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1 Introduction

The field of hydrodynamic stability studies the transient responses of an initial perturbation 
around a known steady flow. Due to being fundamental in the understanding of transition to 
turbulence, it has garnered the attention of influential scientists over the years, including 
Reynolds, Orr, and Heisenberg, among others [4].
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Figure 1.1: Diagram illustrating plane Couette flow (in 3D and 2D) with the corresponding system
of coordinates, Reynolds number and steady laminar flow.

Sound theoretical results matching experiments have readily been found in many cases,
such as Taylor-Couette flow [17], but others have remained more elusive. One classical
example is plane Couette flow, which, as shown in Figure 1.1, is the flow between two
infinite parallel plates separated by a distance h with the top plate moving at speed U
in a direction parallel to the plates. The Reynolds number is defined as Re = Uh

ν > 0,
where ν is the kinematic viscosity, while x, y and z are called the axial, wall-normal and
transverse directions respectively. A linear shear flow is well-known to be the steady laminar
equilibrium (see Figure 1.1), and it is the evolution of perturbations about this flow that
are of interest.

This flow was proved by Romanov [15] to have a linear stability limit of ReL = ∞,
meaning that it is linearly stable for any Reynolds number. That is, there always exist
initial perturbations, u(0), under an infinitesimal energy which will decay (i.e., u(t) → 0
as t → ∞) to the laminar steady flow. Hence, other notions of stability must be studied
to explain when and how the flow becomes unstable. With this in mind, it is important to
look at global stability, meaning that every initial perturbation u(0) decays, and conditional



stability, meaning that a certain subset of initial perturbations u(0) decay. The global
stability limit, denoted ReG, is the largest number under which the flow is globally stable.

The problem of finding the global stability limit of 2D plane Couette flow dates back to
1907 [13], over 110 years ago, when William McFadden Orr found a lower bound for this
flow’s global stability limit, the so-called energy stability limit, ReE = 177.2 ≤ ReG. He did
so using what we now call the energy method, first proposed by Reynolds shortly before,
and since then, this has been the only systematic mechanism to rigorously establish lower
bounds to the global stability limit of fluid flows. In some rare situations, ad hoc techniques
can be developed to find a larger lower bound, but in general this is a difficult task, which,
in over a century, has proved to be an unsuccessful endeavor for the particular case of plane
Couette flow. The purpose of this work is to find a better lower bound to the ReG of 2D
plane Couette flow using techniques that can additionally be applied to other flows in the
future.

It is worth noting that 2D plane Couette flow (right of Figure 1.1) is the transversely-

independent (∂(·)
∂z = 0) simplification of 3D plane Couette flow (left of Figure 1.1). In

3D plane Couette flow, the energy stability limit was proved to be actually lower than
the 2D counterpart, ReE = 82.6 [1, 11, 10, 16], but once again no lower bound to ReG
beyond ReE has been established. A theoretical upper bound to ReG was determined for
3D plane Couette flow by the 3D finite-amplitude periodic solutions found by Nagata [12],
which occur at about Re = 500. Meanwhile, experiments place upper bounds of ReG on
3D plane Couette flow to be around Re = 1300 [8, 3, 18]. By contrast, no upper bounds
of ReG have been found for 2D plane Couette flow either through theoretical means or
numerical simulations [14]. Thus, it could be true that ReG = ∞ for 2D plane Couette
flow, and finding a set of increasing lower bounds of ReG could shed some light onto this
open question.

This report is organized as follows. In Section 2 a brief review of how to write a fluid
system as an uncertain dynamical system will be given. The energy method used to prove
global stability will be described, and an alternative based on new techniques coming from
sum-of-squares (SOS) polynomials optimization will be introduced. These techniques allow
to reduce the problem to a tractable semidefinite program (SDP) which can be solved
using a computer. They will produce high-order Lyapunov functions more general than the
energy. In Section 3, solving the energy eigenvalue problem for 2D plane Couette flow will
be outlined. Section 4 will present the results and discussion, while Section 5 will contain
the concluding remarks. Lastly, the family of Appendices A–E will have extensive technical
details associated to the computations and mathematical derivations.

2 Review of Fluid Dynamical Systems

What follows is a brief review of the uncertain fluid dynamical system first presented in [7].
Assume Ω is a bounded domain, and boundary conditions for the fluid velocity v and

pressure p0 consist of a combination of fixed known velocities and periodicity of the velocity
and pressure fields, which additionally satisfy the nondimensional Navier-Stokes equations,

∂v
∂t + v · ∇v = −∇p0 + 1

Re∇
2v + fg ,

∇ · v = 0 ,
(2.1)



where fg represents the gravity effects. Provided a steady solution, V and P , is known, the
Navier-Stokes equations become

∂u
∂t + u · ∇u + u · ∇V + V · ∇u = −∇p+ 1

Re∇
2u ,

∇ · u = 0 ,
(2.2)

where the unknown perturbations u = v − V and p = p0 − P satisfy no-slip boundary
conditions (u = 0) wherever v is fixed, and periodic boundary conditions elsewhere.

Consider the following series expansion for the perturbation velocity field,

u(x, t) =
m∑
i=1

ai(t)ui(x) + us(x, t) ,

∇ · ui = 0 , 〈ui ,uj〉 = δij , ∇ · us = 0 , 〈us ,ui〉 = 0 ,

(2.3)

where δij is the Kronecker delta. Hence, the basis fields, ui, and the residual perturba-
tion velocity, us, are solenoidal, meaning their divergence vanishes and implying that the
incompressibility of the perturbation velocity is satisfied, ∇ · u = 0. Moreover, the ui are
orthonormal in the L2 inner product, and us is orthogonal to all the ui. Here, 〈· , ·〉 is the
L2 inner product, so that

〈w1 ,w2〉 =

∫
Ω

w1 ·w2 dΩ , ‖w‖2 = 〈w ,w〉 =

∫
Ω
|w|2 dΩ , (2.4)

where ‖ · ‖ is the L2 norm, and | · | is the usual Euclidean norm of a vector.
Next, let a(t) = [a1(t), . . . , am(t)] ∈ Rm and q(t) = ‖us(t)‖, so that the perturbation

energy is ‖u(t)‖2 = |a(t)|2 + q2(t). Chernyshenko and Goulart [7] show that the dynamical
system ã(t) = (a(t), q2(t)) describing the perturbation velocity is

da

dt
= f(a) + Θa(us) + Θb(us,a) + Θc(us) ,

1

2

dq2

dt
= −a ·

(
Θa(us) + Θb(us,a) + Θc(us)

)
+ Γ(us) + χ(us,a) ,

(2.5)

where

fi(a) =

(L·a)i︷ ︸︸ ︷(
1

Re〈ui ,∇
2uj〉 − 〈ui ,uj · ∇V + V · ∇uj〉

)
aj +

(N :a⊗a)i︷ ︸︸ ︷
(−〈ui ,uj · ∇uk〉)ajak ,

Θai(us) = 〈us ,hi0〉 , hi0 = 1
Re∇

2ui + V · ∇ui − ui · ∇TV ,

Θbi(us,a) = 〈us ,hij〉aj , hij = uj · ∇ui − ui · ∇Tuj ,

Θci(us) = 〈us ,us · ∇ui〉 ,
Γ(us) = 1

Re〈us ,∇2us〉 − 〈us ,Dus〉 ,
χ(us,a) = 2〈us ,dj〉aj , dj = 1

Re∇
2uj −Duj ,

(2.6)

with D = 1
2(∇V +∇TV) being the rate of strain tensor of the steady flow V, and where

∇Tw = (∇w)T for any vector field w (e.g. (hij)k = (uj)l(∇ui)lk − (ui)l(∇uj)kl for j ≥ 1,
where (∇w)ij = ∂wi

∂xj
).



The evolution of the fluid dynamical system described through dã
dt in (2.5), is nonlinear

in a (via N : a⊗ a in ξ(a)), and more importantly it is uncertain in q due to the fact that
it is multivalued in that variable. Indeed, for a fixed q, there are multiple values us such
that q = ‖us‖ meaning that dã

dt can take multiple values for a single value of q.

