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1 Introduction

Iceberg dynamics and thermodynamics still include processes that are poorly 
understood. Indeed, there is lot of interest in comprehending the complex interactions 
between icebergs and their surrounding, both in terms of how the environment 
influences the iceberg and vice versa. In particular, the meltwater produced by icebergs 
themselves has been observed to modify the local ocean physical and chemical 
properties, affecting both the dynamical [17, 9] and the biogeochemical response [16, 4]. 
Moreover, icebergs are well known to pose a hazard for human activities such as oil 
platforms, submarine pipelines and, of course, navigation [3].

Recent numerical works have underlined the importance of correctly describing the 
iceberg size distribution in order to get the right climatology for sea-ice, ocean temperature 
and salinity [18, 14]. In particular around Antarctica, where large tabular icebergs with areas 
that can reach values up to O(103 km2) exist, the incorrect size distribution representation, 
for example by neglecting these giant icebergs, can lead to a bias towards the South in the 
freshwater input [14].

For a comprehensive review of the mechanisms that control icebergs dynamics and 
melting, the reader is referred to [15, 1]. Contributions to the melting come both from 
surface processes and from subsurface ones, as depicted in figure 1. In particular, above 
the air-sea interface, solar radiation, forced convection due to the winds and 
sublimation take place, but they represent the least important mechanisms. At the 
interface, instead, the dominant mechanism, wave erosion, continuously acts and 
reduces the iceberg volume both by directly transferring heat from the seawater 
through the periodic wave motion and by inducing calving of the iceberg fraction 
above the sea level that is left because of the melting itself. Below the sea level then, 
buoyant and forced convection significantly contribute to the submarine melting by 
entraining relatively warmer oceanic water in the turbulent layer attached to the 
iceberg. The former is due to the vertical motion associated to the positively buoyant 
meltwater, while the latter is due to the relative motion of the water masses, as 
explained more in detail below [15].

Forced convection at the base of the iceberg is the mechanism studied in the present 
work. It refers to the transfer of heat between a fluid and a submerged body through the 
turbulent boundary layer that develops at the interface due to the relative fluid flow [5]. 
In the case of icebergs, the relative fluid motion is provided by the fact that their 
displacement is not always controlled by vertically uniform flow. Thus, for example, if 
there is a vertical shear in the current or if the wind drives the iceberg or if the iceberg 



Figure 1: Schematic of the iceberg deterioration processes, adapted from [1].

gets stuck by some bathymetric feature, it is easy to imagine the presence of a relative 
flow with respect to the iceberg [1, 7].

Various efforts have been done to represent this kind of melting as a function of the fluid 
and ice properties (relative flow speed, fluid temperature and salinity, ice temperature), 
to better understand the relevant physical quantities involved in the process and, as an 
application, to capture this submarine melting in general circulation models (GCM). 
The two most widespread parameterizations are Weeks and Campbell (WC) [21] and 
the three equations [10], first developed for the basal ice shelf melting. Examples of the 
use of both schemes in GCM are [2] for the former and [20, 14] for the latter, among 
others. In general, though, there is evidence that the iceberg melting representation in 
GCMs is over-simplified and active research brings new insights in how such 
mechanisms work [6].

The goal of the present study is to quantify the effects of a background rotation on 
iceberg melting, if any. In section 2 some background information about the current 
iceberg melting parameterizations and the analytical solutions of the flow below a solid 
obstacle in a rotating frame of reference in simple configurations, leading to the so-
called Taylor columns, is given. Section 3 is devoted to describing the experimental 
methods and setup to tackle the problem, the results of  which             are presented in section 4. 
Some remaining open issues and conclusions are given in section 5.

2 Background

2.1 Submarine melting parameterization

Following a similar experimental procedure to previous work [6], the focus is on the 
WC submarine melting parameterization [21] that describes the submarine melt rate 
per unit area SMR as a function of the relative flow speed U , the driving temperature ∆T = Tw
−Ti >   0 (with Tw   denoting the water temperature and Ti   denoting the ice temperature) 



and the length scale of the iceberg in the direction of the flow ` as

SMR = K∆T
U0.8

`0.2
, (1)

where K is a constant of proportionality that contains various physical constants, as de-
scribed in the following derivation [21].

