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1 Introduction

The indentation of deformable plastic layers has been studied extensively for determining
the vertical bearing capacity of rigid strip footings. The solutions to this classic prob-
lem [14 9] use the method of characteristics to determine an upper bound on the
pressure underneath a vertically loaded indenter placed onto an idealised semi-inifinite
rigid-plastic foundation. These studies for a homogeneous half-space have been
extended to consider non-homogeneous plastic solids [17 15]; irregular shaped bodies
[18]; rolling contacts [11 4] and axisymmetric geometries [16 6 3]. The connection to
a finite layer has also been sidered for the plastic flow between two rough parallel
plates being forced together [14 9], with application to the flow near the end of a
glacier [13]. However, apart from a few tions, most problems require numerical
integration along characteristic curves to calculate the pressure.

More recently, the behaviour of a finite plastic layer has been explored through the
use of viscoplastic fluids. Viscoplastic lubrication theory has been used to model the final
shape of a two-dimensional slump [5] and the confined flow of viscoplastic fluid between
rigid moving boundaries [8], where asymptotic expansion is based on the small aspect ratio
ε. This formulation provides a more simple approach to calculating the plastic deformation
of a shallow layer.

One application of studying the indentation of deformable plastic layers is in understand-
ing the formation of footprints. Tracks and traces are of particular interest when studying
extinct animals as they provide evidence for behaviour, paleoecology and evolution [7]. A
number of studies have investigated the relationship between the indenter shape, the inden-
tation left behind and the rheology of the substrate to try and deduce what characteristics
can be determined from tracks and traces of distinct animals. Simple indentation mod-
els [1] have been used when looking at subfossil mammalian tracks in the Severn estuary.
These experiments consisted of indenting an axisymmetric indenter into a layered plasticine
structure and showed qualitative agreement with the essential features of track formation.
Other experimental work has focused on practical field studies such [12] looking at live emus

different according to the properties of the sediment, and hence shows that care needs to be
taken to understand the original rheological conditions of the substrate at the time of track
making. More recently, numerical studies have been used to simulate the indentation of a
deformable layer [2]. They used a finite-element simulation to study the depth versus
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or clay.  They found that footprints from the same trackmaker can appear morphologically



pressure exerted due to a rigid human foot indenting an elastic-plastic substrate with and
without a firm subsurface layer. They found that depending on the depth of the initial
deformable layer, regions either indented deeper or shallower than expected from the peak
pressure in that region. This work demonstrated the importance of underfoot consolidation
in altering when sediment is able to resist deformation under load and support larger pres-
sures. These laboratory and numerical studies described above demonstrate the complexity
of understanding the formation of footprints and the leading order effects substrate rheology
and foot morphology can have. However, a simple quantitative approach to understanding
the characteristics of footprints has yet to be taken.

In this study, we will explore the indentation of deformable plastic layers by building on
the current advances in viscoplastic lubrication theory. In particular, we will consider the
vertical indentation of a shallow viscoplastic layer by a flat-based and cylindrical indenter.
We hope this will give insight the dominant balances in plastic deformation with application
to footprint formation amongst many other interesting problems.

2 Theoretical odel: Loading

We wish to understand the deformation of a plastic layer by a rigid indenter. To do so
we consider two stages: i) loading stage, where indentation is due to a given force, and ii)
lift off stage, where the indenter lifts off the deformed substrate at a given speed. In all of
the analysis to follow, we assume a two-dimensional geometry and that the motion of the
indenter is always perpendicular to the substrate.

To model the substrate, we consider two different rheologies: a purely cohesive model
with cohesion τY to describe a mud-like substrate, and secondly a non-cohesive model with
angle of friction φ to describe a granular substrate such as dry sand. During the loading
stage, a rigid indenter deforms the substrate due to a given force F . We consider firstly the
indentation of a shallow viscoplastic layer and then outline current theory for the indentation
of a deep plastic layer.

2.1 Shallow layer

We use viscoplastic lubrication theory with a Bingham rheology as a vehicle for understand-
ing a shallow plastic layer [8]. We consider the deformation of a uniform layer of viscoplastic
fluid of height h0, density ρ, viscosity μ with an indenter of geometry η(x), and character-
istic length scale x0. The height of the indenter is given by h(x, t) = δ(t) + η(x), where
δ(0) = h0, for −L < x < L where L is the contact point on the indenter. The free-surface
height of the fluid outside of this region x > L is also defined as h(x, t). We consider two
particular cases: (a) when the the contact point L is fixed for example a flat indenter with
corners, η(x) = 0, and (b) when the contact point L is moving and the indenter has some
geometry η(x) for example a cylindrical indenter or a flat indenter with rounded edges. In
case (a) we would like to solve for the height the free-surface reaches up the side of the
indenter h(L, t) = hL(t), whereas in case (b) we would like to solve for the contact point
L(t) and hence calculate hL(t) = δ(t) + η(L), see figure 1.

The shallow-layer approximation can be used when the characteristic length scales are
much greater than the characteristic height scales, x0 � h0.



Figure 1: Schematic of (a) flat-based indenter, η(x) = 0 and (b) cylinder, η(x) = 1
2Rc

x2.

2.2 Bingham rheology

To parametrise the viscoplastic layer we consider a Bingham rheology. A Bingham rheology
is one in which the stress tensor varies linearly with strain rate provided the stress is above
a given yield stress. Below this yield stress the strain rate is zero. This can be summarised
as follows

τij =

(
τY
γ̇

+ μ

)
γ̇ij |τ | > τY , (1)

γ̇ij = 0 otherwise, (2)

where γ̇ =
√

1
2 γ̇ij γ̇ij and τ =

√
1
2τijτij . The form of the yield stress τY depends on the

rheology of the substrate. For the purely cohesive case, the yield stress is constant and for
the non-cohesive case the yield stress varies linearly with pressure, τY = p tanφ, where φ is
the angle of friction.

