
Preface

The 2017 Geophysical Fluid Dynamics Summer Study Program theme was Ice-Ocean
Interactions. Three principal lecturers, Andrew Fowler (Oxford), Adrian Jenkins (British
Antarctic Survey) and Fiamma Straneo (WHOI/Scripps Institution of Oceanography) were
our expert guides for the first two weeks. Their captivating lectures covered topics ranging
from the theoretical underpinnings of ice-sheet dynamics, to models and observations of
ice-ocean interactions and high-latitude ocean circulation, to the role of the cryosphere in
climate change. These icy topics did not end after the first two weeks. Several of the
Fellows’ projects related to ice-ocean dynamics and thermodynamics, and many visitors
gave talks on these themes.

The first ten chapters of this volume document these lectures, each prepared by pairs
of the summer’s GFD fellows. Following the principal lecture notes are the written reports
of the fellows’ own research projects. This summer’s fellows were:

• Robert Fajber, University of Toronto

• Margaret Lindeman, Scripps Institution of Oceanography

• Madeleine Youngs, Massachusetts Institute of Technology

• Federico Fuentes, University of Texas-Austin

• Thomasina Ball, University of Cambridge

• Jessica Kenigson, University of Colorado-Boulder

• Eric Hester, University of Sydney

• Agostino Meroni, University of Milan-Bicocca

• Guillaume Michel, Ecole Normale Suprieure

• Earle Wilson, University of Washington

• Madelaine Gamble Rosevear, University of Tasmania

The 2017 Sears Public Lecture was given by Professor Richard Alley (Pennsylvania
State University) on Ice Sheets and Sea Level Rise. For the conclusion of his exceptional
presentation Professor Alley played guitar and sang a lively tune about climate change. His
talk drew a big crowd of GFD folks and Woods Hole locals who kept the conversation going
at the reception afterwards.

Claudia Cenedese and Mary-Louise Timmermans were co-directors, and the steady-
stream of visitors, plus large number of long-term staff members around for the summer,
ensured that the fellows never lacked for guidance. Andrew Wells (Oxford) was awarded the
GFD Distinguished Scholar Award for outstanding contributions to mentoring and research
in the program.

The various laboratory experiments were facilitated by able support from Anders Jensen
who had the challenge of making icebergs of different shapes and sizes. Julie Hildebrandt
and Janet Fields kept the whole program running smoothly with efficient administration
in all aspects. We continue to be indebted to WHOI Education, and are grateful for the
opportunity to share scientific ideas on the porch at Walsh, the picnic tables on the lawn,
and in the bustle of Woods Hole village.
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GFD 2017 Lecture 1: Introduction to Ice-Ocean

Interactions

Andrew Fowler, Adrian Jenkins and Fiamma Straneo;

notes compiled by Thomasina Ball and Robert Fajber

1 Introduction to Glaciers and Ice Sheets, Andrew Fowler

1.1 The long view of polar caps

The ice caps that we have today indicate that Earth is currently in the middle of an ice
age. There are two ice sheets, one on Antarctica in the Southern hemisphere, and one on
Greenland in the Northern hemisphere. Both cover almost the entire landmass that they
are on. However, the ice sheets that we see today are not permanent features of the Earth
system. There have been many times in Earth’s history when the caps were altogether
missing, and many times when the caps expanded to be much larger than they are today
and fill the entire globe.

The Milanković cycles describe the different variations in solar insolation due to variations
in the orbit of the planet. There are several cycles: a cycle of obliquity with a period of
41,000 years, a cycle of axial precession with with a period of 22,000 years and a cycle
of apsidal precession with a period of 100,000 years. The exact details of the cycles are
unimportant; what is important is the apparent synchronization between the paleoproxy
records of temperature and insolation values (figure 1). The paleotemperature record is
characterized by large sawtooth oscillations with sudden onsets and slow declines, with an
approximate periodicity of 105 years.

This observation suggests a simple theory of ice ages - when there is relatively high
insolation the ice sheets melt and when there is relatively low insolation the ice sheets grow.
The observed cycles are somewhat at odds with this theory however (figure 1). Although
there is a 105 year cycle present in the insolation, it is not the strongest cycle. This suggests
that the Milanković cycles may not be the driving force behind the changing ice cover, but
instead may set the phase of an oscillation which already exists. Further support comes from
comparing the temperature record with the CO2, which shows a strong correlation. This
implies that the sawtooth oscillations in temperature that we observe could be an oscillation
of the coupled climate system. Interestingly, the paleo temperature record also reveals a
coupling between Greenland and Antarctica near the transition, according to

G = −dA

dt
,

June 19, 2017
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Figure 1: Top: a paleo oxy en isotope record constructed from sediments. Since O16 evap-
orates more rapidly and condenses more slowly than O18, it is preferentially deposited into
ice masses, which leaves the ocean enriched in O18. A higher O18 value therefore represents
more land ice. This isotopic signature is incorporated into the shells of living organisms
and turned into sediment. Thus, relatively high δO18 values correspond to cold periods and
relatively low δO18 to warm periods. Bottom: the variations in insolation calculated using
the Milanković cycles.
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where G is the temperature over Greenland and A is the temperature over Antarctica.
Apparently the two ice masses are able to communicate, either through an atmospheric
teleconnection or ocean heat transport.

It is believed that northeastern North America has been previously covered in ice, referred
to as the Laurentide ice sheet. When this sheet collapses large quantities of icebergs raft
sediments into the North Atlantic ocean, referred to as Heinreich events. Some of these
sediments have been shown to originate in Hudson Bay, suggesting that there was an ice
dome over Hudson bay. There is some partial synchronization between the Heinrich events
and the Dansgaard-Oeschger events, sudden change in Greenland surface temperature over
decades, suggesting that these sudden changes in air temperature could be linked to the
collapse of the ice sheet.

The initiation process of an ice sheet has also been studied, particularly for Antarctica.
The Earth has been cooling since 50 Ma (although this is being opposed currently by anthro-
pogenic climate change), and the Antarctic ice sheet began growing at approximately 34 Ma.
Modeling studies suggest that the ice sheet begins as mountain glaciers, which grow until
they are able to join together and form an ice sheet over the eastern half of the continent.

1.2 A taxonomy of ice flows

Ice can be modeled as a viscous fluid. Frequently the ice will move quite rapidly; in a glacier
this causes surges to occur and in an ice sheet it causes ice streams to form. Glaciers and ice
sheets both refer to masses of grounded ice; the difference is in their size. Ice sheets cover
entire landmasses while glaciers can be any size. Parts of an ice sheet can be referred to as
glaciers.

The ice flow moves ice from areas of accumulation to areas of ablation. If the ablation
is sufficient to terminate the ice sheet over land, the boundary of the sheet is referred to as
a dry margin. If the ablation is not enough to remove all of the ice over land, the ice will
flow into the ocean. The boundary between the ice and the ocean is called a wet margin in
this case. Wet margins can further be categorized into tidewater glaciers, where the glacier
rests on the bed, and ice shelves, where the ice extends itself by floating into the water.
The endpoint of an ice mass determines some of the behavior of the ice motion, and so it is
advantageous to classify glaciers by the nature of their termination.

Antarctica is split between the west and the east by the trans-antarctic mountains. The
East Antarctic Ice Sheet is a continental ice sheet: if it were removed, the ground would be
largely above sea level. The West Antarctic Ice Sheet, on the other hand is a submarine ice
sheet; most of its base is below sea level, and it contains large ice shelves. Antarctica is also
characterized by large numbers of ice streams (figure 2), which accomplish a large fraction
of the ice transport, which brings mass from the central mass accretion zone to the outlying
ablation and loss zones.
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Figure 2: Ice speeds in Antarctica, from [13]
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2 The Antarctic Ice Sheet and the Southern Ocean:
Introduction, Adrian Jenkins

2.1 Marine ice sheets and sea level

Marine ice sheets sit on bedrock that falls below sea level. At the edges of these ice sheets,
floating ice shelves form where the ice is not thick enough to maintain contact with the bed.
Antarctica sits on average 500m below sea level due to several factors: Antarctic topography,
the weight of the ice sheet, tectonics and erosion of the continental shelf by ice flow. As a
result, most ice shelves are found in Antarctica, where they cover an area comparable in
size to the Greenland ice sheet > 1.561 million km2. These are particularly found in West
Antarctica where the ice is grounded in water 2km deep, in contrast to East Antarctica
which is mainly sitting on a bed above sea level. Ice shelves form only 11% of the Antarctic
ice sheet but control 80% of the outflow from the continent. Therefore, understanding the
behavior of ice shelves is important for understanding the 0.5mm/yr contribution Antarctica
makes to global mean sea level, 97% of which is contributed when ice crosses the grounding
line.

Unlike terrestrial ice sheets where accumulation of snow directly balances the melting
of ice at lower elevations, for marine ice sheets the mass balance is intimately linked with
ice dynamics, where ice is lost to the ocean through iceberg calving and basal melting.
Figure 3 shows the basal melt rates of Antarctic ice shelves where, in total, basal melting is
the largest ablation process with basal melt of 1325± 235 gigatons per year (Gt/yr) versus
1089 ± 235 Gt/yr through calving [10]. Most of the current mass loss is balanced by the
accumulation due to snow fall with the excess driving thinning of ice shelves, for example
West Antarctica’s ice shelves experienced a 134 Gt/yr mass loss during the period 2010−2013
[7]. Reductions in ice shelf thickness reduce the buttressing of the grounded ice allowing flow
across the grounding line to accelerate and hence increase the rate of ice sheet mass loss
[8]. The observed rate of ice loss is highest near the grounding line. This suggests ice shelf
thinning in response to an increase in ocean-induced basal melting due to increased flux of
Circumpolar Deep Water (CDW) onto the continental shelf. This increase in ocean-forced
melting may have caused grounding lines to retreat onto a reverse slope which can trigger a
runaway Marine Ice Sheet Instability (MISI).

