
GFD 2017 Lecture 3: Subglacial Control of Ice Flow

Andrew Fowler; notes by Eric Hester and Jessica Kenigson

1 Subglacial Floods: Gŕımsvötn

1.1 Model

Water flows through a semi-circular conduit (i.e., a Röthlisberger Channel) of cross-sectional
area S at the glacier base. In the Röthlisberger model, melting of the channel walls occurs
through frictional heating via contact with the flowing water, and creep closure occurs be-
cause the ice overburden pressure exceeds the water pressure in the channel. That is, in
general, N = pi − pw > 0. Equation 2 models the change in the cross-sectional area of the
conduit under the competing effects of melting of the sidewalls m and creep closure SNn.
Therefore

∂S

∂t
=

m

ρi
−KS(pi − pw)

n, (1)

where subscripts i and w indicate ice and water, respectively, and K is a constant which
depends upon the geometry of the conduit. The second term arises from the nonlinear flow
law for plastic deformation. Two separate sources are assumed for volumetric flux Q to the
channel: melt of the channel walls and other sources such as surface meltwater and outflow

Jökulhlaups or “glacier-bursts” are flooding events that are associated with glaciers; these
events may be quasi-periodic or periodic. In 1996, a massive Jökulhlaups occurred at the
Skeiðarárjökull glacier at Iceland, which partially overlays a lake within a geothermally
heated caldera. The ice overburden pressure at the caldera rim forms a “seal”which prevents
the lake from emptying. Figure 1 shows a simplified geometric profile of the region.

Flooding events at Gŕımsvötn occur regularly, indeed quasi-periodically (∼5-10 years)
(Figure 2). A plausible mechanism for flooding from Gŕımsvötn would involve the water
pressure in the lake growing to exceed the ice overburden pressure and causing flotation of
the glacier, releasing a burst of water through the broken “seal.” During observed flooding
conditions, however, the water level within the lake has not been observed to reach the
necessary height to achieve glacier flotation. A simplified physical model will be developed
to shed light on the flow of water beneath the glacier during flood events as well as the
periodicity of these events. Much of the following theory follows the exposition by [4].
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Figure 1: Simplified profile of the landscape near Gŕımsvötn. In the Röthlisberger-Nye model
x is increasing to the right and is measured from the seal (which is assumed to be fixed in
space). Figure from [1].

from the lake, which are subsumed into a single term M . Therefore, continuity of mass
within the conduit implies

∂S

∂t
+

∂Q

∂x
=

m

ρw
+M. (2)

A momentum balance arises from rearranging the Gauckler-Manning formula for a mean
(turbulent) flow ū = Q/S :

ū =
R2/3

n′

[
1

ρwg

(
ρwgs − ∂p

∂s

)]
(3)

where R is the hydraulic radius, g is the gravitational constant, gs is the component of the
gravitational constant in the s-direction (here x-direction), n′ is a Manning roughness factor,
and ρw is the density of water [7]. It follows that

ρwg sinα− ∂p

∂x
= fρwg

Q |Q|
S8/3

(4)

where the first term represents the gravitational driving force, the second term represents
the water pressure gradient, and the third term represents bed friction. Here f is a friction
factor and α is the bed inclination. Finally, the energy equation is



Figure 2: Hydrograph showing extreme flooding events at Gŕımsvötn in 1922, 1934, 1938,
1945, 1954, 1972, 1976, 1982, 1983, and 1986. Figure from [3].



ρwcw

[
S
∂θw
∂t

+Q
∂θw
∂x

]
= Q

(
ρwg sinα− ∂p

∂x

)
−m [L+ cw(θw − θi)] (5)

where the rate of change of internal energy is given by the sum of two terms: the energy
needed to change the temperature of water already in the conduit (term related to the total
derivative of θw on the LHS), and the energy needed to melt ice from the conduit walls
(second term on the RHS), which consists of a sum of the energy required to raise the ice
temperature to the water temperature and the latent heat needed for the phase change. The
first term on the RHS is the frictional heating due to viscous dissipation (see Equation 4).
Finally, a heat transfer equation is given by

aDB

(
ρw |Q|
ηwS1/2

)4/5

k(θw − θi) = m [L+ cw(θw − θi)] (6)

where the term on the LHS is an empirical expression for heat transfer at the ice conduit
walls given a turbulent flow; this is obtained from an empirical relation among the Nusselt
number, the Reynolds number, and the Prandtl number ([7]). Here aDB ∼ 2, ηw is the
viscosity of water, and k is the thermal conductivity.

