
GFD 2017 Lecture 6: Ocean Circulation eneath Ice

Shelves

Adrian Jenkins; notes by Thomasina Ball and Robert Fajber

October 23, 2019

1 Insights from Plume Theory

1.1 Impact of meltwater outflow at the grounding line

Near the grounding lines of i ce shelves and tidewater glaciers there i s often an outflow of
freshwater. The buoyancy flux from this meltwater will initially dominate over buoyancy
due to melting to form a simple plume. As shown in figure1, the plume rises up the ice face
entraining the ambient more saline water. This supplies heat which drives melting of the ice
face adding further buoyancy to the plume and in turn driving the flow. The generation of
meltwater at the grounding line can be due to a combination of factors. For glaciers in polar
regions, geothermal heating and frictional heating causes melting at the base of the glacier,
which drains through to the grounding line. In contrast, for more temperate glaciers, the
freshwater is generated by surface melting and rain which drains to the base of glacier and
then flows along to the grounding line.

We consider the full model derived in the previous lecture [3] that describes the conser-
vation of mass, momentum, heat, and salt, respectively,
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where subscripts i, a and b are for water properties evaluated in the ice, ambient and at the
ice-ocean boundary, respectively; α is the slope angle, and Cd is the drag coefficient. The
entrainment is assumed proportional to the speed of the plume and written as ė = E0U sinα.
By defining the density contrast Δρ and thermal driving ΔT of the plume as

Δρ = βS(Sa − S)− βT (Ta − T ), (5)



Figure 1: (a) Diagram of a plume originating from a flow of freshwater at the grounding line.
(b) Schematic of the plume model with key variables indicated. From [3].

ΔT = T − Tf where Tf = λ1S + λ2 + λ3Zb, (6)

and using equations (1-4), evolution equations for the buoyancy and sensible heat flux can
be found,
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(Tf − Ti) is the effective meltwater temperature and Δρefi =

βS(Sa − Si)− βT (Ta − T ef
i ) is the effective meltwater density contrast.

When the flow of freshwater at the grounding line is large, the initial buoyancy flux
dominates the flow, and hence, terms involving feedback due to melting can be neglected
(e.g. setting ṁ = 0 in equations (1, 2, 7, 8)). In an unstratified ambient ocean, dΔρa/dZ = 0,
and neglecting the pressure dependence on the freezing point, λ3 = 0, there is a simple
solution where the plume increases linearly in thickness and all other parameters remain
constant. Substituting in ansatz D = AXd, U = BXu, Δρ = CXp and ΔT = DX t results
in d = 1, u = 0, p = −1 and t = 0. Hence, the solution is given by
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Figure 2: (a) Melt rate ṁ plotted against thermal driving showing the linear relationship.
The line width represent the spread of gradients for a the range of salinities from 25-35. (b)
The geometrical factors, the second and third factors in melt rate in equation 11, plotted
against the slope of the ice-ocean interface demonstrating the strong dependence on geometry.
From [3].

The melt rate is then derived from the heat balance at the ice-ocean interface where the
sensible heat is balanced by the heat flux from the plume mixture,

ṁ0L+ ṁ0ci(Tf − Ti) = cC
1/2
d U0ΓT (T − Tf )0. (10)

Rearranging and substituting in U0 and (T − Tf )0 from equation (9) then gives the constant
melt rate as
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The melt rate in equation 11 is made up of several factors. The first factor is made up of
physical constants such as the drag coefficient, heat capacity, transfer coefficients and the
latent heat of fusion for ice. The second and third factors come from the dependence of the
velocity and temperature gradient on the slope of the interface. The fourth and fifth factors
identify the linear dependence on the thermal driving from the ambient ocean and the cube
root dependence on the buoyancy flux, see figure 2.