Another possible process of ice sheet retreat is the Marine Ice Cliff Instability (MICI) [4]
driven instead by atmospheric warming. Increased surface meltwater and summer rainfall on
low topography can form ponds on the surface of the ice which drain into existing crevasses.
It is thought that this allows water to penetrate into the ice causing it to fracture and
eventually break off. An example of this is the Antarctic Peninsula’s Larsen B ice shelf
during its sudden break up in 2002. The Antarctic Peninsula is also one of the fastest
warming regions in the world with an observed rise of +0.53C/10yr pushing the surface
temperature close to a critical threshold where the surface is warm enough to melt during
the summer. Although most of the Antarctic sheet sees surface temperatures well below
this threshold, trends of decadal atmospheric warming threaten to push the zone of melting
further south towards larger ice shelves.
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Figure 3: Basal melt rates of Antarctic ice shelves. Each circle graph is proportional in area
to the mass loss from each shelf through iceberg calving (hatch fill) and basal melting (black
fill) [10].

marine ice sheets have a depth of around 1km, > 90m of which is above sea level. As a result,
the longitudinal stresses of the cliff face would exceed the yield strength of the ice (1MPa)
leading to continued collapse until a reduction in temperature allows buttressing to reform.
Again, if retreat moved the grounding line onto a reverse slope the MISI could take hold. This
has been seen in Helheim and Jakobshavn glaciers in Greenland and Crane Glacier on the
Antarctic Peninsula highlighting the importance of understanding the combination of MISI
and MICI on an ice sheet. Figure 4 demonstrates these two methods of ice sheet retreat.
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Figure 4: Schematic of MISI and MICI processes. (a-c) and (d-f) show ice retreat due to
oceanic and atmospheric warming respectively. (a) Stable marine ice sheet with buttressing.
Sub-ice melt rates increase with ocean warming and increased flux of the CDW onto the
continental shelf. (b) Thinning of ice shelves due to sub-ice melting forcing the grounding
line to retreat onto a reverse slope. (c) Grounding line positioned on a reverse slope triggers
a runaway MISI. (d) Increased surface meltwater causes crevasses to fill up and eventually
break off. (e) Increased calving provides another method of mass loss which, alongside MISI,
causes the grounding line to retreat. (f) When continued calving breaks off the entire ice
shelf, ice shelves with a height > 800m with cliff face > 90m become unstable and could
collapse leading to further grounding line retreat leading to the MICI [4]
.
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2.2 Ocean circulation near the Antarctic ice sheet and meridional

circulation

Differential solar heating causes vertical convection in the atmosphere which helps drive
horizontal wind patterns with easterlies near the poles and in the tropics and westerlies
at mid-latitudes. The westerly winds over the Southern Ocean are uninterrupted by land
and so can drive the zonally continuous Antarctic Circumpolar Current (ACC), the largest
wind-driven current on Earth, and the only current that connects the Atlantic, Pacific and
Indian Oceans. These westerly winds coupled with the easterlies near the poles south of a
minimum in mean sea level pressure drive surface divergence and upwelling of Circumpolar
Deep Water (CDW). This water mass supplies heat and nutrients to the surface playing a key
role in marine ecosystems in the Antarctic region. Similarly, north of these westerlies, there
is a surface convergence which drives downwelling of fresh Antarctic Intermediate Water
(AAIW). South of the ACC, salty water formed beneath sea ice then cooled beneath ice
shelves sinks to form the Antarctic Bottom Water (AABW), the coldest, deepest water in
the ocean, see Figure 5.

Similar to the Antarctic, cold North Atlantic Water sinks as North Atlantic Deep Water
(NADW), which is transformed into CDW in the Southern Ocean. This upwelling brings
saline water to the surface, which either freshens to form the downwelling AAIW, seen most
notably on figure 6, or cools to join the fresh water from the continental shelf. However,
further salt input from sea ice formed in the western Ross and Weddell seas is needed to
increase the density of water sufficiently for the AABW to form.

North of the ACC surface water surrounding the Antarctic follows the meridional gradi-
ent, however south of the ACC subsurface temperatures on the shelf itself range significantly:
from fresh water formed below floating ice shelves with temperatures below the surface freez-
ing point, to warm waters from intruding CDW along the Pacific coast of West Antarctica
with temperatures 3C above the surface freezing point.

3 Greenland Ice Sheet Changes: The Ocean as a Trig

Receiver, Fiamma Straneo

Greenland is changing rapidly and is losing mass at twice the rate of Antarctica. Observations
from satellites have shown a loss of 2700 ± 930 Gt of ice between 1992 and 2011 from
Greenland compared with 1350 ± 1010 Gt for Antarctica, contributing to a cumulative sea
level rise of 7mm and 4mm respectively [14]. It is important to understand contributions
to sea level rise and their uncertainties for informing future predictions (such as the IPCC
report, which currently does not include ice sheet dynamics).

Greenland’s increasing ice loss is also effecting many others processes. Maps of temper-
ature data over the last century have shown an anomalous sub-polar North Atlantic cooling
converse to the warming seen globally. This region of cooling compares well with climate
models subject to a strong reduction in Atlantic meridional overturning circulation (AMOC)
induced by adding a fresh water anomaly in the North Atlantic. If the climate models are
forced further, an extension of the cooling region is seen causing a shutdown of the Labrador
Sea convection, which has only briefly occurred so far [9]. Böning et al. 2016 [3] argue that
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Figure 5: Schematic showing Ocean Circulation near the Antarctic Ice Sheet, particularly
the upwelling of the CDW and downwelling of the AAIW and AABW in relation to the
westerlies driving the ACC.
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Figure 6: Cross sections of the temperature and salinity through the Atlantic.
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the increased fresh water in the North Atlantic has currently not had a significant impact
on the AMOC. However, continued freshening of the surface waters may begin to effect the
formation of the NADW and hence the AMOC before clear signals are observed.

The peak in glacial discharge from Greenland occurs during the summer melt season,
which coincides with the post-spring depletion of bloom nutrients. It is thought that Green-
land’s meltwater could be significant source of bioavailable iron and inorganic nutrients to
the ocean through sediment at the base of glaciers. These would then form buoyant freshwa-
ter plumes allowing the maximum potential of primary productivity in the North Atlantic
Ocean [2]. Increased aeolian Fe could explain recent evidence of a correlation between peak
phytoplankton blooms and increased meltwater runoff from Greenland [5].

Freshwater anomalies have occurred previously. The Great Salinity Anomaly (GSA) in
the 1970s caused deep convection to cease for three mild winters in a row and affected
the Labrador Sea by freshening the surface layer. This increased ocean stratification and
confined convective mixing to the top fresh layer. Very cold winters during 1971/1972 allowed
convection to begin again to normal depths of around 1500m [6]. Currently the freshwater
anomaly in the North Atlantic is about a third of the magnitude of the GSA with a cumulative
freshwater output of 3200 ± 358km3 since 1995 [1]. However, if the accelerating trend of
increased fresh water discharge continues, it is estimated to exceed that of the GSA by 2025.

Ice sheet mass balance couples together the surface mass balance (SMB) due to accumu-
lation, surface melt and sublimation and ice discharge (D),

DM

Dt
= SMB−D, (1)

where

SMB = precipitation− (surfacemelt + sublimation) , D = ice bergs + oceanmelt (2)

GRACE satellite data has recently shown that surface mass balance and ice discharge con-
tributed roughly equally to the cumulative mass loss during the period from 1996-2015, with
SMB accounting for between 40 − 60% loss and ice discharge the remaining 40% of loss
[17]. In recent years, Greenland has had extreme melt years, for example in 2012 where the
Greenland ice sheet was peppered all the way to the center with surface melt ponds. There
has also been increased ice discharge moving ice from basins to the ocean. However, thus far
models have struggled to constrain the contribution ice discharge makes.

During the last decade Greenland’s large outlet glaciers have accelerated. Helheim glacier
doubled its flow rate from 6km/yr to 11km/yr between 2002-2005 whilst Kangerlussuaq
glacier almost tripled its flow rate from 5km/yr to 14km/yr between 2002-2005, with similar
changes seen across the south of Greenland. These two glaciers had a combined mass loss of
208± 15km3 during the period 2001-2005, or equivalently 51± 8km3/yr. The increased flow
rate increases longitudinal stresses in the ice and hence results in thinning rates of around
90m/yr contributing 0.31±0.07mm/yr to global mean sea level which is a significant portion
of the 0.57mm/yr from Greenland as a whole [11]. This suggests that mass loss from glaciers
in southeast Greenland is significant and hence understanding of the forcing that causes
these rapid acceleration is important.

The Greenland ice sheet is influenced by waters originating in the North Atlantic (figure
7; red-yellow) and the Arctic (figure 1; blue). On the Eastern side of the continent the North
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Figure 7: A schematic diagram showing the Ocean flow around Greenland overlain with the
ice sheet elevation changes of the Greenland ice sheet. From [15]

Atlantic waters are much warmer than the Arctic water, but are separated from the land by
a thin current of cold Arctic water. Without this layer of cold water the warm water would
be able to melt the ice sheet.

Even with this layer however it is still possible for the warm Atlantic waters to reach
ice shelves. This process occurs across many different scales. The large scale circulation
determines the background temperature gradient and can be resolved by current models;
mesoscale eddies that transport heat to the coast are significantly smaller; dynamics inside
the fjords themselves are even smaller; heat transport between the water and the shelf occurs
across a boundary layer that might be only millimeters to centimeters thick. Resolving the
process across many scales is a major challenge for models.

Recent changes in the heat content of the North Atlantic appear to be driving changes in
the glaciers surrounding Greenland. Observations of the subpolar Atlantic ocean show that
there is a decadal variation in heat content, possibly related to the Atlantic Multidecadel
Oscillation. Recently, the subpolar Atlantic ocean has seen the largest increase in temper-
ature on current record. These changes are likely related to an inflow of warm subtropical
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Figure 8: Ice velocity of the Greenland ice sheet. From [12]

waters. These waters have been warmed by increased atmospheric temperatures, but have
not been able to propagate poleward into the subpolar Atlantic until the recent phase shift
of the North Atlantic Oscillation.