At the lake inlet, the “refilling” condition is given by

− AL

ρwg

∂N

∂t
= mL −Q at x = 0 (7)

where AL is the (fixed) surface area of the lake and mL is the geothermal melt rate in the
caldera. That is, changes in the effective pressure at the seal are driven by the meltwater flux
in the lake due to geothermal heating and the volumetric flux of water into the subglacial
conduit. Here

Φ = ρwg sinα− ∂pi
∂x

(8)

is the hydraulic gradient. These equations are nondimensionalized with

Q = Q0Q
∗, S = S0S

∗, pi − p = N0N
∗, m = m0m

∗, x = lx∗, t = t0t
∗, θw = θi + θ0θ

∗,

which gives



∂S

∂t
= m− SNn (9a)

ε
∂S

∂t
+

∂Q

∂x
= εrm+ Ω (9b)

Φ + δ
∂N

∂x
=

Q |Q|
S8/3

(9c)

εS
∂θ

∂t
+Q

∂θ

∂x
= Q

[
Φ + δ

∂N

∂x

]
−m(1 + εrθ) (9d)

θ

( |Q|
S1/2

)0.8

= γm(1 + εrθ) (9e)

The nondimensional parameters are given by

ε =
Φ0l

ρiL
(10a)

δ =
1

Φ0l

[
Q

1/4
0 Φ

11/8
0

ρiKL(fρwg)3/8

] 1
n

(10b)

γ =
ρwcw
kaDBl

(
ηw
ρw

)4/5

Q
1/2
0

(
fρwg

Φ0

)3/20

(10c)

r =
ρi
ρw

(10d)

Ω =
Ml

Q0

(10e)

with the boundary condition

∂N

∂t
= Q− ν at x = 0. (11)

Reference values for these parameters are

γ ∼ 2.5, ε ∼ 0.05, r ∼ 0.9, δ ∼ 0.22, Ω ∼ 0.6 · 10−3. (12)

(A table of physical parameter values used in the scaling is available in [4]). Ordinarily,
flooding is initiated in the presence of the “seal” at the margin of the caldera. Now re-scale
x = δX to investigate near the boundary of the caldera, let ω = δΩ and allow Φ < 0 near
the lake. Assume that ε and γ are small, which implies via Equation 9e that θ = 0. The
equation set then reduces to



∂S

∂t
=

|Q|3
S8/3

− SNn (13a)

∂Q

∂X
= ω (13b)

Φ +
∂N

∂X
=

Q |Q|
S8/3

(13c)

with the boundary conditions

∂N

∂t
(0, t) = Q(0, t)− ν at x = 0 (14)

∂N

∂X
→ 0 as X → ∞ (15)

where

ν =
mL

Q0

. (16)

Assume the following form for Φ,

Φ = 1− ae−bX , (17)

for some parameters a and b (which are related to the strength of the seal). Figure 3 shows
the numerical solution of Equations 13a-13c and 14, which agrees quite reasonably with
observations.

Note that in a steady state (∂S/∂t = 0) with Φ ∼ 1, Equations 13a-13c reduce to the
Röthlisberger relation for N and Q.

1.2 Distributed drainage system

Massive flooding events have likely occurred beneath ice sheets such as Antarctica, with Lake
Vostok potentially implicated. Note that flooding events beneath ice sheets are physically
very different from events beneath glaciers, as drainage beneath ice sheets is not typically
through Röthlisberger channels.

In Röthlisberger channels, N and Q are related via

N ∼ βQ1/4n (18)

for a material parameter β. Under these circumstances, it is typical for a single conduit
to develop, owing to the relationship between Q and N . If two Röthlisberger channels of
differing radii are close together (such that water can escape from one channel to another
through the bed), the channel with relatively small Q (small N , large pw) will experience



Figure 3: (a) Model showing periodic flooding at Gŕımsvötn. (b) Hydrograph of the observed
(red) and modeled (green) discharge based upon the solution of Equations 13a-13c and 14
under the assumption that a = 2.8, b = 4.316. Figure adapted from [3].

leakage into the nearby channel of large Q, and the small channel will gradually close. If
the subglacial sediment is relatively stiff, then it is possible for Röthlisberger channels to
develop beneath a glacier. However, if sediment is significantly erodible, then it is likelier for
a distributed drainage network to develop (rather than a single channel).

In prior derivations, Röthlisberger channels were assumed to be semi-circular with h ∼ w,
where w is the mean width and h is the mean depth. Now relax the assumption (as in the
Röthlisberger theory) that h ∼ w. Instead R = S/l, where R, the hydraulic radius, is a
fraction of the cross section S = wh and l, the wetted perimeter, and

w2 =
24/3ρwn

′2Q2

ρiSih10/3
(19)

Kw2Nn =
gSiQ

2L
(20)

where n′ a Manning roughness coefficient, K is related to the closure rate and is dependent
upon the geometry, and Si is the ice surface slope. This is a generalization of the Röthlis-
berger theory and reduces to it in the case w ≈ h. It is derived from a Manning law and
the assumption that the closure rate due to melting balances channel closure due to the ice
overburden pressure. Assume that the channel depth is close to the critical depth at which
sediment transport occurs. It then follows that



N =
γ

Q1/n
(21)

with

γ =

[
ρigS

2
i h

10/3
c

27/3KLρwn′2

]1/n

(22)

where hc is a critical depth fixed by the critical stress for sediment transport and L is a
function of the sliding velocity and effective pressure N . This suggests an inverse relationship
between N and Q, unlike for Röthlisberger channels. Therefore, the closure mechanism
discussed previously for Röthlisberger channels is avoided, which permits the existence of a
distributed drainage network [7].

