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1 Ice Streams and Ice Shelves

1.1 Ice Streams

Ice streams are channels of fast flow within an ice sheet. These frozen rivers of ice provide
the main drainage pathways for the large masses of ice that accumulate on Greenland and
Antarctica. Since ice streams typically flow orders of magnitude faster than the surrounding
ice sheet, they are usually delineated by elongated crevasses. Notable examples of ice streams
are the Jakobshavn glacier in West Greenland, which flows at a mean rate of 15 kilometers
per year, and the Siple Coast ice streams in Antarctica, which have undergone rapid retreat
over the past century.
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Figure 1: A schematic showing a cross-sectional view of an ice-sheet flowing over bedrock.
This schematic is an adaption of Figure 1 in Kyrke-Smith et al. (2013).

Figure 1 provides a simplified cross-sectional view of an ice sheet sliding over bedrock.
Here, the ice sheet slides on top of rigid clasts that provide an opposing frictional drag.
Between the ice sheet and bedrock is a thin layer of meltwater that has thickness H. The



shear stress at the base of this ice-stream is modeled using the sliding law

τb = c |ub|p N q ub

|ub| , (1)

where τb is the basal stress, c is a measure of effective roughness, ub is the basal velocity,
N is the effective pressure, and p and q are positive. The effective pressure is defined as
N = pi − pw, where pi is the ice pressure and pw is the basal water pressure. As the water
level increases, the points of contact between the ice and the bedrock decreases. Thus, N
should decrease with H. Once the ice is lifted above the highest clasts, it will experience
much less resistance from the bedrock and flow much more freely. Further increases to the
meltwater thickness will have a relatively small effect on the effective pressure. We can
therefore identify two distinct states of ice sheet flow: one where the ice is in full contact
with bed and N is strongly dependent on water film thickness, and another where the ice is
essentially floating on top of meltwater and experiences very little frictional drag.

Mass conservation for the meltwater layer takes the form

∂H

∂t
+∇ · q = Γ, (2)

where q is the water flux and Γ is the water source due to basal melting. Assuming a local
Poiseuille flow, the meltwater flux q is given by

q = − h3

12 ηw
∇ψ =

h3

12 ηw
(−ρi g∇si −Δρwi g∇sw +∇N), (3)

where ψ is the hydraulic potential of the water film, ηw is the viscosity of water, ρi is the
density of ice and Δ ρwi = ρw − ρi is the difference between water density and ice density.
The melt rate is given by

Γ =
G + ub · τb − qT + |q · ∇ψ|

ρw L
. (4)

where G is the geothermal heat flux, ub · τb is the work done by the ice on its bed, qT is the
sensible heat loss to the overlying ice and |q · ∇ψ| is the heating due to viscous dissipation.
Equations (1)-(4) reveal the potential for a positive feedback between ice-velocity and basal
heating whereby a positive perturbation in the flow field leads to an increase in basal heating
and a decrease in effective pressure. With lower effective pressure the ice is able to slide faster,
which then leads to more basal heating and meltwater production. This cycle of amplification
is known as hydraulic runaway.

For a more thorough discussion on the dynamics of ice streams and hydraulic runaway,
the reader is referred to Kyrke-Smith et al. (2013). For more details on the drainage of
subglacial water sheets, the reader is referred to Creyts and Schoof (2009).



1.2 Ice shelves

When an ice sheet reaches the ocean, it may begin to float as it continues to flow outward,
forming an ice shelf. The scales and dynamics of an ice shelf are distinct from those of the
ice sheet.
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Figure 2: Schematic of grounding line dynamics. The shallow ice approximation (SIA) is
applicable to the ice sheet upstream of the grounding line, while the shallow shelf approxi-
mation (SSA) is applied to the ice shelf. The grounding line region width is given by (15).

To model the ice sheet, we previously referred to the shallow ice approximation (SIA),
with aspect ratio

ε =
d

l
� 1. (5)

The dominant balance in this approximation was between shear stress τ3 and horizontal
pressure gradient, taking longitudinal stress τ1 to be negligible (e.g. Meur et al. (2004);
Kirchner et al. (2016); figure 2).