Assuming horizontal scales x0 are much larger than vertical scales h0, the thin film
approximation can be used such that

u � w and
∂

∂x
� ∂

∂z
. (3)

These scales allow O(ε = h0/x0) terms to be identified in the momentum equation and the
strain rate tensor, and hence gives

∂

∂z
τxz =

∂p

∂x
, (4)

0 =
∂p

∂z
+ ρg. (5)

The pressure can then be integrated to give

p = P + ρg(h− z), (6)

where P is the pressure at z = h. Substituting into the momentum equation then gives the
stress as a function of x and z,

τxz = Txz + (Px + ρghx)(z − h) ≡
(
τY
γ̇

+ μ

)
uz for |τxz| > τY , (7)



where Txz is the stress at z = h. The model can be split into two regions: region 1 below 
the indenter −L ≤ x ≤ L ; and region 2 outside the indenter x ≥ L. In region 1 there 
are no-slip conditions on the top and bottom boundaries generating a squeeze flow beneath 
the indenter. In region 2 there is a free-surface on the top boundary giving a zero stress 
boundary condition there.

2.3 Purely cohesive, τY = constant

2.3.1 Free-surface flow

For the free-surface flow Txz = 0 and P = 0 due to the zero normal stress condition on the 
top surface. From equation (7) in section 2.2 we then have

uz =
(Px + ρghx)

μ
(z − h)− sgn(uz)

μ
τY . (8)

The sgn(uz) is required because the fluid is yielded when |τ | > τY . Rearranging the equation
for the velocity gradient gives an expression for the yield surface Y when γ̇ ≡ |uz| = 0,

uz = −ρghx
μ

(Y − z) where Y = h+
τY
ρghx

. (9)

Integrating and using the no-slip boundary condition at z = 0 gives velocity field

u = −ρghx
2μ

(2Y − z)z 0 ≤ z ≤ Y, (10)

u = up = −ρghx
2μ

Y 2 Y ≤ z ≤ h, (11)

where up is the plug velocity. Integrating the free-surface flux and then applying local mass
conservation gives a governing equation for the evolution of the free surface

∂h

∂t
=

ρg

6μ

∂

∂x

(
hxY

2(3h− Y )
)
, FFS = −ρghx

6μ
Y 2(3h− Y ), (12)

where F FS  is the net horizontal flux.

2.3.2 Squeeze flow

Underneath the indenter there is a squeeze flow as fluid is pushed out the way by the 
indenter. The no-slip boundaries conditions give a parabolic profile suggesting there is a 
plug region in the centre at the turning point where uz = 0. We can also assume symmetry 
about the centre line z = h/2 and hence apply boundary conditions

u = 0 at z = 0, uz = 0 ⇒ τxz = 0 at z =
h

2
. (13)

The stress can the be written as

τxz = (Px + ρghx)

(
z − h

2

)
≡

(
τY
γ̇

+ μ

)
uz. (14)



As in the free-surface case, this can be rearranged to give the velocity gradient in terms of
the yield surfaces Y± for z < Y− and z > Y+,

uz = −Γ

μ
(Y± − z) where Y± =

(
h

2
± τY

|Γ|
)
, (15)

and Γ = Px+ ρghx is the reduced pressure gradient. The squeeze flow flux can be found by
integrating the velocity gradient

FSF = 2

∫ h
2

0
u dz ≡ 2

∫ Y−

0

(
h

2
− z

)
uz dz = − Γ

3μ
Y 2
−

(
3h

2
− Y−

)
. (16)

Hence, applying local mass conservation with h(x, t) = δ(t) + η(x), the governing equation
for the pressure gradient can be written as

xδ̇ =
Γ

3μ

(
h

2
− τY

|Γ|
)2(

h+
τY
|Γ|

)
. (17)

2.3.3  Global mass conservation and equation of motion for δ(t)

We consider global conservation of mass to relate the depth δ to contact length L. By 
considering the area underneath the indenter, global conservation of mass can be written 
as a sum of integrals in the two regions,

h0L0 = δL+

∫ L

0
η dx+

∫ L0

L
hFSdx, (18)

where L0 is the half-length of the deforming substrate, see figure 1. To close the system,
the equation of motion for δ(t) can be written as,

mδ̈ = −mg + 2

∫ L

0
P dx, (19)

where m is the mass per unit width of the indenter and g is the acceleration due to gravity.

2.3.4   Non-dimensionalisation

We non-dimensionalise vertical and horizontal lengthscales by the initial depth of fluid h0 and 
characteristic lengthscale of the geometry x0 respectively. A scale for the pressure is defined 
by balancing the normal force due to the fluid with the weight of the indenter. Finally, a 
timescale is defined by balancing the inertial forcing with the weight of the indenter. Hence, 
non-dimensional variables can be defined as,

x̂ =
x

x0
, ĥ =

h

h0
, P̂ =

P

P0
=

x0
mg

P, t̂ =
t

t0
=

(
g

h0

)1/2

t. (20)



Dropping the hat decoration, the governing equations for the free-surface flow, the
squeeze flow and the evolution of δ(t) then reduce to

V
∂h

∂t
=

R

6

∂

∂x

(
hxY

2(3h− Y )
)

with Y = h+
B

Rhx
(21)

V xδ̇ =
Γ

3

(
h

2
− B

|Γ|
)2(

h+
B

|Γ|
)
, (22)

L0 = δL+

∫ L

0
η dx+

∫ L0

L
hFSdx (23)

δ̈ = −1 + 2

∫ L

0
P dx, (24)

with parameters

B = τY x
2
0/mgh0, R = ρx0h0/m, and V = μx30/mh20

√
gh0. (25)

The Bingham number B characterises the strength of the substrate, R controls the influence
of gravity and V the influence of viscosity. This model is valid until δ̇ = 0 at which point 
the squeeze flow turns off and the layer plugs up.

