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1 Introduction

Wave-type instabilities, such as barotropic and baroclinic instability, are important types of vari-
ability in the oceanic and atmospheric system. These instabilities generate storms in the atmosphere
and eddies in the ocean, set the stratification of the global ocean [Marshall and Speer , 2012], gener-
ate surface westerlies in the atmosphere (see Vallis [2006] and references therein) and more. They
are generally important for setting the mean state of the system. In the ocean, these instabilities
are parameterized as a diffusion of buoyancy along isopycnals, which decreases the baroclinic shear,
but does nothing to account for barotropic instability or the momentum fluxes associated with
both instabilities and their effects on the mean flow, because they are too complicated [Gent and
McWilliams, 1990]. In effect, the mean state of ocean models is likely to be inaccurate at best in
some regions. I examine these momentum fluxes to determine the effects of eddies on the mean
flow.

The necessary conditions for barotropic and baroclinic instability state that there must be a
sign change of the potential vorticity (PV) gradient somewhere in the domain for instability to
occur [Charney and Stern, 1962]. Purely barotropic flow and thus instability would have a sign
change of the PV gradient within a layer, which would indicate a downgradient momentum flux and
extraction of energy from the mean flow [Rayleigh, 1880; Drazin and Howard , 1966]. For a purely
baroclinic flow, there must be a sign change in the PV gradient between the layers and this results
in a downgradient flux of buoyancy and extraction of energy from available potential energy [Eady ,
1949; Charney , 1947]. In the real world, however, flows have both vertical and horizontal shear and
thus have two mean energy reservoirs, kinetic and potential energy. The necessary conditions for
instability in this case don’t indicate which energy reserves are being tapped, but just that energy is
being extracted from the mean. Thus, it would be useful to be able to determine a priori the energy
pathways in an unstable system, but so far this goal has been elusive. For example, it is sometimes
assumed that a change in sign of the PV gradient in a layer implies that there is a down-gradient
momentum flux [Pedlosky , 1964]. This assumption is false. I show that the dynamical interaction
between layers is responsible for setting the direction of the momentum fluxes in a linearly unstable
system.

In a baroclinically unstable fluid with a horizontal shear, interesting interactions occur between
the instability and the horizontal shear. There can be upgradient momentum fluxes associated with
the baroclinic instability [Pedlosky , 1964], but also downgradient momentum fluxes. Held [1975]
found that when a two-layer flow has the same sign PV gradient in both layers, the direction of the
momentum fluxes can be determined. Killworth [1980] examines the parameter space of instabilities
with horizontal and vertical shear and found that when the horizontal length scale of the shear was
larger than the internal deformation radius, then baroclinic conversion dominated, but when the



horizontal length scale was much smaller than the deformation radius, then barotropic conversion
dominated (see also Holland and Haidvogel [1980]).

In this report I look at the linear stability of a zonal channel flow to understand the direction
of the momentum and buoyancy fluxes of a wide parameter space and answer the question: what
sets the direction of the eddy energy fluxes in mixed instability? In section 2, I set up the model
and diagnostics used to analyze the momentum fluxes. In sections 3 and 4, I describe the Gaussian
and cosine jet configurations, respectively. I conclude in section 5.

2 Model

2.1 Linear stability problem

The derivation that follows parallels Pedlosky [1987]. I consider the two–layer quasi–geostrophic
potential vorticity (QGPV) non-dimensionalized equations on a β-plane:[

∂

∂t
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∂x

∂

∂y
− ∂ψn

∂y

∂

∂x

] [
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where ψn is the stream function, δij is the Kronecker delta function and
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∂x2
+
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∂y2
.

I have

β = β0
L2

U
(2)

where β0 is the meridional gradient in planetary vorticity, L is a length scale given by the width of
the channel, and U is the velocity scale of the jet and

Fn =
f2

0L
2

g(ρ2 − ρ1)/ρ0Dn
(3)

where f0 is the planetary vorticity, ρn is the density of the n-th layer, ρ0 is a reference density and
Dn is the depth of the layer and

F =
f2

0L
2

g(ρ2 − ρ1)/ρ0D
(4)

where D is the total depth. I relate Fn to F by a ratio of depth of top layer to lower layer
∆ = D1/D2: F1 = F (1 + ∆)/∆ and F2 = F (1 + ∆). The topographic forcing is given by:

ηb =
f0hb
D2

L

U
(5)

and is only included in the lowest layer.
I consider a zonal basic flow

Un(y) = −∂Ψn

∂y
(6)

that has a horizontal shear as a source of kinetic energy and a vertical shear (through thermal
wind) as a source of available potential energy. Let φn be the eddy stream function such that

ψn = Ψn(y) + φn(x, y, t) (7)



with eddy velocities
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∂φn
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(8)