Now we will use the shallow shelf approximation (SSA). As the name suggests, the aspect
ratio is the same, but now the dominant balance is between the horizontal pressure gradient
and longitudinal stress τ1 (figure 2). This requires a rescaling of the equations in order to
apply them to the ice shelf. To this end, we introduce a parameter,

δ =
ρw − ρi

ρi
, (6)

such that we can define a scaling for the ice shelf depth,

ν =
ε

δ

(
δ

λ

)1/(n+1)

, (7)



where the ice shelf length scale is given by λ.
Making the assumption that velocity is purely horizontal and varies only in the along-flow

direction x, we get the following equations for ice velocity in the SSA:

u = {1
2
(n+ 1)(1

4
qI)}1/(n+1)(x− xG)

1/(n+1), (8)

ux = 1
2
(1
4
H)n. (9)

Defining the ice height at the grounding line xG as H, we also have an expression for ice
flux to the ice shelf at the grounding line,

qI = Hu. (10)

2 Grounding Line Dynamics, Calving and Tidewater

2.1 The grounding line

To determine qI and the location of the grounding line xG, we need to solve a boundary layer
problem where we match the SIA and the SSA through a transitional region where neither
approximation is applicable.

First, recall these governing equations for inland ice sheet flow:

H = s− b, (11)

Ht + qx = a, (12)

q =
Hn+2|sx|n+1(−sx)

n+ 2
, (13)

where H is the depth of the ice, q is the ice flux, and (12) is an expression of mass conser-
vation. To match the two sides of the grounding line, we take the boundary conditions as
x → xG to be (at leading order)

H → 0, q → qG, (14)

where qG is the ice flux from the ice sheet. These conditions describe a point-sink at the
grounding line. (Note that in steady state, qI = qG. However, in an unsteady state, the
grounding line can move, such that qI and qG are related by (36).)

The full Stokes equations can be used to describe the dynamics of the transition region
surrounding the grounding line, the width of which scales as

x− xG ∼ ε

(
ε

δ

)n/(n+2)

. (15)



Rescaling the variables for the transition zone, we redefine a coordinate system where the
grounding line is at X = 0, and derive the following matching condition for the ice surface
as X → −∞:

S ∼ −λX, (16)

λ =
{(n+ 2)qG}1/n
(−BG)(n+2)/n

. (17)

The rescaled model for incompressible Stokes flow in the transition zone where Π = P +S is

UX +WZ = 0. (18)

ΠX = T3Z + T1X , (19)

ΠZ = −T1Z + T3X , (20)

UZ +WX = T n−1T3, (21)

2UX = T n−1T1, (22)

T 2 = T 2
3 + T 2

1 . (23)

The boundary conditions on the surface (Z = 0 in the scaled coordinates) are

T3 = W = 0. (24)

The base of the floating ice is a free boundary (Z = B, X > 0), with boundary conditions

B = −(Π + T1 + T3BX), (25)

T3(1− B2
X) = 2T1BX , (26)

W = (−ẋG + U)BX , (27)

where ẋG = d
dt∗xG (and t∗ is rescaled time). The boundary conditions on the grounded base

(Z = BG, X < 0) are

W = 0, (28)

T3 = βU, (29)

where (29) is a sliding law with basal sliding parameter β.
Now, we will define the necessary conditions to match between the three regions. For the

ice sheet (SIA), the matching conditions as X → −∞ are

ΠX → −λ, (30)

W → 0, (31)

T3 → −λZ. (32)

For the ice shelf (SSA), the matching conditions as X → ∞ are

T1 ∼ −1
4
B, (33)

B ∼ −qI
U
, (34)

U ∼ [1
2
(n+ 1)(1

4
qI)

nX]1/(n+1). (35)



Mass flux to the ice shelf, qI , is defined by

qI = qG + ẋGBG. (36)

The surface is defined as

S = (Π + T1)

∣∣∣∣
Z=0

. (37)

It should be possible to determine B from (27), but ẋG is still unknown.
To address this, we introduce physically straightforward contact conditions. We require

a downward normal stress upstream of the grounding line (X < 0):

B +Π+ T1 > 0. (38)

Downstream of the grounding line (X > 0), we require that the base of the ice be floating:

B > BG. (39)

Finally, at the grounding line (X = 0), the effective normal stress is zero, allowing the ice to
lift off of the bed:

B +Π+ T1 = 0. (40)

Numerical solutions suggest that there is a unique value of ice flux from the ice sheet at
the grounding line, qG, (proportional to λn) that satisfies the contact conditions:

qG =
λnHn+2

G

n+ 2
, (41)

where HG is the grounding line ice thickness.