The approximations made thus far allow progress to be made analytically but are unreal-
istic in terms of modeling plume dynamics at the ice-ocean interface. Therefore, the ambient
stratification, increasing freezing point with depth and feedback from melting need to be
included. The full system given by equations (1, 2, 7, 8) can be normalised by the scales



found in equation (9). A scale for the along slope distance X can be found by considering the
lengthscale over which melting balances the initial amount of buoyancy from the grounding
line,

L0 =
B0

ṁ0Δρefi g
. (12)

Ambient conditions can also be important in the plume dynamics. Figure 3 shows dimen-
sionless solutions for the melt rate, volume flux, momentum flux, thermal driving, buoyancy
flux, and sensible heat flux against the distance along slope for increasing stratifications.
Consider first the unstratified case (red line in figure 3). As the plume rises, entrainment
of the ambient ocean provides heat to keep the plume above the freezing point, with more
heat required as the volume flux increases. However, as the plume rises the freezing point
increases and in turn decreases the sensible heat flux; the ambient thermal driving can be
seen to fall almost linearly as a result. There is a transition from melting to freezing when the
thermal driving equals zero. As thermal driving continues to decrease all of the meltwater
is subsequently refrozen. As the ambient stratification is increased, towards the purple line,
the buoyancy flux reaches its maximum further downslope and hence loses momentum before
all of the meltwater has frozen out. By increasing the stratification further, the section of
freezing can be reduced to zero before the plume runs out of momentum.

The importance of the ambient conditions can be summarised in two key lengthscales.
The first is the lengthscale over which the plumes’ buoyancy changes and can be written as

Lρa =
Δρ0

(dΔρ/dZ) sinα
. (13)

The second is the lengthscale over which thermal driving changes,

Ltf =
(T − Tf )0
λ3 sinα

, (14)

initially recognised by [6] to be an important lengthscale characterizing the distance from
the source to the ambient freezing point.

Slater et al [10] looked at the importance of lengthscale Lρa when the plume buoyancy is
dominated by subglacial discharge, and hence feedback from submarine melting on the plume
can be neglected, and LTF = ∞. Initially they considered a uniform stratification, Lρa = ∞,

and found that melt rate scaled with B
1/3
0 regardless of plume geometry providing discharge

was below a critical value. This is consistent with the results derived above in equation (11).
The addition of temperature stratification increased the sensitivity of the plume temperature
to subglacial discharge. However, when the initial buoyancy at the grounding line is taken
to be a point source the temperature in the plume becomes independent of discharge and
so they found the exponent to be only slightly different from 1/3. Finally, if the salinity or
temperature and salinity set the stratification, the melt rate exponent can vary from 1/3 to
as large as 2/3 depending on other plume conditions. These higher exponents suggest that
melt rates may depend more on subglacial discharge than previously thought.



Figure 3: Change in plume dynamics depending on the ambient stratification. Dimension-
less solutions for (a) melt rate, (b) volume flux, (c) momentum flux, (d) thermal driving,
(e) buoyancy flux and (f) sensible heat flux plotted against distance along slope from the
grounding line for an initial fresh water flux of 5× 10−5m2s−1 with slope sinα = 0.01. Col-
ored lines indicate varying ambient stratification with zero stratification given by the red
line and ambient stratification of −1× 10−6m−1 given by the purple line. From [3].



Figure 4: Case study of Helheim glacier in Sermelik fjord. (a) Linear approximation to change
in temperature (blue line) and salinity (red line) with depth motivated by observations.
Variation of width (bI and bII) and melt rate (cI and cII) with depth for the two regions
shaded in grey in (a). From [7].

Conversely, Magorrian and Wells [7] studied the case when the initial discharge at the
grounding line is zero and the buoyancy is dominated by meltwater from the ice-ocean
interface, again with LTF = ∞. They applied their theoretical and numerical results to a
case study of melting of Helheim glacier in Sermelik fjord, Greenland, in winter, see figure 4.
The numerical solution showed a repeated layered intrusion pattern as the plume reached
its neutral buoyancy and the width d diverged. Further melting at the ice-ocean interface
then starts the next intrusion. They argue that the layered melting pattern would lead to
the formation of notches on the ice-ocean interface. As the depth decreases, the temperature
and salinity decreases reducing thermal driving and melt rate causing the layered scaling to
decrease, as seen in figure 4.