Observations of ice velocity of the Greenland ice sheet show many ice streams carrying ice
to the coast, especially on the southeast side (figure 8). Recent reconstructions of the surface
elevation have shown that the Greenland ice sheet is not only losing mass, but that the ice rate
itself is accelerating. The reconstructions are derived by differencing the observed elevation
changes with the observed surface mass balance budget; the residual can be attributed to
ice dynamics. The reconstructed data shows an acceleration in the ice, particularly on the
southwest side of the continent. Although reconstructions and models have been able to
provide us with important information, they have to be constrained by observations in order
to provide reliable information since so many of the processes controlling the retreat of the
ice sheet are small scale and parameterized in models.
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Figure 9: A: A schematic diagram showing the mechanisms by which a tidewater glacier is
able to lose mass into the ocean. B: A schematic diagram showing the mechanisms by which
a floating ice tongue glacier can lose mass. From [16]

In order to improve our understanding of the mass changes in the Greenland ice sheet
we need to understand the different mechanisms for ice loss (figure 9) and their relative
magnitudes. For both Tidewater glaciers and Floating Ice Tongue glaciers, increased surface
warming from the atmosphere and increased submarine melting driven by warm Atlantic
waters circulating in the fjord can cause an increase in ice speed. This could affect the two
types of glaciers in different ways since the ice dynamics transporting ice to the ocean and
the contact with the ocean look very different between the two cases. Since the problem of
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melting Greenland glaciers touches many different subjects, including glaciology, oceanogra-
phy, hydrology and geology, a multi-disciplinary approach is needed.
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GFD 2017 Lecture 2: Ice Dynamics

Andrew Fowler; notes by Federico Fuentes and Madelaine Gamble Rosevear

June 20, 2017

This document comprises the first full lecture given by Andrew Fowler during the 2017
Geophysical Fluid Dynamics program at the Woods Hole Oceanographic Institution (WHOI).
It is about ice dynamics, and is divided in two parts: ice sheet flow, and sliding and subglacial
hydrology. Most of the details were taken from Dr. Fowler’s book [Fowler, 2011], which the
reader is invited to consult if more information is required.

1 Ice sheet flow

1.1 Governing equations

Over sufficiently long periods, ice behaves as a viscous fluid, deforming under applied stress.
The strain rate ε̇ij is given by

ε̇ij =
1

2

(
∂ui

∂xj

+
∂uj

∂xji

)
, (1)

and is commonly modeled using Glen’s flow law

ε̇ij = A(T )τn−1τij , (2)

where τij is the deviatoric stress tensor in index notation, τ is the second stress invariant,
defined by 2τ 2 = τijτij, and A(T ) is a temperature dependent term. The Glen exponent n is
typically taken to be 3, although values 1 ≤ n ≤ 4 have been proposed in the literature.

For the flow of a glacier the Reynolds number is approximately 10−13, so inertial terms
are small with respect to viscous terms (Stokes flow) and mass and momentum conservation
may be expressed as

∇ · u = 0 (3)

0 = ∇p+∇ · τ + ρg. (4)

where p is the pressure, g is the gravity vector and τ is the deviatoric part of the stress
tensor. The assumption of incompressibility in (3) holds within the ice. This is a reasonable
assumption as the surface layer in which snow and firn are compacted into ice is very thin.
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Figure 1: Controls on Creep Parameter A. Data from [Cuffey and Paterson, 2010].

Finally we have the energy equation:

ρcp(Tt + u · ∇T︸ ︷︷ ︸
advection

) = k∇2T︸ ︷︷ ︸
heat

conduction

+ τij ε̇ij︸ ︷︷ ︸
viscous

dissipation

(5)

where ρ is the ice density, cp is the specific heat, and k is the thermal conductivity. The
final term in (5) is the viscous heating term describing the conversion of mechanical energy
to heat. Whilst this term is often neglected in other geophysical flows, it significant for ice
sheet flow.

Stress and strain are related by τij = 2ηε̇ij where η is the effective viscosity. Using (2)
we can write

η =
1

2A(T )τn−1
. (6)

The term A(T ) is strongly dependent on temperature, increasing over three orders of mag-
nitude for a temperature change of 50 K (Figure 1), and thus viscosity is inversely related
to temperature.

1.2 Bi-stability and thermal runaway

It is the strong temperature dependence of the viscous heating term that provides the mech-
anism for “thermal runaway”. If heat is supplied to the ice, the temperature increases and
the viscosity decreases. This allows the ice to flow faster, increasing stresses at the bed
and warming the ice through the viscous heating term in (5). This in turn lowers viscosity,
creating a positive feedback loop.

1.3 Boundary conditions

A complicating factor for the modeling of ice flows is that one cannot assume a no-slip
boundary condition at the bedrock. Water present beneath the ice allows sliding, and thus
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Figure 2: Illustrative relation between the effective pressure N and the water flow Q through
a field of linked cavities [Fowler, 2011] where F represents film flow, K is linked cavities and
R is Röthlisberger channels. To the right of the minimum, distributed drainage is unstable;
the channels coarsen resulting in a single Röthlisberger channel. To the left, distributed
drainage in the form of linked cavities is stable. As N goes to zero a thin film flow is
permitted.

a sliding law is required. The basal stress,

τb = Nf
( ub

Nn

)
, (7)

is modeled as an increasing function f of the velocity at the base ub and the effective pressure
N = pi− pw, where pi is the overburden pressure and pw is the water pressure. The effective
pressure, N , is analogous to that used in soil mechanics, and is typically positive. In order to
relate N to the subglacial water flow rate Q, subglacial hydraulic theory is required. Three
of the prevailing theories, are:

• Röthlisberger channels, where
N ≈ βQ1/(4n) . (8)

• A linked system of canals, where

N ≈ γ

Q1/n
. (9)

• A Creyts-Schoof film, where

N ≈ δ

Qμ
. (10)
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Figure 3: Schematic showing the draining and subsequent closure of a smaller channel due
to the presence of a neighboring larger channel.

1.3.1 Röthlisberger channels

Subglacial water is present due to both basal melt and, where a conduit to the base is present,
surface melt or rainfall. One theory of subglacial drainage involves the formation of semi-
circular channels within the ice. The fact that the effective pressure N is typically positive
means that these channels would close through the deformation of the ice in the absence of
a mechanism to keep them open. This mechanism is melting due to frictional heating from
the water flow.

The expression for the effective pressure of one of these channels is

N ∼ βQ1/4n (11)

where Q is the flow rate of the water and β is a material parameter that depends inversely
on roughness.

An interesting feature of this system is that a decrease in water flux decreases N and
therefore increases the water pressure pw. If we consider a small channel next to a large
channel (Figure 3), then Q is small within the small channel, and thus the water pressure
pw must be large. In the larger channel the opposite is true, so the water pressure is low.
The bed separating the two is rough, and water is able to leak from high to low pressure.
As a result of this, smaller channels drain towards larger ones and close down, creating an
arterial system of channels.

1.4 Thermal boundary conditions

The pressure melting point of ice decreases with increasing pressure, meaning that even
very cold ice may be above the in-situ melting temperature at the base of an ice sheet. This
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means we need to consider whether the ice is above or below the melting point in our thermal
boundary conditions. When the temperature at z = b is less than the freezing temperature
Tm the ice is frozen to the bed and we have a no slip boundary,

−k
∂T

∂n
= G , T < Tm , u = 0 , (12)

where G is the geothermal heat flux and n is direction normal to the bed. Once the base
reaches the melting temperature a layer of water is present, lubricating the base of the ice.
This allows some sliding, however less than the full sliding velocity ub as there is not yet a
net production of water,

−k
∂T

∂n
= G+ τbu , T = Tm , 0 < u < ub . (13)

This introduces a frictional heating term τbu due to the sliding. When there is net production
of water, the ice attains its full sliding velocity. In this regime,

0 < −k
∂T

∂n
< G+ τbu , T = Tm , u = ub . (14)

Note that each of these regimes contains an inequality, adding another layer of complexity
to the model.

1.5 Shallow ice approximation

Figure 4: Schematic of a valley glacier showing thickness h (elsewhere H), bed elevation b
and surface height s. Figure from [Fowler, 2011].

Ice sheets may be thousands of kilometers in extent but are only kilometers deep (Fig-
ure 5), allowing the use of the shallow ice approximation. For an ice sheet of thickness d and
extent l the aspect ratio is given by ε = d/l. For the Antarctic Ice Sheet d ∼ 3 × 103 m,
l ∼ 3× 106 m giving ε ∼ 10−3. As a result of this, longitudinal derivatives of stress, velocity
and temperature are small compared to vertical derivatives and may be neglected, reducing
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Figure 5: Cross section of the Antarctic Ice Sheet with exaggerated vertical scale. Figure
from lecture slides.

the problem to a balance between the driving stress due to surface slope and resistive forces
at the boundaries [Huybrechts, 2007].

This allows us to write a diffusion equation governing the evolution of the ice sheet
thickness, H,

Ht = ∇ ·
(( |∇s|n−1Hn+2

n+ 2
∇s

)
︸ ︷︷ ︸−Hub

)
+ a , (15)

nonlinear diffusion

where H is the thickness of the ice sheet, b is the bed elevation, ub is the basal velocity,
s = H+b is the surface elevation and a is the accumulation from snowfall (or, where negative,
ablation). The nonlinear diffusion causes degeneracy at the boundaries and singularities
may be involved. Whilst the term −Hub looks like an advective term, ub is typically in the
direction of the shear stress and so is proportional to the surface slope (ub ∼ τb ∼ −∇s),
meaning that this term is also diffusive.

1.6 Accumulation and hysteresis

Figure 6: Schematic of an ice sheet with extent xe and height H.

Ice sheet mass is determined by the balance between accumulation of snow above the
snow line and ablation at the margins, where the snow line is given by h0 + sx, as shown in
Figure 6. As the ice sheet extent decreases the height h decreases, meaning less of the ice
sheet is above the snow line, and therefore accumulation is less and ice sheet extent decreases.
When the height falls beneath the snow line accumulation goes to zero. In the absence of
any gain terms, the ice sheet collapses.
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2 Sliding and Subglacial Hydrology

2.1 Weertman’s sliding law

Consider ice over a set of obstacles as illustrated in Figure 7. The obstacles are separated on
average by a distance l and have heights roughly of size a, so that the aspect ratio is defined
as

ν =
a

l
. (16)

Figure 7: Weertman’s sliding law.

