γ

. (26)

Here, γ comes out as an eigenvalue for a given value of s (similarity solutions of the 2nd
kind). The variation of γ as a function of s is show in figure (11). The height of the gravity
current comes as a similarity solution of the following form:

h = V
1/2
0

(
t

τ

)α

f

(
x

V
1/2
0

(
t
τ

)β
)
, (27)

where α and β are some constants.

2.3.1 Upslope capillary retention

Consider the schematic in figure (12) where the impermeable wall is at angle θ to the
horizontal. As the fluid is less buoyant, it propagates upwards along the wall. Due to
capillary retention, a part of the fluid is left behind (which is shaded in gray). We would
like to develop a model for this physical phenomena.

We start by writing the mass conservation equations as earlier. For the leading edge
(containing points a’ and b’) which is not retaining any fluid, we have the following equation:

∂h

∂t
+ S sin θ

∂h

∂x
= S cos θ

∂

∂x

(
h
∂h

∂x

)
. (28)
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Figure 11: Variation of γ as a function of s.

Figure 12: Schematic of the upslope propagation of a buoyant gravity current. The shaded
region marks the retained fluid.
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Figure 13: Diagram indicating the propagation of characteristics starting at initial locations
and eventually meeting each other. The width along the y axis decreases as time progresses
indicating that the gravity current width continues decreases and becomes zero at finite
time due to capillary retention.

For the trailing edge (contain points a, b), which retains the fluid, we have the retention
equation given by:

(1− s)
∂h

∂t
+ S sin θ

∂h

∂x
= S cos θ

∂

∂x

(
h
∂h

∂x

)
. (29)

The above equations are hyperbolic with the characteristics given by

x(h, t;x+) = x+ + S sin θt, (30)

x(h, t;x−) = x− +
S sin θ

1− s
t. (31)

As the trailing characteristic propagates at a faster speed, it eventually meets the leading
edge characteristic at finite time. This is to say that the points a and b catch up to points
a’ and b’ eventually. This can be shown in the diagram in figure (13). Thus, the time at
which the gravity current stops propagating can be found. This happens when all of the
fluid in the gravity current has been retained in the porous medium.

For more information on the effects of capillary retention in porous media gravity cur-
rents, the reader is encouraged to refer to [3].

3 Gravity Currents Through a Regular Matrix of Barriers

Porous media in geological settings generally exhibit alternating strata of different perme-
ability. As a simple model for such media, we consider gravity-driven flow through a layered
array of boundaries that are impermeable except at a discrete set of regularly spaced gaps.

3.1 Flux partitioning across a single barrier

To approach the general case of a 2-dimensional array of barriers, we would like to compare
the relative fluxes of a fluid around either side of a single baffle as a function of the source
height and horizontal position relative to the barrier.
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Figure 14: Flow partitioning to either side of a barrier depends on the horizontal position
of the inflow relative to the centre point of the barrier.

The flow across one side of the barrier goes as:

Qa = −kΔρg

μ
h
dh

dx
, (32)

subject to the initial conditions

h(x = 0) ≡ hs (33)

and

h(x = La) ≡ 0. (34)

Integrating both sides along the horizontal dimension yields:

QaLa =
kΔρgh2s

2μ
, (35)

telling us that the amount of flow past side a of the barrier is inversely proportional to
the length of that side of the barrier.

We can define a flux partitioning coefficient

fa =
Qa

Qa +Qb
, (36)

which, repeating the above argument for the side b, gives us:

fa =
Lb

La + Lb
. (37)

12
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Figure 15: Our expectations for flux partitioning linear in the relative horizontal position
of the inlet along the boundary are consistent with empirical data.

3.2 Barrier aarray

Consider an matrix of baffles consisting of evenly spaced baffles arranged in rows out of
phase with each other by an amount set by fa.

The flow through the kth baffle in the nth row follows a simple binomial distribution
determined by fa, namely:

Qnk =

(
n− 1

k − 1

)
fk−1
b (1− fb)

n−kQ. (38)

In the limit of an infinitely dense array of baffles, this approaches a Gaußian:

q(x, y) =
Q
√
h

L
√

2πyfb(1− fb)
e

−hx2

2yL2fb(1−fb) . (39)

The spatial dispersion is set by the standard deviation, namely

x =

√
2yL2fb(1− fb)

h
. (40)

Once a steady state flow has been established, we can inject tracer and watch its mo-
tion through the baffles to determine flow lines. The flow velocity components (u, v) =
(∂yψ,−∂xψ) are set by the streamfunction:

ψ
Q
√
d

L (2πf(1− f))
1
2

∫ x

y
1
2

∞
exp

−s2d

2πL2f(1− f)
ds. (41)

141



Figure 16: A layered array of baffles horizontally distributes point source flow into what, in
the limit of dense baffles, approximates a Gaußian flow profile

Figure 17: Tracer spreads out both vertically and horizontally with velocities determined
by the streamfunction ψ
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Figure 18: Plumes propagating through an angled array of barriers exhibit a preferred
horizontal direction.

3.3 Angled bbaffles

By rotating the rows of baffles relative to the horizontal—equivalently allowing gravity to
have a horizontal component—we modify the flux equation to:

Qa = −kΔρg

μ

(
h
dh

dx
cos θ ± h sin θ

)
. (42)

As the angle increases, the flow up and over the inclined side of the baffle eventually
reduces to zero. Denoting as Qc the critical flux at which the flow pinches off for a given
angle, we find:

Qc

Lub sin θ tan θ
log

(
1− La

L

Lub sin θ tan θ

Qc

)
= −1 (43)

Fluxes below this critical value divert completely to one side of a baffle; angled baffles
far from the centre line of the flow—regions where low fluxes are observed—thus tend to
merely direct flow rather than spread it out horizontally as in the θ = 0 case. Tilting the
baffles relative to the horizontal thus results in more tightly collimated plumes.

4 CO2 Trapped in Anticlines

Of equal importance to the question of fluid motion through porous media is the issue of
understanding how fluid is stored in a porous setting.

Geological sequestration of CO2 in subterranean features called anticlines—inverted
basins defined on three sides by a warped layer of impermeable rock—has been suggested
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as a potential option for sustainable, long-term management of excess carbon.
The structure of the anticlines themselves, however, raises interesting questions about

the durability of trapped CO2 pockets. Background hydrogeological flows between the
impermeable layers surrounding the anticline threaten to wash the CO2 out of its trap,

while dissolution of carbon into the surrounding fluid may offer it means of resurfacing
through the back door.

We could like to understand how much CO2 can be trapped in layer and how background

flow affects this maximum capacity. We’d also like to generally understand the processes
leading to CO2 migration over long time scales, including the risk of catastrophic release

due to earthquakes.

4.1 Background fflow

Ignoring diffusion for the moment, we find the velocity of the background flow to be pro-
portional to the change in the distance between the bottom of the trapped CO2 and the

top of the underlying impermeable layer:

uw = −k

μ
Δρ

d(c− d)

dx
, (44)

telling us that the background flux is

Q = uw(H − c), (45)

With H the spacing between impermeable layers and c the depth of the trapped CO2.
Defining the ratio of relative magnitudes of the forced flow to the background flow as

Γ =
μQ

kgΔρH
(46)

allows us to arrange these equations and solve for the spatial profile of the CO2, namely

d(c)

dx
=

d(d)

dx
− Γ

H − c
. (47)

We find, unsurprisingly, that larger background flows lead to smaller reservoirs of
trapped CO2.

Consider now adding in the effects of diffusion.
The maximum dissolution rate is Q(Csat − Caq) set both by the background flux and

the concentration difference between saturated and background water. Plugging in typical
values for these quantities, we find that the CO2 reservoir will fully dissolve on the order of
104 to 106 years, which is a rather long time indeed by human standards.
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4.2 Convective fflow

CO2 saturated brine is heavier than the background water and may thus migrate upstream

into the background flow. This backflow will be particularly pronounced if the anticline is
at an angle to the horizontal.

The descending brine fights against the pressure gradient in the background flow by way
of its own buoyancy force. The flux of descending brine will thus go as

Qd =
k

μ
(
dp

dx
+Δρg sin θ)h1 (48)

As before, the sum of ascending and descending fluxes is set gy geometry

Qd +Qa = −k

μ

dp

dx
(H − h1) sin θ). (49)

This allows us to write the maximum descending flux as

Qmax
d =

Γ

4
(1− 1

Γ
)2Qa, (50)

where we’ve modified Γ to account for the angle θ the parallel impermeable layers make to
the horizontal:

Γ =
μQ

kgΔρ sin θH
. (51)

For low background fluxes, the counterflow can significantly exceed the background flux,
while for higher backgrounds the descending flux goes to zero, resulting in unidirectional
flow set by the background flux alone.

The time scale for diffusion across the layer is H2

D , where D is the diffusion constant.

Plugging in typical numbers puts this at 104 to 106 years for the counterflow to dissipate.
We’d like to understand this dissipation process better.

4.3 Convective and diffusive flow

We consider a wedge of brine propagating up the flow channel against the background flow.
We find the timescale for the intrusion growth to be

τI =
√
2
ub
u2f

H, (52)

where ub =
kΔ
μ and ub = Q/H. We also have a diffusive time scale set by

τD =
H2

D
(53)

Comparing these two time scales, we reason that τD � τI leads to the development of
an intrusion of parabolic profile. For τI � τD, however, the picture is modified significantly
as we enter the diffusion-dominated regime.

We expect shear transport to balance diffusion across the layer; using this Ansatz, we
can write down a nonlinear relation for buoyancy transport by balancing the depth-averaged
mean buoyancy (i.e. CO2 concentration) with the shear dispersion.
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Lecture 9
More Challenges in Porous Media for CO2 Sequestration

otes by Christopher J. Howland, Thomas Le Reun

June 28, 2018

1 Exchange FFlows through Fractures in Seal Rock

Figure 1: (a) An illustration of the convective mechanism by which CO2 saturation occurs
in an aquifer with a CO2 trap. (b) A schematic of the large-scale flow domain with two

aquifers separated by a seal rock. Possible exchange flows within and between the aquifers
are highlighted. (Woods et al., 2015)

Recall the problem mentioned in the previous lecture, where CO2 that has been pumped

into deep rock accumulates at the top of an anticline. As discussed before and shown in
figure 1a, convective dissolution in the aquifer leads to saturation of CO2 in the groundwater,
limiting the diffusion rate of the CO2. In the previous section we showed how an exchange

flow can develop with the far-field of the aquifer where the groundwater is unsaturated,
with the potential to change this diffusion rate. Another potential mechanism by which the
diffusion rate limit can be overcome is through fractures in the impermeable seal rock below
the aquifer. Figure 1b shows that if these fractures connect the CO2-saturated aquifer to
another aquifer, then an exchange flow can develop between the CO2-rich upper water and

the unsaturated lower water.
Woods et al. (2015) performed the following experiments to investigate this phenomenon.

In the first experiment, two vertical porous tubes that model fractures in a seal rock connect
an upper reservoir of height Hu to a lower reservoir of height Hl as shown in figure 2a. The
upper reservoir is initially filled with saline water to model the CO2-saturated water of the

upper aquifer, which is more dense than the unsaturated groundwater in the lower aquifer.
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Figure 2: (a) Photograph and schematic of the experimental setup for a two-tube exchange
flow. The saline water is coloured red, and the fresh water is lighter in colour. (b) Experi-
mental results showing the depth of the saline layer in the lower reservoir as a function of
dimensionless time. Data from experiments with various salinity values is displayed here.
(Woods et al., 2015)

The lower reservoir is initially filled with fresh water, and when valves in the tubes are
opened, an exchange flow develops with salty water flowing down one tube and fresh water
flowing up the other.

Assuming the resistance to the flow is higher in the fractures than in the aquifers, we
can take the pressure in each aquifer to be approximately uniform (pl in the lower layer, pu
in the upper). We denote the density of the fresh water ρ and the density of the saline water
ρ+Δρ. Upflow is driven by a pressure difference Δp = pl − (pu + ρgh) between the lower
layer and the upper layer plus the hydrostatic pressure of the light fluid in the tube. The
downflow of the denser fluid is driven by the hydrostatic pressure difference Δρgh minus
the pressure difference Δp. If the system is in steady state, then the pressure difference
must be

Δp =
Δρgh

2
, (1)

and the upwards and downwards volume fluxes must be

Qu = Qd =
kAΔρg

2μ
, (2)

where A is the cross-sectional area of each tube, k is the permeability of the tubes and μ is
the viscosity of the fluid.

Woods et al. (2015) also performed an experiment with five vertical pipes, representing a
greater number of fractures connecting the aquifers. This experiment showed that a number
of different states are possible for the exchange flow. In this case, the number of fractures
which have upflow is variable and has a significant impact on total volume flux values.
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Figure 3: (a) Model predictions of the exchange flow scaled by Q2 = kΔρgd/μ for various
values of the pressure difference scaled by Δρgh. The curved line denotes the equilibrium
solution of no net flow. (b) Model predictions of total upflow scaled by Q2 in the case of no
net flux. The symbols denote possible equilibrium solutions. (Woods et al., 2015)

The simple model used to calculate the volume fluxes above can easily be extended to
explain the appearance of these multiple states, and also to capture the effect of fractures
with different widths and permeabilities. We model the two aquifers as being connected
by m parallel fractures with permeability ki and aperture width di. Assume that n of the
fractures have downflow, with the rest flowing upwards. By the same arguments as before,
the volume flux due to the downflow of dense water will be

Qd =
Δρgh−Δp

μh

n∑
i=1

kidi, (3)

and the volume flux due to the upflow of light water will be

Qu =
Δp

μh

∑
i=n+1

mkidi. (4)

For a given number of fractures m there are now multiple solutions for equilibrium
(Qd = Qu) that are dependent on the number of fractures with downflow n. These are

shown as the nodes on figure 3b, where the aperture and permeability of each fracture take
the same values for simplicity. As the fractures are assumed to be long, these equilibrium
solutions are in some sense ‘stable’ since a small addition of fluid to the end of a fracture
is not enough to overcome the existing pressure difference in the fracture and reverse the
flow. The development of the exchange flow is therefore strongly dependent on the initial
conditions of the system. Along with the uncertainty in the geometry of real fractures,
this means that predicting the spread of CO2 in a layered anticline is very difficult and

error-prone. Natural flows may also be complicated further by a net pressure/flow through
the fractures leading to non-equilibrium solutions.
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Figure 4: Cartoon of the geological context of CO2 sequestration in the Sleipner aquifer.

This figure is reproduced from Bickle et al. (2007).

2 Gravity CCurrents in Confined Porous Layers

2.1 CO2 sequestration at Sleipner

With regards to the consistent increase of CO2 emissions, the underground sequestration of

the greenhouse gas is regarded as a potential solution to prevent its further accumulation
in the atmosphere. Schematically, this corresponds to intruding supercritical CO2 into

aquifers, which are porous rock layers permeated with brine. This solution has been tested
at Sleipner in the North Sea, with consistent injection of supercritical CO2 at a 1 MT/yr
since 1996 (Bickle et al., 2007). The schematic of the geological context of CO2 can be

found in figure 4.
Seismic data inversion allowed Bickle et al. (2007) to determine the existence of several

disinctive layers separated by nine horizontal thin mudstone impermeable layers. More-
over, successive seismic profiles taken before and after the injection started have provided
researchers with the ability to track the time evolution of CO2 intrusion into those layers,

as shown in figure 5 (Bickle et al., 2007). They could therefore infer that although the
the injection is localised at one point, the CO2 expands through the different layers above
the injection. Such a process can be schematically visualised in figure 4. The CO2 expan-

sion through each of these layers has been inferred from the seismic reflection tracking: in
each layer, the detectable area of CO2 grows linearly with varying rates across the different

layers.
The aim of this section is to build a simple model of the CO2 expansion at Sleipner,

which consists of several confined porous gravity currents. Inversion from the model to the
seismic data could for instance help determine the porosity of the rock, and determine if
the expansion is controlled by gravity and density contrast alone, or by the injection at the
bottom of the site.

2.2 A confined porous gravity current

We seek to model the effects of gravity on continuous axisymmetric injection of CO2 at flux
Q into a porous layer permeated with brine, which is assumed to be less dense than CO2.

4
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Figure 5: Successive seismic reflection profiles taken prior and after the injection started in
1995. The brightest areas are associated with the presence of CO2. The point IP represents
the injection point. Figure reproduced from Bickle et al. (2007).

Figure 6: Schematic to model a porous gravity current of CO2 into a confined layer of sand
and brine. Figure reproduced from Dudfield and Woods (2013).

5
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As indicated in figure 6, the two fluids have different densities μ1 and μ2. The horizontal
velocity ui in the fluid i (either μ1 for CO2 or μ2 for the brine) obeys Darcy’s law:

ui = − k

μi

∂p

∂r
, (5)

where k is the sand permeability and p is the pressure field. The latter can be described by
hydrostatic balance as in Nordbotten and Celia (2006):

p(r, z, t) =

{
p0(r, t) + ρgz for z � h,
p0(r, t) + ρgh(r, t) + (ρ+Δρ)g(z − h(r, t)) for z > h,

(6)

where g is the gravity intensity. We can also define the CO2 and brine radial fluxes as⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q1(r, t) = 2πrh

∫ h(r,t)

0
u1dz ,

Q2(r, t) = 2πr(H − h)

∫ H

h(r,t)
u2dz ,

(7)

which can be made explicit with the Darcy law (5) and the hydrostatic pressure (6):⎧⎪⎪⎨⎪⎪⎩
Q1(r, t) =

2πk

μ1
rh

∂p0
∂r

,

Q2(r, t) =
2πk

μ2
r(H − h)

[
∂p0
∂r

−Δρ
∂h

∂r

]
.

(8)

The time dependence of h is related to the radial variations of the flux with two continuity
equations: ⎧⎪⎪⎨⎪⎪⎩

∂h

∂t
=

−1

2πrφ

∂Q1

∂r

,
∂(H − h)

∂t
=

−1

2πrφ

∂Q2

∂r
,

(9)

where φ is the porosity of the sand. The sum of these two continuity equations yields

Q1 +Q2 = cst = Q . (10)

After some algebra, which can be found for instance in Nordbotten and Celia (2006), the
equation for the height h reads

r
∂h

∂t
+

∂

∂r

(
h

h+ ν(H − h)

)
= νΓ

∂

∂r

(
rh(H − h)

h+ ν(H − h)

∂h

∂r

)
(11)

with:

ν =
μ1

μ2
and Γ =

2φkΔρgH2

μ1Q
. (12)

We can look for a similarity solution to the equation (11); after some algebra, a self-
similar function h must be such that:

h = HF (η) with η = r

(
2πφH

Qt

)1/2

(13)
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Figure 7: Left: solutions of equation 14) for several values of Γ. Right: schematic rep-
resentation of gravity current profile in the two asymptotic limits of gravity and pressure
driven intrusion. These two figures are reproduced from Dudfield and Woods (2013).

and F satisfies the following equation:

−η2

2
F ′ +

νF ′

F + ν(1− F )
= νΓ

d

dη

(
ηF (1− F )

F + ν(1− F )
F ′
)

(14)

which can be solved numerically. Note that although the viscosity ratio ν is a physical
constant, Γ is a control parameter since it depends on the flux Q and the confinement of
the layer H. Two asymptotic limits can be worked out:

- Γ = 0 which corresponds to the large injection flux and to a pressure driven regime;

- Γ � 1 which is associated with a gravity driven regime.

The different shape of F when Γ is varied can be found in figure 7.

2.3 Use of the idealised model to describe Sleipner dynamics

The aim of this paragraph is to present how the shape of the curve F may help to work
out a model for Sleipner intrusions. The key point is that the seismic reflection profile has
a minimum resolution under which the spatial variability of aquifer properties cannot be
resolved. This means that the tip of the gravity current is unresolved: the outer boundaries
of the intrusions seen from seismic profile in fact approximately correspond to the same
height h of CO2.

As it can be noticed from figure 7, it may be difficult a priori to discriminate between
the two regimes —pressure and gravity driven— as the two mainly differ by an extended
tip in the case of the gravity driven intrusion. Furthermore, it can be shown from inversion
of the function F that depending on the detection threshold Fs, given one detected front
ηs, inversion may give two different values of the parameter Γ —see figure 8. This non-

uniqueness may alter the inversion of temporal variation of seismic data.
With all these complications, the next step is to include more layers, starting for sim-

plicity with two. Knowing the total injection flux Q and the time evolution of the radius at
detection threshold for the two layers, the aim is to constrain the value of the flux in each
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Figure 8: Line plotting of the locations of points with constant F (η; Γ) as a function of Γ
and the rescaled position of the front ηs. The plane is divided in three regions: if a point is
located along a curve in area II, there exists a point with the same ηs in area I.

Figure 9: Values of the flux in each of the nine Sleipner layers inferred from inversion via
three different models. Right: values of the total volume of CO2

8
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layer Q1 and Q2, along with the permeability of each layer k1 and k2. Such an inversion
is possible only via the inclusion of further assumption or models relating the layers to one
another. For instance, Dudfield and Woods (2013) compare three independent models:

- the permeability of the two layers are assumed to be the same;

- the pressure drop between two layers is given by hydrostatic balance taking the density
of CO2 (referred as CO2-static);

- the pressure drop between two layers is given by hydrostatic balance taking the density
of water.

An example of the extension of the inversion method to Sleipner’s nine layers is shown
in figure 9 and shows the flux is well constrained with an error bar of approximately 10%.
Such a narrow band is due to the integral nature of the flux which does not suffer from
large variations as the length of the tip varies from one model to another. This is however
not the case of permeabilities which are far less well constrained – see Dudfield and Woods
(2013) for further details. Without an improvement in the resolution of seismic profiles or
a measurement of pressure across the layers, such an inversion remains therefore particu-
larly difficult to perform. This illustrates how little is known from flows in aquifer despite
repeated seismic measurements.
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3 Gravity CCurrents in Layers: Tracer Confusion

As well as seismic surveys performed to gather information on underground structure, tracer
tests can be done to determine how CO2 spreads through porous rock underground. In this

section, we will show why simple gravity current models may produce errors when inferring
fluxes from these tracer tests in layered rocks that are often targeted as good regions for
carbon storage. The internal structure of such rocks can be visualised on cliffs such as those
at Loop Head in County Clare in the west of Ireland.

Simple gravity current models that we have considered before take the form

u = −kΔρg

μ

∂h

∂x
, (15)

for the spreading velocity in the current and neglect any variations with height. We now
consider the problem of a gravity current being produced in a system of permeable layers
separated by impermeable horizontal boundaries (following section 10.5 of Woods (2014)).
Assuming the source pressure is constant, an overpressure Δp0 will be produced in the top-
most layer of the system. If the height of the layered system is H, the pressure horizontally
near the source will be vertically distributed as

Δp = Δρg(H − y) + Δp0. (16)

The experimental results in figure 10 show that in all except the top layer, a region exists
where the current fully floods the layer. We can model this fully flooded zone as moving
with a Darcy velocity related to the pressure:

dL(y, t)

dt
=

k[Δρg(H − y) + Δp0]

μL
. (17)

Ahead of this region, the vertical pressure gradient is expected to be hydrostatic and we
get a local equation in each layer for the migration of the flow

φ
∂hn
∂t

=
kρg

μ

∂

∂x

(
hn

∂hn
∂x

)
, (18)

where hn is the local height of the fluid in the n-th layer. In this nose region, it is possible
to find a similarity solution of the form

h = h(x/(Dt)1/2), (19)

where D = kΔρgΔh/μ and Δh is the height of a layer.
Comparing the spreading of a gravity current in this multilayered system with that

produced in a homogeneous reservoir by an equal level of pressure injection, it is found
that a difference in flux of 6.2% is observed. This non-negligible change is due to the highly
varying speeds of the fully flooded regions in the different layers of the system as determined
by (17). The different speeds in each layer also have important implications for tracer tests.
If a finite amount of tracer is injected into the system at the source of the gravity current,
then the tracer will arrive at an observation well downstream in a series of discrete pulses
from each layer. This skews the time series measurement of tracer concentration and needs
to be taken into account when using such data to infer spreading rates and fluxes of the
gravity current. Ensuring estimates of these quantities are accurate is important when
trying to assess potential breakthrough times when CO2 may escape a trap.
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Figure 10: Photographs of the gradual spreading of a gravity current in a five-layer Hele–
Shaw cell, in which there is a source reservoir of constant depth. For scale, the vertical
height of the darker zone of fluid between the upper and lower boundaries of the cell, at
the left-hand end of the cell, is 10cm. (Farcas and Woods, 2015)
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Figure 11: Schematic of typical sediment deposits in continental shelf context. These
deposits are often associated to underwater current with topography, the resulting layers
are therefore channelled. This is the case for instance in the Ross formation in Ireland
which is pictured here. This figure is reproduced fromWoods and Mingotti (2016).

4 Porous GGravity Current in Depth-varying Channels

4.1 Geological context and experimental modelling

Sediment deposit on continental margins or shelves are often associated with underwater
currents, be it turbidites or channels. They result in sedimentary layers with varying height
and of short lateral extent, reflecting the shape of the channel or the current, as depicted
in figure 11. In this section, we are interested in how this varying topography may alter the
intrusion of fluid gravity currents inside such sedimental layers.

The idealised experimental analogue consists of a confined gravity current in a Hele-
Shaw cell with varying depth – see figure 12. Unlike section 2, the flow is vertically confined
such that gravity only imposes the the influx Q at the entrance of the Hele-Shaw cell. Note
that the viscosity ratio between the intruding and the preceding fluid must by larger than
one unless a Saffman-Taylor finger develops, leading to completely different dynamics.
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Figure 12: Schematic view of the Hele-Shaw cell with varying depth used in the experiments
of Woods and Mingotti (2016). The experimental setup is such that b � d � L. Typically,
b ∼ 3 mm, d 15 cm and L = 180 cm. Figure reproduced from Woods and Mingotti (2016).

Figure 13: Example of regularisation of the velocity profile of the intrusion. The blue curve
is computed from 26. The red curve is the regularised profile. Figure reproduced from
Woods and Mingotti (2016).
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4.2 A model for the depth-varying intrusion

The aim of this section is to provide a model describing the shape of the intrusion in
the depth-varying Hele-Shaw cell. The derivation of this model relies on the total flux
conservation across the channel. The velocities inside the intruding fluid u1 and inside the
preceding fluid u2 along the x direction are related to the pressure field via a Darcy-type
law: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

u1 =
−b2(y)

12μ1
∂xp ,

u2 =
−b2(y)

12μ2
∂xp ,

(20)

where μ1 and μ2 are the respective viscosities of the two fluids. Because the channel is
assumed to be long and thin, the pressure gradient is dominantly along channel, and leads
to a simple model for the fractional flow of each fluid phase. The corresponding flux in each
fluid Q1 and Q2 reads⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q1 =

∫ w(x,t)

0
b(y)u1(y)dy =

−1

12μ1
∂xp

∫ w(x,t)

0
b(y)3dy =

−1

12μ1
∂xpf(0, w) ,

Q2 =

∫ d/2

w(x,t)
b(y)u1(y)dy =

−1

12μ1
∂xp

∫ d/2

w(x,t)
b(y)3dy =

−1

12μ2
∂xpf(w, d/2) ,

(21)

where we have introduced the function

f : (r, s) �−→
∫ s

r
b3 .

Combining flux conservation Q1+Q2 = Q with the two equations (21) leads to an expression
of ∂xp involving only viscosities, the flux Q and the function f . The intrusion flux Q1 thus
becomes

Q1 =
Qf(0, w)

f(0, w) + αf(w, d/2)
, (22)

with α = μ1/μ2 the viscosity ratio.
We may now write the flux conservation across a section of the intrusion, which merely

reads
∂

∂t

∫ w(x,t)

0
b(y)dy = − ∂Q1

∂y
. (23)

Using the relation
∂f(0, w)

∂x
=

∂w

∂x
b3(w) , (24)

and a similar one for the left hand side of the flux conservation (23), we infer the following
relation between spatial and temporal variation of w:

∂w

∂t
= −Qb(w)2

αf(0, d/2)

(f(0, w) + αf(x, d/2))2
∂w

∂x
, (25)

160



Figure 14: a: (i) visualisation, (ii) front position at different times and (iii) rescaling of the
front position by time in the case of a low viscosity ratio. b: (i) visualisation, (ii) front
position at different times and (iii) rescaling of the front position by time in the case of
a large viscosity ratio. A shock type of finger develops such that the front is a travelling
wave. Woods and Mingotti (2016).

which describes the propagation of the front with a width dependent velocity c(w) such
that

c(w) = Qb(w)2
αf(0, d/2)

(f(0, w) + αf(x, d/2))2
. (26)

Two possibilities can be regarded from (25). If the velocity c(w) is a monotonic function
of w, a finger intrudes the Hele-Shaw cell with a constant advection velocity along the y = cst
lines. In the case where c(w) is non-monotonic, a shock front develops and the solution needs
regularisation to account for the effective propagation. We must therefore seek whether such
shock solutions may develop and the corresponding physical configuration.

To gain a qualitative understanding of the variations of c(w), we assume the Hele-Shaw
cell has the following elliptical profile:

b(w) = b0

(
1− 2w

d

)1/2

. (27)

After some algebra, one may find that a shock occurs provided that

α =
μ1

μ2
>

5

2
> 1 . (28)

We therefore conclude that shock solutions develop for a large viscosity ratio between the
intruding fluid and the preceding fluid.

In the case of shock solutions, a regularisation must be applied, with the constraint that
the flux must be conserved from the original solution to the regularised one, as illustrated
in figure 13.
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4.3 Experimental study of the finger intrusion

The viscous intrusion in a depth-varying Hele-Shaw cell has been investigated in Woods
and Mingotti (2016). As shown in figure 14, the intrusion is highlighted by red dye, which
allows tracking of the front of the finger. In the case of a low viscosity ratio, but still above
1 such that Saffman-Taylor instability does not interfere with the dynamics, the finger front
is elongated over time – figure 14.a. Rescaling by time shows the very good collapse of all
the profiles on a master curve, in accord with the theoretical development in the preceding
paragraph.

In the case of large viscosity ratio, as seen in figure 14.b, the front does not elongate
with time, but rather resembles a travelling wave, which is characteristic of a shock-like
finger. Nevertheless, as suggested in figure 13, a shock solution should have a flat nose,
which is not observed here. The fact that the model only accounts for velocities along the
propagation direction may explain such a discrepancy. At the tip of the finger, the intruding
fluid recirculates and is left behind. The detailed calculation of the shock structure would
be an interesting development of the model.
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5 Convection in a PPorous Medium

To develop an understanding of convection in a porous medium, we must consider the
conservation of both tracers (such as salt) and heat. We begin by considering conservation
of a tracer through a simple 1D flux model for a volume element of width δx. If the
concentration of the tracer in the liquid is c, the amount of tracer in the volume between x
and x+ δx is then

cφδx, (29)

per unit cross-sectional area. The net advective flux of tracer into the volume is

−{uc|x+δx − uc|x} = −u
∂c

∂x
δx, (30)

assuming that the fluid is incompressible so ∇ ·u = 0. For a macroscopic diffusivity D, the
net diffusive flux of tracer is{

φD
∂c

∂x

∣∣∣∣
x+δx

− φD
∂c

∂x

∣∣∣∣
x

}
= φD

∂2c

∂x2
δx. (31)

Equating the fluxes to the rate of change of tracer in the small volume limit gives the full
3D equation for conservation of tracer:

φ
∂c

∂t
+ (u · ∇)c = φD∇2c. (32)

One important difference when considering the conservation of heat in a porous medium
is the heat transfer that occurs from the liquid to the solid. This diffusion happens on a
time scale of δ2/κ where δ is the typical size of a grain and κ is the thermal diffusivity. The
typical time for the fluid to flow past a grain is δ/v where v is a typical velocity scale. If the
flow time is much greater than the thermal diffusion time (equivalent to κ � δv) then the
fluid and grains can be assumed to be in thermal equilibrium. This is very typical of most
porous media, since the condition only requires that grains are smaller than about 10cm.

Taking a similar approach to before, but with the assumption of thermal equilibration,
we can derive an equation for the conservation of heat in a porous medium. In the volume
between x and x+ δx, the thermal energy per unit cross-sectional area is

ρCPTδx, (33)

where CP is the heat capacity at constant pressure and T is the temperature. The overbar
here denotes an average over the solid and liquid components of the volume in the sense

x = (1− φ)xs + φxl, (34)

where the subscripts s and l denote values for the solid and liquid phases respectively. The
net advective flux of heat into the volume is

−{(ρCp)luT |x+δx − (ρCp)luT |x} = −(ρCp)l

(
u
∂T

∂x

)
. (35)
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Figure 15: (a) Diagram showing the spatial distribution of temperature T , concentration
c and density ρ, leading to three regions in which the fluid has different density. (b) Pho-
tographs from an experiment where hot, fresh water (dyed red) drained downwards through
a bead pack initially saturated with cold, salty water. The red dye front indicates the front
of fresh water, and the yellow line on the liquid crystal strip illustrates the leading edge of
the thermal front. (c) The location of the dye front and thermal front from experimental
data as dots, with straight lines showing theoretical predictions (Menand et al., 2003)

For an average thermal diffusivity K, the net diffusive flux of heat is{
K

∂T

∂x

∣∣∣∣
x+δx

− K
∂T

∂x

∣∣∣∣
x

}
= K

∂2T

∂x2
. (36)

As before, we can use the fluxes to now write down the 3D equation for conservation of
heat

ρCp

(
∂T

∂t

)
+ ρCpl(u · ∇T ) = K∇2T. (37)

If we re-arrange both the conservation equations (32) and (37) into the form of an
advection-diffusion equation,

∂c

∂t
+

(
1

φ

)
(u · ∇)c = D∇2c, (38)

∂T

∂t
+

(
(ρCp)l

ρCp

)
(u · ∇)T =

(
K

ρCp

)
∇2T, (39)

then it is clear that the advection of tracer and heat occurs at different speeds. The advective
speed of the tracer scales as the interstitial velocity u/φ, whereas the advective speed of
heat is more similar to the Darcy velocity u (since the prefactor Γ = (ρCp)l/ρCp in (39) is

approximately one). The tracer therefore travels through the porous medium much faster
than heat since it moves through the liquid phase only whereas a thermal anomaly must
heat up the rock as it is being swept through the material by the liquid.

Menand et al. (2003) performed some experiments to show this behaviour. They placed
hot, fresh water above a layer of cold, salty water in a bead pack, using dye to follow the
spreading of salt through the porous medium and a liquid crystal strip to determine how the
temperature front developed, as shown in figure 15b. The hot, fresh water is initially more
dense than the water in the lower layer, but once thermal equilibrium has been reached
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Figure 16: Photographs illustrating the flow patterns that arise when fluid of one tempera-
ture and salinity (dyed red) is continuously injected from a point source into a porous layer
containing a fluid of different temperature and composition. (a) Fresh water injected into
salty water, forming a plume. (b) Hotter fluid of the same salinity injected, which leads
to a plume-like structure close to the source, and an effective mass source at the top of
the plume. (c) Hotter, saltier water injected, leading to a fountain-like behaviour as the
injected fluid loses its buoyancy. (d) Hotter, saltier water injected at the top, leading to
sinking and formation of a gravity current. (Menand et al., 2003)

it will become less dense. As highlighted by figure 15a, the differences in salinity and
temperature occur at fronts which move at the advective speeds calculated earlier. The
difference in front speeds leads to three regions of different fluid density in the flow.

Injecting fluids with different combinations of temperature and salinity to an existing
fluid in a porous medium will thus produce interesting behaviour. If the new fluid is hotter
and saltier than the old fluid, it can initially be denser or lighter but will always end up
more dense than the old fluid because of the fast equilibration of temperature. Figure 16
shows some interesting phenomena that can arise when injecting fluids of varying salinity
and temperature into a porous medium. It is important to note that although the concepts
of plumes and fountains can arise in these flows, viscosity is very important in problems
of fluid in porous media and the motion is very slow compared to the turbulent problems
discussed in earlier lectures. The fact that a combination of salt and heat lead to interesting
dynamics here draws inevitable comparisons with the impact of double diffusion on flows.
Since all of the dynamics here is controlled by the difference in advection, it would perhaps
be apt to refer to these flows as affected by ‘double advection’.
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Lecture 10
Flow in Porous Rocks: The Influence of Temperature,

Fluid-Rock Interactions and Viscous Instabilities

Notes by Edward Hinton and Bowen Zhao

June 29, 2018

1 Gravity CCurrents Driven by Variations in Temperature

Motivated by the geosequestration of carbon dioxide, we consider the flow of an injected
fluid, which has different composition and temperature, to the ambient fluid within an
inclined porous medium. Owing to the heat transfer between the fluid and the rock, the
advection speed of the thermal energy is different to the fluid speed. The advection speed of
the temperature front is given by [Phillips, 2009, Woods, 2014]

Γu =
ρCpl

ρCp

u (1)

where u is the fluid velocity, Cp is the specific heat, Cpl is the specific heat of the liquid, and
the overbar denotes a weighted average across the fluid and the solid matrix. Γ typically
has values in the region 1.1 − 1.2 depending on the porosity and specific fluids. The fluid
front migrates with the interstitial speed u/φ which is much greater than Γu for typical
values of the porosity, e.g. φ ≈ 0.2. The temperature front lags behind the fluid front.

We now apply this analysis to the injection of a cold fluid which is buoyant relative to the
ambient fluid in an inclined aquifer [Rayward-Smith and Woods, 2011]. The injected fluid
migrates away from the source with characteristic velocity U1 and then acquires character-
istic velocity U2 at the thermal transition. The hot injectate travels faster (U2 > U1) and
hence the depth of the current decreases across the transition (figure 1a). Mass conservation
across the thermal transition is given by

U1H1 − U2H2 = ΓφU1(H1 −H2), (2)

which can be rearranged to find the ratio of the depths,

H2

H1
=

1− Γφ

U2/U1 − Γφ
. (3)

Next, we consider a hot buoyant injectate. This fluid cools after injection and subse-
quently migrates more slowly than the hot fluid near the source. The thermal transition will
travel more slowly than the thermally adjusted injectate if the ambient fluid is not too cold
(figure 1b). If the thermal transition travels faster than the thermally adjusted injectate
then this adjusted injectate sinks relative to the original injectate, forming a layer below it
(figure 1c).
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Figure 1: Migration of fluid and thermal fronts in an inclined aquifer. (a) Cold fluid
accelerates across the thermal front. (b) Hot fluid decelerates across the thermal front
when the thermal front travels more slowly than the thermally adjusted injectate. (c) For
sufficiently high injection temperatures, the thermal front speeds exceeds the speed of the
thermally adjusted injectate.
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Figure 2: (a) Example flow structure for a reacting flow in a porous medium. (b) Salt
concentration and location of the reaction front.

2 Reacting FFlows in Porous Media

We consider the flow of reactive fluids through porous rock, important in the dissolution
of mineral precipitate near oil wells [Verdon and Woods, 2007]. We suppose that there is

a volume of salt ε � 1, per unit volume of the rock, which is soluble in the liquid so that
prior to the reaction, the solid volume fraction is 1−φ and after the reaction, it is 1−φ− ε
(see figure 2a). In order to calculate the speed of the front, we use a mass balance for the
salt. The extent of the liquid zone is ut/φ and the extent of the salt-depleted rock is λut.
The conservation of salt requires [Woods, 2014]

λutε(1− φ) = (ut/φ− λut)ceφ (4)

where ce is the concentration of the saturated salt in the liquid (see figure 2b). This gives
the position of the reaction front

λ =
ce

φce + ε(1− φ)
. (5)

To calculate the shape of the current in figure 2a, we adopt the Boussinesq approxi-
mation, neglecting changes in density of the liquid except in the buoyancy forces, and we
neglect changes in the porosity of the liquid except its impact on permeability [Verdon and
Woods, 2007, Phillips, 2009]. The permeability in the reacted zone is ku and the permeabil-
ity in the unreacted zone is kl. Let y = h(x, t) be the depth of the reacted zone where y is
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measured positive in the downwards direction. Mass continuity in the reacted zone implies

∂h

∂t
= −λ

∂

∂x

(
uuh

)
, (6)

where uu is the velocity of the unsaturated fluid (in the reacted zone). For the case of
constant injection, Q, the flux across the aquifer satisfies,

Q = uuh+ ul(H − h), (7)

where ul is the velocity in the saturated fluid, and H is the depth of the aquifer. Using the
scalings [see Bear, 1971],

H = h/H, ξ = x/H, τ = Qtλβ/H2, (8)

we can combine equations (6) and (7) to find the dimensionless governing equation,

∂H
∂τ

+
∂

∂ξ

(
H

1 + (β − 1)H

)
= B

∂

∂ξ

(
H(1−H)

1 + (β − 1)H
∂H
∂ξ

)
, (9)

where B = ΔρgHkl/μlQ may be interpreted as a densimetric Froude number, being the

ratio of the speed associated with the injection flux to the characteristic buoyancy speed
[cf. Gunn and Woods, 2011]. β = μlku/klμu is the mobility ratio across the reaction front.

Pegler et al. [2014] found the same governing equation as (9) for the injection of a relatively
buoyant fluid into an ambient fluid of different viscosity, with β replaced by the viscosity

ratio.
For B � 1, we approximate (9) by neglecting the right-hand side. In the case β > 1, this

leads to solutions in which the interface between the reacted and unreacted zones grows in
proportion to time, τ . β > 1 is typical in a dissolution reaction. The growth of the interface
implies that the significance of the diffusive term on the right-hand side of (9) decays relative

to the advective term and can be neglected at times of order τ � B, even when B is not
small.

3 Inter-Seasonal Heat Storage

Many industrial plants, data centers and power stations generate large amounts of low-grade
waste thermal energy. In winter months, there is a very high demand for thermal energy
to heat buildings which is met mainly through burning fossil fuels. One strategy to reduce
this consumption is to store waste thermal energy in permeable aquifers and extract it in
the winter.

To gain insight into the efficiency of such thermal storage, we formulate a model for the
periodic injection and extraction of fluid from a line well in a horizontal saturated aquifer
[Dudfield and Woods, 2014]. The governing equation for the depth, h(x, t), of the injectate
in an aquifer of depth H is

∂h

∂t
+

Q(t)

Hφ

∂h

∂x
= S

∂

∂x

(
h

(
1− h

H

)
∂h

∂x

)
, (10)
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where S is the characteristic buoyancy speed, and Q(t) is the flux which alternates between
positive and negative,

Q(t) =

{
Q if 2nτ < t ≤ (2n+ 1)τ,

−Q if (2n+ 1)τ < t ≤ (2n+ 2)τ
(11)

In the first injection period, in which Q(t) is positive, the characteristic length which

fluid travels into the aquifer is L ∼ Qt/φH. The injected fluid cannot all be recovered,
however, a greater fraction of the injected fluid is recovered after each cycle. There is a large

oscillation in the flow near the source as fluid is injected and recovered, however, beyond this
region, fluid spreads away from the source owing to buoyancy. The rate of this spreading of
the nose can be obtained by balancing the buoyancy term in equation (10) with the time

derivative which gives x ∼ t1/2. Dudfield and Woods [2015] extended this analysis to consider
an inclined aquifer, and found that the fraction of injectate recovered decreases with each
cycle owing to the advective nature of the buoyancy-driven flow away from the source.

4 Viscous FFingering in Porous Media

Figure 3: (a) The instability which occurs when a less viscous fluid is injected into a more
viscous fluid. (b) Fractal pattern which arise in a Hele-Shaw cell.

The injection of a less viscous fluid into a more viscous fluid can lead to the onset of
instabilities (see Homsy [1987] for a review). The less viscous fluid tends to penetrate or
‘finger’ through the more viscous fluid. We begin by considering injection in a Hele-Shaw
cell. Darcy’s law is

dp

dx
= −μU

k
+ ρg. (12)

If we displace the interface between the two fluids by an amount δx, then the pressure on
this displace fluid is

δp = (pi − pd) =
[
(μd − μi)U/k + (ρi − ρd)g

]
δx (13)

where the subscripts i and d denote the injected and displaced fluids, respectively. If the
net pressure is positive then a small displacement will amplify. If we consider horizontal
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flow in which gravity can be neglected, the interface is unstable when μd > μi. Gravity
stabilises this instability provided that

U < (ρd − ρa)gk/(μd − μa). (14)

When a less viscous fluid is injected into an axisymmetric Hele-Shaw cell, beautiful
fractal patterns occur owing to this instability (see figure 3b). At early times the radius of
the injected fluid is small and surface tension stabilizes the interface suppresses the fingering.
As the radius grows, the role of surface tension diminishes and the onset of fingering occurs.
The fractal dimension of the shape is 1.7 which means that the area occupied by the pattern

within a circle of radius r is proportional to r1.7.

5 Pumice EEruptions

Figure 4: Schematic of the cooling mechanisms in a pumice ‘lavaberg’.

The submerged Havre volcanoe, off the north coast of New Zealand, in 2012
releasing large volumes of pumice into the ocean. Much of the pumice cooled as it rose
and subsequently sank back to the seabed. However, there was a significant volume which
accumulated on the surface forming a ‘pumice raft’ which took months to disperse. This
surprising result could be caused by trapping of air within the pumice.

After the hot pumice is initially buoyant because it is filled with steam. As it
rises, water flows into the pumice (see figure 4). When the pumice reaches the surface, air is
drawn in as well as water. This air may be capillary trapped within the pumice before the
steam has cooled sufficiently for the pumice to sink. This could enable long-term floating.
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1 Introduction

Stratified shear flows are ubiquitous in geophysical fluids such as the Earth’s atmosphere
and oceans and astrophysical fluids such as stellar interiors. The stratification can arise
due to thermal or compositional gradients, with strong and stable stratification providing
a stabilizing effect against mixing. It is of interest to understand how much mixing and
transport can occur in these flows in spite of the stratification.

In geophysical (atmospheric and oceanic) flows, the Prandtl number, defined to be the
ratio of the kinematic viscosity to density diffusivity, is approximately of order unity. The
stability of stratified horizontal shear flows within this context has been studied previously,
for example by Lucas et al. [7] who were motivated by the ‘zig-zag’ instability (see [1, 2]) and
the spontaneous layering of density fields often found in nature. In contrast, astrophysical
(stellar) flows are characterised by very small Prandtl numbers leading to significantly
different dynamics. The stability of stratified vertical shear flows to infinitesimal and finite
amplitude perturbations was studied within this context, where it was found that vertical
shears can be stabilized by sufficiently strong stratification (see [4] and references therein).

Bringing these ideas together, the main objective of our study is to investigate the
stability and dynamics of stratified horizontal shear flows within an astrophysical regime.
We are motivated by the solar interior which is composed of two layers: an inner radiative
zone and a differentially rotating outer convective zone. A narrow transition region exists
between these two layers, known as the solar tachocline, and is characterised by strong
and stable stratification and combined horizontal and vertical shear. Ignoring the vertical
shear for now, we use a combination of linear (infinitesimal) stability analysis and direct
numerical simulations to study the stability of stratified horizontal shear flows and identify
appropriate astrophysically motivated scaling regimes which permit theoretical estimates
to be made about the mixing efficiency.

We begin in section 2 by introducing the mathematical model that will form the basis of
our investigation. In section 3, we carry out a linear stability analysis of stratified horizontal
shear flows. We consider the effects of the stratification and Prandtl number on the stability
of the system and show that, in contrast to vertically sheared flows, the stability ultimately
remains independent of both.

Direct numerical simulations allow us to study the nonlinear behaviour of the system
in section 4, where we begin by exploring the effect of the geometry of the domain. The
‘zig-zag’ instability and density layering observed in [7] are found to be robust in a subset
of domain sizes, findings which can be linked to our linear stability results. In addition, and
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in a similar fashion to [3], we identify two scaling regimes of astrophysical interest, one of
which we are able to demonstrate numerically. Future work hopes to explore the second of
these two regimes. Predictions for the mixing efficiency in each regime are derived, where
we demonstrate the potential for high mixing efficiency when the fluid viscosity is negligible.

2 Mathematical Model

2.1 Standard eequations

We consider an incompressible, non-rotating, stably stratified Kolmogorov flow with stream-
wise velocity field aligned with the x-axis. The basic state comprises a density distribution

ρB(z) with reference density ρ0 and linear vertical gradient β such that ρB(z) = ρ0−βz, and
the body-forced laminar velocity field uL(y) is monochromatic with cross-stream wavenum-

ber n. The total density field, ρ, includes perturbations ρ′(x, y, z, t) away from the basic
state such that ρ = ρB(z)+ρ′(x, y, z, t), and the three-dimensional velocity field is given by
u(x, y, z, t) = uex + vey + wez. We impose triply-periodic boundary conditions on ρ′ and
u such that (x, y, z) ∈ [0, Lx) × [0, Ly) × [0, Lz). Figure 1 illustrates the basic state in the
case where n = 1.

We use the Boussinesq approximation in which density fluctuations are neglected except
in the buoyancy force [9]. The governing equations are given by:

∂u

∂t
+ u · ∇u+

1

ρ0
∇p = ν∇2u− ρ′g

ρ0
ez + χ sin

(
2πny

Ly

)
ex, (1)

∂ρ′

∂t
+ u · ∇ρ′ − βw = κ∇2ρ′, (2)

∇ · u = 0, (3)

Figure 1: Schematic drawings of the basic state set-up showing (a) the density distribution
ρB(z) and (b) the laminar velocity profile uL(y) with cross-stream wavenumber n = 1.
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where ν is the kinematic viscosity, κ is the density diffusivity, χ is the forcing amplitude, p
is the pressure and gravity g acts in the negative z-direction. In this study, we specify that
Ly = Lz while Lx may vary continuously such that the aspect ratio of the domain is given
by α = Lx/Ly. α > 1 corresponds to domains which are longer in the streamwise direction.