2.1 Lyapunov functionals and the energy method

Now, consider a real-valued Lyapunov functional V (u), with V (0) = 0. Then, Lyapunov’s
theorem says that if V is positive-definite and radially unbounded (i.e. V (u) > 0 for all

u 6= 0 and V (u) → ∞ as ‖u‖ → ∞), and dV (u(t))
dt is negative definite (i.e. dV (u(t))

dt < 0 for
all u 6= 0), it follows that the flow is globally asymptotically stable (meaning that for every
initial perturbation u(0) it follows u(t)→ 0 as t→∞).

The classical approach to proving global stability is to use the energy method, where
the Lyapunov function is chosen as the perturbation energy, V (u) = E = 1

2‖u‖
2. In

the simplest case, where m = 0 in (2.3), so u = us and ã(t) = q(t) = ‖u(t)‖, then
V (u(t)) = E(t) = 1

2q
2(t), a does not exist and (2.5) becomes

dE

dt
=

1

2

dq2

dt
= Γ(u) =

1

Re
〈u ,∇2u〉 − 〈u ,Du〉 . (2.7)

It is clear V (0) = 0, V (u) > 0 for all u 6= 0 and more importantly dV
dt = dE

dt . Therefore, if
dV
dt ≤ κsq

2 for some κs < 0, the flow will be globally stable.

Thus, solving for the minimum κs ∈ R such that dV
dt ≤ κsq

2 yields a constrained
minimization problem which is equivalent to an eigenvalue problem known as the energy
eigenvalue problem,

−λu = Du− 1

Re
∇2u +∇ζ ,

∇ · u = 0 ,
(2.8)

which is solved for u and ζ satisfying the same boundary conditions as the perturbation
velocity and pressure in (2.2). Its solution is the eigenvalues and eigenfunctions of the
Hermitian (symmetric) energy operator, AEu = 1

Re∇
2u −Du − ∇ζ, where ζ depends on

u through the auxiliary Poisson problem ∇2ζ = −∇ · Du with the boundary conditions
∇ζ · n = ( 1

Re∇
2u − Du) · n wherever u has no-slip boundary conditions, and periodic

otherwise. Recalling the meaning of κs, yields that the flow is globally stable provided the
largest eigenvalue of the energy operator is negative. The energy stability limit, ReE , is
obtained by solving for Re in limiting case in which the largest eigenvalue is 0. This implies
any Re < ReE is associated to a negative eigenvalue, so that the flow is globally stable, and
thus ReE is a lower bound of the global stability limit, ReG ≥ ReE .

Despite being very practical, it is clear that the energy method is simply a special choice
of quadratic Lyapunov functional in the context of a much more general theorem. The ideal
scenario would be to find other Lyapunov functionals that hopefully allow to establish that
the flow can be globally stable for values of Re above ReE . It is possible to deduce that if
this is desired, then high-order (above quadratic) Lyapunov functionals that are not powers
of the energy should be considered. In view of the form of the uncertain system (2.5), look
at high-order polynomial functions of the form V (u) = V (a, q2) (with m > 0). Additionally,
note that the uncertain terms in (2.5) do not impede the use of the Lyapunov theorem as



long as the terms dependent on us (namely Θa, Θb, Θc, Γ and χ) are bounded in some
sense in terms of a single valued function of a and q.

Before proceeding, it is useful to simplify (2.5) further if possible. In this sense, the
energy eigenvalue problem is of practical use. Indeed, from now on, assume that the basis
fields ui for i = 1, . . . ,m are a subset of the energy eigenfunctions. That is, for each
i = 1, . . . ,m assume there exist ζi and λi ∈ R such that (ui, ζi, λi) is a solution to the
energy eigenvalue problem in (2.8). Under this assumption of the ui, it follows χ(us,a) = 0
and Γ(us) ≤ κq2, where κ is the largest eigenvalue of (2.8) different from all the λi for
i = 1, . . . ,m.

Then, provided ∂V
∂q2
≥ 0, it is obvious that

dV

dt
=
∂V

∂a
· f(a) + 2

∂V

∂q2
Γ(us)︸ ︷︷ ︸

G(a,q2,us)

+
(∂V
∂a
− 2

∂V

∂q2
a
)

︸ ︷︷ ︸
M(a,q2)

·
(
Θa(us) + Θb(us,a)︸ ︷︷ ︸

Θab(us,a)

+Θc(us)
)

≤ ∂V

∂a
· f(a) + 2

∂V

∂q2
κq2︸ ︷︷ ︸

G̃(a,q2)

+ Ξ(a, q2) ,
(2.9)

for some Ξ(a, q2) satisfying M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤ Ξ(a, q2), with Ξ(0, 0) = 0.

Finally, the idea is to use sum-of-squares (SOS) polynomial constraints to setup a semi-
definite program (SDP) that ensures that V (0, 0) = 0 and Ξ(0, 0) = 0, and that V > 0,
∂V
∂q2
≥ 0 and G̃+ Ξ < 0 whenever (a, q2) 6= (0, 0).

The details to construct a valid Ξ(a, q2) and to properly set up the SDP are of tanta-
mount importance (there is no unique way of doing this). Having said that, the details are
quite technical and better left for the Appendices, where several techniques were attempted.
The only details worth repeating here are the bounds of each component of Θab and Θc,
first derived in [7, 9]. Let ã = [1, a1, . . . , am], indexed from 0 so that ã0 = 1 and ãi = ai for
i = 1, . . . ,m. Then, Θabi(us,a) = 〈us ,hij〉ãj , and the bounds are,

|Θabi(us,a)| ≤
√

ãTRiãq2 , (Ri)kl = 〈h̃ik , h̃il〉 ,
|Θci(us)| ≤ Ciq2 , Ci = ‖ρ(Di)‖∞ = sup

x∈Ω
ρ
(
Di(x)

)
,

(2.10)

where Di = 1
2(∇ui +∇Tui), and ρ(Di(x)) is the spectral radius of Di(x). Here, h̃ij is the

solenoidal projection (so ∇ · h̃ij = 0) of hij such that 〈h̃ij ,uk〉 = 0 for all k = 1, . . . ,m and

satisfying that h̃ij · n = 0 (n is the outer normal) wherever the perturbation velocity has
no-slip boundary conditions. These bounds are important as they eliminate us and yield
expressions only in terms of a1, . . . , am and q2.

3 Solving for the Energy Eigenfunctions and Bounds

Recall the setup and coordinates of 2D plane Couette flow in Figure 1.1 (or Figure 3.1).
Assuming all parameters are naturally nondimensionalised, note that the well-known steady
solution is V =

[ y
0

]
, which satisfies the nondimensional boundary conditions V = 0 at y = 0

and V =
[

1
0

]
at y = 1.



L

Lα = 2π
α

x

y

h

Figure 3.1: Diagram illustrating a periodic 2D plane Couette flow domain with the subperiods.

Assume a periodic 2D domain Ω = (0, Lx) × (0, 1) as in Figure (3.1), and consider a
perturbed velocity field v = V + u and pressure p0 = P + p with respect to the steady
solution V and P , such that the perturbation velocity and pressure are u =

[ ux
uy

]
and p

and subject to no-slip boundary conditions at both plates u(x, 0) = u(x, 1) = 0.
The energy eigenvalue problem is written in (2.8), and from what is known from the

flow, it follows that it can be simplified to

−λ

[
ux

uy

]
=

[
0 1

2
1
2 0

][
ux

uy

]
− 1

Re

[
∂2ux
∂x2

+ ∂2ux
∂y2

∂2uy
∂x2

+
∂2uy
∂y2

]
+

[
∂ζ
∂x
∂ζ
∂y

]
(3.1)

∂ux
∂x

+
∂uy
∂y

= 0. (3.2)

To eliminate ζ one can take the (2D) curl of (3.1) to get

− λωz =
(
∇× (Du)

)
z
− 1

Re
∇2ωz , (3.3)

where ωz =
∂uy
∂x −

∂ux
∂y and

(
∇× (Du)