To identify when the governing lengthscales become important, the size of the lengthscale
can be plotted against the thermal driving, temperature above the freezing point. Figure (5)
compares the three lengthscales given in equations 12, (13) and (14) for an ice shelf and a



Figure 5: Governing lengthscales for a plume flowing upslope along an ice-ocean interface of
slope (a) sinα = 0.01 (ice shelf grounding line) and slope (b) sinα = 1 (tidewater glacier).
The coloured lines are plots of L0 for different initial freshwater fluxes, the grey lines are Lρa

for a range of ambient stratifications, and the magnenta line is LTF . From [3].

tidewater glacier. For the ice shelf, 5(a), other than the strongest stratification (black line),
LTF is the first lengthscale that becomes important for scales of hundreds of metres to tens
of kilometres. Below this lengthscale the approximation of a plume in an unstratified envi-
ronment, with freezing temperature independent of depth and no feedback from melting on
the buoyancy of the plume is valid; see section 1.1. For a tidewater glacier, 5(b), entrainment
is more important with the strongest stratification limiting the approximation in section 1.1
to tens of metres.

Slater et al [10] and Magorrian and Wells [7] both looked at the role of Lρa in plume
evolution. To consider the impacts of LTF we need to return to the full model. We can run
the model for a range of basal slopes from 10−3 to 10−2 with a grounding line depth of 500m
and ambient water temperatures from 0 to 7C above the surface freezing point to get a series
of melt rate curves. Figure 6(b) shows these melt rates where the evolution of the plume is
stopped by the plume reaching the surface (termination of the ice shelf).

From the lengthscale recognised by Lane-Serff [6], see equation (14), one can see that the
plume dynamics are unchanged by a linear transformation of the ambient temperature profile.
Thus, we can construct equivalent ambient temperature profiles with a surface temperature
fixed at Tf by varying grounding line from depths of 500m to 10000m. Running the model
for these new profiles produces a series of melt rates given in figure 6(c), where again the
solution is stopped by reaching the ice shelf edge.

In order to understand the role of lengthscales in the problem we would like to collapse



Figure 6: (a) Schematic of full solution. (b) Melt rate against (m/yr) against horizontal
distance away from the grounding line for a range of ice shelves with a grounding line (km)
depth of 500m, basal slopes from 10−3 to 10−2 and ambient ocean temperatures from 0 to 7C.
(c) Melt rate (m/yr) against distance away from the grounding line (km) for a fixed surface
freezing point temperature and grounding line depths from 500m to 10000m. (d) Melt rate
(m/yr) against dimensionless distance away from the grounding line. (e) Melt rate (m/yr)
for a rescaled dimensionless distance away from the grounding line. (f) Dimensionless melt
rate against dimensionless distance away from the grounding line. See section 1.2.



all of the lines onto a universal curve by scaling the melt rate and distance from the origin
suitably. By scaling the distance by LTF the graph transforms to 6(d). Here the transition
between melting and refreezing doesn’t coincide exactly for all curves because the balance
between entrainment and melting is a function of the basal slope. Rearranging equation (3)
we have
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= ėTa + ṁ

[
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]
− (ė+ ṁ)T. (15)

By balancing the heat due to entrainment and latent heat that goes into melting we can get
a scaling for the thermal driving,

E0U sinα(Ta − T )− C
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d UΓT (T − Tb) � 0,

⇒ (T − Tb) � E0 sinα

C
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The prefactor here allows us to rescale LTF such that the transition between melting and
freezing is the same for each run, see figure 6(e).

Finally, the melt rate scaling comes from the plume speed and thermal driving. From
equation (2) we have

DU
dU
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= DΔρg sinα− CdU

2 − (ė+ ṁ)U. (17)

By balancing the momentum due to plume buoyancy with entrainment and friction, we can
get a scaling for plume velocity,

U2 � sinα

Cd + E0 sinα
DΔρg. (18)

By considering the remainder of the thermal driving budget we have
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C
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which can be used to scale the buoyancy Δρ. Hence, this finally allows the solutions to
collapse on to one universal curve, see figure 6(f).

1.3 Adding further processes

The model investigated thus far has only considered the refreezing of meltwater at the ice-
ocean interface. In reality, freshwater can freeze in the plume in the form of suspended
disc-shaped frazil ice crystals [5]. This increases the buoyancy and causes the plume to
accelerate which in turn promotes rapid crystal growth creating a positive feedback. If the
ice crystals are able to deposit out in a manner opposite to sedimentation this reduces the
bulk density causing the plume to decelerate and hence allowing crystals to settle out more
easily. The formation of frazil ice comes in intense bursts that settle out in discrete intervals.
These high rates of accumulation on the order of 1m/yr then give a mechanism for creation
of thick layers of marine ice beneath ice shelves [1].