In equilibrium, we anticipate a balance between the body force and fluid inertia such
that u · ∇u ∼ χ sin (2πny/Ly) ex in the streamwise direction. For a characteristic length
scale Ly/2π, this gives a characteristic velocity scale

√
χLy/2π and a characteristic time

scale
√
Ly/2πχ. Combined with the vertical density gradient scale β, we use the same non-

dimensionalisation as in [7] to give the following system of equations, in which all quantities
are non-dimensional:

∂u

∂t
+ u · ∇u+∇p =

1

Re
∇2u−Bρ′ez + sin(ny)ex, (4)

∂ρ′

∂t
+ u · ∇ρ′ − w =

1

RePr
∇2ρ′, (5)

∇ · u = 0. (6)

We define three non-dimensional numbers, the Reynolds number Re, the buoyancy param-
eter B and the Prandtl number Pr, which determine the dynamics of the system:

Re :=

√
χ

ν

(
Ly

2π

) 3
2

, B :=
gβLy

ρ0χ2π
=

N2
BLy

2πχ
, Pr :=

ν

κ
, (7)

where NB =
√

gβ/ρ0 is the (dimensional) buoyancy frequency associated with the back-
ground density field. It is convenient to introduce the Péclet number Pe, defined as

Pe := RePr =

√
χ

κ

(
Ly

2π

) 3
2

. (8)

Both sets of parameters, (Re, B, Pr) or (Re, B, Pe), uniquely define the system and will
be used interchangeably throughout this report. Within this non-dimensional system, the

domain is a cuboid and variables ρ′ and u have triply-periodic boundary conditions such
that (x, y, z) ∈ [0, 2πα) × [0, 2π) × [0, 2π). This system, defined by equations (4), (5) and
(6), will henceforth be referred to as the standard system of equations.

2.2 Low-Péclet number equations

Systems in which a field diffuses on a timescale much shorter than the advective time enter
a quasi-static regime in which there is a balance between the source and diffusive terms.
Motivated by astrophysical applications, we consider the standard set of equations (4), (5)
and (6) in the asymptotic limit of low Prandtl number, or correspondingly low Péclet number
(LPN). This limit was studied by Speigel [8] in the context of thermal convection, and more
recently by Lignières [6] in the context of stably stratified flows. Lignières proposed that
the standard equations can be approximated by a reduced set of equations called the “low-
Péclet number” equations (LPN equations hereafter), in which the density fluctuations are
slaved to the vertical velocity field:
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∂u

∂t
+ u · ∇u+∇p =

1

Re
∇2u−Bρ′ez + sin(ny)ex, (9)

w +
1

Pe
∇2ρ′ = 0, (10)

∇ · u = 0. (11)

These can be derived by assuming a regular asymptotic expansion of ρ′ in powers of Pe,
i.e. ρ′ = ρ′0 + ρ′1Pe+O(Pe2), and by assuming that the velocity field is of order unity. At
lowest order (Pe−1), we get ∇2ρ′0 = 0 implying that ρ′0 = 0 under the boundary conditions,
while at the next order (Pe0), the equations yield −w = ∇2ρ′1 ≈ Pe−1∇2ρ′ as required.

Noting that equation (10) can be re-written as ρ′ = −Pe∇−2w, we derive the reduced
set of LPN equations:

∂u

∂t
+ u · ∇u+∇p =

1

Re
∇2u+BPe∇−2wez + sin(ny)ex, (12)

∇ · u = 0. (13)

These equations explicitly demonstrate that under the LPN approximation (and in contrast
to the standard equations), there are only two non-dimensional parameters governing the
flow dynamics, notably the Reynolds number Re and the product of the buoyancy parameter
and either the Prandtl number, BPr, or equivalently the Péclet number, BPe.

Throughout this work, we will study both systems of equations, verifying the validity
of the LPN equations where possible. For simplicity, we restrict all future analysis in this
study to systems in which the cross-stream wavenumber n = 1.

3 Linear Stability Analysis

3.1 Standard equations

We consider the stability of the basic state to infinitesimal perturbations. The laminar

solution uL(y) satisfies Re−1∇2uL + sin(y)ex = 0, hence it is given by

uL(y) = Re sin(y)ex. (14)

For small perturbations u′(x, y, z, t) away from the laminar solution, i.e. letting u = uL(y)+
u′(x, y, z, t), the linearised perturbation equations are:

∂u′

∂t
+Re cos(y)v′ex +Re sin(y)

∂u′

∂x
+∇p =

1

Re
∇2u′ −Bρ′ez, (15)

∂ρ′

∂t
+Re sin(y)

∂ρ′

∂x
− w′ =

1

Pe
∇2ρ′, (16)

∇ · u′ = 0. (17)

In this set of partial differential equations (PDEs), the coefficients are periodic in y but
independent of x, z and t. Consequently, and in the conventional fashion, we consider
normal mode disturbances of the form:
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q(x, y, z, t) = q̂(y) exp[ikxx+ ikzz + σt], (18)

where q ∈ (u′, v′, w′, ρ′, p) and kx and kz are the perturbation wavenumbers in the x and z-

directions respectively. The geometry of the model set-up requires that kx∈ R and kz∈ Z. We

seek periodic solutions for q̂(y) given by

q̂(y) =

M∑
m=−M

qmeimy. (19)

Substituting this ansatz into equations (15), (16) and (17) and using the orthogonality
property of complex exponentials, we obtain a 5× (2M + 1) = (10M + 5) algebraic system
of equations for the um, vm, wm, ρm, pm for m ∈ (−M,M):

1

2
Rekx(um+1 − um−1)− m2 + k2x + k2z

Re
um − 1

2
Re(vm−1 + vm+1)− ikxpm = σum, (20)

1

2
Rekx(vm+1 − vm−1)− m2 + k2x + k2z

Re
vm − impm = σvm, (21)

1

2
Rekx(wm+1 − wm−1)− m2 + k2x + k2z

Re
wm −Bρm − ikzpm = σwm, (22)

1

2
Rekx(ρm+1 − ρm−1) + wm − m2 + k2x + k2z

RePr
ρm = σρm, (23)

kxum +mvm + kzwm = 0. (24)

This system can be re-formulated as a generalised eigenvalue problem for the complex
growth rates σ,

A(kx, kz, Re,B, Pr)X = σBX, (25)

where X = (u−M , ..., uM , v−M , ..., vM , w−M , ..., wM , ρ−M , ..., ρM , p−M , ..., pM ), A and B are
(10M+5)× (10M+5) square matrices and Bi,j = {δij , i, j ≤ (8M+4); 0, otherwise}. For
perturbation wavenumbers kx and kz and system parameters Re, B and Pr, the maximum
value of the real part of the growth rates σ determines the linear stability. The eigenvalue
problem can be solved numerically, with M chosen such that convergence is achieved. For
example, for a 2D perturbation such that kx = 1 and kz = 0 and system parameters
Re = 50, B = 50 and Pr = 1, we find that (Re σ)max = σ = −0.02, i.e. this mode is stable
to infinitesimal perturbations.

Maintaining temporary focus on the case when B = 50 and Pr = 1, we consider the
linear stability of the system of equations across a range of Reynolds numbers and both
2D and 3D perturbation modes. Figure 2(a) shows the neutral stability curves (σ = 0)
for a range of kz modes (kz ∈ (0, ..., 6)) across a spectrum of streamwise wavenumbers kx
and Reynolds numbers, matching results in [7]. Stability (σ < 0) is found to the left and
above the curves while instability (σ > 0) exists to the right and below. The black curve
illustrates the kz = 0 mode (henceforth referred to as the 2D mode). For Re ∼ O(1), this
mode asymptotes to the line Re = 1.19, implying that the system is linearly stable when
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Figure 2: (a) Neutral stability curves for a range of kz modes plotted against a spectrum of
Reynolds numbers and kx modes. Instability occurs to the right and below the curves. (b)
The corresponding largest growth rates σmax computed across a spectrum of kx modes and
plotted for a collection of kz modes and a range of Reynolds numbers. The curves plotted
include kz = 0, 1, 2, 3, 4, 5, 6 and the standard equations were used with B = 50 and
Pr = 1 fixed.

Re < 1.19. For large Re, it asymptotes to kx = 1 but, crucially, always lies below this line,
leading to the conclusion that domains such that α = Lx/Ly ≤ 1 are linearly stable to the
2D mode.

The coloured curves show the neutral stability curves for the first six 3D modes (kz ∈
(1, ..., 6)). The onset of instability in the 3D modes occurs for higher Reynolds numbers than
the 2D mode, and it would appear, at least from the selection of curves plotted in figure 2(a),
that the critical Reynolds number for instability increases monotonously with increasing kz.
For Re ∼ O(100), the 3D curves actually cross and lie above the line kx = 1 implying that
these modes are unstable for domains where α = 1, i.e. cubic domains. The 2D mode,
however only becomes unstable when α > 1, posing the interesting question relating to the
effect of the domain geometry on the dynamics. This question will be addressed in section
4.2.

A curious scaling emerges from figure 2(a), which is calculated to be kx ∼ Re−4/3

(kz ≥ 1) on the lower branch of the neutral stability curves. Whilst we do not have an
explanation for this scaling within this report, future work hopes to investigate this further
within the system of equations.

Figure 2(b) further analyses the information in figure 2(a) by computing, for each
Reynolds number and kz, the largest growth rate σmax across all values of kx (only in-
cluding σmax > 0. It is clear that the 2D mode is always the most unstable mode, thus
we would predict that this mode would dominate the dynamics in the system when it is
unstable (i.e. for domain sizes such that α > 1).

Having laid the foundations for our linear stability analysis, we now explore the effects
of the buoyancy parameter and the Prandtl number on the overall picture, venturing closer
towards the astrophysical regime. Figure 3 plots the neutral stability curves, in exactly
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Figure 3: Neutral stability curves for a range of kz modes plotted against a spectrum of
Reynolds numbers and kx modes. Instability occurs to the right and below the curves.
Three different buoyancy parameters were used: B = 100 (first column), B = 10 (second
column), B = 0 (third column), and four different Prandtl numbers: Pr = 1 (first row),
Pr = 0.1 (second row), Pr = 0.01 (third row), Pr = 0.001 (fourth row). The curves plotted
include kz = 0, 1, 2, 3, 4, 5, 6 and the standard equations were used.
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the same fashion as in figure 2(a), for three different buoyancy parameters: B = 100 (first
column), B = 10 (second column), B = 0 (third column), and four different Prandtl
numbers: Pr = 1 (first row), Pr = 0.1 (second row), Pr = 0.01 (third row), Pr = 0.001
(fourth row). Whilst the neutral stability curves are identical for the 2D mode, clear trends
exist for the 3D modes. In the unstratified case (B = 0), no 3D modes are unstable. It
can be seen that a reduction in the value of B shifts the critical Reynolds numbers for the
onset of instability of the 3D modes towards higher values, thereby making these modes less

unstable. We would anticipate this trend to continue as B → 0 and the system approaches
the unstratified limit.

A reduction in the Prandtl number also has the same effect. We speculate that as

Pr → 0, keeping B fixed and finite, the system also approaches a state in which only the
2D mode is unstable. Thus, B → 0 (at fixed Pr) and Pr → 0 (at fixed B) have the same
effect: the 3D modes of instability are suppressed while the 2D mode remains unstable.
The explanation for this emerges from equation (5). As the Prandtl number becomes very
small (keeping the Reynolds number finite), the Péclet number becomes small and so the
density diffusivity becomes large. In this case, a small parcel of fluid that is advected into
surrounding fluid of a different density will adjust very rapidly to its surroundings, thereby
reducing the buoyancy force and so approximating an unstratified system.

The modest selection of buoyancy parameters and Prandtl numbers explored in figure 3
suggests that the critical Reynolds number, Rec, for the onset of linear instability, as given
by the 2D mode, is independent of both of these parameters, and is fixed at Rec = 1.19.
In order to test this hypothesis, we compute Rec numerically for a wide range of values

of B and Pr. It is indeed found to be a constant, therefore we conclude that the critical
Reynolds number is independent of the other two parameters in the system. This result
differs quite substantially from that obtained in [4] for the case of a vertical shear, where
stratification was found to be able to stabilize a system.

3.2 Low-Péclet nnumber equations

We now examine the linear stability of the LPN equations, given by equations (12) and
(13). We follow the same steps as in the previous section, however this time we find
ourselves working with a reduced set of four equations rather than five. We obtain a

4 × (2M + 1) = (8M + 4) algebraic system of equations for the um, vm, wm, pm for
m ∈ (−M,M):

1

2
Rekx(um+1 − um−1)− m2 + k2x + k2z

Re
um − 1

2
Re(vm−1 + vm+1)− ikxpm = σum, (26)

1

2
Rekx(vm+1 − vm−1)− m2 + k2x + k2z

Re
vm − impm = σvm, (27)

1

2
Rekx(wm+1 − wm−1)− m2 + k2x + k2z

Re
wm − BPe

k2x + k2z
wm − ikzpm = σwm, (28)

kxum +mvm + kzwm = 0. (29)

As before, this system can be re-formulated as a generalised eigenvalue problem for the
complex growth rates σ,
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A(kx, kz, Re,BPr)X = σBX, (30)

where X = (u−M , ..., uM , v−M , ..., vM , w−M , ..., wM , p−M , ..., pM ), A and B are (8M + 4)×
(8M +4) square matrices and Bi,j = {δij , i, j ≤ (6M +3); 0, otherwise}. For perturbation
wavenumbers kx and kz and system parameters Re and BPr, the maximum value of the
real part of the growth rates σ determines the linear stability. The eigenvalue problem can
be solved numerically, with M chosen such that convergence is achieved.

Our initial focus is the validation of the LPN equations in terms of their ability to repro-
duce qualitative results from the standard equations in regions where the LPN approxima-
tion is deemed applicable. To this end, we choose to compare linear stability analysis results
between the standard equations and the LPN equations across two sets of parameters.

Figure 4 illustrates this comparison, where on the first row we have plotted neutral
stability curves from the standard equations and the second row shows the equivalent results
from the LPN equations. Parameter values in the first column are B = 50 and Pr = 0.1 for
the standard equations and BPr = 5 for the LPN equations, and in the second column they
are B = 50 and Pr = 0.01 for the standard equations and BPr = 0.5 for the LPN equations.
As before, we plot curves across a range of values of Re and kx for the 2D mode (black)
and the first six 3D modes (coloured). The regions in which we expect qualitatively similar
results are highlighted with grey rectangles; these outline regions where Pe = RePr < O(1),
a condition motivated by results in [4]. Excellent agreement between the linear stability
analysis results of the LPN equations and the standard equations occurs for Pe < O(10−1),
with moderately good agreement when O(10−1) < Pe < O(1). Outside of these regions,
differences emerge as we would expect.

We now continue our validation of the LPN equations by considering the effect that the
parameter BPr has on the stability of the system. Figure 5 plots the neutral stability curves
for five different parameter values: (from left to right) BPr = 5, 0.5, 0.05, 0.005, 0. Similar
patterns can be seen to those observed with the standard equations. In the unstratified case
(BPr = 0), no 3D modes are unstable. It can be seen that a reduction in the value of BPr
shifts the critical Reynolds numbers for the onset of instability of the 3D modes towards
higher values, thereby making these modes less unstable. We would anticipate this trend
to continue as BPr → 0, which can be achieved by letting either B → 0 or Pr → 0
independently.

Each of the neutral stability curves for the 2D mode are identical, with the critical
Reynolds number for the onset of linear instability being Rec = 1.19. This prompts the
question, as before, as to whether Rec is indeed independent of the BPr parameter. We
have tested this prediction and computed Rec numerically for a range of values of BPr. Just
as for the standard equations, we conclude that the critical Reynolds number is independent
of BPe in the LPN system of equations. This differs from the result obtained in [4] for the
case of a vertical shear in which Rec was found to increase monotonically with increasing
BPe.
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Figure 4: A comparison of linear stability analysis results between the standard equations
(first row) and the LPN equations (second row). Neutral stability curves for a range of kz
modes (kz = 0, 1, 2, 3, 4, 5, 6) are plotted against a spectrum of Reynolds numbers and kx
modes. Instability occurs to the right and below the curves. Parameter values used are (a)
B = 50, Pr = 0.1, (b) B = 50, Pr = 0.01, (c) BPr = 5, (d) BPr = 0.5. Grey rectangles
indicate regions where the LPN approximation is valid and hence where we would expect
correspondence.

Figure 5: Neutral stability curves for a range of kz modes plotted against a spectrum of
Reynolds numbers and kx modes. Instability occurs to the right and below the curves.
Parameter values used are (a) BPr = 5, (b) BPr = 0.5, (c) BPr = 0.05, (d) BPr = 0.005,
(e) BPr = 0. The curves plotted include kz = 0, 1, 2, 3, 4, 5, 6 and the LPN equations
were used.
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4 Direct Numerical Simulations

Our work so far has focussed on the initial linear instabilities present within the standard
and LPN systems of equations. While these results are of interest in terms of predicting
when turbulent mixing may be expected, they do not predict the nature of the long-term
equilibrium solutions. We now turn to direct numerical simulations (DNS) in order to retain
all nonlinearities as we continue to study the properties of stratified horizontal shear flows
in the astrophysical regime.

4.1 The nnumerical model

The standard equations (4), (5) and (6) are solved in a periodic domain of size 2πα×2π×2π

(α ∈ N) using a pseudo-spectral code that was originally developed by Stellmach to study

double-diffusive convection [10] [11]. A small modification to the code has been made to

include the Kolmogorov forcing. In terms of the resolution, we used 64 Fourier modes per 2π

domain length, resulting in domain resolutions of 64α × 64 × 64. Small amplitude

perturbations are initialised in the density field. We explore a range of values of Re ≤ 100, B

and P r as we shall discuss, along with four different streamwise domain sizes (2πα). Our

simulations are run on the XSEDE supercomputing facilities (Stampede2 and Comet).

4.2 Effect of the domain geometry on the global solutions

We begin our study of the DNS results by considering the effect that the streamwise domain
length (or equivalently the geometry of the domain) has on the solutions of the standard
equations. Recent work by Lucas et al. [7] studied the zig-zag instability in cubic (α = 1)
domains with horizontal Kolmogorov forcing at Pr = 1. Motivated by our linear stability
analysis results which hinted at the importance of the domain geometry on the linear in-
stabilities and hence solutions of the equations, we seek to determine this effect when all
nonlinearities are retained. This in turn will enable us to select an appropriate domain size
to use for future simulations.

For this exercise, we choose to use the same parameters explored in [7], where we know
that the zig-zag instability exists. We let Re = 50, B = 50 and Pr = 1 and we consider
four different domain sizes such that α = 1, 2, 3, 4. The first of these corresponds to a cube

while the other three correspond to lengths that are 2×, 3× and 4× longer than a cube.
For visualisation purposes, figure 6 shows snapshots, once the flow has equilibrated, of the
streamwise component of the velocity field in each of the four simulations just described.
The zig-zag instability can very clearly be seen in the cubic domain but is less apparent in
the other three domain sizes.

We can continue to analyse the flow dynamics qualitatively in each of the four sim-
ulations by computing and plotting streamwise averages of variables. The top two rows
in figure 7 show snapshots of the streamwise component of the velocity field u and the

density perturbation field ρ′ in the y − z plane at x = 0 for the four geometries (left to
right: increasing domain length) once the flow has equilibrated. The third and fourth rows

plot the streamwise (x-) averages (denoted by 〈·〉x) of these fields at the same instances in
time. There is a very clear zig-zag or chevron structure in the velocity field in the cubic
domain, visible both in the snapshot at x = 0 and the streamwise average. Whilst smaller
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Figure 6: 3D snapshots of the streamwise (u) component of the velocity field in simulations
that have equilibrated for domain sizes (a) 2π×2π×2π, (b) 4π×2π×2π, (c) 6π×2π×2π,
(d) 8π × 2π × 2π. Parameters used were Re = 50, B = 50, Pr = 1.

scale zig-zags can be seen in the snapshots of the longer domains, these do not emerge in
the streamwise averages. In addition, the clear layering of the density field in the cubic
domain is not a feature that exists for longer domains, where smaller vertical length scales
dominate.

It is clear that the inclusion of the 2D mode of linear instability in the longer domains
does play a role in the dynamical attractor of the equilibrated solutions, and that no global
attractor exists as a solution of the equations. The geometry of the domain, and hence the
types of linear instabilities present, affect the transition of the system from a laminar flow
into a more turbulent regime.

We conclude this section with a more quantitative analysis of the evolution and equili-
bration of the system in these four configurations. In figure 8 we plot the time evolution of
domain averages (denoted by 〈·〉) of urms, vrms, wrms and ρ′rms for each simulation. The red
curves represent the cubic domain simulation and deviate quite significantly from the other
three curves, which to some degree closely approximate one another. Focussing initially
on the simulations run in cuboid domains, we see that the initial linear instabilities take
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Figure 7: 2D plots of the y−z plane showing u(x = 0, y, z) (first row), ρ′(x = 0, y, z) (second
row), 〈u〉x(y, z) (third row), 〈ρ′〉x(y, z) (fourth row) for domain geometries 2π × 2π × 2π
(first column), 4π × 2π × 2π (second column), 6π × 2π × 2π (third column), 8π × 2π × 2π
(fourth column). 〈·〉x denotes a streamwise (x-) average. All plots were taken from instances
in time when the flow had equilibrated.

place almost immediately, with a sharp drop in 〈urms〉 and sharp increases in 〈vrms〉, 〈wrms〉
and 〈ρ′rms〉. After a relatively short transition period, each simulation settles down to an
equilibrium solution with only small variability due to gravity waves propagating through
the system. It could be argued that the equilibrium in each of the three cases is equivalent.

Due to the very unstable (high growth rate, see figure 2(b)) 2D mode of instability
present in each of these domains, the cuboid simulations de-laminarise in only a fraction of
the time that it takes the cubic simulation to do so. Whilst energy builds up gradually in
the vrms and wrms fields in the cubic simulation, the linear instability eventually takes place
at about t = 35. However, unlike the cuboid domains where the 2D mode of instability
continues to dominate the dynamics, allowing an equilibrium to be reached, this mode is
not present in the cubic domain. Consequently, we see that after the initial instability has
taken place, the flow tries to relaminarise. We note that, whilst not visible in figure 8, the
system never reaches a stable equilibrium but instead settles into a periodic pattern of sharp
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Figure 8: Time evolution plots of (a) 〈urms〉, (b) 〈vrms〉, (c) 〈wrms〉, (d) 〈ρ′rms〉 for simula-
tions run in domain sizes 2π × 2π × 2π, 4π × 2π × 2π, 6π × 2π × 2π, 8π × 2π × 2π. System
parameters used were Re = 50, B = 50, Pr = 1. 〈·〉 denotes a domain average.

‘bursting’ behaviour associated with an instability followed by gradual relaminarisation.
The explanation for this is straightforward: the 3D modes of instability are unable to
maintain the new turbulent state following an instability, instead only becoming active
when a strong horizontal shear is present.

In conclusion, we acknowledge the importance of the geometry of the domain on the
solutions of the equations. Moving forward, we choose to run all future simulations in a

domain of size 4π × 2π × 2π (α = 2), whose length is found to be sufficient to contain
dynamics quantitatively similar to those of longer domains. We consider the cubic domain
(and domains such that α < 1) to be a special case where the 2D mode of instability cannot
exist. Striving for the most generic set-up applicable to stellar interiors, and aiming for
computational practicality, we consider this choice to be the most sensible option.

4.3 Scaling rregimes in the low-Péclet number limit

The region of stellar interiors that motivates this study is characterised by strong stratifi-

cation (B � 1), small Prandtl numbers (P r  1) and large Reynolds numbers (Re � 1).

Within these constraints, and in a similar manner to the work carried out in [3] in which

the focus was oceanographic (P r�O(1)), we identify two scaling regimes which differ in

dynamics due to the relative size of the Reynolds number.
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4.3.1 Viscous rregime

The first regime, which we call the viscous regime, considers viscosity to play an important
role in the dynamics. Consequently, we seek an upper bound on the size of the Reynolds

number. Based on the conditions B � 1, Pr  1 and 1  Re  ?, where this upper
asymptotic bound for Re is to be determined by our analysis, we make three assumptions.
The first is that typical horizontal velocities uh and horizontal length scales lh satisfy

uh, lh ∼ O(1) while vertical length scales lv are much smaller: lv  1. By the continuity
equation (∇ · u = 0), it then follows that

w ∼ lv  1. (31)

In the second assumption, we focus on the vertical momentum equation (see equation
(4)) and consider a dominant balance between the buoyancy force and viscous dissipation,
consistent with our attempt to characterize a viscously dominated regime:

Bρ′ ∼ 1

Re
∇2w. (32)

Implicit in this is that u ·∇w  Re−1∇2w. Finally, in the density equation (5) we consider
the LPN approximation due to the low Prandtl number assumption, and thus arrive at the
same balance as in section 2.2:

−w ∼ 1

Pe
∇2ρ′. (33)

Combining (31), (32) and (33) we are able to derive two predicted scalings, one for w and
the other for ρ′, that depend on the parameters in the system:

w ∼ (BPeRe)−
1
4 , ρ′ ∼ Pe

1
4 (BRe)−

3
4 , (34)

from which it follows from (31) that lv ∼ (BPeRe)−1/4. Associated with these three
assumptions, there are three consistency criteria on the parameters in the system. These
can be combined and equate to

max

(
Pe

B
,

1

BPe

)
 Re  BPe, (35)

providing the necessary criteria for the system to be in this astrophysically motivated viscous
regime. Here, we see that the required condition on the Reynolds number is Re  BPe.
Within the context of the LPN momentum equation (12), these conditions correspond to
Re−1∇2w ∼ −BPe∇−2w where buoyancy is balanced by viscous dissipation.

DNS simulations allow us to validate the scalings derived in (34). We have run a
selection of simulations using the standard equations in domain size 4π × 2π × 2π (α = 2)
for a variety of parameter values for B and Pr and two different Reynolds numbers: Re = 50
and Re = 100. Each simulation was run until a satisfactory equilibrium state was reached.
We have categorised the simulations according to whether the consistency criteria (35), with
inequalities replacing the asymptotic bounds, are met or not met, specifically:

max

(
Pe

B
,

1

BPe

)
< Re < BPe. (36)
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Figure 9: Plots showing the viscous regime scaling predictions against the DNS computed
values for (a) 〈wrms〉, (b) 〈ρ′〉, (c) 〈wρ′〉 and (d) η. Red circles correspond to Re = 50
and blue circles correspond to Re = 100. Filled circles correspond to simulations where the
inequalities in (35) are met and open circles correspond to simulations where the inequalities
are not met. Plotted lines have slope equal to one and correspond to the predicted scalings
in the viscous regime. 〈·〉 denotes a domain average and · denotes a time average.

Finally, we have computed time (denoted by ·) and domain averages (once the simulations
have reached equilibrium) of wrms, ρ

′
rms and the vertical buoyancy flux wρ′ and have plotted

these against the predicted scalings using the input parameters, where we assume that the
predicted scaling for wρ′ is simply the product of the scalings for w and ρ′. The results can
found in figures 9(a), 9(b) and 9(c).

Denoted by filled circles, those simulations which meet the consistency criteria follow the
predicted scalings and lie close to the plotted lines with slope equal to 1. It is interesting to
comment on the fact that even those simulations which do not meet the consistency criteria
would appear to follow the predicted scalings for ρ′ and wρ′, although this is not the case
for w. A typical simulation within this regime can be seen in figure 10(a), in which the
streamwise velocity is plotted. Here, we note the lack of small scale horizontal structures
and the relatively smooth, non-turbulent appearance of the velocity field.
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Figure 10: 3D snapshots of the streamwise (u) component of the velocity field in simulations
that have equilibrated for (a) the viscous regime (Re = 100, B = 1000, Pr = 0.1) and (b)
a set-up close to the inertial regime (Re = 100, B = 10, Pr = 0.01). The domain size was

4π× 2π× 2π in both cases.

4.3.2 Inertial rregime

We now turn to the second regime, which we call the inertial regime. Here, we consider
viscosity to be unimportant in the dynamics, and instead require that fluid inertia plays
a dominant role. In contrast to the viscous regime, we seek a lower bound on the size of

the Reynolds number. Based on the conditions B � 1, Pr  1 and 1  ?  Re, where
this lower asymptotic bound for Re is to be determined by our analysis, we make three
assumptions. Two of these are identical to before, however for completeness, we explicitly
describe each assumption in turn.

As before, the first is that typical horizontal velocities uh and horizontal length scales

lh satisfy uh, lh ∼ O(1) while vertical length scales lv are much smaller, i.e. lv  1, so that

w ∼ lv  1. (37)

The second assumption differs from the viscous regime. This time, we consider a dominant
balance between the buoyancy force and the inertial term in the vertical momentum equation
(4), consistent with our attempt to characterise a regime dominated by inertia:

u · ∇w ∼ −Bρ′. (38)

Implicit in this is that u ·∇w � Re−1∇2w. Finally, in the density equation (5) we consider
the LPN approximation due to the low Prandtl number assumption:

−w ∼ 1

Pe
∇2ρ′. (39)

Combining (37), (38) and (39) we derive two new predicted scalings, one for w and the
other for ρ′, that depend on the parameters in the system:

w ∼ (BPe)−
1
2 ; ρ′ ∼ B− 3

2 (Pe)−
1
2 , (40)
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from which it follows from (37) that lv ∼ (BPe)−1/2. As before, there are three consistency
criteria on the parameters in the system, which can be combined and equate to

max(1, P e)  BPe  Re, (41)

providing the necessary criteria for the system to be in this astrophysically motivated inertial

regime. Here, we see that the required condition on the Reynolds number is Re � BPe.
Within the context of the LPN momentum equation (12), these conditions correspond to

Re−1∇2w  BPe∇−2w where buoyancy is balanced by inertia.
Currently, we have not been able to validate this regime using data from DNS sim-

ulations, however this will be the focus of future work. In the meantime, we display a
visualisation in figure 10(b) of the streamwise velocity of a simulation which fulfills the
consistency criteria (41) where the asymptotic bounds are replaced by inequalities. Until
we obtain sufficient data to validate the magnitude differences required on the bounds in
(41), we cannot be 100% confident that this simulation is close to the regime of interest.
However, it does show significant differences from the smooth appearance of the viscous
regime, appearing to be more turbulent with smaller scale structures appearing.

4.3.3Mixing eefficiency in the viscous and inertial regimes

Having introduced the existence of two new astrophysically motived scaling regimes, we
now take a moment to consider the amount of mixing, or vertical transport of buoyancy,
that is theoretically possible in each. In a stratified system, the mixing efficiency is defined
as the ratio of the net change in potential energy to the energy used for mixing or vertical
buoyancy transport. In other words, it quantifies how much of the energy that is injected
into the system is used for transporting buoyancy compared with being dissipated due to
viscosity. In terms of our model, the mixing efficiency can be defined mathematically as

η =
B〈wρ′〉

B〈wρ′〉+ 1
Re〈|∇u|2〉 . (42)

In the viscous regime, using the scalings calculated in (34), we determine the mixing effi-
ciency to scale as

η ∼ 1

(BPeRe)
1
2

. (43)

Since one of the consistency criteria for this regime was that 1  BPeRe, we see im-
mediately that η  1. Thus, vertical buoyancy transport and mixing is very inefficient
when viscous effects are important. We are able to validate this scaling using data from
DNS simulations; the results are presented in figure 9(d) and show a consistency for those
simulations (closed circles) which belong in the viscous regime.

We now consider the inertial regime. Here, we use the scalings calculated in (40) to
determine the scaling for the mixing efficiency to be

η ∼ 1

1 + (BPe)2

Re

=
1

1 +BPeBPe
Re

. (44)
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From the consistency criteria for this regime, we know that Re � BPe. However, we

have no condition on the magnitude of BPe and hence (BPe)2/Re could be either large or
small. We conclude that 0 ≤ η ≤ 1 and hence, theoretically, we could have η ∼ O(1). This
is a fundamental difference from the viscous regime and could have strong astrophysical
implications. Future work aims to explore this prediction using DNS simulation data.

4.4 Standard versus llow-Péclet number equations comparison

Simulation of the inertial scaling regime will likely require Reynolds numbers to be in ex-
cess of those that we have considered so far. Modest increases in the Reynolds number
have indicated that increased resolution is required to adequately resolve the smaller scale
dynamics that begin to emerge. This, in turn, requires more computational resources and
thus can become expensive. The LPN equations, however, pose a viable alternative. Pro-
vided we can demonstrate their validity, this reduced set of equations will allow the system
parameters to be pushed further into the inertial regime and provide a better prospect of
demonstrating the predicted scalings.

A modification in the code to the momentum equation allowed it to be adapted to solve
the LPN equations, just as in [4]. We have run one simulation using the standard code with a
selection of parameters chosen such that the LPN approximation should be valid (Re = 100,
B = 1000, Pr = 0.0001, BPe = 1). In addition, we have run a second simulation using the
LPN code with equivalent parameters (Re = 100, BPe = 1). We would expect the results
to be very close, and find that this is the case. Figure 11 shows a selection of diagnostics
from each of the two simulations, where we see virtually identical results. In addition, figure

12 shows snapshots of the streamwise velocity field in the y− z plane taken at x = 0, where
the flow structure appears to be qualitatively the same. Combined with the results from
our linear stability analysis of the LPN equations which demonstrated their validity, we are
confident in their use for our future purposes.

4.5 Vertical v ersus horizontal shear comparison

We conclude this study with a comparison between vertical shear and horizontal shear
instabilities. We are fortunate to obtain a data set used in [4] for stratified vertically
sheared simulations. The data collected in that study used the same code as discussed here,
with the only difference being the orientation of the shear. Thus the two data sets use the
same parameters and are comparable in the sense that they both consider cuboid domains.

In figure 13 we plot time and domain averages of urms against BPe for a variety of verti-

cally sheared simulations (red) and horizontally sheared simulations (blue). For simulations

in which BPe < O(1), both vertical and horizontal shearing is broken down by instabilities
to produce turbulent behaviour with large reductions in the value of 〈urms〉 away from its
laminar value. However, for BPe > O(1), the behaviour of the two types of shearing di-
verge. The horizontally sheared simulations continue to exhibit turbulent behaviour, since
Rec is parameter independent and the 2D mode of linear instability is always present. On

the other hand, the turbulent stresses in the vertically sheared simulations begin to the feel
effects of stratification, hence these flows become less turbulent and more laminar.
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Re B Pr Pe BPe 〈urms〉 〈urms〉 〈vrms〉 〈wrms〉 〈|∇u|2〉
Standard 100 103 10−4 0.01 1 2.27 1.41 1.56 0.79 46.1

LPN 100 1 2.25 1.42 1.51 0.79 46.1

Figure 11: Data from a standard and a LPN simulation with equivalent parameters chosen
such that the LPN approximation is valid and BPe = 1 in each. Various time and domain-
averaged diagnostics are compared to demonstrate the validity of the LPN approximation.

Figure 12: Plots of the y − z plane showing u(x = 0, y, z) in simulations run using (a) the
standard equations with Re = 100, B = 1000, Pr = 0.0001 and (b) the LPN equations
with Re = 100, BPe = 1. The plots were taken from instances in time after equilibration.

Figure 13: Data from vertically sheared and horizontally sheared simulations showing 〈urms〉
plotted against BPe for a variety of parameter values and cuboid domains. The standard
code was used for all simulations. 〈·〉 denotes a domain average and · denotes a time average.
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5 Discussion

Our goal in this work was the study of the stability and dynamics of stably stratified
horizontal shear flows, primarily within an astrophysical regime characterised by strong
stratification and low Prandtl numbers. Through a combination of linear stability analyses
and direct numerical simulations, our objectives were three-fold: (1) to explore the effect
of the domain geometry, (2) to identify astrophysically relevant scaling regimes which allow
mixing efficiency predictions, and (3) to test the validity of the LPN equations.

Results from our linear stability analysis showed that the stability of horizontal shear
flows is independent of the system parameters, provided the computational domain is longer
in the streamwise than spanwise direction, with the critical Reynolds number for the onset
of instability always being of order one, irrespective of the stratification or the Prandtl
number. In addition, we showed that in the limit of small Prandtl numbers, the system
behaves like an unstratified system, with the only unstable perturbation modes being 2D.
As the stratification or Prandtl number increases, so do the number of 3D perturbation
modes which are unstable at any fixed Reynolds number.

Using direct numerical simulations, we explored the nonlinear behaviour of our system
of equations. We began by exploring the effect that the geometry of the domain has on the
solutions. This was motivated by results from the linear stability analysis which revealed
that the 2D mode, whilst being much more unstable than 3D modes, was only unstable for
domains in which α = Lx/Ly > 1. Consequently, we found that the ‘zig-zag’ instability

and density layering were much more pronounced in a cubic domain than in longer domains
where other dynamics also occur. This dependence on the geometry, and hence the linear
instabilities, demonstrated that there is no global attractor within the system of equations.

We proceeded to seek astrophysically motivated scaling regimes, characterised by strong
stratification and small Prandtl numbers. In doing so, we identified two regimes of interest:
one in which viscosity was dominant and the other in which inertia was dominant. The
viscous regime was identified and confirmed numerically, with results agreeing well with
the predicted scaling laws. The mixing efficiency of each regime was investigated, where
it was found that although the viscous regime inhibits mixing, the inertial regime doesn’t
eliminate the possibility of high mixing efficiencies and large vertical transport.

Moving forward, we intend to use the LPN equations to simulate the inertial regime,
which will require numerical simulations to be run at much higher Reynolds numbers. The
validity of the LPN equations was tested through a combination of linear stability analyses
and direct numerical simulations; these will allow a larger range of parameters to be explored
with fewer computational resources. This work is presently under way, and the results will
be presented elsewhere.

An interesting extension to this study would be to consider the stability of shear flow that
has both a horizontal and vertical component. Our results show an interesting difference in
the behaviour of vertically and horizontally sheared flows: vertical shears can be stabilized
with sufficiently strong stratification whilst horizontal shears are always unstable, provided

thatRe� 1. It is unknown, for example, how a small amount of horizontal shear can affect

the stability of a vertical shear; this is a question of astrophysical importance.
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1 Introduction

The ocean mixed layer is the region in the ocean directly underneath the air-sea interface.
Because of the high heat capacity of water, the upper 2.5 m of the ocean contains the
same amount of heat as the entire atmosphere above it. Oceans act as heat reservoirs,
gaining heat during spring-summer and losing it slowly during fall-winter. The ocean mixed
layer mediates the exchange of mass, momentum and energy between the ocean and the

atmosphere [6]. The depth of these layers is typically O(10 − 1000 m), and exhibits large
seasonal variations depending on the latitude. The mixing, however, is driven by a range
of factors. In the winter or at night, the mixing is largely driven by the convection due to
radiative heat loss to the atmosphere, whereas during the summer, the mixing is mainly
shear-driven, since the wind stress at the surface is the primary mixing agent. Although
the surface wind stress acts to stir light water downwards, most of this energy dissipates

rapidly within the top 25− 30 m of the ocean. Figure 1 shows the variation of the mixed layer
depth in the mid-latitudes, illustrating the effect of convection in producing deeper mixed

layers.
The ocean is heated near the surface by both short-wave and long-wave radiative fluxes,

and deeper in the water column from solar radiation in the visible part of the spectrum
penetrating into the water. This solar heating produces a diurnal cycle that varies in
importance and magnitude over the course of a year. The surface cooling, however, is driven
by radiative and evaporative losses at the surface to the atmosphere. Seasonal variation of
the mixed layer depth due to radiative heating is also important, although the importance
depends on the latitude. As the sea-surface cools at night or over the winter, the water
may become denser than the underlying fluid. If the isopycnals are perturbed from level,
horizontal buoyancy gradients are produced which, in turn, begin to produce vorticity. The
flows will further lift the light fluid and draw the heavier fluid down; the layer tries to
overturn. This process is retarded by viscosity, but also by conduction which reduces the
density contrast. The deepest mixed layers, which exceed 2000 m in regions such as the
Labrador Sea, are formed through this process, which is a type of convective instability.

Figure 2 shows the regionally averaged variations in mixed layer depth over a
year, highlighting large variations in the North Atlantic which has a strong deepening of the
mixed layer in the winter. In the boreal winter, convection acts to deepen the mixed layer
in the regions around close to the North pole, dominantly around Labrador and
Greenland seas, whereas in the boreal summer, convection is strongest close to the south
pole, producing deeper mixed layers close to the Antarctic. Figure 3 shows the global
mixed layer depth

How Mixed is the Ocean Mixed Layer?
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Figure 1: Seasonal evolution of temperature in the mid-latitude upper ocean. Shallow,
warm mixed layers during spring-summer alternate with cold, deep ones during fall-winter.
(Source: Kantha and Clayson, 2000 [6])

Figure 2: Example of regional variations in mixed layer depth over the year. Mixed layer
depths can, regionally, become much deeper when convective processes are active. (Source:
Kara et al., 2003 [7], Modified by: Wunsch, 2015 [18])

197



(a)

(b)

Figure 3: Surface mixed layer depth (metres) in (a) January, and (b) August. (Source:
http://eddies.mit.edu/esglobe/)

in January and August, illustrating that the mixed layer depth is in fact greater in winter
than summer in each hemisphere. During the summer, increased solar heating of the surface
water leads to more stable density stratification, reducing the penetration of wind-driven
mixing. Because seawater is most dense just before it freezes, wintertime cooling over the
ocean always reduces stable stratification, allowing a deeper penetration of wind-driven
turbulence but also generating turbulence that can penetrate to great depths.

The mixed layer is characterized by properties such as temperature and salinity which are
nearly uniform throughout the layer. At the bottom of the mixed layer, there exists a region
where there is a sharp change in temperature, called a thermocline; sometimes there may be a
rapid salinity change called a halocline that occurs as well. The combined influence of
temperature and salinity changes results in an abrupt density change, or pycnocline. The
ocean mixed layer is nutrient-poor, and its depth determines the average level of light seen
by phytoplankton. Therefore, the mixing at the base of the ocean mixed layer is crucial
for biological productivity. Since marine biological net primary production is the first step
in the food chain of marine organisms, its decline could have severe consequences for fish
stock and fisheries [9]. Biological productivity is also important from a climatic point of
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Figure 4: (a) February surface-chlorophyll concentration. (b) February mixed-layer depth.
(c) February water-column chlorophyll inventory integrated from the surface to the mixed
layer depth. (d) Maximum chlorophyll concentration achieved during the spring/summer
bloom climax. (Source: Behrenfeld, 2014 [1])

view over time scales of decades or more. Carbon fixing constitutes a biological pathway for
removing some of the anthropogenic CO2 introduced into the atmosphere. Therefore the

primary production is also of considerable interest to oceanographers because it contributes
significantly to global photosynthesis and ocean carbon uptake [17].

Mixed-layer deepening along with decreasing sunlight in the wintertime in the North
Atlantic is therefore associated with a strong reduction in surface chlorophyll a because of
a decline in phytoplankton division rates. In the subarctic Atlantic, the winter transition
from mixed-layer deepening to shoaling occurs around February. At this time, chlorophyll
concentrations are at their annual minimum and, seaward of the continental margins, show
little spatial variability across the basin (figure 4a). Figure 4b shows that this has a stark
contrast to patterns in physical properties, particularly the depth of the mixed layer at that
time. However, this deep mixing also replenishes near-surface nutrient stocks. Thus when
the mixed layer becomes shallow in the spring, and light levels increase, there is often a
concomitant increase of phytoplankton biomass, known as the ”spring bloom”. In the sub-
arctic Atlantic, this link between physics and ecology allows water-column-integrated phy-
toplankton populations to increase in size while division rates are decreasing, with greater
accumulations corresponding to deeper mixing (figure 4b,c).

At polar and subpolar latitudes the annual phytoplankton biomass cycle is dominated
by the spring bloom, which occurs in response to increases in mean irradiance of the mixed

199



layer. The need for an energy source in producing biomass restricts primary production to
the upper few tens of meters (the euphotic or photic zone), in which the solar insolation is
strong enough to assist carbon fixation [6]. At lower latitudes of the subtropics, a biomass
peak (much reduced in comparison to high-latitude spring blooms) occurs during winter,
when mixing by winds and thermal convection replenishes the euphotic zone with plant
nutrients. When viewed from space, the North Atlantic spring bloom is among the largest
mass greenings observed on the Earth surface extending over scales of more than 2000 km
[19]. Ferrari et al. (2015) [4] observe that surface phytoplankton increase rates are very
high through the subpolar North Atlantic when convection stops, and argue that convection
shutdown and lower mixing rates are a trigger of surface blooms even though the mixed
layer has not shallowed. An important aspect of this relationship is its implication that
dampened high-latitude winter mixing with climate warming will decrease annual maxima
in depth-integrated phytoplankton biomass. For the subarctic Atlantic, this decrease has
recently been estimated at an average of approximately 40% by the end of the coming
century [2].

In the geophysical context, mixed layers play an important role in global climate and
carbon-dioxide induced global warming. Mixed layers are are a key element to our un-
derstanding of processes such as the El Niño Southern Oscillation (ENSO) and thus to
climatic fluctuations on both short and long time scales [16]. During El Niño events on
interannual timescales, a weakening of the wind stress to positive sea surface temperature
(SST) anomalies as less cold water is pumped upwards from below the surface of the ocean.
Those positive anomalies in the surface temperature further weaken the wind stress. This
effect could increase under climate change because of the reduced mixed-layer depth that
arises as a result of the reduced mean trade wind strength, and increased thermal stratifica-
tion [13]. Wind stress anomalies could become more effective at exciting SST anomalies; in
addition, the wind stress response to SST anomalies can become stronger in regions where
SST increases are largest, that is, on the equator. Both effects would tend to amplify ENSO

[3].
Air-sea exchanges involve not only momentum, heat, and water vapour, but also photo-

chemically produced and other greenhouse gases [6]. The transfer and exchange of green-
house gases such as CO2 between the ocean and the atmosphere has important implications

for climate change. Some of these gases are brought to the ocean mixed layer by the deep-
ening of the seasonal thermocline, and are eventually degassed into the atmosphere when
the mixed layer becomes shallower. Additionally, CO2 induced warming of sea surface

temperature is delayed markedly in the North Atlantic and the Circumpolar Ocean of the
Southern Hemisphere due to the deep mixing of heat trapped by the increased greenhouse gas
[11]. However, this exchange with the atmosphere depends on the difference across the sea-
surface. But the value near the surface depends on how the dissolved gas is fluxed vertically.
In addition, the dynamics of mixing within the mixed layer also determines the dispersal of
pollutants in the upper ocean since most of the pollution in the global ocean takes place
through the ocean mixed layer [6; 5].

Ocean mixing is an essential ingredient in determining the thermohaline structure of
the ocean. Thermohaline circulation is that part of the ocean circulation which is driven
by fluxes of heat and freshwater across the sea surface and subsequent interior mixing of heat
and salt [15]. One of the key features of thermohaline circulation is the deep water
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Figure 5: Schematic representation of the global thermohaline circulation. Surface currents
are shown in red, deep waters in light blue and bottom waters in dark blue. The main deep
water formation sites are shown in orange. (Source: Rahmstorf, 2006 [15])

formation in high latitudes where surface waters sink down to supply the ocean with its deep
water masses [9]. The North Atlantic Deep Water (NADW) is closely associated with
convection and vertical mixing in areas such as Labrador and Greenland seas, which in turn
drives circulation (figure 5). This is the energy supply of the thermohaline circulation: in an
energetic sense, it is driven by turbulent mixing in the ocean interior [15]. Due to global
warming, a decrease in the mixed layer depth and vertical mixing would not only reduce
the deep water formation and affect the thermohaline circulation, but it would also cut the
supply of nutrients from the deep water masses to the upper layer of the ocean where the
nutrients are consumed. The result would be a declining phytoplankton population, with
possible impacts on all the subsequent links of the food chain. Kuhlbordt et al. (2009) [9]
predict that the effect of global warming on the net primary production of the Atlantic is
stronger than on the shutdown of thermohaline circulation. Additionally, this implies that
the oceanic carbon uptake would be regionally lowered by such a reduction of the mixed
layer depth.

In summary, proper parameterisation of turbulent mixing in the surface mixed layer
is crucial to simulate dynamics in the ocean interior, air-sea exchanges, and sea surface
temperature correctly. Although several parameterisations are currently in use, common to
several of these schemes is the assumption that turbulent diffusion, like molecular diffusion,
depends linearly on the property gradient, with an appropriate constant of proportionality,
which is the eddy diffusivity [10]. This is known as the non-local K-Profile Parameterisation
(KPP) scheme which unifies the treatment of a variety of unresolved processes involved in
vertical mixing. Other parameterisations have represented the turbulent diffusion as a

's
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function of the Richardson number [8]. KPP has a local part and the Mellor-Yamada scheme
is local [12], but KPP also has a non-local term. Non-local effects have also been incorporated
into schemes other than KPP such as the bulk mixed-layer models [14], but these are ad-hoc.
This work focuses on a formulation of the flux which is a functional of the local property

gradient, using high resolution simulations to determine the form of the functional. §2
discusses the basic equations governing the 2D system and derives an equation for the mixed
layer depth, ignoring the effects of wind stress. Although 3D effects appear soon after the
instability, the 2D problem can describe both the instability and some of the effects of non-
linearity. We also present some results of the 2D simulations to describe the evolution of the
temperature profile, which then forms the basis for the formulation of eddy flux using a

passive tracer in §3. In §4, we discuss the conclusions of this work and the direction for
future work. §5 presents some additional mathematical formulations and ideas that arose
while working on this project.