)
z

= 1
2

(
∂ux
∂x −

∂uy
∂y

)
Moreover, since this is a 2D problem, there must exist a stream function ψ automatically

satisfying the continuity equation (3.2) with

ux =
∂ψ

∂y
and uy = −∂ψ

∂x
. (3.4)

In this case, verification of ωz = −∇2ψ is trivial, while (∇× (Du))z = ∂2ψ
∂x∂y , so (3.3) may

be rewritten in terms of ψ as

λ∇2ψ =
∂2ψ

∂x∂y
+

1

Re
∇2(∇2ψ). (3.5)

The equation above is important, because it is sufficient (along with the boundary condi-
tions) to solve the energy problem. The no-slip boundary conditions of the perturbation
velocity in terms of the stream function are

ux = ∂ψ
∂y = 0 at y = 0 and y = 1 for all x ∈ (0, Lx), (3.6a)

uy = −∂ψ
∂x = 0 at y = 0 and y = 1 for all x ∈ (0, Lx). (3.6b)



As mentioned before, the perturbation velocity is assumed periodic in the x direction, so ψ
must accept a Fourier series expansion. It is written as

ψ(x, y) =
∑
n∈Z

ψ̂n(y)eiαnx, where αn =
2π

Lx
n. (3.7)

Since ψ : Ω → R is a real function, it easily follows that ψ̂−n(y) = ψ̂n(y), where the bar
denotes complex conjugation. Substitution of (3.7) into equation (3.5) and the boundary
conditions in (3.6) yield∑

n∈Z
λ
(
−α2

nψ̂n+ d2ψ̂n
dy2

)
eiαnx=

∑
n∈Z

(
iαn

dψ̂n
dy + 1

Re

(
α4
nψ̂n−2α2

n
d2ψ̂n
dy2

+ d4ψ̂n
dy4

))
eiαnx, (3.8)

∂ψ
∂y =

∑
n∈Z

dψ̂n
dy e

iαnx=0 at y = 0 and y = 1 for all x ∈ (0, Lx), (3.9a)

−∂ψ
∂x =−

∑
n∈Ziαnψ̂ne

iαnx=0 at y = 0 and y = 1 for all x ∈ (0, Lx). (3.9b)

Now, since the Fourier modes are known to be orthogonal with the L2(0, Lx) inner prod-
uct, it follows that each Fourier mode can be treated separately. Therefore, dropping the
subindex n, the equations above become

λ
(
− α2ψ̂ +

d2ψ̂

dy2

)
=
(

iα
dψ̂

dy
+

1

Re

(
α4ψ̂ − 2α2 d2ψ̂

dy2
+

d4ψ̂

dy4

))
, (3.10)

ψ̂(0) = ψ̂(1) =
dψ̂

dy
(0) =

dψ̂

dy
(1) = 0. (3.11)

The equation is a fourth order homogeneous ordinary differential equation with constant
coefficients and four vanishing boundary conditions. Hence, the solution is known to be a
linear combination of exponentials. With this in mind, one first proposes that ψ̂(y) = eiβy.
Substitution into (3.10) gives

−λ(α2 + β2) = −αβ + 1
Re(α2 + β2)2 , (3.12)

which is the characteristic equation whose solutions are the roots of the characteristic poly-
nomial

pψ(λ,Re, α, β) = 1
Re(α2 + β2)2 + λ(α2 + β2)− αβ , (3.13)

with discriminant

∆ψ(λ,Re, α) = 256α8+384α6λRe− 27α4Re2 + 120α4λ2Re2

+ 16α4λ4Re2 − 4α2λ3Re3 + 16α2λ5Re3.
(3.14)

The characteristic polynomial is symmetric in α and β. Given a fixed triplet (λ,Re, α), pψ
will have exactly four roots βj(λ,Re, α) for j = 1, . . . , 4, which are obviously dependent on
that triplet. The roots βj can even be computed analytically due to pψ being quartic in β.
Moreover, if only real values of λ are considered, which is reasonable due to the operator
being symmetric, then the coefficients in β of pψ will be real. This implies the roots βj will



either be real or come in conjugate pairs. Finally, since the coefficient of β3 is 0 it follows
that

∑4
j=1 βj = 0.

For convenience, assume that all the roots are different, i.e. ∆ψ(λ,Re, α) 6= 0, so that
due to linearity, the general solution of (3.10) will be

ψ̂(y) = C1e
iβ1y + C2e

iβ2y + C3e
iβ3y + C4e

iβ4y, (3.15)

where the Cj are constant coefficients in C.
The constant coefficients Cj in (3.15) are chosen to satisfy the boundary conditions

(3.11). When ∆ψ(λ,Re, α) 6= 0, substituting (3.15) into (3.11) yields a linear system of
equations, which in matrix form is

1 1 1 1
eiβ1 eiβ2 eiβ3 eiβ4

iβ1 iβ2 iβ3 iβ4

iβ1e
iβ1 iβ2e

iβ2 iβ3e
iβ3 iβ4e

iβ4


︸ ︷︷ ︸

Mψ(λ,Re,α)


C1

C2

C3

C4


︸ ︷︷ ︸

C

=


0
0
0
0

 . (3.16)

The complex matrix Mψ is dependent on the triplet (λ,Re, α) via the distinct roots βj
of pψ(λ,Re, α, β). To have a nonzero eigenfunction it is then necessary for det(Mψ) = 0,
and C ∈ ker(Mψ) \ 0, which can then be substituted into (3.15) to calculate the complex

function ψ̂. By adding the complementary Fourier mode, a real stream function is computed
pointwise as

ψ(x, y) = ψ̂(y)eiαx + ψ̂(y)e−iαx ∈ R. (3.17)

Then, a real eigenvelocity field [ux(x, y), uy(x, y)]T ∈ R2 corresponding to that stream
function is easily determined via (3.4). In fact, if α 6= 0, and C ∈ ker(Mψ) \ 0, then iC
is another relevant solution (shift by π

2 ) which leads to a shifted and linearly independent
eigenvelocity field associated to the same eigenvalue. All eigenfunctions can be normalized
(to have ‖u‖ = 1).

If ∆ψ(λ,Re, α) = 0, then the necessary and tedious modifications associated having
repeated roots must be done. This is left for the reader to ponder. Additionally, if α = 0,
then ψ is only a function of y and solving (3.1) directly gives ui = [sin(2πky), 0]T with

(unique) eigenvalues λi = − (2πk)2

Re for k ∈ N.
Next, assume that the Galerkin basis vector fields ui for i = 1, . . . ,m are chosen as

eigenfunctions of the energy eigenvalue problem. The idea is to calculate the matrices Ri

in (2.10). Let b = [bx, by]
T be either hi0 or hij for some i, j = 1, . . . ,m. The first step is to

find φb such that b = b̆ + ∇φb, with ∇ · b̆ = 0 and b̆ · n = 0 wherever the perturbation
velocity has no-slip boundary conditions. This is equivalent to solving the Poisson problem

∇2φb = ∇ · b, (3.18)

subject to the boundary conditions

∇φb · n = b · n (3.19)



wherever the perturbation velocity has no-slip boundary conditions. In this case no-slip
boundary conditions occur at the plates, and those are precisely the points (x, y) ∈ ∂Ω for
which y = 0 and y = 1. The outward unit normal n corresponding to those points are
n = [0,−1]T when y = 0 and n = [0, 1]T when y = 1.

Proceeding as with the eigenvalue problem, the Fourier series expansions of φb and b
are

φb(x, y) =
∑
n∈Z

φ̂n(y)eiαnx and b(x, y) =
∑
n∈Z

b̂n(y)eiαnx. (3.20)

One can then substitute these expansions into (3.18) and treat each Fourier mode separately
due to their orthogonality with the L2(Ω) inner product. Therefore, dropping the n, the
Poisson problem eventually becomes the nonhomogeneous second order ordinary differential
equation

d2φ̂

dy2
− α2φ̂ =

db̂y
dy

+ iαb̂x, (3.21)

with the boundary conditions

dφ̂

dy
(0) = b̂y(0) and

dφ̂

dy
(1) = b̂y(1), (3.22)

where b̂(y) = [̂bx(y), b̂y(y)]T. This equation must be solved for each Fourier mode separately.
Due to the form of hi0, hij and the energy eigenfunctions (only having 1 or 2 Fourier modes),
it follows that b will have at most 4 separate Fourier modes.