The SMR is defined as the iceberg volume loss per unit area and per unit time. It can
be written as

∆V
SMR = ,

A∆t

where ∆V is the volume loss, A is the area of the iceberg in contact with the fluid 
and ∆t i s the time interval considered. If the iceberg is already at its melting 
temperature and thus all the heat transferred from the fluid to the iceberg Q
contributes to its melting, then with ρi denoting the ice density and Li its latent heat 

of fusion, one can write
SMR =

Q

LiρiA∆t
.

At this point, to generalize this relationship, one introduces the Nusselt number Nu 
that, over a length scale ` and for a fluid with thermal conductivity κ, is the
nondimensional version of the heat per unit time, per unit area and per unit driving 
temperature transferred between the body and the fluid

q =
Q

A∆t∆T
,

namely

Nu =
q`

κ
. (2)

This gives that the SMR scales with the Nusselt number as

SMR =
∆Tκ

Liρi`
Nu. (3)

But the scaling of the Nu with respect to the Reynolds number, Re = U`/ν, with ν being
the fluid viscosity, and the Prandtl number, Pr = cpρwν/κ, with cp being the fluid specific
heat and ρw its density, are known from past experimental works in the form

Nu ' CRemPrn, (4)

where the coefficients C,m, n depend on the geometry of the body and on the Re of the
flow [5]. In this work, two geometrical configurations are considered: a flat plate, which has
been used to derive the WC parameterization [21], and an infinite cylinder, for reasons that
will be clarified in section 3. Table 1 contains the values of C,m, n for Re∼ 104, which is
consistent with the experimental setup described below. With the values for the flow past
a flat plate, it is now clear that by using equation (4) in equation (3), the final form of the
WC parameterization (1) is obtained.

As already mentioned, the WC parameterization has been applied both to numerical
works [2] and experimental ones [6]. In particular, in the laboratory it has been possible



Geometry C m n

Flat plate 0.037 0.8 0.33
Infinite cylinder 0.193 0.618 0.31

Table 1: Coefficients of the scaling of Nu as a function of Re and Pr as in equation (4) for 

Re∼ 104 and for two geometrical configurations [5].

to test its behavior for vanishing relative speed U , which is a limit where the free stream 
forced convection becomes a second order process and the melting is controlled by other 
mechanisms. For the lateral melting, it has been shown that the forced convection due to 
the buoyant plumes is the major process for low U [6]. This happens because the meltwater 
produced by the ice block itself, being buoyant due to its lower salinity content, moves 
upwards forming plumes along the sides of the block. Figure 2 shows that, for low relative 

velocity (u < wp, where wp ' 2.5 cm s −1 is the characteristic vertical velocity of the 
plume), the melting is correctly parameterized using the buoyant plume temperature and 
velocity in the WC expression. While for higher velocity, u > wp, the WC parameterization 
with the free stream quantities fits the data well. The schemes in the right panel of the 
same figure show the different behavior of the vertical plumes in the two regimes (A) 
and (C). In the former, the meltwater produced by the ice block at the ice-water 
interface forms buoyant plumes that remain attached to the ice block, which is thus 
unaware of the free stream flow. In the latter, instead, due to the higher free stream 
velocity, the plumes are swept away and the free stream velocity and temperature 
control the forced convection that melts the ice block. There is also an intermediate 
regime, marked with (B) in the left panel of the figure, that is intermediate between 
the two.

2.2 Taylor column dynamics

Since the goal of the work is to study the effects of background rotation on iceberg 
melting, the fluid dynamics in a rotating frame of reference past an obstacle is here 
revised in some simple configurations. In particular, it is well known that in a 
barotropic, inviscid, fast- rotating flow (in the sense of low Rossby number, as 
explained more in detail below), the velocity field is independent of the coordinate in 
the direction of the axis of rotation. In a system where the axis of rotation is 

vertical, this can be written as
∂

∂z
u = 0

and implies that, if an obstacle is placed somewhere in the domain, the flow is forced to go 
around it not only at the depth where the obstacle is physically present, but also everywhere 
on top of (or below) it. It is as if the obstacle was virtually extended throughout the entire 
fluid column. The fluid that occupies this virtual volume remains stagnant and is a so-called 
Taylor column (TC) [19].