I substitute Eq. 7 into Eq. 1 to get:[
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where the potential vorticity gradient of the basic state is

∂Qn
∂y

= β − ∂2Un
∂y2

− Fn(−1)n(U1 − U2) +
∂ηb
∂y

δn2 (10)

and the perturbation potential vorticity is given by

qn = ∇2φn − Fn(−1)n(φ2 − φ1) (11)

We then consider the linear stability problem by neglecting the terms of order O(φ2
n) and higher

where I get the linearized QGPV equation.[
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]
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with boundary conditions
∂φn
∂x

= 0, y = ±1 (13)

which says that there is no flow into or out of the walls at the boundary.
The necessary conditions for instability in this case are given by:∫ 1

−1
dy
∑
n
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where c is the phase speed of the wave as developed in section 2.2. This equation is derived from

the zonally averaged momentum equation. If the flow is unstable, ∂
∂t
|φn|2
|Un−c|2 must be positive such

that the eddy energy is growing, so in order for this equation to be satisfied, ∂Qn∂y must change sign
somewhere in the domain.

2.2 Diagnostics

In order to understand the energetics of the flow, I use the energy equation for the perturbations.
I set Dn/D = dn. I take Eq. 12 and multiply by −dnφn and sum the two layers, and integrate in
y.
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where the left-hand side represents the time change of total eddy energy and the right-hand side
represents the conversion from the mean into the eddy energy. If there is energy converted into
eddies through a positive (negative) ∆EKEn, then the momentum fluxes are said to be downgradient
(upgradient) because they act to relax (strengthen) the mean flow and transfer kinetic energy from
regions of high (low) energy to regions of low (high) kinetic energy. If there is energy converted into
eddies through a positive (negative) ∆EAPE, then the buoyancy fluxes are said to be downgradient
(upgradient) because they act to relax (strengthen) the mean buoyancy gradient and transfer
potential energy from regions of high (low) potential energy to regions of low (high) potential
energy.

Another way to assess how eddies affect the mean flow is to consider the zonally averaged, zonal
momentum equation summed over both layers:
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so the change of zonal momentum is related to the divergence of the Reynolds stresses. I can take
the PV equation and the enstrophy equation to show that
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Ultimately, I want to know if the barotropic flow accelerates or decelerates, and this expression
tells us that I know the sign of the acceleration if ∂Qn/∂y has the same sign in both layers [Held ,
1975]. If the PV gradients are not the same sign then the sign of the acceleration also depends on
the ratio of the magnitudes of q2

n as well as ∂Qn/∂y.

2.3 Eigenvalue solver

I use an eigenvalue solver to compute the solutions to Eq. 12. First I assume a solution of the form

φn = Re Φn(y)eik(x−ct) (22)

where Eq. 12 becomes two coupled ordinary differential equations

(U1 − c)
[
d2Φ1

dy2
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∂Q2

∂y
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I discretize the various parameters across my channel and use second order finite differencing to
create a differentiation matrix for the operator d2

dy2
which gives an equivalent matrix expression for

Equations 23 and 24. Then for every k, I can use an eigenvalue solver to compute the eigenvalues c

and the eigenvectors
[
d2Φn
dy2
− k2Φn + Fn(−1)n(Φ1 − Φ2)

]
and Φn. Then I normalize Φn so that the

total energy in the domain is 1 (EKE1 + EKE2 + EAPE = 1). Then growth rates kci and energy
conversions are computed (Eq. 18 and 19). After computing the solution for all ks the solution
(Φn) with maximum growth rate (kci) is selected for further analysis. In reality, the solution that is
selected is not always the one with the maximum growth rate but can be another mode [Pedlosky ,
1981].



3 Gaussian Jet

3.1 Set up

I set up the two layers with a Gaussian jet of half-width δ in the upper layer and no flow in the
lower layer (Fig. 1).

U1 =
1

2
+

1

2
e−

y2

δ2 (25)

U2 = 0 (26)

Note that the velocity has been scaled out of the problem and is included in the β parameter.
δ ranges from 0 to 1 in our non-dimensionalized domain. In this case the basic state potential
vorticity gradient is given by

∂Q1

∂y
= β − ∂2U1

∂y2
+ F1U1 (27)

∂Q2

∂y
= β − F2U1 (28)

We have 4 non-dimensional parameters to vary in this case: F0, δ, ∆, and β. For experiments
discussed here, I set ∆ = 1.