The details will be skipped, but as usual, one must find first a general homogeneous

solution φ̂h(y) such that d2φ̂h
dy2
− α2φ̂h = 0, followed by a particular solution φ̂p. This can

actually be done analytically for the current problem. In the end, the full solution will be
φ̂ = φ̂h + φ̂p, and φb can be reconstructed via (3.20).

This means b̆ = b−∇φb is known explicitly, and then b̃ is easy to compute as

b̃ = b−∇φb −
m∑
j=1

〈b̆ ,uj〉uj . (3.23)

Finally, one can proceed to calculate the integrals to find Ri for each i = 1, . . . ,m.
As mentioned before, κs is the m + 1 largest eigenvalue, provided the Galerkin basis

vector fields ui for i = 1, . . . ,m are chosen as eigenfunctions associated to the largest
eigenvalues. Their strain rate tensor is Di for all i = 1, . . . ,m. Now, given that the
flow is two dimensional and using the incompressibility of the eigenfunctions in the form
tr(Di(x)) = 0 for some arbitrary x ∈ Ω, it follows that the eigenvalues of Di(x) can be
computed explicitly. They have the same magnitude, which must be the spectral radius.
Hence, the spectral radius ρ(Di) : Ω→ R as a scalar field is

ρ(Di(x)) =

√( ∂2ψi
∂x∂y

)2
+

1

4

(
∇2ψi

)2
. (3.24)

This immediately implies that the problem of finding ||ρ(Di(x))||∞ becomes much easier.
Nevertheless, it is solved numerically by being formulated as a constrained optimization
problem of finding the global maximum of ρ(Di) constrained to x ∈ Ω.



4 Results

Solving for the energy eigenmodes and bounds for 2D plane Couette flow as described in
Section 3 allows to setup an optimization problem with sum-of-squares (SOS) constraints
that can be written as a semidefinite program (SDP). This was done for each periodic
domain of length L. The specific method used to produce the results in this section is
described in Section B.1 in Appendix B.

Two families of carefully chosen modes were considered. These can be appreciated in
Figure 4.1. One family is composed of six modes (boxed in blue) and the other is comprised
of those six modes plus two more for a total of eight modes (boxed in red). Then the SDP
was used to attempt to find a quartic Lyapunov function (as opposed to quadratic) for each
of the two families.
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2π/LRe = 180

Figure 4.1: Determinant of the matrix associated to the eigenvalue problem. The branches in blue
correspond to eigenvalues (where the determinant vanishes) with the exception of a triangle-looking
shape in the upper left which corresponds to repeated roots (zero discriminant). The value of
the Reynolds number is fixed (at 180), so the eigenvalues are a function of α. Each eigenvalue
corresponding to α 6= 0 has two eigenfunctions associated to it (shifted by a quarter period from
each other). Two families of eigenmodes illustrated: six-mode family boxed in blue, and eight-mode
family boxed in red.

The results can be observed in Figure 4.2, where the energy stability limit was shown for
each periodic length L. The two curves above the energy stability limit are new larger lower
bounds of the global stability limit, and for every Re under those curves the flow is globally
asymptotically stable. For periodic lengths of under L/h = 2.28 the new lower bounds for
ReG are ReSOS,1 = 190 using the six-mode family of eigenmodes and ReSOS,2 = 200 using
the eight-mode family of eigenmodes, which are both above the energy stability limit of
ReE = 177.2 found by Orr over a century ago. This is the first improvement to the bound
in that time-frame.

It should be noted that being able to find better bounds beyond the “bump” in the
energy stability curve that occurs at about L/h = 2.4 is no easy task. The reason is that it
would require using more modes (at least twelve), which make the computation much more
expensive. At the current moment, the algorithms and solvers are definitely a limitation



to getting more and better results. This is why posing the constraints in the more efficient
manner possible is an important matter (see the Appendices).
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Figure 4.2: Energy stability limit (black) as a function of the periodic length of the domain. Larger
lower bounds for the global stability limit resulting from the quartic Lyapunov functions found by
the semidefinite program (SDP) with sum-of-squares (SOS) constraints for two families of energy
eigenmodes: a six-mode family in blue and an eight-mode family in red.

5 Conclusions

Using new techniques from optimization, namely, the tractable imposition of sum-of-squares
polynomial constraints in an optimization algorithm, it was possible to construct high-order
quartic Lyapunov functions that proved the global stability of 2D plane Couette flow beyond
the energy stability limit. This marks the first improvement in such a result in over a
century! More importantly, the techniques can be utilized to analyze different flows. This
will be left for future work. The current main limitation is computational power or better
algorithms, and overcoming this limitation would allow to increase the number of energy
eigenmodes to be included in the uncertain dynamical system that describes the fluid.
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A Original Approach

First, I will give some general comments on the choice of V (a, q2). Then, I will give the
bounds derived for Θab(us,a) and Θc(us), and describe the usual choice of Ξ(a, q2), which
will be non-polynomial, and how it converts to a valid SDP.

A.1 Choice of Lyapunov function ansatz

The goal is for V (a, q2) to be an SOS, where in this context a polynomial in (a, q2) means a
linear combination of monomials in the variables a = [a1, . . . , am] and even powers of q (i.e.
monomials like a1 of degree 1, a1q

2 of degree 3, a1a2q
4 of degree 6, etc.). Since V (a, q2)

will be constrained to be an SOS, it follows that the highest and lowest degree monomials
in the linear combination must be of even degree. In particular, deg(V ) must be even.

Additionally, we want −(G̃ + Ξ) to be an SOS too, so it must also have even degree.
Here, Ξ is assumed to be positive definite (it is normally a positive bound of M·(Θab+Θc)).
Thus, G̃ must be negative definite such that G̃ + Ξ is still negative definite. If deg(Ξ) >
deg(G̃), then G̃ + Ξ will be positive for large (a, q2) and this is precisely what we do not
want. Therefore, assume deg(G̃) ≥ deg(Ξ), with deg(G̃) being even (in order for it to be
negative definite). The term ∂V

∂a · f(a) in G̃ seems to be inconveniently of odd degree as

f(a) is quadratic in a and deg(∂V∂a ) is odd (as deg(V ) is even). To overcome this hurdle,
a viable and elegant approach is to choose the component of highest degree in V to be
a power of the kinetic energy E = 1

2(|a|2 + q2), because with this choice, ∂V
∂a · f(a) is of

even degree (there are cancellations). Thus, the only component of degree deg(V ) in V is
chosen to be (|a|2 + q2)deg(V )/2, and this ensures that G̃ and M are of even degree, with
deg(V ) = deg(G̃) = deg(M) + 2.

Next, we know V (0, 0) = 0, so there must not be any constants in V . Since V will
be chosen to be an SOS polynomial, this implies there must not be any linear terms in
a1, . . . , am either. As a result, in the interest of generality, V is assumed to be a linear
combination of monomials in the variables a1, . . . , am and q2 of degree greater than or equal
to 2 and less than or equal to deg(V )−1 along with the polynomial (|a|2 +q2)deg(V )/2. That
is, it should take the form,

V (a, q2) =
∑

2≤deg(monι)≤deg(V )−1

cιmonι(a, q
2) + (|a|2 + q2)deg(V )/2 , (A.1)

where ι indexes all monomials in the variables a1, . . . , am and even powers of q, monι(a, q
2),

and the cι are unknown real coefficients associated to those monomials. Notice that the last
homogeneous polynomial, (|a|2 + q2)deg(V )/2, does not have a coefficient. This is because,
in principle, V can be scaled by any constant, and this will not change the conclusion that
V > 0 and that dV

dt < 0, so there is a freedom to fix at least one of the coefficients in

V . Also, note that with this choice, G̃ does not have any constant or linear terms and
M(0, 0) = 0.