2.1.1 Marine ice sheet instability

Figure 3: Schematic of MISI. q0 is the deliv-
ered ice flux, qG is the grounding line flux,
HG is the depth of the bed below sea level,
and A, B, and C are the equilibrium posi-
tions.

A marine ice sheet, which is grounded be-
low sea level, may become unstable if its bed
slopes downwards inland (Fowler, 2011). The
dynamics of this instability, which is known
as the marine ice sheet instability (MISI), is
described in Figure 3. Here, the delivered ice
flux, q0, is assumed to be a linear function of
distance and proportional to snow accumula-
tion. The grounding line ice flux, qG, is an
increasing function of ice depth, as in (41).

In the example shown in figure 3, the slope
of the bed depth below sea level, HG, changes
sign twice, so there are three intersections be-
tween q0 and qG. Such an equilibrium is un-
stable where ∂q0

∂x
is greater than ∂qG

∂x
, so A and



C are stable, while B is unstable. Intuitively, this makes sense, because if the grounding line xG

advances from B, the delivered flux q0 ex-ceeds the flux through the grounding line qG, causing
the xG to advance until it reaches the

2.2 Calving

The process of calving refers to the fracture of an ice-shelf or a glacier terminus in the sea.
Iceberg calving is a sink in the overall ice sheet mass balance and it has been observed to be
especially important in Antarctica. In particular, there are circumstances in which glaciers
can undergo rapid ice loss through iceberg calving, and these events can have a significant
impact on global sea level. Due to the complexity of the phenomena involved and the danger
inherent in making observations near a calving face, there is still not a complete and thorough
theory describing calving.

2.2.1 Calving mechanisms

Consider a tidewater glacier and let hi be the thickness of the ice and hw be the depth of the
water. By scaling the momentum equation along x on an ice shelf, one finds that the net
balance is between the longitudinal shear stress term and the pressure gradient term, namely

∂τ11
∂x

=
∂p

∂x
. (42)

By integrating the above equation along x across the interface

τ11 = pi − pw, (43)

and integrating over the depth, one gets

hiτ11 =
g

2

(
ρih

2
i − ρwh

2
w

)
, (44)

where the overbar denotes vertical average, g is the acceleration due to gravity and ρi and
ρw are ice and water density, respectively. This leads to

τ11 =
ρighi

2

(
1− ρwh

2
w

ρih2
i

)
, (45)

indicating that if the pressure jump at the interface balances the depth integrated longitu-
dinal stress, the calving front is in equilibrium. Whether the ice is grounded (ρihi > ρwhw)
or floating (ρihi = ρwhw), τ̄11 is greater than 0. In the case that τ̄11 exceeds the yield stress,
the ice may fracture.



In particular, calving occurs when fractures propagate to a suffucient depth to isolate
blocks from the main glacier mass. Nye (1957) suggested that the crevasses penetrate to a
depth d where a balance between the tensile strain rate and the creep closure rate due to
the hydrostatic pressure is reached, namely

d =
2

ρig

(
ε̇

A

)1/n

, (46)

where A and n come from the Glen’s flow law, which relates the strain rate ε̇ij to the stress
tensor τij as ε̇ij = Aτn−1τij. The presence of meltwater in the crevasses can help to deepen
them because of the additional hydrostatic water pressure. In Nye’s model this is accounted
for as

d =
2

ρig

[(
ε̇

A

)1/n

+ ρwgdw

]
, (47)

where dw is the water column depth in the crevasse.
Benn et al. (2007) affirm that the four major mechanisms that control calving are, in

order of importance:

1. stretching in response to large-scale velocity gradients : the velocity distribution at the
ice surface is a primary control on the crevasse depth, which is enhanced by meltwater,
and the calving margin, which is also influenced by the ice cliff height;

2. force imbalances at an unsupported ice cliff;

3. undercutting of the ice cliff by melting at the submerged ice interface; and

4. torque arising from buoyant forces.