The ice is assumed to slide at a particular velocity. Weertman’s law is derived by assuming
that a “regelation” velocity is roughly the same as a “viscous” velocity associated to Glen’s
flow law.

Figure 8: Pure regelation.

Regelation occurs when ice at high pressure melts and then refreezes at areas of low
pressure. This creates a very thin film, with a thickness of the order of 1μm over which
the ice flows. Figure 8 shows the case of pure regelation. Under regelation, the pressure
difference across the obstacle is roughly

δp ≈ − τ

ν2
, (17)

where τ is the average shear stress at the bed, and p is the pressure. Hence, using that

−dTm

dp
= C , (18)

where Tm is the melting temperature, it follows that there is a temperature difference of

δT ≈ C
τ

ν2
, (19)
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where T is the temperature. The regelative water flux is uRa
2, where uR is the regelative

ice velocity, meaning that to melt the ice a latent heat of ρiLuRa
2 is necessary, where ρi is

the ice density and L is the specific latent heat. This must be equal to the heat conducted
through the obstacle, so that

(
k
δT

a

)
a2 = ρiLuRa

2 ⇒ uR =
( kC

ρiLa

) τ

ν2
, (20)

where k is the thermal conductivity of the bedrock. It follows regelation is important for
small obstacle sizes of size a.

Meanwhile, the velocity due to viscous shearing is related to Glen’s flow law. It is

uV ≈ 2aA
( τ

ν2

)n

, (21)

where n is the exponent in Glen’s flow law. Thus, this velocity dominates for large obstacles
of size a.

There is a controlling obstacle size a for which both effects are important. Selecting a so
that both velocities are equal, means that u = uR = uV , so that multiplying both equations
yields,

τ = ν2
( ρiL

2kCA

) 1
n+1

u
2

n+1 . (22)

This is known as Weertman’s sliding law.

For large obstacles, cavities are formed due to the fact that the film pressure after the obstacle
is lower than the water pressure in the local subglacial drainage system. In practice, it is
common to find these cavities. Figure 9 illustrates this cavitation.

Figure 9: Lliboutry cavitation.

In this case, the velocity due to viscous shearing, which is assumed to dominate, takes
the form

u ≈ 2(a+ lc)A
( τ

ν2

)n

, (23)

where lc is the length of the cavity. Additionally, the pressure difference between the ice and
water relates to the velocity by

u

lc
= ANn , N = pi − pw , (24)

2.2     Lliboutry cavitation
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where N is the effective pressure, pi is the ice pressure (or overburden pressure) and pw is
the water pressure. Substituting lc then yields

τ

N
= ν2

( Λ

2(1 + Λ)

) 1
n
, Λ =

u

ANna
. (25)

2.3 Drainage and the Nye-Röthlisberger model

Weertman films have a tendency to become unstable. In these cases, Röthlisberger channels
form, where water flows from regions of higher pressure to regions of lower pressure. The
channels are maintained open by melting in the channel walls. The melting is due to the
frictional heat resulting from the flow of the water itself. The channels are schematically
shown in Figure 10.

Figure 10: Röthlisberger channels.

The Nye-Röthlisberger model assumes that a channel of cross-sectional semi-circular area
S is governed by the closure equation

∂S

∂t
=

m

ρi︸︷︷︸
melt

− KSNn︸ ︷︷ ︸
viscous closure
due to ice creep

, (26)

where m is the melt rate, K is a constant (proportional to A) derived from the ice creep
problem, and N is the effective pressure (see (24)).

Conservation of mass in the slowly varying channel can be written as

∂S

∂t
+

∂Q

∂x
=

m

ρw︸︷︷︸
volume source due
to side-wall melt

+M , (27)

where x is the downstream spatial coordinate, Q is the volume flux, ρw is the water density,
and M is a prescribed source accounting for tributary flow, surface melt-water supply, etc.

Ignoring inertial terms and using a Manning correlation to account for turbulent friction,
the conservation of momentum can be written as

ρwg sinα− ∂pw
∂x︸ ︷︷ ︸

hydraulic gradient

= fρwg
Q|Q|
S8/3

, (28)
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where g is gravity, f is a friction coefficient related to the Manning roughness factor and α
is the mean bedrock slope.

Meanwhile, the energy equation is given by

ρwcw

(
S
∂θw
∂t

+Q
∂θw
∂x

)
︸ ︷︷ ︸

material rate of change
of water temperature

= Q
(
ρwg sinα− ∂pw

∂x

)
︸ ︷︷ ︸

frictional heat source

−m
(
L+ cw(θw − θi)

)
︸ ︷︷ ︸

enthalpy change
on melting

, (29)

where θw is the water temperature, θi is the ice temperature, cw is the specific heat capacity
of water, and L is the specific latent heat.

Lastly, a local heat transfer condition at the ice wall for a cylindrical tube is given by

aDB

( ρw|Q|
ηwS1/2

)0.8

k(θw − θi) = m
(
L+ cw(θw − θi)

)
, (30)

where aDB is a constant, ηw is the viscosity of water and k is the thermal conductivity of
water.

The five equations, (26)–(30), constitute the Nye-Röthlisberger model which solves for
the five unknowns S, Q, m, pw and θw.

The effective pressure can be estimated under the assumption of steady state conditions.
In this case, the equations reduce to

m

ρi
= KSNn ,

ρwg sinα− ∂pw
∂x

= fρwg
Q2

S8/3
,

mL = Q
(
ρwg sinα− ∂pw

∂x

)
.

(31)

These equations can be solved numerically, but in general it is found that ∂pw
∂x

� ρwg sinα,

and neglecting ∂pw
∂x

yields a boundary layer, so that away from the snout it follows that

N =
( m

KSρi

) 1
n
, S ≈

( fQ2

sinα

) 3
8
, m ≈ Q

L
ρwg sinα . (32)

Lastly, substituting the latter two in the former yields that the effective pressure is

N ≈ βQ
1
4n , β =

(ρwg sin11/8 α

ρiLKf 3/8

) 1
n
, (33)

where sometimes f is taken as f = (n′)2G, where n′ is the Manning roughness factor, and
G = ( �

2

S
)2/3 is a geometric factor with  being the wetted perimeter.

2.4 Linked cavities

Next, one might consider linked cavities such as those shown in Figure 11. Let s be the
shadowing function which represents the fraction of the bed that is cavity-free. It is a
decreasing function of

Λ =
u

Nn
, (34)
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where u is the sliding velocity. Then using the theory yields that

n
1/4n
K N

s(Λ)
≈ βQ

1
4n , (35)

where nK is the number of cavities across the width of the glacier. Therefore, linked cavities
within a glacier operate at a higher pressure than a channel-based system.

Figure 11: Linked cavities.

2.5 Creyts-Schoof water film

Figure 12: Creyts-Schoof water film [Creyts and Schoof, 2009].

There are other models for the films of water that develop between the bedrock and the
ice. One of the most recent is the Creyts-Schoof water film [Creyts and Schoof, 2009]. Under
this model, the “obstacles” actually become supporting clasts for the ice, as shown in Figure
12. In this case, there is a different scaling for the effective pressure,

Q ∼ h3 , N ∼ 1

h3μ
, ⇒ N ∼ 1

Qμ
. (36)
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GFD 2017 Lecture 3: Subglacial Control of Ice Flow

Andrew Fowler; notes by Eric Hester and Jessica Kenigson

1  Subglacial  Floods:  Gŕımsvötn

1.1 Model

Water flows through a semi-circular conduit (i.e., a Röthlisberger Channel) of cross-sectional
area S at the glacier base. In the Röthlisberger model, melting of the channel walls occurs
through frictional heating via contact with the flowing water, and creep closure occurs be-
cause the ice overburden pressure exceeds the water pressure in the channel. That is, in
general, N = pi − pw > 0. Equation 2 models the change in the cross-sectional area of the
conduit under the competing effects of melting of the sidewalls m and creep closure SNn.
Therefore

∂S

∂t
=

m

ρi
−KS(pi − pw)

n, (1)

where subscripts i and w indicate ice and water, respectively, and K is a constant which
depends upon the geometry of the conduit. The second term arises from the nonlinear flow
law for plastic deformation. Two separate sources are assumed for volumetric flux Q to the
channel: melt of the channel walls and other sources such as surface meltwater and outflow

Jökulhlaups or “glacier-bursts” are flooding events that are associated with glaciers; these
events may be quasi-periodic or periodic. In 1996, a massive Jökulhlaups occurred at the
Skeiðarárjökull glacier at Iceland, which partially overlays a lake within a geothermally
heated caldera. The ice overburden pressure at the caldera rim forms a “seal”which prevents
the lake from emptying. Figure 1 shows a simplified geometric profile of the region.

Flooding events at Gŕımsvötn occur regularly, indeed quasi-periodically (∼5-10 years)
(Figure 2). A plausible mechanism for flooding from Gŕımsvötn would involve the water
pressure in the lake growing to exceed the ice overburden pressure and causing flotation of
the glacier, releasing a burst of water through the broken “seal.” During observed flooding
conditions, however, the water level within the lake has not been observed to reach the
necessary height to achieve glacier flotation. A simplified physical model will be developed
to shed light on the flow of water beneath the glacier during flood events as well as the
periodicity of these events. Much of the following theory follows the exposition by [4].