The coupling between ice shelf geometry and plume flow can also provide a mechanism for
positive feedback. Le Brocq et al [2] used satellite imagery to show that channelisation often
forms on the base of ice shelves. They found that these channels coincide with the predictions
of outflow locations of freshwater at the grounding line. This suggests that meltwater plumes
create ice-shelf channels which in turn focus plume flow promoting further melting in the
channels. These features have been explored numerically in the form of 2D fully coupled
ice-shelf/sub-ice shelf ocean models [9], which has shed light on the dynamics involved in the
formation of these channels. However, plume models have yet to be able to simulate realistic
circulation and melt rates beneath ice shelves.

2 Models of the 3 Circulation ithin a Cavity

2.1 Structure normal to the ice-ocean interface

To study the structure of the circulation normal to the ice-ocean interface, a simplified
version of the rotated viscous Boussinesq equations are used. Since the focus is on the
vertical structure, the gradients along the shelf are assumed to vanish, which eliminates the
horizontal advection and diffusion terms. This leaves

∂u
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where η is the deviation of the ice-ocean interface from its equilibrium position, and φ is the
Coriolis parameter in the rotated system. Under the same assumptions the equations for
conservation of energy and salinity become
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By linearizing the dependence of the freezing temperature on salinity and pressure, the
thermal driving can be expressed as

T∗ =T − (λ1S + λ2 + λ3P (η)) , (24)

and applying equation (24) with equations (23) allows us to write a conservation equation
for thermal driving as

∂T∗
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.



In order to simplify the analysis throughout this section, we will take ν = κ and make κ
a fixed constant. To relate T∗ to buoyancy, we will use equation (7).

Equations (7) and (24) can be used to write a simple expression for the ratio of the
density difference to the difference in thermal driving due to melting of ice into the plume

Δρ

ΔT∗
=

SaβS − βT [T∗a + (Li − ciT∗i) c−1
w ]

T∗a + (Li − ciT∗i)c−1
w − Saλ1

.

Note that the expression includes both the enthalpy required to reduce the ice to the freezing
point temperature and the latent heat.

Requiring that the solutions are in equilibrium with the ice-ocean interface (no slip mo-
mentum condition and at the freezing point) implies an upper boundary condition of

u = 0, T∗ = 0 at z = 0 (25)

. Since we are interested in studying the boundary layer near to the ice-ocean interface
we will consider solutions that decay to the ambient conditions in the far field. Taking the
ambient flows to be in geostrophic balance, this gives the lower boundary of

u =
ig∇η

φ
, T∗ = T∗a at z = −∞. (26)

Similar equations have been used to describe the flow of dense currents down a continental
slope. Here, however, the top condition is to fix the temperature to the freezing point, a
Dirichlet boundary condition, instead of the zero flux Neumann boundary condition that
would be applied at the seabed.

In order to get a lengthscale to normalize the solutions, we start by calculating the Ekman
depth for the system. By looking for stationary solutions at the ambient density with the
ice-ocean interface at its equilibrium position equations (21) become
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These have the well known (bottom layer) Ekman solution:
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The depth scale is the e-folding distance of the boundary layer. The velocity scale is the
geostrophic current that would occur in the absence of friction along the ice-ocean interface.
This is why it is T∗a and not T∗ that appears in ui

g. When the slope is small, the Coriolis
parameter φ ≈ 2Ωsinθcosα and the velocity scale is, incidentally, the same as the Nof speed,
which describes the translation of cold eddies along a sloped bottom. The temperature scale
is simply chosen to be the thermal driving of the ambient system, T∗a.

The solution to this system for some simple cases is given in figure 7. The thermal
driving is shown in panels (a) and (d); the solution shows the diffusion of cold water into the
far field. This produces a gradually weakening stratification. If a finite domain was used,
equation (24) with a constant diffusivity would imply that the steady state solution is just a
linear profile joining the thermal driving at the ice-ocean interface and the ambient thermal
driving. This is why the transient solutions are studied, since the steady state solution (or
the asymptotic solution in the case where the boundary condition is applied in the far field)
does not permit a boundary layer.