3.2 Results

I examine the energy conversion over a range of F and β and set δ = 0.05 as a constant. I scale
the constants F and β with δ2. This rescales the

Fδ2 = F =
f2

0 δ
2
0

g(ρ2 − ρ1)/ρ0D
(29)

and

βδ2 = β0
δ2

0

U
(30)

where δ = δ0/L is the length scale of the jet width. First, I notice that when the PV gradient
changes sign in the upper layer, the momentum fluxes are not always downgradient (Fig. 2). There
are also downgradient momentum fluxes associated with no sign change of the PV gradient in the
upper layer. So, it is not the introduction of a sign change in the upper-layer PV gradient that leads
to downgradient momentum fluxes. I also notice that as I decrease F or increase the deformation
radius, the kinetic energy conversion comes to dominate over the potential energy conversion.

I split up the domain into 5 regions. Region 1 has downgradient momentum fluxes but no sign
change in the upper layer PV gradient; this is an unexpected result. Region 2 has downgradient
momentum fluxes and a sign change in the upper layer PV gradient. Region 3 has upgradient
momentum fluxes and no sign change in the upper layer PV gradient. Region 4 has upgradient
momentum fluxes and a sign change in the upper layer PV gradient; this is also an unexpected
result. Region 5 is dominated by barotropic conversion and has a sign change in the upper layer
PV gradient.

In these 5 different regions, there are defining characteristics in the wavenumber space (Fig. 3).
In regions 1-4, the dominant mode (with largest growth rate) is a mode with primarily baroclinic
production (downgradient buoyancy fluxes) and weak barotropic production (kinetic energy fluxes).



When a mode has primarily kinetic energy conversion, I call it a barotropic mode and when it has
primarily baroclinic conversion, I call it a baroclinic mode. Regions 1 and 2 have downgradient
kinetic energy fluxes and regions 3 and 4 have upgradient kinetic energy fluxes at the most unstable
wavenumber. Comparing region 1 and region 2, the primary difference is that modes with higher
wavenumber appear. These new modes have primarily barotropic conversion. Similarly, this mode
appears in region 4 but not region 3. So when the sign change is introduced into the upper layer PV
gradient in regions 2 and 4, a higher-wavenumber barotropic mode appears as a solution. In these
regions, the dominate barotropic modes both have locations where U1 − c vanishes. This indicates
that the barotropic modes are contiguous with neutral modes, and is a result consistent with
previous studies [Kuo, 1949]. The dominant (baroclinic) mode sets the direction of the momentum
fluxes in regions 1-4 and the mode primarily dependent on F , β, and δ and not on the upper-
layer PV gradient in particular. In region 5, the baroclinic mode’s growth rate decreases but the
barotropic mode’s growth rate increases and becomes dominant.

The direction of the momentum fluxes in the baroclinic mode can be visualized geometrically
(Fig. 4). When the stream function is tilted with the flow, then the fluxes are upgradient and
energy is being fed back into the mean, but when the stream function is tilted against the flow,
then the momentum fluxes are downgradient and energy is being extracted from the mean. In region
2 near the center of the jet, the stream function is tilted against the flow, leading to downgradient
momentum fluxes. In region 3 near the center of the jet, the stream function is tilted with the
flow, indicating upgradient momentum fluxes. This shows us that the particular arrangement of
the stream function in the baroclinic mode is important for setting the direction of the momentum
fluxes.

As I increase δ similar structures appear but the line that separates upgradient and downgradient
momentum fluxes moves to the right (larger βδ2), eventually until there is no region 4 (Fig. 5).
This indicates the role of the channel walls in setting the structure of the streamfunction and the
direction of the fluxes.

3.3 Physical interpretation

As I reduce F , I reduce the coupling between the layers or increase the internal deformation radius.
Physically this corresponds to a weakening of the baroclinic mode, largely without modifying the
barotropic mode. The deformation radius becomes much larger than the length scale defining the
horizontal shear (Fδ2 << 1), making PV gradients and growth rates dominated by the horizontal
shear. When Fδ2 >> 1 the baroclinic mode dominates. This result is discussed at length in
Killworth [1980].

4 Cosine Jet

In the previous section, I examined the cases where there was always a sign change between the two
layers, which doesn’t allow an examination of cases with no sign change between two layers. By
examining set-ups where there is no change in the PV gradient between layers but a change within
each layer, I examine cases that are analogous to the Gaussian jet set-up where there is no change
in the PV gradient within the layer. By comparing these two cases, I expect a super-symmetry
in this system because baroclinic and barotropic instability are described by the same eigenvalue
problem [Drazin and Reid , 2004] and a just a rotation of the same system.