June, 21, 2017
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Figure 1: Simplified profile of the landscape near Gŕımsvötn. In the Röthlisberger-Nye model
x is increasing to the right and is measured from the seal (which is assumed to be fixed in
space). Figure from [1].

from the lake, which are subsumed into a single term M . Therefore, continuity of mass
within the conduit implies

∂S

∂t
+

∂Q

∂x
=

m

ρw
+M. (2)

A momentum balance arises from rearranging the Gauckler-Manning formula for a mean
(turbulent) flow ū = Q/S :

ū =
R2/3

n′

[
1

ρwg

(
ρwgs − ∂p

∂s

)]
(3)

where R is the hydraulic radius, g is the gravitational constant, gs is the component of the
gravitational constant in the s-direction (here x-direction), n′ is a Manning roughness factor,
and ρw is the density of water [7]. It follows that

ρwg sinα− ∂p

∂x
= fρwg

Q |Q|
S8/3

(4)

where the first term represents the gravitational driving force, the second term represents
the water pressure gradient, and the third term represents bed friction. Here f is a friction
factor and α is the bed inclination. Finally, the energy equation is
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Figure 2: Hydrograph showing extreme flooding events at Gŕımsvötn in 1922, 1934, 1938,
1945, 1954, 1972, 1976, 1982, 1983, and 1986. Figure from [3].
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ρwcw

[
S
∂θw
∂t

+Q
∂θw
∂x

]
= Q

(
ρwg sinα− ∂p

∂x

)
−m [L+ cw(θw − θi)] (5)

where the rate of change of internal energy is given by the sum of two terms: the energy
needed to change the temperature of water already in the conduit (term related to the total
derivative of θw on the LHS), and the energy needed to melt ice from the conduit walls
(second term on the RHS), which consists of a sum of the energy required to raise the ice
temperature to the water temperature and the latent heat needed for the phase change. The
first term on the RHS is the frictional heating due to viscous dissipation (see Equation 4).
Finally, a heat transfer equation is given by

aDB

(
ρw |Q|
ηwS1/2

)4/5

k(θw − θi) = m [L+ cw(θw − θi)] (6)

where the term on the LHS is an empirical expression for heat transfer at the ice conduit
walls given a turbulent flow; this is obtained from an empirical relation among the Nusselt
number, the Reynolds number, and the Prandtl number ([7]). Here aDB ∼ 2, ηw is the
viscosity of water, and k is the thermal conductivity.

At the lake inlet, the “refilling” condition is given by

− AL

ρwg

∂N

∂t
= mL −Q at x = 0 (7)

where AL is the (fixed) surface area of the lake and mL is the geothermal melt rate in the
caldera. That is, changes in the effective pressure at the seal are driven by the meltwater flux
in the lake due to geothermal heating and the volumetric flux of water into the subglacial
conduit. Here

Φ = ρwg sinα− ∂pi
∂x

(8)

is the hydraulic gradient. These equations are nondimensionalized with

Q = Q0Q
∗, S = S0S

∗, pi − p = N0N
∗, m = m0m

∗, x = lx∗, t = t0t
∗, θw = θi + θ0θ

∗,

which gives
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∂S

∂t
= m− SNn (9a)

ε
∂S

∂t
+

∂Q

∂x
= εrm+ Ω (9b)

Φ + δ
∂N

∂x
=

Q |Q|
S8/3

(9c)

εS
∂θ

∂t
+Q

∂θ

∂x
= Q

[
Φ + δ

∂N

∂x

]
−m(1 + εrθ) (9d)

θ

( |Q|
S1/2

)0.8

= γm(1 + εrθ) (9e)

The nondimensional parameters are given by

ε =
Φ0l

ρiL
(10a)

δ =
1

Φ0l

[
Q

1/4
0 Φ

11/8
0

ρiKL(fρwg)3/8

] 1
n

(10b)

γ =
ρwcw
kaDBl

(
ηw
ρw

)4/5

Q
1/2
0

(
fρwg

Φ0

)3/20

(10c)

r =
ρi
ρw

(10d)

Ω =
Ml

Q0

(10e)

with the boundary condition

∂N

∂t
= Q− ν at x = 0. (11)

Reference values for these parameters are

γ ∼ 2.5, ε ∼ 0.05, r ∼ 0.9, δ ∼ 0.22, Ω ∼ 0.6 · 10−3. (12)

(A table of physical parameter values used in the scaling is available in [4]). Ordinarily,
flooding is initiated in the presence of the “seal” at the margin of the caldera. Now re-scale
x = δX to investigate near the boundary of the caldera, let ω = δΩ and allow Φ < 0 near
the lake. Assume that ε and γ are small, which implies via Equation 9e that θ = 0. The
equation set then reduces to
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∂S

∂t
=

|Q|3
S8/3

− SNn (13a)

∂Q

∂X
= ω (13b)

Φ +
∂N

∂X
=

Q |Q|
S8/3

(13c)

with the boundary conditions

∂N

∂t
(0, t) = Q(0, t)− ν at x = 0 (14)

∂N

∂X
→ 0 as X → ∞ (15)

where

ν =
mL

Q0

. (16)

Assume the following form for Φ,

Φ = 1− ae−bX , (17)

for some parameters a and b (which are related to the strength of the seal). Figure 3 shows
the numerical solution of Equations 13a-13c and 14, which agrees quite reasonably with
observations.

Note that in a steady state (∂S/∂t = 0) with Φ ∼ 1, Equations 13a-13c reduce to the
Röthlisberger relation for N and Q.

1.2 Distributed drainage system

Massive flooding events have likely occurred beneath ice sheets such as Antarctica, with Lake
Vostok potentially implicated. Note that flooding events beneath ice sheets are physically
very different from events beneath glaciers, as drainage beneath ice sheets is not typically
through Röthlisberger channels.

In Röthlisberger channels, N and Q are related via

N ∼ βQ1/4n (18)

for a material parameter β. Under these circumstances, it is typical for a single conduit
to develop, owing to the relationship between Q and N . If two Röthlisberger channels of
differing radii are close together (such that water can escape from one channel to another
through the bed), the channel with relatively small Q (small N , large pw) will experience
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Figure 3: (a) Model showing periodic flooding at Gŕımsvötn. (b) Hydrograph of the observed
(red) and modeled (green) discharge based upon the solution of Equations 13a-13c and 14
under the assumption that a = 2.8, b = 4.316. Figure adapted from [3].

leakage into the nearby channel of large Q, and the small channel will gradually close. If
the subglacial sediment is relatively stiff, then it is possible for Röthlisberger channels to
develop beneath a glacier. However, if sediment is significantly erodible, then it is likelier for
a distributed drainage network to develop (rather than a single channel).

In prior derivations, Röthlisberger channels were assumed to be semi-circular with h ∼ w,
where w is the mean width and h is the mean depth. Now relax the assumption (as in the
Röthlisberger theory) that h ∼ w. Instead R = S/l, where R, the hydraulic radius, is a
fraction of the cross section S = wh and l, the wetted perimeter, and

w2 =
24/3ρwn

′2Q2

ρiSih10/3
(19)

Kw2Nn =
gSiQ

2L
(20)

where n′ a Manning roughness coefficient, K is related to the closure rate and is dependent
upon the geometry, and Si is the ice surface slope. This is a generalization of the Röthlis-
berger theory and reduces to it in the case w ≈ h. It is derived from a Manning law and
the assumption that the closure rate due to melting balances channel closure due to the ice
overburden pressure. Assume that the channel depth is close to the critical depth at which
sediment transport occurs. It then follows that
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N =
γ

Q1/n
(21)

with

γ =

[
ρigS

2
i h

10/3
c

27/3KLρwn′2

]1/n

(22)

where hc is a critical depth fixed by the critical stress for sediment transport and L is a
function of the sliding velocity and effective pressure N . This suggests an inverse relationship
between N and Q, unlike for Röthlisberger channels. Therefore, the closure mechanism
discussed previously for Röthlisberger channels is avoided, which permits the existence of a
distributed drainage network [7].

2

The action of ice sheets during the last ice age has had profound effects on topography 
throughout the world. Ribbed moraines, drumlins, and Mega-Scale Glacial Lineations (MS-
GLs) (seen in Figures 4, 5, and 6, respectively) are prime examples of such effects. They are 
always seen in large clusters in areas of past glaciation (Sweden, Ireland, Canada), with the 
prime differences being the main direction of variation. Ribbed moraines, much like dunes, 
form transverse to the flow, while MSGLs are instead directed longitudinally. Drumlins, 
however, are fully three dimensional, being between these two extremes.

The glacial dynamics responsible for these features have not been settled. However, [6] 
has developed a model which couples ice sheet and deformable sediment dynamics, with 
a thin intermediate water film. This model exhibits all three of these formations, and we 
outline its development below.

2.1 Ice

We model the ice as a Newtonian fluid of viscosity ηi. The finite depth ice lies above a thin 
water layer, which in turn rests on a deformable bed of till (Figure 7). The inertial terms are 
negligible in the Navier-Stokes equations, giving Stokes flow

∇ · u = 0, (23)

0 = −∇P − ρig∇zi + ηi∇2u, (24)

where u is the ice velocity, ρi is the ice density, ηi is the dynamic viscosity, and P is the
deviation from the cryostatic pressure.

Subglacial Bedforms: Drumlins, Ribbed Moraine,  and Mega-
scale Glacial Lineations (MSGL)
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Figure 4: Ribbed moraines in
lake Rogen, Sweden. Ridges
form transverse to ice flow
[6]. Figure adapted from
https://www.sheffield.ac.uk
/drumlins/rogen

Figure 5: Digital elevation
map of part of north central
Ireland. The small bumps are
drumlins, which are roughly
10 m high, and several hun-
dred metres in length [6]. Fig-
ure adapted from [6].

Figure 6: MSGLs in
Canada, which are in-
stead parallel to sheet flow
[5]. Figure adapted from
https://www.sheffield.ac.uk/
drumlins/msgl.

ice surface z = z
i
 

z

y

x

z = s

z = s

z = b

z = b

Figure 7: A view upstream of the model. The ice sheet, with upper surface z = zi, rests on
a water layer extending from z = s to the sediment bed at z = b [6]. Figure from [6].

At z = zi we specify matching normal stress τnn, with zero horizontal shear stress τ =
(τ13, τ23)

P − τnn = 0, (25)

τ = 0, (26)

and additionally require a kinematic equation for w, which prescribes its value at the top
boundary in terms of the ice sheet elevation zi and the accumulation rate a

w = zi,t + uzi,x + vzi,y − a. (27)

At the bottom of the ice (z = s), we now require some relation for the shear stress. We
assume it depends on the basal ice velocity ub and the effective pressure at the interface
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N = pi − pw,

τ = f(ub, N)
ub

ub

. (28)

We specify a generalised Weertman sliding law for f

f(ub, N) = RN buc
b, (29)

where R is the roughness coefficient, and b and c are the respective powers of the effective
pressure N and basal velocity ub. Finally, we have our second kinematic equation for w at
the bottom boundary

w = st + usx + vsy. (30)

2.2 Water

As mentioned, the water exists between the two interfaces, giving the layer thickness h as

h = s− b. (31)

The hydraulic potential in the water is then

= ρig(zi − di) + Δρwigs−N + P − τnn, (32)

where Δρwi = ρw−ρi is the density difference between water and ice, and di is the ice depth,
which is assumed to be constant over the smaller scale of the deformations we will observe.