Panels (b) and (e) show the velocity components of the system when a background
pressure gradient is applied with a flat ice-ocean interface. A relatively shallow boundary
layer is formed at the surface, and quickly converges to the Ekman solution. This is to
be expected, since the Ekman solution is calculated without the influence of the sloped ice-
ocean interface. When the ice interface slope is sloped, as in panels (c) and (f), the boundary
layer thickens initially, and the cross slope currents do not appear to converge to the Ekman
solution. When the ice interface is sloped, it introduces baroclinicity and links the thermal
and current profiles. Thus, the impact of thermal diffusion will be felt on the currents in
this case.

We can further explore impacts of the slope of the ice-ocean interface on the response of
the boundary layer current by decomposing the long term response of the boundary layer with
and without a sloped interface (figure 7, panels (e) and (f), respectively) into geostrophic and
ageostrophic components (figure 8). This is done by assuming that the geostrophic current
is time dependent and in the cross shelf direction:

φvg = Δρgsinα, (30)

∂vg
∂t

= ν
∂2vg
∂z2

. (31)

The time dependence results from the diffusion of less buoyant water away from the
ice-ocean interface. This is shown in panels (b) and (e) of figure 8. In the case without a
slope in the ice-ocean interface, the geostrophic component has no vertical shear, since the
applied forcing is barotropic. In the case with a sloped ice interface condition the geostrophic
component shows a vertical structure, in thermal wind balance with the applied baroclinic
forcing. The ageostrophic components are assumed to be time independent, and can be
shown to the same as the Ekman solution (27). Thus the frictional boundary layer response
is unaffected by whether a barotropic or baroclinic forcing is applied to the system (panels
(e) and (f) in figure 8).

In general the total response will be a combination of the frictional boundary layer, the
applied barotropic and baroclinic forcings, and the ice shelf geometry. For instance, if the
baroclinic forcing is chosen to oppose the barotropic forcing, the results can stop or even
reverse the upslope current (u) near the ice-ocean interface. For a finite cavity, curvature in



Figure 7: The thermal driving, (a) and (d), and boundary layer currents, (b),(c),(e) and (f),
for two simple cases described in the text. The solid lines in (b),(c),(e) and (f) correspond to
the up slow flow (u) and the dashed lines correspond to across slope flow. In the top row is
the transient solution after 0.1 (red), 0.2(green), 0.5(cyan) and 1.0(magenta) inertial periods,
and the bottom row is the transient solution after 1.0 (red), 2.0(green), 5.0(cyan) and 10.0
(magenta) inertial periods, T = 2π

f
. The black lines show the Ekman solution obtained from

(29). From [4]

the sea floor bottom, h, can also create a current that can oppose the barotropic forcing and
oppose the upslope flow, since the planetary vorticity is φ

h
.

Another interesting regime occurs when it is assumed that the upslope density gradient
balances the turbulent diffusion of upslope momentum instead of the Coriolis term that
balances it in the Ekman regime. The density gradient is assumed to be replenished by
advection from a steady state upslope current. This results in a solution similar to the
Prandtl model of the Katabatic wind

−g sinαΔρ = κ
∂2u

∂z2
, (32)

∂Δρ

∂x
= κ

∂2Δρ

∂z2
. (33)

which has solutions



Figure 8: The decomposition of panels (e) (top row) and (f) (bottom row) into their
geostrophic (middle column) and ageostrophic (right column) components. The times and
current directions indicated by the lines are the same as in panels (e) and (f). From [4].
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These solutions look similar to the Ekman solutions, but with a different scaling. Notably,
φ no longer appears in the equations, but instead the horizontal buoyancy gradient, ∂Δρ/∂x
appears.