2 Governing EEquations

We use the incompressible Navier-Stokes equation under the Boussinesq approximation.
The advection-diffusion equation governing the temperature field has an added source term
to account for internal heating due to solar radiation. The penetrative solar radiation
decays exponentially with depth and is also also time-dependent, but here we study the
quasi-steady state problem with a constant solar insolation and study the evolution of the
temperature and velocity fields in the domain.

The continuity equation,

∇.u = 0 (1)

The Navier-Stokes equation with the buoyancy term,

∂u

∂t
+ (u.∇)u = −∇p+ ν∇2u+ αgT ẑ (2)

The advection-diffusion equation for temperature with an added source term,

∂T

∂t
+ u.∇T = κ∇2T +∇.Q (3)

where u = (u,w) is the fluid velocity, p is its pressure, α is the coefficient of thermal
expansion defined so that the density is assumed to vary linearly with temperature (ρ =
ρo(1−α(T − To))), ν is the kinematic viscosity of the fluid, and κ is its thermal diffusivity.
The internal heating due to penetrative solar radiation, given by Q = Qoe

z/lẑ, decays

exponentially with depth over a length scale l, where Qo = H
ρCp

, and Cp is the specific
heat capacity of the fluid. Typical values of the surface heat flux H are of the order
100 W/m2. Here we consider only the shorter wavelength blue radiation which has the
greatest penetration depth (l ≈ 20 m). The longer wavelength red light gets absorbed over
a much shallower depth (l ≈ 0.6 m). The red spectrum has around 60% of the heat flux
and the blue around 40%.

Note that the velocity of the fluid is given by the perturbation velocity u′ since there is
zero base flow (u = 0+u′, u′ = (u′, w′)). The boundary conditions for the system are no-slip
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and impermeable boundaries at the top and bottom. The flux at the bottom boundary is
given by the stratification frequency of the thermocline. The boundary conditions are given
by

w = 0,
∂u

∂z
= 0,

∂(αgT )

∂z
= N2 at z = −H (4)

w = 0,
∂u

∂z
= 0 at z = 0 (5)

The boundary condition for temperature at the top boundary at z = 0 is found by taking
the horizontal average of equation (3), and assuming a quasi-steady temperature evolution

so that ∂〈T 〉
∂t = 0 where 〈∗〉 denotes horizontal average of ∗ given by 〈∗〉 = 1

L

∫ L
0 ∗dx. Taking

the horizontal average of equation (3) gives

κ
∂2〈T 〉
∂z2

= − d

dz
(Qoe

z/l)− ∂

∂
〈w′T ′〉 (6)

where T ′(x, z, t) is the temperature perturbation (T = 〈T 〉(z, t)+T ′(x, z, t)). Integrating
over the depth of the domain from z = −H to z = 0 gives the boundary condition for
temperature at z = 0,

∂〈T 〉
∂z

∣∣∣∣∣
z=0

=
N2

αg
− Qo

κ
(1− e−H/l) (7)

The boundary conditions for temperature at the top and bottom boundaries specify
the value of the fluxes at these boundaries. At the bottom boundary, this implies the
stratification frequency of the thermocline. At the top boundary, the boundary condition
is given by the heat flux lost at the top boundary (i.e., the surface of the ocean) so that the
net flux in the domain is zero, in order to have a quasi-steady temperature evolution in the
domain. For example, this could be a radiative heat loss at the surface of the ocean during
the winter when the ocean surface loses heat radiatively to the cold air above it.

If ∂T
∂z < 0 at the top boundary, we have colder fluid overlying hotter fluid. Therefore,

Qo(αg)
κN2 > 1 is a necessary condition for convection to occur, but it is not a sufficient condition

since the fluid also needs to overcome viscous forces. This is given by the Rayleigh number,
which is the ratio of buoyancy forces to viscous forces, and is defined below.

The following dimensionless parameters are defined to non-dimensionalise the governing
equations and boundary conditions for the simulations,

t̃ =
tκ

l2
, ũ =

uκ

l
, T̃ =

T

Δ
, p̃ =

pκ2

l3
(8)

The dimensionless equations are (dropping the tildes),

∇.u = 0 (9)

∂u

∂t
+ (u.∇)u = −∇p+ Pr∇2u+ PrRaT ẑ (10)
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t=0.000 t=0.014 t=0.039 t=0.400 t=0.600t=0.125

Figure 6: The panels show the evolution of the temperature anomaly ΔT in the domain
and the deepening of the mixed layer, where ΔT is the temperature anomaly between the
instantaneous temperature and the initial linear temperature profile.

∂T

∂t
+ u.∇T = ∇2T +

∂

∂z
(Fez) (11)

where the following non-dimensional parameters are defined

F =
Qol

κΔ
, P r =

ν

κ
, Ra =

αgl3Δ

νκ
, Φ =

N2l

αgΔ
(12)

where Pr and Ra are the Prandtl and Rayleigh numbers respectively. The dimensionless
boundary conditions are now given by,

w = 0,
∂u

∂z
= 0,

∂T

∂z
= Φ at z = −Lz (13)

w = 0,
∂u

∂z
= 0,

∂〈T 〉
∂z

∣∣∣∣∣
z=0

= Φ− F (1− e−Lz) at z = 0 (14)

where Lz = H/l is the dimensionless depth of the domain. In order to mitigate the
effects of internal gravity waves reflecting off the bottom boundary, we would need a semi-
infinite domain. However, for simulations, we use an artificial bottom boundary with H � l
so the effect of internal gravity waves on convection is negligible. The domain is defined so
that it is periodic in the horizontal x-direction. The simulations use Chebyshev polynomials
to discretise the domain in the vertical direction so that the grid is highly resolved close to
the bottom and top boundaries. The dimensional depth of the domain is H = 320 m, and
l = 20m, so that Lz=H/l= 16. In this case, the smallest length scales in the vertical

direction are in the range 5− 10 mm.
    Figure 6 shows the time-evolution of the temperature in the domain. The panels show
the convective plumes descending downwards from the surface and driving mixing within
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∂z

Figure 7: Horizontally averaged value of variance of vertical velocity 〈w2〉 plotted against
depth z and time t.

the mixed layer. At later times, we also observe internal gravity waves generated by the
plumes in the stratified region below the mixed layer and reflecting off the bottom boundary.
Figure 7 shows the horizontally averaged vertical velocity variance in the domain; it decays
rapidly below the mixed layer. In a shallower domain, the internal gravity waves would have
a noticeable effect below the mixed layer. Figure 8 shows the deepening of the mixed layer,
starting with an initially linear temperature profile, and the penetrative convection is shown
by the overshoot of the vertical uniform temperature profile within the convective region
below the initial linear profile. The depth of the mixed layer is defined as the distance below

the top of the domain where the temperature becomes stably stratified, i.e., ∂〈T 〉> 0 at
z=−h.

The depth of the mixed layer can be estimated by noting that the deep solution is just the
diffusive one and is given by setting the right hand side of equation 3 to zero since the
velocities below the mixed layer are negligible and the convection is limited to the region
within the mixed layer. The diffusive solution implies that

∂2T

∂z2
+

d

dz
(Fez) = 0 (15)

The solution to this equation is the diffusive profile given shown in figure 10. Integrating

this below the convecting layer from z = −H to z = −h, and noting that within the mixed
layer, the temperature is uniform with depth, gives the mixed layer depth,

h = −ln

(
F

Φ

)
(16)

The layer mixes to the depth where the diffusive solution becomes neutral. The mixed

layer depth is plotted against time in figure 9, which shows an initial growth as expected of
penetrative convection, but eventually deepens and settles at the constant value given by

equation (16) for t ≥ 1.4. Figure 11 shows the deepening of mixed layer when the surface
radiative heat flux is increased relative to the stratification of the thermocline in accordance
with equation (16).
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Figure 8: Time-evolution of the horizontally averaged temperature 〈T 〉 plotted against
depth z. The black profile is the initial linear temperature profile given by T = Φ(z −H).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
t
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Figure 9: The variation of mixed layer depth h with time t. The black dotted line shows
the theoretical value of mixed layer depth.
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Figure 10: Time-evolution of the horizontally averaged temperature 〈T 〉 plotted against
depth z, where the black profile is the diffusive temperature profile when convective effects
are absent.

3 Eddy ux

We begin with the advection-diffusion equation for temperature,

∂T

∂t
+ u.∇T = ∇2T +

d

dz
(Fez) (17)

Splitting the temperature into a horizontally averaged part 〈T 〉 and a fluctuating part T ′,
and taking a horizontal average of equation (17) gives the mean equation,

∂〈T 〉
∂t

=
∂2〈T 〉
∂z2

+
d

dz
(Fez)− ∂

∂
〈w′T ′〉 (18)

and the fluctuation equation,

∂T ′

∂t
+ u.∇T ′ − κ∇2T ′ − 〈w′T ′〉 = −w′ ∂

∂z
〈T 〉 (19)

Note that T ′ satisfies the no-flux condition at the top and bottom boundaries.

∂T ′
= 0 at z = 0,−H (20)

∂z

Equation (17) is analogous to the advection-diffusion equation for a passive scalar given
by

∂c

∂t
+ u.∇c = ∇2c+

d

dz
(f(z)) (21)
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Figure 11: Time-evolution of the horizontally averaged temperature 〈T 〉 plotted against
depth z for (a) F/Φ = 10 and (b) F/Φ = 50.
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where f(z) is a forcing function or a source term for the tracer. Additionally, we define the
boundary conditions for the tracer concentration c as,

∂c
= 0 at z = 0,−H (22)

Taking a horizontal average of equation (21) and using the continuity of velocity gives,

∂〈c〉
∂t

+
∂

∂z
〈w′c′〉 = ∂2〈c〉

∂z2
+

d

dz
(f(z)) (23)

where 〈∗〉 denotes horizontal average of ∗. Splitting the concentration into a horizontally
averaged part and a fluctuating part,

(24)c = 〈c〉+ c′

and substituting this into the equation for tracer concentration (21) gives

∂c′

∂t
+ u.∇c′ −∇2c′ − ∂

∂z
〈w′c′〉 = −w′∂〈c〉

∂z
(25)

Linearity implies that, if we have a specified flow field, c′ and Fc ≡ 〈w′c〉 = 〈w′c′〉 will

be linear functionals of gc ≡ −w′ ∂〈c〉
∂z .

c′ = −
∫

dx′dt′G(x, t|x′, t′)w′(x′, t′)
∂〈c〉
∂z′

(26)

where G is the Green’s function response to a delta function forcing in x and t.(
∂

∂t
+ (u.∇)−∇2

)
G(x, t|x′, t′) = δ(x− x′)δ(t− t′) (27)

Multiplying equation (26) by w′ and taking an average over x and t gives,

Fc ≡ 〈w′c′〉 = −
∫

dz′w′(x, t)
∫
dx′dt′G(x, t|x′, t′)w′(x′, t′)
∧∂〈c〉

∂z′
(28)

= −
∫

dz′R(z|z′)∂〈c〉
∂z′

(29)

with ∗̂ here being the average of ∗ over x and t.
We solve from zero initial conditions, holding f fixed, and compute to a statistical steady

state to find the eddy diffusivity kernel R for the mixing of a passive tracer.

〈w′c′〉 = −
∫

dz′R(z|z′)∂〈c〉′ (30)

dz

∂z

The boundary conditions for c also imply constraints on selection of the forcing function
f(z). For example, f(z) could be a delta function forcing centred at zc. Integrating equation

                   main and noting the periodicity in the x-direction shows that f(z) needs

to vanish on the top and bottom boundaries, and the domain average of d f(z) is required

to be zero in order for the domain-averaged concentration to be constant in time. Here we

(21) over the do
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Figure 12: (a) The profile of tracer concentration c at t = 0, and (b) the profile of the
forcing function f(c) when the centre of the forcing function zc = −1.25.

define f(z) to be a cubic piece-wise polynomial centred at zc, with compact support. The
initial value of c is chosen to be the diffusive value given by

d2

dz2
c+

d

dz
f(z) = 0 (31)

c = −
∫

f(z)dz (32)

Example profiles of f(z) with the centre at zc = −1.25, and the initial value of c used for
the simulations, are plotted in figure 12. Figures 13-15 show the response of the tracer
concentration to three different locations zc of the forcing function (see equation (32)). When

the forcing function is centred within the mixed layer, the maximum gradient of tracer
concentration is initially within the mixed layer. The tracer within the mixed layer is mixed
by the convective plumes, and so the maximum gradient in tracer concentration is shifted to
the base of the convection zone (figures 13,14). However, if the forcing function is centered
just below the mixed layer, the maximum gradient in the tracer concentration remains
unperturbed by the mixing within the mixed layer (note that we are starting with a diffusive
profile so the the tracer concentration within the mixed layer is already well mixed). Figures
16a-d and 17a-d show the variation of the horizontally averaged values of the eddy flux and
the gradient of the tracer concentration with time, which illustrate the effects described

above.
Placing the forcing function at several locations within the domain and computing to a

statistically steady state, allows us to estimate the eddy flux kernel given by equation (30). In
the discrete form, equation (30) can be written as,
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t=0.000 t=0.013 t=0.015 t=0.020 t=0.035

Figure 13: Evolution of the tracer concentration in time t for zc = −0.25.

t=0.000 t=0.014 t=0.016 t=0.025 t=0.060

Figure 14: Evolution of the tracer concentration in time t for zc = −1.25.
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t=0.000 t=0.020 t=0.040 t=0.060 t=0.080

Figure 15: Evolution of the tracer concentration in time t for zc = −2.75.

〈w′c′〉ij = −dzRik〈cz〉kj (33)

where R can be determined using a least-squares fit of the discrete data. This is plotted in
figure 18a where the horizontal axis gives the center of the forcing, and the vertical the
response. Figure 18a shows that the mixing is strongest within the mixed layer, but illustrates
both local and non-local effects of mixing within the convective region (since R is not just a
diagonal matrix). The local effects of mixing can be seen from the diagonal elements of R
(figure 18b). However, more interestingly, we observe the non-local effects of mixing in figure
18c. show that the flux has contributions from the gradient at that level but also has
contributions from the region closer to the surface due to the convective plumes having a
greater momentum, and weak contributions from below as well. Figure 19 shows the very
weak eddy flux associated with the internal gravity waves in the region below the mixed
layer. We also see a weak dependence on the location of the forcing function based on the
discrete peaks along the diagonal, but we would obtain a smoother profile by performing
higher resolution simulations and sampling the forcing function at more depths.

4 Conclusions and Future work

The mixing of a passive tracer in the the surface mixed layer of the ocean is given by a
parameterisation of the eddy flux in terms of the mean gradient. Although this is similar
to several parameterisations defined in literature, we define the eddy flux to be a functional
of the gradient, given by the eddy flux kernel. This describes both the local and non-local
effects of mixing, illustrating that the non-local effects are strongest closer to the surface
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(a) (b)

(c) (d)

Figure 16: zc = −1.25. Variation of the horizontally averaged quantities with time (a) eddy
flux and (b) tracer concentration. (c) and (d) are moving averages of (a) and (b) over a few
eddy turnover times.
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 17: zc = −3.5. Variation of the horizontally averaged quantities with time (a) eddy
flux and (b) tracer concentration. (c) and (d) are moving averages of (a) and (b) over a few
eddy turnover times.

(a) (b) (c)

Figure 18: (a) The eddy flux kernel R. (b) Taking the diagonal values in (a) gives the local
effects of mixing (z = z′). (c) Taking a horizontal slice in (a) at z = 1.25 gives the non-local
effects of mixing at that location.
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Figure 19: Logarithm of the eddy flux kernel R. Note that the mixed layer depth is h ≈ 2.3.

because of the energy of the convective plumes detaching from the surface. An extension
of this work would be to examine the dependence of the kernel on problem parameters.
The ansatz for this particular convectively forced problem would be that the kernel is
proportional to the kinetic energy of the eddies produced by the forcing and depends on
z/h, z′/h with h the convective adjustment depth.

We have also shown conclusively that the mixed layer depth does indeed grow as the
surface fluxes are increased relative to the buoyancy fluxes at the thermocline in accordance
with the theoretical formulation of the mixed layer depth. At early times, the mixed layer
depth is observed to grow as the square root of time, but eventually settles to a near constant
value with some fluctuations due to turbulence. One further development could be to study
seasonal variations of mixed layer depth by adding a time-varying surface insolation.

5 Appendix

5.1 An alternative approach to determine the eddy flux kernel

The advection-diffusion equation for a tracer can given by

∂c

∂t
+ u.∇c = ∇2c+ λ(f(z)− c) (34)

where f(z) is a forcing function or a source term for the tracer and λ is a relaxation
parameter.
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Doing this for a range of delta functions at different location helps estimate a kernel for
the flux of tracer.

〈w′c′〉 = −
∫

κ(z|z′) ∂c
∂z′

dz′ (35)

Define d = c− f̃(z) so that

∂d

∂t
+ u.∇d = ∇2d− λd− w

df̃(z)

dz
+ λf(z)− λf̃(z) + κ

d2f̃(z)

dz2
(36)

This equation is analogous to equation (19) for T ′ if f̃(z) is defined such that

λf(z)− λf̃(z) + κ
d2f̃(z)

2
= 0 (37)

dz

Integrating equation (34) over the domain and noting that dc

dz

∣∣
z=0,−H

= 0, and u|x=0 =

u|x=Lx , w|z=0,−H = 0,

∂c

∂t
= λ(f(z)− c) (38)∫ co

0

dc

λ(f(z)− c)
=

∫ t

0
dt (39)

c = coe
−λt + f(z)(1− e−λt) (40)

Hence the relaxation parameter λ needs to be defined so that the solution for mean
concentration of tracer decays to a constant value over a time scale comparable to the time
scale of adjustment of the mean temperature profile to the steady-state solution.
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Defending Against Lava Flows

Edward Hinton

September 18, 2018

1 Introduction

Lava flows, which develop when magma erupts from a volcano, can migrate into populated
areas and cause significant damage to homes and infrastructure, costing millions of dollars
to local economies [Williams and Moore, 1983]. Concerns about the impact of lava flows
have led to the construction of barriers to divert the flow [Colombrita, 1984, Scifoni et al.,
2010]. However, these attempts have had limited success. Whilst there have been some
simulations and laboratory studies on controlling and diverting lava flows [Fujita et al.,
2009, Dietterich et al., 2015], there has been little theoretical analysis of how barriers and
obstructions ought to be designed.

Theoretical analysis of lava flows is challenging because lava is a complex fluid [Griffiths,
2001]. As it cools, lava becomes more viscous and subsequently solidifies, and it has a yield
strength which varies across time and space [Sparks et al., 1976, Takagi and Huppert,
2010]. Kerr et al. [2006] showed that the formation of crust at the lateral edges of a
downslope lava flow confines the lava in a channel of constant width. Over a significant
range of temperatures, lava behaves like a viscoplastic fluid, with internal stresses having a
significant influence on its gravity-driven flow [see Balmforth et al., 2002]. A key challenge
for creating simplified models of lava is determining which of its non-Newtonian properties
is the most important physical process in any given situation [Balmforth et al., 2000].

The interaction between a lava flow and an obstruction adds an extra layer of complexity
to the modelling of this fluid which exhibits a multiplicity of behaviours. In order to
gain insight into the role of obstructions, we consider a simplified model of lava as an
isothermal Newtonian fluid. Such viscous Newtonian flows have been studied in the absence
of obstructions on a horizontal plane by Huppert [1982a], and an inclined plane by Huppert
[1982b] and Lister [1992] who showed that flow from a line source becomes steady with
constant depth far behind the contact line. We will analyse how this steady flow is perturbed
by an obstruction. The study of this fluid-solid interaction is also important for ice flows
over and around topography, although the slow travelling ice is often modelled as a non-
Newtonian viscous fluid using the power-law model [Glenn, 1955, Hutter, 1982].

In section 2, we consider obstructions with vertical boundaries which are sufficiently
high that no overtopping occurs. Examples include cement casings of electrical pylons such
as those employed in Pahoa, Hawaii. We carried out a series of laboratory experiments with
a constant flux line source and a cylindrical obstruction downstream of the source. This
identified that there may be dry regions downstream of the obstruction depending on the
slope angle, cylinder radius, and upstream flow depth. To make progress in understanding
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Far upstream depth (cm) Slope angle (o) Max. depth (cm) Min. depth (cm)

0.72 5.0 1.14 0.43
0.98 3.5 1.20 0.56
1.32 3.5 1.72 0.80
0.85 5.3 1.20 0.52
1.05 11.0 1.69 0.50
0.55 11.0 1.02 0
0.60 11.0 1.05 0

Table 1: Depth of the steady flow past a cylinder of radius 4.8cm.

the shape of the dry region, we consider flow from a partial line source; we blocked part of
the line source so that the upstream boundary is partitioned into a region with constant
flux and a region with no flux. We measure the steady contact line which develops as fluid
slumps cross-slope from the partial line source.

Next, we reproduce Lister’s governing equation for downslope flow, and introduce a no-
flux condition at the vertical boundaries of the obstruction. Using a finite-element method,
we solve this system numerically and compare the simulations to our experimental results
for the contact heights at the edge of the cylinder. In the case where the cylinder has a small
influence on the flow depth, we find an asymptotic expansion which agrees well with our
numerical results, providing a useful check on our numerical simulations. To make progress
in the other regime in which there is a dry region, we derive similarity solutions to describe
flow from a partial line source and compare these to our experiment.

In section 3, motivated by the problem of diverting lava flows and understanding the in-
fluence of topography, we turn our attention to flow over and around axisymmetric mounds.
Viscous flows over topography have been studied extensively in the limit where surface ten-
sion dominates the flow, motivated by coating processes [see for example Huppert, 1982b,
Stillwagon and Larson, 1988]. Since lava flows consist of dense fluid and have large length
scales relative to the capillary length, we assume surface tension is negligible. The prob-
lem of flow over a mound has three lengthscales: the depth of the far-field flow, and the
horizontal and vertical dimensions of the mound. In the limit of a shallow oncoming flow
relative to the horizontal length of the mound, we determine mound aspect ratios for which
the flow goes only around the mound and there is a dry region at the peak. We also find a
range of mound aspect ratios for which fluid ‘ponds’ upstream of the mound.

2 Flow Around Obstructions with Vertical Boundaries

2.1 Laboratory technique

We carried out a series of laboratory experiments in an inclined tank of width 39.6cm and
length 115.6cm in the downslope direction. Karo syrup was released from a lock gate behind
which a fixed depth of syrup was maintained to provide a constant head (see figure 1). The
downslope flow from a constant-flux line source evolves into a steady current with depth
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Figure 1: Laboratory setup. (a) Photograph of syrup flowing towards the cylinder from
a constant-depth reservoir. (b) Photograph after the contact line passes the cylinder. (c)
Photograph from above the tank of our partial line source experiment.

[Lister, 1992]

H∞ =

(
3μQ

Δρg sinβ

)1/3

, (1)

where Q is the flux per unit width, μ the dynamic viscosity, and Δρ the density difference
between the syrup and the air. A cylinder of radius 4.8cm was held fixed in the centre of
the tank and we measured the flow depth, H∞, far upstream of the cylinder. We define
the contact line as the set of points at the edge of the flow at which the depth is zero.
This line passes the cylinder, and then after a sufficiently long period, the flow around
the cylinder becomes steady. We observed that the far upstream, constant depth flow is
perturbed in a neighbourhood of the cylinder. The flow deepens upstream and becomes
shallower downstream of the cylinder.

The minimum and maximum depth of the steady flow occurs at the edge of the cylinder,
at the most downstream and most upstream We performed a series of
experiments in which we varied the inclination of the plane and the source flux per unit
width, and measured the far upstream, minimum and maximum depths of the flow using a
camera and ruled markings. The results are shown in table 1.

Our results demonstrate that, for the same slope angle, shallower oncoming flows are
perturbed more relative to the far upstream depth than deeper oncoming flows. When this
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Figure 2: (a) Schematic for flow past a cylinder of radius L. (b) Side view showing oncoming
far-field depth, H∞.

perturbation is large enough, the minimum flow depth is 0 and we observe a dry region
downstream of the cylinder (figure 2). This occurs because the cross-slope, gravity-driven
slumping of the syrup is insufficient in comparison to the downslope flow to drive the fluid
across the downstream edge of the cylinder. Determining the shape of the dry region by
comparing the significance of these two physical ingredients is complicated by the geometry
of the cylinder, the influence of no-slip on the edge of the cylinder and the significance of
surface tension at the contact line (these are discussed further in section 2.5).

To simplify the problem, we consider flow from a partial line source (see figure 1c). This
is analagous to flow past a long cuboid with free-slip along the boundary (i.e. the flow
past the rectangle is independent of cross-channel position). We performed an experiment
in which a 14cm block was added behind the gate to restrict the flow from the source to
one side of the channel. Using a camera mounted above the tank, we measured the shape
of the contact line in the steady state, plotted in figure 6. This setup allows us to isolate
the influence of the balance between cross-channel slumping and downslope gravity-driven
flow, aiding our understanding of the shape of the dry region downstream of a cylinder. We
investigate the balance theoretically in section 2.6.1.

The main challenges in our experimental procedure were maintaing a constant flux and
supplying that flux for a sufficiently long time to reach the steady states. Maintaining
constant flux was difficult because we did not have access to pumps with sufficient flux for
our line source and instead we poured syrup into the reservoir behind the lock gate and
attempted to maintain a constant depth by eye with a marked level on the tank. We had
only five litres of syrup which constrained the duration of our experiments and the flow may
have still been slowly adjusting at the end of some of the experiments, particularly those
with a dry region downstream of the cylinder.

2.2 Formulation

We consider the flow of a fluid of dynamic viscosity μ down a rigid inclined plane at an angle
β to the horizontal. We denote the downslope coordinate by X, the cross-slope coordinate
by Y , the normal distance above the inclined plane by Z and time by T . The depth of the
fluid is given by H(X,Y, T ). We assume that the fluid is sufficiently viscous that the effects
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of both inertia and surface tension can be neglected (i.e. Reynolds and capillary numbers
are sufficiently small). We assume that the flow is predominantly parallel to the plane and
hence the pressure within the fluid is hydrostatic [Batchelor, 1965],

P = P0 +Δρg(H − Z) cosβ, (2)

where Δρ is the density difference between the fluid and the ambient and P0 is the ambient
pressure, assumed a constant. The fluid velocity in the X and Y directions is given by

U = Δρg
2μ Z

(
Z − 2H

)(
∂H
∂X cosβ − sinβ

)
,

V = Δρg
2μ Z

(
Z − 2H

)
∂H
∂Y cosβ,

(3)

respectively [Lister, 1992]. Local mass conservation is expressed by

∂H

∂T
+

∂

∂X

(∫ H

0
UdZ

)
+

∂

∂Y

(∫ H

0
V dZ

)
= 0. (4)

Then using our expressions for the velocities (3), we obtain

∂H

∂T
+

Δρg

3μ

∂

∂X

[(
sinβ − ∂H

∂X
cosβ

)
H3

]
− Δρg

3μ

∂

∂Y

[
∂H

∂Y
H3 cosβ

]
= 0. (5)

We consider a line-source at X = 0 supplying a flux of Q per unit width. Lister [1992]
showed that after an initial transient and away from the contact line, the flow advances
with constant depth, given by equation (1). We consider the interaction between this flow
and obstructions with lengthscale L parallel to the inclined plane. We assume that
the channel is much wider than the obstruction so that it may be considered isolated. We
have used the lubrication approximation, neglecting the component of velocity normal to the

plane in (2), which is equivalent to assumingH∞/L 1.

In this section we restrict our attention to obstructions which have vertical boundaries
and are sufficiently high that there is no overtopping (this is examined in section 3). We
introduce the following dimensionless variables

x = X/L, y = Y/L, z = Z/H∞, t = LH∞T/Q. (6)

Using equation (5), we find the following governing equation for the dimensionless depth,
h(x,y,t),

∂h

∂t
+

∂h3

∂x
= Λ

[
∂

∂x

(
h3

∂h

∂x

)
+

∂

∂y

(
h3

∂h

∂y

)]
, (7)

where

Λ =
H∞

L tanβ
=

(
3μQ

(Δρg sinβ)L3 tan3 β

)1/3

(8)

quantifies the importance of the diffusive terms on the right-hand side of (7), associated
with the gravity-driven slumping of the fluid, relative to the downslope advective term on
the left-hand side of (7), associated with the gravity-driven flow down the plane.
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Figure 3: Contour plots of the depth for steady downslope flow past a cylinder centred on
x = 0, y = 0 (flow is in the increasing x direction). (a) (Λ = 5) The flow deepens slightly
upstream of the cylinder, and similarly downstream of the cylinder the flow is shallower
than far upstream. (b) (Λ = 1) For this smaller value of Λ (owing to a wider cylinder, for
example) the obstruction leads to a larger perturbation of the depth. (c) (Λ = 0.125) Flow
detachment occurs as Λ is decreased further and a ‘dry’ region downstream of the cylinder
develops.

We impose a no-flux boundary condition at the edge of the obstruction, u ·n = 0, where
n is the outward pointing normal, and

u =
3

2
z(z − 2h)

(
1− Λ

∂h

∂x
,−Λ

∂h

∂y

)
(9)

is the dimensionless velocity. We allow free-slip on the obstruction. The region in which
this a good approximation is calculated in appendix 4.

Throughout this report, we focus on the steady solution which develops long after the
current first passes the obstruction.

223



2.3 Numerical technique

We used MATLAB’s Partial Differential Equation ToolboxTM to solve the steady version of
equation (7) with a no-flux boundary condition on the obstruction walls. The program uses
a finite-element method and performs adaptive mesh generation. The system was solved in
the half-domain y > 0, with no-flux imposed on y = 0 and on a far-field boundary y = a.
We also applied a constant flux boundary condition on an upstream boundary x = −b, and
a free flux condition on x = b. For each Λ, the domain size was increased until the results
became independent of further increases to it. For example, with the choice Λ = 1, we used
a = 6, b = 10.

Contour plots of our numerical results of the depth of the fluid are shown in figure
3 for steady flow past a cylinder. Smaller values of Λ correspond to a wider cylinder, a
shallower oncoming flow, or a steeper slope (cf. equation 8). For smaller Λ, the presence
of the cylinder leads to a larger perturbation to the far-field depth (see figure 3a and 3b).
The downstream depth decreases with decreasing Λ and there is a critical value (Λ ≈ 0.47)
below which the flow detaches from the cylinder (see figure 3c and figure 4) and there is a
dry region downstream of the cylinder. The numerical method was not effective when there
were dry regions and we therefore added a small source on the edge of the cylinder, altering
the boundary condition on r = 1 to u · n = ε. The magnitude of this source ε, was chosen
to be as small as possible whilst still providing an ‘imaginary’ thin film of fluid coating all
of the dry region in order that the governing equation (7) could be solved everywhere. The
fluid depth in the dry region is approximately constant and this can be used to determine
the edge of the dry region.

2.4 Steady flow with no dry regions

We consider steady flow past a cylinder of radius L. For Λ � 1, the flow remains attached
to the cyclinder, i.e. there are no dry regions downstream, and the upstream increase in
depth owing to the cylinder is small relative to the far upstream depth and restricted to a
region near the cylinder (see figure 3a). This motivates seeking an expansion for h in the
case Λ � 1, about the far-field depth, h = 1, of the form

h = 1 + Λ−1h1 + Λ−2h2 + · · · (10)

In polar coordinates, with the origin at the centre of the cylinder, the steady version of the
governing equation (7) is

cos θ
∂h3

∂r
− sin θ

r

∂h3

∂θ
= 1

4Λ∇2h4, (11)

and the no-flux boundary condition at the edge of the cylinder, r = 1, is

h3
(
Λ
∂h

∂r
− cos θ

)
= 0. (12)

At O(1), equation (11) is
∇2h1 = 0, (13)
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subject to boundary conditions

∂h1
∂r

= cos θ at r = 1, (14a)

h1 → 0 as r → ∞. (14b)

Seeking a separable solution in r and θ, we find

h1 = −r−1 cos θ. (15)

At O(Λ−1), equation (11) leads to

∇2h2 = 3 cos θ
∂h1
∂r

− 3
sin θ

r

∂h1
∂θ

− 3

2
∇2h21. (16)

With our expression (15) for h1, we obtain

∇2h2 = 3r−2 cos 2θ − 3r−4. (17)

The boundary conditions for h2 are

∂h2
∂r

= 0 at r = 1, (18a)

h2 → 0 as r → ∞. (18b)

The general solution to equation (17) is

h2 = A0 log(r) +B0 +

∞∑
n=1

(
Anr

n +Bnr
−n
)[
Cn cosnθ+Dn sinnθ

]− 3

4
cos 2θ− 3

4
r−2. (19)

We impose An = 0 (n ≥ 1) because h2 cannot grow algebraically in the far-field if it is to
match with h2 → 0 as r → ∞. Applying the boundary condition at r = 1 (equation 18a),
we find A0 = −3/2 and Bn = 0 (n ≥ 1), yielding

h2 = −3

2
log(r) +B0 − 3

4
cos 2θ − 3

4
r−2. (20)

Hence it is not possible to apply the boundary condition as r → ∞ (equation 18b) because
A0 �= 0 and hence h2 ∼ log r.

Instead in the regime Λ � 1, the solution forms two asymptotic regimes close to and
far from the cylinder. When the radial distance is O(Λ), the advective terms of (11) are
comparable with the diffusive terms. The problem is therefore singular [Hinch, 1991] and
its asymptotic solution comprises an ‘inner’ region close to the cylinder which is matched
to an ‘outer’ region far from it.

Next, we seek an asymptotic expansion for the depth in the outer region where the
advective and diffusive terms balance.

225



2.4.1 Outer region

The distinguished limit for the outer region of equation (11) occurs when we rescale r with
Λ given by

r = Λr̂, (21)

where r̂ is order 1, and x̂ and ŷ are defined similarly. Equation (11) in the rescaled coordi-
nates is

∂h3

∂x̂
=

[
∂

∂x̂

(
h3

∂h

∂x̂

)
+

∂

∂ŷ

(
h3

∂h

∂ŷ

)]
, (22)

Seeking an outer solution of the form h = 1 + δ(Λ)ĥ, where δ(Λ)  1 is to be determined,
we find ĥ satisfies

3
∂ĥ

∂x̂
= ∇2ĥ. (23)

By letting ĥ = ψ(r̂, θ)e3x̂/2, equation (23) is transformed into a more familiar equation for
ψ(r̂, θ) [see chapter 5 of Hinch, 1991]

(∇2 − 9
4)ψ = 0. (24)

Since ĥ → 0 at infinity, we require that decays faster than e−3x̂/2. Equation (24) has
separable solutions

=
[
am cos(mθ) + bm sin(mθ)

]
Ψ(r̂), (25)

where
r̂2Ψ′′ + r̂Ψ′ − (9r̂2/4)Ψ−m2Ψ = 0. (26)

This has general solution

Ψ = PmIm

(
3r̂/2

)
+QmKm

(
3r̂/2

)
, (27)

where Im and Km are modified Bessel functions of the first and second kind, respectively
and Pm and Qm are constants. The function Im grows as r̂ → ∞, which imposes Pm = 0.
For r̂ � 1 [Abramowitz and Stegun, 1965]

Km

(
3r̂/2

)
∼
√

π

3r̂
e−3r̂/2, (28)

which implies that ĥ decays as r̂−1/2 as r̂ → ∞. Putting this together, the outer solution is

h = 1 + δ(Λ)ĥ = 1 + δ(Λ)

∞∑
m=0

[
am cos(mθ) + bm sin(mθ)

]
Km

(
3r̂/2

)
e3x̂/2. (29)

We now use the limit of this solution as r̂ tends to zero to determine the constants in the
inner solution.
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Figure 4: Upstream (θ = π) and downstream (θ = 0) flow heights at the edge of a cylinder
in steady state. The solid blue lines show numerically calculated predictions, the dashed
lines are the asymptotic approximations (equation 37). Experimental data from table 1 is
shown as red crosses, where a height of zero corresponds to a dry region downstream of the
cylinder. For further details of the experimental procedure, see section 2.1.

2.4.2 Matching

For matching, we recall the behaviour of the modified bessel functions Km as r̂ → 0
[Abramowitz and Stegun, 1965],

K0

(
3r̂/2

)
∼ − log(3r̂/4)− γ, Km

(
3r̂/2

)
∼ [(m− 1)!/2]

(
3r̂/4

)−m

(30a,b)

We keep just K0 and K1. It will become clear when matching that the later terms grow
too fast as r̂ → 0. With this choice the outer solution is

h = 1 + δ

[
a0K0

(
3r̂/2

)
+ a1 cos θK1

(
3r̂/2

)]
e(3r̂ cos θ)/2 (30)

and the inner solution is

h = 1− cos θ

rΛ
+ Λ−2

[
B0 − 3

2
log(r)− 3

4
cos 2θ − 3

4
r−2

]
. (31)

We now match these using an intermediate variable,

ρ = rΛ−α = r̂Λ1−α (32)

with ρ fixed as Λ → ∞ and α between 0 and 1. The leading order term of both expressions

is 1 and the next term in the inner expansion is O
(
Λ−1−α

)
. The second order term in the

outer solution arises from K1 and is O
(
δΛ1−α

)
. Hence to match we choose

δ = Λ−2. (33)
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To order Λ−1−α, mathcing implies that

a1 = −3/2. (34)

To order Λ−2, we find

−a0 log(
3
4)− γa0 − a0 log(ρ)− a0(α− 1) log(Λ) + a1

2 = B0 − 3
2α log(Λ)− 3

2 log(ρ). (35)

We determine

a0 =
3

2
, B0 = −3

2
log

(
3

4Λ

)
− 3γ

2
− 3

4
, (36)

where γ ≈ 0.577 is the Euler constant. The inner solution is

h = 1− cos(θ)

Λr
− 3

4Λ2

[
2 log

(
3r

4Λ

)
+ 2γ + 2 cos2(θ) + r−2

]
. (37)

We use (37) to evaluate the height on the cylinder (r = 1) at the upstream stagnation
point (θ = π) and the dowstream point (θ = 0) (see figure 4). These give the maximum and
minimum perturbations to the depth of the flow in the regime Λ � 1. We also plot the max-
imum and minimum depths of the numerical solution of the governing equation (11) and the
experimental data. We note that the asymptotic solution accurately captures the numerical
results and that there is reasonable agreement with the experimental measurements.

2.5 Discussion of numerical and experimental data

In addition to the difficulties which arose in our experimental procedure described at the
end of section 2.1, the difference between numerical and experimental data may be ascribed
to limitations of our model. In particular, we neglected surface tension and allowed free
slip on the cylinder boundary. We discuss the importance of each of these in turn. We find
that both effects lead to dry regions occuring at higher values of Λ than is predicted by our
numerical results. This is consistent with figure 4.

It is well known that in a viscous gravity-driven flow in which the Bond number B =

ΔρgH2∞/σ � 1, surface tension only plays a significant role near the contact line where the
gradients of the depth are large [Huppert, 1982a]. In our experiments, surface tension is
important at the contact line between the syrup and the base of the channel, and at the
contact between the syrup and the cylinder walls. As the two flows from either side of the
cylinder first join up downstream of the cylinder, there is always a small dry region between
the contact point and the cylinder and this region may subsequently be enclosed by the
flow (see figure 1b). During the transition to the steady state, the flow into this dry region
is inhibited by surface tension and this may cause dry regions to occur in our experiments
when they are not predicted by our model.

The flow near the cylinder wall is also influenced by no-slip which our model neglected.
Its influence in the case of flow past a rectangle is analysed in appendix 4. As with surface
tension, no-slip inhibits the flow into the dry region, which may also contribute to the
occurence of dry regions even when not predicted by our model.

Finally, we note briefly that surface tension has an impact on the shape of the
dry region. The curvature of the line is largest at the downstream corner where the
two flows from either side of the cylinder meet. Surface tension could be very significant here
and leads to shortening of the dry region.
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Figure 5: (a) Schematic of flow from a partial line source, the three dashed lines correspond
to the plots in (b). (b) Numerical solution to equation (38) at three downstream positions
(black lines). The red dotted line is the similarity solution in which the depth tends to 1
at infinity (equation 39), the red dashed line is the similarity solution for a point source at
(equation 45).

2.6 Dry wakes downstream of obstructions

In the case of Λ  1 (corresponding to a wider cylinder relative to the upstream depth,
for example), we anticipate that the flow depth becomes 0 in a region downstream of the
cylinder (see figure 3c). The boundary condition at the edge of the cylinder (12) is now h = 0
in a downstream region, and Λ∂h/∂r = cos θ elsewhere. To make progress in understanding
the shape of the dry region, we consider the simpler problem of a line source in a channel
which is wider than the source (eg. figure 5a). This provides insight into how the fluid
spreads into the ‘shadow’ region downstream of the cylinder.

2.6.1 Steady solution for a partial line source

We begin by considering a semi-infinite line source (−∞ < y < 0) in an infinitely wide
channel. There is no lengthscale parallel to the plane and hence the choice of L is arbitrary.
In the region of large negative y, the flow behaves as if there was a full line source, having
constant depth h = 1 and advancing with the downstream distance x growing in proportion
to t [Lister, 1992].

Far behind the leading edge of the current, the flow is steady and has spread into
y > 0. The steady flow in a neighbourhood of y = 0 is controlled by a balance between the
cross-channel slumping of the current and the downslope component of gravity,

∂h3

∂x
= Λ

∂

∂y

(
h3

∂h

∂y

)
. (38)
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We have neglected the downslope diffusive term which is small for x � Λ, i.e. everywhere
except in a region close to the source. The boundary condition for equation (38) is h → 1
as y → −∞, owing to the constant depth flow in the far-field. This leads to the scaling
y ∼ (Λx)1/2, and equation (38) has a similarity solution with variable, η = y/(Λx)1/2. Then
h(x, y) = χ(η) satisfies

−1
2η(χ

3)′ = (χ3χ′)′, (39)

with boundary conditions, χ(η0) = 0 and χ → 1 as η → −∞ so that the boundary condition
as y → ∞ is attained. To solve this system numerically we shoot from χ = 0 and iterate to
determine η0. Shooting from χ = 0 requires a second boundary condition at η = η0, which
we determine by letting χ → 0 which gives the behaviour for small χ,

χ ∼ η0
2
(η0 − η). (40)

We find η0 ≈ 1.578. Our solution for the depth, h(x, y), is plotted at a fixed downstream
position x0 as a red dotted line in figure 5b. The shape of the contact line is

y = η0(Λx)
1/2. (41)

This solution is valid for x  t so that the steady solution has developed. The predicted
scaling for the contact line agrees well with or our experimental results (see figure 6).

2.6.2 Steady solution for two separated line sources

We can apply the results above to the problem of two semi-infinite line sources separated
by a distance L to find the shape of the dry region. The two parabolic contact lines touch
at

x =
1

4η20Λ
≈ 0.1Λ−1, (42)

which is the furthest extent of the dry region.

2.6.3 A finite width line source

We next consider a finite line source of length L at one side of a channel. The similarity
solution above with y ∼ (Λx)1/2 becomes invalid far downstream because the condition that
h → 1 far away from the edge of the current cannot be imposed. This is because the flow
has begun to slump away from the wall further downstream. Our similarity solution implied
that the cross-slope length of the region in which the depth is not 1 grows in proportion to
(Λx)1/2 and hence, for a line source of dimensionless width 1, the condition h → 1 at the
wall cannot be applied for

x � Λ−1. (43)

Beyond this distance, but still far behind the front xf = t, the flow transitions to the
similarity solution for a point source found by Smith [1973]. The solution can be obtained
by observing that instead of applying h → 1 we impose constant flux across the current
because the flow is steady, ∫ Y0

0
h3dy = 1. (44)
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Figure 6: The cross-stream distance that the line source has spread, Y , as a function of
downstream distance, X. The stars show experimental measurements of the position of the
steady contact line. There is a transition from the similarity solution for a semi-infinite line
source (41), Y ∼ X1/2, to the similarity solution for a point source (equation 45), Y ∼ X3/7.

Combined with equation (38), this leads to the solution,

h =
3

7

(
Λx
)−1/7

(
P 2 − y2/

(
Λx
)6/7)

, (45)

where P = (12005/108)1/7 ≈ 1.96. This is compared with the numerical solutions to
equation (38) in figure 5b, and the scaling for the contact line, y ∼ x3/7, is compared to
experimental results in figure 6.

3 Flow Over and Around Mounds

In section 2, we analysed the flow around obstructions with vertical boundaries which were
sufficiently deep that there was no overtopping. In the present section, we consider how the
flow interacts with a smooth mound. The flow may go over the mound, or there may be a
dry region around the peak, with the fluid flowing either side of the mound. It is a key aim
to determine what controls which of these situations occur. We will focus on the case of a
Gaussian mound which leads to some general principles for determining flow overtopping,
and our techniques may be applied to any axisymmetric mound.

3.1 Formulation

We consider a mound with peak height D, horizontal lengthscale L and profile Z =

Df(x/L), where f is dimensionless and f(0) = 1, f → 0 as r → ∞ (see figure 7). We
again consider a line source far upstream of the mound. Measuring the depth of the flow
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Figure 7: (a) Schematic of flow around a mound. (b) Side view in the case that flow goes
around but not over the mound.

from the base of the mound, the hydrostatic pressure (equation 2) is adjusted to include
the influence of the topography

P = P0 +Δρg
[
H(X,Y ) +Df(X,Y )− Z

]
cosβ. (46)

Following the method of section 2.2, we find the dimensionless steady equation for the depth
is

∂h3

∂x
= Λ∇2h4/4 + Γ

[
∂

∂x

(
h3

∂f

∂x

)
+

∂

∂y

(
h3

∂f

∂y

)]
, (47)

where Λ is as before (8) and there is another dimensionless parameter, Γ, which measures
the amplitude of the obstacle relative to its width and the slope of the underlying boundary,

Γ =
D

L tanβ
(48)

There are now two dimensionless groups as we have introduced a third lengthscale, the
height of the mound, D. The only boundary condition is the far-field condition h → 1 as
r → ∞.

We will focus on the limit of a shallow oncoming flow (Λ  1) since this regime leads
to wake formation with the obstacle. To identify some of the important aspects of the
problem, we begin with the one-dimensional problem of a Gaussian bump which spans the
channel in the y direction.

3.2 One-dimensional bump

In the one-dimensional problem fluid always flows over the top of the bump. The governing
equation is

dh3

dx
= Λ

d

dx

(
h3

dh

dx

)
+ Γ

d

dx

(
h3

df

dx

)
. (49)
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Figure 8: Flow over a one-dimensionsal Gaussian bump for Λ = 0.03. (a) Γ = 0.6 < Γc, the
depth is order 1 everywhere, the asymptotic expansion from equation (52) (red dashed line)
agrees well with the numerical solution (solid black line). (b) Γ = 2 > Γc, the flow deepens
upstream of the bump and the first asymptotic expansion (red dashed line) becomes invalid
in this deep region. Our expansion for the regions where h ∼ Λ−1 (equation 66) is plotted
as a blue dashed line and agrees well with the numerical results in the deep region. (c)
Dimensional plot corresponding to (a), where we have rotated the axes through an angle
β. The black line shows the bump topography and the blue region represents the fluid. (d)
Dimensional plot corresponding to (b), the fluid ponds upstream of the bump.

We examine topography with f(x) = e−x2
, but note that our analysis would apply to any

bump. Integrating equation (49) and using the constant flux condition for steady flow, we
find

h3
[
1− Γf ′(x)

]
= 1 + Λh3

dh

dx
. (50)

To solve this ODE numerically, we shoot from x = +∞ with the boundary condition h → 1
at +∞. Our numerical results are plotted as black lines in figure 8a and 8b for Λ = 0.03
and are typical of the regime Λ  1 corresponding to shallow oncoming flow. There is a
critical value of Γ, denoted Γc, associated with the height of the bump, at which there is a
qualitative change in the numerical results. For Γ less than the critical value, the flow depth
is order 1 everywhere (see figure 8a and 8c), whilst for Γ larger than the critical value, the
flow pools upstream of the bump (see figure 8b and 8d).

To investigate these two regimes we naively seek an asymptotic expansion in the limit
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Λ  1
h = h0 + Λh1 + · · · (51)

Substituting into equation (50) and applying the far-field condition, we find that

h0 =
[
1− Γf ′(x)

]−1/3
, h1 = Γf ′′(x)

[
1− Γf ′(x)

]−8/3
/9, (52)

and the asymptotic expansion for h is

h ∼ (1− Γf ′(x)
)−1/3

+ Λ
Γf ′′(x)

9

(
1− Γf ′(x)

)−8/3
+ · · · (53)

The depth at leading order is independent of Λ. This asymptotic expansion is plotted as a
red dashed line in figure 8a and agrees well with the numerical solution. At leading order,
this solution neglects the diffusive slumping term in the governing equation (49). This is
valid when the gradients in h are small.