2

The action of ice sheets during the last ice age has had profound effects on topography
throughout the world. Ribbed moraines, drumlins, and Mega-Scale Glacial Lineations (MS-
GLs) (seen in Figures 4, 5, and 6, respectively) are prime examples of such effects. They are
always seen in large clusters in areas of past glaciation (Sweden, Ireland, Canada), with the
prime differences being the main direction of variation. Ribbed moraines, much like dunes,
form transverse to the flow, while MSGLs are instead directed longitudinally. Drumlins,
however, are fully three dimensional, being between these two extremes.

The glacial dynamics responsible for these features have not been settled. However, [6]
has developed a model which couples ice sheet and deformable sediment dynamics, with
a thin intermediate water film. This model exhibits all three of these formations, and we
outline its development below.

2.1 Ice

We model the ice as a Newtonian fluid of viscosity ηi. The finite depth ice lies above a thin
water layer, which in turn rests on a deformable bed of till (Figure 7). The inertial terms
are negligible in the Navier-Stokes equations, giving Stokes flow

∇ · u = 0, (23)

0 = −∇P − ρig∇zi + ηi∇2u, (24)

where u is the ice velocity, ρi is the ice density, ηi is the dynamic viscosity, and P is the
deviation from the cryostatic pressure.

Subglacial Bedforms: Drumlins, Ribbed Moraine,  and Mega-
scale Glacial Lineations (MSGL)



Figure 4: Ribbed moraines in
lake Rogen, Sweden. Ridges
form transverse to ice flow
[6]. Figure adapted from
https://www.sheffield.ac.uk
/drumlins/rogen

Figure 5: Digital elevation
map of part of north central
Ireland. The small bumps are
drumlins, which are roughly
10 m high, and several hun-
dred metres in length [6]. Fig-
ure adapted from [6].

Figure 6: MSGLs in
Canada, which are in-
stead parallel to sheet flow
[5]. Figure adapted from
https://www.sheffield.ac.uk/
drumlins/msgl.
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Figure 7: A view upstream of the model. The ice sheet, with upper surface z = zi, rests on
a water layer extending from z = s to the sediment bed at z = b [6]. Figure from [6].

At z = zi we specify matching normal stress τnn, with zero horizontal shear stress τ =
(τ13, τ23)

P − τnn = 0, (25)

τ = 0, (26)

and additionally require a kinematic equation for w, which prescribes its value at the top
boundary in terms of the ice sheet elevation zi and the accumulation rate a

w = zi,t + uzi,x + vzi,y − a. (27)

At the bottom of the ice (z = s), we now require some relation for the shear stress. We
assume it depends on the basal ice velocity ub and the effective pressure at the interface



N = pi − pw,

τ = f(ub, N)
ub

ub

. (28)

We specify a generalised Weertman sliding law for f

f(ub, N) = RN buc
b, (29)

where R is the roughness coefficient, and b and c are the respective powers of the effective
pressure N and basal velocity ub. Finally, we have our second kinematic equation for w at
the bottom boundary

w = st + usx + vsy. (30)

2.2 Water

As mentioned, the water exists between the two interfaces, giving the layer thickness h as

h = s− b. (31)

The hydraulic potential in the water is then

= ρig(zi − di) + Δρwigs−N + P − τnn, (32)

where Δρwi = ρw−ρi is the density difference between water and ice, and di is the ice depth,
which is assumed to be constant over the smaller scale of the deformations we will observe.

The water between the ice and sediment is then modelled as a thin film. Its evolution is
governed by Poiseuille-type flow

ht = ∇ ·
[

h3

12ηw
∇ψ

]
+ Γ. (33)

Here, Γ represents sources due to ice melt (from geothermal heating, frictional heating, and
heat flux into the ice).

2.3 Sediment

The sediment is also a deformable medium. However, unlike the water or ice, it will not
deform until the basal stress applied to it by the ice τ = f(ū, N) exceeds the yield stress
μN , where μ is the coefficient of friction. Hence, it will have a finite deformation depth hA,
below which the sediment is unperturbed, given by

hA =
[τ/μ−N ]+
Δρsw(1− φ)g

, (34)

(where [y]+ = max{y, 0}).



