
GFD 2017 Lecture 2: Ice Dynamics

Andrew Fowler; notes by Federico Fuentes and Madelaine Gamble Rosevear

June 20, 2017

This document comprises the first full lecture given by Andrew Fowler during the 2017
Geophysical Fluid Dynamics program at the Woods Hole Oceanographic Institution (WHOI).
It is about ice dynamics, and is divided in two parts: ice sheet flow, and sliding and subglacial
hydrology. Most of the details were taken from Dr. Fowler’s book [Fowler, 2011], which the
reader is invited to consult if more information is required.

1 Ice sheet flow

1.1 Governing equations

Over sufficiently long periods, ice behaves as a viscous fluid, deforming under applied stress.
The strain rate ε̇ij is given by

ε̇ij =
1

2

(
∂ui

∂xj

+
∂uj

∂xji

)
, (1)

and is commonly modeled using Glen’s flow law

ε̇ij = A(T )τn−1τij , (2)

where τij is the deviatoric stress tensor in index notation, τ is the second stress invariant,
defined by 2τ 2 = τijτij, and A(T ) is a temperature dependent term. The Glen exponent n is
typically taken to be 3, although values 1 ≤ n ≤ 4 have been proposed in the literature.

For the flow of a glacier the Reynolds number is approximately 10−13, so inertial terms
are small with respect to viscous terms (Stokes flow) and mass and momentum conservation
may be expressed as

∇ · u = 0 (3)

0 = ∇p+∇ · τ + ρg. (4)

where p is the pressure, g is the gravity vector and τ is the deviatoric part of the stress
tensor. The assumption of incompressibility in (3) holds within the ice. This is a reasonable
assumption as the surface layer in which snow and firn are compacted into ice is very thin.
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Figure 1: Controls on Creep Parameter A. Data from [Cuffey and Paterson, 2010].

Finally we have the energy equation:

ρcp(Tt + u · ∇T︸ ︷︷ ︸
advection

) = k∇2T︸ ︷︷ ︸
heat

conduction

+ τij ε̇ij︸ ︷︷ ︸
viscous

dissipation

(5)

where ρ is the ice density, cp is the specific heat, and k is the thermal conductivity. The
final term in (5) is the viscous heating term describing the conversion of mechanical energy
to heat. Whilst this term is often neglected in other geophysical flows, it significant for ice
sheet flow.

Stress and strain are related by τij = 2ηε̇ij where η is the effective viscosity. Using (2)
we can write

η =
1

2A(T )τn−1
. (6)

The term A(T ) is strongly dependent on temperature, increasing over three orders of mag-
nitude for a temperature change of 50 K (Figure 1), and thus viscosity is inversely related
to temperature.

1.2 Bi-stability and thermal runaway

It is the strong temperature dependence of the viscous heating term that provides the mech-
anism for “thermal runaway”. If heat is supplied to the ice, the temperature increases and
the viscosity decreases. This allows the ice to flow faster, increasing stresses at the bed
and warming the ice through the viscous heating term in (5). This in turn lowers viscosity,
creating a positive feedback loop.

1.3 Boundary conditions

A complicating factor for the modeling of ice flows is that one cannot assume a no-slip
boundary condition at the bedrock. Water present beneath the ice allows sliding, and thus



Figure 2: Illustrative relation between the effective pressure N and the water flow Q through
a field of linked cavities [Fowler, 2011] where F represents film flow, K is linked cavities and
R is Röthlisberger channels. To the right of the minimum, distributed drainage is unstable;
the channels coarsen resulting in a single Röthlisberger channel. To the left, distributed
drainage in the form of linked cavities is stable. As N goes to zero a thin film flow is
permitted.

a sliding law is required. The basal stress,

τb = Nf
( ub

Nn

)
, (7)

is modeled as an increasing function f of the velocity at the base ub and the effective pressure
N = pi− pw, where pi is the overburden pressure and pw is the water pressure. The effective
pressure, N , is analogous to that used in soil mechanics, and is typically positive. In order to
relate N to the subglacial water flow rate Q, subglacial hydraulic theory is required. Three
of the prevailing theories, are:

• Röthlisberger channels, where
N ≈ βQ1/(4n) . (8)

• A linked system of canals, where

N ≈ γ

Q1/n
. (9)

• A Creyts-Schoof film, where

N ≈ δ

Qμ
. (10)



Figure 3: Schematic showing the draining and subsequent closure of a smaller channel due
to the presence of a neighboring larger channel.