However, the leading term in the expansion, h0, will become singular if there exists a
solution to 1−Γf ′(x) = 0. For the case f(x) = e−x2

there are no solutions to this equation,
and hence no singular points, for

Γ < Γc =

(
e

2

)1/2

≈ 1.17 . . . (54)

and in this case, the expansion (53) is a good approximation to the solution everywhere.
For Γ > Γc, the expansion (53) has two singular points which lie in x < 0. The second

term in the expansion, h1, is more singular than h0 at these points and hence the expansion
breaks down, which is illustrated in figure 8b (Γ > Γc), where we have plotted the expansion
as a red dashed line.

Our expansion needs revisiting for Γ > Γc because as we approach the singular point,
the left-hand side of equation (50) becomes small and can no longer be compared with
the 1 on the right-hand side. Instead, we need an expansion which balances the second
term on the right-hand side of (50) with the left-hand side because as the singular point is
approached the gradients in h become large. We must capture the diffusive slumping term.
This motivates seeking

h = Λ−1ĥ−1 + ε(Λ)ĥ0 + · · · (55)

where ε  Λ−1 is to be determined. This expansion cannot satisfy the boundary condition
h → 1 at ±∞ and instead it will be valid in a neighbourhood of the singular points and
must be matched with our earlier asymptotic expansion (equation 53) which is valid away
from the singular points. Substituting (55) into the governing equation (50), we find

ĥ−1 = x− Γf(x) + c−1 ĥ0 = c0, (57a,b)

where c−1 and c0 are to be determined using matching.

234



3.2.1 Matching

The outer expansion (53) becomes invalid as we approach the singularity x0, which satisfies

f ′(x0) = Γ−1. (56)

Note that this equation has two solutions. We take x0 to be the greater solution.
The outer expansion (53) stops being asymptotic near x0 because the second order term

is more singular than the first. To determine the region in which the first and second term
are of the same order, we rescale x = x0 + Λαξ in (53), and choose α = 3/7 to balance the
terms. Then in these rescaled coordinates the outer solution (53) is

h ∼ Λ−1/7

{[− Γf ′′(x0)
]−1/3

ξ−1/3 + Γf ′′(x0)
[− Γf ′′(x0)

]−8/3
ξ−8/3/9

}
. (57)

In the same overlap region, x = x0 + Λ3/7ξ, the inner solution (57a,b) takes the form

h ∼ Λ−1
[
x0 − Γf(x0) + c−1

]
+ Λ−1/7

[− Γξ2f ′′(x0)/2
]
+ εc0. (58)

Expansions (57) and (58) must be equivalent in the overlap region and in particular they
must have the same magnitude at leading order. Therefore, the first term in (58) must
vanish and we obtain

c−1 = −x0 + Γf(x0). (59)

To determine εc0, we analyse the governing equation (50) in the overlap region using the
rescalings

h = Λ−1/7H x = x0 + Λ3/7ξ. (62a,b)

Then, at leading order, the governing equation in the overlap region is

∂H

∂ξ
= −H−3 − Γf ′′(x0)ξ. (60)

Note that f ′′(x0) < 0. As ξ → −∞, H → ∞ to match with the inner solution (equation
55). This motivates seeking a balance between the left-hand side of (60) with the second
term on the right-hand side in the limit of large, negative ξ. We find

H ∼ −Γf ′′(x0)ξ2

2
+ a0, (61)

where a0 is the constant of integration. Comparing (61) with the expansion in the inner
region near the singular points (equation 58), we find that ε = Λ−1/7 and a0 = c0. The
problem is now to determine a0. We do this by numerically shooting in equation (60) from
ξ = +∞. To determine the boundary condition at ξ = +∞, we seek a balance in equation
(60) in the limit of large positive ξ. In this region H decays and hence we balance the two
terms on the right-hand side of equation (60), leading to

H ∼ [− ξΓf ′′(x0)
]−1/3

= Aξ−1/3. (62)
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where A = [−Γf ′′(x0)]−1/3. Then, by substituting H = ξ−1/3(A + Bξ−n) into the full
equation in the overlap region (60), we determine B and find

H = Aξ−1/3 −A5ξ−8/3/9, (63)

which we use as our boundary condition. The expansion (63) matches with the outer
solution (53) as ξ → ∞, as expected. We can now use (63) to shoot in equation (60). In
order to carry out this shooting only once for any value of Γ, we make a rescaling in order
to solve a canonical problem with no Γ,

H = A3/7H0, ξ = A12/7ξ0. (64)

Then shooting to determine H0 and comparing the solution at ξ0 = −∞ (61), we find

c0 = 1.611A3/7 = 1.611
[− Γf ′′(x0)

]−1/7
. (65)

The inner expansion is

h ∼ Λ−1
[
x− x0 + Γf(x0)− Γf(x)

]
+ 1.611Λ−1/7

[− Γf ′′(x0)
]−1/7

. (66)

This is plotted as a blue dashed line in figure 8b and agrees well with numerical results in
the region of large h.

We have found that the depth of the flow is critically dependent on Γ in the limit
Λ  1. For Γ < Γc the shape becomes independent of Λ in the limit of small Λ. However,
for Γ > Γc, the shape has a region in which the depth is of order Λ−1. Our results suggest
that for bumps which have a small aspect ratio relative to the slope gradient (Γ < Γc, recall
equation 48), the current deepens slightly upstream to overtop the bump (figure 8a and
8c), and provided Γ is constant, the upstream depth is independent of the bump height
d. However, for a steeper bump relative to the slope gradient (Γ > Γc), fluid accumulates
upstream forming a pond and for constant Γ, the upstream depth grows in proportion to
the bump height d (figure 8b and 8d). We anticipate that there will be a similar critical
dependence on Γ in the 2d problem.

We note briefly that for Γ > Γc, the gradients in h become large (see figure 8b) and
our lubrication approximation may break down. However, the conclusion of ponding in this
case is physically sound. When the flow is not shallow, it must deepen to the depth of the
bump in order to flow over the top (see figure 8d).

3.3 Two-dimensional mounds

We recall the governing equation for steady flow over a mound

Λ∇2h
4

4
+

∂

∂x

[
h3
(
Γ
∂f

∂x
− 1
)]

+ Γ
∂

∂y

[
h3

∂f

∂y

]
= 0. (67)

We again consider the limit Λ  1, noting that the flow need not go over the bump in
the two-dimensional geometry; the flow can go only around the mound. We adapted our
numerical technique from section 2.3 to solve the governing equation (47) for flow over an
axisymmetric mound with f = e−r2 . Contours of constant depth from our numerical results
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Figure 9: Contour plots of the numerical solutions for flow over an axisymmetric gaussian
mound with Λ = 0.05. For Γ > Γc there is a dry region around the mound. Note that the
maximum depth occurs away from the centreline and slightly downstream from the peak of
the mound.

are shown in figure 9. Note that the max depth does not occur on the symmetry axis as
it did for flow past a cylinder. When a dry region occurs we introduce a small line source
along y = 0 to create a thin film (see section 2.3).

We follow the same analysis as we did for the one-dimensional problem to determine how
the size of the mound controls the steady flow and in particular finding when dry regions
occur. Naively seeking an order 1 expansion as before

h = h0 + Λh1 + · · · , (68)

then at leading order we find the first-order equation for h0[
1− Γ

∂f

∂x

]
∂h30
∂x

− Γ
∂f

∂y

∂h30
∂y

= Γh30∇2f. (69)

This equation neglects the diffusive slumping terms in the governing equation (67). We use
the method of characteristics to find the following solution to (69)

dx

ds
= 1− Γ

∂f

∂x
,

dy

ds
= −Γ

∂f

∂y
,

d log(h30)

ds
= Γ∇2f, (70)

237



Figure 10: Characteristics in the plane in the limit Λ  1 (left-hand column) and slices
through y = 0 of the characteristic solution to equation (69) (right-hand column). (a)
Γ < Γc, the characteristic solution maintains order 1 depth over the bump (similar to 1d
case). (b) Γc < Γ < Γd, there is a region not accessed by the characteristics and the depth
decays at the edge of this region. This arises because dx/ds = 0 at x1. (c) Γ > Γd, the
depth grows as x1 is approached.

where s parametrises the characteristics. We observe that for Γ < Γc, dx/ds is nowhere 0.
We begin by analysing this regime and consider Γ > Γc later.

In the plane, the shape of the characteristic curves is given by

dy

dx
=

2Γye−r2

1 + 2Γxe−r2
. (71)

These are plotted in figure 10a for Γ = 0.6. The depth far upstream is 1 and the char-
acteristics carry this data over and around the bump and there are no dry regions. Far
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downstream, the characteristic solution converges to a shape which is independent of x
since dy/ds and dh/ds tend to zero. This far downstream shape is plotted in figure 11a
which illustrates that the depth converges to 1 as y → ∞ but not as x → ∞. Therefore,
the characteristic solution cannot be matched with the far-field condition, h → 1, which
suggests there is an outer region in which the diffusive slumping terms are important and
our current asymptotic expansion is not valid.

Figure 11: Far downstream cross-channel depth profile for the leading order term in the
expansion (68) for (a) Γ = 0.6 and (b) Γ = 1.2. The depth becomes independent of x.

3.3.1 Outer region

When x is large and positive, the asymptotic expansion described above converges to a
fixed shape in y (figure 11a). Cross-channel diffusive slumping, which was neglected in our
asymptotic expansion above, smoothes this shape so that the depth tends to 1 everywhere as
x → ∞. This motivates an outer region in which we rescale only the downstream coordinate
x by

x̂ = Λx. (72)

Then at leading order the governing equation (67) is

∂2h4/4

∂y2
=

∂h3

∂x̂
(73)

which represents a balance between the downslope advective term and the term associated
with cross-channel diffusive slumping. We use the shape from the limit as x → ∞ of our
inner asymptotic solution (see figure 11a) as the ‘initial’ condition at x̂ = 0 to solve the
nonlinear diffusion equation (73) numerically. The solution converges to h = 1 everywhere,
satisfying the far-field boundary conditions.

We compare this outer asymptotic approximation with our numerical solution to the
full governing equation (67) in figure 12 for Γ = 0.6. The depth of the numerical solution
along the centreline is plotted as a blue dashed line whilst the inner and outer asymptotic
approximations are in black and red solid lines, respectively. The inner expansion converges
to a constant, whilst the outer solution converges to h = 1 far downstream.
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Figure 12: Depth along the centreline (y = 0) for Γ = 0.6. The inner asymptotic approxi-
mation (black line) is calculated from equation (69), whilst the outer asymptotic approxi-
mation (red line) is calculated from equation (73), using the limit of the innner solution as
the boundary condition.

3.3.2 Dry regions (Γ > Γc)

We have shown that for Γ < Γc, the depth is nowhere because the characteristics of
the asymptotic solution travel over all of the mound. However, as in the 1d problem,
there is a regime change at Γc. For Γ > Γc, dx/ds vanishes for the inner expansion (see
equation 69) and there is a region not accessed by the characteristics (see left-hand column
of figure 10). There is a line on which dx/ds is first zero,

y = ±
√
log(−2Γx)− x2, (74)

which is plotted as a dashed line in the left-hand column of figure 10. Our aim is to
determine the depth in the region which is not accessed by the characteristics. From our
numerical simulations (see figure 9), we anticipate that the depth in this region is 0. To
confirm this, we show that the depth along the centreline at the edge of the unaccessible
region is 0 when downslope diffusive terms are reintroduced, and then observe that the
characteristics carry this depth along the edge of the unaccessible region. As we travel
further downstream, the characteristics become parallel to the x axis and the cross-slope
diffusive term becomes important and this will close up the dry region (see figure 9).

We begin by analysing the depth of the inner asymptotic approximation along the
centreline (y = 0) which is plotted in figures 10bii and 10cii. According to the solution from
the characteristic method, the depth along the centreline is given by

d log(h3)

dx
=

4Γ(x2 − 1)e−x2

1 + 2Γxe−x2 . (75)

As we approach the point at which dx/ds first vanishes, which we call x1 (the smaller root

inner
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of 1 + 2Γxe−x2
= 0), we can approximate (75) by

d log(h3)

dx
=

2(x21 − 1)

(1− 2x21)(x− x1)
. (76)

Then the behaviour near x1 is
h ∼ (x1 − x)k (77)

where

k =
2(x21 − 1)

3(1− 2x21)
, (78)

which is weakly dependent on Γ. Note that k changes sign as x1 crosses −1. In terms of Γ
this corresponds to

k >0 for Γ < Γd ≈ 1.36, (79a)

k <0 for Γ > Γd. (79b)

Hence there is a change in behaviour at Γd (see figure 10bii and 10cii). In both x

gradients in h become large, which leads to a recognition that the downslope diffusive
slumping term cannot be neglected in a neighbourhood of x1 along the centreline. To

reintroduce this term we make the rescaling

x = x1 + Λαξ, h = ΛαkH, (80)

where the scaling for h is motivated by the behaviour of the innner expansion (equation
77). Using the governing equation (67) we find that along the centreline H satisfies

∂2H4/4

∂ξ2
+AΓξ

∂H3

∂ξ
+BΓH

3 = 0, (81)

where we have chosen

α =
1

2− k
, (82)

for a balance, and

AΓ = −2Γ(1− 2x21)e
−x2

1 , BΓ = 4Γ(x21 − 1)e−x2
1 (83)

are constants. The boundary condition for (81) as ξ → −∞ is provided by the limiting
behaviour of the innner expansion given by (77). Writing this in terms of H and ξ, we find
that

H = CΓ(−ξ)k, (84)

where CΓ is a constant which can be determined from the numerical solution for the char-
acteristics. We solve for H by assuming H has compact support and then shooting from
H(ξ0) = 0 and iterating to find ξ0 by matching with the boundary condition (84) at −∞.
To shoot from H = 0 we need two boundary conditions. Taking the limit of small H in
equation (81), we determine the behaviour to be

H ∼ 2AΓξ0(ξ0 − ξ). (85)
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In figure 13, we plot the limiting behaviour of the inner expansion in ξ coordinated as
dashed and dotted-dashed lines for Γ = 1.25 and Γ = 2, respectively. The outer expansion,
described above, which is the solution to equation (81), and which matches with the inner
solution is plotted as blue and red solid lines. This expansion includes the x diffusive terms
and confirms that the depth becomes 0 at the edge of the inaccessible region in both cases
k < 0 and k > 0.

There is, however, an important physical distinction as k changes sign, equivalent to
crossing Γ = Γd (equation 79). The depth in a neighbourhood of x1 is given by the scaling
in (80),

h = Λk/(2−k)H. (86)

The exponent of Λ changes sign as k changes sign. For Γ < Γd, the exponent is positive
and the depth of the flow is at most order 1. For a higher mound (Γ > Γd), the depth
along the centreline near x1 is of order Λk/(2−k) which grows as Λ becomes smaller. This is
somewhat analagous to the one-dimensional problem and corresponds to pooling upstream
of the mound.

Further downstream, the cross-stream diffusive terms become important. The same
analysis as in section 3.3.1 can be performed; we take the downstream limit of the inner
solution for Γ > Γc (figure 11b) as the initial condition for the nonlinear diffusion equation
(73). The dry region is closed up and much further downstream, the depth converges to 1.
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Figure 13: Matching with the limit of the characteristic solution (equation 77), dashed line.
The red and blue lines show the numerical solution to (81) shooting with (85).

3.3.3 Summary

We have found three regimes for a shallow oncoming flow (Λ  1) over an axisymmetric
mound.
For Γ < Γc flow goes over and around the mound and there are no dry regions.
For Γc < Γ < Γd there is a dry region and the depth remains order 1 with respect to Λ.
For Γ > Γd there is a dry region and the depth upstream of the mound increases as Λk/(2−k),
with k < 0 (can be determined by (80)).

242



4 Conclusion and DDiscussion

We have quantified the steady free-surface flow of viscous fluid around a cylinder and found
parameter values for which there is a dry region downstream of the cylinder. Upstream of
the cylinder, the flow deepens and in the case where there is a dry region, the flow depth
can more than double upstream. This deepening should be considered when designing
obstructions to lava flows; the barriers must be significantly higher than the anticipated
flow depth. We have analysed the shape and extent of dry regions which occur downstream
of wide obstructions.

Our work has also shown that shallow flow over topography can be critically dependent
on the height of the topography, and steeper mounds can lead to significant upstream
deepening of the flow.
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Appendix A: Flow near a wall
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Figure 14: Influence of the no-slip condition on the flow velocity near the wall. The walls
are at ±b, and the flow depth is h. Note that û/u as a function of (b− y)/h is independent
of b and h.

We consider the steady flow in a channel between two walls at y = ±b assuming that
the depth, h(x), is independent of cross-channel position and the flow is unidirectional in
the downslope direction. A similar problem for modelling a paint-brush was considered
by Batchelor [1965], in which the depth is infinite. The x-component of the momentum
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equation is

∂p

∂x
= μ

(
∂2u

∂y2
+

∂2u

∂z2

)
, (87)

where u is the downslope velocity. Since there is no flow in the y and z directions, the
pressure gradient is

∂p
= −ρg sinβ. (88)

∂x

Equating (87) and (8 ), we find an equation for u,

μ

(
∂2u

∂y2
+

∂2u

∂z2

)
= −ρg sinβ. (89)

We decompose u into the contribution from no-slip on the walls, û, and the contribution
from the hydrostatic pressure,

u =
ρg sinβ

2μ
z(2h− z) + û. (90)

We now find û to determine the influence of no-slip. From our decomposition, the governing
equation for û is (

∂2û

∂y2
+

∂2û

∂z2

)
= 0. (91)

There is no-slip (u = 0) at the base of the channel,

û = 0 on z = 0. (92)

No-slip at the walls of the channel imposes

û = −ρg sinβ

2μ
z(2h− z) on y = ±b. (93)

Finally, zero stress at the surface z = h becomes

∂û

∂z
= 0 on z = h. (94)

This system has separable solutions,

û =

∞∑
n=0

cn cosh[(n+ 1/2)πy/h] sin[(n+ 1/2)πz/h]. (95)

We use the boundary condition at y = ±b to determine the coefficients. We compare
the series for û (95) with (93) on the domain (0, 4h) for z, since û is 4h-periodic. Let
φ = πz/(4h), and,

dn = cn cosh[(n+ 1/2)πb/h]. (96)

Then ∞∑
n=0

dn sin[(4n+ 2)φ] = −ρg sinβ

2μ

[
8h2

π
φ− 16h2

π2
φ2

]
. (97)
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We find the coefficients are

cn = − 2ρgh2 sinβ

μπ(2n+ 1) cosh((n+ 1/2)πb/h)
. (98)

This can be used to determine the influence of the walls on the flow velocity. The ratio û/u
quantifies the significance of the no-slip condition on the velocity field. We plot û/u at the
surface z = h as a function of cross-slope position divided by the flow depth, h in figure
14. Using this we can identify the lengthscale over which the walls influence the flow. For
example the walls have a 10% influence (û/u = 0.1) at a distance b − y ≈ 1.68h from the
wall.
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1 Motivation

The study of the classical Rayleigh-Taylor instability has wide-ranging applications in day-
to-day observed phenomena involving mixing of two fluids of differing densities in a grav-
itational field, e.g. simply mixing milk in coffee to cloud patterns in the sky. The growth of this
instability and its inhibition in the presence of rotation has recently been studied in
both experiments ([1, 6]) and numerical simulations ([2]). This study is primarily
motivated by the recent work of [7] on the growth of Rayleigh-Taylor instabilities in a
rotating cylindrical geometry (as illustrated in Fig 2.1) for a two-fluid setup in absence
of a gravitational field. Their work considered the case of azimuthal perturbations to the
interface in a two-dimensional setup. This study explores the full three-dimensional
problem taking into account both the azimuthal and axial (varicose) perturbations of the
interface (denoted by I ), both from the point of view of linear theory to predict growth
rates of the unstable modes in inviscid as well viscous scenarios, and with help of
preliminary numerical simulations to test the predictions of the linear theory and gain
insights into the full non-linear evolution of the growing instabilities in the system.

This report presents a summary of the work describing the model setup for the 3D-
“varicose centrifuge” problem followed by the analytical tools used to perform a linear sta-
bility analysis (both for inviscid and viscous setups) that are subsequently compared with
numerical simulations performed with the help of the open-source software package Open-
Foam. The report concludes with some interesting observations from the set of numerical
simulations performed which seem to hint at the emergence of an inherent length scale in the
problem independent of initial conditions and various parameters of the system. These pa-
rameters were studied systematically to quantify any influence on the growth of the varicose
modes in the system.

2 Model

2.1 Governing equations

We chose a rotating cylindrical coordinate system with r = (r, θ, z) in which the fluid is
being described by the incompressibility and momentum equations:

247



Figure 2.1: Cartoon illustrating the flow setup of the two-fluid system rotating with an
angular frequency Ω with the fluid density and dynamic viscosity in the inner (r < r0) and
outer (r > r0) layers being ρ1, μ1 and ρ2, μ2 respectively.

∇ · uj = 0 (2.1)

ρj
Duj

Dt
= −∇pj − ρjΩ× (Ω× r)− 2ρjΩ× uj + μj∇2uj + 2e

j
· ∇μj (2.2)

with j = 1 and 2 corresponding to the inner and outer fluid, respectively, ρj and μj being the
densities and viscosities of the respective fluids (assumed to be constant in each layer for
simplicity) and the rate of strain tensor given by

e
j
=

1

2

(∇uj +∇uT
j

)
, (2.3)

and Ω = Ωêz is the rotation vector.

2.2 Non-dimensionalisation

We non-dimensionalise time by the angular velocity Ω and length by the radial extent a of the
domain. The density and viscosity in each layer are non-dimensionalised by the average of the
values in each layer, respectively,

ρ0 =
1

2
(ρ1 + ρ2), μ0 =

1

2
(μ1 + μ2). (2.4)

The governing equations in each fluid layer then reduce to

∇ · uj = 0, (2.5)
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Duj

Dt
= − 1

ρj
∇pj + rêr − 2êz × uj +

μj

ρj
Ek∇2uj , (2.6)

where the Ekman number, Ek = μ0

ρ0Ωa2
describes the ratio of the viscous to the Coriolis

forces.

2.3 Velocity potential function

Following [5], we adopt the following ansatz for the velocity in each of the two layers in
terms of potential functions, φj , as

uj = ε

{
1 +

1

4

(
∂

∂t
− μj

ρj
Ek∇2

)2
}
∇φj − 1

2

(
∂

∂t
− μj

ρj
Ek∇2

)
(êz ×∇φj)

+ êz × (êz ×∇φj)

= ε
[(
1 + L2

)∇φj − L (êz ×∇φj) + êz × (êz ×∇φj)
]

(2.7)

where ε  1 and L = 1
2

(
∂
∂t −

μj

ρj
Ek∇2

)
. Using this, the incompressibility condition (2.5)

yields a governing equation for φj in each layer

(
1 + L2

)∇2φj −
(
∇2 − ∂2

∂z2

)
φj = 0. (2.8)

In order to satisfy no-flow conditions through the top and bottom boundaries, we seek
solutions of the form

φj(r, θ, z, t) = ψj(r) cos
(nπz

δ

)
exp (i(mθ + ωt)) , (2.9)

where m,n ∈ N are respectively the azimuthal and vertical wavenumbers, δ = d
a is the aspect

ratio of our domain and ω ∈ C, such that Im(ω) < 0 gives an unstable mode. Defining

D2[φ] :=

[
d2

dr2
+

1

r

d

dr
− m2

r2
− n2π2

δ2

]
φ (2.10)

D2
H [φ] :=

[
d2

dr2
+

1

r

d

dr
− m2

r2

]
φ, (2.11)

(2.8) then reduces to [{
1 +

1

4

(
iω − νjEkD2

)2}D2 −D2
H

]
ψj = 0. (2.12)

with the kinematic viscosity of each layer given by νj =
μj

ρj
. Using (2.9) in (2.7), we can

write the components of the velocity field in the following form

uj = ε

⎛⎜⎜⎝
L2 ∂φj

∂r + L
(
1
r
∂φj

∂θ

)
L2
(
1
r
∂φj

∂θ

)
− L∂φj

∂r(
1 + L2

) ∂φj

∂z

⎞⎟⎟⎠ . (2.13)
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The total pressure in each layer is the sum of the hydrostatic contribution and a
perturbation term, Pj , given by

pj(r) = p0 + ρj

rˆ

0

r′dr′ + Pj (2.14)

where p0 = p(r = 0) and ρj is the initial density in each layer. We use the form for the
pressure perturbation in each layer as in [5] for rotating fluids in terms of the aforementioned
potential function, and can be expressed in the above notation as

Pj = −2ερj
(
1 + L2

)Lφj . (2.15)

2.3.1 Inviscid solutions:

We first consider the inviscid problem (νj = 0) in which case the Eq (2.12) can be reduced
to [

d2

dr2
+

1

r

d

dr
−
{
m2

r2
+ (1− 4

ω2
)
n2π2

δ2

}]
ψj = 0 (2.16)

which has solutions of the form

ψj(r) = Cj1Jm (λr) + Cj2Ym (λr) , (2.17)

with

λ =
nπ

δ

√
1− 4

ω2
= δ−1

n

√
1− 4

ω2
(2.18)

using Miles’ notation of δn = δ
nπ . For the inviscid flow field given by

uj = ε

⎛⎜⎜⎝
(
−mωψj

2r − 1
4ω

2ψ
′
j

)
cos
(
δ−1
n z
)(

−1
4 imω2 ψj

r − 1
2 iωψ

′
j

)
cos
(
δ−1
n z
)

−1
4k(4− ω2)ψj sin

(
δ−1
n z
)

⎞⎟⎟⎠ exp (i(mθ + ωt)) , (2.19)

we now impose the following boundary conditions:

Velocity regularity at r = 0: Using the form of the solution for ψj given by (2.17), for
u1(r = 0) · êr < ∞, we require C11 = 0. Thus,

ψ1(r) = C11Jm (λr) (2.20)
ψ2(r) = C21Jm (λr) + C22Ym (λr) . (2.21)

which also ensures regularity for the azimuthal and vertical components of the velocity field.

No penetration at r = 1 and z = ±δ: Setting the radial component of the velocity field
at r = 1 to zero, we obtain

{m (ω + 2)Jm (λ)− λωJm+1 (λ)}C21 + {m (ω + 2)Ym (λ) + λωYm+1 (λ)}C22 = 0 (2.22)
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The condition for no penetration at z = ±δ is automatically satisfied by the ansatz 2.9. We
further introduce the following functions

f(r) = m (ω + 2)Jm (λr)− λωr0Jm+1 (λr) (2.23a)
g(r) = m (ω + 2)Ym (λr) + λωr0Ym+1 (λr) , (2.23b)

which then reduces (2.22) to
f(1)C11 + g(1)C22 = 0. (2.24)

Kinematic condition at the interface: The linearized kinematic condition requires the
fluid to move with the velocity of the interface defined by

I := r = r0
{
1 + ε cos

(
δ−1
n z
)
exp (i(mθ + ωt))

}
(2.25)

which implies

ωψ
′
j(r0) +

2mψj(r0)

r0
= −4ir0. (2.26)

Using the form of the solution given by (2.20) and (2.21) for the inner and outer fluid layers,
we respectively obtain

f(r0)C11 = −4ir20 (2.27a)

f(r0)C21 + g(r0)C22 = −4ir20 (2.27b)

which gives

ψ1(r) = −4ir20Jm (λr)

f(r0)
(2.28a)

ψ2(r) =
4ir20 [g(1)Jm (λr)− f(1)Ym (λr)]

f(1)g(r0)− f(r0)g(1)
. (2.28b)

Stress continuity at the interface: For the inviscid case, we have pressure continuity
across the interface in absence of surface tension. Using the expression for the pressure
perturbation given by Eq 2.15, and equating the pressure on the interface (given by 2.25),
to the leading order in ε, we obtain

4ρ1r
2
0 + iω(ω2 − 4)ρ1ψ1(r0) = 4ρ2r

2
0 + iω(ω2 − 4)ρ2ψ2(r0) (2.29)

which can be written in terms of the Atwood number, A = ρ2−ρ1
ρ2+ρ1

to yield the dispersion
relation as

ω(ω2 − 4)

[
1 + A

A
ψ2(r0)− 1− A

A
ψ1(r0)

]
= 8ir20. (2.30)

Using (2.28a) and (2.28b), for ω �= 0 or ± 2, this can be written in the form

1 + A

A

g(1)Jm (λr0)− f(1)Ym (λr0)

f(1)g(r0)− f(r0)g(1)
+

1− A

A

Jm (λr0)

f(r0)
=

2

ω(ω2 − 4)
. (2.31)

Fig 2.2 shows the solutions for ω for the above dispersion relation for two values of the
azimuthal wavenumber m, as a function of the vertical wavenumber n for a negative Atwood
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number A = −0.5 - the negative root giving the unstable growing mode. For n → 0, we
approximately recover the growth rates for the azimuthal perturbations for m → ∞ as in
[7] given by

ω ∼ −A ± {A (A +m)} 1
2 . (2.32)

Special case for A = 0 : inertial oscillations We test the predictions of the linear
theory developed thus far for the inviscid case against the findings of [4] for the case of
spin up of a single fluid in a cylindrical container. The modes of pressure perturbations in
such a system were also found to be stable. Also, for axially symmetric perturbations, their
eigenvalue spectrum had limit points at ±2 and had a dense distribution in the interval
bound by these two limits. We recover these results in the limit of A → 0 when the two
fluids with identical densities essentially behave as a single fluid, as illustrated shown in Fig
2.3.

2.3.2 Viscous case:

For the full viscous problem, we seek general solutions of the sixth-order ode in r given by
(2.12), of the form

ψj(r) = cj1iJm (kjir) + cj2iYm (kjir) (2.33)

where we use Einstein notation with i ∈ [1, 3], and kji are roots of the cubic polynomial
in λ2 obtained by using the inviscid solution ansatz given by (2.17). Using the notation
introduced in Section 2.3, the viscous flow field can be written as

uj = ε

⎛⎜⎜⎜⎝
{

im
2

(
iω − νjEkD2

) ψj

r + 1
4

(
−ω2 − 2iωνjEkD2 + ν2jEk

2D4
)
ψ

′
j

}
cos
(

z
δn

){
im
4

(
−ω2 − 2iωνjEkD2 + ν2jEk

2D4
)

ψj

r − 1
2

(
iω − νjEkD2

)
ψ

′
j

}
cos
(

z
δn

)
−k
{
1 + 1

4

(
−ω2 − 2iωνjEkD2 + ν2jEk

2D4
)}

ψj sin
(

z
δn

)
⎞⎟⎟⎟⎠ exp (i(mθ + ωt))

(2.34)
For the above flow field to be well-behaved at r = 0, we require c12i = 0, leaving us with 9
independent constants, which requires the following 10 conditions to get a dispersion relation:

No-penetration in radial direction at r= 1 and in vertical direction at z=±δ: For
the radial condition at r= 1, we need

u2(r = 1).êr = 0

⇒ im

2

(
iω − νjEkD2

) ψ2

r

∣∣∣∣
r=1

=
1

4

(
ω2 + 2iωνjEkD2 − ν2jEk

2D4
)
ψ

′
2

∣∣∣
r=1

. (2.35)

As for the inviscid case, the ansatz 2.9 ensures no flow through the upper and lower walls
of the domain at z = ±δ.
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Figure 2.2: Solutions obtained for real and imaginary part of the growth rate ω as a function of
vertical wavenumber n for two values of m= 0, 10 with A =−0.5, δ= 1, νj= 0.
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θ

Figure 2.3: Solutions obtained for real and imaginary part of the growth rate ω as a function of
vertical wavenumber n with A = 0.

No-slip in tangential and vertical components at r = 1 : In the case of a viscous
fluid, we must additionally satisfy no-slip boundary conditions in the azimuthal and vertical
flow at r = 1 , which implies

u2(r = 1).ê = 0

⇒ − im

4

(
ω2 + 2iωνjEkD2 − ν2jEk

2D4
) ψ2

r

∣∣∣∣
r=1

=
1

2

(
iω − νjEkD2

)
ψ

′
2

∣∣∣
r=1

(2.36)

and

u2(r = 1).êz = 0

i.e. ψ2|r=1=
{
1

4

(
ω2 + 2iωνjEkD2 − ν2jEk

2D4
)}

ψ2|r=1. (2.37)

Kinematic condition at the interface: The linearized kinematic condition requires{
im

2

(
iω − νjEkD2

) ψj

r
+

1

4

(−ω2 − 2iωνjEkD2 + ν2jEk
2D4
)
ψ

′
j

}∣∣∣∣
r=r0

= iωr0, (2.38)

which give one constraining equation in each layer of fluid.
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Continuity condition at the interface: (2.38) ensures the continuity of the radial com-
ponents of the velocity field. For a viscous fluid, we also require continuity of the tangential
and vertical components i.e.

im

4

(−ω2 − 2iων1EkD2 + ν21Ek
2D4
) ψ1

r

∣∣∣∣
r=r0

− 1

2

(
iω − ν1EkD4

)
ψ

′
1

∣∣∣
r=r0

=
im

4

(−ω2 − 2iων2EkD2 + ν22Ek
2D4
) ψ2

r

∣∣∣∣
r=r0

− 1

2

(
iω − ν2EkD4

)
ψ

′
2

∣∣∣
r=r0

(2.39)

and{
1 +

1

4

(−ω2 − 2iων2EkD2 + ν22Ek
2D4
)}

ψ1 =

{
1 +

1

4

(−ω2 − 2iων2EkD2 + ν22Ek
2D4
)}

ψ2,

(2.40)

Stress continuity at the interface: This condition may be expressed as

�
{
σ · n̂

}
= 0, (2.41)

where �{·} indicates the jump in the quantity in {} from the outer fluid to the inner fluid,
in absence of any surface tension, across the interface I , where the non-dimensional stress
tensor in each fluid layer is given by

σ
j
= −pjI + 2μjEke

j
, (2.42)

with the rate of strain tensor, e
j

in each fluid layer given by (2.3). The unit vector normal

to the interface (given by 2.25) directed outward (from fluid 1 into fluid 2) is given by

n̂ =
∇ (r − r0

{
1 + ε cos

(
nπz
δ

)
exp (i(mθ + ωt))

})∣∣∇ (r − r0
{
1 + ε cos

(
nπz
δ

)
exp (i(mθ + ωt))

})∣∣
=
(
1 +O(ε2)

)
êr +

(
imr0
r

ε cos
(nπz

δ

)
exp (i(mθ + ωt)) +O(ε2)

)
êθ

+
(
−nπ

δ
r0ε sin

(nπz
δ

)
exp (i(mθ + ωt)) +O(ε2)

)
êz. (2.43)

and the pressure in each layer is given by (2.14).
To compute the second term in (2.42), we note that for the viscous flow field of (2.13), (2.3)
gives an expression O(ε) for e

j
. Hence, to the leading order in ε, only non-zero contribution

to the term e
j
· n̂ come from the radial terms. Furthermore, the pressure in each layer at

the interface to the leading order in εis given by

pj =
1

2
ρ1r

2
0 + ερj cos

(nπz
δ

)
exp (i(mθ + ωt)) + Pj (2.44)

where Pj is the Hart-like pressure perturbation (given by Eq 2.15). Hence, we can simplify
Eq 2.41 at order ε as

�
⎧⎨⎩−ε

⎛⎝ ρj
{
cos
(
nπz
δ

)
exp (i(mθ + ωt))− 2

(
1 + L2

)Lφj

}
−1

2ρ1r
2
0im cos

(
nπz
δ

)
exp (i(mθ + ωt))

1
2ρ1r

3
0
nπ
δ sin

(
nπz
δ

)
exp (i(mθ + ωt))

⎞⎠+ μjEke
j
· êr

⎫⎬⎭ = 0. (2.45)
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Figure 2.4: Viscous growth rates given by −Im(ω) as a function of Ek obtained by numer-
ically solving for the viscous dispersion relation (see text) showing an asymptotic behavior
of Ek−1 indicated by the blue straight line.

The above set of 10 linear equations in the coefficients cjli (l = 1, 2) can be solved using
standard methods to give the coefficients in terms of the Bessel functions involving kji, r0,
μj , Ek and the wavenumbers m and n of the varicose modes. Any of the above equations
may be used to obtained the dispersion relation which gives the value of the growth rates as
a function of m and n. For example, for m = 0 and n = 6, choosing νj = 1, r0 = √1

2
, δ = 1

and A = −0.018, Fig 2.4 shows the growth rate of perturbations to the interface (given by
−Im(ω) ) satisfying the above set of equations, which exhibits a clear scaling behavior of

ω ∼ −3.35× 10−4iEk−1 for Ek � 1. (2.46)

Interestingly, for this particular choice of parameter, initial investigations reveal a non-
monotonic behavior in the growth rates for Ek < 10−2 with a local minima in the growth
rate for Ek ∼ 10−4. On the following section, we attempt to investigate this particular
choice of system parameters from a numerical perspective in order to test the predictions of
the linear theory developed thus far.
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3 Numerical SSimulations with OpenFoam

In order to test the predictions of the linear theory developed in the preceding section, we
used the interFoam package available with the OpenFoam distribution [3] modified in [7]
to account for rotation in a cylindrical two-fluid setup, as i llustrated in Fig 3.1.

Figure 3.1: Sample initial setup in Openfoam showing fluid interface

3.1 Test of linear theory predictions:

The interface is initialized with the shape given by Eq 2.25 for a specific choice of the
wavenumbers m and n with r0 = 1√

2
and ε is chosen to set the initial amplitude of the

interfacial waves.
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Figure 3.2: (Top) Time evolution of the shape of the interface in a rotating OpenFoam
run initialized according to Eq 2.25 with m = 0, n = 6 for ε = 2.5 × 10−5 × a

r0
, Ω = 2π,

δ = 0.5, A � −0.018 and Ek ∼ 0.16; (Bottom) Comparison against the viscous linear theory
predictions -for same fluid parameters, we obtain a (non-dimensional) growth rate given by
Im(ω) � −0.0493254 which is the straight line (plotted on a semi-log axis in y).

The left panel of Fig 3.2 shows the gradual growth in amplitudes of the initial interface
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Figure 3.3: Evolution of the perturbation to the interface for two OpenFoam runs with
ε = 2.5× 10−5 × a

r0
, A � −0.018 and Ek ∼ 1.6× 10−5 at Ω = 2π rad/s (left) and 4π rad/s

(right) demonstrating the effect of increasing rotation on the emergence of smaller scales in
the growth of the perturbations.

for a particular choice of m = 0, n = 6 in a OpenFoam run with ε = 2.5 × 10−5 × a
r0

,
Ω = 2π rad/s, A � −0.018 and Ek ∼ 0.16. The right panel shows the comparison with
the prediction from the viscous linear theory described at the end Section 2.3, which for the
case with equal fluid viscosities and a choice of A �−0.018 and Ek∼ 0.16 yields a solution for
the system with Im(ω) � −0.0010533. Following an initial transient phase (up to t � 1), the
rate of growth of the amplitude of the sinusoidal shape of the interface roughly agrees with the
linear theory value. This is indicative that the linear theory developed in Section 2.3 can
correctly predict the early time evolution of this system. Further exploration of the parameter
space in A and Ek is part of currently ongoing work to confirm a robust test of any scaling
with these quantities, which at least seems to emerge with Ek > 1 from the viscous theory
predictions.

3.2 Effect of rotation

Using our OpenFoam rotating setup, we performed a systematic exploration of the
parameter space in rotation rates and Atwood numbers for our problem to see the evolution of
the varicose instabilities through the linear growth phase before the runs become fully
nonlinear. Beyond verifying our linear theory, these simulations were performed with the aim
of understanding how rotation affects the evolution of the interface and if it possibly leads to
complete suppression of the basic instability for any regime of our chosen set of parameter
space.
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3.2.1 A = −0.018 runs

Firstly, we performed a simulation with the identical setup as the one described in Section
3.1 at double the rotation rate i.e. for Ω = 4π. Fig 3.3 shows contours slices of the interface
before nonlinear effects start to dominate and break up any small scales in the simulations.
The comparison of the two runs for two different rotation rates qualitatively demonstrates
the effect of increasing rotation in driving the growth of perturbations towards smaller scales.

3.2.2 A = −0.5 runs

While it was possible to predict and compare our linear theory predictions for small values
of the Atwood number (A  1), we could only probe larger values of the density contrast
(A ∼ 1) with the help of simulation which show the onset of nonlinearity very early on in the
runs. Fig 3.4 presents two such simulations with A = 0.5 for two different rotation rates of
Ω=2π and 4π shows the contour of the interface shape at early times in each
simulation. These contours exhibit similar behavior, with the emergence of smaller scale
perturbation with increasing rotation.

Figure 3.4: Evolution of the perturbation to the interface for two OpenFoam runs with
ε = 2.5 × 10−5 × a

r0
, A � −0.5 and Ek ∼ 1.6 × 10−5 at Ω = 2π rad/s (left) and 4π rad/s

(right) demonstrating the effect of increasing rotation on the emergence of smaller scales in
the growth of the perturbations.

3.3 Effect of initial conditions

We also investigate the dependence of the growth of the interface on the initial shape by
chasing a different value of ε = 0.1 as described in the earlier section. As shown in Figure 3.5,
we see the evolution of an interface starting from a sinusoidal wave-like pattern (left panel)
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to the phase of growth of small scale patterns (right panel) in this setup. This shows further
evidence of the choice of a particular underlying lengthscale in the fluid that is independent
of the choice of initial shape of perturbations to the interface.

Figure 3.5: (Top) Initial interface between the two fluids of with equal viscosity for A =
−0.018, Ω = 2π and Ek � 1.6× 10−5 (Bottom)
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4 Summary

In this study, we considered a two-fluid rotating setup in a cylindrical geometry and studied
the linear stability of the interface separating the two fluids f or b oth a zimuthal a nd axial
perturbations. Our linear theory predictions for growing modes are shown to agree with the
conclusions derived by [4] for essentially a continuum of a single fluid in the limit of vanishing
density contrast (A = 0). For the full viscous problem, initial solutions of the full set of
governing equations satisfying all imposed boundary conditions at low A exhibit a clear
scaling with viscosity for Ek > 1. Preliminary results of numerical simulations performed
within the OpenFoam framework has been shown to give decent agreement with the linear
theory growth rates for Ek = 0.6,A = −0.018. We have also qualitatively explored the
effects of rotation at two different values of A which all seem to hint towards the emergence
of a preferred length scale for growth of the varicose modes for the perturbations to the
interface, irrespective of the initial shape of the interface. Further work is ongoing to quantify
this length scale and its possible dependence on the basic physics governing the evolution of
the Rayleigh-Taylor instability.

4.1 Future work: measure of curvature of the interface

As is evident from the preliminary simulations presented in Sections 3.2 and 3.3, the growing
perturbations at the interface of the two fluids seem to evolve naturally towards an inherent
length scale which is expected to be controlled by the balance of the physical forces governing
the motion of the fluids - i .e. v iscosity a nd r otation. I n o rder t o e xtract a quantitative
measure of this anticipated dependence, we plan to compute the radius of curvature of the
interface from our numerical data by fitting a circle with three neighboring points along the
position of the curved interface during the linear phase of evolution of the simulations.
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Viscoplastic Flow Around a Cylinder:

Nuggets or No Nuggets?
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1 Introduction

From food pastes and cosmetic fluids in our everyday life, to mud and lava flow in the
context geophysical or environmental flows, viscoplastic fluids can be found in a variety of
scenarios around us. This has generated interest in their study in practical scenarios as well
as in the context of classical fluid mechanics problems, such as the flow around a cylinder.
The problem of Newtonian flow around a cylinder is associated with the famous Stokes’
paradox which states that there is no solution at zero Reynolds number for this problem
in an infinite domain. To resolve the paradox, inertial effects need to be considered far
away from the cylinder. The viscoplastic version of the same problem has received a lot
of attention, for example, by Tokpavi et al. [2008] and most recently by Chaparian and
Frigaard [2017]. The characteristic feature of viscoplastic fluids is their yield stress (τY );

they flow only when the stresses exceed this critical value. Viscoplasticity thus also offers
a resolution for the Stokes’ paradox because when the stress falls below the yield stress
sufficiently far away from the cylinder, the flow gets localized.

Beyond theoretical interest, the problem of viscoplastic flow around a cylinder is very
relevant in practical scenarios. In this report, we consider problems that are applicable to
three different settings. Firstly, in the oil industry, yield-stress fluids (drilling muds) are
used to flush out rock cuttings to the surface from bore-wells (Okrajni and Azar [1986]).
The yield stress of the fluid enhances transport of the rock cuttings when it flows but pre-
vents sedimentation of the cuttings when the flow is stopped for repair purposes. In the
sedimentation scenario, calculations of the drag force on circular particles are useful in the
limit when the yield stress is large (or equivalently, the sedimentation velocity is small). Sec-
ondly, in the civil engineering industry, calculation of the collapse loads of partially rough
cylindrical pipes in cohesive soil, which can be modeled as a perfectly plastic material, is a
topic of wide interest (Aubeny et al. [2005], Randolph and Gourvenec [2011]). Viscoplastic
computations performed in the limit of high yield stress can facilitate such calculations.
Lastly, in a rather different physical setting, this problem is also relevant to cylindrical
models of micro-organisms swimming in viscoplastic fluids such as mud. Historically, cylin-
ders with an imposed surface velocity have been taken to be models (commonly referred to as

squirmers) for swimming micro-organisms in Newtonian or viscoelastic fluids (Blake [1971],
Lighthill [1952], Yazdi et al. [2014]). However, there have been no such studies of squirmers in
viscoplastic fluids.
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In this report, we address the fundamental problem of viscoplastic flow around a cylin-
der in the limit of large yield stress. We study this problem for different surface boundary
conditions, viz., no-slip, partial roughness and imposed tangential velocity. While these
scenarios are applicable to different physical problems discussed earlier, the framework we
develop can be easily modified to address them. The no-slip case is relevant to under-
standing sedimentation of particles in viscoplastic fluids. Despite being such a fundamental
problem, there are some discrepancies in the literature about the comparison of viscoplastic
computations at a large yield stress with the corresponding plastic solution (see figure 1).
We address this discrepancy in this report. The case of partially rough cylinders is di-
rectly applicable to calculating collapse loads of pipes in plastic materials. Lastly, imposing
surface velocity on the cylinder helps us develop a model for swimming micro-organisms
(squirmers) in viscoplastic fluids.

This report is structured as follows: we describe the mathematical model and associated
methods in §2. The problem with no-slip boundary conditions is considered in §3, where
we discuss the surprising differences between the viscoplastic and plastic solution related to
rigidly rotating plugs, which we refer to as the nuggets. We extend our analysis to account
for partially rough cylinders in §4. In §5, we develop a viscoplastic model for squirmers and
find the swimming speed for an imposed tangential velocity profile. Finally, we present our
conclusions in §5.

2 Mathematical Model

Neglecting inertia and gravity, we consider a cylinder of radius R moving through an in-
compressible Bingham fluid with velocity U êx. To obtain a dimensionless set of equations,
we use R and U to remove the dimensions of length and velocity, respectively. Pressure
and stresses are scaled by the characteristic viscous stress μU/R where μ is the (plastic)
viscosity of the fluid. In the polar coordinate system (r, θ) with the origin at the center
of the cylinder, the governing equations for the dimensionless fluid velocity (u(r, θ), v(r, θ))
and pressure p(r, θ) are given by,

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
= 0 (1)

and,

∂p

∂r
=

1

r

∂

∂r
(rτrr) +

1

r

∂

∂θ
τrθ − τθθ

r
, (2a)

1

r

∂p

∂θ
=

1

r2
∂

∂r
(r2τrθ) +

1

r

∂

∂θ
τθθ (2b)

where τij is the deviatoric stress tensor such that τrr + τθθ = 0. Equation (1) enforces
incompressibility and (2a), (2b) are the momentum equations.. We use the Bingham law
to relate the stress to the strain rate γ̇ij so that

τij =

(
1 +

Bi

γ̇

)
γ̇ij for τ > Bi,

γ̇ij = 0 for τ ≤ Bi. (3)
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The strain rate is related to the velocity components as follows:

{γ̇ij} =

(
2ur vr + (uθ − v)/r

vr + (uθ − v)/r 2(vθ + u)/r

)
, (4)

where the subscripts r and θ denote partial derivatives with respect to r and θ respectively.

γ̇ =
√

1
2 γ̇ij γ̇ij and τ =

√
1
2τijτij denote the second invariants of the the strain rate and

stress tensors (following the Einstein summation notation). The above system has only one
dimensionless number, the Bingham number:

Bi =
τY R
μU . (5)

For imposing no-slip on the cylinder surface, we set the following boundary condition:

(u, v) = (cos θ,− sin θ) at r = 1. (6)

If the surface of the cylinder is partially rough, we impose:

u = cos θ and
|τrθ|
τ

=
|γ̇rθ|
γ̇

= � at r = 1, (7)

where � represents the roughness factor that varies between 0 and 1. � = 0 is the same
as allowing free slip on the cylinder surface and � = 1 corresponds to the no-slip condition
that is equivalent to equation (6).

In section (5), for developing a model for a squirmer, we impose a prescribed surface
velocity which has a characteristic velocity scale Û . The velocity variables are now rescaled
using Û , in which case, the surface velocity becomes (Up(θ), Vp(θ)) and the swimming speed
is given by Us. The boundary conditions thus become

(u, v) = (Up(θ) + Us cos θ, Vp(θ)− Us sin θ) at r = 1. (8)

Far away from the cylinder, the stresses fall to zero and hence the flow is expected to be
localized. We thus choose a large enough computation domain with radius R0 and set

the velocity to (u, v) = (0, 0). If the domain boundary is well beyond the outermost yield
surface, its exact location will not have any effect on the solution we obtain.