But this is the extreme case where the Coriolis time scale is much smaller than the 
advective one. In the range between the non-rotating case and this extreme one, the an-
alytical solution for a cylindrical obstacle is now revised following [12, 13]. Consider a



Figure 2: Left panel: lateral SMR as a function of the free stream velocity. The WC
parameterization in regimes (A) and (B) is calculated with the plume temperature and
velocity, while in regime (C) it uses the free stream ones. Right panel: schemes of the two
regimes. (A) shows that for low relative speed the buoyant plumes shield the ice block
from the fluid flow and the buoyant convection controls the lateral melting. (C) shows that
for high relative speed the plumes are swept away and the forced convection controls the
melting. Regime (B) is intermediate and the figure is adapted from [6].



homogeneous and constant fluid flow confined between two flat plates distant H from each 
other and rotating at a constant rate Ω, which sets a background constant absolute vorticity 
f = 2Ω. Let U be the fluid velocity and choose a frame of reference with the x axis along 
the direction of the flow, with no loss of generality. If a flat-topped cylindrical obstacle of 
radius L and height h � H is attached to one of the plates, defining the Rossby 
number as Ro= U/fL and the nondimensional height of the obstacle as h0 = h/H, the
steady state flow dynamics at low Ro is determined only by the parameter

α =
Ro

h0
=

U

fL

H

h
(5)

[12]. In particular, starting from a relatively large α, the presence of the obstacle affects
the flow by bending the streamlines, following potential vorticity (PV) conservation. As an
example, consider that the obstacle is attached to the upper plate. Then, by writing down
the nondimensional linearized PV conservation equation as

D

Dt

(
∇2Ψ + h0

)
= 0, (6)

where Ψ is the streamfunction, together with the far field conditions

u = −∂Ψ/∂y = α and v = ∂Ψ/∂x = 0 for x2 + y2 →∞, (7)

it is easy to understand that if the background vorticity is positive (f > 0), the squeezing 
due to the obstacle (h0 > 0) induces a negative (anticyclonic) component in the relative 

vorticity (∇2Ψ < 0). As α increases, a stagnation point appears in the velocity field. It 
has been shown that the critical value for which this condition is reached depends on the 
geometry of the obstacle and on the stratification of the fluid [11]. For even lower values 
of α, then, a closed circular streamline below the obstacle appears. Its radius increases 
for decreasing α and it delimits a region of zero motion, the so-called Taylor column. The 
panels of the top row of figure 3 show these solutions for three different values of α.

Since, as clarified in the following, in the experimental setup there is a horizontal 
shear in the far field flow, the solution of the problem of the above is obtained in a 
very similar way for the case of horizontally sheared flow, by adding a second 
parameter, β, that controls the horizontal shear [13]. In particular, if the horizontal 
velocity changes by an amount ∆U over a cross-flow distance ∆y, the new parameter 

is defined as

β =
∆U/∆y

f

H

h
(8)

and modifies the u velocity far field condition of equation (7) as

u = −∂Ψ/∂y = α+ βy. (9)

For the rest, the problem is the same and it can be shown that the solutions differ whether 
the vorticity added by the horizontal shear has the same sign of the vorticity anomaly 
induced by the squeezing below the obstacle or the opposite. In the former case, the 
stagnation region is generated for values of α higher than the zero-shear critical one 
αc, while in the latter, the Taylor column occurs for α < αc.



Figure 3 shows the analytical steady solution of the TC problem outlined above, both for
zero horizontal shear (top row) and for a positive one (bottom row). The parameters used
to plot this figure are taken from the experimental setup as described in section 3. In the
case of positive background rotation (f > 0), the direction of the flow along the streamlines
(solid thin black) is from left to right, while for f < 0 it is from right to left. The top
row is obtained for a uniform far field velocity U = 4 cm s−1, while the bottom row for a
positively sheared flow U = U0 + y∆U/∆y, with U0 = 4 cm s −1 and ∆U/∆y = 0.1 s−1.
The different columns correspond to different values of α = Ro/h0 and for the geometry
considered, the critical value at which the stagnation point in the zero-shear case appears
is αc = 0.5 [11]. Panels (A), (D) have α = 1 > αc and do not have any TC, because the
background rotation has a rather small effect on the flow and thus the difference between
the velocity magnitude of the flow with respect to the far field (denoted with the color
shading) is small. Panels (B), (E) have α = 0.5 = αc and in the zero-shear case, panel
(B), the stagnation point at the lower end of the obstacle is visible in correspondence of the
cusp in the appropriate streamline.
shear makes it easier to have a region of no motion (delimited by the black dashed line),
because the added background velocity due to the positive β is of the same sign of the
vorticity anomaly induced by the squeezing of the fluid below the obstacle. Panels (C) and
(F), then, have α = 0.25 < αc and they both show a region of zero motion, which has been
shown to grow bigger for lower values of α [12]. It is interesting to notice that while on the
lower side of the obstacle the region of zero motion appears, on the upper side there is a
relative increase in velocity with respect to the far field profile.