Finally, placing the constraint that V should be an SOS polynomial is not sufficient,
since this only ensures that V is positive semidefinite. To ensure that it is positive definite,
a margin or barrier function must be added. That is, replace the condition V (a, q2) > 0,



by V (a, q2) ≥ ε(|a|2 + q2) > 0. Thus, place the constraints

V (a, q2)− ε(|a|2 + q2) ∈ SOS(a, q) ,
∂V (a, q2)

∂q2
∈ SOS(a, q) , (A.2)

where SOS(a, q) is the set of sum-of-squares polynomials in the variables a1, . . . , am and q.

A.2 Bounds of Θab and Θc

In [7, 9] the bounds of each component of Θab and Θc were derived. Let ã = [1, a1, . . . , am],
indexed from 0 so that ã0 = 1 and ãi = ai for i = 1, . . . ,m. Then, Θabi(us,a) = 〈us ,hij〉ãj ,
and the bounds are,

|Θabi(us,a)| ≤
√

ãTRiãq2 , (Ri)kl = 〈h̃ik , h̃il〉 ,
|Θci(us)| ≤ Ciq2 , Ci = ‖ρ(Di)‖∞ = sup

x∈Ω
ρ
(
Di(x)

)
,

(A.3)

where Di = 1
2(∇ui +∇Tui), and ρ(Di(x)) is the spectral radius of Di(x). Here, h̃ij is the

solenoidal projection (so ∇ · h̃ij = 0) of hij such that 〈h̃ij ,uk〉 = 0 for all k = 1, . . . ,m and

satisfying that h̃ij · n = 0 (n is the outer normal) wherever the perturbation velocity has
no-slip boundary conditions. These bounds are important as they eliminate us and yield
expressions only in terms of a1, . . . , am and q2.

A.3 A conservative bound of M · (Θab + Θc)

The original approach relies on first bounding with the absolute value, then using the
triangle inequality twice, and lastly using the Cauchy-Schwarz inequality in Rm,

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤ |M(a, q2) ·Θab(us,a)|+ |M(a, q2) ·Θc(us)|

≤
m∑
i=1

|Mi(a, q
2)|
(
|Θabi(us,a)|+ |Θci(us,a)|

)
≤ |M(a, q2)|

√∑m
i=1

(
|Θabi(us,a)|+ |Θci(us,a)|

)2
.

(A.4)
Next, let δi ∈ (0,∞) for all i = 1, . . . ,m, and note that

m∑
i=1

(|Θabi(us,a)|+ |Θci(us)|)2 =

m∑
i=1

Θ2
abi(us,a) + 2|Θabi(us,a)| |Θci(us)|+ Θ2

ci(us)

≤
m∑
i=1

(
(1 + δi)Θ

2
abi(us,a) + (1 + 1

δi
)Θ2

ci(us)
)

≤
m∑
i=1

(
(1 + δi)ã

TRiãq
2 + (1 + 1

δi
)C2

i q
4
)

= pΘ(a, q2) ,

(A.5)
where the so-called “Peter-Paul” inequality, 2w1w2 ≤ δw2

1 + 1
δw

2
2 for any δ ∈ (0,∞), is used.

Hence,

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤ |M(a, q2)|

√
pΘ(a, q2) = Ξ(a, q2) . (A.6)



Now we need to have that G̃ + Ξ < 0 for all (a, q2) 6= (0, 0) (it is clear already that
Ξ(0, 0) = 0 because pΘ(0, 0) = 0). Unfortunately, Ξ is not polynomial (but Ξ2 = pΘ|M|2 =
pΘMTM is), so some manipulations are necessary to obtain a polynomial expression that
is linear in the unknown coefficients cι of V (note that the cι are linearly present in G̃ and
M). Using Schur complements, the inequality can be rewritten as,

G̃+ Ξ < 0 ⇔ 0 ≤ Ξ < −G̃ ⇔

{
−G̃ > 0

pΘG̃
2 − pΘΞ2 > 0

⇔
[
−pΘG̃ pΘMT

pΘM −G̃I

]
� 0 .

(A.7)
Again, use a barrier function to obtain strict positivity, so that you should enforce the

constraint [
−pΘG̃ pΘMT

pΘM −G̃I

]
− ε(|a|2 + q2)

[
1 0
0 I

]
∈ SOSM(a, q) , (A.8)

where SOSM(a, q) is the set of sum-of-squares polynomial positive semidefinite matrices.
Another slight deviation of this condition is to use the barrier function beforehand, so

that G̃+ Ξ + ε(|a|2 + q2) ≤ 0, which results in the constraint[
−pΘ

(
G̃+ ε(|a|2 + q2)

)
pΘMT

pΘM −
(
G̃+ ε(|a|2 + q2)

)
I

]
∈ SOSM(a, q) . (A.9)

Both (A.8) and (A.9) are “matrix” constraints of the form T � 0. These can be quite
expensive to enforce. As an example, with only m = 6 modes and the fastest solver available,
the SDP enforcing (A.2) and (A.8) took roughly 2 hours. However, T is a very sparse matrix
so if you are careful, it is natural to expect some savings. The most natural approach is
to add variables z̃ = (z0, z1, . . . , zm), where z = (z1, . . . , zm), and consider the equivalent
statement z̃TTz̃ ≥ 0. Due to the sparsity, (A.8) is rewritten as

−
(
pΘG̃+ ε(|a|2 + q2)

)
z2

0 + 2z0pΘM · z−
(
G̃+ ε(|a|2 + q2)

)
z · z ∈ SOS(a, q, z̃) . (A.10)

With this formulation, the computation time was reduced to roughly 1 minute in the same
machine. Similarly, (A.8) is rewritten as

− pΘ

(
G̃+ ε(|a|2 + q2)

)
z2

0 + 2z0pΘM · z−
(
G̃+ ε(|a|2 + q2)

)
z · z ∈ SOS(a, q, z̃) . (A.11)

Lastly, an alternative to exploit the sparsity of T (and does not require extra variables) is
to use Agler’s theorem as proposed in [5], but we have not implemented it in this note.

The SDP enforcing the constraints (A.2) and (A.10) is called “Original 1”, while the
SDP enforcing the constraints (A.2) and (A.11) is called “Original 2”,

max ε , subject to (A.2) & (A.10) ← Original 1 ,

max ε , subject to (A.2) & (A.11) ← Original 2 .
(A.12)

In both cases ε is maximized. If max ε is ultimately positive, then the problem is feasible,
and otherwise it is infeasible. As expected, both methods above seem to behave very
similarly and have the same limitations, but Original 2 produces larger values of ε which
are safer to trust. Unfortunately, adding just two more modes (m = 8) has huge memory
requirements for solvers using interior point methods, so no simulations could be completed.
More detailed results are found in Section E.



B A New Family of Methods

This family of methods relies on a better bound for M · (Θab + Θc), which still uses (A.4),
but considers the bound before the Cauchy-Schwarz inequality is applied,

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤

m∑
i=1

|Mi(a, q
2)|
(
|Θabi(us,a)|+ |Θci(us)|

)
. (B.1)

The results of the methods about to be described can be found in Section E.