2.1 Numerical method

We solve the viscoplastic equations using the augmented Lagrangian scheme that is used
by Hewitt and Balmforth [2017]. We shall provide only preliminary details of the numerical
method in this report as further details of the scheme can be found in the reference. The
Stokes equations with the Bingham law (equations (1), (2a), (2b) and (3)) are solved in
terms of the stream function ψ(r, θ) such that

(u, v) =

(
1

r

∂ψ

∂θ
,−∂ψ

∂r

)
. (9)

The elimination of pressure from the momentum equations leads to a bi-harmonic equation
for ψ. Instead of solving this nonlinear bi-harmonic equation directly, the problem is solved
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in its weak form by writing a Lagrangian and minimizing it. This minimization results in
algebraic nonlinear equations and a linear bi-harmonic equation that is solved iteratively.
The iterations are stopped when, for example,

max
r,θ

|γ̇n − γ̇n−1| < 10−7,

where n and n−1 represent the iteration numbers. We have imposed two classes of boundary
conditions for the problems discussed in this report. For the cases in which the boundary
velocities are specified, the implementation is done directly in terms of the boundary value
of the stream function and its derivatives. For the cases where the ratio of the strain rates
is specified as in equation (7), the boundary condition is implemented iteratively. In the
presence of viscoplastic boundary layers on the cylinder surface, a stretched grid in the
r-direction was used so as to sufficiently resolve the boundary layers.

2.2 Slipline ttheory: Bi→∞
Despite neglecting inertia, this problem is highly nonlinear due to the γ̇ term in the Bingham

law given by equation (3). However, analytic progress is possible when Bi → ∞, that is,
the fluid is perfectly plastic (Hill [1950]). In this case, the relation between the stress and
the strain rate becomes

τij =
Bi

γ̇
γ̇ij , (10)

which leads to the following yield condition that the stress components satisfy:

τ2 = τ2xx + τ2xy = Bi2. (11)

For simplicity, we now switch to the (x, y) coordinate system. The momentum equations
become

∂τxx
∂x

+
∂τxy
∂y

=
∂p

∂x
, (12a)

∂τxy
∂x

− ∂τxx
∂y

=
∂p

∂y
. (12b)

The stress components can now be written in terms the local slip angle ϑ as

(τxx, τxy) = Bi(− sin 2ϑ, cos 2ϑ). (13)

Substituting the above expressions into equations (12a) and (12b), one can deduce that the
problem for the stress field is hyperbolic. The characteristics of the hyperbolic problem
(usually referred to as the sliplines) are given by:

α-lines:
dy

dx
= tanϑ, p+ 2Biϑ = constant, (14)

β-lines:
dy

dx
= − cotϑ, p− 2Biϑ = constant. (15)

The angle ϑ is the anti-clockwise angle of the α-line as measured from the x-axis. The
sliplines are essentially a set of mutually orthogonal lines along which the shear stress is the
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maximum and the normal stresses are zero. In other words, if [R(ϑ)] denotes the rotation
matrix, then,

[R(ϑ)][τ ][R(ϑ)]T =

[
0 ±Bi

±Bi 0

]
. (16)

For a given problem, the stress field can be constructed from the slipline pattern by satisfying
the boundary conditions. For example, if the cylinder is perfectly rough, one set of sliplines
must emerge tangentially from the cylinder surface.

The velocity field for a perfectly plastic flow is totally independent of the stress field.
The components of the velocity field along the sliplines (uα, uβ) satisfy

∂uα
∂sα

=
∂uβ
∂sβ

= 0, (17)

where sα and sβ are the coordinates along the respective sliplines. In other words, the

component of the velocity along a slipline is constant for a particular slipline. The above
equation also ensures that the velocity field is divergence free.

2.2.1 Bounds for lipline olutions

A feature of the hyperbolic problem for a perfectly plastic flow is that multiple stress and
velocity solutions can be obtained that satisfy the specified boundary conditions. Thus, in
order to bound the true solution, it is a common practice to find the lower and upper bound
to the net drag force on a body moving through a perfectly plastic fluid (Randolph and
Houlsby [1984]).

Lower bound analysis involves finding stress solutions that satisfy equations (14) and
(15), and the imposed boundary conditions. Assuming the body is in equilibrium, the
calculation of the drag force from the stress solution serves as the lower bound for the true
value. Upper bound analysis is done by finding a velocity solution that satisfies equation
(17) and the imposed boundary conditions. Using the velocity solution, the dissipation in
the flow can be calculated and related to the work done by the drag force on the cylinder.
The calculated value of this drag force serves as an upper bound for the true value. If the
calculated values of the drag force for the lower bound and the upper bound analysis match,
the stress and the velocity solutions must be the true solutions. However, if the bounds
don’t match, uncertainty about the true solution remains.

3 Fully Rough (No-Slip) Cylinder

In this section, we compute and analyze the viscoplastic flow around a fully rough cylinder.
This is equivalent to imposing a no-slip boundary condition on the cylinder surface. Figure

1a shows the plot of log10 γ̇ that is numerically computed for Bi = 214. The regions indicated
in black correspond to either stationary, linearly translating or rigidly rotating plugs.

3.1 Plastic olution (Bi→∞)

For the limit Bi → ∞, the slipline pattern for this problem was obtained by Randolph and
Houlsby [1984]. The solution they obtained is shown in figure 1b in terms of the α and β
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Figure 1: Comparison of the numerical solution and the slipline pattern for a fully rough
cylinder. (a) is a plot of log10(γ̇) of the numerical solution for Bi = 214. The dotted lines
are the streamlines of the flow. (b) Red and blue represent the α-lines and β-lines and the
black regions are plugs. The α−lines are involutes in the green region and circular arcs in
the white region. Arrows indicate the direction of motion of the cylinder. Notice that the
rigidly rotating plugs (nuggets) above and below the cylinder in the numerical solution are
not predicted by the slipline pattern.

lines. Since the solution has top-bottom symmety, we will only discuss the upper half of
the solution. The slipline pattern consists of a semi-circular centered fan on the top of the
cylinder with the center A (0, 1) and radius of 1 + π/4. The β-lines form the spokes and
α-lines form the circular arcs of the fan. Below line AD, the α-lines become involutes to the
cylinder so that the β−lines emerge out tangentially. This ensures that the normal stress
on the cylinder surface is zero as it is fully rough. In the first quadrant, the involutes are
described by the parametric form,(

x
y

)
=

(
cos θ′ − (θs − θ′) sin θ′

sin θ′ + (θs − θ′) cos θ′

)
, (18)

where θs is the polar angle of the intersection of the involute on the cylinder surface and θ′

is the parametric angle that goes from θs to π/2. The limiting β-line BC makes an angle of
π/4 owing to the symmetry condition on the x-axis and intersects it at the point (

√
2, 0).

This leads to rigid plugs on the front and back of the cylinder, and also determines the
outermost yield surface beyond which there is no deformation in the fluid. As expected,
the flow is localized around the cylinder.

To find the velocity field in the deformed region, the normal velocity on the cylinder
surface is matched with vα. From equation (17), this velocity magnitude is carried around
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through the respective α line. Since only the normal velocity is matched, there is a tangential
velocity slip on the surface of the cylinder. For the α-lines that emerge out from the rigid
plug in the front, vα = 1/

√
2. Thus, the slipline solution allows for a finite velocity jump of

1/
√
2 on the outermost yield surface.
The local angle of the α-line, ϑ(x, y), can now be used to determine the stress and the

pressure field. Along the β-lines, the Riemann invariant p − 2Biϑ is constant. We assume
p = 0 at the vertical symmetry line or at θA = π/2 where (rA, θA) are the polar coordinates
centered at A. Since, p + 2Biϑ is constant along the α-lines, p = 2Biπ − 2Biϑ everywhere
in the deformed region. In the semicircular fan, the pressure just depends on the angle
θA = ϑ − π/2 such that p = Bi(π − 2θA). In the region where the α-lines are involutes,
the pressure is given by p = 2Bi(π − θ) where θ is the angle of the point at which the
corresponding β-line is tangent to the cylinder. Thus, the pressure on the surface of the
cylinder is given by

p(1, θ) = 2Bi(π − θ) for 0 < θ < π/2, and (19)

p(1, θ) = 2Bi(π − θ) + 2Biπ for π/2 < θ < π. (20)

The above equation indicates that there is a pressure jump of Biπ across point A since the
α-lines curve around and change their angle from ϑ = π/2 to ϑ = 3π/2. Integrating the
force around the cylinder, we can obtain the drag coefficient (Randolph and Houlsby [1984])

Cd =
Fx

2Bi
= 2(π + 2

√
2) � 11.94. (21)

3.2 Viscoplastic s lastic olution: Nuggets

Comparing the slipline and the numerical solution at a large Bi in figure 1, it can be seen
that both the solutions lead to the same size for the deformed region. The plugs in front
and behind the cylinder also match. The regions where there is a velocity jump in the
slipline solution are replaced by viscoplastic shear layers that change the velocity jump
into a smooth transition due to viscosity. These shear layers are reflected in the numerical
solution through high values of γ̇ indicated in yellow. Similarly, there are viscoplastic
boundary layers on the cylinder surface where free slip is not allowed due to viscosity.
However, there is a major difference between the two solutions despite the value of Bi being
quite large. On the top and bottom of the cylinder, there are two rigidly rotating plugs
that the slipline solution does not have. These plugs, which we will refer to as nuggets
hereafter, sit above thin viscoplatic boundary layers that exist due to the no slip boundary
condition. These nuggets have been observed in the solutions obtained by Tokpavi et al.
[2008] and Chaparian and Frigaard [2017], which are computed using different numerical
schemes. Thus, it is certain that they are not an artifact of the numerical scheme. This
difference in the viscoplastic solution and the slipline solution is puzzling, since Randolph
and Houlsby [1984] have shown that the upper bound and the lower bound calculation for

this solution match. Hence, in the limit Bi → ∞, it is expected that the viscoplastic solution
converges to the slipline solution, and that the nugget shrinks to zero. As shown in figure
4b, we find that the size of the nugget asymptotically decreases to zero albeit very weakly

as Bi → ∞. In the next section, we develop a boundary layer theory to predict these weak
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Figure 2: Comparison of the slipline pattern and the numerical solution. (a) The slipline
pattern in figure 1 that is now superimposed with a nugget. Gray indicates plugs, and green

(white) indicates the regions where α− lines are involutes (circular arcs). (b) Plot of log10 γ̇
obtained from the numerics with the nugget and the boundary layers as shown.

scalings so as to reconcile the expectation that the viscoplastic solution must match the

plastic solution in the limit Bi→∞.

3.3 Boundary ayer heory

In figure 2, we present a detailed comparison of the slipline and the numerical solution. The
boundary layer structure against the cylinder surface is highlighed by the regions log10 γ̇

takes the largest values. Numerically, it is observed that away from the Nugget region, the
viscoplastic solution agrees well with the slipline solution. We thus superimpose the nugget
(plugged) region (indicated in gray in figure 2a) over the slipline pattern. Away from the
nugget and the viscoplastic boundary layers, we assume the plastic deformation to be close
to the slipline solution. On carefully examining the numerical solution, it can be noted that
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there is a region where the nugget directly attaches to the boundary layer. Away from this
region, it detaches from the boundary layer leaving a region of plastic deformation between
the nugget and the boundary layer.

3.3.1 Away from the nugget

We first concentrate on the viscoplastic boundary layer on the surface of the cylinder in a
region that is not under the nugget. To leading order, the balance of forces is given by

pr ∼ 0 and pθ ∼ (r2τrθ)r, where τrθ ∼ vr + Bi sgn(vr), (22)

such that τrθ ∼ O(±Bi), and p = O(Bi) and is given by equations (19) and (20). Imposing
no-slip at r = 1 and v(rb) = vr(rb) = 0, where rb is the edge of the boundary layer, we
obtain

v = −2Bi(rb − r)2 sgn(sin θ), rb = 1 + Bi−1/2

√
1

2
| sin θ|. (23)

Thus, the thickness of the boundary layer is O(Bi−1/2).

3.3.2 Under the nugget

As indicated by equations (19) and (20), the slipline solution allows for a pressure jump on
the surface of the cylinder at point A (θ = π/2). However, at a finite but large Bi, viscosity
must smooth out this pressure jump. This introduces a smoothing region with an additional
angular scale which is relatively wide as compared to the boundary layer (figure 3). This
smoothing increases the pressure gradient, thus the flow through the boundary layer. If the
net transport of mass within the boundary layer is the same as that away from the nugget,
it is expected that the boundary layer under the nugget is thinner than O(Bi−1/2).

We now focus on the 1st and the 2nd quadrant of the solution (y > 0) and rescale the
variables so that

(r, θ) =
(
1 + Bi−aξ,

π

2
− Bi−bΘ

)
, (24)

where η and Θ are O(1). It is expected that a > 1
2 so that the boundary layer is thinner

than O(B−1/2), and b > 0. To satisfy the continuity equation to leading order, the velocity
variables are rescaled as

[u, v] ∼ [Bib−aU(ξ,Θ), V (η,Θ)]. (25)

Similarly, the pressure and the stress are rescaled as

p ∼ BiP (ξ,Θ) and τξΘ ∼ BiaVξ − Bi (26)

Force balance from equation (22) now becomes

Pη ∼ 0 and − Bi1+bPΘ = Bi2aVξξ. (27)

Balancing the orders of the terms, we demand

1 + b = 2a. (28)
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Figure 3: Pressure variation over the cylinder normalized by Bi. The legend indicates
different values of Bi. The dotted line is the pressure from the slipline solution given by
equations (19) and (20). The smoothing region over which the pressure differs from the
slipline solution is marked.

We solve for V (ξ,Θ) by integrating the above equation and imposing (V, Vξ) = (0, 0) at
ξ = Ξ(Θ) to obtain the following quadratic profile

V ∼ −
(
1− ξ

Ξ

)2

, (29)

while the pressure gradient is given by

PΘ =
2

Ξ2
. (30)

The upper nugget is centered at (x, y) = (0, 1) and is taken to rotate at a rotation rate
ω ∼ 1−Bi−cΩ. We observe from the numerics that Ω > 0 (figure 4a). The velocity field in
the nugget can be written as (u, v) = ω(cos θ, r−sin θ). Integrating the continuity equation,
UΞ − VΘ ∼ 0, over the boundary layer from ξ = 0 to ξ = Ξ leads to[∫ Ξ

0

(
1− ξ

Ξ

)2

dξ

]
Θ

=
1

3
ΞΘ = U(0,Θ)− U(Ξ,Θ). (31)

The radial velocity at the edge of the boundary layer can now be matched to the nugget
velocity, that is, u(Bi−aΞ, θ) = ω cos θ. From the no penetration condition on the cylinder
surface, we also have that u(0, θ) = cos θ. Putting these conditions together, we obtain

Bib−a [U(0,Θ)− U(Ξ,Θ)] ∼ Bi−b−cΩΘ. (32)
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Figure 4: (a) The variation of the nugget’s rotation rate ω plotted as 1− ω which scales as
Bi−2/7. (b) The variation of the radius of the nugget which scales as Bi−3/28.

To satisfy the above balance, we need

2b+ c = a. (33)

Letting ΞA ≡ Ξ(0), we can integrate equation (31) to find the boundary layer thickness to
be

Ξ = ΞA +
3

2
ΩΘ2. (34)

Clearly, the bounday layer width has a minima at Θ = 0 and it increases away from
θ = π/2. Note that this is different from the Bi−1/2 layer which increases in thickness as∣∣π
2 − θ

∣∣ decreases (from equation (23)).
We now consider the region beyond the point where the nugget detaches. In this region,

there is an intervening window between the boundary layer and the bottom of the nugget
where the deformation is purely plastic. Since this widow is very small, the α−lines remain
close to the ones given by the involutes (equation (18) and as in the green region in figure
2a). The involute that begins at the angular location θ = π

2 − Bi−bΘ reaches the base of

the nugget at y = 1 and x = Bi−bΘ. We assume that the α−line remains close to this curve
with some additional correction. With this additional correction, the velocity at the edge
of the boundary layer can now be matched to the base of the nugget as Bib−aU(Ξ,Θ) ∼
Bi−bωΘ− Bib−a�(Θ). Therefore,

1

3
ΞΘ ∼ U(0,Θ)− U(Ξ, θ)

∼ Bia−b sin(Bi−bΘ)− (Bi−2b+a(1− Bi−cΩ)Θ−�(Θ)).

Expanding the sin(Bi−bΘ) term and using equation (33), we get

1

3
ΞΘ ∼ �(Θ) + ΩΘ− 1

6
Bia−4bΘ3. (35)

This expression suggests that
a− 4b = 0, (36)
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since all the terms must come in at the same order of Bi because the boundary layer remains
continuous across the point of detachment from the nugget. Using equations (28), (33) and
(36), we obtain

a =
4

7
, b =

1

7
and c =

2

7
. (37)

Thus, the boundary layer thickness scales as Bi−4/7, the angular width of the smoothing
region scales as Bi−1/7 and the rotation rate of the nugget approaches 1 with a scaling of
Bi−2/7 (figure 4a). The boundary layer profile now gets modified to

Ξ(Θ) ∼ Ξ∗ +
∫ Θ

Θ∗
�dΘ− 1

8
(Θ4 −Θ4

∗) +
3

2
ΩΘ2, (38)

where Θ∗ denotes the angular location at which the nugget detaches and the corresponding
boundary layer thickness is Ξ∗. We note that due to the Θ4 term in the above expression,
Ξ(Θ) → 0 as Θ gets larger than Θ∗. This is unexpected since the boundary layer must
thicken to become O(Bi−1/2) from being O(Bi−4/7) under the nugget. Thus, the only
resolution to this issue is to choose �(Θ) such that∫ Θ

Θ∗
�dΘ ∼ 1

8
(Θ4 −Θ4

∗), (39)

which implies that the profile in (34) remains throughout the smoothing region. The con-
stants, ΞA and Ω are to be determined. From the numerics, we find Ω � 0.68. To determine
ΞA, we use equation (30) and impose the following pressure jump condition for the slipline
solution as specified by equations (19) and (20):

[p]
θ=π/2+

θ=π/2− = 2πBi =⇒
∫ +∞

−∞
PΘdΘ =

∫ +∞

−∞
2(

ΞA + 3
2ΩΘ

2
)2dΘ = 2π. (40)

The above integral can be evaluated using the method of residues and we subsequently
obtain

ΞA =

(
1

6Ω

)1/3

� 0.63. (41)

2

Using this value and the scalings we have found, the boundary layer profiles are plotted in
figure 5. The thickness of the numerical boundary layers is calculated by fitting the quadratic
velocity profile in equation (29). The numerical profiles show an asymptotic collapse towards
the analytic profile, which qualitatively captures their quadratic nature. Since the scalings
are so weak, computations for larger values of Bi are needed for a quantitative agreement

with the analytic profile. For this, the smoothing region must be small enough so that Bi−1/7

 1, or Bi � 107. For such large values of Bi, the simulations need to be highly resolved due
to very thin viscoplastic boundary layers on the cylinder surface and the convergence of the
numerical method was found to be slow.

We can now determine the radius of the nugget. The boundary layer under the nugget

must smoothly join the boundary layer away from it which is O(Bi−1/2). This happens
when Bi−a(ΞA + 3ΩΘ2) ∼ Bi−1/2 which implies that Θ = O(Bi(a−1/2)/2) = O(Bi−3/28).

Thus, the radius of the nugget is ∼ (π/2 − θ) ∼ O(Bi−3/28). We find that this scaling
captures the numerical values for the radius of the nugget very well (figure 4b).
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Figure 5: Boundary layer profiles for different values of the Bingham number Bi. The

boundary layer thickness is rescaled by Bi−4/7 and π/2 − θ is rescaled by Bi−1/7. The
legend indicates different values of Bi, where the dotted line is the analytic function given
by equation (34).

4 Partially Rough Cylinder

In this section, we will consider the cylinder to be partially rough so that |τrθ|/τ = � on
the cylinder surface, where � is the roughness factor (equation (7)). The no-slip (or fully
rough) case discussed in the previous section corresponds to � = 1. Here, we shall present

solutions for 0 ≤ � < 1 in the limit Bi → ∞. While � �= 0 is more relevant for applications
in solid mechanics where � can be related to the friction factor on the cylinder surface,
� = 0 is relevant in cases where wall slip is experimentally observed in viscoplastic fluids
(as an example, in the experiments by Aktas et al. [2014]).

4.1 Plastic olution (Bi→∞)

In addition to � = 1 case discussed in the previous section, Randolph and Houlsby [1984]
also presented analytical solutions for � < 1. For their proposed mechanism, they showed
that the upper bound and the lower bound calculations for the drag coefficient Cd match.

However, Murff et al. [1989] pointed out a mistake in their upper bound calculation, which
on being corrected leads to a mismatch of the upper and lower bound calculations except
for � = 1, the perfectly rough case that we discussed in the previous section.

In order to better bound the unknown true solution, Martin and Randolph [2006] pro-
posed an alternative mechanism. They showed that for all values of � < 1, their mechanism
leads to a smaller (better) upper bound value of Cd. The mechanism they proposed is

shown in figure 6 for a general value of �. For simplicity, only the 1st quadrant of the
solution is shown and the complete solution can be constructed by assuming a left-right

and top-bottom symmetry. In the region ABCHFJI, the α−lines are circular arcs with the
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Figure 6: The slipline pattern proposed by Martin and Randolph [2006] for a general value
of the roughness factor � and the parameter β2, with β1 = π/4. The α and β lines are

marked by red and blue, respectively. Gray indicates plugs and green represents the region

in which the α−lines are involutes to the inner circle. The thick red line marks the α−line
with a velocity jump.

center P. In a subset of this region, the gray region ABC, the flow i in rigid body rotation and
is thus plugged. For this construction, another inner circle of radius λ is used, where λ is
related to the roughness factor � as

λ = cos

(
cos−1 �

2

)
. (42)

Beyond the limiting radial line PC that is parameterized by the angle β2, the α−lines
become the involutes to this inner circle (the green region CDGFH). The length of line OP,
λ′ can thus be geometrically found to be

λ′ =
λ

sinβ2
=

1

sinβ2
cos

(
cos−1 �

2

)
. (43)
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Figure 7: Variation of the drag coefficient with the angle β2 for � = 0 (red) and � = 0.5
(blue). The dotted lines indicate the cases where the stress solution is perhaps not valid.
The blue and red circles are the optimized values for the upper bound calculations by
Martin and Randolph [2006], which lie on the analytical curves obtained from our lower
bound calculation.

This construction ensures that the α−lines originate from the surface of the cylinder at an
angle (π/4−Δ/2), where

Δ = sin−1 �. (44)

As a result, the boundary condition |τrθ|/τ = � is satisfied on the cylinder surface CD. Note
that this boundary condition need not be satisfied on the cylinder surface BC since the flow
is plugged, hence the stress field within this region is not defined. The involute region is
bounded below by the limiting line DG that is parameterized by the angle β1. β1 is chosen
to be π/4 so that DG makes an angle π/4 with the x-axis to ensure zero shear stresses
on the symmetry line. This leads to a rigid plug in the front of the cylinder. To find the
velocity field, vα is found by matching the normal velocity on the surface of the cylinder,
and vβ = 0 everywhere. Interestingly, along with the velocity jump at the outermost yield
surface, this mechanism also has a velocity jump on DHI (the thick red α−line) which lies
within the deformed region.

Using this mechanism, Martin and Randolph [2006] performed an upper bound analysis
by considering the velocity solutions and optimized the angle β2 numerically so as to min-
imize the dissipation. As an example, for � = 0 (free slip), they found Cd = 9.20 and the
optimized value β2 = 63.0o. For � = 0.5, they found Cd = 10.83 and the optimized value
β2 = 69.2o. These values are plotted in figure 7.
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4.2 Stress olution: ower ound alculation

Martin and Randolph [2006] proposed the mechanism in figure 6, but only did an upper
bound analysis. In this section, we perform a lower bound analysis by calculating the drag
coefficient on the cylinder by considering the stress solution. As in the previous section,
we assume the pressure p to be zero on the y-axis. Since p + 2Biϑ is constant on the

α−lines, where ϑ is the local angle from the x-axis, and ϑ = π on the y-axis, the pressure
is p = 2Biπ − 2Biϑ in the deformed regions of the flow. The stress or the pressure field is
not defined within the plugged regions. We thus calculate the drag force on the cylinder by
integrating over the lines AC, CD and DG. Since the flow is inertia free, this is equivalent
to computing the force directly on the cylinder surface. Therefore, the drag coefficient is

given by

Cd =
−Fx

2Bi
=

−1

2Bi

⎛⎜⎝4

∫
AC, CD, DB

fxdl

⎞⎟⎠ , (45)

where fx is the force per unity length in the x-direction. The factor of 4 comes from the
left-right and top-bottom symmetry of the flow due to which the force calculated from the
first quadrant is a quarter of the total force.

The curve AC is a circular arc with center P and radius

RP = λ′ sin
(π
2
− β2

)
+
√

1− λ2 = λ cotβ2 +
√

1− λ2. (46)

In the polar coordinate system (rP , θP ) centered at P, the traction force on AC is

{f}AC =

[ −p −Bi
−Bi −p

] [
1
0

]
=

[ −p
−Bi

]
(47)

The slipline angle ϑ is related to the polar angle θP by ϑ = π/2 + θP . Thus, the force in
the x-direction on curve AC (fx = −p cosϑ−Bi cosϑ) can be integrated to obtain the total
force

FAC

Bi
=

∫ π

β2

(−(2π − 2ϑ) cosϑ− cosϑ)RPdϑ

= −RP [2(π − β2) cosβ2 + sinβ2] (48)

On curve CD that can be parameterized by the polar coordinates (1, θ), the local slipline
angle is ϑ = θ+(π/4−Δ/2) and hence, the pressure is p = 2Bi(π−ϑ) = Bi(3π/2−2θ+Δ).
The traction force on this curve in the x-y coordinate system is

{f}CD =

[−p− Bi sin 2ϑ Bi cos 2ϑ
Bi cos 2ϑ −p+ Bi sin 2ϑ

] [
cos θ
sin θ

]
, (49)

which can be used to find fx = −p cos θ − Bi cos(Δ − θ). The limits on the angle θ are
(β1 − Δ∗) and (β2 − Δ∗) corresponding to points C and D, respectively, where Δ∗ is the
angle between OD’ and OD (OC’ and OC) given by

Δ∗ = cos−1 λ =
cos−1 �

2
. (50)
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Thus, the total force on CD in the x-direction can be calculated as

FCD

Bi
=

β2−Δ∗∫
β1−Δ∗

(
−
[
3π

2
− 2θ +Δ

]
cos θ − cos(Δ− θ)

)
dθ

= −
(
3π

2
+ Δ

)(
sin (β2 −Δ∗)− sin

(π
4
−Δ∗

))
− sin (β2 −Δ∗ −Δ) + sin

(π
4
−Δ∗ −Δ

)
+2
(
(β2 −Δ∗) sin (β2 −Δ∗)−

(π
4
−Δ∗

)
sin
(π
4
−Δ∗

)
+ cos (β2 −Δ∗)− cos

(π
4
−Δ∗

))
,

(51)

where β1 is set to π/4.
Finally, on the surface DG, the slipline angle is ϑ = π/4. Thus, the pressure is constant

and is equal to 3πBi/2. The traction force in the x-direction is fx = −(1/
√
2)Bi− (1/

√
2)p

and the length of DG is (λ−√
1− λ2). Hence, the force acting on DG can be found to be

FDG

Bi
= −

(
2 + 3π

2
√
2

)
(λ−

√
1− λ2). (52)

Combining equations (45), (48), (51) and (52), we can obtain the drag coefficient as a
function of the angle β2 and the roughness factor �:

Cd(β2, �) =
−2

Bi
(FAC + FCD + FDG) (53)

The above function is plotted in figure 7 for two values of the roughness factor. It
is interesting to note that the curves for Cd monotonically decrease with increasing β2.

Furthermore, these curves pass through the optimized values that Martin and Randolph
[2006] found for their upper bound analysis. This implies that for these optimized values, the
upper bound and lower bound calculation for Cd match each other. Thus, the mechanism

that Martin and Randolph [2006] proposed is not just an upper bound as they thought
to be, but actually the exact solution. In the next section, we compare our numerical

viscoplastic solutions for Bi → ∞ and provide further evidence that this mechanism is the
true solution. For values of β2 lower than the optimal values (indicated by dotted lines in

the figure), the lower bound calculation yields a higher value than the upper bound. Since
this is not possible, we conclude that the stress solution must not be valid for these values
of β2. It is perhaps the case that the rigidly rotating plugs becomes over-stressed and thus

can no longer be deformation-free.

4.3 Comparison with umerics

With the boundary conditions in equation (7), we numerically computed the viscoplastic

solutions as for Bi � 1. A comparison of the numerical solution and the slipline pattern is
shown in figure 8 for � = 0 (free slip case). In the limit Bi → ∞, it is clear that the solution
approaches the mechanism discussed in the previous section. The only difference in the
two solutions is the viscoplastic shear layer at the periphery which is a result of the finite
velocity jump in the plastic solution. Figure 9 compares the two solutions for � = 0.5. Here
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Figure 8: Comparison of the numerical solution and the plastic solution for � = 0. Left:
plot of log10 γ̇ for Bi = 214. The dotted lines indicate the streamlines. Right: the slipline
pattern found with the construction in figure 6 with β1 = 45o and β2 = 63.0o, the optimized
values found by Martin and Randolph [2006].

Figure 9: Comparison of the numerical solution and the plastic solution for � = 0.5. Left:
plot of log10 γ̇ for Bi = 218. The dotted lines indicate the streamlines. Right: the slipline
pattern found with the construction in figure 6 with β1 = 45o and β2 = 69.2o, the optimized
values found by Martin and Randolph [2006].

280



Figure 10: The variation of the drag coefficient with Bingham number Bi for the roughness
factor � = 0 (free slip). The curve asymptotes to the value 9.20, which is the drag coefficient
obtained from the plastic solution shown in figure 9.

again, the numerical solution matches very well with the slipline pattern in terms of the size
of the rigidly rotating plug and the plugged wedges in front of the cylinder. For this case,
in addition to the velocity jump on the outermost yield surface, the plastic solution has an
intermediate line with a velocity jump that is indicated by the thick red α−line. This jump
is smoothed out by an intermediate viscoplastic shear layer which lies at the same location
as the velocity jump in the plastic solution.

5 Squirmer Model

In this section, we develop a model for a swimming micro-organism (a squirmer) in a vis-
coplastic fluid based on the early studies by Lighthill [1952] and Blake [1971] for Newtonian
fluids. The bounday conditions (8) are imposed with Up = 0 and a general profile for Vp(θ)
which is responsible for propelling the squirmer. The results of the numerical simulations
for Vp(θ) = sin θ and different values for the swimming speed Us are shown in figure 11.
For zero swimming speed, a large scale plastic deformation exists around the swimmer in
order to allow for a return flow to support the net flow imposed cylinder surface. As the
swimmer starts to move, however, the plastic deformation as well as the drag force on the
swimmer reduces. As there are no external forces on a freely swimming swimmer, this state
must correspond to zero drag force and the corresponding value of Us is the true swimming
speed. From the simulations, we observe that in this state, the flow is totally localized in
a viscoplastic boundary layer that is attached to the swimmer. The streamlines originate
on the surface in front of the swimmer and terminate behind it. Hence, the volume flux is
balanced within the boundary layer itself and no large scale plastic deformation is needed.
In the next subsection, we utilize this localized nature of the flow and develop a boundary
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Figure 11: Simulations and the corresponding drag coefficient values for Up = 0 and Vp(θ) =
sin θ for different values of the swimming speed Us. (a) to (f) are plots of log10 γ̇ for different

swimming speeds at Bi = 30. The flow gets localized within a boundary layer for Us ≥ 0.03.
(g) plots the variation of the the drag coefficient with the swimming speed.

layer theory to find the swimming speed for an imposed tangential velocity.

5.1 Boundary ayer heory: wimming peed

In the limit of a large Bingham number (Bi � 1), we assume that the imposed surface
velocity (Up(θ), Vp(θ)) and the swimming speed Us are such that the flow is localized within

a viscoplastic boundary layer attached to the cylinder surface. We now rescale the radial

coordinate to zoom into the boundary layer by letting r = 1+ δη, where η is O(1). Making
this substitution, the force balance in equation (22) holds. We subsequently obtain

1

δ2
∂2v

∂η2
+ 2Bi sgn

(
∂v

∂η

)
=

∂p

∂θ
. (54)

We now focus on the upper half of the solution such that sgn(∂v/∂η) < 0. The tangential
velocity v and the swimming speed Us are expressed as a regular perturbation expansions
in δ so that

v = v0 + δv1 + . . . , (55)

and
Us = δU1 + . . . (56)
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Setting δ = Bi−1/2 and rescaling pressure as p = BiP , to leading order, equation (54)
becomes

∂2v0
∂η2

= 2 +
∂P

∂θ
. (57)

We rewrite the boundary conditions in equation (8) in expanded form here. The boundary
conditions for the tangential velocity are

v = Vp(θ)− Us sin θ at η = 0 and (v, vη) = (0, 0) at η = ηb, (58)

and for the radial velocity are

u = Us cos θ at η = 0 and u = 0 at η = ηb, (59)

where ηb(θ) marks the edge of the boundary layer. Integrating equation (57) with the above
boundary conditions, leads to the velocity profile

v0 = Vp(θ)

(
1− η

ηb

)2

, (60)

where ηb is given by

ηb(θ) =

√
2Vp(θ)

2 + Pθ
. (61)

Integrating the continuity equation, vθ + (1/δ)uη ∼ 0 across the boundary layer and using
the boundary conditions gives us

∂

∂θ

[
ηbVp(θ)

3

]
− U1 cos θ = 0, (62)

which can be integrated further by assuming Vp(0) = 0 due to symmetry. Hence,

ηb(θ) =
3U1 sin θ

Vp(θ)
. (63)

For making the swimmer force free, we demand∫ π

0
fxdθ =

∫ π

0
(−P cos θ + sin θ)dθ = 0. (64)

In the above equation, the pressure P (θ) is obtained from equations (61) and (63). On
evaluating this integral to get U1, the swimming speed Us is subsequently found to be

Us =
Bi−1/2

3

√∫ π

0

Vp(θ)3

sin θ
dθ. (65)

In the special case where Vp(θ) = sin θ, the swimming speed is Us =
√

π/18Bi−1/2 and the
boundary layer thickness does not vary with θ (equation (61)). For Bi = 27, the numerical
value of the swimming speed was found to be 0.03± 0.01. The numerical solution for this
case is shown in figure (12)d. The corresponding analytic prediction is 0.037, which is very
close to the numerical value. It can also be seen that the boundary layer is uniform in
thickness, as predicted from the theory.
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Figure 12: Plot of log10 γ̇ for the numerical solution of a squirmer with Vp = sin θ for Bi = 27

at Us = 0.03 such that Cd � 0. The black lines are the streamlines of the flow.

6 Conclusions

In this report, we have investigated the problem of viscoplastic flow around a cylinder in
the limit of large yield stress. In the case of no-slip on the cylinder surface, we compared
analytic plastic solutions with viscoplastic computations which show significant differences
due to the presence of rigidly rotating plugs (nuggets) above and below the cylinder even
at a large Bingham number. By developing a boundary layer theory, we corroborated the
existence of such features and analytically derived the scalings with which these features

vanish (as expected) in the limit Bi → ∞. These scalings compare very well with the
numerical findings. We then modified the problem by allowing for partial slip on the sur-face
of the cylinder. For pure plastic flow, Martin and Randolph [2006] had proposed a
mechanism for this case but had only performed an upper bound analysis. By considering the
stress solution for their mechanism, we performed a lower bound analysis and showed that it
matches with their upper bound calculation. Since the bounds match, we concluded that
their solution is not just an upper bound but actually the true solution to this prob-lem,

which was previously unknown. Our viscoplastic computations in the limit Bi → ∞ compare
well with this true solution. Finally, we further modified this problem by imposing surface
velocity on the cylinder surface in order to model swimming micro-organisms in viscoplastic
fluids (squirmers). Computations for such squirmer models suggested that the flow gets
localized to a viscoplastic boundary layer attached to the squirmer. Utilizing this
observation, we developed a boundary layer theory to analytically determine the swimming
speed of the squirmer, which compares well with the numerical value.

Acknowledgements

I sincerely thank my advisors, Duncan Hewitt and Neil Balmforth, for their guidance, en-
thusiasm and inspiration throughout this work. I want to thank the program directors, Neil

284



Balmforth and Colm-cille Caulfield, for a fantastic summer and a great learning experience.
I would also like to acknowledge Shreyas Mandre for his advice, interest and willingness
to discuss my work. Lastly, all the fellows made the GFD program very enjoyable (es-
pecially the softball games) and I would like to thank all of them for their support and
companionship.

References

Seda Aktas, Dilhan M. Kalyon, Benjamı́n M. Maŕın-Santibáñez, and José Pérez-González.
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Spooky Mixing at a Distance: Nonlocal Mixing from

Stochastic Advection

1 Introduction

Turbulent fluid flows generally exhibit complex dynamical behavior across a broad range of
length scales. Numerical models of such flows are typically unable explicitly model the full
range of these dynamics, either due to limited spatial resolution or the computational costs
associated with modeling nonlinear dynamics. In ocean or climate simulations, turbulent
flow dynamics often make substantial contributions to the dispersion of passive tracers,
which may include environmental toxins or biological organisms. Without fully resolving
the turbulent flows in all of their complexity, one would like to be able to make predictions
about their effects on the dispersion of tracers.

It is conventional to model the mixing intensity as proportional to concentration gradi-
ents of the tracer, in close analogy to the case of molecular diffusion; one typically fits the
effect of the turbulent mixing to an effective diffusivity, κeff . By considering a stochastic

advecting flow field, we show here that this approximation is only valid when the typical
length scale associated with a turbulent eddy is much smaller than the typical length scale
associated with the mean concentration structure. For larger eddies, the flux of tracer
anomaly due to turbulent flow—the so-called eddy flux—at a given point depends not only
on the concentration gradient at that point, but also on the gradients at points far away
from it. We undertake here an investigation of the weighting function that determines how
distant regions factor into the eddy flux at a given point.

G. I. Taylor was one of the first to characterize the diffusion of a passive tracer due
to turbulent flows; in 1921 (3), he constrained the spatial distribution of tracers that are
initially close to each other as a function of time. Unfortunately, this formulation does
not help determine how well-mixed a given region of the domain is; we’re interested in the
obverse problem of determining how far separated starting points of tracer particles were,
provided that they all pass through a particular region of the domain at a given time.

Kraichnan (2) demonstrated the value of modeling mixing from a Lagrangian perspec-
tive. We follow here a broadly similar tack to Kraichnan, but we work instead in a Eulerian
frame. The Eulerian setting allows us to address a unique set of questions; we can con-
strain, for instance, the likelihood of fluctuations away from a mean concentration of passive
tracers at a particular grid point in a large ocean simulation.

Tyler Lutz

October 18, 2018
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2 Posing the Problem

The evolution of the concentration of a passive, scalar tracer carried along by a fluid flow
can be modeled by the advection-diffusion equation,

∂tc(x, t) +∇ · (u(x, t)c(x, t))− κ∇2c(x, t) = s(x, t), (1)

where c represents the tracer concentration, s accounts for sources and sinks of tracer
concentration, and u is the velocity field of the advecting flow. Assuming that the molecular
(or at least sub-grid-scale) diffusivity of the tracer is spatially homogenous and isotropic,
we’ve written the diffusion coefficient κ as a scalar.

Employing the additional simplifying assumptions of a time-independent source and an
incompressible fluid,

∇ · u = 0, (2)

we arrive at an advection-diffusion equation of the form

∂tc(x, t) + u(x, t) · ∇c(x, t)− κ∇2c(x, t) = s(x), (3)

which holds for domains of an arbitrary number of dimensions. Given s and u, solving this
equation would determine the tracer concentration as a function of space and time.

We are interested in advection due to turbulent velocity fields. These fields may have
a mean component that can be constrained and written down explicitly, but they also
contain a fluctuating component that, by hypothesis, can not be modeled explicitly and
must instead be considered to be “random” in a sense we’ll pin down below.

The tracer concentration, in turn, can be decomposed into mean and fluctuating com-
ponents; disentangling the time evolutions of these two components would involve solving
a system of coupled partial differential equations. To see this explicitly, we write c = c+ c′

and u = u + u′, insert them into equation (3), and take the ensemble mean of the whole
equation to arrive at

∂tc+∇ · u′c′ − κ∇2c = s. (4)

In order to focus strictly on the effects of the fluctuating component of the velocity field,
we consider a mean-zero field, by virtue of which we were able to eliminate the u · ∇c from
(4). The important thing to notice here is that the mean concentration is coupled to the
eddy diffusivity, ∇ ·u′c′, which quantifies the average flux of concentration anomaly due to
the fluctuating fluid velocity component.

If we could constrain this eddy diffusivity term, we would have a model for how the
mean concentration depends on the fluctuating fluid velocity. The conventional way to do
this is to posit that concentration anomalies diffuse, on average, at a rate proportional to
local gradients in the mean concentration. In analogy to the diffusive flux of the tracer, one
could consider writing the eddy flux as

∇ · u′c′ → −κeff∇2c, (5)

where κeff is an effective diffusion constant that depends on the particular statistical prop-
erties of the velocity field under consideration. We expect this replacement to be valid in
the regime in which the characteristic length scale of the eddies—or, alternatively, the mean
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free path of the concentration anomaly—is small relative the domain size. As soon as the
mean free path becomes comparable to the domain size, a given region of space may receive
an influx of tracer advected from points far away from it. In such cases, the eddy flux can
no longer be thought of as a function of the mean concentration gradients in the region’s
immediate vicinity, but instead depends on what’s happening at points spatially distant
from it within the domain; we thus speak in such cases of a nonlocal eddy diffusivity.

As in the case of molecular diffusion, this eddy diffusivity still depends on the mean
concentration gradient, which we demonstrate below. What needs to be constrained in
such cases is the particular weights to be assigned to distant points throughout the domain
in determining the eddy diffusivity at any particular location.

To show that the mean concentration gradient is still the quantity of interest, we subtract
(4) from (3) to obtain an equation for the fluctuating component of the tracer concentration:

∂tc
′ + u′∇c−∇ · u′c′ + u′ · ∇c′ − κ∇2c′ = 0., (6)

or, grouping like terms,

(∂t + u′ · ∇ − κ∇2)c′ −∇ · u′c′ = −u′∇c. (7)

We observe that left hand side is linear in c′, by virtue of which we expect to be able to
write

c′ = −
∫ ∫

dx′dt′G(x, t|x′, t′)u′ · ∇c., (8)

and hence

u′c′ = −
∫ ∫

dx′dt′u′G(x, t|x′, t′)u′ · ∇c. (9)

Recalling the form of the eddy flux term, we thus expect to be able to write it as
the divergence of the convolution of an integral kernel with the concentration gradient,
consistent with what Kraichnan obtains in (2). The kernel weights each location in the
domain according to its effect on the local eddy flux. Note that in the particular case for
which the full integral operator approaches a delta function, the eddy flux recovers the form
of a local, scalar diffusivity, κeff∇2c.

Our goal is to determine the form of this integral kernel for an arbitrary source. Though
writing down a formal expression for this integral kernel is feasible in many circumstances,
we can make progress towards writing it down in closed form by recasting the problem in
terms of stochastic differential equations.

3 Stochastic Calculus Approach

We’re assuming that we can’t model u′ explicitly, which motivates treating it as a random
variable. We don’t want to just use any old random variable, of course; eventually we’d
like u′ to have similar statistical properties—things like the variance and the Lagrangian
autocorrelation—to the flow field under consideration.

To define the randomness of u′ precisely, we reformulate the problem as a stochastic
process. For simplicity, we begin by considering a one-dimensional domain with periodic
boundary conditions; in order to maintain incompressibility, the advecting velocity must be
spatially uniform.
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3.1 Blob ff ormulation

Consider tracking the position and concentration of a single infinitesimal blob of advected
by the flow that gains or loses concentration as it traverses the domain depending how
much time it spends in “source” and “sink” regions, respectively. The Langevin equations
describing this blob can then be written as:

dx = udt+
√
2κ dW1, (10)

du = −γudt+
√
2ε dW2, (11)

dc = s(x) dt. (12)

The stochastic element in these equations comes from the dW terms, which describe inde-
pendent Weiner processes. One can think of dW as sampling from a normally distributed,
mean-zero, and unit standard deviation random variable for each infinitesimal increment of
time, dt. The parameter ε gives us a knob with which to adjust the strength of the forcing.

We’ve chosen to describe the stochastic velocity field as a mean zero Ornstein-Uhlenbeck
process both because of its generality and because of the simplicity of adapting it to mea-
sured properties of real-world flows—we’ll see below that the time constant for the decay
in Lagrangian auto-correlation is just γ.

Writing the Fokker-Planck equation for this system,

∂tρ+ u∂xρ− κ∂2
xρ+ ∂csρ+ Fu[ρ] = 0, (13)

gives us an equation for the joint probability density ρ(x, u, c, t). Fu, defined as

Fu = ∂u − ε∂2
u, (14)

is a differential operator corresponding to the Ornstein-Uhlenbeck process.
Note that the Fokker-Planck equation for just the dx and dc equations alone is identical

to the advection-diffusion equation (3) for the mean concentration; multiplying the Fokker-
Planck through by c and integrating over c yields (3) once we make the identification∫

cρdc ≡ c. (15)

3.2 Scalar field f ormulation

It’s worth noting that discrete blobs of concentration isn’t the only way of parameterizing
the system. Noting the linearity of (3), we could instead immediately resolve both the
source and concentration terms into Fourier modes

c =
∞∑
n=1

sn(t) sin(knx) + cn(t) cos(knx), (16)

assuming the spatial average of the concentration is zero, and

s =

∞∑
n=1

an sin knx+ bn cos knx, (17)
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with kn = 2πn
Γ for a domain of size Γ.

The linearity of (3) in the source term allows us to focus on a single source mode at
a time. By plugging these into (3) we can immediately write down an alternative set of
Langevin equations for each mode:

dsn = (ukncn − κk2nsn + an)dt, (18)

dcn = (−uknsn − κk2ncn + bn)dt, (19)

du = −γudt+
√
2ε dW, (20)

where we again posit an Ornstein-Uhlenbeck process for the advecting velocity.
We can simplify these further by assuming periodic boundary conditions, the transla-

tional symmetry of which enables us to drop the cosine terms of the source, bn → 0, without
loss of generality. Employing this simplification, the Fokker-Planck equation corresponding
to this set of Langevin equations reads:

∂tρn + ∂sn(ukncn − κk2nsn + an)ρn + ∂cn(−uknsn − κk2ncn)ρn + Fu[ρn], (21)

with Fu[ρ] defined as above and ρn(sn, cn, u) the joint probability density for the nth Fourier
mode of the source.

Rather than modeling the individual trajectories of tracer blobs that collect or lose
concentration as they traverse the domain, this formulation constrains the evolution of a
whole field of concentration values; instead of the position and concentration of a single
blob, we’re tracking here the amplitudes of the sine and cosine modes of the concentration
over the whole domain. The two formulations lead to identical predictions for the mean
concentrations in the steady state of the system.

Because of the ease of carrying through the following manipulations on it, we will focus
primarily on the blob formulation described by (13) in what follows, though it’s conceptually
helpful to keep both pictures in mind.

3.3 Source t erm

For forcing functions that depend on space alone, the variance of the concentration grows
unbounded in time for the κ = 0 case. Given that each parcel of fluid is undergoing
a random walk in concentration space, some parcels will persistently walk in the same
direction—always gaining or losing concentration each step—causing the variance to grow
without bound.

In order to ensure statistical stationarity, we insert

s(x) = λ (r(x)− c(x, t)) . (22)

The parameter λ sets the timescale for which a non-advected, non-diffusing tracer concen-
tration would settle down to a reference profile r(x). Physically, we can imagine such an
equation being relevant to biological populations, the density of which typically hovers about
some fixed equilibrium set by external conditions (nutrient fluxes, predator concentration,
etc.)
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As before, the linearity of the problem makes it natural to decompose both the equilib-
rium and the concentration into Fourier modes and to consider the equations for each mode
individually,

r(x) =
∞∑
n=1

an sin(knx) + bn cos(knx), (23)

where we’re again at liberty to take bn → 0 by translational symmetry.

4 N-state Velocity Model

We make progress on solving (13) by reparameterizing the velocity field. Determining the
full form of ρ for arbitrary times gives us more information than we need; we instead restrict
our attention to steady states of the system, which sets ∂tρ to zero.

As time tends to infinity, the probability density of the velocity in an Ornstein-Uhlenbeck
process approaches a Gaussian, the width of which is a function of both γ and ε. One can
imagine decomposing this continuous probability distribution into a discrete one; what this
looks like physically is constraining the velocity to take on one of a finite number of possible
velocity states at any given time. The limit as the number of states goes to infinity recovers
the full, continuous probability density distribution of the Ornstein-Uhlenbeck process.