The governing conservation equation of the sediment is called the Exner equation, and
models the change in the bed elevation b in terms of the sediment deformation depth hA, an
effective sediment viscosity ηs, and

bt +∇ ·
[
1

2
u0ūhAi− h3

A

12ηs
∇N +Q(τe)

τe
τe

]
= 0. (35)

The first advective flux term represents shearing from the average ice flow u0ū, where ū is
a spatial average of u at the base, defined so that f(ū, N) = f(u,N). The second diffusive
term then represents squeezing of the till in a thin layer hA due to the effective pressure N .
The final flux term represents sediment transport due to the effective stress τe transmitted
by the water to the bed, given by

τe = −1

2
h∇ψ −ΔρswgDs∇b. (36)

This is the actual viscous stress in the water plus a term related to the tendency of sediment to

roll downhill, which depends on the difference in sediment and water density Δρsw = ρs−ρw,
and the average grain size of the sediment, Ds.

2.4 Reduced model

We can then non-dimensionalise this system, and significantly simplify the model. For more
details on each step, please refer to [6].

Our upper ice equations are completely solvable in terms of the stress at the boundaries.
By linearising the boundaries as constant, we can solve the upper system using the Fourier
transform, defined to be

f̂(kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)eikxxeikyy dx dy. (37)

This leaves only the kinematic equation for w, which is now given by a Fourier convolution

w = αst + ūsx = J ∗ Φ, (38)

where Φ represents a perturbation to the pressure, and J is given by the inverse transform
of

Ĵ =
sinh2 j

2k(j + cosh j sinh j)
, j =

k

σ
, k =

√
k2
x + k2

y. (39)

Here σ = lD/di is the ratio of the bedform length scale lD to the ice depth scale di, and
α = dT/dD is the ratio of the deformable till depth scale dT to the bedform depth scale dD.
Finally, ū(t) represents the x-averaged basal velocity, defined to give the average shear stress
at the bed, which gives (when non-dimensionalised)

f(ū, N) = 1, implying f(ū, N) =
N b

N b
. (40)



Our thin film evolution equation for the water depth simplifies considerably (throwing
out small terms), to become

∇ · [h3∇Ψ] = σ h3, (41)

where

Ψ = s−N + Φ, (42)

can be thought of as akin to pressure in the water.
Our water thickness equation is given by

b = s− δh, (43)

where δ = h0/dD is the ratio of the average film thickness to bedform depth scale.
Finally, our Exner equation simplifies to

bt + ūAx = ∇ · [βA3∇N − γB(τe)τe]. (44)

Here, A is a non-dimensional deformable till depth, given as

A =
1

2

[
f(ū, N)

μ
−N

]
+

. (45)



Figure 8: Simulations of the system on a periodic domain [2]. The left column shows topog-
raphy and the right shows water flux, with red streamlines. Depending on the parameter
choice, we can generate ribbed moraines, drumlins, or MSGLs. The incline of the MSGL
stems from the periodicity of the domain, which does not enforce a direction of outflow. The
chief numerical limit on the model is the smallness of δ. Figure adapted from [2].



The parameters β and γ are given by

β =
2dT
3lD

, γ =
qb

dTu0

(46)

where dT is the scale of the deformable till depth, qb is the scale of the sediment flux, and u0

is the scale of the basal velocity. While small, both of these terms are necessary. The β term
is required to stabilise the growth of the bedform, while the sediment transport γ term is
required to generate the rilling instability responsible for MSGL formations. The advective
ūA term is responsible for the ribbing instability that generates the moraine formations.
Finally, the stress τe represents the effective stress of the water on the sediment, given by

τe = σhi− h∇Ψ. (47)

Combined, we now have 8 unknowns, Ψ, b, s, h, A,N, τe,Φ, but only 7 equations (num-
bered above). We therefore require an additional equation to close the system. We achieve
this by specifying a relation between the height h and effective pressure N of the till.

The water film can be thought of as a porous layer. This porosity will decrease with
the effective pressure, and increase with the film thickness. We then reason that the film
thickness will be a decreasing function of effective pressure - if we squeeze harder, the layer
thins.

To infer the scale of this process, consider some critical clast size hc. If the film is thicker
than this, the ice no longer rests on rocks jutting from the till, and the effective pressure
drops to zero. If N changes by O(N0) when h changes by O(hc), then

−∂N

∂h
∼ N0h0

τbhc

≡ 1

Λ
, (48)

where τb represents the basal stress scale. The simplest such relation satisfying these require-
ments is given by

ΛhN = 1. (49)

Unsurprisingly, this is the least secure aspect of the model. However, when simulated,
the model is able to recreate all three types of bedforms (Figure 8) by varying only three
parameters.
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