To have a sense of the importance of such dynamics in the real oceans, the following
typical values of the quantities defining α are considered. Take a relative speed of U ∼ 10
cm s−1, a Coriolis parameter of f ∼ 10−4 s−1, a horizontal length scale of the iceberg of
L ∼ 20 km, a depth of the water of Hw ∼ 103 m and a draft of the iceberg of hi ∼ 500 m.
This leads to

α =
U

fL

Hw

hi
∼ 10−1,

which is of the same order of magnitude of the critical value αc = 0.5 considered above,
which motivates the current investigation because it shows that rotation can be important
in the dynamics in the vicinity of an iceberg and, thus, can impact its melting.

3 Methods

The experiments were conducted in a rotating tank with a diameter of 210 cm and filled
with seawater with salinity of roughly 33 g kg−1 kept at room temperature, 18− 20◦C. At
least 30 minutes before the beginning of each experiment, the rotating tank was turned on
to set the fluid in solid body rotation with angular velocity Ω0 and corresponding absolute
vorticity f0 = 2Ω0. The spin-up time that characterizes this transient fluid acceleration has
been largely studied in the past [8] and is given by the expression

τE =
H

(2νf0)1/2
, (10)

Panel  E  shows  that  the  presence  of  a  positive



Figure 3: Top row, panels (A), (B), (C): analytical steady solution of the TC problem
with zero horizontal shear for different values of α = Ro/h0 [12]. Bottom row, panels (D),
(E), (F): solution of the same problem and for the same values of α, but with positive
horizontal shear with ∆U/∆y = 0.1 s−1 [13]. The black solid thin lines are streamlines,
while the color shading indicates the difference between the flow velocity magnitude and
the far field velocity profile: constant and equal to 4 cm s−1 in the top row and increasing
with y with U(y = 0) = 4 cm s−1 in the bottom row. The green solid line is the section of
the cylindrical obstacle and the black dashed line in panels (C), (E) and (F) delimits the
region of no motion predicted by the analytical solutions.



with H being the fluid column depth and ν its viscosity. The physics that controls this spin-
up process involves the Ekman boundary layer at the bottom of the tank, which pushes 
the fluid far from the axis of rotation and, by mass conservation, brings fluid parcels with 
higher angular momentum, that accelerate the fluid throughout the tank, inwards.

Once the fluid was in solid body rotation, a cylindrical ice block of radius L was sus-
pended in the water with a wooden support at a distance R from the axis of rotation and 
with a submerged part of height h (see figures 4 and 5). At this point, since the ice block 
was fixed in the frame of reference of the tank, two options were available to set a 
relative flow between the seawater and the ice block. The first consisted of increasing
the rotation rate of the tank by a certain amount ∆Ω at the beginning of the 
experiment, so that the relative flow speed at the center of the obstacle was initially 
U0 = R∆Ω. This resulted, according to the spin-up dynamics described before [8], in a 
relative flow decaying almost exponentially

U(t) ' U0e−t/τE (11)

in the frame of reference of the tank and the ice block. The second option, instead,

consisted in increasing the rotation rate of the tank by a smaller amount δΩ < ∆Ω at 
regular intervals δt, calculated using the exponential decay above, so that the relative 
flow speed would be constant. In particular, using the equivalent of equation (11) for 
the angular velocity together with the expression of the spin-up time (10), the 
interval δt at which the tank acceleration is needed to balance the relative velocity,
decay was found by inverting

δΩ = ∆Ω
(

1− e−t/τE
)
, (12)

after choosing δΩ to be some fraction of ∆Ω. The choice for the experiments was δΩ
= ∆Ω/10, so that the values of δt were between 15 to 40 s, as a function of the 
initial background rotation, f0. This procedure was tested for different values of f0, R, 
∆Ω by measuring the fluid angular velocity with floating tracers and after a few trial

and error tests, it was possible to keep the relative flow speed constant, with 
fluctuations of the order of 5% (not shown). Despite some experiments that were
carried in the first configuration (constant f decaying U), all the data analyzed and 
shown in what follows come from the series of experiments with constant U and 