In this approach, (13) can be decomposed into N independent equations, one for the
probability density of each velocity state. We can think of it, in other words, as a matrix
equation with

ρ =

⎛⎜⎜⎜⎝
ρu0

ρu1

...
ρuN

⎞⎟⎟⎟⎠ . (24)

In this context, the Ornstein-Uhlenbeck operator Fu is naturally represented as a tran-
sition matrix that couples the different velocity states to each other. Following (1), the
entries of the transition matrix T for N velocity states are taken to be

Tij =
1

2
[−(N − 1)δij + kδj+1,k + (N − 1− k)δj−1,k] , (25)

with j, k = 0, 1, 2, . . . N − 1
The matrix is tridiagonal—we force the velocity to transition only between neighboring

states—with entries that quantify the rates associated with moving up or down by one state
or remaining in the same state.

The spacing between successive velocity states is constant and equal to 2σ√
N
, where

σ sets the standard deviation of the probability density function for the velocities. The
velocity spacing decreases as N increases, which must be the case if models containing
different numbers of states are to approximate the same velocity distributions; without
the 1√

N
dependence in the spacing, the N + 1-state model would correspond to a velocity

probability distribution with a higher standard deviation than the N -state model.
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4.1 Moments of the Fokker-Planck eequation

Rather than solve the Fokker-Planck for each ρui in all of its dependencies, we construct

the nth moment of ρ by multiplying (13) by cn and integrating over c, defining

Pn
ui

=

∫
dc cnρui . (26)

For the 0th moment we obtain, dropping the explicit velocity state indices:

∂tP
0 + u∂xP

0 − κ∂2
xP

0 + Fu[P
0] = 0, (27)

where we’ve stipulated that ρ disappear at positive and negative infinity in c.
To obtain an equation for the first moment, we multiply first by c then carry out the

integration, yielding

∂tP
1 + u∂xP

1 − κ∂2
xP

1 + Fu[P
1] = −

∫
dc c∂csρ

= csρ|∞−∞ +

∫
dc sρ

= sP 0

(28)

The first moment has the natural interpretation of the mean of c, and we find it depends
on the zeroth moment. This is generally the case; the nth moment will contain a Pn−1 term
arising from the ∂cs in the original Fokker Planck:

∂tP
n + u∂xP

n − κ∂2
xP

n + Fu[P
n] = snPn−1 (29)

We proceed by solving these matrix equations in ascending order—using each previous
moment as input the next equation—for each Fourier mode of the forcing. We are

primarily interested in the first three moments, recognizing P 2− (P 1)2 as the variance.

Focusing on individual Fourier modes allows us to decompose each of the Pu
n
i
into their

respective sine and cosine modes as well; the spatial derivatives in (29) act to multiply Pn
ui

by the wavenumber of the forcing (since no other wavenumbers survive) and, in the case of
the advection term, interchange the sine and cosine modes.

Considering the 3-state system and a forcing wavenumber of kn and typical velocity
scale u, for instance, we find

c ≡ P 1
−u + P 1

0 + P 1
u

=
λ sin(knx)

(
6γ2 + 9γ

(
k2κ+ λ

)
+ 3
(
k2κ+ λ

)2
+ 2k2u2

)
(γ + k2κ+ λ) (3 (k2κ+ λ) (2γ + k2κ+ λ) + 4k2u2)

(30)

4.2 Convergence

The algebraic form of the moments becomes successively more complicated as we increase
the number of velocity states. The convergence to the full Ornstein-Uhlenbeck process is
generally slow for the N-state model, motivation for trying a different way of packaging the

equations.
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Figure 1: For moderate λ, the variance (blue) is highest at the nodes of the mean concentra-
tion (orange), suggesting that the advection is winning out over the forcing; the dominant
source of jitter is the phase shift in the mean coming from the stochastic advection. The
relative weakness of the forcing is also reflected in the fact that the amplitude of the mean
concentration is roughly half that of the reference profile r(x) (green) the forcing is trying
to relax to.

Figure 2: At higher λ, the variance peaks at the extrema of the mean, points where the
forcing is strongest. The variance is exhibited primarily in the amplitude of the mean. The
forcing is sufficiently strong to make the mean concentration (orange) nearly match the
reference profile r(x) (green).
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Figure 3: Even at 10 velocity states, the amplitude of the mean for the N-state model is
still 10% away from the value it eventually converges to, 0.437.

5 Hermite Basis

5.1 Method

The N-state model helps us develop intuitions for the behavior of the system, but its slow
convergence makes it poorly suited for complicated calculations—to get any sensible re-
sults, we’d have to use a large number of velocity states, which significantly increases the
computational expense.

The way forward is to implement a spectral method using the eigenfunctions of the
Fokker-Planck operator as a basis.

The Hermite polynomials scaled by exponentials provide exactly the basis we’re after.
Note:

Fu[e
−u2

2 Hn(u)] = −ne−
u2

2 Hn(u). (31)

We can now decompose the ρ into N Hermite Polynomial terms. The mixing between
successive Hermite modes now comes from the advection term and the fact that

uHn(u) = Hn+1 + nHn−1. (32)

Equipped with these basis functions, we can proceed to calculating the moments of the
Fokker-Planck equation (13) as in the N-state model, only now decomposing ρ into N
Hermite modes rather than N velocity states.

5.2 Convergence

This trick substantially enhances the speed of calculation—which is unsurprising given that
it constitutes a spectral method.

295



Figure 4: The mean is well-converged within 10 Hermite Modes.

This speed-up comes at the cost of the interpretability of the modes; the basis functions
no longer correspond to intuitive statements about, e.g., the number of accessible velocity
states. We will move between these two distinct methods in what follows depending on
whether computational efficiency or an intuitive picture of the system is called for.

5.3 Effective ddiffusivity

We’ve been arguing that the eddy flux can not be written as a constant times the concentra-
tion gradient. Having considered the special case of a sinusoidal forcing—which constitutes
a basis for an arbitrary forcing—we discover that we can in fact think of the eddy flux as
corresponding to a constant effective diffusivity times the concentration gradient.

The special ingredient here is the fact that the mean turns out to be proportional to
the forcing; this allows dividing sin(kx) from both sides of the steady state equation:

(κ+ κeff )k
2c = λ(r(x)− c), (33)

or

κeff =
λ(1− |c|)
(k2|c|) − κ, (34)

where we’ve written the amplitude of the mean as |c| ≡ c
sin(kx) .

As we increase the wavenumber of the forcing, tracer particles have less time to build
up concentration anomaly before being pushed to the next region of the forcing, making the
advection less effective at mixing. Similarly, as kappa is increased for a fixed wavenumber,
the particles become progressively more “leaky” and lose memory of where they were before
they can be advected any appreciable distance—again this dampens the magnitude of the
eddy flux.
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Figure 5: As κ increases, tracer particles lose memory of the concentration they’d picked
up, making the advection less effective at mixing over mean concentration gradients. λ = 1.

5.4 Nonlocality

The only spatial input to κeff is the forcing wavenumber, k; if κeff becomes independent
of k, the effective diffusivity no longer depends on the large-scale structure of the forcing,
rendering it uniform across the domain. Consequently, we can determine the degree of
nonlocality represented by κeff by examining what parameter regimes make it relatively
more or less sensitive to k.

For the 2-velocity system (±u are the accessible velocities) in particular, we find

κeff =
u2

2 (γ + k2κ+ λ)
. (35)

Noting that k = 2πn
Γ , where Γ represents the (periodic) domain size, allows us to devise

a dimensionless parameter,

Nl =
κ

Γ2(λ+ γ)
, (36)

that determines whether the k2 term wins out over the constant term in the denominator.
For Nl � 1 the nonlocal effects cannot be ignored, while for Nl  1 we can treat the κeff
as a constant, meaning that its transform looks like a delta function.

Note that the κeff becomes independent of k as κ → 0 and, moreover, that the u2

appears only as an overall scaling and does not influence the width of the kernel. Both of
these are unique features of the 2-state system.

For the 3-velocity system, on the other hand,

κeff =
2u2
(
2γ + k2κ+ λ

)
6γ2 + 9γ (k2κ+ λ) + 3 (k2κ+ λ)2 + 2k2u2

. (37)
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This allows us to write a similar parameter by completing the square in the denominator:
we find the k-dependent term in the denominator looks like

3κ

(
k2 +

2u2 + 9γκ+ 6κλ

6κ

)2

, (38)

and thus that the k-dependence in the denominator can be switched on or off according
to

Nldenom =
6

Γ2(6λ+ 9γ + 2u2

κ )
. (39)

As long as this number is sufficiently larger than 1, we expect to see k-dependence in the
κeff and, thus, significant nonlocal effects. The new effects that enter at the 3-state level are

that k-dependence is still possible even as κ → 0 and that the scale of the random velocity
field u, which can be thought of as the standard deviation of the velocity magnitude, now
enters into the determination of locality as well. In particular, if u is especially large, we find
that it washes away the k-dependence in the denominator; what’s happening here is that
tracers are being pulled along so quickly that they scarcely feel the forcing anymore—the
alternating crests and troughs become blurred out.

5.5 Integral kernel

Equipped with the effective diffusivity for each wavenumber, we know how to weight each
Fourier mode of an arbitrary concentration gradient in frequency space to determine the
total effective diffusivity. In particular, we write the total eddy flux for an arbitrary con-
centration gradient as ∫ ∫

κeff (k) cos[k(x− x′)]∂xcdx′dk. (40)

Performing just the k integral gives us an integral kernel that we convolve with the
concentration gradient over all space to find the eddy flux at a given point.∫

κ̃eff (x− x′)∂x′cdx′. (41)

Focusing on the N -state model with N = 3, κ = 0, and λ = γ = 1, the integral kernel
takes the simple form

κ̃eff (x− x′) =
√

π

2
e−3|x−x′|. (42)

6 Stochastically Oscillating Velocity Field

In real flow fields, the Lagrangian autocorrelation of the velocities is often not monotonically
decaying but in fact may oscillate around zero. Such statistical flow structures are not
inconsistent with our intuitions about how eddies work—if we follow a parcel of fluid initially
moving in a particular direction, we might expect to find moving in the opposite direction
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Figure 6: As κ increases, κeff (k) becomes more peaked in structure; its Fourier transform
thus approaches a flat line. For small values of κ, on the other hand, κeff (k) flattens as
a function of k, yielding a delta-function-like kernel. Loosely speaking, the width of the
kernel corresponds to the mean free path of tracer anomaly.

a determinate time later. They have also been measured in real flow fields in the ocean, for
instance in Figure 7.

In order to allow the Lagrangian autocorrelation in our original stochastic system to
oscillate we allow the velocity to take on complex values:

du = −γudt+ iωudt+
√
2ξdW (43)

We see that this system is indeed oscillating by calculating the covariance:

〈u(t)u(t+ τ)〉 ≈ 〈u(t)(u(t) + τ
du

dt
|t)〉

≈ 〈u(t)(u(t) + τ/N
du

dt
|t)N 〉

≈ 〈u2(t)e(−γ+iω)τ 〉
≈ e(−γ+iω)τ 〈u2(t)〉

(44)

We can think of this as constituting two coupled velocity fields corresponding to the
real and imaginary components of u, in which only Re(u) is advecting. An equivalent way
to write this is to keep everything real and add in an additional, non-advecting velocity v
that couples to u according to:

du = −γudt+ ωvdt+
√
2ξdW (45)

dv = −γvdt− ωudt+
√
2ξdW (46)

299



Figure 7: Oscillations are built into the otherwise exponentially-decaying Lagrangian auto-
correlation of fluid parcels in the ocean. From: Rossby et al., 1984.

6.1 Fokker-Planck tt erm

Given

du = (−γu+ ωv)dt+
√
2ξdW1 (47)

and
dv = (−γv − ωu)dt+

√
2ξdW2, (48)

the Fokker-Planck operators become:

Du = γ∂u(uρ)− ω∂u(vρ) + ξ∂uuρ (49)

Dv = γ∂v(vρ) + ω∂v(uρ) + ξ∂vvρ (50)

We show that the eigenfunctions of these differential operators are infinite sums of
products of Hermite polynomials in u and v scaled, as before, by the appropriate Gaussians

ρnm = e−u2/2e−v2/2Hn(u)Hm(v) (51)

Consider first the Fokker-Planck operator for u:

Duρnm = γu∂u(ρnm) + γρnm − ωv∂u(ρnm) + ξ∂uuρnm (52)

We find after some algebra that:

Duρnm = ω (ρn+1,m+1 +mρn+1,m−1)− nξρn,m, (53)
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Figure 8: For sufficiently large values of ω, the effective diffusivity develops a peak.

where we used the facts that the Hermite polynomials are an Appell sequence—i.e.
∂uHn(u) = nHn−1(u)—and that Hn(x) is a solution to the differential equation ∂xxy(x)−
x∂xy(x) + ny(x) = 0.

Proceeding likewise for Dv, we find that

Dvρnm = −ω (ρn+1,m+1 + nρn−1,m+1)−mξρn,m. (54)

Grouping like terms after applying the differential operators to
∑

n

∑
m ρnm, we find

that the ρnm terms resulting from the action of Du on this series receive contributions from
what were initially ρn−1,m−1 and ρn−1,m+1 terms, with weights that can be determined by
reindexing (53) and (54) in n and m.

As before, we will need to truncate the series in ρnm in order to keep the equations

numerically tractable. Given that higher order modes make increasingly modest changes to
the final calculation, we find that the error associated with throwing out the m+1st mode

by truncation becomes vanishingly small for increasingly large mode numbers.

6.2 Integral kkernel

The effect is something like that of a bandpass filter; there’s a “resonant” wavelength that
is disproportionally emphasized. Roughly speaking, this is the wavelength such that the
stochastically oscillating flow advects parcels between neighboring crests in the time it takes
the flow to oscillate.

7 Quasi-2D Case

The machinery developed above carries over unproblematically to higher dimensions. The
primary difficulty lies in defining a stochastic flow field that remains incompressible at all
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Figure 9: The effect of the “resonance”—forcing wavelengths that maximize effective diffu-
sivity by being in phase with the stochastic velocity oscillations—is manifested in negative
lobes in the kernel.

times and which is nonetheless sufficiently complex to describe flows encountered in the real
world.

We can straightforwardly extend the work above to two dimensions by considering stack-
ing an infinite series of the one-dimensional domains we’d originally looked at on top of each
other such that the amplitude of the stochastic advecting flow field varies periodically in the
vertical dimension. This corresponds to an advecting flow constrained to one dimension but
with a stochastic amplitude that varies in the other dimension. By adding in an additional
spatial dimension to our domain, we can explore what happens if we bake in a spatially
varying velocity field.

The advection-diffusion equation for this domain reads:

∂tc+ u(t) · ∇c− κ∇2c = sin(kx), (55)

now with c = c(x, t). We choose u(t) = (A(t) sin(ly), 0) and s = sin(kx), yielding

∂tc+A(t) sin(ly)∂xc− κ∇2c = sin(kx) (56)

Following the Fokker-Planck formalism from before, we can represent this system using
the Langevin equations

dx = Au(x)dt+
√
2κ dW1, (57)

dA = −Adt+
√
2 dW2, (58)

dc = s(x)dt, (59)

from which we can write the Fokker-Planck equation,
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∂tρ+ a(t)u · ∇ρ− κ∇2ρ = −∂c sin(kx) + FA[ρ], (60)

and solve the corresponding equations for the moments as above.

7.1 Sine and ccosine modes

The Fokker-Planck operator in A motivates using the Hermite eigenfunctions as before.
We decompose the spatial dependence in ρ into an infinite series of products of sines and
cosines. Using trigonometric addition formulas, we find that the advection term converts

sin(nly) into cos((1±n)ly) terms, and likewise cos(nly) → sin((1±n)ly) In order to match
the forcing, the lowest order mode in y must be:

ρ0 = cos(0) sin(kx)Hm[A] (61)

with

Hm[A] ≡ e−
A2

2 hm(A) (62)

Working up from here, we can construct an infinite ladder of trigonometric product
terms,

ρ =

∞∑
n=0

∞∑
m=0

(sn cos(nly) sin(kx) + cn sin(nly) cos(kx))Hm(A). (63)

The boundary condition forces sn = 0 whenever n is odd, and cn = 0 for n even, halving
the number of terms we need to consider. By inserting this expansion into (60), we can
again solve for the moments of ρ and from them deduce the κeff and integral kernel.

We find that the effective diffusivities remain monotonic in k but not, however, in l;
for a fixed forcing wavenumber, they attain a maximum for a value of l that is generally
nonzero. For this 2D domain, computing the integral kernel requires computing a 2D
Fourier transform of κeff (k, l); we expect thus to find negative lobes in the y-projection of
the kernel but no such lobes in the x-projection.
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Figure 10: The effective diffusivities are monotonically decreasing in the forcing wavenumber
k. At a given forcing wavenumber, however, diffusivity is not monotonic in l—the wavenum-
ber of the velocity structure—but rather reaches a maximum at a generally nonzero value
of l. κ = 0.1, nmax = 8, and mmax = 5.

=0.07

=.1

=.15
=.2
=0.25

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

k

lf
or

M
ax

im
um

Ke
ff

Effective Diffusivity Peak

Figure 11: The forcing and oscillation structure wavenumbers corresponding to maximal
effective diffusivity initially scale linearly with each other; as the forcing wavelengths de-
crease beyond a given threshold, however, the highest effective diffusivities are achieved by
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Destabilization of Vortices by Topography

Bowen Zhao

October 1, 2018

1 Introduction

Vortices are ubiquitous in fluid dynamics. Geophysical examples include Gulf Stream rings in
the ocean and the Red Spot in the Jupiter atmosphere. As vortices propagate they transport
energy, material and fluid properties such as temperature, along with them; during the
decay, vortices deposit their energy, material and fluid properties into the surroundings and
hence can be regarded as local sources. Agulhas Rings exemplify how vortices transport
contribute to exchange across ocean basins (Goni et al., 1997): after detachment from the
Agulhas Current, Agulhas Rings propagate northwestward and bring relatively warm and
salty Indian ocean water into the South Atlantic Ocean and hence play an important role in
the Atlantic Ocean heat and salt balance. However, satellite altimeter data revealed that
many Agulhas Rings are destroyed around the Walvis Ridge region probably due to
interaction with the bottom topography, leading to strong deposit of Indian ocean water
locally (Schouten et al., 2000). Several laboratory and numerical studies support the idea
that topography could strongly influence vortex trajectories and even lead to disintegration
(Beismann et al., 1999; Van Geffen and Davies, 2000; Sansón, 2002). Adams and Flierl (2010)
however showed that vortices with baroclinic structure could cross the topography relatively
easily while the topography effect is mostly felt by the bottom layer. This study aims to
examine the linear stability of vortices above a topography using a two-layer quasi-
geostrophic model.

Linear as well as nonlinear instabilities of barotropic and baroclinic, quasi-geostrophic
vortices were examined extensively by Flierl (1988). This study builds on Flierl (1988) to
consider the effect of topography on vortices’ linear stability.

2 Two-layer QQuasi-geostrophic Contour Dynamics Model

In the contour dynamics model, a vortex is configured as concentric circular regions of piece-
wise uniform potential vorticity (PV; Fig. 1). At each PV discontinuity/jump (Δi, inward
PV minus outward PV), we place a material contour that can be subject to displacement,
η. The stability problem is then to consider under what conditions contour displacements
(ηi) could grow. We embed the contour dynamics model into a two layer, equal depth (H),
quasi-geostrophic model. In the upper layer, we impose two PV jumps at r = r1 and r = r2,
and correspondingly there are two contours whose displacements are denoted by η1 and η2,
respectively. In the lower layer, we place a top-hat topography (ht) at r = rt = r1. The
PV jump associated with the topography (fht ) is denoted as Δt. Accordingly, we place aH
contour at the edge of topography, whose displacement is denoted by ηt. Note Δt could
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be either positive or negative. Negative topography with a cyclonic vortex will give the
same growth rates as positive topography with an anticyclone (i.e. “parity asymmetry” of
quasi-geostrophic model).

Figure 1: Schematic drawing of the experimental set up.

Then the system is governed by the two-layer quasi-geostrophic PV equation:

q1 = ∇2ψ1 − F (ψ1 − ψ2) = ΔjH(rj + ηj − r)

q2 = ∇2ψ2 + F (ψ1 − ψ2) + ΔtH(rt − r) = ΔtH(rt + ηt − r),
(1)

where j ∈ {1, 2} refers to the upper layer contour and repeated indices implies summation
(i.e. Einstein notation is implied). Below we will use index i ∈ {1, 2, t} to refer to all three

contours. 2F = 2 f2

g′H = 1
R2

d
= k2d with Rd and kd denoting the Rossby Deformation Radius

and its inverse. H(·) denotes the Heaviside step function. Note rt = r1. Motivated by the
Agulhas Ring example, we define our mean field (ηi=0) with no presence of topography (i.e.
the vortex state before encountering any topography):

∇2ψ1 − F (ψ1 − ψ2) = ΔjH(rj − r)

∇2ψ2 + F (ψ1 − ψ2) = 0.
(2)

The linearized perturbation field then follows:

∇2ψ′
1 − F (ψ′

1 − ψ′
2) = Δjηjδ(rj − r)

∇2ψ′
2 + F (ψ′

1 − ψ′
2) = Δtηtδ(rt − r).

(3)

The kinematic condition at each contour closes the problem:

∂η

∂t
+

v

r

∂η

∂θ
= u′ = −1

r

∂ψ′

∂θ
(4)

Hereafter, it’s assumed that (·) denotes mean field variable while lower case letter (prime
dropped) denotes the perturbation field variable. Also, we use bold symbols to denote
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a matrix and a vector that incorporates values for all three contours, for example, η =[
η1 η2 ηt

]T
, Δ =

[
Δ1 Δ2 Δt

]T
.

We normalize lengths by r1 so that Δ1 and Δt are upper and lower layer PV jumps at
r = 1 while Δ2 is the PV jump at r = b = r2

r1
. After normalization, F indicates the vortex

size relative to the Rossby Deformation Radius, Rd. We also normalize the streamfunction
ψ by some mean value such that the nondimensionalized version of above equations retains
the form.

Assuming wave-like solutions, i.e. ηi = η̂ie
im(θ−ct) (hereafter hat ·̂ is dropped and lower

case letters indicate wave amplitude), we can formulate an eigenvalue problem for η:

cη = Lη. (5)

L contains Green’s functions which are defined as

∇2Gnl + (−1)nF (G1l −G2l) = δnl · δ(r − r′); n ∈ {1, 2}; l ∈ {1, 2}. (6)

where n indicates the layer for which we are calculating the response while l indicates the
system with upper layer PV forcing (l = 1) or lower layer PV forcing (l = 2). Note that
Gln also depends on mode m due to the ∇2 operator.

Noticing that the mean velocity field and the upper layer PV jumps are closely related
(2), we can reduce the phase space dimension by constraining the upper layer mean velocity

such that

[
v1(1)
v1(b)

]
=

[
1
0

]
. This choice corresponds to realistic scenarios where the vortex

velocity at large distance reduces to background values. We can still vary the mean flow
shear by varying the outer contour radius b. Although we constrain v1 or Δ1 to be positive
(i.e. cyclone), our conclusion on stability can equivalently apply to the anticyclone case
by simply reversing the sign of topography Δt. Then parameters that remain to consider
include F (or Rd), m, b and Δt (or

Δt
Δ1

).

Figure 2: Mean velocity field for upper layer (red) and lower layer (blue) as well as the
mean shear (black) for different Rd: Rd = 0.1 for top panel, Rd = 1 for middle panel and
Rd = 10 for bottom panel.
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Before we proceed to the stability analysis, it is worthwhile to take a look at the mean
velocity field for different Rd (or F ). As Rd denotes the Rossby Deformation Radius relative
to the vortex size, increasing Rd or decreasing F should lead to weakening of layer coupling

and vice versa. While the upper layer mean velocity is uniquely decided for given b, the
lower layer mean velocity decreases remarkably as the layer coupling decreases (Fig. 2).
This implies that varying Rd (or F ) would dramatically change the lower layer wave phase

speed and hence the stability.

3 Growth RRate

Let’s first look at the m = 1 mode. When m = 1,

L =

⎡⎣−bΔ2G11(1, b) bΔ2G11(1, b) ΔtG12(1, 1)
Δ1
b G11(1, b) −Δ1

b G11(1, b)
Δt
b G12(1, b)

Δ1G21(1, 1) bΔ2G21(1, b) ΔtG22(1, 1)−Δ1G12(1, 1)− bΔ2G12(1, b)

⎤⎦ , (7)

wherem = 1 is implied in the Green’s functions (G11 =
1
2 [−Im(kdr<)Km(kdr>))− 1

2m( r<r> )
m]

for example). It is easy to see that the matrix only admits real eigenvalues when Δt = 0
(i.e. m = 1 stable) while topography could generally destabilize the m = 1 mode (Fig.
3). However, at small Rd limit or large F limit, only negative topography destabilizes the
m = 1 mode whereas at large Rd limit, almost all topography destabilizes the m = 1 mode
regardless of the sign and the magnitude. Also note that the growth rate becomes much
smaller as Rd increases. We will offer an explanation for these features soon below.

Figure 3: Growth rate ofm = 1 mode as a function of outer contour radius b and topography
Δt. The three panels are for different Rd: from top to bottom Rd = 0.1, 1, 10.

In comparison, m = 2 and higher modes are unstable even without topography. Notably,
the instability region of m = 2 mode shrinks toward smaller b or larger mean horizontal
shear such that most of the phase space to the right of b = 2 is stable (Fig. 4). Higher
mode growth rates are similar to the m = 2 mode except the unstable region further shrinks
toward smaller b values (not shown). Due to the successive shrinking of unstable regions
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Figure 4: Similar to Fig. 3 except for m = 2.

in higher modes, m = 1 is almost the only mode that could be destabilized by topography
once b > 2. In a nonlinear simulation for the part of phase space where linear stability
analysis only renders m = 1 unstable, we find that the m = 1 mode (the “shift mode”) is
indeed destabilized first while higher modes get excited later (Fig. 5). Another feature that
deserves attention is the narrow unstable arm that extends toward the right from b ≈ 2
for Rd ≥∼ 1(for Rd=10 in Fig. 4, the unstable arm breaks into discrete patches and is not
revealed in the plot). This unstable arm turns out to be a different instability regime from
the bulk and will be discussed in details in section 4. Lastly, we observe that the growth
rate for higher modes is less sensitive to the topography at large Rd while more sensitive to
the topography at small Rd, similar as we noted for the m = 1 model.

Figure 5: A nonlinear calculation for the case of b = 2.1 and Rd = 1. The blue and green
contours are associated with the upper layer PV jump while the red contour is associated
with the lower layer PV jump. The cyan contour denotes the topography, which is fixed.
Run time is labelled above each plot.

Next, we offer an explanation for features described above, especially for the differing
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topography influences at small versus large Rd values. Because all modes possess similar
transition from small Rd to large Rd, we will focus on m = 1 mode. The idea is to employ

perturbation method, that is, expand L, η and c as a power of some small parameter ε and

then match the order of ε. For small F limit, ε = F we have c = c0 + εc1 + ε2c2 + . . . and

similarly forL 1 and η.

3.1 Large Rd, ssmall F limit

When we take F→ 0 orRd→∞, the two layers become nearly independent and we are left
with two uncoupled, barotropic layers. The zero-th orderLmatrix is

L0 =

⎡⎣ 1
1−b2

− 1
1−b2

0
1

1−b2
− 1

1−b2
0

0 0 −Δt
2

⎤⎦ . (8)

One eigenvalue is −Δt
2 with corresponding eigenvector

[
0 0 1

]T
, which is clearly a pure

lower layer eigenmode, actually a topographic Rossby wave. In the absence of mean velocity
(Fig. 2), the topographic Rossby wave propagates with shallow water (high PV) on the
right, thus positive topography yield clockwise waves or negative phase speed and vice
versa. Further, topographic Rossby wave phase speed is proportional to the magnitude of
topography, consistent with the eigenvalue of −Δt

2 . The other eigenvalue 0 is degenerate
(i.e. 0 is a double root of the characteristic equation), the corresponding right eigenvector
(η0) and left eigenvector (α0) have no projection in the lower layer:

η0 =

⎡⎣11
0

⎤⎦ ,α0 =

⎡⎣ 1
−1
0

⎤⎦ . (9)

Clearly, this eigenpair is a pure upper layer eigenmode. Biebuyck (1986) showed that
when v1(b) �= 0 the degenerate eigenvalue 0 manifests as two distinguishing eigenvalues:
eigenvalue 0 corresponds to displacing the upper layer two contours by the same amount
in the same direction (i.e. displacing the whole vortex trivially) while the other non-zero

eigenvalue (v1(b)b ) corresponds to a rotation mode resulting from displacing the upper layer

two contours relative to each other (i.e. has some amplitude in
[
1 −1 0

]T
). Further, the

rotation mode was shown to rotate with a radius R ∝ 1−v1(b)
v1(b)

, which clearly turns into a

translation mode when v1(b) = 0, corresponding to our degenerate 0 eigenvalue.
As F increases or Rd decreases, the two layers couple weakly and we expect the upper

layer mode to become unstable; that is, we expect the eigenvalue 0 to split into a complex
conjugate pair. Thus, we look for the first order correction to the 0 eigenvalue. The first
order equation reads as

L0η1 +L1η0 = c0η1 + c1η0 = c1η0, (10)

1As the reader may note that Δ1 and Δ2 also depend (weakly) on Rd or F , we actually consider L
Δ1

and expand Δ2
Δ1

. The instability conditions are the same and the results are similar.
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Figure 6: Compare the growth rate, i.e. the imaginary part of phase speed c from first order
correction (top panel) and from direct numerical calculation (“∗” in bottom two panels).
Note the x-axis starts from Rd = 1. Δt = ±5 is used in numerical calculation. b = 1.5 is
used in all three panels.

where L1 is the first order correction for L. Focusing on the lower layer contour component
(i.e. the third row), we have

−Δt

2
η1(3) +L1(3, 1)η0(1) +L1(3, 2)η0(2) = 0, (11)

where the first term indicates wave self-propagation due to PV anomalies associated with
the topography while the last two terms on the left hand side indicate wave propagation
due to upper layer PV anomalies (i.e. upper layer contour displacements). It follows from
(11) that a wave at the lower layer contour is required to remain stationary (i.e. zero phase
speed) in the first order correction, which allows it to phase lock with the upper layer mode,
whose phase speed is 0 on the zero-th order, and hence enables perturbation growth. Note
this sets Δtη1(3) to be a constant (up to a weak dependence on Rd), which is crucial in
explaining the insensitivity of growth rate to topography at large Rd (see below). Of course,
η as an eigenmode which only indicates the relative displacement of contours and what we
really meant is that Δt

η1(3)
η1(1)

is a constant (up to a weak dependence on Rd). Projecting the
first order equation onto the corresponding eigevector η0 yields

c1 =
1

1− b2
[η1(1)− η1(2)]. (12)

That is, the first order correction to the 0 eigenvalue is proportional to the relative dis-
placement of upper layer two contours, suggesting an emergence of a weak rotation mode
in view of the previous discussion.

As in the usual procedure, we project the first order equation onto the left eigenvector
α0, which however vanishes trivially. Thus it is necessary to go to the second order and we
get a quadratic equation for c1:

c21 − [L1(1, 1)−L1(2, 1)]c1 +
1

b2 − 1
η1(3)[L1(1, 3)−L1(2, 3)] = 0, (13)
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which clearly admits complex roots and hence unstable modes. Note that L1(1, 3) and
L1(2, 3) describe Δt influence on upper layer contour displacements and are both propor-
tional to Δt. As we noted above Δtη1(3) is a constant (up to a weak dependence on Rd),
c1 thus turns out to be independent of Δt, explaining the feature seen in Fig. 3 at large Rd.
However, it is clear from (13) that there will be no complex roots if there is no topography
(i.e. the constant term is zero). The imaginary part of c (c ≈ Fc1 as c0 = 0) calculated
from (13) is compared with direct numerical calculation in Fig. 6. It seems that the first
order correction yields good approximation for Rd > 1.5.

Let us summarize the physics by considering a vortex with net vorticity (i.e. v1(b) �= 0).
The eigenvalue variation for the case of v1(b) = 0.2 is partially shown in Fig. 7 (the −Δt

2
eigenvalue is not shown due to the y-axis scale). At the large Rd limit, there are two

distinguishing eigenvalues: 0 and v(b)
b . As Rd decreases, it appears that the zero eigenvalue

increases toward the non-zero eigenvalue; when the two eigenvalues merge, the modes phase
lock and instability yields (Schmidt and Johnson, 1997). Physically, instability arises as the
trivial “shift” mode turns into a rotation mode under the influence of topography and phase
lock with the original rotation mode (the translation mode when v1(b) = 0). Apparently
the “shift” mode is forced to rotate in the same sense as the net vorticity (i.e. v1(b)) thus

the zero eigenvalue increases for both signs of topography, which explains the growth rate
being insensitive to the sign of the topography at large Rd (Fig. 3). Note that the increase
in 0 eigenvalue is very slow such that the merging actually happens at Rd < 1. In the
v1(b) = 0 case, the merging would happen right away as the two eigenvalues are same to start

with. In short, the appearance of topography is crucial to rotate the ”shift mode,” yet the sign
or magnitude of the topography does not influence the growth rate because the contour
displacements adjust accordingly to match the zero phase speed constraint. In the end the
growth rate is solely decided by the coupling strength, i.e.Rd or F .

Figure 7: Growth rate for a vortex whose upper layer mean velocity is [1, 0.2]. Note the
x-axis starts from Rd = 0. “◦” donotes real part while “∗” denotes imaginary part. Δt = ±5
and b = 1.5 are used.

Now we briefly comment on the m = 2 and higher modes by analogy. A single-layer,
barotropic vortex can have strong m = 2 and higher instability from coupling of the upper
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F

layer two contours with opposite PV jumps. This corresponds to the instability of m = 2
and higher modes at large Rd limit (and the instability at small Rd limit with Δt = 0). As
Rd decreases, the influence of topography is weak such that the original large growth rate is

barely changed. Therefore, the growth rate is essentially independent of topography (Fig.

4).

3.2 Small Rd, llarge F limit

When we take F → ∞ or Rd → 0, the two layers are strongly coupled such that we
essentially have a single barotropic layer. Instead of employing perturbation method, i.e.

expanding L in terms of 1 , we proceed with a slightly different approach to reveal more

physics.
Define φ = ψ1 − ψ2: Then (1) can be rewritten as

∇2ψ2 + Fφ = ΔtH(rt + ηt − r)−ΔtH(rt − r)

∇2φ− 2Fφ = ΔjH(rj + ηj − r)−ΔtH(rt + ηt − r) + ΔtH(rt − r)
(14)

The perturbation field of O(1) reads:

−2Fφ = Δjηjδ(rj − r)−Δ3η3δ(r3 − r)

∇2ψ2 =
1

2
Δjηjδ(rj − r) +

1

2
Δ3η3δ(r3 − r).

(15)

The L matrix for the zero-th order problem becomes

L0 =

⎡⎢⎣
1

1−b2
− 1

1−b2
−Δt

4
1

1−b2
− 1

1−b2
−Δt

4b2
b2

1−b2
− 1

1−b2
1− Δt

4

⎤⎥⎦ . (16)

The eigenvalues are

λ1 = 1, λ2,3 = ±
√

Δt
4 (Δt

4 b2 + 4)− Δt
4 b

2b
.

(17)

The eigenvector corresponding to λ1 = 1 is
[
−Δt

Δ1
0 1

]T
. Clearly this eigenmode is

associated with the tilting of the inner column such that the PV anomalies at upper layer
and lower layer are of same magnitude. Eigenvalues λ2,3 could be a complex conjugate pair
when Δt

4 (Δt
4 b2+4) < 0, corresponding to an unstable mode. The corresponding eigenvector

reveals that the inner column is displaced as a whole (i.e. η1 = ηt). The range of topography
that could destabilize the mode thus corresponds to configurations that waves on the inner
contour and outer contour could phase lock.

4 Energetics

In this section we examine the energy source for modes growth, i.e. contrast barotropic
conversion versus baroclinic conversion. The eddy kinetic energy (EKE) and eddy available
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potential energy (EAPE) growth in the quasi-geostrophic two-layer model are governed by

1

H

∂

∂t
K ′ =

∫
v1u1ζ1 +

∫
v2u2ζ2 +

f

H

∫
w(ψ1 − ψ2)

1

H

∂

∂t
A′ =

F

2

∫
(v1 − v2)(u1 + u2)(ψ1 − ψ2)− f

H

∫
w(ψ1 − ψ2)

(18)

while the total eddy energy growth is obtained by adding the above two equations,

1

H

∂

∂t
(K ′ +A′) =

∑
i

∫
viuiqi. (19)

Barotropic conversion refers to
∑

i

∫
viuiζi =

∑
i

∫
viuiqi − F

2

∫
(v1 − v2)(u1 + u2)(ψ1 − ψ2)

while baroclinic conversion refers to F
2

∫
(v1 − v2)(u1 + u2)(ψ1 − ψ2).

Figure 8: Energetics of m = 1 mode as a function of outer contour radius b and topography
Δt. Circles are filled with blue crosses when baroclinic conversion happens while circles are
painted red when barotropic conversion dominates baroclinic conversion. The three panels
are for different Rd: from top to bottom Rd = 0.1, 1, 10.

As shown in Fig. 8, barotropic conversion dominates over baroclinic conversion through-
out the {Δt, b, Rd} phase space. We confirmed the dominance of barotropic conversion for an
arbitrarily chosen configuration with nonlinear calculation. The same is true for m = 2 and
higher modes except at the previously noted narrow arm region (Fig. 9), where baroclinic
conversion dominates (barotropic conversion still takes place). This baroclinic conversion
dominant region lying in the negative topography quadrant is consistent with the tradi-
tional notion that baroclinic conversion happens when upper layer and lower layer mean
PV gradient (jump) are of opposite sign. We also note that only when the upper layer
contour separation is large enough will baroclinic conversion dominate. Consistently, when
the topography is of same sign as upper layer inner contour PV jump and the upper layer
contour separation is small, baroclinic conversion vanishes and we have pure barotropic
conversion.

We suspect that the the general dominance of barotropic conversion is due to the strong
mean horizontal shear. We first tried to remove the PV jump at the upper layer outer
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Figure 9: Same as Fig. 8 except for m = 2. Note there are discrete patches of baroclinic
conversion dominant instability for Rd = 10 but not revealed by our integer topography

step.

contour, yet still observe the barotropic conversion dominance. Further noticing that there
is horizontal shear inherent in the circular contour curvature, we consider the piece-wise
uniform quasi-geostrophic jet setup (Meacham, 1991), where the vortex radius is relaxed
to infinity. The rectilinear setup does provide crucial insight into the energetics discussed

above.

4.1 Rectilinear ccase

We retain our configuration of two contours in the upper layer while one contour in the lower
layer as before and merely let the contour radius goes to infinity. However, the system is
now set up in the Cartesian coordinate: we align the x-axis along the unperturbed contour
and put the origin on the upper layer inner contour (i.e. y1 = 0), then the coordinate of
upper layer outer contour is denoted as y2 > 0. Same as before, the topography is right
below the inner contour (i.e. yt = 0). The PV jumps associated with the three contours
are still denoted as Δ1, Δ2 and Δt. Then (1) modifies to

∇2ψ1 − F (ψ1 − ψ2) = ΔjH(y − ηj)

∇2ψ2 + F (ψ1 − ψ2) = ΔtH(y − ηt)−ΔtH(y).
(20)

The mean field is still defined without topography. But we have to specify the mean field
PV jumps differently now: the mean PV jump at y1 = 0 (i.e. Δ1) is set to be 1. We vary
Δ2 to consider two configurations with different horizontal shear strength: one case with
Δ2 = 0 while the other case with Δ2 = −1. In addition, lengths are now normalized with
respect to the Rossby Deformation Radius Rd. We further arbitrarily set y2 = 2 (i.e. 2Rd)
in the following results as varying y2 does not change our conclusion. Then we can obtain
an eigenvalue problem in the exactly same way as in the vortex case.

The mean velocity field for the two cases are shown in Fig. 10. As expected, the
horizontal shears in both layers are enhanced with the addition of an opposite sign PV
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Figure 10: Mean velocity for the two rectilinear cases: (left) Δ2 = 0 and (right) Δ2 = −1.
The red, blue and black curves are for the upper layer mean velocity, lower layer mean
velocity and mean velocity vertical shear. Locations of upper layer PV jumps are labelled
by horizontal dotted line.

jump (i.e. Δ2). Correspondingly, the growth rate in the two cases exhibit different regimes
(Fig. 11). For Δ2 = 0, there exist local growth rate maxima which shift toward shorter
wave lengths as the topography is enhanced. The apparent quantization arises from the
coupling between upper layer and lower layer waves. This regime of instability is dominated
by baroclinic conversion while barotropic conversion still takes place (Fig. 11). The ratio

of barotropic conversion and baroclinic conversion, (μ−k)(μ+k+γ)
γ2 − 1, is clearly less than 1,

where k is the wavenumber, γ2 = 2F and μ2 = k2 + γ2. As the mean horizontal shear
increases due to the addition of an opposite sign PV jump (Δ2 = −1), the baroclinic
conversion dominant regime persists while a new regime at larger wave scales appear. In
this new regime, barotropic conversion dominates. Comparison of the two rectilinear
cases clearly indicates that horizontal shear enhancement would promote barotropic
conversion dominance. The coexistence of a baroclinic conversion dominant regime and a
barotropic conversion dominant regime is also reminiscent of the vortex case (with
relatively large Rd).

5 Conclusion

We examine the linear stability of vortices above a topography with a two-layer, quasi
geostrophic contour dynamics model. It is found that topography exerts strong influence on
the vortex when the two layers are strongly coupled. Further when the two layers are weakly
coupled, topography could destabilize the m = 1 mode in particular through triggering the
“shift mode” to rotate. For most of the instability growth, barotropic conversion dominates
baroclinic conversion. Meanwhile, there also exists a narrow region in the phase space where
baroclinic conversion dominates. This regime corresponds to opposite PV gradients in the
upper layer and lower layer and relatively weak horizontal shear (i.e. relatively large contour
separation in the upper layer). We then show that there is close analog in the rectilinear
set up where baroclinic conversion dominant region coexists with the barotropic
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Figure 11: Growth rate (top) and energetics (bottom) for the two rectilinear cases: (left)

Δ2 = 0 and (right) Δ2 = −1. X-axis is wavenumber normalized by Rd while Y-axis is
topography. y2 = 2 is used. Clearly, varying y2 in the Δ2 = 0 case does not make any

difference while increasing y2 in the Δ2 = −1 case merely shrinks the instability band close
to kRd = 0 and shifts growth rate local maxima.

conversion dominant region, the latter of which only arises when the horizontal shear is
strong enough.

Our results are generally consistent with earlier studies about eddies crossing a
topography (Beismann et al., 1999; Van Geffen and Davies, 2000; Sansón, 2002; Adams and
Flierl, 2010). We expect our general conclusions extend to various layer depth ratios and
topography shapes but further study is required to fully address these issues.
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1 Introduction

Turbulent buoyant plumes are prolific in geophysical and environmental flows. They exist
over a wide range of scales, from the small wisps of smoke rising above a fire to the massive
ash clouds from the eruption of a volcano. On the largest geophysical scales, both rotation
and stratification affect the development of a plume. In some cases, plumes can be produced
in regions of low stratification, and so rotation is thought to have a more dominant effect
on their development. For example, plumes of dense water can be formed at high latitudes
in regions of weak stratification due to sea ice formation [16]. Astrophysicists have also
hypothesised that plumes produced at the base of the well-mixed subsurface ocean of Europa
are affected strongly by rotation [11].

In the case of sea ice formation, one can think of multiple sources of dense water forming
in the marginal ice zone which can lead to nearby plumes interacting with each other. The
combined effects of interaction of the plumes and rotation on entrainment will control the
amount of mixing that the dense water undergoes on its journey to the bottom of the
ocean. The properties of this bottom water are thus closely linked to the plume dynamics,
and understanding these external effects on the plume is important for gaining insight into
abyssal water formation which helps drive the meridional overturning circulation.

Two previous research projects at the WHOI GFD Program have used laboratory exper-
iments to investigate these problems. In 2009 Yamamoto, Cenedese and Caulfield performed
experiments with a pair of axisymmetric, turbulent plumes in a rotating environment and
varied the separation distance of the plume sources as well as the rotation rate. They fo-
cused on the early time behaviour of the plume and observed qualitative differences in the
flow depending on whether the plumes merged before being affected by rotation or vice
versa [22]. If the plumes merged at early times, a single cyclonic vortex was generated in
the ambient fluid, whereas two vortices appeared if the rotation rate was sufficiently high.

The second project took a more systematic approach in order to quantify the effect
on entrainment of the interaction of two plumes in a non-rotating frame. Cenedese and
Linden [4] carried out experiments in 2013 based on the ventilated filling box technique
first implemented by Baines (1983) [1]. They formulated and verified a simple model based
on conservation of mass and self-similarity of merged plumes to compare the “effective”
entrainment of the merging plumes against the entrainment that would occur from two
independent plumes with the same source properties.
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The development of a plume can also be affected by the presence of a nearby vertical
boundary. The interaction of point source plumes with adjacent walls has been studied less
than merging plumes, but still has important geophysical applications [5, 7, 19]. Following
research on turbulent wall jets [14], turbulent plumes are expected to become asymmetric,
spreading more across the wall than away from it. This is due to the creation of streamwise
vorticity near the boundary when the no-slip condition is enforced. The effect of rotation
on this problem has not yet been tested and is currently unknown.

The aim of this study is to use a similar type of filling box experiment to that in [4] to
precisely quantify the effect of rotation on the entrainment of turbulent plumes. However we
find that the lower boundary of the tank has a strong influence on the development of the
filling box, making the measurement of entrainment from this method practically impossible.
We also perform further experiments to investigate the effect of rotation on point source wall
plumes, using the development of the plume shape to measure effects on dispersion and
identify mechanisms by which the plume may detrain fluid.

The rest of this report is organised as follows. In section 2 the classical theory of
point source, axisymmetric plumes will be introduced, followed by a brief overview of the
existing literature on the effects of rotation and studies of turbulent wall plumes. We will
then outline the experimental setups used for the various experiments in section 3, and
delve deeper into the issues that hindered the filling box experiments. The results of the
wall plume experiments will then be presented in section 4, before we finally discuss the
implications of our findings and the potential avenues for future research in section 5.

2 Theory and LLiterature

2.1 Classical plume theory

Many developments in the field of turbulent plumes have stemmed from the groundbreaking
paper of Morton, Taylor and Turner (1956) [18]. They considered the axisymmetric, sta-
tistically steady state with plume radius b(z) arising from a maintained source of constant
buoyancy flux and made use of four key assumptions:

• self-similarity: the profiles of vertical velocity u(z) and buoyancy g′(z) = g(ρa −
ρ(z))/ρ0 are the same at all heights;

• linear entrainment: the rate of entrainment of fluid is proportional to the vertical
velocity at all heights (ue = αu);

• incompressibility: fluid does not change volume on mixing;

• the Boussinesq approximation holds: local variations in density are small compared
to some reference density (ρ− ρa  ρ0).
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Using these assumptions, and further assuming ‘top-hat’ profiles for u and g′, we can write
down the following equations for conservation of volume, momentum and buoyancy

Q = πb2u,
dQ

dz
= 2πbαu = 2π1/2αM1/2, (1)

M = πb2u2,
dM

dz
= πb2g′ =

BQ

M
, (2)

B = πb2ug′
dB

dz
= 0, (3)

where Q, M and B are volume flux, momentum flux and buoyancy flux. In the final
equation, we have also assumed that the ambient fluid is homogeneous, i.e. ρa does not
vary with height. These equations can be easily solved, revealing that the plume radius takes
the form b = 6

5αz. The time-averaged shape of a plume therefore provides a measure of the
entrainment coefficient α, which decades of experiments have found to be approximately
constant and equal to 0.1± 0.01 [21].

An alternative method for inferring the entrainment rate of a turbulent plume was
devised by Baines and Turner in 1969 [2]. As shown in figure 1, dense plume fluid injected
from a point source will descend to the bottom of an enclosed container, spread out and
form a front which will rise as the plume fluid fills the tank. By conservation of mass, the
net volume flux at the height of the front must be zero and hence

Q = (A−Ap)wf . (4)

Here A and Ap are the cross-sectional areas of the tank and the plume respectively, wf is the

speed of the front, andQ is the volume flux of the plume. It is typically assumed that
Ap  A, so Q can be computed just from measurements of the front speed. The

Figure 1: Schematic of a filling box experiment with a source of constant buoyancy flux B0

as described in [2].
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entrainment coefficient α can then be inferred from this measurement by comparing the
observed variation of the volume flux with the prediction from classical theory:

Q =

(
9

10

)1/3 6

5
π2/3α4/3B

1/3
0 z5/3. (5)

Baines later improved the accuracy of measuring the volume flux in this way by venti-
lating the tank [1]. This was done by adding a source of constant volume flux to the upper
ambient fluid and pumping fluid out of the bottom of the tank at the same rate. In this
setup, the interface between the ambient fluid and the mixed fluid will move to and remain
at an equilibrium height where the volume flux in the plume is precisely the volume flux
being added to and removed from the tank. By adjusting the rate at which fluid is pumped
in or out of the tank, it is possible to accurately measure the volume flux in the plume at
all heights. One further advantage of this technique is that the two-layer stratification can
be set up before the plume is running, resulting in a sharper front. This type of experiment
was used by Cenedese and Linden in their study on merging plumes [4].