The water between the ice and sediment is then modelled as a thin film. Its evolution is
governed by Poiseuille-type flow

ht = ∇ ·
[

h3

12ηw
∇ψ

]
+ Γ. (33)

Here, Γ represents sources due to ice melt (from geothermal heating, frictional heating, and
heat flux into the ice).

2.3 Sediment

The sediment is also a deformable medium. However, unlike the water or ice, it will not
deform until the basal stress applied to it by the ice τ = f(ū, N) exceeds the yield stress
μN , where μ is the coefficient of friction. Hence, it will have a finite deformation depth hA,
below which the sediment is unperturbed, given by

hA =
[τ/μ−N ]+
Δρsw(1− φ)g

, (34)

(where [y]+ = max{y, 0}).
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The governing conservation equation of the sediment is called the Exner equation, and
models the change in the bed elevation b in terms of the sediment deformation depth hA, an
effective sediment viscosity ηs, and

bt +∇ ·
[
1

2
u0ūhAi− h3

A

12ηs
∇N +Q(τe)

τe
τe

]
= 0. (35)

The first advective flux term represents shearing from the average ice flow u0ū, where ū is
a spatial average of u at the base, defined so that f(ū, N) = f(u,N). The second diffusive
term then represents squeezing of the till in a thin layer hA due to the effective pressure N .
The final flux term represents sediment transport due to the effective stress τe transmitted
by the water to the bed, given by

τe = −1

2
h∇ψ −ΔρswgDs∇b. (36)

This is the actual viscous stress in the water plus a term related to the tendency of sediment to

roll downhill, which depends on the difference in sediment and water density Δρsw = ρs−ρw,
and the average grain size of the sediment, Ds.

2.4 Reduced model

We can then non-dimensionalise this system, and significantly simplify the model. For more
details on each step, please refer to [6].

Our upper ice equations are completely solvable in terms of the stress at the boundaries.
By linearising the boundaries as constant, we can solve the upper system using the Fourier
transform, defined to be

f̂(kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)eikxxeikyy dx dy. (37)

This leaves only the kinematic equation for w, which is now given by a Fourier convolution

w = αst + ūsx = J ∗ Φ, (38)

where Φ represents a perturbation to the pressure, and J is given by the inverse transform
of

Ĵ =
sinh2 j

2k(j + cosh j sinh j)
, j =

k

σ
, k =

√
k2
x + k2

y. (39)

Here σ = lD/di is the ratio of the bedform length scale lD to the ice depth scale di, and
α = dT/dD is the ratio of the deformable till depth scale dT to the bedform depth scale dD.
Finally, ū(t) represents the x-averaged basal velocity, defined to give the average shear stress
at the bed, which gives (when non-dimensionalised)

f(ū, N) = 1, implying f(ū, N) =
N b

N b
. (40)
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Our thin film evolution equation for the water depth simplifies considerably (throwing
out small terms), to become

∇ · [h3∇Ψ] = σ h3, (41)

where

Ψ = s−N + Φ, (42)

can be thought of as akin to pressure in the water.
Our water thickness equation is given by

b = s− δh, (43)

where δ = h0/dD is the ratio of the average film thickness to bedform depth scale.
Finally, our Exner equation simplifies to

bt + ūAx = ∇ · [βA3∇N − γB(τe)τe]. (44)

Here, A is a non-dimensional deformable till depth, given as

A =
1

2

[
f(ū, N)

μ
−N

]
+

. (45)
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Figure 8: Simulations of the system on a periodic domain [2]. The left column shows topog-
raphy and the right shows water flux, with red streamlines. Depending on the parameter
choice, we can generate ribbed moraines, drumlins, or MSGLs. The incline of the MSGL
stems from the periodicity of the domain, which does not enforce a direction of outflow. The
chief numerical limit on the model is the smallness of δ. Figure adapted from [2].
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The parameters β and γ are given by

β =
2dT
3lD

, γ =
qb

dTu0

(46)

where dT is the scale of the deformable till depth, qb is the scale of the sediment flux, and u0

is the scale of the basal velocity. While small, both of these terms are necessary. The β term
is required to stabilise the growth of the bedform, while the sediment transport γ term is
required to generate the rilling instability responsible for MSGL formations. The advective
ūA term is responsible for the ribbing instability that generates the moraine formations.
Finally, the stress τe represents the effective stress of the water on the sediment, given by

τe = σhi− h∇Ψ. (47)

Combined, we now have 8 unknowns, Ψ, b, s, h, A,N, τe,Φ, but only 7 equations (num-
bered above). We therefore require an additional equation to close the system. We achieve
this by specifying a relation between the height h and effective pressure N of the till.

The water film can be thought of as a porous layer. This porosity will decrease with
the effective pressure, and increase with the film thickness. We then reason that the film
thickness will be a decreasing function of effective pressure - if we squeeze harder, the layer
thins.

To infer the scale of this process, consider some critical clast size hc. If the film is thicker
than this, the ice no longer rests on rocks jutting from the till, and the effective pressure
drops to zero. If N changes by O(N0) when h changes by O(hc), then

−∂N

∂h
∼ N0h0

τbhc

≡ 1

Λ
, (48)

where τb represents the basal stress scale. The simplest such relation satisfying these require-
ments is given by

ΛhN = 1. (49)

Unsurprisingly, this is the least secure aspect of the model. However, when simulated,
the model is able to recreate all three types of bedforms (Figure 8) by varying only three
parameters.
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[2] J. S. Fannon, A. C. Fowler, and I. R. Moyles, Numerical simulations of drumlin
formation, Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 473 (2017).

[3] A. Fowler, Dynamics of subglacial floods, in Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, vol. 465, The Royal Society, 2009,
pp. 1809–1828.

42



[4] A. Fowler, Mathematical geoscience, vol. 36, Springer Science & Business Media, 2011.

[5] A. C. Fowler, The formation of subglacial streams and mega-scale glacial lineations,
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 466 (2010), pp. 3181–3201.

[6] A. C. Fowler and M. Chapwanya, An instability theory for the formation of ribbed
moraine, drumlins and mega-scale glacial lineations, Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, 470 (2014).

[7] J. Nye, Water flow in glaciers: jökulhlaups, tunnels and veins, Journal of Glaciology,
17 (1976), pp. 181–207.

43



GFD 2017 Lecture 4: Processes at the Ice-Ocean Interface

Andrew Fowler; notes by Margaret Lindeman, Agostino Meroni,

June 22, 2017

1 Ice Streams and Ice Shelves

1.1 Ice Streams

Ice streams are channels of fast flow within an ice sheet. These frozen rivers of ice provide
the main drainage pathways for the large masses of ice that accumulate on Greenland and
Antarctica. Since ice streams typically flow orders of magnitude faster than the surrounding
ice sheet, they are usually delineated by elongated crevasses. Notable examples of ice streams
are the Jakobshavn glacier in West Greenland, which flows at a mean rate of 15 kilometers
per year, and the Siple Coast ice streams in Antarctica, which have undergone rapid retreat
over the past century.

Bedrock
clasts

water

ice

H

Figure 1: A schematic showing a cross-sectional view of an ice-sheet flowing over bedrock.
This schematic is an adaption of Figure 1 in Kyrke-Smith et al. (2013).

Figure 1 provides a simplified cross-sectional view of an ice sheet sliding over bedrock.
Here, the ice sheet slides on top of rigid clasts that provide an opposing frictional drag.
Between the ice sheet and bedrock is a thin layer of meltwater that has thickness H. The
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shear stress at the base of this ice-stream is modeled using the sliding law

τb = c |ub|p N q ub

|ub| , (1)

where τb is the basal stress, c is a measure of effective roughness, ub is the basal velocity,
N is the effective pressure, and p and q are positive. The effective pressure is defined as
N = pi − pw, where pi is the ice pressure and pw is the basal water pressure. As the water
level increases, the points of contact between the ice and the bedrock decreases. Thus, N
should decrease with H. Once the ice is lifted above the highest clasts, it will experience
much less resistance from the bedrock and flow much more freely. Further increases to the
meltwater thickness will have a relatively small effect on the effective pressure. We can
therefore identify two distinct states of ice sheet flow: one where the ice is in full contact
with bed and N is strongly dependent on water film thickness, and another where the ice is
essentially floating on top of meltwater and experiences very little frictional drag.

Mass conservation for the meltwater layer takes the form

∂H

∂t
+∇ · q = Γ, (2)

where q is the water flux and Γ is the water source due to basal melting. Assuming a local
Poiseuille flow, the meltwater flux q is given by

q = − h3

12 ηw
∇ψ =

h3

12 ηw
(−ρi g∇si −Δρwi g∇sw +∇N), (3)

where ψ is the hydraulic potential of the water film, ηw is the viscosity of water, ρi is the
density of ice and Δ ρwi = ρw − ρi is the difference between water density and ice density.
The melt rate is given by

Γ =
G + ub · τb − qT + |q · ∇ψ|

ρw L
. (4)

where G is the geothermal heat flux, ub · τb is the work done by the ice on its bed, qT is the
sensible heat loss to the overlying ice and |q · ∇ψ| is the heating due to viscous dissipation.
Equations (1)-(4) reveal the potential for a positive feedback between ice-velocity and basal
heating whereby a positive perturbation in the flow field leads to an increase in basal heating
and a decrease in effective pressure. With lower effective pressure the ice is able to slide faster,
which then leads to more basal heating and meltwater production. This cycle of amplification
is known as hydraulic runaway.