increasing f .
The ice blocks were made in stainless steel cylindrical molds with radius L = 12.5 

cm and were roughly 5 cm tall, so that they could be half submerged during the 
experiments, resulting in values of h ' 2 or 3 cm. The water used to make the ice 
blocks was deaired and dyed with 2 ml blue food colorant in order to be able to 
distinguish the meltwater from the seawater of the tank. There are two reasons why 
the ice blocks were cylindrical. The former is because the focus of this work was on 
the basal iceberg melting rather than the lateral one. Thus, since the circle is the 
figure that maximizes the area for a given perimeter, the cylindrical shape has the 
highest basal-to-lateral area ratio for a given height. This means that it is the
optimal choice to study the melting coming from the base and for the values of the 

experiments, h ∼ 2 cm and L = 12.5 cm, the area of the base πL2 is roughly three 
times larger than the area of the side 2πLh. The latter reason is because the 
analytical solutions for the TC problem, described in section 2.2, has been developed 
only for flat-topped cylindrical obstacles [12, 13].



Figure 4: On the left, a top view schematic of the apparatus (not to scale), where the
radially increasing relative velocity profile U = U(r) in the frame of reference of the ice
block is drawn. The distance of the center of the ice block (hatched) from the axis of
rotation R, the radius of the ice block L and the direction of the rotation in the frame of
reference of the laboratory f are marked, as well. On the right, a side view of the same
apparatus is sketched with also the draft of the ice block h and the depth of the seawater
H.



Figure 5: Top view picture of the apparatus during an experiment that shows how all the
elements sketched in the previous schematic looked like in the laboratory.



Special attention was paid during the experiments with high background rotation rate
because the water surface was free to adjust to the well known paraboloid shape reached
at the balance between the centrifugal acceleration and the hydrostatic pressure gradient.
Denoting with Heff the effective height of the water as a function of the radial distance r
from the axis of rotation and the rotation rate itself Ω, one can write

Heff (r,Ω) = H +
Ω2

4g
(2r2 −D2), (13)

where g is the acceleration due to gravity, D = 105 cm is the radius of the rotating tank 
and H, the non-rotating value, was chosen to be equal to 12 cm. All the experiments, even 
those with the most tilted free surface, were conducted making sure that the upper side of 
the ice block was never submerged in order to avoid the introduction of an extra melting 
source.

For each experiment, two quantities were measured: the mass loss ∆m and the initial 
submerged draft h0. To understand how the SMR was obtained, let us consider a reasonable 
scenario in which the average radius of the cylindrical ice block L = L(t) decreases linearly 
in time as

L(t) = L0 − δ̇t (14)

and the average submerged height as

h(t) = h0 − ε̇t. (15)

The lateral and basal ice block melt rates are thus

dL

dt
= −δ̇, dh

dt
= −ε̇, with δ̇, ε̇ > 0 (16)

and supposing that they are constant one can write that over a time interval ∆t the radius
and the height decrease by an amount δ = δ̇∆t and ε = ε̇∆t, respectively. Given the
expressions (14) and (15), the submerged instantaneous area is

A(t) = πL(t) [L(t) + 2h(t)] , (17)

and the corresponding volume is

V (t) = πL2(t)h(t), (18)

which decreases in time with a rate

dV

dt
= −πL(t)

[
L(t)ε̇+ 2h(t)δ̇

]
. (19)

This enables us  to write the instantaneous SMR as

SMR(t) = − 1

A(t)

dV

dt
=
L(t)ε̇+ 2h(t)δ̇

L(t) + 2h(t)
> 0. (20)

It is now interesting to have a sense of how the side melt rate and the basal melt rate
compare. To do so, the two different geometrical configurations (flat plate and infinite



cylinder) discussed in section 2.1 for the heat turbulent transfer are considered. If the 
side melt rate is taken to scale with the Re as if the flow was around an infinite 
cylinder and if the basal melt rate scales as if flow was past a flat plate, the  ratio 

δ̇/ε̇ is
δ̇

ε̇
' 0.81, (21)

using the coefficients of table 1, the typical velocity of the experiments U = 4 cm s−1 and
the radius of the cylinder L = 12.5 cm as a length scale. This justifies the assumption

δ̇ = ε̇, (22)

(23)

which, if replaced in the expression (20), shows immediately that the SMR is constant 
and equal to

SMR = ε̇ = δ̇.