2.2 The effects of rotation

Many simple results in classical plume theory can be obtained by dimensional analysis,
noting that the only conserved quantity is the buoyancy flux B0, which has dimensions

L4T −3. The steady state plume dynamics are well described by scaling laws that come about
from combining B0 and the local height z. When ambient rotation is non-negligible a new
timescale is introduced to the problem, namely the inertial period of rotation Tf= 2π/f where

f is the Coriolis parameter. The introduction of f also suggests the importance of a new

length scale Lf = (B0/f
3)1/4. Identifying how these scales affect the dimensional analysis

requires experimental data. The Coriolis force will also strongly affect the plume dynamics
directly as follows. For a non-rotating plume, entrainment draws ambient fluid towards the
plume. When rotation is added, the Coriolis force acts on this motion in the ambient fluid,
deflecting the flow into a cyclonic circulation (if f > 0) around the plume.

A number of experimental and numerical studies have been performed to gain insight on
the effect of rotation on turbulent plumes and quantify the importance of these processes
and scales [8, 9, 10, 11, 12, 20, 22]. Of the laboratory studies, Fernando, Chen and Ayotte
(1998) were the first to investigate the development of a plume in a rotating but unstratified
fluid [9]. They found that rotational effects become important after a time 0.764Tf , before
which the plume behaves as if no rotation is present. After 1.75Tf , the lateral growth of

the plume is restricted and the plume reaches a maximum width of bc ≈ 2.35Lf . This
restriction implies that there is no entrainment below a certain height of the plume, which
we had hoped to verify with our own experiments.

When the plume reached the bottom of the tank, Fernando et al. observed more in-
teresting behaviour. As plume fluid continues to be injected, the plume spreads radially
inducing an anticyclonic circulation near the base of the tank. After some time, this eddy
reaches a size where it becomes baroclinically unstable and sheds from the main structure
of the plume. This behaviour was also observed in an earlier study where the ambient was
stratified, and the plume spread out above the neutral height rather than the solid boundary

[12].
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Lateral deflection of the plume was also observed, but not explained in the Fernando et
al. study. It is now thought that the deflection of the plume is in fact regular, anticyclonic
precession [8, 10]. Frank et al. (2017) performed experiments with a plume in a rotating,
homogeneous ambient for a wide range of buoyancy fluxes, rotation rates, and water depths,
finding that after one rotation period the plume moves about the vertical axis at a precession
frequency of ω ≈ 0.2f . Fascinatingly, this frequency appears to be independent of the source
size, buoyancy flux or water depth, implying that if rotation is present, it will always affect
the dynamics.

2.3 Wall plumes

Turbulent wall plumes are often studied in the context of natural ventilation or melting
glaciers [15, 17]. However, these papers usually consider the effect of a vertically distributed
or planar source of buoyancy rather than a point source. Motivated by the plumes that
rise up from subglacial meltwater channels along the side of a glacier, recent studies have
modified the classical plume equations (1)-(3) to account for the effect of an adjacent wall
[5, 7, 19]. By modifying the geometry to a half-cone and adding a quadratic drag force
along the wall, the plume equations become

Q =
πb2

2
u,

dQ

dz
= πbαu =

√
2παM1/2, (6)

M =
πb2

2
u2,

dM

dz
=

πb2

2
g′ − 2cdbu

2 =
BQ

M
− 23/2cD√

π

M3/2

Q
, (7)

B =
πb2

2
ug′

dB

dz
= 0. (8)

Despite the changes to the equations, the far-field asymptotic solution for the velocity
follows the same scaling as the classical theory but has an extra pre-factor to account for
the drag [7].

The effect of rotation on these wall plumes is currently unknown. Since the entrainment
of a wall plume is asymmetric and the net flow induced by entrainment is towards the wall,
the Coriolis force will generate a cross-flow along the wall when rotation is present. Purely
due to geometrical constraints, there is potential for the precession observed in rotating
plumes to be suppressed by the presence of the wall, and the lack of ambient circulation
may affect the growth and breakup of baroclinic eddies.

3 Experimental Setup

3.1 Filling box experiments

The laboratory setup of the initial filling box experiments is shown in the schematic of

figure 2. A transparent, cubic tank of dimensions 60cm×60cm×60cm was filled to a depth

of approximately 50cm with fresh water of density ρa = 0.998g cm−3. The tank was placed
on a rotating table which was rotated at Coriolis parameters of f = 0s−1, f = 0.5s−1 and
f = 1s−1. The table was spun up for at least 30 minutes before each experiment to ensure
that the fluid in the tank was very close to solid body rotation. Filtered seawater of density
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Figure 2: Schematic of the filling box setup.

ρ = 1.02g cm−3 was injected through a Cooper nozzle1 of radius 2.65mm that was placed
just below the surface of the water. A gear pump was used to pump the seawater through
the nozzle at a constant volume flux Q0, which was varied between 1 and 2cm3 s−1 for
different experiments. This gave a range of buoyancy fluxes of B0 = 20− 40cm4 s−3.

The seawater was dyed using red food dye so that the plume could be visualised easily
using a shadowgraph technique. A light projector illuminated the experiment, and was
placed approximately 2m away from the edge of the tank to prevent parallax issues in
visualisation. One face of the tank was covered with a translucent sheet of paper to act
as the recording plane for the shadowgraph. The experiment was recorded by an Olympus
OM-D E-M10 Mark II digital camera attached to a tripod approximately 2m from the
tank, directly opposite the light projector. Since neither the camera nor the projector were
rotating with the tank, only one frame per rotation period could be used for analysing the
experiment.

3.2 Filling box issues

In the non-rotating filling box experiments, the videos were processed as follows to obtain
an entrainment coefficient α and a virtual origin correction z0. In the regions to the left
and right of the plume, the height of the front was determined in each pixel column by
a threshold value for the reduction in blue light intensity. This height was then averaged
across the pixel columns in each frame to obtain a time series for the front height zf (t). A
polynomial fit was then used to interpolate the data, and this was numerically differentiated
to give a front speed wf (t) and in turn a volume flux Q = Awf . Since the front height is
known at all times, Q can also be plotted as a function of z. Rearranging (5) and accounting

1This type of nozzle uses a recirculation chamber and wire mesh to ensure turbulent outflow, and was
first designed by Professor Paul Cooper, University of Wollongong, Australia.
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(a) (b)

Figure 3: (a) A picture of the experiment running with f = 0.5, showing plume deflection and
a cone of dyed fluid indicative of a baroclinic eddy or possibly a ‘heton’. (b) Schematic from
Goodman et al. (2004) [11]: “Stages in the evolution of a buoyant convecting plume. A:
Free turbulent convection. B: otationally controlled cylindrical plume. C: Baroclinic
cone. D: Baroclinic instability.”

for a virtual origin gives

z = α−4/5

(
Q

c1B
1/3
0

)3/5

− z0, (9)

where c1 =
(

9
10

)1/3 6
5π

2/3. Thus α and z0 can be estimated by a linear fit for the above
equation. Typical values computed for these parameters were α = 0.12 and z0 = 1cm.

Figure 3a highlights some of the difficulties in applying this method to the case of rotat-
ing plumes. Firstly the plume can be seen to deflect due to the precession identified in [10],
which makes identifying regions over which to average a front height more challenging. Of
greater concern is the shape of the front itself. The fact that there is not a clear, horizontal
boundary between the dyed fluid and the clear ambient implies that the assumption of
uniform upflow required for the filling box experiment is not valid. The mound of fluid that
can be seen to the left of the plume propagates around the tank and is reminiscent of the
anticyclonic eddies mentioned in section 2.2 and observed in previous studies [9, 11, 12].
Helfrich and Battisti (1991) suggest that the combination of this anticyclonic eddy with
the cyclonic flow around the plume forms a ‘heton’ [12]. This term was first used by Hogg
and Stommel (1985) to describe a pair of counter-rotating geostrophic vortices across a
density interface which becomes pulled up or down depending on the sign of the vortices.
[13]. Goodman et al. (2004) simply associate the shedding of a cone structure (as shown in

figure 3b) with spreading of the dense fluid to a scale comparable to the Rossby radius of
deformation rD =

√
g′H/f , where H is the water depth [11].

Regardless of the origin of the tall cone of fluid, its presence in all of the rotating exper-
iments makes the use of a filling box measurement to infer entrainment impossible. This
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Figure 4: Schematic of the wall plume experimental setup when capturing the front view
development of the wall plume.

led us to attempt an alternative experimental setup. Inspired by [3], where instantaneous
measurements from a simple shadowgraph of the plume were used to determine properties
of the mean flow, we prepared a setup similar to that shown in figure 4, but with the plume
far from the boundaries of the tank. Unfortunately the observed plume precession prevented
accurate measurement of the plume width and hence hindered us from obtaining useful
statistics of the flow. Qualitatively it was interesting to observe detrainment of plume fluid
into the ambient at all heights, although this exacerbated the problem of detecting the edge
of the plume. Further investigation of the flow field in a rotating plume is needed to shed light
on this behaviour. One possibility is that the detrainment could be related to the
combination of the rigid boundary at the bottom of the tank and the Taylor–Proudman
theorem, which together would hinder vertical motion in a rotating frame.

3.3 Wall plume experiments

The second experimental setup, used to investigate point source wall plumes in a rotating
environment, is shown in figure 4. In contrast to the previous setup, both the digital camera
and light source were attached to the rotating table to allow for a greater time resolution
of 25fps in videos of the experiment. A projector and translucent sheet were not used for

these experiments. Instead, electroluminescent Light Tape R© attached to one face of the
tank provided a uniform light source. The digital camera was attached to an arm on the
rotating table approximately 60cm from the edge of the tank. Since we were only interested
in the fluid near the plume, and not the entire width of the tank, the shorter distance
between the camera and the tank edge did not lead to issues with parallax.

The same tank was used as in the filling box experiments, again filled with approximately
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Volume flux Q0 [cm3 s−1] Source density ρs [g cm−3] Coriolis parameter f [s−1]

2− 2.5 1.02, 1.05 0, 0.5, 1, 2

Table 1: Parameter values used for the wall plume experiments.

50cm of fresh water. For half of the wall plume experiments, extra salt was added to the
seawater to increase its density, thus changing the buoyancy flux without altering the volume
flux or momentum flux. A density meter measured the density of both the ambient fresh
water and the source fluid before each experiment. The full range of parameter values used
in the experiments can be found in table 1.

The plume source was attached to the illuminated side of the tank using filament tape
such that the plume was directed vertically down the wall. The nozzle was placed a short
distance below the surface of the water and halfway along the length of the wall to avoid the
effect of the other boundaries of the tank. This setup provided a visualisation of the ‘front
view’ describing how the plume spread along the wall. However due to the asymmetric
development of wall plumes, we needed to repeat each experiment to also obtain a ‘side
view’ showing how the plume spread away from the wall. For this setup, the plume source
was attached to one of the walls adjacent to the illuminated side and the camera was moved
so that it captured a view down that wall. Extra perspex sheets were added along the side
with the plume to ensure that the view down the inner wall was not obscured by the corner
of the tank.

The videos produced during the experiments were analysed using bespoke Matlab

scripts. Since the red dye concentration is linked to the reduction in blue light intensity,
frame-by-frame analysis of the videos allows us to determine vertical profiles of the instan-
taneous width of the plume. The edges of the plume were defined at each height by locating
the longest sequence of pixels where the blue light intensity was less than a given tolerance
level. This tolerance was computed to be 80% above the minimum blue light intensity at
each height relative to the background (maximum) light intensity.

4 Results

Due to the size and shape of the nozzle, the plume fluid did not exit the source attached to the
boundary in the wall plume experiments. However since entrainment induces areas of low
pressure surrounding the top of the plume, the ambient pressure away from the wall pushes
the plume onto the wall. This is known as the Coandă effect, which leads to the plume
becoming attached to the wall within the top few centimetres. In the non-rotating
experiment, once the plume was attached to the wall it remained attached for the duration
of its descent to the bottom of the tank. The plume developed into a steady state where
the width measured along the wall (in front view) was a linear function of height. The
leftmost panel of figure 5 shows the instantaneous width of the plume over a 3 minute time
window of the experiment. This shows that the instantaneous profiles never deviate
significantly from the mean. The gradient of the instantaneous half-width dbx/dz was found

to be approximately 0.184, which is larger than typical values for unconfined plumes and
suggests increased along-wall entrainment.
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Figure 5: Vertical profiles of instantaneous plume half-width along the wall (in front view)
over the course of four experiments with a volume flux of Q0 = 2cm3 s−1 and source density
of ρs = 1.023g cm−3. Profiles are only plotted for t > 30s to ignore the initial transient
features of the plume. Each width is also averaged over 4s time intervals of 100 frames to
smooth the data. Red lines indicate the time-mean of the instantaneous profiles that are
considered to be in a ‘quasi-steady’ state.

The side view reveals that the steady state of the point source wall plume is unsurpris-
ingly asymmetric. The vertical profile of the plume width away from the wall is however
not a simple linear profile. Instead, the plume spreads out quickly within the top 3-4cm
before descending with an almost constant width from the wall, as seen in the leftmost
panel of figure 6. The fast spreading towards/away from the wall near the source may be
attributed to Coandă-like effects which seem to be dominant in this region. The growth of
turbulent eddies that engulf and entrain ambient fluid in a plume could be reduced in the
direction perpendicular to the wall purely due to confinement. This would explain a reduc-
tion in entrainment away from the wall, but not the constant-width shape of the plume.
One possibility is that the fluid entrained towards the wall squeezes the plume against the
wall, leading to further spreading along the wall instead of growth away from it. This would
be consistent with the generation of streamwise vorticity near the boundary observed for
turbulent wall jets with no buoyancy [14].

Figures 5 and 6 compare the vertical profiles obtained at different rotation rates for
a fixed volume flux and buoyancy flux. At early times and intermittently throughout the
experiment, the plumes in rotating frames with f = 0.5 and f = 1 resemble the steady state
found in the non-rotating experiment. We refer to the plume as being in a ‘quasi-steady’
state during these times, which can be identified as periods in which the fluctuations of
the width in time are small. In figure 5, a fraction of the instantaneous profiles in grey for
f = 0.5 and f = 1 are concentrated around an approximately linear profile associated with
this quasi-steady state. The red lines are obtained by taking a time-mean of the profiles
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Figure 6: Vertical profiles of instantaneous plume width away from the wall (in side view)

similar to figure 5. These experiments had an initial volume flux of Q0 = 2.15cm3 s−1.

considered to be in the quasi-steady state, and these profiles have similar gradients to the

non-rotating steady state (dbx/dz ≈ 0.177 for f = 0.5 and dbx/dz ≈ 0.2387 for f = 1). The
increase in gradient for f = 1 may simply be due to detraining dyed fluid making it hard to
identify the edge of the plume. Beyond a certain distance from the source, the plume is not
consistent with a linear profile and this distance reduces as the rotation rate increases.
Bottom boundary effects becoming more important as rotation increases may explain these
shrinking quasi-steady regions. At f = 2 no quasi-steady behaviour is observed, as can be
seen in the rightmost panels of figures 5 and 6.

The vertical profiles from the side view in figure 6 have similar properties to those from
the front view. At intermittent times throughout the experiments for f = 0.5 and f = 1,
the plume exhibits a quasi-steady state but its connection to the non-rotating steady state
is a little different. Both experiments show a rapid spreading near the source as in the non-
rotating case which stops at a width just below 2cm. Moving vertically away from the source,
the quasi-steady profile has a region where the width remains approximately constant before
further spreading occurs. The size of the region of constant width decreases with rotation
rate, again indicative of increasingly important bottom boundary effects.

Inspecting video snapshots from the experiments provides us with some understanding
of the plume dynamics during the times when it is not in a quasi-steady state, and reveals
remarkable quasi-periodic behaviour. As shown in figures 7b and 7d, the upper section
of the plume occasionally detaches fully from the wall and moves to the left in the front
view. This intriguingly means that the plume moves in the opposite direction along the
wall to the cross flow that is induced by entrainment. After a short period of time being
detached from the wall, the plume typically reattaches to the wall and adjusts back to the
quasi-steady state seen i n figures 7a and 7c. I n the detached state, the upper plume fluid
appears to become arrested at a certain height f rom the sou ce, and figure 7b also shows
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Figure 7: False colour images of blue light intensity from two experiments rotating at f = 1
with a source density of ρs = 1.023g cm−3. (a) and (b) show the front view at times
t = 60s and t = 100s respectively for volume flux Q0 = 2cm3 s−1. (c) and (d) show the
side view (flipped left to right) at times t = 50s and t = 80s respectively for volume flux
Q0 = 2.15cm3 s−1.
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Figure 8: Time series of a horizontal slice of blue light intensity 10cm below the source level
in front view for the same experiment as figures 7a and 7b.

that plume fluid further from the source is advected to the right along the wall. Videos of the

experiment show that significant amounts of the fluid moving to the right are detrained from
the plume while it is detached from the wall. This is clearly visualised in figure 8 by a time
series of a horizontal slice 10cm below the plume. Large, diffuse patches propagating upwards
in this figure correspond to fluid detraining to the right, and these coincide with the sudden
deflections of the darker region associated with the plume.

A similar analysis for the side view experiment is shown in figure 9, which presents a
time series of a vertical slice against the wall. The light space at the top of the figure shows
that the plume does not leave the source attached to the wall and adjusts over a distance of
1-2cm. Detachment events can be seen clearly in figure 9 as the lighter patches descending
over time. Although the front view and side view experiments were run with comparable
parameters, the times of detachment are not consistent, suggesting that the mechanism is
very sensitive to the experimental conditions or somewhat chaotic. This makes it difficult
to determine whether the buoyancy flux has any effect on the frequency of detachment, but
there is a clear trend for increasing rotation rate to increase the frequency of detachment
as shown by figure 10.

Figure 9: Time series of a vertical slice of blue light intensity between the source and the
wall from the side view. The experimental parameters are identical to those in figures 7c
and 7d.
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Figure 10: Scatter plot of time periods measured between detachment events against the
inertial period of rotation. Only side view experiments were used to obtain these values.

5 Discussion

The results of our experiments leave many open questions for the effects of rotation and
confinement on turbulent plumes. Even without the presence of rotation, the shape of the
steady state formed by a point source plume along a wall is surprising. The results of a
recent numerical study [7] do not appear to match the profile of close to constant width
from the wall found in figure 6, and it remains important to understand this discrepancy.
The difference between the numerics and our experiments may also have implications for
the use of the half-cone model (6)-(8) in modelling glacial meltwater plumes. Quantifying
the variation in the volume flux with height experimentally for this flow would be useful in
determining whether the model can accurately represent the asymmetric plume dynamics.
We only performed the non-rotating experiment at a single volume flux and source density,
so there is plenty of scope for further investigation of this flow in various parameter regimes.

One caveat for our results in the non-rotating experiments is the position of the source
nozzle. As discussed earlier, the dynamics near the source are thought to be dominated by
the Coandă effect and the downstream impact of this is unknown. Replacing the source with
a simple pipe outflow attached to the wall would remove these effects, but it is likely that
the flow from this source would be laminar. Obtaining geophysically relevant parameters
would be difficult in this case, but possible with a sufficiently deep tank that allows for the
laminar-turbulent transition region.

The addition of rotation to the wall plume experiments resulted in frequent deviations
from the steady state. The movement of the plume away from the wall and the detrainment
that occurs during these detachment events has a strong impact on the amount of mixing
that occurs between the plume and the ambient. Figure 11 shows the time-averaged front
view of plumes at four different rotation rates for a buoyancy flux of B0 ≈ 47.5cm4 s−3.
Despite the difference in dye concentration between the non-rotating and rotating experi-
ments, a clear trend is visible with the dye becoming more diffuse at higher rotation rates.
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Figure 11: 3 minute time averages of the reduction in blue light intensity for four exper-
iments in front view at various rotation rates. The time average is taken over a period that
begins 20s after the start of each experiment so effects of initial transients are not seen. Note
that the dye concentration in the f= 0 experiment is half of that in the other experiments.

The lateral spreading of dyed fluid is also greater as f increases.
This increased dispersion can be quantified by considering a Gaussian profile fit to the

light intensity def cit at each height. For a given row of pixels, we fit the profile

I = Ae−
(x−μ)2

2σ2 , (10)

by taking the maximum intensity deficit to be equal to A and finding the first two data
points away from this maximum to have I < A/e, i.e. the points that are an e-folding
distance from the maximum. We then assume these points are at x = μ±√

2σ, from which
we obtain the mean of the Gaussian μ, and the standard deviation σ. Vertical profiles
of σ(z) provide a useful measure of dispersion to compare the different experiments with.
Figure 12 plots these profiles for both the experiments shown in figure 11 and those run
with a higher buoyancy flux. The profiles show a striking dependence on the rotation rate
of the experiment, with the change in buoyancy flux having practically no impact on the
dispersion observed. This is despite the fact that the frequency of detachment was not
totally consistent between experiments with the same rotation and varying buoyancy flux.

This apparent independence of buoyancy flux for long term mixing poses an interesting
question as to how wall jets without any buoyancy would develop in this rotating system.
Turbulent jets initially lead to confined cylindrical structures at sufficiently high rotation

334



Figure 12: Plot of Gaussian standard deviation σ(z) from 3 minute averages.

rates (see GFD Report of Lehn, 2018), but the interaction of these structures with the wall
is unknown. Finding out whether a turbulent wall jet has the same detachment behaviour
would be useful for further understanding the dynamics. Another process in rotating plumes
found to be independent of the buoyancy flux is the precession of an axisymmetric plume
in a rotating environment. The precession frequency was found in [10] to only rely on the
rotation rate and not the buoyancy flux of the plume or the total depth of the water. This
suggests that the process of detachment from the wall may be related to the free plume
precession, and gaining further insight on the wall plume dynamics could help our
understanding of the laterally unconfined plumes.

The fact that the wall plume reverts to a quasi-steady state between detachment events
could be indicative of bistability in the system. The existence of multiple steady states for
an unconfined plume in a rotating (and stratified) environment was discovered by Deremble
[6]. This study used a continuation method to numerically compute the steady states
of an LES-type model where turbulent processes are parameterised by an eddy viscosity.
Without rotation the method identifies the steady state solutions described by classical
plume theory. Once rotation is added, a steady state similar to the classical solution is
found as well as second state that exhibits very different circulation patterns. This solution
has fluid upwelling along the vertical axis beneath the plume, and the outflow of plume
fluid is deflected. If similar steady states exist for the wall plume this could explain the
attachment/detachment behaviour, so a further study on steady states for this problem
would provide a lot of insight into the dynamics.

The influence of the bottom boundary on the wall plume is not fully understood. At
higher rotation rates the more rapid lateral spreading appears to coincide with hindered
vertical motion, as can be seen in figure 11 when f = 2. In the video for this experiment,
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detrained fluid is seen to arrange itself into Taylor columns, indicating that the Taylor–
Proudman theorem is affecting the dynamics and that velocity is close to uniform with
height. The combination of the bottom boundary condition and the Taylor–Proudman
theorem would explain this restriction on vertical motion. However the precise effect that
the bottom of the tank has on the detaching behaviour is unknown. Plume precession in
[10] was found to be independent of the depth of the water, and testing whether the wall
plume motion also has this property would provide further evidence to determine if the
detachment is a signal of the precession.

One key result from [10] comes about because the precession is solely dependent on the
rotation rate. Since precession occurs in every experiment after approximately one rotation
period, rotation will always affect the dynamics as long as the source is maintained for a
sufficiently long period of time. We have not quite shown that the dynamics of the wall
plume are only dependent on the rotation rate, but we can hypothesise that since it is
independent of the buoyancy flux similar results may apply. This would have implications
for geophysical flows with sustained sources, such as glacial meltwater plumes and dense
water currents running into undersea canyons. As we have seen above, plumes affected by
rotation mix and disperse laterally to a greater extent than expected from a plume in a
non-rotating environment, leading to changes in the long-time effects of these flows.
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On Turbulent Fountains with Background Rotation

Andrea M. Lehn

September 29, 2022

1 Introduction

Turbulent fountains are ubiquitous in natural systems as well as in industrial processes
[7]. Fountains occur when there is a reversal or arresting of fluid motion due to buoyancy
differences between the fluid in the fountain and the ambient environment. A turbulent
fountain occurs when a fluid of non-neutral buoyancy is injected form a localized source
with sufficient momentum to be driven initially against gravity and to become turbulent.
Consider a jet of salty water injected at the bottom of a tank of fresh water. Initially,
the salt water will be driven upwards, against gravity, if there is sufficient momentum to
make the jet turbulent. The fluid will rise, entraining fresh water along the way, until it
can no longer rise. The diluted salty fluid at the top of the fountain then overturns, driven
downwards by gravity. The fluid may fall completely to the bottom or intrude horizontally
in the ambient if a background density stratification is present.

The role of rotation on the dynamics of turbulent fountains has not been detailed in
scientific literature, although it is relevant for geophysical processes. For some natural
processes involving turbulent fountains, such as cloud formation or volcanic eruptions, the
Earth’s rotation may influence the dynamics. This report presents experimental results
investigating the role of rotation on turbulent fountains.

1.1 Laminar vs. Turbulent Fountains

The Froude number (Fr) is the non-dimensional group which determines whether or not
a fountain will be turbulent or laminar. Consider a circular source with radius R and
mean source velocity ū, injecting buoyant fluid with a modified gravitational acceleration
g′ = (Δρ/ρ0) g, where Δρ is the density difference between the two fluids, ρ0 is a reference
density, and g is acceleration due to gravity. Fr represents the ratio of inertial forcing to
gravitational forcing for the fountain and is defined as

Fr =
ū√
g′R

. (1)

For Fr >> 1 a fountain becomes turbulent while for Fr = O(1) it remains laminar.
Qualitatively and quantitatively there are differences between turbulent and laminar foun-
tains. Before overturning, laminar fountains rise to a height, h, which is on the order of R,
the source radius. This result may be obtained from dimensional analysis. For a laminar
fountain with four variables, h,R, g′ and ū, h ∼ R for a source with a fixed g′ and ū. There
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Figure 1: A turbulent fountain rising. Dense, salty water is injected upwards into a fresh
ambient from a high F r source. Image from Bloomfield and Kerr [3].

is little to zero entrainment of the surrounding fluid and the laminar fountain has memory
of the source conditions, i.e., the penetration height is totally dependent upon source con-
ditions. Burridge and Hunt [4] have systematically investigated the behavior of fountains
at low and very low Fr source values. Overall, these systems are well studied.

The behavior of high F r sources, i.e. negatively buoyant sources driven by source
momentum, was initially studied by Turner in 1966 [8]. Turbulent fountains have little
memory of the source conditions due to turbulent entrainment of ambient fluid, which
causes the fountain to penetrate such that h >> R. An example of a turbulent fountain is
shown in Figure 1. Heavy fluid is injected from a point source upwards into a still body of
ambient fluid. Turbulence enhances mixing of the lighter ambient into the injected fluid,
which reduces the buoyancy, allowing the fluid to rise higher before overturning and falling
back down.

The important parameters for turbulent fountains are the buoyancy flux, B, and the
momentum flux, M . M is the volume flux of the source times the mean outlet velocity with

units of L4/T2 and B is the volume flux of the source times g′, with units of L4/T3. For a
source with a circular cross section,

M = πR2ū2 (2)

and
B = πR2ūg′. (3)

Both of these variables include information about source conditions g′, ū and R; however,
these parameters alone do not determine the fountain height, as they do for a low Fr source

fountain.
Bloomfield and Kerr [3] determined a power law for the mean height of rise of a turbulent

fountain, based on original work by Turner [8]. The height,Hf depends solely upon M and B.

For a turbulent fountain,

Hf = 1.6M3/4B−1/2. (4)

This non-rotating, turbulent Hf is useful as a characteristic length scale. The height of
the fountain oscillates about a mean height with relatively large amplitudes. Eddies where
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mixing occurs are visible along the sides of the fountain and at the top, as shown in Figure
1. Once the fountain overturns, a curtain partially shields the sides of the rising fountain,
preventing the rising fluid from entraining the ambient fluid. The dynamics of turbulent
fountains have been well studied for a range of conditions, including turbulent fountains in
multi-layer cross-flows [1] and fountains impinging on a density interface [2].

1.2 Low Fr Sources with Rotation

Griffiths and Linden [6] investigated the stability of two-layer density stratified systems with
ambient rotation. A curved density interface forms due to the buoyancy difference between
the two fluids, and eventually the system becomes unstable under the influence of the Coriolis
force. The constant flux experiments performed by Griffiths and Linden are related to the
present investigation. A buoyant fluid was injected at the free surface of a homogeneous body
of fluid which had been spun-up to rigid body rotation. A circular cross-section, porous source
of 1 cm diameter was positioned at the free surface. A constant volume of buoyant fluid was
injected for the duration of the experiment, and the radial and vertical growth of a vortex was

observed. The F r values for these experiments are relatively low, ranging from 10−3 to 5, so
that the flow remains laminar.

A key feature that differentiates the Griffiths and Linden experiments from those pre-
sented in this report is that upon injection there is no large vertical penetration of the fluid.
For turbulent fountains, there is a large change in height of injected fluid due to source
momentum and subsequent entrainment of ambient fluid. The momentum of the source for
the Griffiths and Linden experiments, indicated by Fr, is not sufficiently large to create
turbulent entrainment of the ambient fluid. In the constant flux experiments, a geostrophic
vortex grows, surrounded by the ambient fluid. There is very little mixing. A side-view
image showing vertical penetration of a geostrophic vortex is shown in Figure 2.

The streamlines of the flow are solely determined by rotational effects, the Coriolis

and centrifugal forces, and the modified gravity, g′, between the two fluids. Eventually,
the vortex becomes unstable to rotation and higher order modes occur. A top view of an
unstable configuration is shown in Figure 3. The vortex that forms from injected fluid forms
a smooth boundary with the ambient fluid since there is negligible mixing at the density
interface. The density difference between the two fluids is maintained as the vortex grows.

A key result of Griffiths and Linden’s work is that the radius, R ∼ t1/4 and the height,
h ∼ t1/2.

1.3 Objective: Behavior of Turbulent Fountains with Rotation

How the current investigation is situated with published scientific literature can be visualized
as table with two options, rotation or no rotation and laminar or turbulent. This grid is
shown in Figure 4. Laminar and turbulent fountains have been well characterized and
rotating currents with a low Fr have been studied, filling in three quadrants of the grid.
Conversely, constant source volume flux, turbulent fountains with background rotation have
yet to be studied. This project is situated in the bottom right corner of this grid. The
dynamics of the turbulent fountain are studied by systematic experiments over a parameter
space determined by important dimensionless groups, as discussed below.
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Figure 2: Side view of a vortex forming from Griffiths and Linden [6]. The dark vortex is
buoyant fluid injected from a low F r source. Dotted lines are theoretical predictions of the
vortex location. The tank is rotating anti-cyclonically and the vortex is rotating cyclonically.

Figure 3: Top view of the onset of instabilities with different azimuthal wave numbers in
experiments by Griffiths and Linden [6].
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Figure 4: The scientific context of this project fits into the bottom right quadrant of this
grid. The dynamics of rotating, turbulent fountains are investigated for the first time in
this project.

2 Dimensional Analysis

Dimensional analysis was used to determine a parameter space for experiments. Although
dimensional analysis is useful, knowing the relevant physical variables is crucial for deter-
mining appropriate dimensionless groups. Based on expected behavior of rotating systems
and turbulent fountains, relevant physical variables are determined and scaling is performed
to derive three dimensionless Π groups.

Based on the power law produced by Turner [8] and verified by Bloomfield and Kerr [3]
there is a time scale for the turbulent fountain. A relevant time scale for the time it takes a
fluid parcel to rise to the top of the fountain is the ratio of momentum flux to buoyancy flux,
M/B. For a turbulent fountain, recall that momentum flux and buoyancy flux are the
relevant parameters for predicting fountain behavior. The Coriolis parameter, f , has units of

T−1. It is the appropriate rotational time scale. The Coriolis parameter is equal to twice the
rotational frequency of the experimental table: f = 2Ω. In terms of the period of the table’s
rotation, Ttable, Ω = 2π/Ttable. Thus, the period of rotation is 4π/f s.

Since the system is rotating, there is an added stiffness to the fluid due to its vorticity.
This can be understood by considering the Taylor-Proudman Theorem. A fluid parcel that
is displaced in a direction parallel to the axis of rotation will be forced back to its initial
location by rotation. The faster the rotation rate, the more vertical displacement of fluid
parcels is suppressed. An alternative argument is that in the limit of rapid rotation, the
Taylor-Proudman Theorem gives ∂w/∂z = 0 where w is the velocity in the vertical direction,
z. Since there is no vertical flux through the bottom of the tank, w = 0, the vertical velocity
must be zero everywhere.

Using the Buckingham Pi Theorem and intuition about the system based on the Taylor-
Proudman Theorem and on behavior of non-rotating turbulent fountains, three Π groups are
determined for the rotating fountain system. There are five relevant variables in the system,
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f,M,B, the height of the fountain, Hf and the initial depth of the ambient, HT . Since
there are two dimensions, three Π groups exist. The groups are Π1=fM/B, Π2 = Hf/HT

and Π3 = M/f2H4
T . The first group, fM/B represents a ratio of the two important time

scales of the problem, the fountain rise time to the rotational time. The third group can
be thought of as a ratio of the momentum imparted to the fountain and the resistance to
vertical penetration. For simplicity, given the time constraint of the GFD program, the
ratio of fM/B was varied systematically for fixed values of M . The height of the tank HT

was also fixed. Based on the parameter space, the rotation time scale, 1/f was slower than
the fountain time scale, M/B. Thus, it was anticipated that the fountain dynamics would
dominate the system before rotation.

3 Experimental Setup

3.1 Laboratory Apparatus

Experiments were performed in the Geophysical Fluid Dynamics Laboratory at the Woods
Hole Oceanographic Institution. A 91 cm diameter cylindrical plastic tank was placed on
a direct-drive rotating table and filled with sea water to HT = 35 cm. A pump was used
to inject a constant flux of dyed fluid through a 0.5 cm diameter copper pipe, which was
positioned in the center of the tank, just below the free surface. An acrylic lid with a small
circular opening for the source was placed on top of the tank for rotating experiments. This
was so the air layer above the free surface was also brought up to solid body rotation, to
create a nearly stress free boundary between the water and air.

Instrumentation for collecting digital video data from the side view and top view were
attached to the rotating table. From the top, a Basler imager was positioned to provide a
top view of the entire tank. A Windows machine equipped with software to control the top
view camera was mounted to the rotating frame and used to acquire images. Images were
collected as single page tifs at a rate of five frames per second. The side view was filmed
on a Nikon Coolpix P7000. The collection rate was 24 frames per second. Start times were
synchronized using coordinated verbal and visual cues. For the side view, illumination was
provided using Light Tape, a flexible electro-luminescent panel, which was aligned flush
with the curved tank wall. Pictures of the experimental setup are shown in Figure 5.

3.2 Experimental Parameter Space

A total of 20 experiments were conducted to investigate the role f and B on the behavior of
turbulent fountains. The volume flux of the source, Q0, M and HT were fixed at Q0 = 5.11
cm3/s, M = 133 cm4/s2 and HT = 35 cm for all experiments. To compare the fountain rise
time and rotation time f and B were systematically varied. For the rotating experiments
the table was rotated at f = [0.5, 1.0, 2.0 and 3.0] s−1. Another set of experiments examined
the non-rotating case, f=0. For all five rotation rates, fluids of four different densities were
injected to investigate the role of buoyancy. Four values of B were examined, B/Q0 =
[0, 0.2, 0.5, 1] g′0 where g′0 ≈ 25 cm4s−3. The case of B = 0 is a jet purely driven by
momentum, since there is negligible buoyancy. In terms of the dimensionless parameter
fM/B, which represents the ratio of rotational time to fountain rise time, the fountain
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Figure 5: The experimental apparatus used to study rotating fountains. Left: the top view
of the rotating system showing the tank lid and source. Right: a side view of the system
showing the location of the two camera views as well as the lighting, provided by flexible
electro-luminescent lighting (Light Tape).

dynamics are expected to set in before rotation. The Rossby number, Ro is represented by
(fM/B)−1 for this problem. Ro is a ratio of the rotation time, 1/f s to the advective time,
M/B s for the initial values of the flow. So, Ro = B/fM for the turbulent fountain with
background rotation. The experimental parameter space is shown graphically in Figure 6.
The horizontal axis is the reciprocal Ro and the vertical axis is the theoretical fountain
height, computed from equation 4, normalized by HT .

4 Results

4.1 Role of Rotation in Turbulent Fountains

The first experiments were performed by varying f with a fixed B and M . The buoyancy
difference was set by the difference between sea water and fresh water, which was the
maximum buoyancy flux tested, B/Q0 = g′0. The role of rotation significantly influences
the system dynamics. Figure 7 is a time series comparing a non-rotating turbulent fountain
to a turbulent fountain with background rotation. In the non-rotating case, the injected
fluid spreads radially as it penetrates the ambient. Billows at the interface of the two fluids
indicate turbulent mixing, whereby denser ambient fluid mixes with the fountain, decreasing
it buoyancy. With reduced buoyancy, the fountain touches the bottom boundary of the
tank and then returns to the surface, driven by buoyancy. The same source conditions with
background rotation produced a fountain with a smoother interface and with significantly
decreased penetration. The vortex formed in the rotating case prevents the newly injected
fluid from mixing with the ambient, thus stifling penetration. Figure 8 shows the fluid
interactions occurring in the interior of a surface vortex, formed once the fountain has
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Figure 6: Experimental parameter space for non-zero buoyancy flux and non-zero rotation
rate. The vertical axis is Hf based on scaling by Bloomfield and Kerr [3] given in equation 4,
scaled by the depth of the ambient,HT . The horizontal axis is the reciprocalRo, fM/B.

turned around and risen due to its buoyancy. The injected fluid is initially colored yellow
but then dyed red after the vortex has established. The red fluid shows the fountain still
exists but is contained within the vortex. A small region at the center of the fountain may
punch through the vortex, but largely the fountain is contained within the vortex. Since the
newly injected fluid is largely shielded from the ambient by the established vortex, it may
only entrain fluid of similar density, leaving its buoyancy relatively unchanged. Without
the reduction in buoyancy, the fountain penetrates less deeply. It is too buoyant to continue
further and must rise.

For all non-zero rotation rates, rotation systematically decreases the vertical fountain
penetration. Figure 9 shows the height of the fountain as a function of time for a fixed

value of B/Q0 = g′0 and four non-zero f values. Data is plotted until a consistent fountain
depth is established. As f increases, the initial entrainment and penetration depth are
systematically decreased. Before the vortex has begun to shield the incoming fluid from the
ambient, entrainment and mixing occur, as in the non-rotating case. The vortex establishes
more rapidly at higher f , decreasing the time available for fluid to entrain the denser
ambient. Thus, the buoyancy remains unchanged and the fountain does not penetrate
as deeply. The average fountain height obtained from data presented in Figure 9, scaled

by the height of a non-rotating turbulent fountain, Hf = 1.6M3/4B−1/2 is plotted against
fM/B in Figure 10. This non-dimensional plot shows that the penetration of the fountain is
substantially reduced with increasing rotation. By comparing the volume of the vortex with
time to the injected volume, it is clear that rotation systematically suppresses entrainment,
as shown in Figure 11. Overall, the entrainment is small relative to the injected volume
and only occurs at early times, when the fountain is initiated, before the vortex partially
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Figure 7: A time series showing the influence of rotation on turbulent fountain dynamics.
Panel A shows a turbulent fountain with no background rotation. The fountain becomes
turbulent, hits the bottom of the tank, and eventually rises back up to the surface. Panel B
shows the same fluid being injected with identical source conditions, B/Q0 = 0.5g′0 = 12.5
cm4s−3 and M = 133 cm4s−2, but with a background rotation of f = 3.0 s−1. The period
of one rotation (T = 1 ROT) was 4.2 s.

Figure 8: A time series revealing fountain behavior in an established vortex. The fountain
color is changed from yellow to red after the vortex has established. The interior behavior
of the vortex-fountain system is qualitatively shown to be complex, including stratification
and circulation. Source conditions were B/Q0 = g′0 = 25 cm4s−3 and M = 133 cm4s−2

with a background rotation of f = 0.5 s−1.
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Figure 9: Height of the fountain versus time for increasing f at a fixed B. Source conditions

were B/Q0 = g′0 = 25 cm4s−3 and M = 133 cm4s−2.

encapsulates the fountain. Entrainment of ambient fluid subsidies as more fluid is injected
because the fountain is contained within the growing vortex, shown qualitatively in Figure
8. The fountain is entraining fluid of a density close to that of itself, which doesn’t enhance

mixing with the ambient and maintains a large g′.
Unexpectedly, the radius of the vortex which develops at the surface grows with t1/2.

A log-log plot of radius versus time is shown for all g′ values with varying f in Figure 12.
Since this collapses well to a line with slope of a half, this suggests that R(t) ∼ t1/2. This is
robust for all non-zero values of f and B examined. Notably, this behavior is different than

the t1/4 scaling demonstrated by Griffiths and Linden [6]. A scaling for R as a function of f
was estimated by plotting the vertical intercepts of the log-log R vs.t plots and assuming a

power law scaling of the form R ∼ t1/2fβ . This power law can be determined by plotting the
vertical intercepts of the lines of slope m = 1/2, shown as dotted lines on Figure 13. Plotting
these vertical intercepts against log f would produce a line should a power law scaling be
correct. Figure 13 shows the intercepts used to determine the value of β. Figure 14 shows the
intercepts plotted against log f . Two dotted lines are plotted to serve as visual aids, one of

slope m = −1/3 and one of m = −1/2. A similar approach was applied for the B, using data

from cases with varying g′, to find thatR∼B1/3.
The power law for R ∼ fβ is not obvious. There is support for β = −1/3 and for β =

−1/2, but it is not clear which is correct given the limited amount of data currently available.
A value of β = −1/3 would be consistent with a −1/3 power law for the dimensionless group

fM/B since R ∼ B1/3. A linear least squares fit produced a slope of β = −0.44 with a
R-squared error R2 = 0.99 and an RMS error of 0.042. Since there are only four data points,
this power law is not yet definitive. However, a power law of β = −0.44 is consistent with
expected values based on dimensional analysis and physical reasoning, as discussed further
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Figure 10: Average fountain height after long times normalized by the non-rotating fountain
height, plotted against fM/B for one value of B/Q0 = g′0. Average Hf values are obtained
from data shown Figure 9.

Figure 11: The volume of the vortex that develops plotted against total injected volume as
a function of time. The initial entrainment, indicated by the large increase in volume at
early times, is decreased with increasing f . Source conditions were B/Q0 = g′0 = 25 cm4s−3

and M = 133 cm4s−2.
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Figure 12: A log-log plot of R vs. t for varying f and three non-zero values of B/Q0 =

[0.2, 0.5 and 1.0]g′0 where g′0 = 25 cm4s−3. A line of slope m = 1/2 is shown as a dotted
line for comparison to the data. The scaling of R ∼ t1/2 is robust for the 12 experiments
represented here.

in § 4.2.

Plots collapsing the radius according to the scaling relationships R ∼ t1/2B1/3f−1/3 and
R ∼ t1/2B1/3f−1/2 are presented in Figures 15 and 16, respectively. Both of these plots
collapse the data relatively well. Since M and HT were not varied due to time constraints,

there is not enough information to determine a complete scaling for radial growth of the
vortex at the surface. However, there has been progress toward determining a comprehensive
power law. An interesting finding that is strongly supported by this data set is that the radius

grows with t1/2 rather than t1/4, as was determined by Griffiths and Linden [6].

4.2 Turbulence versus Rotation in Rotating Jets

In order to further understand how rotation impacts the fountain, the simplified case of a
pure momentum source (i.e. a jet) with background rotation was studied. The experimental
setup was the same, except salt water was injected into salt water, so there was no buoyancy
flux. The experiment was repeated for the same rotation rates, f = [0.5, 1.0, 2.0 and 3.0]

s−1. As expected from the previous experiments, rotation plays a critical role. A time
series of the early time behavior of a jet with and without rotation is shown in Figure
17. The jets subjected to background rotation are contained to a vertical column almost
immediately. The non-rotating jet expands laterally and reaches the bottom. Background
rotation influences the jet by constraining radial growth to a vertical column. The jet with
rotation penetrates the ambient, but does not descend to the bottom of the tank as the jet
does. As more fluid is added, the column grows radially and the vertical interface with the
ambient fluid is maintained. The fluid appears to be forced into a Taylor column at very
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Figure 13: To estimate a power law for R ∼ fβ the vertical intercepts of the dotted lines,
indicated by red asterisks, are plotted against log f in Figure 14. Source conditions were
B/Q0 = g′0 = 25 cm4s−3 and M = 133 cm4s−2.

Figure 14: A plot of the vertical intercepts in Figure 13 versus log f . Source conditions were
B/Q0 = g′0 = 25 cm4s−3 and M = 133 cm4s−2. Lines of slope m = −1/2 and m = −1/3
are shown for comparison. A least squares analysis produces a slope of m = −0.44 with an
R-squared fit of R2 = 0.99 and an RMS error of 0.042.
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Figure 15: Collapse of R data for cases of non-zero f and B. Data is fit according to the
scaling R ∼ t1/2f−1/3B1/3, which has dimensions of T−1/6L4/3. B/Q0 = [0.2, 0.5 and 1.0]g′0
where g′0 = 25 cm4s−3.

Figure 16: Collapse of R data for cases of non-zero f and B. Data is fit according to
the scaling R ∼ t1/2f−1/2B1/3 which has dimensions of T−1/2L4/3. Source conditions were
B/Q0 = [0.2, 0.5 and 1.0]g′0 where g′0 = 25 cm4s−3.
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Figure 17: A time series comparing a turbulent jet with no background rotation (A) and

with background rotation (B). The rotation rate is f = 3.0 s−1, corresponding to one
rotational period (T = 1 ROT) of 4.2 s. Snapshots are taken after 1,2,3,4 and 5 rotational

periods. Source conditions were B = 0 and M = 133 cm4s−2.

early times, as soon as two rotational periods. In order to quantify the role of rotation, the
radius of the initial Taylor column, RTC , was plotted against f . An example measurement
RTC is shown in Figure 18.

From dimensional analysis an expected scaling for f can be obtained. For a non-buoyant
(B = 0), turbulent jet with background rotation the meaningful physical parameters are

RTC , f , and M . From this, RTC ∼ f−1/2M1/4 is expected. A dotted line of slope m = −1/2
is plotted along with the experimental results in Figure 19. This fits the data well and is
consistent with the proposed scaling. A linear least squares analysis yielded a power law

exponent of −0.46 with and R-squared error R2= 0.96 and an RMS error of 0.089. This result

agrees with a study of rotating jets by Etling and Fernando, [5]. This scaling of f−1/2may be
influencing the radial growth of the vortex for the buoyant cases. This finding supports the

scaling ofR∼ f−1/2, although more data is necessary to validate the relationship.

5 Conclusion and Future Work

The dynamics of turbulent fountains and jets with background rotation was investigated
by varying the non-dimensional parameter, fM/B, which represents a ratio of the fountain
time to the rotation time. Key results of this project are shown in Figure 20. Although
more rigorous statistical analysis is ongoing to clarify and validate the scaling laws presented

in this report, many trends have been observed clearly. For cases where B �= 0, once the
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Figure 18: The distance treated as the radius of the Taylor column, RTC , for jets with
background rotation. The source conditions were B = 0 and M = 133 cm4s−2 with a
background rotation of f = 3.0 s−1.

Figure 19: A log-log plot of the radius of the Taylor column versus f . A dotted line of
slope m = −1/2, which is expected from dimensional analysis, is shown for comparison.
The source conditions were B = 0 and M = 133 cm4s−2.
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Figure 20: As a follow up to the diagram shown in Figure 4, the results of this project have
begun to populate the bottom right quadrant.

fountain returns to the surface, the radius of the vortex grows as R ∼ t1/2. Comparing cases
with varying B showed R ∼ B1/3; however, the dependence on rotation is less clear, leaving

R ∼ f−1/2 and R ∼ f−1/3 as possible power laws. There is support for both of these laws.
More data is necessary to clarify the dependence on f . It could be argued that R ∼ f−1/2

based on evidence that a Taylor column with RTC ∼ f−1/2 establishes at early times.
Experiments varying HT and M will be performed in the near future. HT appears to

matter for the fountain system. This is in contrast to Bloomfield and Kerr [3], where the
penetration height Hf does not depend on HT . Solid-body rotation introduces a stiffness

to the ambient fluid which strongly discourages vertical motion, in accordance with the
Taylor-Proudman Theorem. This is apparent by how rotation systematically suppresses
fountain penetration. The fluid appears to be forced into a Taylor column after just a few

rotation periods. RTC appears to scale according to RTC ∼ f−1/2.
Another ongoing aspect of this project is investigating the onset of instability once

the vortex becomes unstable to rotation. A picture demonstrating the onset of different
instabilities shown from the top view is show in Figure 21. For a turbulent source with
background rotation, higher order azimuthal wave numbers are observed, as they are in
Griffiths and Linden [6]. Further characterization of these instabilities will be the topic of
future work.
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Figure 21: Once the fluid returns to the surface, the vortex becomes unstable to rotation.
Characterization of this unstable behavior is ongoing. Panel A shows source conditions of
B/Q0 = 0.2g′0 = 4.9 cm4s−3 and M = 133 cm4s−2, with a background rotation of f = 2.0
s−1. Panel B shows source conditions of B/Q0 = 0.2g′0 = 4.9 cm4s−3 and the same M with
a background rotation of f = 0.5 s−1.
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Porous onvection with nternal eating:

nderstanding Enceladus ydrothermal ctivity

Thomas Le Reun

October 3, 2018

1 Introduction

Enceladus, a 500 km diameter icy satellite orbiting Saturn, has drawn a lot of attention since
the first flybys operated by the Cassini probe in 2005. Pictures and in situ astrochemical
measurement have revealed the presence of a water vapour and ice plume ejected into outer
space, as represented in figure 1 [26]. It emerges along fractures in the ice crust at the
South Pole of Enceladus and is associated with a large heat flux anomaly of 12.5 GW.
[26]. Later analyses have revealed that the ejected material contains silicate particles of
nanometric size whose chemistry indicates that the water contained in the plume has been
previously hot, liquid, and in contact with silicate rocks [17]. Enceladus plumes have since
then been interpreted as evidence for hydrothermal activity occurring below the ice crust
of Enceladus. This remains nonetheless surprising and paradoxical as, unlike the Earth,
Enceladus has radiated away all its initial heat, and its small size makes internal heating
by radiogenic elements insufficient to explain the abnormal heat flux [5].