2.3.5 Plastic limit, free-surface

In the plastic limit, as V → 0, the terms involving time dependence in the free-surface and 
squeeze evolution equations are small and hence the flow becomes quasi-static. For the
free-surface flow this implies Y = h + B/Rhx → 0, hence

hhx = −B

R
⇒ h =

(
h2L +

2B

R
(L− x)

)1/2

. (26)

2.3.6    Plastic l imit, squeeze flow case (a): flat-based i ndenter, η(x) = 0, x0  
= L

In  the plastic l imit,  the yield surfaces Y± = h/2 ∓ B /(Px + R hx)  in  the squeeze flow also 
tend to  the boundaries, Y− →   0, Y+ →   h  implying

h

2
= − B

Px +Rhx
. (27)

Assuming further that R � 1 so the hydrostatic pressure is small, the pressure in the
squeeze flow can be solved for with boundary condition P (x = 1) = R(hL − δ) � 1,

Px = −2B

δ
⇒ P =

2B

δ
(1− x). (28)

Substituting the pressure into the evolution equation for δ we have,

δ̈ = −1 +
4B

δ

∫ 1

0
1− x dx = −1 +

2B

δ
, (29)



Figure 2: Potential energy V (δ) against depth δ for the flat-based indenter (solid lines) and
the parabolic indenter (dashed lines) and two values of the Bingham number 2B = 1, 1/3 ln 3
given by the blue and red lines respectively.

which defines equilibrium depth δeq = 2B where the normal force due to the fluid balances

the weight of the object. Multiplying by δ̇ the energy equation can be derived, and hence
an expression for the final depth of the indenter δf ,

1 +
δ̇20
2

= V (δf ) = δf − 2B ln δf . (30)

The minimum value of V (δ) is attained at the equilibrium depth δ = δeq = 2B, with value
V (δeq) = 2B − 2B ln 2B. When δ̇0 = 0 and 2B < 1 (δeq < 1), the indenter sinks to a height
δf . However, when δ̇0 = 0 and 2B > 1, the equilibrium depth is above the height of the
layer. This is because the layer is not sufficiently stressed to deform so the indenter remains
on the surface with δf = 1, see figure 2.

2.3.7 Plastic limit, squeeze flow case (b): parabola η(x) = 1
2x

2, x0 = (Rch0)
1/2

In the case of a parabolic indenter (local approximation for a cylinder), the pressure gradient
can be written as,

Px = −Rx− 2B

δ
(
1 + 1

2δx
2
) . (31)

The normal force due to the fluid is given by

2

∫ L

0
P dx = −2

∫ L

0
xPx dx = 2

∫ L

0
Rx2 +

2Bx

δ
(
1 + 1

2δx
2
) dx =

2RL3

3
+ 4B ln

(
1 +

1

2δ
L2

)
.

(32)



Unlike the flat-based indenter with fixed L, for the parabola the evolution of δ(t) is coupled
to the evolution of L(t). Global conservation of mass gives

L3

6
− L(1− δ) +

R

6B
(2hL + 1)(hL − 1)2 = 0. (33)

In the limit of R � 1, the conservation of volume reduces to L2 = 6(1−δ), hence the energy
equation for δ can be written as

δ̇20
2

+ 1 = V (δ) = δf + 4B

(
1

2
(3− 2δf ) ln(3− 2δf ) + δf ln δf

)
. (34)

Figure 2 plots the potential energy V (δ) against the depth of the indenter. The minimum
point is given by δ = δeq = 3/(exp(1/4B) + 2) which tends to 1 as the Bingham number
diverges. For δ̇0 = 0, the parabola appears to reach the bottom provided 2B < 1/3 ln 3. In
general, equation (34) suggests the parabola reaches the bottom of the initial layer provided
the initial speed of the indenter is sufficiently large,

δ̇20 > 2(6B ln 3− 1). (35)

However, in the plastic limit there will always be a thin viscous layer between the parabola
and the base of the substrate. This is violated in this case because the assumption that the
yield surfaces tend towards the boundaries, Y− → 0, Y+ → h, breaks down as δ → 0. If we
rescale the variables in terms of δ, x̂ = x/δ1/2, ĥ = h/δ, for η(x) = η0x

n, then we have

V δ
1
n
− 3

2 δ̇ =
Γ

3

(
h

2
− B

|Γ|
)2(

h+
B

|Γ|
)
. (36)

For n > 0 the left hand side diverges as δ → 0 suggesting we are no longer in the quasistatic
limit so the approximation of Y− → 0, Y+ → h is not valid. Hence, equation (34) does not
hold for small δ.

2.4 Numerical solution

The full system (21 24) can be solved numerically using
MATLAB’s in-built solver ODE15s. Figure 3 shows the numerical solution for

parameters V = 1, B = 1 and R = 1 with initial condition δ̇0 = −2. Figure 3(a-c)
show the position of the cylinder, yield surfaces and free-surface profile at time
intervals t = 0.02, 0.14 and 0.26. Figure 3(d) plots depth of the cylinder δ(t) with
time to its stopping position at δf = 0.71, t = 0.29. In figure 3(a-c) there appears to
be a discontinuity between the squeeze flow and free-surface flow as indicated by the
transition from two yield surfaces to one. This is because there is an O(1) aspect
ratio region at the contact line x = L which is not captured by the lubrication
model, where the yielded and plug regions smoothly transition. Instead the lubrication
model matches the two regions by taking the horizontal volume flux to be continuous
at x = L.

−



Figure 3: Full numerical solution for a parabolic indenter dropped onto a pure cohesive
substrate with δ̇0 = −2, V = 1, B = 1 and R = 1 plotted at (a) t = 0.02, (b) t = 0.14, and
(c) t = 0.26. The coloured lines indicate the edge of cylinder (black), free surface (blue),
yield surfaces in the squeeze flow (red), and yield surfaces in free surface flow (green), with
black dashed lines separating the squeeze flow and the free-surface flow. The squeeze flow
plug, free-surface plug and cylinder are shaded in red, green and grey respectively. (d)
Height of the cylinder with time. Blue dots are plots are t = 0.02, 0.14, 0.26 and the black
dot is final resting place of cylinder when δ̇ = 0 at δf = 0.71, t = 0.29.