Over a time interval ∆t, the ice block volume loss with the assumption δ = ε is simply

|∆V | =
∫ ∆t

0
dt
∣∣∣dV
dt

∣∣∣ = π
[
L2

0h0 − (L0 − ε)2(h0 − ε)
]
. (24)

Thus, the correct value of the area A∗ to be used when calculating the SMR of the experi-
ments in the form

SMR =
|∆V |

(25)
A∗∆t

can be inferred by inverting the above expression to get to the first order in ε

A∗ = π [L0(L0 + 2h0)− ε(2L0 + h0)] . (26)

This, to same order in ε, can be shown with little algebra to be equal to the average area

Aav =
1

2
(Ain +Af ) , (27)

where
Ain = πL0(L0 + 2h0) and Af = π(L0 − ε)[(L0 − ε) + 2(h0 − ε)]

are simply the initial and the final submerged ice block areas. Since from the measurements 
∆V = ∆m/ρi, h0 and L0 are known, the two equivalent ways of obtaining the SMR from the 
experiments are to invert equation (24) to get ε and then find SMR as in equation 
(23) dividing ε by the duration of the experiment, or to calculate the average area of 
equation (27) imposing the same volume integral of equation (24) and then apply the 

definition (25) with A∗ = Aav. Note that the duration of the experiments, ∆t = 3 
min, was chosen so that the final shape was still a quite regular cylinder and in the 
case of high background rotation rate, where the free surface was significantly tilted, 
the mean value of the submerged height of the cylinder was used to calculate the 
geometrical properties of the block. The time interval was short enough to linearize 
the evolution of the submerged area in time and, thus, to justify the truncation to 
the first order in ε of the expressions (26) and (27).



4 Results

In this section, the experimental data obtained from four series of experiments with different
values of free stream velocity, U ∈ {0, 2, 4, 6} cm s−1, are described.

Figure 6 shows the SMR of all the experiments as a function of U . The data points are
color-coded with the value of α = Ro/h0 (except for U = 0 cm s−1, where α = 0 because
Ro= 0), that controls the TC dynamics as described in section 2.2. The solid line shows the
WC parameterization, as in equation (1), with K = 0.052, ∆T = 18◦C and ` = 2L = 25 cm
(note that here the diameter of the ice block is used). The value of K, as discussed in 2.1,
contains several physical constants of the system and it is here chosen so that all the inputs
of the parameterization are taken in S.I. units and the SMR is measured in cm min−1. As
for ∆T , it is taken as the difference between the seawater room temperature, 18◦C, and the
ice freezing temperature in freshwater, 0◦C, because the temperature gradient between ice
and seawater is much larger than their salinity gradient and thus, the ice is in a condition
of pure melting with no dissolution. Physically, it means that a thin layer of freshwater
insulates the ice block from the seawater, so that the salinity at the interface is zero and
the freezing temperature is, accordingly, 0◦C.

Back to figure 6, the experimental error is shaded along the parameterization to have
an estimate of the uncertainty in the matching between the data and the parameterized
line. The first evident feature is that for U = 0 cm s−1 and U = 2 cm s−1, the SMR is
much higher than the parameterized one, which is indicative of another process controlling
the melting for low free stream velocity, as found in previous works [6]. The hypothesis is
that at low U , the positively buoyant meltwater formed at the base of the ice block will
flow as a gravity current faster than the free stream velocity. Unfortunately, due to the
configuration of the experimental setup, it has not been possible to observe this processes
at the base of the ice block accurately. Thus, further experiments with submerged cameras
and/or in a non-rotating transparent tank are encouraged to better observe and understand
what happens at the base of the block.

As a first simple attempt to include this basal meltwater pool process in the SMR depen-
dence on the free stream velocity, a constant SMR below a certain threshold velocity Uthr
was suggested. In particular, Uthr was calculated inverting the same WC parameterization
as before,

SMRU=0 = K∆T
U0.8
thr

`0.2
(28)

the SMR to be equal to the value obtained from the experiments at zero relative
flow velocity, SMRU=0 = 0.09± 0.01 cm min−1. The value obtained is Uthr = 3.8± 0.5 cm
s−1 and figure 7 shows the just mentioned constant SMR behavior below this threshold.
Data points at high α (which means low rotation rate) of both the 4 cm s −1 and 2 cm s−1

series agree quite well with this constant value.
Let us now focus on a single series of experiment with constant non-zero free stream

velocity. A common feature that the three series with U ∈ {2, 4, 6} cm s−1 share is that as
α decreases, the SMR increases. The SMR as a function of α for U = 4 cm s −1 is shown
in figure 8. The data points, together with their uncertainty, are shown as green dots. The
uncertainty on the SMR, σSMR = 0.01 cm min−1, is obtained from few repetitions of the
same experiment and has then been extended to all the data points. While the uncertainty

assuming



Figure 6: SMR as a function of the free stream velocity U for all the experiments considered.
The WC parameterization of equation (1) is shown as a solid line with the experimental
error shaded. The color of the data points is chosen according to the value of α of each
experiment.