To determine whether the boundary layer will better resemble the Prandlt or Ekman
solution, we note that uP exp(−z/dP ) and uE exp(−z/dE) so that uP ≥E when dP ≤ dE.
This is true when



Figure 9: Top Row: the thermal driving for the case with dP/dE =
√
(2), (left column),

dP/dE = 1 (middle column), and dP/dE =
√

1
2
(right column). The black line is the

theoretical Prandtl solution given by (35) The colors indicate the same time periods as in
figure 8. Bottom Row: as for the top row, but now for the velocity components. The dashed
black line is the theoretical Ekman solution, and the solid black line is the theoretical Prandtl
solution. In the middle column they overlie each other. The colors indicate the same as in
figure8. from [4]

∂T∗
∂x

≥ ΔT∗
Δρ

φ2

g sinα
(36)

or equivalently when (
g
∂Δρ

∂z

)(
sinα

φ

)2

≥ 1 (37)

This last equation has the form of a Boundary Layer Burger number. Solutions to the
full for a case with upslope temperature advection are shown in figure 9 for differing values
of dP/dE. For low values of dP/dE the solution has a thick and strong boundary layer near
the ice-ocean interface. When the values of dP/dE are higher, the boundary layer becomes
thinner and sharper. The addition of the along slope temperature gradient allows for a
maintained stratification in a thin layer near the surface. Since, typically, we expect that(
g ∂Δρ

∂z

)
> φ2, and for an ice shelf with sinα ≈ 0 we would expect the Ekman solution to be

more appropriate. For sinα ≈ 1 however the Prandtl solution might become appropriate.



The solutions shown in figure 7 panels (c) and (f) can also be compared with a model
with a more realistic diffusivity from a parametrized turbulence closure scheme. We take

ν = λu∗, (38)

u∗ =

(
ν|du
dz

|
) 1

2

, (39)

λ = min(κvu∗, λmax). (40)

This allows us to include the production of TKE from shear layers. Inspection of the so-
lution with the scheme included (figure 10) reveals that the boundary layer becomes trapped
in a layer near the surface.

2.2 From a 1d column to the 3d circulation

Now we consider what affects the finite geometry of a real cavity would have on the 1d model
of the previous section. The pressure at any point in the fluid can be written as

P (z) = g

[∫ zs+η

zio+η

ρidz +

∫ zio+η

z

ρdz

]
, (41)

and assuming that density of the ice is constant, we find that

∇P (z) = g

[
ρi∇Hi + ρio∇ (zio + η) +

∫ zio+η

z

∇ρdz

]
. (42)

The first term is the contribution to pressure from the weight of the ice, the second term
is the gradient in the ice-ocean interface (both the equilibrium position and the deviation),
and the third is the is baroclinic contribution of the (assumed) density profile. Assuming
that the weight of the ice shelf is balanced by the water in its equilibrium position, we can
write the flotation condition as

ρi∇Hi + ρ∇zio = 0. (43)

Applying this equation to the model and solving it over a finite depth reveals a deep cross
slope geostrophic flow and a second Ekman layer in the cavity along the seabed. This second
Ekman layer creates a mass flux convergence along the grounding line. By conservation of
mass, this would raise the ice shelf there and generate an opposing barotropic flow. For a
semi-infinite ice sheet we can rationalize this by supposing that this flow is in the across shelf
direction. However for an actual 2d dimensional cavity this paradox needs to be resolved
differently.

In order to understand the structure of the circulation in the cavity we start by construct-
ing a 2d idealized model of a steady state current in balance with the pressure gradients
applied at the ice-ocean interface. This will allow us to understand the two-dimensional
structure imposed by finite cavity geometry. We start by assuming that the momentum
equations are in approximate geostrophic balance, with only the vertical momentum diffu-
sion equation term retained:



Figure 10: The solutions from a model using a parametrized turbulence closure scheme. The
situation is the same as shown for figure 7, panels (c) and (f). The first row uses the scheme
described in the text; going down rows the turbulence closure scheme increases in complexity.
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(46)

The inclusion of the vertical mixing terms allows us to retain the features of Ekman



solution that were studied in the previous section. The pressure is as given in (42) but with
the flotation condition applied and the baroclinic term approximated by the equilibrium
height of the ice-ocean interface:
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∫ zio

z

∇ρdz

]
(47)

The depth integrated geostrophic flow is given by
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f
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)
(48)

where Hw is the depth of the water column. The depth integrated ageostrophic velocity
comes from the top and bottom Ekman layers and is given by
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dE
2
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dE
2
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where the top and bottom geostrophic currents are given by
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f
k×∇η, (50)

and
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f
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∫ zio

zb

∇ρdz, (51)

respectively. The first term in (49) is a transport normal to the geostrophic flow, and
the second term is a transport in the along geostrophic flow created by a reduction in the
geostrophic flow speed in the boundary layer.