B.1 Method 1

Consider first
|Mi| |Θabi| ≤ |Mi|

√
ãTRiãq2 ≤ ri , (B.2)

where (A.3) was used and where ri(a, q
2) is an unknown polynomial of the form,

ri(a, q
2) =

∑
2≤deg(monι)≤deg(V )

crιmonι(a, q
2) , (B.3)

where the coefficients, crι are unknown. Notice that the constant and linear terms are
eliminated because we eventually want Ξ(0, 0) = 0. Also, we want that deg(V ) = deg(G̃) ≥
deg(Ξ) ≥ deg(ri), so it follows deg(ri) ≤ deg(V ). Additionally, deg(ri) should be an even
power strictly larger than deg(Mi) = deg(V )− 2 (see (B.2)). The only choice is then to set
deg(ri) = deg(V ) and this explains the expression in (B.3). Proceeding as with (A.7) now
yields,

|Mi|
√

ãTRiãq2 ≤ ri ⇔
[

ãTRiãq
2ri ãTRiãq

2Mi

ãTRiãq
2Mi ri

]
� 0 , (B.4)

for each i = 1, . . . ,m. Therefore, add the SOS constraints,[
ãTRiãq

2ri ãTRiãq
2Mi

ãTRiãq
2Mi ri

]
∈ SOSM(a, q) , ∀i = 1, . . . ,m . (B.5)

Next, using (A.3) again, look at

|Mi| |Θci| ≤ |Mi|Ciq2 ≤ siCiq2 , (B.6)

where si(a, q
2) is an unknown polynomial of the form,

si(a, q
2) =

∑
0≤deg(monι)≤deg(V )−2

csιmonι(a, q
2) , (B.7)

where the coefficients, csι are unknown. Notice that deg(si) = deg(V )−2 = deg(M), because
we want that deg(V ) = deg(G̃) ≥ deg(Ξ) ≥ deg(siCiq

2) (so deg(si) cannot be any larger
than deg(V )− 2). Now, the condition can be rewritten as

|Mi| ≤ si ⇔

{
Mi ≤ si
−si ≤Mi

, (B.8)



for each i = 1, . . . ,m. Therefore, add the SOS constraints,{
si −Mi ∈ SOS(a, q)

si +Mi ∈ SOS(a, q)
, ∀i = 1, . . . ,m . (B.9)

Lastly, add (B.2) and (B.6) across all i = 1, . . . ,m to yield,

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤

m∑
i=1

(
ri(a, q

2) + si(a, q
2)Ciq

2
)

= Ξ(a, q2) . (B.10)

By design, Ξ(0, 0) = 0 and in general deg(Ξ) = deg(G̃) = deg(V ). It only remains to
enforce the condition that G̃ + Ξ < 0, which in this case is very simple by imposing the
SOS constraint,

− G̃− Ξ− ε(|a|2 + q2) ∈ SOS(a, q) . (B.11)

The final SDP takes the form,

max ε , subject to (A.2), (B.5), (B.9) & (B.11) ← Method 1 . (B.12)

B.2 Method 2

This time, let δi ∈ (0,∞) for all i = 1, . . . ,m, and proceed as in (A.5) (but with each
component separately and taking square roots a posteriori), so that

|Mi|
(
|Θabi|+|Θci|

)
≤ |Mi|

(√
ãTRiãq2+Ciq

2
)
≤ |Mi|

√
(1 + δi)ãTRiãq2 + (1 + 1

δi
)C2

i q
4︸ ︷︷ ︸√

di(a,q2)

≤ ri ,

(B.13)
where ri(a, q

2) is an unknown polynomial with an ansatz as in (B.3). Manipulating as in
(B.4), yields the SOS constraints[

diri diMi

diMi ri

]
∈ SOSM(a, q) , ∀i = 1, . . . ,m . (B.14)

Adding (B.13) among all i = 1, . . . ,m gives,

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤

m∑
i=1

ri(a, q
2) = Ξ(a, q2) , (B.15)

and the remaining SOS constraint is

− G̃− Ξ− ε(|a|2 + q2) ∈ SOS(a, q) , (B.16)

with the final SDP taking the form,

max ε , subject to (A.2), (B.14) & (B.16) ← Method 2 . (B.17)



B.3 Method 3

This method aims to precompute bounds of each |Θabi| and then use the bounds of |Mi| via
the constraints in (B.9). It is supposed to produce a significant speed up in the computations
by avoiding constraints of the form of (B.5) in the global (large) problem, and instead
tackling these type of constraints in a previous step consisting of a series of much cheaper
and easier small problems that precompute particular bounds. The crux is to develop a
viable method to precompute these bounds and to find good criteria to have the most
effective bounds possible.

First, consider bounds

0 ≤ |Θabi| ≤
√

ãTRiãq2 ≤ bi , (B.18)

with bi(a, q
2) being an unknown homogeneous quadratic polynomial of the form,

bi(a, q
2) =

∑
deg(monι)=2

cbιmonι(a, q
2) , (B.19)

where the coefficients, cbι , are unknown. Note the ansatz forces bi(0, 0) = 0 (so that later
on Ξ(0, 0) = 0 as well). This is equivalent to the SOS constraints[

ãTRiãq
2bi ãTRiãq

2

ãTRiãq
2 bi

]
∈ SOSM(a, q) , ∀i = 1, . . . ,m . (B.20)

The idea is to precompute the bi beforehand under some optimization criterion (we have to
choose what to minimize and maximize). Then, the cbι coefficients will be known, and it is
valid to use

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤

m∑
i=1

si(a, q
2)
(
bi(a, q

2) + Ciq
2
)

= Ξ(a, q2) , (B.21)

where the si bound |Mi| as in (B.6). This may look viable if one proceeds as in the previous
two methods, but it is actually impossible.

To see the problem, simply focus on the assumed bound (B.18), and notice it is impos-
sible to find such a bound. Indeed, assuming a = 0 and q 6= 0 (recall ã has a constant
nonzero component) it follows√

ãTRiãq2 =
√
Diq2 =

√
Di |q| , if a = 0 , (B.22)

where Di > 0 is a constant. It is impossible to bound this positive function with a positive
quadratic polynomial that passes through q = 0 (see the behaviour near q = 0).

To fix this issue, note that dV
dt < 0 if and only if dV

dt (|a|2 + q2)kE < 0 for any positive
integer kE ∈ N. Thus, let 2E(a, q2) = |a|2 + q2, choose some kE ∈ N, and as in (2.9), note
that

dV

dt

(
2E(a, q2)

)kE ≤ G̃(a, q2)
(
2E(a, q2)

)kE + Ξ̃(a, q2) , (B.23)

as long as ∂V
∂q2
≥ 0 and that there exists Ξ̃(a, q2) such that Ξ̃(0, 0) = 0 and

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
·
(
2E(a, q2)

)kE ≤ Ξ̃(a, q2) . (B.24)



Thus, if such a Ξ̃ exists, ∂V
∂q2
≥ 0, and G̃(2E)kE + Ξ̃ < 0 it follows that dV

dt < 0.

To find such a Ξ̃, instead of (B.18), consider the bounds

|Θabi|(2E)kE ≤
√

ãTRiãq2(2E)kE ≤ bi , (B.25)

with bi(a, q
2) being an unknown polynomial of the form,

bi(a, q
2) =

∑
2≤deg(monι)≤2(kE+1)

cbιmonι(a, q
2) , (B.26)

where the coefficients, cbι , are unknown. These bounds are now truly viable to find, since
the situation in (B.22) no longer holds (i.e., when a = 0 and kE = 1 the function now
grows cubically about the origin and this can be bounded by a positive quartic polynomial
passing through q = 0). As before, (B.25) is equivalent to the SOS constraints,[

ãTRiãq
2(2E)2kEbi ãTRiãq

2(2E)2kE

ãTRiãq
2(2E)2kE bi

]
∈ SOSM(a, q) , ∀i = 1, . . . ,m . (B.27)

Making m SOS feasibility tests could provide the precomputed bounds bi,

Check feasibility of (B.27) ← Precompute bound i , ∀i = 1, . . . ,m , (B.28)

which yields the coefficients, cbι for each i = 1, . . . ,m.
Then, Ξ̃ is simply,

M ·
(
Θab + Θc

)
· (2E)kE ≤

m∑
i=1

si
(
bi + Ciq

2(2E)kE
)

= Ξ̃ , (B.29)

and the SOS constraint that implies dV
dt < 0 is

− (G̃(2E)kE + Ξ̃)− ε(|a|2 + q2) ∈ SOS(a, q) . (B.30)

Lastly, this method would consist of the SDP

max ε , subject to (A.2), (B.9) & (B.30) ← Method 3 , (B.31)

provided the m bounds in (B.25) have been precomputed using (B.28) in a previous step.
The feasibility test in (B.28) is by no means optimal in the sense that one would want the

smallest possible upper bound in (B.25), but (B.28) only provides one such upper bound,
which could be huge. Ideally, it could be useful to modify the ansatz for bi in (B.26) to
include an optimization parameter that somehow ensures that bi is as small as possible. In
essence, one should try to change (B.28) from a feasibility problem to an intelligently chosen
optimization problem. There are many ways to do this, but no more details are given here
for the time being, since the method has not been implemented yet.