4.1 Set up

I set up a cosine jet in this case, so that I can set up a flow where the potential vorticity gradient
can be the same sign between the two layers but a different sign within the layer (Fig. 6). I
introduce topography into my lower layer in order to force the PV gradients to change sign at the
same location. My flow is then:

U1 = 1/2 + 1/2 cos(πy) (31)

U2 = 0 (32)

The topography that I construct is

∂ηb
∂y

= γ cos(πy) + C (33)

The potential vorticity gradient

∂Q1

∂y
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π2

2
cos(πy) +

F1

2
(1 + cos(πy)) (34)

∂Q2

∂y
= β − F2

2
(1 + cos(πy)) + γ cos(πy) + C (35)

where γ = 8 is the magnitude of the topography variation and C is the magnitude of the constant
slope added to enforce the condition that the PV gradient change sign at the same location in both
layers.

4.2 Results

I analyze this configuration following section 3 by varying F and β and interpreting the eddy
energy conversion. There are three distinct regions in the domain (Fig. 7). Region 1 has upgradient
buoyancy fluxes and downgradient momentum fluxes and has no sign change between the two layers.
Region 2 has downgradient buoyancy fluxes and downgradient momentum fluxes and has no sign
change between the two layers (this is counter intuitive). Region 3 has downgradient buoyancy
fluxes and has a sign change between the two layers. Notice that unlike the Gaussian jet case, there
is no region with upgradient buoyancy fluxes but a sign change between the layers.

In comparing region 1 and region 2, the buoyancy fluxes change from upgradient to downgradient
(Fig. 8). This is seen in the barotropic mode of the flow. As the sign change between the two
layers is introduced a baroclinic mode is introduced, just as I found in section 3.2 for the barotropic
mode. I see a symmetry in the modes that appear.

4.3 Physical Interpretation

As I increase F , I increase the coupling between the two layers so the baroclinic mode becomes
stronger and eventually dominates. With a smaller β I see a larger region of down-gradient buoyancy
fluxes but no sign change. In the Gaussian jet case the walls act to eliminate region 4, or the region
with upgradient momentum fluxes with a sign change in the upper layer PV gradient, but in this
case there is no region with upgradient buoyancy fluxes with a sign change between the layers.
The QG approximation involves assuming that the layers are thin, which seems to be preventing
a region with upgradient buoyancy fluxes and a sign change between the layers, just like the walls
prevent region 4 in the Gaussian jet.



5 Conclusion

In this report, I have shown that the change in sign of the PV gradient within a layer (between
layers) is not generally responsible for setting the sign of the eddy momentum (buoyancy) fluxes.
I have shown that the relative magnitude of the eddy PV of the two layers is fundamental for
determining the direction of the eddy momentum fluxes. The relative magnitude of the eddy PV
is set by the PV gradients, the position of the walls, and the structure of the most unstable mode,
but there is not a straightforward way to determine the relative magnitude.
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Figure 1: An example velocity profile and PV gradient for β = 60, F = 100 and δ = 0.1.
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Figure 2: Energy conversion computed for the most unstable eigenfunctions normalized by total
(potential plus kinetic) energy conversion at δ = 0.05. Potential energy conversion (a) and kinetic
energy conversion (b). The domain is divided into 5 regions. The dotted line shows where the
momentum fluxes change sign and the solid line shows where the upper layer PV gradient changes
sign, with no sign change to the right and a sign change to the left. Blue represents downgradient
fluxes and red represents upgradient fluxes. A cross section of kinetic energy conversion (c) as
shown in red line of panel (b).
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Figure 3: Example growth rates and normalized energy conversions from 5 different regions. Growth
rates (a), kinetic energy conversion (b,d) and potential energy conversion (c,e). Region 1: β = 120,
δ = 0.05, F = 520. Region 2: β = 80, δ = 0.05, F = 360. Region 3: β = 280, δ = 0.05, F = 400.
Region 4: β = 200, δ = 0.05, F = 280. Region 5: β = 240, δ = 0.05, F = 200.



Figure 4: A jet profile (a) with the most unstable eigenfunction plotted in space given at β = 20,
δ = 0.05 and F = 360 in region 2 (b) and at β = 320, δ = 0.05 and F = 400 in region 3 (c).
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Figure 5: Same as Fig. 2 but for δ = 0.3.
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Figure 6: An example velocity profile and PV gradient for β = 1, F = 4 for cosine jet case.
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Figure 7: Energy conversion computed for the most unstable eigenfunctions normalized by total
(potential plus kinetic) energy conversion for cosine jet. Potential energy conversion (a) and kinetic
energy conversion (b). The dotted line shows where the momentum fluxes change sign and the solid
line shows where the PV gradient changes sign between layers, with no sign below and a sign change
above. Blue represents downgradient fluxes and red represents up-gradient fluxes.
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Figure 8: Example growth rates and normalized energy conversions from 3 different regions. Growth
rates (a), kinetic energy conversion (b,d) and potential energy conversion (c,e). See text for loca-
tions. Region 1: F = 4, β = 1. Region 2: F = 7, β = 1. Region 3: F = 10, β = 1.
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