Mass conservation implies that the divergence of these two currents has to vanish in
steady state:

∇ · (Vg +Va) = 0 (52)

Substituting equations (48) and (49) into (52) and assuming a constant linear stratifica-
tion (constant N2) profile parallel to the ice shelf gives a second order hyperbolic equation
for the deviation of the ice-ocean interface from its equilibrium position:
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(53)

The first term represents the barotropic geostrophic flow caused by the ice ocean interface
forced through depth contours. The second term is similar, it is the geostrophic flow being
forced by the tilt of the sea level. The second two terms are the Ekman transports that
result from the curvature of the ice ocean interface and the sea level, respectively. These
terms are similar to the windstress forcing that would occur in an Ekman layer exposed to
the atmosphere. The last term is a correction to the second term that results from the depth



Figure 11: The simplified geometry used to test the circulation models. Left: the seabed
depth and Right: a cross section showing the geometry of the ice shelf. Note that the bed
has been tapered in order to avoid numerical artifacts.

Figure 12: The barotropic streamfunction (left) and the meridional overturning circulation
(right) from the primitive equation model using the same geometry show in figure 11. From
[8].

of the Ekman depth. Over this depth part of the current in the second term will be canceled
by the Ekman divergence, and this is accounted for in the last term.

If boundary conditions are given, this model can be solved for η. Using a simple test
geometry (figure 11) this gives an asymmetric circulation, with increased sea heights on
the bottom left side of the domain and decreased sea heights on the upper right side of
the domain. It should be noted that since this calculation is done with an f-plane, this
intensification is not related to the usual western boundary current intensification, and is
instead related to the meridional gradient in water column thickness. These results compare
favorably with a primitive equation model (NEMO) run with full physical parametrization
(figure 12, left panel). The primitive equation model also shows the full three dimensional
circulation, which shows a meridional overturning cell (figure 12, right panel) as well as a
melt freeze pattern similar to an ice pump (figure 13). The gyre circulation is imprinted on
the melt freeze pattern, and shifts the horizontal structure so that the melting is in the west,
and the freezing in the east.

The full primitive equation model can be used to simulate the full circulation beneath all
of the antarctic ice shelves, including observed bathymetry. The model simulation shows that



Figure 13: The freezing patterns from the primitive equation model, from [8].

the ice shelves in the warm regions of West Antarctica are rapidly melting (figure 14, panel
(a)). In the cold water regions of the Ross and Weddell seas and also East Antarctica the
melting occurs more slowly, and there are also extensive areas of refreezing (figure 14, panels
(b), (c), and (d)). This model compares much better to observations than the plume model
does in the area of the Ronne ice shelf. This is because the fully 3d model can simulate the
buoyancy driven circulation that carries water away from melt zone, which is not included
in the depth integrated plume model.

Sensitivity tests which involve removing the ice shelves show that there is a large influence
of the ice shelves on sea ice formation. When the shelves are removed, large buildups of sea
ice occur on West Antartica. This occurs because the melting of the land ice is introduced
into the ocean at the surface in the grid cell nearest to the coast. This introduces a layer
of fresh water at the surface that produces an unrealistically strong stratification, which
prevents heat fluxes from the ocean from reaching the ice and an unrealistically thick layer
of sea ice can form. The impact of the ice shelves is to input a similar amount of water as
the land ice, but by inputing the water at depth, the ice shelves change the stratification
and so do not allow such large regions of ice to grow. Similarly, melting of the shelves drives
gyres within troughs in the continental shelf. These gyres can connect otherwise separate
troughs, and also introduce cold fresh water fluxes at depth, which is critical to the formation
of Antartic Bottom Water.

A caveat to these simulations is that the bathymetry is unknown in many circumstances.
The areas where the bathymetry are the least well known are also the areas where the dis-
agreement between the model and the observations are the largest. Improving the knowledge
of the bathymetry could be a key step in our ability to simulate the circulation under the
Antarctic ice shelves.



Figure 14: The melting patterns from the primitive equation model, run using observed
bathemetry. From [8].
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