Figure 7: With respect to figure 6, a constant SMR line is added (black) in correspondence
of the experimental value obtained with no relative flow, SMRU=0 = 0.09± 0.01 cm min−1,
for relative velocity below the threshold Uthr = 3.8 ± 0.5 cm s−1. See the text for further
details.



on α comes both from the experimental uncertainty on h, the draft of the ice block, and
from the fact that to maintain the relative velocity U constant, the rate of rotation had
to increase throughout the experiment. In this figure, the significant increasing trend as α
decreases, i.e. the background rotation increases, is visible. The black solid line denotes the
value of the WC parameterization calculated as before, for U = 4 cm s−1, which is constant
because it does not depend anyhow on the background rotation rate. The first step to try
to understand the increasing trend of melt rate for increasing background rotation was to
include the TC dynamics in the WC parameterization. To do so, instead of using the free
stream velocity U , the area average velocity over the base of the cylindrical obstacle of
the analytical steady solutions of the TC problem of section 2.2, U , is used to calculate the
parameterized SMR shown with the red line. Going from right to left, namely going towards
higher f , there is a small peak in the melt rate, due to the relative increase in velocity on
one of the side of the obstacle (see figure 3), but then, as the TC grows bigger, the average
velocity at the base of the obstacle decreases, determining a relatively fast decrease in the
melt rate, as well. The problem of such approach is that it neglects the well-known fact
that the parameterization underestimates the melting as the velocity vanishes. To avoid
that, the value of the threshold velocity Uthr determined above is replaced in the analytical
solution pointwise wherever the velocity magnitude drops below the value Uthr itself and
then the area average of this effective field is found, U∗. The effect of such correction on
the SMR is shown by the blue line, together with the uncertainty associated to the Uthr
itself. It still underestimates the experimental data, but the increasing trend as α decreses
is captured. It is important to underline that this last threshold correction is done only in
terms of the melt rate and there is no claim on the description of the effective velocity field
due to the meltwater pool that accumulates at the base of the obstacle.

Figures 9 and 10 show the data points of the series of experiments with U = 2 cm
s−1 and U = 6 cm s−1, respectively, together with the same curves introduced in figure 8.
While for U = 2 cm s−1, the velocity is always below threshold and thus there is not a
strong dependence on the rotation rate neither in the experimental data points nor in the
corrected velocity U∗ parameterization, which agree quite well, for U = 6 cm s−1 the trend
in the data points as a function of α is stronger and the U∗ parameterized curve is further
below the data with respect to the case with U = 4 cm s−1.

This is an indication that some other mechanism is happening at the base of the ice
block and it is still not described in the parameterization. A possible explanation for that
comes by looking a figure 11, which shows two pictures of the bottom of the ice blocks
after two different experiments with the same U = 4 cm s−1, but different background
rotation: the left panel shows the ice block after an experiment with low f and the right
panel with high f . One has to imagine that the flow was coming from the top of the picture,
with the velocity radially increasing in the tank from right to left. Even if no quantitative
measurements were done, this picture clearly shows that with the same relative speed U ,
the melting at the base of the ice block was higher for the experiment with high f with
respect to the one with low f . In particular, the melting was enhanced on the outer edge of
the block, because of the relative increase in velocity on one side of the cylinder at low α,
as shown in figure 3. This physically explains in general the trend of increasing melt rate
as the background rotation increases for the various U . But by taking a closer look to the
pictures, one might notice that in the case of high background rotation rate, the melting



Figure 8: SMR as a function of α for U = 4 cm s−1. The black constant line is the WC
parameterization; the red line includes the TC dynamics using the parameterization the
area average velocity magnitude of the analytical solution of the TC problem, U ; and the
blue line includes both the TC dynamics and the threshold behavior observed in figure 7
applied pointwise before taking the velocity area average to find the corrected velocity U∗.
See the text for further details.