1.3.1 Röthlisberger channels

Subglacial water is present due to both basal melt and, where a conduit to the base is present,
surface melt or rainfall. One theory of subglacial drainage involves the formation of semi-
circular channels within the ice. The fact that the effective pressure N is typically positive
means that these channels would close through the deformation of the ice in the absence of
a mechanism to keep them open. This mechanism is melting due to frictional heating from
the water flow.

The expression for the effective pressure of one of these channels is

N ∼ βQ1/4n (11)

where Q is the flow rate of the water and β is a material parameter that depends inversely
on roughness.

An interesting feature of this system is that a decrease in water flux decreases N and
therefore increases the water pressure pw. If we consider a small channel next to a large
channel (Figure 3), then Q is small within the small channel, and thus the water pressure
pw must be large. In the larger channel the opposite is true, so the water pressure is low.
The bed separating the two is rough, and water is able to leak from high to low pressure.
As a result of this, smaller channels drain towards larger ones and close down, creating an
arterial system of channels.

1.4 Thermal boundary conditions

The pressure melting point of ice decreases with increasing pressure, meaning that even
very cold ice may be above the in-situ melting temperature at the base of an ice sheet. This



means we need to consider whether the ice is above or below the melting point in our thermal
boundary conditions. When the temperature at z = b is less than the freezing temperature
Tm the ice is frozen to the bed and we have a no slip boundary,

−k
∂T

∂n
= G , T < Tm , u = 0 , (12)

where G is the geothermal heat flux and n is direction normal to the bed. Once the base
reaches the melting temperature a layer of water is present, lubricating the base of the ice.
This allows some sliding, however less than the full sliding velocity ub as there is not yet a
net production of water,

−k
∂T

∂n
= G+ τbu , T = Tm , 0 < u < ub . (13)

This introduces a frictional heating term τbu due to the sliding. When there is net production
of water, the ice attains its full sliding velocity. In this regime,

0 < −k
∂T

∂n
< G+ τbu , T = Tm , u = ub . (14)

Note that each of these regimes contains an inequality, adding another layer of complexity
to the model.

1.5 Shallow ice approximation

Figure 4: Schematic of a valley glacier showing thickness h (elsewhere H), bed elevation b
and surface height s. Figure from [Fowler, 2011].

Ice sheets may be thousands of kilometers in extent but are only kilometers deep (Fig-
ure 5), allowing the use of the shallow ice approximation. For an ice sheet of thickness d and
extent l the aspect ratio is given by ε = d/l. For the Antarctic Ice Sheet d ∼ 3 × 103 m,
l ∼ 3× 106 m giving ε ∼ 10−3. As a result of this, longitudinal derivatives of stress, velocity
and temperature are small compared to vertical derivatives and may be neglected, reducing



Figure 5: Cross section of the Antarctic Ice Sheet with exaggerated vertical scale. Figure
from lecture slides.

the problem to a balance between the driving stress due to surface slope and resistive forces
at the boundaries [Huybrechts, 2007].

This allows us to write a diffusion equation governing the evolution of the ice sheet
thickness, H,

Ht = ∇ ·
(( |∇s|n−1Hn+2

n+ 2
∇s

)
︸ ︷︷ ︸−Hub

)
+ a , (15)

nonlinear diffusion

where H is the thickness of the ice sheet, b is the bed elevation, ub is the basal velocity,
s = H+b is the surface elevation and a is the accumulation from snowfall (or, where negative,
ablation). The nonlinear diffusion causes degeneracy at the boundaries and singularities
may be involved. Whilst the term −Hub looks like an advective term, ub is typically in the
direction of the shear stress and so is proportional to the surface slope (ub ∼ τb ∼ −∇s),
meaning that this term is also diffusive.