2.5 Mohr-Coulomb τY = p tanφ

In a Mohr-Coulomb model, the stress tensor can be written as

τij = τY
γ̇ij
γ̇

where τY = c+ p tanφ, (37)

where c is the cohesion and φ is the internal friction angle. For generality, we will consider
c 
= 0 to begin with and then take c = 0 for the non-cohesive case. As in the Bingham
model, we regularise by adding a viscous term in order to solve for the flow field. This gives

τij =

(
c+ p tanφ

γ̇
+ μ

)
γ̇ij . (38)

2.5.1  Free-surface flow

For the free surface flow p(z = h) = 0, which gives

μu = (−ρghhx − c− ρgh tanφ) z +
1

2
(ρghx + ρg tanφ) z2. (39)

Setting uz = 0 defines the yield surfaces

Y = h− c

ρg(|hx| − tanφ)
. (40)

As in the pure cohesive case, the governing equation for h can be found by considering local
mass conservation to give

∂h

∂t
=

∂

∂x

(
ρg(hx + tanφ)

6μ
Y 2(3h− Y )

)
. (41)

2.5.2   Squeeze flow

The squeeze flow is treated in a similar manner to the pure cohesive case. In the bottom 
yielded region, the velocity gradient can be integrated to give the velocity for 0 < z  < Y−

μuz = Γ(z − Y−) + ρg tanφ(z − Y−) ⇒ μu− = (Γ + ρg tanφ)z
(z
2
− Y−

)
, (42)

where Γ = Px + ρghx. Similarly, the velocity in the top yielded region for Y+ < z < h can
be written as

μu+ = (Γ− ρg tanφ)

[
z
(z
2
− Y+

)
− h

(
h

2
− Y+

)]
. (43)

One equation for the yield surfaces is given by matching the plug speeds, u−(Y−) = u+(Y+),

h−
(−Γ− ρg tanφ

−Γ + ρg tanφ

)1/2

Y− = Y+. (44)

Another equation is given by setting the top and bottom boundaries to be at the yield stress

−Γ(Y+ − Y−) = 2c+ 2P tanφ+ ρg tanφ(2h− Y− − Y+). (45)

Depth integrating the velocity and applying local mass conservation an ODE for the pressure
P can be found,

−xδ̇ =
(Γ + ρg tanφ)

6μ
Y 3
− − (Γ− ρg tanφ)

6μ

(
Y 3
+ − 3Y+h

2 + 2h3
)
. (46)



h0

2.5.3 Non-dimensionalisation

We non-dimensionalise as in section 2.3.4 which gives the additional non-dimensional pa-
rameter Φ = x0 tan φ which controls the influence of the angle of friction φ. The Bingham
number is now written as B = cx20/mgh0.

2.5.4 Plastic limit, free-surface

In the plastic limit, Y → 0, and equation for the quasistatic free surface h(x, t) can be found
hhx

B
RΦ + h

= −Φ, (47)

Using boundary condition h(L, t) = hL, this can be integrated to give

h− hL − B

RΦ
ln

(
h+ B

RΦ

hL + B
RΦ

)
= (L− x)Φ. (48)

In the non-cohesive case, B = 0, the free surface profile in the plastic limit reduces to the
linear profile with gradient given by the angle of friction φ,

h− hL = (L− x)Φ. (49)

2.5.5 Plastic limit, squeeze flow case (a): flat-based indenter η(x) = 0, x0 = L

In the plastic limit, the yield surfaces tend to the boundaries, Y− → 0, Y+ → h = δ(t). 
Hence, this gives

−Pxδ = 2B + 2ΦP +RΦδ. (50)

Multiplying by an integrating factor and using boundary condition P (x = 1) = R(hL − δ),
an expression for the pressure can be found

P = −
(
B

Φ
+

Rδ

2

)
+

(
RhL − Rδ

2
+

B

Φ

)
exp

(
2Φ

δ
(1− x)

)
(51)

The equation of motion for the depth of the indenter in the non-cohesive case is then given
by

δ̈ = −1−Rδ − δ

Φ

(
RhL − Rδ

2

)(
1− exp

(
2Φ

δ

))
. (52)

A relationship between hL and δ is found by considering global mass conservation

1− δ =
1

2
(hL − 1)(L0 − 1) ⇒ hL = 1 + (2Φ(1− δ))1/2 . (53)

The force balance equation can then be integrated to give an expression for δf in terms of
initial condition δ̇0 and parameters Φ and R,

1 +
δ̇20
2

= δf +R

∫ δf

δ0

(
δ + δ

((
2(1− δ)

Φ

)1/2

− δ

2Φ

)(
1− exp

(
2Φ

δ

)))
dδ. (54)

Figure 4 plots the final depth δf as a function of Φ and R (blue and red solid lines). For
small 1/R, the flat-based indenter sits on the surface of the plastic layer with δf = 1. As
in the pure cohesive case, this defines a yield criterion as a function of parameters Φ and R
where the layer is not sufficiently stressed to deform.



Figure 4: Plot of the final depth δf as a function of 1/R for a flat-based indenter (solid 
lines) and parabolic i  ndenter (  dashed l  i nes) with Φ = 1, 2.

For a parabolic indenter, h = δ(t) + 1
2x

2, the pressure in the squeeze flow is given by
Γ = Px +Rx. Hence, in the plastic limit

−(Px +Rx)

(
δ +

1

2
x2

)
= 2B + 2ΦP +RΦ

(
δ +

1

2
x2

)
. (55)

In the non-cohesive case,

Px +
2ΦP

δ + 1
2x

2
= −R(x+Φ). (56)

This can be integrated with boundary condition P (x = L) = R(hL − δ). Substituting the
pressure into the force balance equation, together with global mass conservation

(
δ +

1

2
L2 − 1

)2

= 2Φ

(
L(1− δ)− 1

6
L3

)
, (57)

and integrating twice, an expression for δf can be found in terms of δ̇0 and parameters Φ
and R, see section 2.5.5. Figure 4 plots the final depth δf as a function of Φ and R (blue
and red dashed lines).

2.6 Deep plastic layer

Thus far we have considered a shallow layer of viscoplastic fluid in order to understand
the deformation of a shallow plastic layer. The case of a deep layer has been studied
extensively using the method of characteristics [14 9]. These studies calculate the pressure

2.5.6 Plastic limit, squeeze flow case (b): parabola η(x) = 2
1x2, x0 = (Rch0)1/2



underneath a flat-based indenter placed onto a rigid-plastic half-space by the construction
of sliplines. We outline here the method for constructing sliplines and state two key results
for a purely cohesive and a non-cohesive substrate. We then describe three possibilities for
the free-surface displacement.