From experience, we expect this method to be two or three orders of magnitude faster
than the previous two methods. Once we implement this method, more details will be given.



C Improving the Bounds Even More

Now look at (A.4) once again, but this time stop right after using the triangle inequality
for the first time,

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤ |M(a, q2) ·Θab(us,a)|+ |M(a, q2) ·Θc(us)| . (C.1)

C.1 Bound of |M ·Θab|

Proceed as in [2] and using the summation convention note that

|M ·Θab| = |〈us ,Mih̃ij ãj〉| ≤ ‖Mih̃ij ãj‖ |q| . (C.2)

In [2], (31) is incorrect (it is even dependent on x ∈ Ω), because this an L2 norm and must
be computed explicitly. It can be written as,

‖Mih̃ij ãj‖2 =
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...
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 , (H�
ij )kl = 〈h̃ik , h̃jl〉 ,

(C.3)
so that H ∈ Rm(m+1)×m(m+1) is a positive semidefinite matrix (compare to the much smaller
matrices Ri ∈ R(m+1)×(m+1)), and where it is clear that H�

ii = Ri for every i = 1, . . . ,m.
Thus,

|M ·Θabi| ≤
√

(aM)THaMq2 =
√

(H1/2aMq)T(H1/2aMq) , (C.4)

where H1/2 = (H1/2)T is the unique positive semidefinite square root of H (computed using
the eigenvalue decomposition). Note that a unique Cholesky decomposition also exists and
could be used, but the typical algorithm breaks down in the semidefinite case, so it is
preferable to use the usual square root of the matrix.

To give a rough idea of how to deal with this bound, assume M ·Θc has been bounded
as in (B.6)–(B.9) from Method 1, so that

M(a, q2)·
(
Θab(us,a)+Θc(us)

)
≤
√

(H1/2aMq)T(H1/2aMq)+

m∑
i=1

si(a, q
2)Ciq

2 = Ξ(a, q2) .

(C.5)
Then, to enforce G̃+ Ξ < 0, note that

G̃+ Ξ < 0 ⇐ G̃+
m∑
i=1

si(a, q
2)Ciq

2 + ε(|a|2 + q2)︸ ︷︷ ︸
G̃0

+
√

(H1/2aMq)T(H1/2aMq) ≤ 0

⇔
[
−G̃0 (H1/2aMq)T

H1/2aMq −G̃0I

]
� 0 .

(C.6)



This formulation would have been impossible without the decomposition in (C.4) which uses
H1/2, since (aM)THaMq2 is quadratic in M and thus quadratic in the unknown coefficients
cι of V . Thankfully, this reformulation avoids any such problems. However, one should note
that the matrix in (C.6) is huge. Therefore, creating auxiliary variables z0, z1, . . . , zm(m+1)

to exploit the sparsity might be computationally prohibitive. Perhaps using Agler’s theorem
as described in [5] is a more viable approach. In any case, this formulation was discovered
at the last moment, so it has not been implemented.

C.2 Bound of |M ·Θc|

The best one could hope for is to proceed as in [9] but with the whole M ·Θc instead. This
yields,

|M ·Θc| ≤
∥∥∥ρ(∑m

i=1MiDi

)∥∥∥
∞

= sup
x∈Ω

ρ
(∑m

i=1MiDi

)
. (C.7)

Unfortunately we have not found a way to compute this quantity, even if Mi was known,
which in principle it is not. The best bounds at this moment are those calculated via
(B.6)–(B.9) in Method 1.

D Global Stability Using Bounds and Conditional Stability

This approach was proposed in [2] very briefly, so here I will give some more details. As
a heads up, it is more expensive computationally, but, in principle, still worth trying if it
allows to prove global stability beyond what the other methods can. It is divided into three
steps:

1. Choose a positive definite quantity of interest Φ(a, q2) ≥ 0, so that Φ(a, q2) = 0 if and
only if (a, q2) = (0, 0), and which you expect to be conditionally stable for the known
equilibrium point of the dynamical system, (0, 0).

2. Compute a time-average bound U ∈ R such that Φ(a, q2) ≤ U , where Φ(a, q2) =
limT→∞

1
T

∫ t
0 Φ(a(t), q2(t)) dt. Obviously this implies that for each initial condition

(a(0), q2(0)) there exists some instant t∗, such that Φ(a(t∗), q2(t∗)) = U .
3. Show that whenever 0 < Φ < C = U + ε̄, then dΦ

dt < 0. This implies that if
Φ(a, q2) < C at some instant t, then limt→∞Φ(a(t), q2(t)) = 0 and as a result
limt→∞(a(t), q2(t)) = (0, 0). Here, ε̄ > 0 is a fixed positive small quantity. In partic-
ular, by step 2, it follows that regardless of the initial condition limt→∞(a(t), q2(t)) =
(0, 0), which means that the flow is globally stable (since the velocity satifies ‖u(t)‖2 =
|a(t)|2 + q2(t)).

An important comment on step 3, is that it is not sufficient to simply prove that dΦ
dt < 0

in an open set (like any ball of radius R) containing (a, q2) = (0, 0), as this will only imply
that (0, 0) is locally asymptotically stable, but will not give any information on the critical
set (which will be some unknown ball of radius 0 < R0 < R if your initial set was a ball of
radius R) leading to asymptotic convergence. You will only know that such a critical set
around (0, 0) exists and is a subset of the original open set. So it is fundamental to prove
that dΦ

dt < 0 whenever Φ < C, since this actually does imply that the critical set are the
points for which Φ < C.



The combination of the three steps will be referred to as the “Bounding” method for
short.

D.1 Step 1

The most natural choice for a positive-definite Φ, which you expect to be conditionally
stable, is precisely the Lyapunov function associated to the linearized system of equations.
For a truncated set of m modes, a = (a1, . . . , am), and forgetting about us, the linearized
dynamical system (see (2.5) and (2.6)) is simply,

da

dt
= f(a) = La , fi(a) =

(
1

Re〈ui ,∇
2uj〉 − 〈ui ,uj · ∇V + V · ∇uj〉

)
aj = Lijaj . (D.1)

To find a Lyapunov function simply seek a positive definite matrix P � 0 such that LTP +
PL ≺ 0, and the Lyapunov function will be ΦT (a) = aTPa. As usual to ensure strict
positivity or negativity one needs barrier functions, so that one can solve an SDP enforcing,

max ε , subject to P− εI � 0 −
(
LTP + PL

)
− εI � 0, tr(P) = m, (D.2)

where tr(P) is the usual trace of a matrix. The last condition simply ensures the scaling of
P is fixed, and also has the nice property that |a|2 also satisfies it. The maximization of ε
intuitively ensures that ΦT (a) = aTPa is as far away from zero as possible, and thus more
likely to have better conditional stability behavior.

However, the role of q2 must also be added. We decided to do this a posteriori by simply
considering,

Φ(a, q2) = aTPa + αΦq
2 , (D.3)

where αΦ > 0 is a constant to be chosen. Due to the constraint that tr(P) = m, it makes
sense (in terms of order of magnitude) to choose αΦ = 1, but other possibilities include
αΦ = mini Pii or αΦ = maxi Pii. In this work we chose αΦ = 1.

D.2 Step 2

Here, we proceed as described in [6], where it was shown that for bounded trajectories (in
a fluid system all trajectories are bounded) and for any storage function V (a, q2),

dV (a(t), q2(t))

dt
+ Φ(a, q2) ≤ U ⇒ Φ(a, q2) ≤ U . (D.4)

Looking at (2.9), it is clear that it suffices to show that

G̃+ Ξ + Φ ≤ U . (D.5)

Here, once again Ξ is simply a bound in terms of (a, q2), and there are several ways
to obtain a valid Ξ, as we have shown throughout this document. We chose the one from
Method 1, as it is the one of the tightest bounds leading to a problem of reasonable size
and which does not use the “Peter-Paul” inequality. Thus, choose Ξ as in (B.10), so that
the SDP becomes

minU , subject to
∂V

∂q2
∈ SOS(a, q), (B.5), (B.9) & U − G̃− Ξ− Φ ∈ SOS(a, q) .