1.6 Accumulation and hysteresis

Figure 6: Schematic of an ice sheet with extent xe and height H.

Ice sheet mass is determined by the balance between accumulation of snow above the
snow line and ablation at the margins, where the snow line is given by h0 + sx, as shown in
Figure 6. As the ice sheet extent decreases the height h decreases, meaning less of the ice
sheet is above the snow line, and therefore accumulation is less and ice sheet extent decreases.
When the height falls beneath the snow line accumulation goes to zero. In the absence of
any gain terms, the ice sheet collapses.



2 Sliding and Subglacial Hydrology

2.1 Weertman’s sliding law

Consider ice over a set of obstacles as illustrated in Figure 7. The obstacles are separated on
average by a distance l and have heights roughly of size a, so that the aspect ratio is defined
as

ν =
a

l
. (16)

Figure 7: Weertman’s sliding law.

The ice is assumed to slide at a particular velocity. Weertman’s law is derived by assuming
that a “regelation” velocity is roughly the same as a “viscous” velocity associated to Glen’s
flow law.

Figure 8: Pure regelation.

Regelation occurs when ice at high pressure melts and then refreezes at areas of low
pressure. This creates a very thin film, with a thickness of the order of 1μm over which
the ice flows. Figure 8 shows the case of pure regelation. Under regelation, the pressure
difference across the obstacle is roughly

δp ≈ − τ

ν2
, (17)

where τ is the average shear stress at the bed, and p is the pressure. Hence, using that

−dTm

dp
= C , (18)

where Tm is the melting temperature, it follows that there is a temperature difference of

δT ≈ C
τ

ν2
, (19)



where T is the temperature. The regelative water flux is uRa
2, where uR is the regelative

ice velocity, meaning that to melt the ice a latent heat of ρiLuRa
2 is necessary, where ρi is

the ice density and L is the specific latent heat. This must be equal to the heat conducted
through the obstacle, so that

(
k
δT

a

)
a2 = ρiLuRa

2 ⇒ uR =
( kC

ρiLa

) τ

ν2
, (20)

where k is the thermal conductivity of the bedrock. It follows regelation is important for
small obstacle sizes of size a.

Meanwhile, the velocity due to viscous shearing is related to Glen’s flow law. It is

uV ≈ 2aA
( τ

ν2

)n

, (21)

where n is the exponent in Glen’s flow law. Thus, this velocity dominates for large obstacles
of size a.

There is a controlling obstacle size a for which both effects are important. Selecting a so
that both velocities are equal, means that u = uR = uV , so that multiplying both equations
yields,

τ = ν2
( ρiL

2kCA

) 1
n+1

u
2

n+1 . (22)

This is known as Weertman’s sliding law.

For large obstacles, cavities are formed due to the fact that the film pressure after the obstacle
is lower than the water pressure in the local subglacial drainage system. In practice, it is
common to find these cavities. Figure 9 illustrates this cavitation.

Figure 9: Lliboutry cavitation.

In this case, the velocity due to viscous shearing, which is assumed to dominate, takes
the form

u ≈ 2(a+ lc)A
( τ

ν2

)n

, (23)

where lc is the length of the cavity. Additionally, the pressure difference between the ice and
water relates to the velocity by

u

lc
= ANn , N = pi − pw , (24)



where N is the effective pressure, pi is the ice pressure (or overburden pressure) and pw is
the water pressure. Substituting lc then yields

τ

N
= ν2

( Λ

2(1 + Λ)

) 1
n
, Λ =

u

ANna
. (25)

2.3 Drainage and the Nye-Röthlisberger model

Weertman films have a tendency to become unstable. In these cases, Röthlisberger channels
form, where water flows from regions of higher pressure to regions of lower pressure. The
channels are maintained open by melting in the channel walls. The melting is due to the
frictional heat resulting from the flow of the water itself. The channels are schematically
shown in Figure 10.

Figure 10: Röthlisberger channels.