2.2.2 Calving laws

In the literature there have been multiple attempts to quantify the calving rate as a function
of other ice or ocean parameters. While no calving laws have yet been established for ice
shelves, for tidewater glaciers the rate of change of the ice front position ẋs has been related
to the calving rate uc through

ẋs = u− uc, (48)

where u is the vertically averaged glacier velocity at the terminus (Benn et al., 2007). Mul-
tiple works, such as Haresign (2004); Benn et al. (2007), have shown that an empirical linear
law links the calving rate to the height of the water column at the terminus as

uc = a+ bhw. (49)

Although the behavior seems to be quite universal, the coefficients a and b have been found
to be glacier- and time-dependent (seasonally). In addition, calving rates of freshwater-
terminating glaciers are around one order of magnitude lower than tidewater glacier calving



rates, which seems to be due to differences in water densities, upwelling turbulent heat
transfers and underwater melting rates, among others.

Not all the calving laws have been written as a function of the water depth. Other works,
such as Sikonia (1982), have attempted to write down calving laws in terms of the height of
the terminal ice cliff above buoyancy h0. This represents the excess height with respect to a
free floating ice body in the same water and is defined as

h0 = hi − ρw
ρi

hw. (50)

2.3 Tidewater glacier cycles

The dependence of the calving rate on the water column depth is thought to play a crucial role
in tidewater glacier cycles. Observations and paleoclimate proxies suggest that in warmer
climates tidewater glaciers tend to undergo catastrophic retreats. For example, the Columbia
glacier was observed to retreat about 12 km between 1982 and 2002. To explain that, the
following simple reasoning has been developed. Let us start from a condition in which the
calving front is in a fixed position set by balance between the inflow mass and the mass
loss due to calving and melting. If at some point the up-glacier dynamics start pushing the
front further, a moraine shoal develops at the base of the front and the calving rate reduces
because of the decrease of the effective water depth at the glacier front. In this way, the
glacier is able to advance because the height of the moraine increases and keeps the calving
rate low. This is hypothesized to be sustainable for up to 1000 y at a rate of order 30 m
y−1 (Meier and Post, 1987). If then, perhaps due to inherent instability of the steady state,
the glacier starts retreating, it finds itself in contact with the full water column depth, with
no moraine shielding it, and the calving rate suddenly increases, causing the front to retreat
further. The retreat stops when the water column is shallow enough to return to a quasi-
stable equilibrium between inflow and mass loss at the front. This kind of retreat is thought
to happen over scales of 100 y at a rate of order 1 km y−1 and figure 4 shows a schematic of
it.

Another feedback loop that might explain the initiation and the sudden retreat of the
tidewater glaciers described above has been has been hypothesized for the relationship be-
tween thinning, acceleration and calving retreat by Benn et al. (2007). In particular, this
study affirms that an increase in surface melting drives the thinning of the glacier, which is
responsible for a reduced effective pressure and a consequent increase in velocity and longi-
tudinal strain rate. First, this generates dynamic thinning, leading to a further decrease in
effective pressure. Second, this process leads to deeper crevasses, which causes the calving
margin to retreat more quickly.

3 Conclusion: A Cautionary Tale

As a conclusion, Dr. Fowler warned the theorists among us not to get too enamoured of
theory, to the exclusion of its application:



Figure 4: Schematic of the tidewater glacier cycle.

“Pfuel was one of those theorists who so love their theory that they forget the purpose of
the theory - its application in practice; in his love for theory, he hated everything practical
and did not want to know about it. He was even glad of failure, because failure, proceeding
from departures from theory in practice, only proved to him the correctness of his theory.”
Tolstoy, War and Peace, III, I, X.
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