Recently, Choblet et al. [5] have proposed a self-consistent model to explain the
hydrothermal activity based on internal heating by tides in Enceladus’ water-saturated
porous core. Because of the small gravity intensity within the moon, its silicate core, depicted
in figure 2, is thought to be unconsolidated [28, 5]. As an example, the pressure at the centre
of the core is around 2 MPa, which is well below the typical fracture stress of silicate rocks
encountered in planetary interiors [28]. Based on Enceladus’ density and moment of inertia,
researchers propose that the core porosity ranges from 20% to 30% [5]. In addition, it is also
proved from tracking of Enceladus’ librations that between the core and the ice crust lies a
global ocean [ 29] whose thickness varies from 30 km to around 5 km in the model proposed in
[5], the ocean’s liquid water permeates and saturates the porous core. Flowing of water inside
Enceladus’ core may then be driven by tidal heating giving rise to instabilities. Enceladus has
a short period and eccentric orbit around Saturn which exerts a huge gravitational torque
because of the gigantic mass ratio between the two bodies. The spin and the orbit of the moon
are synchronised. If the orbit was perfectly circular, the tidal bulge of Enceladus would
always point towards Saturn, but eccentricity changes this picture as it forces periodic
misalignment of the tidal bulge, leading to oscillations of the shape of the core. This periodic
deformation and net heating in the bulk of the core over
one period. With these three ingredients, it is proposed in [5] that as water flows
inside the core, tidal heating causes its temperature to rise, thus leading to upwelling of
hot plumes through the porous matrix. This process is summarised schematically in
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Figure 1: Picture of Enceladus’ vapour and ice plume taken by Cassini, adapted from [26].

figure 2. Choblet et al. [5] provide a thorough numerical study of the porous convection
with internal heating process in conditions similar to Enceladus’ interior. They observe that
this phenomenon is able to drive hydrothermal activity which is consistent with Cassini’s
observations. Interestingly, they showed in their simulations that the flow organises in
narrow upwelling sheets that focus heat flux anomalies along lines at the surface of the
core.

Yet, convective instabilities in internally heated porous layers far from the onset of
motion has received little attention. Several experimental and numerical studies, mostly
carried out by researchers interested in nuclear accident prevention, were focused on the
onset of convective instabilities or on averaged heat transport through closed porous layers
[3, 24, 13, 19, 8]. To the best of our knowledge there is no quantitative study describing
flow structures inside such a porous layer and the associated thermal anomalies at the top
boundary. In addition, Enceladus’ core includes additional complexity as it communicates
with a layer of unconfined liquid water: the subsurface ocean. Heat and mass transport
are coupled between the two media and their behaviours are governed by very different
physics. Studies of instabilities driven by temperature differences have been carried out in
the context of nuclear accident prevention, waste storage in deep geological repositories
or solidification of binary alloys [1, 2, 20]. Yet they are restrained to quantifying either
the onset of instabilities [4, 16], or to heat transfer close or far from the onset of motion
[1]. Other numerical works, mostly carried out in a geophysical fluid dynamics context,
have proposed a simplification to the issue of two layers coupling: they focus on the porous
medium only and apply a special boundary condition that allows for heat and mass transfers
at the top as a parameterisation for the coupling with the above layer [27, 22, 6, 5].

In the present proceeding, we introduce an idealised model for Enceladus’ core as a two
dimensional internally heated porous layer with an open top boundary. With this set-up,

motion, and to quantify heat transfer efficiency and heat flux anomalies in such a system.
We thus seek to bridge the gap between idealised and mathematical studies of the related
Rayleigh-Bénard problem in porous media [25, 14, 15] and complex numerical simulations
of planetary interiors [22, 5].

This report starts with a short introduction on the idealised system used here. We
discuss in particular the choice of the thermal boundary conditions at the top of the layer and
the expected balances at stake to adequately scale the governing equations. We then present
a brief stability analysis of the considered system, and explore the different regimes above

we aim the flow structures close and far from the onset of convective
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U =
k

μ
(−∇P + ρg) (1)

Figure 2: Right: schematic view of Enceladus’ interiors. The entire surface is covered by
a thick ice sheet; underneath lies a global water ocean and a silicate core. Due to the low
gravity, large deviations are observed in the topography of these layers: the thickness of the

ocean is thought to vary between 30 to 60 km. Left A cartoon of the model proposed in
[5] to explain hydrothermal activity inside Enceladus. The rocky core is porous, saturated
with the ocean’s water and heated by tidal friction. Heating forces the ascent of buoyant
hot fluid then giving rise to hydrothermal activity.

the onset of convection. The core of this proceeding is devoted to investigate the principal
scalings and balances at play in the non-linear regime and the how the flow organises to
carry the internal heat away. We then study the influence of large-scale variations of the
volume heat production to account for a tidal-like heating and compare the driven flow to
the homogeneous case. Lastly, we discuss the relevance of this simple model to describe the
interior of Enceladus; we include estimates of the hydrothermal activity driven by convection
in the core of Enceladus that are consistent with those provided in [5].

2 A imple odel for the nterior of Enceladus

2.1 The model and its governing equations

The core of Enceladus is modelled by a two dimensional porous medium of permeability k,
which is saturated with water of viscosity μ. It lies beneath an ocean that we assume to be
well mixed with a global temperature T0 —see figure 3. The flow U = (U,W ) inside the

porous core is modelled by Darcy’s law:

where P is the pressure, ρ is the density of water and g is the gravity field, which we
assume to be vertical and constant throughout the layer. Note that this is not the case in
Enceladus’ core as the gravitational field intensity increases linearly with radius. Moreover,
since it is a small 500 km oon, the strength of gravity on Enceladus is about a hundred times
smaller than on the Earth. In addition to Darcy’s law, the flow is assumed to be
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Figure 3: An idealised 2d model to describe porous convection inside Enceladus’ core in
interaction with the subsurface ocean. The bottom of the porous layer models the centre of
the moon, there is no heat and mass flux at this height. Mass exchange between the ocean
and the porous core are allowed with a free vertical velocity at the top.

incompressible, so that it must also satisfy a continuity equation:

∂xU + ∂zW = 0 . (2)

Water motion inside the core is driven by buoyancy and temperature differences. We
model the effects of temperature on density assuming linear expansion of the fluid with
temperature under the Boussinesq approximation, such that ρ = ρ0(1 − α(T − T0)) where
ρ0 is a reference density and α the thermal expansion coefficient. Darcy’s law may thus be
written as:

U =
k

μ

(−∇P ′ + ρ0gαΘez
)

(3)

where P ′ =P+ ρ0gz and Θ ≡ T− T0
The flow being driven by thermal anomalies Θ, we must introduce an equation modelling

the transport of heat inside the porous medium. This is achieved using thermal energy
conservation, in which a source term accounting for volume heat production is included:

∂tΘ+U ·∇Θ = κ∇2Θ+ q (4)

with κ the heat diffusivity inside the porous medium —i.e. of both water and the porous
matrix together— and q is the internal heat source term. The latter is related to the volume
heat production by tidal heating QV via q = QV /(ρcp) where cp is the heat capacity per

unit of mass of the porous medium and ρ its density.

2.2 Boundary conditions

From a mathematical point of view, Darcy’s l aw is a first order equation with two com-

ponent two boundary conditions must therefore be applied to the velocity fieldU . The
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temperature field is governed by a second order equation and two boundary conditions must
also be imposed on Θ

The bottom of the porous l ayer roughly corresponds to the core centre we thus assume
that there is no heat and mass flux crossing the bottom boundary, that is:

∂zΘ(z = 0) = 0 and W (z = 0) = 0 (5)

The top of the layer at z = h is in contact with the ocean and must allow mass exchange
between the core and the ocean. This is achieved by imposing a purely vertical velocity at
the top, i.e. :

U(z = h) = 0 . (6)

The two layers are also thermally coupled. One first natural choice for the top boundary
condition is to impose the top temperature to be the temperature of the ocean, i.e. Θ(z =
h) = 0. However, the advective heat flux driving hydrothermal activity WΘ(z = h) across
the interface would vanish. Another condition should then be considered as the water
coming out the porous layer may drive a buoyant plume rising in the ocean. In such a
configuration, the water coming out of the core would keep its temperature as it crosses the
boundary between the two domains, that is:

∂zΘ(z = h) = 0 . (7)

Such a condition cannot be applied everywhere at the top boundary as the temperature of
the water flowing in would not be controlled. We must therefore impose the temperature
of the incoming fluid to be the same as in the ocean. To summarise, the other boundary
condition that is used hereafter is:{

if W > 0, ∂zΘ(z = h) = 1
else Θ(z = h) = 0 .

(8)

Such a discontinuous boundary condition introduces an additional non-linearity in the sys-
tem which may be difficult to handle. In addition, one may wonder whether the elliptic
problem (4) with the boundary conditions (8) is well posed; this issue will be discussed
below.

The boundary conditions (8) and (6) may be regarded as two end-members of the
fully coupled problem of the core-ocean interaction. In the case of slow ascent in the
porous medium, diffusion from the ocean inside the core causes the temperature inside the
porous medium to drop in the top boundary vicinity. Conversely, if the upwelling is fast,
diffusion is not able to affect the temperature inside the ascending plume. As a side note,
intermediary situations where ∂zΘ(z = h) = −β with β > 0 could also be considered.
Nevertheless, choosing between the two boundary conditions or parameterisation β would
require a demanding study of the fully coupled system involving both the ocean and the
porous core.

2.3 Scaling the problem: dimensionless equations

In this paragraph, we aim at writing dimensionless equations driving the porous convection
with internal heating. First, all considered lengths are normalised by the height of the
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porous layer h. We must also define a velocity and a temperature scale, respectively denoted

as U∗ and ΔΘ.
Darcy’s law (3) gives a simple relation between these two scales

U∗ =
k

μ
ρ0αgΔΘ . (9)

Another relation can be inferred from the advection-diffusion equation and several balance
may be considered: advection and diffusion, diffusion and heat production or advection and
heat production. We predict that in the non-linear regime, heat production and advec-
tion will be the dominant balance, leading to the following relation between velocity and

temperature:

(10)U∗Θ∗= hq .

Both scales are then ex ressed as a function of physical parameters as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
U∗2 =

k

μ
ρ0αghq

ΔΘ =

√
μhq

kρ0αg

(11)

We finally find that the system is governed by only one dimensionless
parameter, a Rayleigh number comparing the relative importance of advection and diffu-
sion1:

Ra ≡ hU∗

κ
=

(
kαg

κν

qh2

κ
h

)1/2

. (12)

Note that other definitions have been considered for the Rayleigh number, depending in
particular on the expected balance at play. For instance, Buretta & Berman [3] choose
velocity and temperature scales based on advection and diffusion balance, leading to a
Rayleigh number Rabb = Ra2.

Introducing the dimensionless temperature θ = Θ/ΔΘ and velocity u = U/U∗, the
dimensionless governing equations for a porous layer with internal heating are:⎧⎪⎨⎪⎩

∇ · u = 0
u = −∇p+ θez

∂tθ + u ·∇θ =
1

Ra
∇2θ + 1

(13)

where the pressure is rescaled by hU∗ and time by h/U∗. The flow being incompressible and
2d, it is particularly convenient to introduce a stream function ψ such that u = ∇×(−ψey).
The governing equations (13) are then transcribed as:⎧⎪⎪⎨⎪⎪⎩

∇2ψ = − ∂xθ

∂tθ + J(ψ, θ) =
1

Ra
∇2θ + 1

J(ψ, θ) ≡ ∂zψ∂xθ − ∂xψ∂zθ

(14)

1It can thus also be regarded as a Peclet number.
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Figure 4: Schematic cartoon of the staggered grids used in the numerical code showing the
relative locations of the computed values of the stream function ψ and the temperature θ.
ψ is evaluated at the nodes of the lattice whereas temperature is computed at the squares’
centres.

Lastly the boundary conditions are, for the velocity:{
w(z = 0) = 0
u(z = 1) = 0

(15)

and for the temperature:

BC 1:

{
if w > 0, ∂zθ(z = 1) = 1
else θ(z = 1) = 0 .

BC 2: θ(z = 1) = 0 . (16)

2.4 Numerical code

In the following, we investigate numerically the non-linear behaviour of porous convection
with internal heating. We use a code that was introduced by Hewitt et al. [14] to study
Rayleigh-Bénard convection in porous media. The code solves the governing equations of
the temperature and stream function (14) in a rectangular domain of aspect ratio L with
periodic boundary conditions in x. It proceeds using a Fourier transform in the x direction
and finite differences in z and time. The code evaluates temperature and velocity at the
nodes of two staggered grids —see figure 4— allowing the numerical scheme to be flux
conservative and second order accurate in time and space.

In this section, we investigate both theoretically and numerically the critical value of the
Rayleigh number Ra above which a convective instability develops. We also study the
motion the flow structure at onset, which is in particular helpful to benchmark the numerical
scheme.

3 The nset of onvection
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3.1 The diffusive base state

We seek a base state (ub, θb) for which there is no velocity (ub = 0), which corresponds to
a balance between heat production and diffusion:

∇2θb + 1 = 0 . (17)

The system is invariant along the x direction and taking into account the boundary condi-
tions —either BC 1 or BC 2 in (16)— yields:

θb(z) =
Ra

2

(
1− z2

)
. (18)

3.2 Linear perturbations to the base state

We look for perturbations of the base state of the form:

ψ = ψ1(x)e
σt and θ = θb + θ1(x)e

σt (19)

such that |ψ1|, |θ1| � θb. The exponential terms allow to account for the existence of
convective instability characterised by Re(σ) > 0. Using the ansatz (19), the equations (14)
written at order one are:

∇2ψ1 = − ∂xθ1 (20)

σθ1 +Raz∂xψ1 = Ra−1∇2θ1 . (21)

Taking the x derivative of (21) and substitution with (20) gives a single equation on the
stream function:

∇4ψ1 = Raσ∇2ψ1 − zRa2∂xxψ1 (22)

As the system is invariant along the x direction, ψ1 is assumed to be a plane wave along
x, that is ψ1 = ψ01(z) exp(ikx) —and consequently θ1 = θ01(z) exp(ikx). The equation (22)
with the plane wave assumption yields the following ordinary differential equation on the
function ψ01:

ψ
(4)
01 − (2k2 +Raσ)ψ

(2)
01 + (k4 +Raσk2 − zRa2k2)ψ01 = 0 (23)

where σ is also unknown. This boundary value problem has five boundary conditions:

• w(z = 0) = 0 −→ ψ01(0) = 0

• u(z = 1) = 0 −→ ψ′
01(1) = 0

• θ(z = 1) = 0 −→ ψ′′
01(1) = k2

• ∂xθ(z = 0) = 0 −→ ψ
(3)
01 (0) = 0

• ψ01(1) = 1 to set the amplitude of the solution

where we have used the boundary condition BC 2 for the temperature at the top of the
domain. This is justified as we consider the onset of motion and upwelling is by construction
very slow close the threshold.
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3.3 Theoretical solving

The equation (23) is solved numerically with the SciPy routine solve bvp [18, 7]. The
input parameters are the Rayleigh number Ra and the wave number k. These two values
are explored to find the range of parameters for which the instability grows. A plot of the
critical values of the Rayleigh number above which the instability grows as a function of
the wave number is given in figure 5 left. From this numerical solving, we find the lowest
value of the Rayleigh for which σ = 0 to be Ra = Rac = 5.894 at k = kc = 1.751. The
temperature field and streamlines of the unstable mode at onset are represented in figure 5
right. The vertical structure functions ψ01 and θ01 are plotted in figure 6.
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Figure 5: Left: Curve of the critical Rayleigh number Rac(k) above which the instability
grows as a function of the horizontal wave number k. Right: temperature heat map and
velocity streamlines of the most unstable mode at the threshold of the instability.

In their experimental set-up with closed top boundary Buretta & Berman [3] pre-
dicted, and found experimentally their critical Rayleigh number to be Rabb,c � 32.8. To
compare their values to ours, we must remember thatRabb=Ra2, and here we find that

Rac
2 � 34.7; this is slightly above Rabb,c, but remains similar.

3.4 Benchmarking the numerical code

The theoretical investigation of the onset of convection is used to benchmark the numerical
code. Simulations are carried out at values of the Rayleigh number Ra very close to the

onset —|Ra−Rac| ≤ 101 typically. The aspect ratio L of the box in the x direction is chosen
to match twice the critical wave length, i.e. L = 2 × 3.580. Computations are initiated with a
diffusive temperature profile (18) plus a relatively small noise. We observe an exponential

growth or decay of the kinetic energy and the thermal energy of the perturbation to the
diffusive base state. The growth rate found numerically is reported in figure 7. It is
compared to the theoretical value of the growth rate at the same Rayleigh numbers and
at the critical wave number kc. The agreement between the two method appears to be

satisfying: the relative error between both growth rates is within 2%, apart from the

closest value ofRa toRac for which it is difficult to measure precisely the growth rate.
The agreement between the numerical computation is sufficient to use it confidently for

the study of the non-linear behaviour of the instability above the threshold, provided the
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Figure 6: Vertical structure function of the stream function ψ01(z) and the temperature
θ01(z) obtained by solving the boundary value problem (23) (black line) and extracted from
a numerical simulation of the instability close to the threshold (Ra−Rac � 3× 10−2).

spatial and time resolution are sufficient to well resolve the dynamics.

4.1 Organisation of the flow: structures and scales

4.1.1 Illustrating the non-linear behaviour

To introduce to the non-linear behaviour of the instability driven by internal heating, we
propose to illustrate typical patterns observed at different Rayleigh numbers. Figures 8
and 9 are typical snapshots of the temperature field and streamlines, and figure 10 shows
the mean temperature difference between the bottom and the top of the porous layer as a
function of Ra. At low Rayleigh number, i.e. for Rac ≤ Ra � 40, the convection reaches
a steady state with few rolls, be it for boundary condition BC 1 or BC 2 —see (16). For
larger Rayleigh numbers, the flow exhibits a chaotic behaviour where two or three modes
with different periodicity —or plume numbers— are in competition. This situation ceases
for Ra � 600, at least for an aspect ratio L = 4: higher values of the Rayleigh number
give rise to steady solutions with a large number of narrow plumes. This transition is
also noticeable in the temperature difference —figure 10— where the emergence of steady
plumes is associated with a sudden decrease in the temperature difference.

The only noticeable difference between the two boundary conditions is the existence of
thin thermal boundary layer when the top temperature is imposed —BC 2. Its thickness
of order Ra−1 is set by a balance between vertical advection and diffusion. In addition,
the high degree of similarity between the simulations carried out with different boundary

that the mixed boundary condition —BC 1— is reliable. Note that this
is not the case below the threshold of the instability where that are highly sensitive
to initial are observed. We therefore choose to use both boundary conditions in
the study hereafter, as long as Ra > Rac; the condition BC 1 is particularly convenient in

4 The on-linear ehaviour of nternally eated onvection
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Figure 7: Growth rate computed from numerical simulations and comparison with the
expected theoretical value obtained solving the boundary value problem (23). For the
theoretical computation, the wave number k is chosen such that k = kc.

terms of resolution as it does not produce a sharp boundary layer at the top of the domain.
Lastly, we notice on these that (θ, |u|) = O(1), and more quantitatively on

the plot of the mean temperature difference between the top and the bottom of the layer
—figure 10. This is the case even close to the instability threshold at Rayleigh numbers
as low as 10. It confirms that the balance between advection and heat production drives
the dynamics. In addition, in the steady saturated state of the convective instability, the
temperature anomaly θ is positive. This is a theoretical constraint given by the extremum
principle applying on elliptic and parabolic partial differential equations —the interested
reader may refer to a short demonstration in [12].

4.1.2 Typical plume size and distances

The snapshots presented in figures 8 and 9 show that, as the Rayleigh number is increased,
the typical extent is reduced, as observed for instance in [5] for the case of internal heating,
and also in [14] and [15]. We also notice that the number of plumes increases.

In this paragraph, we aim at better quantifying the typical plume size �p and separation
Δxp as a function of the Rayleigh number. This is achieved from measurements of the heat
flux Jt at the top of the porous layer,

Jt =

(
wθ − 1

Ra

∂θ

∂z

)∣∣∣∣
z=1

(24)

where the horizontal bar denotes a horizontal averaging. Jt involves both an advective
and a diffusive contribution, and we recall that for the case of fixed temperature at the top
—BC 2—, the advective part of Jt vanishes.

Jt peaks at the core of upwelling zones, and we define the typical plume scale �p as the
full width at half maximum of these peaks. For one simulation, Jt is recorded every quarter
time unit —while a simulation is typically a hundred time units— �p is the ensemble average
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Figure 8: Snapshots of the temperature field θ (heat map) and the stream lines of the flow
at Ra = 10 (left) and Ra = 100 (right) for boundary condition BC 1 (top) and BC 2
(bottom). Both states have reached a statistically steady state but the overall behaviour

is chaotic. The resolution for both simulations is 512× 300 (x× z). Note that the
aspect ratio is decreased by a factor two between the two Rayleigh numbers.

Figure 9: Snapshots of the temperature field θ (heat map) and at Ra = 1000 for boundary
condition BC 1 (top). The resolution for both simulations is 1024× 300 (x× z).
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Figure 10: Mean temperature difference between the bottom and the top of the porous layer
Δθ as a function of the Rayleigh number Ra, for both boundary conditions and for an aspect
ratio L = 4. The diffusive temperature difference Δθ = Ra/2 is shown for comparison.

over every peak of all snapshots. The same process is used to determine the typical plume
separation Δxp. The result of this processing is shown in figure 11: both the plume width
and separation exhibit the same scaling with the Rayleigh number, that is �p,Δxp ∝ Ra−1/2,
even close to the threshold. It indicates that although the plumes become narrower with
increasing Ra, their density and aspect ratio remains unchanged. This power law can’t be
explained by linear theory, even at low Ra, as the mean separation between plumes does
not coincide with the most unstable mode predicted by linear stability analysis —see figure
11.

The Ra−1/2 power low describing plume size and separation may be explained by de-
riving a relation between the mean temperature field and the mean temperature gradients
[9]. Multiplying the energy conservation relation in (13) by the temperature θ yields:

1

2
∂tθ

2 + θ∇ · (uθ) = 1

Ra
θ∇2θ + θ . (25)

Taking the time and volume average, denoted as 〈 · 〉, and assuming the system has reached
a statistically steady state, leads to the following relation:

1

2
wθ2

∣∣∣
z=1

=
1

Ra

〈
θ∇2θ

〉
+ 〈θ〉 (26)

where the left hand side term is an energy leak term at the top boundary averaged in x.
It vanishes for boundary condition BC 2 where θ(z = 1) = 0. Integration by parts of the
term

〈
θ∇2θ

〉
finally gives the following identity:

〈θ〉 = Ra−1
〈|∇θ|2〉+ 1

2
wθ2

∣∣∣
z=1

. (27)

w and θ are both order one quantities because of the physical balance between heat pro-
duction and advection. As a consequence, the gradients are order Ra1/2 which explains the
scaling observed in figure 11.
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Figure 11: Typical plume size �p (left) and plume separation Δxp (right) for several

simulations with both boundary conditions BC 1 and BC 2 at different aspect ratios ranging

from 2 to 8. Both quantities scale with the Rayleigh number as Ra−1/2. The error bars are
determined by the standard deviation of the mean plume width and separation over a data
set containing every plumes of all snapshots. The red stars indicate the plume separation
expected for the most unstable mode fitting in an aspect ratio L = 8 domain inferred from
linear theory by solving the boundary value problem (23).

4.2 Describing the asymptotic regime of porous convection with internal
heating

In the previous section, we have illustrated the heat transporting structures in the non-
linear regime of the convective instability through snapshots. We have also characterised
shape properties such as their typical width and distance. In this section, we present a
thorough characterisation of the asymptotic regime in terms of heat transport and physical
balances. In particular, we derive a steady non-linear solution for plumes at high Rayleigh
numbers that we compare with what is observed in simulations.

4.2.1 The flux conservation equation to characterise heat transport

The horizontally averaged vertical heat flux, including advection and diffusion, writes:

J(z) = wθ(z)− 1

Ra

∂θ

∂z
. (28)

Thermal energy conservation (13) prescribes a balance between vertical heat transport and
volume heat production such that:

J(z) = z (29)

In the asymptotic regime of high Rayleigh number, we expect that the heat produced is
carried away by advection only, except in a boundary layer when they exist —i.e. for
boundary condition BC 2—, that is:

wθ(z) = z (30)
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Figure 12: Vertical variations of the horizontally-averaged advective heat flux in the case
of both low and high Rayleigh numbers, for boundary condition BC 1 and aspect ratio
L = 4. Note that the results are very similar for BC 2 apart from the presence of a top
boundary layer of thickness O(Ra−1) where the advective flux drops to zero as θ vanishes.
The asymptotic law wθ = z is given for reference.

As it can be noticed in figure 12, the advective heat flux tightly follows the asymptotic law
(30) even at Rayleigh numbers as low as Ra = 50. This balance is broken when θ = 0 is
imposed everywhere at the top boundary —BC 2—: the advective flux is converted into
conductive heat flux over a layer of thickness O(Ra−1) as illustrated in figure 15. Never-
theless, heat transport in the bulk is dominated by advection at high Rayleigh numbers, as
expected.

4.2.2 The evolution of temperature with height

Convection being efficient in transporting heat away, one may wonder how it mixes the
thermal energy in the porous layer, which is characterised by the horizontally averaged
temperature profile. In the case of Rayleigh-Bénard convection in porous media, in the
asymptotic regime of high Ra, the temperature is constant in the bulk [14]. That is also
an observation made in classical convection with internal heating, where the quadratic
temperature profile at low Ra flattens towards constant temperature across the domain
—see [11] and references therein.

In figure 13, at low Rayleigh number —here Ra = 10— the temperature profile bears
a quadratic shape reminiscent of the diffusive base state (18). Conversely, at high Ra, we
observe homogenisation convergence towards an asymptotic profile for which the tempera-
ture increases with depth in the porous medium. The temperature difference being O(1),
it is reduced by a factor O(Ra−1/2) compared to the diffusive base state. In that respect,
the non-linear regime of our convection setup is similar to those mentioned above in terms
of internal energy mixing.

We also quantify the lateral variations of the temperature and represent in 14 the hori-

zontal variance of the temperature field, that is θ2 − θ
2
. Surprisingly, it seems to converge

towards a linear profile, exactly like the advective flux. The origin of this particular law will
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Figure 13: Vertical variations of the horizontally-averaged temperature flux for boundary
condition BC 1 and aspect ratio L = 4. Note at Ra = 10 a quadratic profile that is
reminiscent of the diffusive steady state (18)
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Figure 15: Comparison between the two boundary conditions BC 1 and BC 2 of the advec-
tive flux, average temperature and horizontal variance profiles at Ra = 1000 for an aspect
ratio L = 4. This figure highlights the similarities between the profiles apart from the top
boundary layer.

be explicited in the next paragraph. The variance increase with height is consistent with
the observation from snapshots in 8 and 9 that the temperature contrast between upwelling
and downwelling zones increases with height, as cold water hot water is expelled.

4.2.3 Analysing scalings and balances in the high Rayleigh number regime

In the preceding paragraphs, we have exhibited the statistical features of the asymptotic
regime of high Rayleigh numbers in terms of plume dimensions, heat transport and temper-
ature variations. We would like to provide a theoretical understanding of these properties;
we thus propose to analyse the governing equations (13) for Ra � Rac.

We know after paragraph 4.1.2 that horizontal gradients are order Ra1/2: this forces in-
troducing a rescaled horizontal variable x̂ = Ra1/2x. The continuity equation then compels
|u|/|w| ∼ Ra−1/2, we thus also define a rescaled horizontal velocity û = Ra1/2u. With these
rescaled variables, velocity components, temperature and gradients are all O(1).

The curl of Darcy’s law in (14) gives:

∂xw − ∂zu = ∂xθ (31)

or equivalently with rescaled variables:

Ra1/2∂x̂w −Ra−1/2∂zû = Ra1/2∂x̂θ (32)

which yields at leading order in Ra:

∂x̂w = ∂x̂θ (33)

and thus, taking into account vertical mass flux conservation:

w = θ − θ(z) . (34)

The advective heat flux may therefore be recast as:

wθ = θ2 − θθ = θ2 − θ
2

(35)
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which explains the similarity observed between figures 12 and 14. The equivalence between
temperature fluctuations and heat advection is a consequence of Darcy’s law and of the

O(Ra1/2) scaling for the plume dimensions.
Lastly, note that the advection-diffusion equation in not easily reduced in the asymptotic

regime of high Ra. Horizontal and vertical advection, lateral diffusion and heat production
are all of the same order when rescaled variables are used.

4.2.4 A non-linear solution in the high Rayleigh number regime

With the help of the scalings expressed in the preceding paragraph, we derive in the present a

fully non-linear solution to the equations (13) in the high Rayleigh number regime. We look

for a low order solution that is steady and harmonic with wave number k = Ra1/2k̂. The
ansatz for the velocity field is therefore:{

û = û0(z) sin(k̂x̂)

w = w0(z) cos(k̂x̂)
(36)

for which there is no mean vertical or horizontal mass flux. For this ansatz to satisfy the
continuity equation, the following relation is required:

w′
0 = −k̂û0 . (37)

We must also introduce an assumption for the structure temperature field. It may be
found by analysing the advection-diffusion equation (13) transcribed in rescaled variables x̂
and û, and keeping the highest order terms only:

û∂x̂θ + w∂zθ = ∂x̂x̂θ + 1 . (38)

θ must contain a harmonic part for the temperature fluctuations to match the velocity field
(36), but a component depending on z only must also be added for the diffusion term in
(38) to be balanced by the non-linear term. Our ansatz for the temperature is therefore:

θ = f(z) + w0(z) cos(k̂x̂) (39)

which automatically satisfies the velocity-temperature fluctuations relation provided by
Darcy’s law (34).

To determine the functions w0 and f , we must use the advection-diffusion equation (38),
which contains a mean and two harmonic (k̂ and 2k̂) terms. Balancing the mean terms and
using the continuity relation (37) simply yields a balance between vertical heat advection
and heat production, that is:

dw2
0

dz
= 2 i.e. w0 =

√
2z (40)

The harmonic k̂ terms transcribe a balance between horizontal diffusion and the vertical
advection of the average thermal energy —or temperature— profile:

w0f
′ = −k̂2w0 i.e. f(z) = f0 − k̂2z . (41)

406



The latter balance is particularly important, without any a priori knowledge of the depen-
dence of k with the Rayleigh number, it sets k ∝ Ra1/2. In other words, an alternative way
to derive the structure of the temperature and velocity fields would have been to use first a
similar ansatz to (36) and (39) but without any assumption on the relative scalings between
the two components of the velocity or the dependence of k with Ra. The balance between
vertical advection and lateral diffusion would have imposed k ∝ Ra1/2, and consequently
the relative scalings of the preceding paragraph.

Lastly, the harmonic 2k terms coming from the non-linear term leads to exactly the
same balance as Darcy’s law, which is automatically satisfied by our ansatz.

To summarise, the fully non-linear low-order solution to the internally heated porous
convection in its expanded form is:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u = −Ra−1/2

k̂
√
2z

sin(Ra1/2k̂x)

w =
√
2z cos(Ra1/2k̂x)

θ = f0 − k̂2z +
√
2z cos(Ra1/2k̂x)

(42)

where k̂ and f0 are O(1) but a priori unknown. Note that this solution only satisfies one
boundary condition: the absence of mass flux at the bottom of the porous layer. The
remaining boundary conditions, be it the absence of bottom heat flux, the purely verti-
cal velocity at the top, or any of the thermal BC 1 or BC 2, are all
unmatched with the solution. Although the non-linear solution predicts a decrease of tem-
perature with height, the obtained linear trend obviously does not match the more complex
master curve observed in figure 13.

Figure 16 provides a comparison between plumes extracted from the simulations at
two different Rayleigh numbers with a synthetic plume corresponding to the solution 42.
The overall behaviour of the two fields are the same, but the theoretical solution does not
capture the shrinking of the plumes close the the top boundary. To draw a more quantitative
comparison between the non-linear solution and the flow in one plume, we plot in figure 17
several horizontal cuts at different heights of the vertical and horizontal velocity. We find
that in the bulk, the theoretical solution adequately describes the amplitude of the velocity
variations despite the above-mentioned discrepancies. As indicated by the highest profile
in figure 17, refining the model would require including higher harmonics which become
predominant at the top boundary, which is difficult to implement because of non-linearities.

4.2.5 Conclusions

To conclude on the asymptotic behaviour of the instability, we have derived a steady, pe-
riodic and fully non-linear solution of the equations (13) under the assumption of high
Rayleigh number. It has highlighted the main balance at play in the layer between heat
production and the vertical advective flux, and between the horizontal diffusion and the
advection of the average thermal energy. Although the non-linear solution is too simple
and does not satisfy the majority of the imposed boundary conditions, it does capture the
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Figure 18: Plot of the Nusselt number N defined in (45) as a function of the diagnostic
Rayleigh number R∗ = Ra × Δθ for both boundary conditions BC 1 and BC 2 and an
aspect ration of L = 4. The transition around R∗ = 103 corresponds to the emergence of a
steady state in the saturation of the instability —see snapshots of the flow in figures 8 and
9. The line N = 1 materialises purely diffusive heat transfer, and the vertical line marks
the theoretical onset of convective instability. The insert shows the same data close to the
threshold of the instability.

amplitude of both the horizontal and vertical velocities, and hence of temperature fluctua-
tions.

4.3 Quantifying heat transport across the porous layer

Earlier in this proceeding, we have shown that heat is carried away by convection. This
results into a well-mixed interior with a temperature that remains O(1) whereas it would be
O(Ra) if advection was not efficient. Nevertheless, we would like to quantify this transport
efficiency and to compare it to the more classical setup of Rayleigh-Bénard convection.

In the case of Rayleigh-Bénard convection, be it in an unconfined fluid or a porous
medium, advective heat transport efficiency is characterised by the Nusselt number which
quantifies the enhancement of the heat flux compared to a purely diffusive case. In the case
of internal heating, as the system has reached a statistically steady state, the flux crossing
the top boundary must match the heat produced in the layer. Quantifying heat transport
efficiency therefore requires using a more general definition of the Nusselt number. On
solution is to generalise the definition of the Nusselt number considering that it compares
the volume and time average of the total heat flux —including advection and diffusion—
to the diffusive heat transport [10]. Calling N this number, its definition reads:

N ≡
〈
wθ −Ra−1∂zθ

〉
−Ra−1 〈∂zθ〉 = 1 +Ra

〈wθ〉
Δθ

, (43)

where Δθ = 〈∂zθ〉 = θ(0)− θ(1) > 0.
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In order to compare the present setup to Rayleigh-Bénard convection in porous media,
we must use an effective Rayleigh R∗ for which the temperature scale is based on the
temperature difference across the layer. We recall that, according to (9), the temperature
and velocity scales are proportional to one another. Here, we introduce a diagnostic Rayleigh
number that is based on the temperature scale Δθ×ΔΘ instead, and therefore on a velocity
scale U ′ = ΔθU∗. Consequently, as Ra = hU∗/κ, the diagnostic Rayleigh number based on
Δθ ×Δθ writes:

R∗ ≡ ΔθRa . (44)

The “Rayleigh”-Nusselt law that we must use for comparison with the Rayleigh-Bénard
setup is therefore a mapping between R∗ and N . It is explicited from (43) as:

N = 1 +R∗ 〈wθ〉
Δθ2

. (45)

Because Δθ = O(1), the asymptotic regime of high Ra corresponds to high values of
R∗. Moreover, because 〈wθ〉 = 〈z〉 = 1/2, the scaling between N and R∗ boils down to the
simple law:

N ∝ R∗ . (46)

This scaling is observed in our simulations for both conditions at the top boundary —
BC 1 and BC 2— as shown in figure 18. Interestingly, there is a clear enhancement of
the efficiency of heat transport as steady states emerge in the non-linear saturation of the
instability around R∗ = 103.

The same scaling between N and R∗ is also found in the classical Rayleigh-Bénard setup
[25, 14, 15]. The fact that the Rayleigh-Bénard and internally heated convection both lead
to the same efficiency is specific to the porous media: in unconfined fluid, it has recently
been shown experimentally that the Nusselt-Rayleigh laws are different between the two
setups [21] because of the important role of inertia.

4.4 Conclusion on the asymptotic regime

In the present section devoted to the study of the large Rayleigh number regime, we have
shown via simulations that, as expected, the heat produced in the layer is mostly carried
by the flow. This is characterised by the observed balance between vertical advection and
heat production in figure 12, or by the large values of the Nusselt number which compares
the total heat flux to the diffusive heat flux —see figure 18. We have also shown that the
efficiency of heat transport by the flow is similar to the classical Rayleigh-Bénard setup in
porous media.

Lastly, we have exhibited a low order solution to the non-linear problem (14) that
captures the velocity amplitude in the bulk of the layer, and that also reveals that the scaling
between the plume size and the Rayleigh number is set by a balance between horizontal
diffusion and vertical advection of the mean thermal energy.
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Figure 19: Snapshot of the temperature field for the heterogeneous heating case (top) and
the mean temperature and mean flow streamlines averaged of the the saturated phase of
the instability (bottom).

5 Accounting for idal eating: patial odulation of eating

5.1 Large scale modulation of heating

We explore in this section the change in the transport brought by large-scale modulation of
the internal heating. This is important for the case of Enceladus in which heterogeneity of
tidal heating ha been shown to play a role in focusing the heat flux where heating is the most
intense [5]. We consider here a domain with aspect ratio L= 4 for which q takes the

following form:

q(x) = 1−Δq cos

(
2π

L
x

)
(47)

which is such that the mean heat production is unchanged compared the homogeneous case.
In addition, the maximum heat production is located at the centre of the domain. In the
following, we only illustrate heat modulation with Δq = 0.5 in the case of the boundary
condition BC 1. Δq = 0.5 is a good proxy for tidal heating which bears latitudinal and
longitudinal variations up to a factor 2 between minima and maxima.

5.2 Large scale flow and pulsatility

The first striking feature emerging from heterogeneous heating is the attraction of the
plumes towards the centre where internal heating is the strongest. Although plumes may
exist in the whole interior of the domain, they merge towards the centre, which results in a
higher temperature region with larger heat flux anomaly, as illustrated in figure 19. Note
that despite the plume merging in the centre, the upwelling zones remain narrow and their
number is increased with Ra.
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Figure 20: Horizontally averaged advective heat flux at the top boundary at Ra = 300 (left)
and Ra = 3000 (right), with comparison between homogeneous (top) and heterogeneous

(bottom).

Plume merging towards the centre is driven by a large scale mean flow that is also shown
in figure 19. Note though that fine structures may still be traced in the mean flow, especially
at Ra = 3000 where the side plumes persist over a long time. Although we attempted to
describe this mean flow in a way very similar to the plume solution found in the previous
section, a simple solution remained elusive. This is because time-dependent fluctuations
play a collective role in establishing the mean flow and transporting heat, and they remain
difficult to handle without any proper closure method.

Sweeping and merging of plumes also leads to pulsatility in the advected heat flux, as
shown in figure 20. At intermediate Rayleigh number (Ra = 300), whereas the flux was
intermittent for homogeneous heating, it exhibits a quasi-periodic behaviour for a modulated
heating. The typical period is of order one, i.e. it takes place over a convective time scale, and
correspond to the time needed for plume formation, advection and merging. The effects of
heterogeneous heating are even more striking at high Ra: the steady state observed in the
homogeneous case is replaced by quick oscillations of the heat flux. They correspond to the
many plumes observed in the centre of the domain hitting the top boundary non
synchronously —see figure 19.

5.3 Similarities with the homogeneous heating case

Despite the existence of a mean flow and the pulsatile behaviour, convection with hetero-
geneous internal heating bears many similarities with the homogeneous case. As already
noticed earlier, small scale plumes are still present in the flow, and their typical width re-

mains proportional to Ra−1/2 —see figure 21— but with increased variability. This means
that the balance between horizontal diffusion and vertical advection is still at play to de-
termine the single plume dynamics.
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mean temperature profile for the heterogeneous heating at several Rayleigh numbers; the

red line correspond to the temperature profile in the homogeneous case in the highRa
regime.

Moreover, even if lateral variations of the mean temperature are obvious in figure 19, the
horizontally averaged temperature follows a trend that is very close to the homogeneous case,
as it is shown in 21.

5.4 ChangingΔq

The effect of the amplitude of heating modulation Δq has also been considered. As expected,
increasing Δq leads to a narrower confinement of the upwelling plumes and larger heat flux
anomalies at the center of the domain. It also gives rise to transtion from intermitent
behaviour to quasi-periodic, even at large valeus of Ra.

6 Porous onvection with nternal eating nside Enceladus

6.1 Physical properties of Enceladus’ core

This last part comes as a conclusion on this ideal study of porous convection with internal
heating and aims at re-framing our results in the context of Enceladus core.

To characterise convection inside Enceladus’ core, and to compare our results to existing
literature, we use the same physical parameters as in [5]. A set of fixed physical constants are
given in table 1. We reproduce the process used in [5] and do not precisely specify the
permeability k and internal heat productionQV values. Instead, we consider that kmay range

from 10−15 m2 to 10−12 m2 and that the tidal heating is between 10 GW2 and 40 GW. We
therefore draw a map of the behaviour of the system keeping the parameters of table 1
constant and varying both k andQV .

2This lower bound is inferred from the flux at the south pole of Enceladus
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Core radius (h) 186 km
Kinematic viscosity (ν) 1× 10−6 m2.s−2

Thermal diffusivity (κ) 1× 10−6 m2.s−2

Water thermal expansion (α) 1.2× 10−3

Heat capacity (cp) 4× 103 J.K−1.kg−1

Gravity (g) 0.1 m.s−2

Table 1: A summary of the physical parameters used to transpose our idealised study to the
case of Enceladus’ core. They are adapted from [5] —see in particular the Supplementary
Material.
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Figure 22: Left: the Rayleigh number as a function of the permeability and the tidal
heating. The red line materialises the onset of convection for the homogeneous heating
case. Right: typical dimensional temperature scale ΔΘ (in Kelvin) —see (48)— inside the
porous core of Enceladus. The white line gives an idea of the liquid-vapour transition that
arises around 500 K at the pressure reached at the core-ocean boundary.

6.2 The Rayleigh number inside Enceladus

As explained in the second section of this proceeding, the overall behaviour of the system
depends only on one dimensionless parameter, the Rayleigh number defined in (12). The
map of the possible Rayleigh numbers inside the core of Enceladus is given in figure 22.
In the range of values of k considered in [5], the system is always unstable to convection.
Nevertheless, Ra does not reach very high values and peaks around 500.

6.3 Typical velocity and temperature inside the core of Enceladus

In this paragraph, we are interested in quantifying typical temperature and velocity —or
Darcy flux— inside the porous medium. Using the scalings introduced in paragraph 2.3,
we write the temperature scale ΔΘ as a function of Ra:

ΔΘ =
κν

kαgh
Ra (48)
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This scale is shown in figure 22. We find that depending on the parameters, the expected
temperature difference between the porous core and the ocean ΔΘ ranges from a few tens
of degrees to a few hundred. For a difference of 200 K, the temperature inside the porous
medium reaches 500 K, which is the temperature at which liquid water turns into vapour at
the pressure found at the bottom of Enceladus ocean. Beyond this temperature, our model
is certainly not adapted to describe the flow inside the core.

The velocity scale is given by a diffusive velocity κ/h augmented by a factor Ra, that
is:

U∗ =
κ

h
Ra . (49)

The diffusive velocity scale amounts to 0.1 mm.yr−1; because Ra does not exceed 500, the
Darcy flux remains below 5 cm.yr−1.

Consequently, the convective time scale τ is:

τ =
h

U∗ =
h2

κ
Ra � 1Gy×Ra . (50)

The typical variability timescale, for instance for the flux at the top boundary —see figure
20— is thus at least 2 million years. It is a very slowly evolving system; as a consequence,
the presently observed symmetry breaking between the south pole and the north pole of
Enceladus, where tidal heating is the same [5], might be a consequence of pulsatile behaviour
happening over a timescale that is too long to be appreciated.

6.4 Hydrothermal velocity at the bottom of Enceladus

To evaluate the typical velocity of the buoyant hot water coming out of the core at the
bottom of the ocean we must first evaluate the buoyancy flux. A first difficulty arises
when we seek to transpose our two dimensional simulations into three dimension: does
the source of buoyancy take the form of a point or of a line? Simulations carried out in
[5, 22, 27] suggest that upwellings in the porous medium take the form of elongated sheets.
We will therefore assume that the upwellings we have characterised in the porous layer here
drive line sources of buoyancy, giving rise to a two dimensional buoyant plume. The two
dimensional buoyancy flux B2d has dimensions [B2d] = L3 · T−3, a typical hydrothermal

velocity Uh is therefore given by Uh = B
1/3
2d . Not that a refined calculation adapting the

model of Morton et al. [23, 30] to the case of 2d plumes in unstratified ambient leads to a

similar result: the velocity inside the turbulent plume is constant and proportional to B
1/3
2d .

The buoyancy flux is given by [30]:

B2d =

∫
upwelling

αg (ΘW )|z=h (51)

where the 1d integral is computed over an upwelling zone of typical extent �p ∝ Ra−1/2. As
Θ and W are proportional to Ra, B2d scales like Ra3/2, or more explicitly:

B2d � κ2ν

kh
Ra3/2 (wθ)|z=h . (52)

Focusing of the heat flux in narrow upwelling zones leads to enhanced values of (wθ)|z=h, as
shown in figure 23. In the case of heterogeneous heating, focusing increases by a factor 10
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Figure 23: Left: maximum value of the non-dimensional advective heat flux at the top of
the porous layer determined from the simulations. The error bar accounts for the standard
deviation of the maximum value over the course of a simulation. Both homogeneous (Δq =
0) and heterogeneous (Δq = 0.5) are considered. Right: typical hydrothermal velocity
obtained from the buoyancy flux at the bottom of the ocean as a function of permeability
and tidal heating.

the heat flux at the bottom of the ocean. Finally, the typical hydrothermal velocity is found
to be about 1 cm/s, no matter what the permeability or the tidal heating are. This value
is coherent with the typical velocity found in [5] with different scaling arguments relying on
the power anomaly advected to the ocean floor.

7 Conclusions and uture orks

observations that were already made in [5], such as the focusing of heat flux in narrow areas,
that we have described theoretically and numerically. The model used here ha also helped to
highlight the underpinning of heat transport in an internally heated layer. In particular, we
have shown that the plume structure is governed by a balance between the vertical advection
of thermal energy with horizontal diffusion. In addition, the heat transport efficiency, which
has been characterised via a generalised Nusselt number, is the same as for the classical
Rayleigh-Bénard convection in porous media [25, 14, 15]. Lastly, despite the idealisation of
our model, rescaling it to the core of Enceladus gives estimate of hydrothermal activity
that are coherent with those carried out in [5].

A first theoretical extension of this work would be to derive an upper bound for the
heat transport in the porous medium. We have found that the transition to steady state at
high Rayleigh number is associated enhancement of the transport observed in figure
18. We don’t know a priori whether the observed steady solutions are optimal and it would be

We have carried out in this project an analysis of convection driven by internal heating
in a porous layer with an open top boundary. This ideal system has been designed as a
model for the core of Enceladus, following the work of Choblet et al. [5]. We reproduce
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interesting, using the method introduced in [25], to derive the most efficient flow to carry
heat away.

In addition, there is a need to clarify the behaviour of the system at the boundary and
the coupling between the porous layer and the above ocean. We have stated in the second
section that the two possible thermal boundary conditions used here —imposed temperature
of free temperature in the upwellings— are the end-members of the system. The imposed
temperature condition represents a very slow porous layer compared to the above ocean.
In this configuration, the water coming out of the core is at the same temperature as the
ocean and is neutrally buoyant; there is then no hydrothermal activity in the sense of what

we know at the bottom of the Earth’s ocean. Nevertheless, it is associated a diffusive
heat flux anomaly on the subsurface ocean’s floor which is likely to drive convection and
mixing in the ocean. The observed chemical signature of contact with silicate rocks at high
temperature could very well happen below the thin thermal boundary layer at the top of the
core. In short, it is difficult to produce statement on the thermal structure of the subsurface
ocean without a careful study of the coupled system with possibly two very different typical
evolution timescales for each medium.
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