Figure 9: As in figure 8 but for U = 2 cm s−1.

Figure 10: As in figure 8 but for U = 6 cm s−1.



Figure 11: Two pictures of the bottom of the ice blocks after two experiments with the 

same free stream velocity U = 4 cm s−1. In the left panel the rotation rate was lower than 
the one in the right panel and, in particular, a partial TC was observed in the experiment 
of the right picture, which was not the case in the experiment of the left one. Wider and 
deeper elongated melted stripes are visible in the right panel, due to the increased velocity 
at the base of the ice block determined by the TC dynamics.

happens along some elongated stripes, which are more numerous, deeper and wider than 
in the case of low background rotation. This suggests that some form of instability growth 
linked to this little channel might explain the extra melting that the parameterization is 
not able to explain.

Finally, figure 12 is the same as figure 6 but with the corrected velocity U∗, which 
takes into account both the TC dynamics and the threshold behavior observed in figure 7, 
instead of the free stream one, U . The data points have different shape to distinguish their 
free stream velocity and one can see that, although the agreement is still not very good, 
especially for the very low α high free stream velocity U data, the WC parameterization 

calculated with the corrected velocity U∗ captures the increased melting at high rotation 
rate and the threshold behavior better than the same parameterization with the free stream 
velocity U .

5 Conclusions

Through laboratory experiments in a rotating tank with cylindrical ice blocks mimicking 
Antarctica tabular icebergs, the effects of background rotation on iceberg melting were 
investigated. Preliminary results show that at high rotation rate, the base of the ice block 
melts at a higher rate because of an increased average basal velocity below the block itself. 
This results from the enhanced relative vorticity below the block following the squeezing 
of the fluid column in the rotating system. In particular, at low background rotation, the 
fluid flow is almost unaffected. When increasing the rotation, i.e. lowering α, the ratio of 
the Rossby number and the non-dimensional height of the obstacle, the TC starts forming 
on one side of the obstacle and partially covers its base. In this condition, where the TC



Figure 12: Similarly to figure 6, the SMR is shown as a typical velocity, which here is the 

corrected velocity U∗ which takes into account both the TC dynamics and the threshold 
behavior observed above, instead of the free stream velocity U , as was in figure 6.

is not present, the flow velocity is larger than the far-field value, which is thought to be 
responsible for the observed higher melting. At even higher background rotation, i.e. lower 
α, the TC extends its area until it covers the entire ice block base. It is expected, then, 
that the melt rate is no longer dependent on the rotation rate, because the TC 
dynamics do not modify the flow structure anymore.

The WC parameterization [21] is then applied to describe the trend of the SMR as a 
function of the free stream velocity U . It is observed that for low relative velocity, below a 
certain threshold Uthr, the basal melt is not controlled by the forced convection due to U , 
but it is probably controlled by a form of upside-down gravity current formed by the buoyant 
meltwater pool that shields the ice block from the external fluid flow. More work is needed 
to better understand what is happening in this region, both in a non-rotating environment 
and in a rotating one. Two corrections have been done to the WC parameterization to 
include the TC dynamics and the observed change in regime at low relative free stream 
velocity. Given the analytical steady solution for the velocity magnitude below a cylindrical 
obstacle in a rotating frame of reference uT C (x, y) [12, 13], wherever its value falls below 
the threshold velocity Uthr, it is replaced by Uthr itself. Then, the area average of this 

corrected velocity field over the base of the obstacle U∗ is used as effective velocity in the 
WC parameterization, resulting in a better agreement between data and theory.

However, some aspects of the dynamics that are thought to be important are yet to 
be included in the description of the process. Among the others, there are: the effects 
of the meltwater on the TC dynamics through changes in the stratification, which are 
known to  introduce a dependence of the  velocity on the height  [11]; the curvature of



the streamlines due to the geometrical shape of the tank; the time transient features 
of the flow response and the turbulence added in the flow by the finiteness of the 
cylindrical obstacle. The possibility of an unstable growth of the melted channels at 
the base of the block (see figure 11) might partially explain the higher melting 
measured in the laboratory with respect to the parameterization, as well.

Despite a few issues that still need to be considered, the present work shows that 
the back-ground rotation can increase the basal melting of the large tabular icebergs 
due to modifi-cations of the flow typical of a rotating system and that for low 
relative velocity the basal melt is not controlled by the free-stream velocity.
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