The Nye-Röthlisberger model assumes that a channel of cross-sectional semi-circular area
S is governed by the closure equation

∂S

∂t
=

m

ρi︸︷︷︸
melt

− KSNn︸ ︷︷ ︸
viscous closure
due to ice creep

, (26)

where m is the melt rate, K is a constant (proportional to A) derived from the ice creep
problem, and N is the effective pressure (see (24)).

Conservation of mass in the slowly varying channel can be written as

∂S

∂t
+

∂Q

∂x
=

m

ρw︸︷︷︸
volume source due
to side-wall melt

+M , (27)

where x is the downstream spatial coordinate, Q is the volume flux, ρw is the water density,
and M is a prescribed source accounting for tributary flow, surface melt-water supply, etc.

Ignoring inertial terms and using a Manning correlation to account for turbulent friction,
the conservation of momentum can be written as

ρwg sinα− ∂pw
∂x︸ ︷︷ ︸

hydraulic gradient

= fρwg
Q|Q|
S8/3

, (28)



where g is gravity, f is a friction coefficient related to the Manning roughness factor and α
is the mean bedrock slope.

Meanwhile, the energy equation is given by

ρwcw

(
S
∂θw
∂t

+Q
∂θw
∂x

)
︸ ︷︷ ︸

material rate of change
of water temperature

= Q
(
ρwg sinα− ∂pw

∂x

)
︸ ︷︷ ︸

frictional heat source

−m
(
L+ cw(θw − θi)

)
︸ ︷︷ ︸

enthalpy change
on melting

, (29)

where θw is the water temperature, θi is the ice temperature, cw is the specific heat capacity
of water, and L is the specific latent heat.

Lastly, a local heat transfer condition at the ice wall for a cylindrical tube is given by

aDB

( ρw|Q|
ηwS1/2

)0.8

k(θw − θi) = m
(
L+ cw(θw − θi)

)
, (30)

where aDB is a constant, ηw is the viscosity of water and k is the thermal conductivity of
water.

The five equations, (26)–(30), constitute the Nye-Röthlisberger model which solves for
the five unknowns S, Q, m, pw and θw.

The effective pressure can be estimated under the assumption of steady state conditions.
In this case, the equations reduce to

m

ρi
= KSNn ,

ρwg sinα− ∂pw
∂x

= fρwg
Q2

S8/3
,

mL = Q
(
ρwg sinα− ∂pw

∂x

)
.

(31)

These equations can be solved numerically, but in general it is found that ∂pw
∂x

� ρwg sinα,

and neglecting ∂pw
∂x

yields a boundary layer, so that away from the snout it follows that

N =
( m

KSρi

) 1
n
, S ≈

( fQ2

sinα

) 3
8
, m ≈ Q

L
ρwg sinα . (32)

Lastly, substituting the latter two in the former yields that the effective pressure is

N ≈ βQ
1
4n , β =

(ρwg sin11/8 α

ρiLKf 3/8

) 1
n
, (33)

where sometimes f is taken as f = (n′)2G, where n′ is the Manning roughness factor, and
G = ( �

2

S
)2/3 is a geometric factor with 
 being the wetted perimeter.

2.4 Linked cavities

Next, one might consider linked cavities such as those shown in Figure 11. Let s be the
shadowing function which represents the fraction of the bed that is cavity-free. It is a
decreasing function of

Λ =
u

Nn
, (34)



where u is the sliding velocity. Then using the theory yields that

n
1/4n
K N

s(Λ)
≈ βQ

1
4n , (35)

where nK is the number of cavities across the width of the glacier. Therefore, linked cavities
within a glacier operate at a higher pressure than a channel-based system.

Figure 11: Linked cavities.

2.5 Creyts-Schoof water film

Figure 12: Creyts-Schoof water film [Creyts and Schoof, 2009].

There are other models for the films of water that develop between the bedrock and the
ice. One of the most recent is the Creyts-Schoof water film [Creyts and Schoof, 2009]. Under
this model, the “obstacles” actually become supporting clasts for the ice, as shown in Figure
12. In this case, there is a different scaling for the effective pressure,

Q ∼ h3 , N ∼ 1

h3μ
, ⇒ N ∼ 1

Qμ
. (36)
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