In the deep layer limit, we require the full force-balance equations

∂σz
∂x

+
∂τxz
∂z

= 0,
∂σx
∂z

+
∂τxz
∂x

= 0, (58)

where σx and σz are the normal stress components in the x and z directions respectively
and τxz is the shear stress. Requiring yield condition (σx − σz)

2 + 4τ2xz = 4τ2Y , the stress
components can then be written in terms of new parameter θ,

σx = −p+ τY sin 2θ, σz = −p = −τY sin 2θ and τxz = τY cos 2θ. (59)

Substituting the parametrisation (59) into the full force-balance equations (58) and differ-
entiating, equations for p and θ can be found(

cos θ
∂

∂x
+ sin θ

∂

∂z

)
(p+ 2τY θ) =

(
sin θ

∂

∂x
− cos θ

∂

∂z

)
(p− 2τY θ) = 0. (60)

These define two sets of characteristics (α and β characteristics) along which quantities
p± 2τY θ are conserved. To solve for the slipline field the quantities p and θ first need to be
defined along some boundary. The values of p and θ are calculated elsewhere by integrating
along the characteristics equations (60) from a region of known information.

For the case of a pure cohesive plastic layer where τY = constant, the pressure under-
neath an indenter of contact length a = 2L can be calculated analytically and is given
by

p = τY (2 + π), (61)

[14]. The force per unit length is therefore F = τY (2 + π)a. For the case of a non-cohesive
material such that τY = p tanφ, the pressure is given by

p =
1

2
ρgNγa, (62)

where Nγ = 6.5 is a Terzaghi coefficient [19 3] calculated numerically, with force per unit
length F = 1

2ρgNγa
2. These expressions for the force F describe the initial condition where

a flat-based indenter of contact length a is placed onto the flat surface of a deep plastic
layer. Hence, this theory can only be extended to small deformations of the layer where the
surface can be approximated as horizontal.

For a flat-based indenter, comparing the weight of the indenter with the force exerted
by the plastic layer gives a yield criterion for when the indenter can deform the substrate.
For example in the pure cohesive case, the indenter will deform the substrate provided

τY ≤ mg

(2 + π)wa
, (63)

where m and w are the mass and length of the indenter respectively. To determine the
equilibrium depth of the indenter, the velocity field must be calculated to update the free



surface, and hence calculate the new force exerted by the plastic layer. An iterative numer-
ical approach can then be used to determine the depth at which the forces are in balance.

For the case of a parabolic indenter, the increasing contact length with depth of inden-
tation means more progress can be made analytically. Again, for the pure cohesive case,
equating the force exerted by the plastic layer with the weight of the indenter gives a con-
tact length a = mg/τY (2 + π)w. The contact length must now be related to the depth of
the indentation. Figure 5 shows possible relationships between contact length a and depth
of indentation d. Figure 5(a) shows when the layer is allowed to compact such that there
is no free-surface deformation, in contrast to the previous formulation where we assumed
incompressibility. As a result the free surface remains horizontal with d = 1

2Rc
(a/2)2 for

shallow depths d. In figure 5(c) we have considered when gravity is neglected giving a
vertical free-surface. Conservation of mass then implies d = 1

6Rc
(a/2)2. We anticipate the

free-surface to be in between these two end-members such as figure 5(b). For the pure
cohesive case, the free-surface displacement for shallow indentations can be found
using the slipline calculations [18]. For small deformations due to the curved surface
of a cylinder, the velocity on the surface of the plastic layer is shown to be

v(x, t) =

{−V 0 ≤ x ≤ a/2
V a/2 ≤ x ≤ a,

(64)

where the length of the deformed region outside is the same as the half-length of the indenter
due to the symmetry of the slipline field. And hence, the deformed region outside has
profile [18]

h = d− x2

14Rc
where d =

2

7Rc

(a
2

)2
. (65)

For the parabolic indenter, the contact length and depth as function of the mass of the
indenter are therefore given by

a =
mg

τY (2 + π)w
, d =

1

14Rc

(
mg

τY (2 + π)w

)2

, (66)

for a pure cohesive substrate, and

a =

(
2m

ρNγw

)1/2

, d =
2m

14RcρNγw
, (67)

for a Mohr-Coulomb substrate.
In this section we have described a theoretical model for the loading stage of indentation

where either a flat-based or parabolic indenter is placed onto a shallow plastic layer. We
have also outlined the current theory for indentation of a deep plastic layer using the method
of characteristics to build up a slipline field. In the next section we will describe experiments
of indentation into shallow and deep layers with the aim of making comparisons with the
theory described.



Figure 5: Schematic showing possible relationships between contact length a and depth
indented into the plastic layer d. (a) Pure compaction d = 1

2Rc
(a/2)2, (b) some deformation

outside 1
6Rc

(a/2)2 < d < 1
2Rc

(a/2)2 , and (c) vertical free surface d = 1
6Rc

(a/2)2.

3 Experiments

3.1 Setup

Experiments were conducted to investigate the relationship between depth, contact length
and mass for a cylinder indenting a deformable substrate. Joint compound was used as a
Bingham rheology and two sizes of ballotini (0.2mm and 1mm) were used as Mohr-Coulomb
rheologies, both with angle of friction φ = 24.9 ± 0.7. The experimental setup is shown in
figure 6. A clear perspex cylinder of radius Rc = 0.076m was attached to the end of
a lever was allowed to rotate about a pivot. Weights were placed on the lever
and incrementally moved along to increase the moment, and hence mass on the
cylinder. A scale placed on the inside of the cylinder allowed the contact arc length
to be measured by eye. Two cameras were also set up to record the displacement of
the cylinder. The first camera took photos parallel to the substrate surface to measure
the depth of the cylinder, figure 6(b). The second camera was placed at a known
oblique angle to take photos of a laser line shone through the cylinder, figure 6(c).
This gave a second measurement of the contact arc length and depth as well as a
profile of the free surface outside.

3.2 Image processing

Photographs taken parallel to the substrate were analysed to determine the depth of the
indentation. A blue strip on the top of the cylinder was used to track the displacement
between images. We found that the cylinder compressed slightly due to the weight placed
on top. As a result, a compliance test was carried out to measure the deformation of the
cylinder under a given load when placed on a rigid surface. This is then subtracted from
the measured displacements.