For a more thorough discussion on the dynamics of ice streams and hydraulic runaway,
the reader is referred to Kyrke-Smith et al. (2013). For more details on the drainage of
subglacial water sheets, the reader is referred to Creyts and Schoof (2009).
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1.2 Ice shelves

When an ice sheet reaches the ocean, it may begin to float as it continues to flow outward,
forming an ice shelf. The scales and dynamics of an ice shelf are distinct from those of the
ice sheet.

Grounding line

τ1 � τ3 τ3 � τ1

SIA

SSA

x− xG ∼ ε
(ε
δ

)n/(n+2)

Full 
Stokes

Figure 2: Schematic of grounding line dynamics. The shallow ice approximation (SIA) is
applicable to the ice sheet upstream of the grounding line, while the shallow shelf approxi-
mation (SSA) is applied to the ice shelf. The grounding line region width is given by (15).

To model the ice sheet, we previously referred to the shallow ice approximation (SIA),
with aspect ratio

ε =
d

l
� 1. (5)

The dominant balance in this approximation was between shear stress τ3 and horizontal
pressure gradient, taking longitudinal stress τ1 to be negligible (e.g. Meur et al. (2004);
Kirchner et al. (2016); figure 2).

Now we will use the shallow shelf approximation (SSA). As the name suggests, the aspect
ratio is the same, but now the dominant balance is between the horizontal pressure gradient
and longitudinal stress τ1 (figure 2). This requires a rescaling of the equations in order to
apply them to the ice shelf. To this end, we introduce a parameter,

δ =
ρw − ρi

ρi
, (6)

such that we can define a scaling for the ice shelf depth,

ν =
ε

δ

(
δ

λ

)1/(n+1)

, (7)
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where the ice shelf length scale is given by λ.
Making the assumption that velocity is purely horizontal and varies only in the along-flow

direction x, we get the following equations for ice velocity in the SSA:

u = {1
2
(n+ 1)(1

4
qI)}1/(n+1)(x− xG)

1/(n+1), (8)

ux = 1
2
(1
4
H)n. (9)

Defining the ice height at the grounding line xG as H, we also have an expression for ice
flux to the ice shelf at the grounding line,

qI = Hu. (10)

2  Grounding  Line  Dynamics,  Calving  and  Tidewater Gl
2.1  The  grounding  line

To determine qI  and the location of the grounding line xG, we need to solve a boundary layer  
problem where we match the SIA and the SSA through a transitional region where neither
approximation is applicable.

First, recall these governing equations for inland ice sheet flow:

H = s− b, (11)

Ht + qx = a, (12)

q =
Hn+2|sx|n+1(−sx)

n+ 2
, (13)

where H is the depth of the ice, q is the ice flux, and (12) is an expression of mass conser-
vation. To match the two sides of the grounding line, we take the boundary conditions as
x → xG to be (at leading order)

H → 0, q → qG, (14)

where qG is the ice flux from the ice sheet. These conditions describe a point-sink at the
grounding line. (Note that in steady state, qI = qG. However, in an unsteady state, the
grounding line can move, such that qI and qG are related by (36).)

The full Stokes equations can be used to describe the dynamics of the transition region
surrounding the grounding line, the width of which scales as

x− xG ∼ ε

(
ε

δ

)n/(n+2)

. (15)
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Rescaling the variables for the transition zone, we redefine a coordinate system where the
grounding line is at X = 0, and derive the following matching condition for the ice surface
as X → −∞:

S ∼ −λX, (16)

λ =
{(n+ 2)qG}1/n
(−BG)(n+2)/n

. (17)

The rescaled model for incompressible Stokes flow in the transition zone where Π = P +S is

UX +WZ = 0. (18)

ΠX = T3Z + T1X , (19)

ΠZ = −T1Z + T3X , (20)

UZ +WX = T n−1T3, (21)

2UX = T n−1T1, (22)

T 2 = T 2
3 + T 2

1 . (23)

The boundary conditions on the surface (Z = 0 in the scaled coordinates) are

T3 = W = 0. (24)

The base of the floating ice is a free boundary (Z = B, X > 0), with boundary conditions

B = −(Π + T1 + T3BX), (25)

T3(1− B2
X) = 2T1BX , (26)

W = (−ẋG + U)BX , (27)

where ẋG = d
dt∗xG (and t∗ is rescaled time). The boundary conditions on the grounded base

(Z = BG, X < 0) are

W = 0, (28)

T3 = βU, (29)

where (29) is a sliding law with basal sliding parameter β.
Now, we will define the necessary conditions to match between the three regions. For the

ice sheet (SIA), the matching conditions as X → −∞ are

ΠX → −λ, (30)

W → 0, (31)

T3 → −λZ. (32)

For the ice shelf (SSA), the matching conditions as X → ∞ are

T1 ∼ −1
4
B, (33)

B ∼ −qI
U
, (34)

U ∼ [1
2
(n+ 1)(1

4
qI)

nX]1/(n+1). (35)
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Mass flux to the ice shelf, qI , is defined by

qI = qG + ẋGBG. (36)

The surface is defined as

S = (Π + T1)

∣∣∣∣
Z=0

. (37)

It should be possible to determine B from (27), but ẋG is still unknown.
To address this, we introduce physically straightforward contact conditions. We require

a downward normal stress upstream of the grounding line (X < 0):

B +Π+ T1 > 0. (38)

Downstream of the grounding line (X > 0), we require that the base of the ice be floating:

B > BG. (39)

Finally, at the grounding line (X = 0), the effective normal stress is zero, allowing the ice to
lift off of the bed:

B +Π+ T1 = 0. (40)

Numerical solutions suggest that there is a unique value of ice flux from the ice sheet at
the grounding line, qG, (proportional to λn) that satisfies the contact conditions:

qG =
λnHn+2

G

n+ 2
, (41)

where HG is the grounding line ice thickness.

2.1.1 Marine ice sheet instability

Figure 3: Schematic of MISI. q0 is the deliv-
ered ice flux, qG is the grounding line flux,
HG is the depth of the bed below sea level,
and A, B, and C are the equilibrium posi-
tions.

A marine ice sheet, which is grounded be-
low sea level, may become unstable if its bed
slopes downwards inland (Fowler, 2011). The
dynamics of this instability, which is known
as the marine ice sheet instability (MISI), is
described in Figure 3. Here, the delivered ice
flux, q0, is assumed to be a linear function of
distance and proportional to snow accumula-
tion. The grounding line ice flux, qG, is an
increasing function of ice depth, as in (41).

In the example shown in figure 3, the slope
of the bed depth below sea level, HG, changes
sign twice, so there are three intersections be-
tween q0 and qG. Such an equilibrium is un-
stable where ∂q0

∂x
is greater than ∂qG

∂x
, so A and
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2.2 Calving

The process of calving refers to the fracture of an ice-shelf or a glacier terminus in the sea.
Iceberg calving is a sink in the overall ice sheet mass balance and it has been observed to be
especially important in Antarctica. In particular, there are circumstances in which glaciers
can undergo rapid ice loss through iceberg calving, and these events can have a significant
impact on global sea level. Due to the complexity of the phenomena involved and the danger
inherent in making observations near a calving face, there is still not a complete and thorough
theory describing calving.

2.2.1 Calving mechanisms

Consider a tidewater glacier and let hi be the thickness of the ice and hw be the depth of the
water. By scaling the momentum equation along x on an ice shelf, one finds that the net
balance is between the longitudinal shear stress term and the pressure gradient term, namely

∂τ11
∂x

=
∂p

∂x
. (42)

By integrating the above equation along x across the interface

τ11 = pi − pw, (43)

and integrating over the depth, one gets

hiτ11 =
g

2

(
ρih

2
i − ρwh

2
w

)
, (44)

where the overbar denotes vertical average, g is the acceleration due to gravity and ρi and
ρw are ice and water density, respectively. This leads to

τ11 =
ρighi

2

(
1− ρwh

2
w

ρih2
i

)
, (45)

indicating that if the pressure jump at the interface balances the depth integrated longitu-
dinal stress, the calving front is in equilibrium. Whether the ice is grounded (ρihi > ρwhw)
or floating (ρihi = ρwhw), τ̄11 is greater than 0. In the case that τ̄11 exceeds the yield stress,
the ice may fracture.

C are stable, while B is unstable. Intuitively, this makes sense, because if the grounding line xG 
advances from B, the delivered flux q0 exceeds the flux through the grounding line qG, causing the xG 
to advance until it reaches the next stable equilibrium, C. Conversely, if xG  is perturbed in the 
opposite direction, retreating from B, qG exceeds q0, resulting in unabated retreat until A is reached. In 
contrast, the ice sheet recovers from small perturbations in either direction at A or C.
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In particular, calving occurs when fractures propagate to a suffucient depth to isolate
blocks from the main glacier mass. Nye (1957) suggested that the crevasses penetrate to a
depth d where a balance between the tensile strain rate and the creep closure rate due to
the hydrostatic pressure is reached, namely

d =
2

ρig

(
ε̇

A

)1/n

, (46)

where A and n come from the Glen’s flow law, which relates the strain rate ε̇ij to the stress
tensor τij as ε̇ij = Aτn−1τij. The presence of meltwater in the crevasses can help to deepen
them because of the additional hydrostatic water pressure. In Nye’s model this is accounted
for as

d =
2

ρig

[(
ε̇

A

)1/n

+ ρwgdw

]
, (47)

where dw is the water column depth in the crevasse.
Benn et al. (2007) affirm that the four major mechanisms that control calving are, in

order of importance:

1. stretching in response to large-scale velocity gradients : the velocity distribution at the
ice surface is a primary control on the crevasse depth, which is enhanced by meltwater,
and the calving margin, which is also influenced by the ice cliff height;

2. force imbalances at an unsupported ice cliff;

3. undercutting of the ice cliff by melting at the submerged ice interface; and

4. torque arising from buoyant forces.