(D.6)



The main difference in these constraints and derivation (with respect to the other methods)
is the presence of U , that V no longer has to be positive definite (and is no longer free of
scaling) and more importantly that V (0, 0) and Ξ(0, 0) no longer have to vanish. Therefore,
the ansatzes (A.1) and (B.3) should be modified to

V (a, q2) =
∑

0≤deg(monι)≤deg(V )−1

cιmonι(a, q
2) + cE(|a|2 + q2)deg(V )/2 ,

ri(a, q
2) =

∑
0≤deg(monι)≤deg(V )

crιmonι(a, q
2) .

(D.7)

D.3 Step 3

We know that Φ(0, 0) = 0 and that dΦ
dt (0, 0) = 0, so when (a, q2) 6= (0, 0), the final step

is to prove that Φ < C = U + ε̄ implies that dΦ
dt < 0, where ε̄ is a small positive number.

Using the S-procedure, it is sufficient to satisfy the condition

dΦ

dt
≤ −(C − Φ)S , (D.8)

where S is a positive definite function satisfying that S(0, 0) = 0 (so that dΦ
dt (0, 0) = 0 does

not violate the inequality). Note, all the focus here is the behavior near the origin (0, 0)
since far away, where −(C − Φ)S is very positive, it does not really matter.

Next, simply treat Φ as V in (2.9) and proceed analogously to note that it is sufficient
to prove that

G̃Φ + ΞΦ ≤ −(C − Φ)S , (D.9)

where G̃Φ = ∂Φ
∂a ·f(a)+2 ∂Φ

∂q2
κq2 and where MΦ ·(Θab+Θc) ≤ ΞΦ with MΦ = ∂Φ

∂a−2 ∂Φ
∂q2

a and

ΞΦ(0, 0) = 0. Note that the inequality is sufficient since we already know that ∂Φ
∂q2

= αΦ > 0

by construction (see (D.3)). Once again, ΞΦ can be estimated in different ways, and for
much the same reasons described in step 2 we chose the technique from Method 1.

Since S is unknown, expected to be an SOS polynomial and with S(0, 0) = 0, consider
the ansatz

S(a, q2) =
∑

2≤deg(monι)≤deg(S)

cSι monι(a, q
2) , (D.10)

where deg(S) is an even number to be chosen freely. Therefore, the final SDP is a feasibility
test of the following conditions,

S−ε(|a|2+q2) ∈ SOS(a, q), (B.5)Φ, (B.9)Φ & −G̃Φ−ΞΦ−(C−Φ)S ∈ SOS(a, q) , (D.11)

where ε is another small positive number. One could attempt to maximize ε, but in this
particular case does not yield interesting insight and seems to add cost. Here, (B.5)Φ

and (B.9)Φ are simply (B.5) and (B.9) but with M replaced by MΦ instead. Meanwhile
in the ansatzes (B.3) and (B.7), deg(V ) should be replaced by 4, since deg(MΦ) is not
deg(Φ)− 2 = 0 (deg(M) = deg(V )− 2 only happens due to the ansatz for V in (B.3)), but
rather deg(MΦ) = 1 so the ri and si are chosen to be the smallest even degree which makes
sense, i.e. deg(ri) = 4 and deg(si) = 2.



E Computational Results of Different Approaches

The results shown here are for two-dimensional plane Couette flow with a length Ldom = 2π
3.75

(where the height is unity), so that the principal wavenumber is α1 = 3.75. This is very
close to the critical wavenumber obtained via the energy stability limit, and the energy
stability limit in this domain is ReE = 177.3.

The idea is to compare the different methods described (at least those that were im-
plemented). With this in mind, we first show results at Re = 179.5 which is above the
energy stability limit. We do this using six eigenmodes: the eigenmodes corresponding to
the two largest eigenvalues at α0 = 0 and the same with α1 = 3.75. There are six, because
for each eigenvalue associated to α 6= 0 there are two eigenmodes: horizontal translation
invariance requires choosing two linearly independent eigenmodes and we choose them to
be π

2 out of phase to ensure orthogonality. We refer to this set of six eigenmodes as “Modes
I.” Additionally, “Modes II” has all the modes in “Modes I” with two additional associated
to the highest eigenvalue of α2 = 7.5, for a total of eight modes. All experiments were per-
formed with deg(V ) = 4. A value of δi = 1 was used at every point where the “Peter-Paul”
inequality was utilized. Lastly, in the Bounding method (§D) it was used that ε̄ = 10−8 and
ε = 10−4. To compare the results and computational performance of each algorithm, it is
useful to show the final value of ε, as this gives a rough idea of how effective the algorithm
is (the higher the value of ε the better), and we also are showing the time inside the SDP
solver to give a rough estimate of the computational costs, which are typically high. Having
said that, the total computation time consists of: (i) the time taken to solve the eigenvalue
problem and compute the relevant tensors (L, N , Ri and Ci in (2.6) and (A.3)), (ii) the
time to setup the SDP (i.e., computing the dynamical system itself along with all the SDP
constraints), (iii) the preprocessing time to find symmetries and parse to the appropriate
format compatible with a given SDP solver, and (iv) the SDP solver time. The results are
shown in Table 1.

Re = 179.5
SDP Modes I Modes II

ε SDP solver time (s) ε SDP solver time (s)

Original 1 2.54×10−6 48 – –
Original 2 0.0030 48 – –
Method 1 0.0175 210 0.1495 3462
Method 2 0.0170 235 0.1512 8931
Bounding – 339 – 5195

Table 1: Performance of the methods at a fixed Re = 179.5 and for two different sets of modes.

In terms of ε, the two methods that seem to be the most robust are Method 1 and
Method 2, but for some reason, the computational cost of Method 2 is actually higher and
does not scale well as more modes are added, so Method 1 is preferred. Also, Original 1 and
Original 2 behave very similarly, as expected, but Original 1 produces a value of ε which
is safer to trust. Unfortunately, large memory requirements did not allow for simulations
to be completed with Modes II via Original 1 and Original 2. Thus, these methods do
not scale well as more modes are added, and to overcome this, probably an alternative
implementation that does not use auxiliary variables is required (see Section A.3 for more



details). Lastly, since the Bounding method is based on Method 1, it was to be expected
that the cost was higher than that of Method 1, which indeed is the case.

Next, the results are shown for both sets of modes, but this time showing the highest
Reynolds number at Ldom = 2π

3.75 for which each method was found to be stable. These are
presented in Table 2.

Best Re attaining global stability
SDP Modes I Modes II

Re ε Re ε

Original 1 179.5 2.54×10−6 – –
Original 2 179.5 0.0030 – –
Method 1 194 1.60×10−4 230 1.07×10−5

Method 2 195 2.97×10−5 228 9.16×10−5

Bounding 190 – 214 –

Table 2: Best Re resulting in global stability for each method and for two different sets of modes.

Clearly, Method 1 seems to be the best in terms of obtaining the largest value of Re
(combined with a better computational performance over Method 2). Method 2 and the
Bounding method perform quite well but are more expensive than Method 1. Meanwhile
the Original 1 and Original 2 methods perform almost the same and do not go very high.
When adding more modes, the question was if higher Re could be attained or if the bounds
would degenerate to the point where it was not viable to add more modes. Thankfully, it
seems, up to the precision of the solvers, that for Method 1 and Method 2 the performance
does improve (Method 2 is much more expensive). In any case, the results are satisfactory,
since the highest value one could hope for with these sets of modes (i.e. where the truncated
system becomes unstable with both Modes I and Modes II) was Re = 266, and Method 1
resulted in Re = 230, which is not very far. Experimenting with different δi might improve
the results of Method 2 even further. In the future, Method 3 could provide significant
advantages in terms of speed, and is certainly worth looking into. On the other hand, the
method using much better bounds for M ·Θab seems very expensive but it could be useful
to try out eventually, as it may improve the global stability results.

Note that all results reported here were implemented using MATLAB via YALMIP. The
SDP solver used was MOSEK. To cement the confidence in the results, they could potentially
be verified with multiple-precision (using the solver SDPA-GMP) or with interval arithmetic
(using the solver VSDP which relies on INTLAB), but such verification has not been done.
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