Photographs of the laser line taken at known oblique angle were analysed to
deduce the profiles of the indentations, see figure 7(a). Firstly, the red filter of the
image is taken to get an intensity plot figure 7(b). A moving average is then used to
smooth the profiles, with a lower threshold chosen to eliminate noise. The profile is
then determined by calculating the weighted average along each vertical strip of
pixels, figure 7(c) (blue solid line). The laser line was imaged through the bottom half
of the cylinder causing some distortion of the profile to take place. This is corrected
for by subtracting off a reference profile of the



Figure 6: Experimental setup. (a) Schematic of the experimental setup. (b) Sample photo-
graph taken from the first camera parallel to the substrate, and (c) taken from the second
camera at known oblique angle.

Figure 7: Image processing for joint compound experiment with h0 = 4 cm. (a) Image
of laser line, and (b) red filtered image of laser line. (c) Detected displacement of joint
compound (blue solid line) and reference profile of laser line projected through the perspex
cylinder (red solid line), edge of the cylinder indicated by vertical black-dashed lines. (d)
Final profile of displacement.



cylinder resting on the surface of the joint compound with no mass, figure 7(c) (red solid
line), where the black-dashed lines indicate the edge of the cylinder. The final displacement
profile is given in figure 7(d) with the contact length a and the depth d indicated and
superimposed cylinder outline given by the black dashed line.

3.3 Joint Compound

3.3.1 Yield stress

A slump test can be used to measure the yield stress of the joint compound. From sec-
tion 2.3.5, the final profile of a shallow slump of plastic fluid is given by

h(x) =

(
2τY
ρg

(Ls − x)

)1/2

(68)

where Ls is the radius of the slump, [10]. By measuring the radius and central height
of a slump of joint compound, the yield stress can be measured, τY = ρgh20/2Ls. In our
experiments, the yield stress is measured to be τY = 35± 5Pa.

3.3.2 Loading experiments

For the joint compound, we carried out a series of loading experiments where the mass
on the cylinder was gradually increased by moving masses along the pivot lever. The
depth, δf , and contact length, a = 2L, where measured using the methods described in
section 3.1. Figure 8 plots the depth and contact length against the applied mass for four
different substrate heights h0 = 1, 2, 3 and 4cm. Figure 8(b) shows excellent agreement
between the contact length measured from the profiles (filled circles) and the contact length
measured by eye (empty squares). As the depth of the substrate increases, the contact
lengths begin to collapse onto a universal curve, seen by the close agreement between the
contact lengths for h0 = 3cm (orange points) and h0 = 4cm (purple points). This is to be
expected since as h0 increases there is a transition from indenting a shallow layer where the
depth δf is proportional to h0 to indenting a deep layer where the depth δf is independent
of h0. Figure 8(a) plots the depth against applied mass and shows there is a discrepancy
between the depth measured from the profiles (filled circles) and the depth measured
from tracking the side view of the cylinder (empty squares). The depth measured
from the profiles show a collapse of the data for larger substrate depths onto a
universal curve (orange and purple filled circles), consistent with the measured contact
length, whereas the depth measured from the side profiles show a continued increase
in depth. In addition, the profiles seen in figures 7, 9 are in excellent agreement with
the theoretical cylinder shape with measured radius Rc = 0.076m (black dashed lines)
suggesting there is no error in converting the profiles to depths. And hence, the laser
line gives a more accurate measure of the depth of the indentation. On possible
reason the depth calculated from the side images disagrees could be that the
compliance of the cylinder is not properly accounted for. In future experiments, more
tests need to be carried out to characterise the compliance of the indenter.

Figure 8 also plots the theoretical curves for the deep plastic layer (black dashed lines)
and the viscoplastic layer (black dot-dashed lines). The deep theory is given by equation (66)



Figure 8: Loading experiments for a cylinder indenting a layer of joint compound. (a) Depth
with mass measured using the detected profiles (filled circles) and the photographs tracking
the cylinder from side view (empty squares). (b) Contact length with mass measured using
the detected profiles (filled circles) and by eye (empty squares). The theoretical curves for
the deep plastic layer (black dashed lines) and the viscoplastic layer (black dot-dashed lines)

are plotted for parameters τY = 35Pa, ρ = 1517 kgm−3, h0 = 0.01m, Rc = 0.076m and
w = 0.2m.

and the viscoplastic theory by numerically solving the force balance outlined in section 2.3.7
with R non-negligible. Qualitatively the experimental data has the same characteristic
shape as suggested by the shallow viscoplastic theory but appears to disagree quantitatively
by a scale factor. In terms of the deep plastic theory, initially the contact length appears to
grow linearly as suggested by the theory but then quickly diverges. This may be because
the surface of the layer can no longer be approximated as horizontal.

3.3.3 Profiles

The detected free-surface profiles can also be used to compare with the theoretical models.
Figure 9(a-d) plots the profiles for layer depths h0 = 1, 2, 3 and 4 cm due to applied loads
m = 0.24, 1.05 kg. For the smallest depth, figure 9(a), the theoretical curve (26) is plotted
for two values of the yield stress τY = 20 and 35Pa and suggests a smaller yield stress
than measured from the slump test is required to fit the experimental results. As the layer
depth increases, the region over which deformation occurs increases. For the largest layer
depth, figure 9(d), the deformation begins to reach the edge of the containing box. As a
result, the flow can feel the influence of the side walls and hence mobilises a larger region
of the layer than suggested by the theoretical free-surface for the deep plastic layer (green
solid line). In addition, the profiles of layer depth h0 = 3 and 4cm suggest that mass is
not conserved. This could be due to an error zeroing the profiles with the reference image
or fluid escaping the test region. To experimentally increase the height of the layer depth,
blocks were added into the box to dam a smaller region. Any fluid escaping this region
would cause an apparent loss of mass with indentation.



Figure 9: Profiles of loading experiments for a cylinder indenting joint compound for layer
depths h0 = 1, 2, 3 and 4cm, (a-d) respectively, and applied load m = 0.24, 1.05 kg
(blue lines). (Note change of axes ) Position of the cylinder given by the black dashed
lines.(a) Theoretical curves for a viscoplastic free-surface flow with yield stress τY = 35
Pa (red dot-dashed line) and τY = 20 Pa (red solid line). (d) Theoretical curve for a
deep plastic layer free-surface profile (green solid line).



3.4 Ballotini

3.4.1 Loading experiments

For the ballotini we again carried out a series of loading experiments for a range of substrate
heights h0 = 1 − 5cm with ballotini diameters 0.2mm (small) and 1mm (large). Figure 10
plots the depth and contact length against the applied mass, where filled data points indicate
large ballotini and empty data points small ballotini. As in the joint compound case, there
is a clear difference between between shallow and deep substrate depths with the depth of
indentation and contact length smaller for h0 = 1cm (purple points). This again highlights
the transition from indenting a shallow layer to a deep layer. There also appears to be a
discrepancy between the small and large ballotini with the same angle of friction φ. At the
start of each experiment the ballotini substrate was mixed around then levelled once to give
a uniform h0 with a loose structure. This may have led to a different packing density for
the two ballotini sizes. For example, if the small ballotini had a tighter packing density we
would anticipate the depth of indentation to be less for a given mass. This could explain the
difference between the two ballotini sizes however further experiments need to be carried
out to rule out other possibilities.

The theoretical curves for the deep plastic layer (black dashed lines) and the viscoplastic
layer (black dot-dashed lines) are also plotted on figure 10. The deep plastic layer, see
equation (67), does a good job at replicating the linear and square root structure of the
depth and contact length for larger substrate depths, whilst the theory for a viscoplastic
layer, numerical solution in section 2.5.6, as in the joint compound case, over predicts the
depth and contact length for a given mass quantitatively by a scale factor.

3.4.2 Dropping experiments

In addition to the static loading experiments, we carried out a series of dropping experiments
to investigate the effect the initial speed of the indenter on the surface of the substrate δ̇0

has on the final depth δf . To do so we dropped the cylinder from a range of increasing
heights with the same loading mass each time onto a substrate of 1mm ballotini of depth
h0 = 5cm. Figure 11 shows the final profile for four different heights. This demonstrates
that the final depth δf increases with initial speed, as anticipated from our formulation in
section 2.1.

In this section we have described some preliminary experiments conducted to investigate
the indentation of two substrate rheologies with a clear transition between shallow layers,
where the indentation is predicted to be proportional to h0, and deep layers, where the
indentation is predicted to be independent of h0. In addition, for the experiments with bal-
lotini, we saw a difference with diameter size suggesting the experiments were very sensitive
to initial conditions. For both the ballotini and the joint compound, there is good agree-
ment with the overall shape suggested by the theoretical models however there appears to
be a scale factor discrepancy between experimental results and the viscoplastic model. The
profile shapes show promising comparisons with the viscoplastic model for the shallowest
depth h0 = 1cm, however highlight the need to measure more accurately the rheology of
the substrate. The dropping experiments also nicely demonstrate the relationship between
initial speed δ̇0 and the final depth of indentation δf .



Figure 10: Loading experiments for a cylinder indenting a layer of ballotini of height h0 =
1 − 5cm. (a) Depth and (b) contact length with mass for small 0.2mm diameter (empty
points) and large 1mm diameter (filled points) ballotini. Theoretical curves for the deep
plastic layer (black dashed lines) and viscoplastic layer (black dot-dashed lines) are plotted
for parameters φ = 24.9, ρ = 1550 kgm−3, Nγ = 6.5, h0 = 0.01m, Rc = 0.076m and
w = 0.2m.

Figure 11: Profiles of dropping experiments for a substrate of 1mm ballotini with depth
h0 = 5cm. Coloured lines indicate different initial heights of the cylinder above the surface,
and hence different initial speeds δ̇0.



Figure 12: Schematic of methods of lift off: (a) reverse squeeze flow, (b) avalanching, and
(c) adhesion.

4 Theoretical odel: Lift ff

We now consider the second stage of our theoretical model: lift off, where the indenter lifts
off the deformed substrate at a given speed. This stage describes the final indentation left
after the indenter has been removed. We consider three methods of lift off: (a) reverse
squeeze flow, (b) avalanching and (c) adhesion, see figure 12. We will primarily consider the
lift off of a flat-based indenter however the methods used could easily be applied to more
complicated geometries such as a parabola as discussed previously.

4.1 Reverse squeeze flow

The first method of lift off considers when no air can get underneath the indenter. Instead,
as the indenter is lifted above its final resting depth δf a reverse squeeze flow is generated
in which material from the outside free-surface flow is pulled underneath to fill the gap. We
assume final lift off can occur when the free surface outside meets the corner of the indenter
i.e. pressure is atmospheric. Figure 13(a) shows the final stage of lift off when the indenter
can detach from the substrate. At this point the depth of the indentation has raised from
the δf to δl with the excavated mound of material outside meeting the flat base at x = 1.

4.1.1 Purely cohesive, τY = constant

From section 2.3.5, the free-surface before lift off is given by

h =

(
h2L +

2B

R
(1− x)

)1/2

. (69)

Provided the speed of lift off is sufficiently slow that the free-surface flow remains in the
plastic limit, the free-surface profile steps through a series of static shapes with the final
profile given by

h =

{(
h2L + 2B

R (1− x)
)1/2

1 < x < Lf ,(
δ2L + 2B

R (x− 1)
)1/2

Lf < x < L0,
(70)

see figure 13(a). To find δL mass conservation is used, which in the plastic limit is an equal
areas construction given the quasistatic free-surface profiles. Hence by global conservation



Figure 13: Schematic of the parameters for (a) the reverse squeeze flow, and (b) the
avalanching method.

of mass, the free-surface profile can be integrated to give

δL − δf =
R

3B

(
h3L + δ3L − 2

(
1

2

(
h2L + δ2L

))3/2
)
, (71)

using h2L + 2B
R (1−Lf ) = δ2L + 2B

R (Lf − 1). Calculating δf and hL from section 2, the depth
δL can be determined as a function of B and R. Figure 14(a) plots the final profile for two
sets of parameters, B = 2, R = 1 (red lines) and B = 1, R = 2 (blue lines).

4.1.2 Mohr-Coulomb, τY = p tanφ

For the Mohr-Coulomb case, the free-surface profile before lift off is given by

h = hL +Φ(1− x), (72)

see section 2.5.4. As in the pure cohesion case, for a sufficiently slow lift off speed the
free-surface flow remains in the plastic limit and hence can be written as (figure 13(a)).

h =

{
hL +Φ(1− x) 1 < x < Lf ,
δL +Φ(x− 1) Lf < x < L0,

(73)

Integrating the free-surface profile after lift off gives an equation relating δL, δf and hL,

δL − δf =
(hL − δL)

2

4Φ
. (74)

As in the pure cohesion case, together with the depth δf and height hL from section 2, the
depth δL can be determined as a function of Φ and R.

4.2 Avalanching

The second method of lift off considers when air can get underneath the indenter. When
the indenter is lifted off the substrate, the gap between the indenter and the final depth
δf is filled with air in the interior with ‘avalanching’ regions near the edge where there is
a squeeze flow and free surface flow, see figure 12(b). When the indenter is removed, the
base of the indentation remains at δf with the mound of material outside now meeting the
base at x = La < 1 (figure 13(b)).



Figure 14: Plot of final indentation for the pure cohesion model after lift off for (a) squeeze
flow method, and (b) avalanching method for parameters B = 2, R = 1 (red lines) and
B = 1, R = 2 (blue lines). The profiles before and after lift off are given by the dashed and
solid lines respectively.

4.2.1 Purely cohesive, τY = constant

In the plastic limit, the profile of the free-surface can be written as

h =

⎧⎨
⎩
(
δ2f + 2B

R (x− La)
)1/2

La < x < Lf ,(
h2L + 2B

R (1− x)
)1/2

Lf < x < L0.
(75)

Using global mass conservation to match the areas of slumped material then gives

R

3B

(
h3L + δ3f

)
+ (1− La) =

2R

3B

[
h2L + δ2f

2
+

B

R
(1− La)

]3/2

. (76)

And hence, using δf and hL calculated in section 2, La can be found as a function of B and
R. Figure 14(b) plots the final profile for the two sets of parameters B = 2, R = 1 (red
lines) and B = 1R = 2 (blue lines).

4.2.2 Mohr-Coulomb, τY = p tanφ

The profile of the free-surface can be written as

h =

{
hL +Φ(1− x) La < x < Lf

δf +Φ(x− La) Lf < x < L0
(77)

Using global mass conservation to match the areas of slumped material then gives

(hL − δf )(hL − hf )− 1

2
(hL − hf )

2 − 1

2
(hf − δf )

2 = 0, (78)

where hf = hL + Φ(1 − Lf ) = δf + Φ(Lf − La). Together with δf and hL calculated in
section 2, La can be found as a function of parameters Φ and R.



4.3 Adhesion

In both the reverse squeeze flow and the avalanching method, we have assumed that lift
off happens completely when the pressure at the edge of the indenter x = 1 is atmospheric
i.e. when the free-surface reaches the corner. A non-cohesive material has no strength in
tension therefore you would expect this to be the case. For a cohesive material however,
there would be some adhesion to the indenter. When thinking about track making, this
adhesion must be able to be characterised in the form of a pressure or stress condition on
the base allowing lift off at some point. In the experiments described in the next section
we have only considered a non-cohesive material therefore adhesion is not applicable.

4.4 Experiments

To investigate the lift off stage experimentally we used the setup as described in section 3
with a layer of 1mm diameter ballotini of depth h0 = 5cm. As the ballotini is dry, we would
anticipate that air can get in between the particles and underneath the indenter during lift
off. And hence, we expect the method of lift off to be as described in section 4.2 with the
bottom of the indentation remaining the same while avalanching occurs on the sides.

Figure 15 shows two lift off experiments with different initial depths for a cylindrical
indenter. Figure 15(a,b) plot the detected profiles before (blue solid line) and after (red
solid line) lift off together with the free-surface profile for a non-cohesive material with angle
of friction φ = 24.9 ± 0.7 (black dot-dashed line), see equation (49). The corresponding
photographs, figure 15(c,d) are taken after lift off to demonstrate the final profile. In
the first experiment, figure 15(a), the indentation is sufficiently shallow that the sides of
the indentation remain roughly at or below the angle of friction. As a result, almost no
avalanching occurs as seen by the negligible difference between the before and after profiles.
When the indentation depth is increased, the walls become steeper than the angle of friction
at the contact points, see figure 15(b). In this case, when lift off occurs, the ballotini
avalanches down into the interior of the indentation with the bottom of the indentation
remaining fixed. Figure 15(b) suggests that the final profile then sits at an angle less than
the angle of friction. This may be due to any added inertia caused by the process of lift off.

In this section we have considered a simple theoretical model to describe the process of
lift off for a flat-based indenter on either a purely cohesive or Mohr-Coulomb substrate. We
have looked at three different methods for lift off: (a) reverse squeeze flow, (b) avalanching
and (c) adhesion. Our preliminary experiments with dry ballotini demonstrate the method
of avalanching when air can get underneath the indenter. To explore to process of lift off
further we need to consider the problem of adhesion and the point at which completed
detachment from the substrate can occur.

5 Conclusion

The aim of this work was to understand the indentation of deformable plastic layers the-
oretically and experimentally. Our theoretical model using viscoplastic lubrication theory
describes the indentation of a shallow plastic layer. We have shown that the plastic limit
reduces to a force balance and equal areas construction given the quasistatic free-surface



Figure 15: Lift off experiments with a layer of 1mm ballotini of depth h0 = 5cm. (a,b)
Depth profiles for increasing depths of indentation for before (blue solid line) and after (red
solid line) lift off. Black dot-dashed line indicates theoretical angle of friction φ = 24.9±0.7.
(c,d) Photographs of final profiles for experiments shown in (a,b) respectively.

profiles. The simple experimental setup used has produced promising preliminary results for
the indentation of a pure cohesive (joint compound) and non-cohesive (ballotini) substrate
with some qualitative comparisons with our theoretical model.

To extend this work in future, we plan on conducting further experiments to investigate
the indentation of deformable plastic layers. In terms of a pure cohesive material we would
like to better characterise the yield stress of the substrate and confirm that a Bingham
rheology is an appropriate approximation opposed to a more complicated Herschel-Bulkley
model. In addition, we would like to characterise the discrepancy between ballotini sizes to
check initial conditions resetting the surface are not playing a role. In terms of experimental
setup, we would like to improve the simple system to reduce the compliance of the indenter,
for example by clamping the sizes of half cylinder,
such a hemisphere. Finally, when discussing the problem of lift off, we touched on the case
of adhesion. This needs to be explored further both theoretically and experimentally as the
process of lift off ultimately determines the final indentation left behind.
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