2.2.2 Calving laws

In the literature there have been multiple attempts to quantify the calving rate as a function
of other ice or ocean parameters. While no calving laws have yet been established for ice
shelves, for tidewater glaciers the rate of change of the ice front position ẋs has been related
to the calving rate uc through

ẋs = u− uc, (48)

where u is the vertically averaged glacier velocity at the terminus (Benn et al., 2007). Mul-
tiple works, such as Haresign (2004); Benn et al. (2007), have shown that an empirical linear
law links the calving rate to the height of the water column at the terminus as

uc = a+ bhw. (49)

Although the behavior seems to be quite universal, the coefficients a and b have been found
to be glacier- and time-dependent (seasonally). In addition, calving rates of freshwater-
terminating glaciers are around one order of magnitude lower than tidewater glacier calving
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rates, which seems to be due to differences in water densities, upwelling turbulent heat
transfers and underwater melting rates, among others.

Not all the calving laws have been written as a function of the water depth. Other works,
such as Sikonia (1982), have attempted to write down calving laws in terms of the height of
the terminal ice cliff above buoyancy h0. This represents the excess height with respect to a
free floating ice body in the same water and is defined as

h0 = hi − ρw
ρi

hw. (50)

2.3 Tidewater glacier cycles

The dependence of the calving rate on the water column depth is thought to play a crucial role
in tidewater glacier cycles. Observations and paleoclimate proxies suggest that in warmer
climates tidewater glaciers tend to undergo catastrophic retreats. For example, the Columbia
glacier was observed to retreat about 12 km between 1982 and 2002. To explain that, the
following simple reasoning has been developed. Let us start from a condition in which the
calving front is in a fixed position set by balance between the inflow mass and the mass
loss due to calving and melting. If at some point the up-glacier dynamics start pushing the
front further, a moraine shoal develops at the base of the front and the calving rate reduces
because of the decrease of the effective water depth at the glacier front. In this way, the
glacier is able to advance because the height of the moraine increases and keeps the calving
rate low. This is hypothesized to be sustainable for up to 1000 y at a rate of order 30 m
y−1 (Meier and Post, 1987). If then, perhaps due to inherent instability of the steady state,
the glacier starts retreating, it finds itself in contact with the full water column depth, with
no moraine shielding it, and the calving rate suddenly increases, causing the front to retreat
further. The retreat stops when the water column is shallow enough to return to a quasi-
stable equilibrium between inflow and mass loss at the front. This kind of retreat is thought
to happen over scales of 100 y at a rate of order 1 km y−1 and figure 4 shows a schematic of
it.

Another feedback loop that might explain the initiation and the sudden retreat of the
tidewater glaciers described above has been has been hypothesized for the relationship be-
tween thinning, acceleration and calving retreat by Benn et al. (2007). In particular, this
study affirms that an increase in surface melting drives the thinning of the glacier, which is
responsible for a reduced effective pressure and a consequent increase in velocity and longi-
tudinal strain rate. First, this generates dynamic thinning, leading to a further decrease in
effective pressure. Second, this process leads to deeper crevasses, which causes the calving
margin to retreat more quickly.

3 Conclusion: A Cautionary Tale

As a conclusion, Dr. Fowler warned the theorists among us not to get too enamoured of
theory, to the exclusion of its application:
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Figure 4: Schematic of the tidewater glacier cycle.

“Pfuel was one of those theorists who so love their theory that they forget the purpose of
the theory - its application in practice; in his love for theory, he hated everything practical
and did not want to know about it. He was even glad of failure, because failure, proceeding
from departures from theory in practice, only proved to him the correctness of his theory.”
Tolstoy, War and Peace, III, I, X.

References

Benn, D. I., Warren, C. R., and Mottram, R. H. (2007). Calving processes and the dynamics
of calving glaciers. Earth-Science Reviews.

Creyts, T. T. and Schoof, C. G. (2009). Drainage through subglacial water sheets. Journal
of Geophysical Research, 114(F4):F04008.

Fowler, A. (2011). Mathematical Geoscience, volume 36 of Interdisciplinary Applied Mathe-
matics. Springer London, London.

Haresign, E. C. (2004). Glacio-limnological interactions at lake-calving glaciers. PhD thesis,
University of St Andrews.

Kirchner, N., Ahlkrona, J., Gowan, E., Lötstedt, P., Lea, J., Noormets, R., von Sydow, L.,
Dowdeswell, J., and Benham, T. (2016). Shallow ice approximation, second order shallow

53



ice approximation, and full stokes models: A discussion of their roles in palaeo-ice sheet
modelling and development. Quaternary Science Reviews, 147(Supplement C):136 – 147.
Special Issue: PAST Gateways (Palaeo-Arctic Spatial and Temporal Gateways).

Kyrke-Smith, T. M., Katz, R. F., and Fowler, A. C. (2013). Subglacial hydrology and the
formation of ice streams. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 470(2161):20130494–20130494.

Meier, M. F. and Post, A. (1987). Fast tidewater glaciers. Journal of Geophysical Research,
92(B9):9051–9058.

Meur, E. L., Gagliardini, O., Zwinger, T., and Ruokolainen, J. (2004). Glacier flow modelling:
a comparison of the shallow ice approximation and the full-stokes solution. Comptes
Rendus Physique, 5(7):709 – 722. Ice: from dislocations to icy satellites.

Nye, J. F. (1957). The Distribution of Stress and Velocity in Glaciers and Ice-Sheets.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
239(1216):113–133.

Sikonia, W. G. (1982). Finite-element glacier dynamics model applied to Columbia glacier,
Alaska. U. S. Geol. Surv. Prof. Pap., 1258-B.

54



GFD 2017 Lecture 5: Basic Theory of Ice-Ocean
Interaction

Adrian Jenkins; notes by Madeleine Youngs and Guillaume Michel

June 23, 2017

In this lecture, we detail the structures of the ice-ocean boundary layers and of the water 
motion beneath an ice shelf. These flows strongly depend on the thermodynamic properties 
of water (e.g. latent heat, phase diagram, equation of state) and we therefore first review 
these properties of fresh and salty water before turning to fluid mechanics.

1  The Ice-ocean Interface and the Boundary Layer

1.1 Impact of the melting of ice on the ocean

1.1.1  Phase diagram of water

For a mixture of ice and fresh water to be at equilibrium, the temperature has to be equal to 
the freezing temperature Tf , which only depends on the pressure. At one atmosphere, this 
temperature is very close to 0◦C, and (unlike most other pure substances) it decreases as the 
pressure increases, approximately as −1 × 106 Pa · K−1.

Because seawater contains ions, its thermodynamic properties also depend on the salinity. 
Once the pressure is fixed, the dependence of the freezing point on salinity can be seen on 
the phase diagram Fig. 1. For simplicity, we describe in the following a mixture of pure 
water and salt (NaCl).

In this figure, the grey zones are delimited by the liquidus (boundary with the liquid 
solution) and the solidus (boundary with the solid solution). If the temperature and salinity 
are set such that the system falls into one of these two grey zones, the equilibrium state is 
a coexistence between a liquid solution and a pure solid (either ice or salt). The point E is 
called an eutectic point, and corresponds, at one atmosphere, to a temperature of −21.2◦C 
and a salinity per mass of 23.3%.

These coexistence zones are of importance for ice-ocean interfaces: the melting of pure 
ice in seawater tends to drive the liquid toward the liquidus. For instance, consider the total 
melting of a mass of ice ΔM (temperature Ti, salinity Si = 0) into a mass of seawater M 
(temperature Tw, salinity Sw). The final properties of the liquid (Tmix, Smix) follow from the 
conservation of energy and mass. The first principle of thermodynamics reads

Mcw(Tmix − Tw) + ΔM [cw(Tmix − Tf) + �+ ci(Tf − Ti)] = 0, (1)
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Figure 1: Phase diagram of a mixture of water and salt, at a fixed pressure.

where cw and ci are the specific heat capacities of water and ice, and � is the specific latent
heat at the freezing temperature Tf . The conservation of salt mass prescribes

M (Smix − Sw) + ΔM (Smix − Si) = 0. (2)

The changes in the seawater properties result from (1) and (2),

Tmix = Tw −
(

ΔM

M +ΔM

)[
(Tw − Tf) +

�

cw
+

ci
cw

(Tf − Ti)

]
< Tw, (3)

Smix = Sw −
(

ΔM

M +ΔM

)
Sw < Sw. (4)

As can be seen in Fig. 1, a decrease of the temperature and salinity of a liquid solution
favors the coexistence of pure ice and liquid in a liquidus state. Moreover, until two phases
coexist at equilibrium, the liquid properties evolve according to

(Tmix − Tw) =

(
ΔM

M +ΔM

)
(Teff − Tw) , (Smix − Sw) =

(
ΔM

M +ΔM

)
(Seff − Sw) , (5)

with Seff = 0 and Teff = Tf − �/cw − (ci/cw)(Tf − Ti), that ranges between −85◦C to −100◦C
depending on the ice temperature. Equation (5) has a graphical interpretation on the phase
diagram, and shows that during the melting, the liquid evolves along a straight line toward
the point (Seff , Teff).

1.1.2 A closer look at the low salinity zone

Since the salinity of the eutectic points is by far larger than the actual salinity observed in
the ocean, the actual zone of the phase diagram that is being used for the study of ice-ocean
interaction is reduced. In the following, we focus on the framed zone of Fig. 1.

The phase diagram in this zone is sketched in Fig. 2. As previously explained, the evo-
lution of seawater during the melting of ice corresponds on the phase diagram to evolutions
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Figure 2: Phase diagram of a mixture of water and salt, at a fixed pressure and low salinities.
Salinity is expressed in PSU (practical salinity unit).

along straight lines, that are plotted in green. The lines of constant density are isopycnals
(in light blue) and the curve of maximal density is in dark blue).

From this information, we deduce that the melting of ice may either increase or decrease
the liquid density, that is either cause downwelling or upwelling. The boundary between
these two regimes is plotted in red in Fig. 2 and can be deduced from the other curves. Note
that all these phase diagrams evolve with the pressure, i.e. with the depth.

1.1.3 Application: the “ice pump” effect

As an application of these thermodynamics properties, we describe the “ice pump” effect,
sketched in Fig. 3.

Figure 3: Sketch of the ice pump effect.

(a) We consider an insulated tank filled with water of uniform salinity and temperature,
the latter being the freezing temperature at room pressure.
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(b) We introduce a vertical slab of ice. Although the water at the surface is at the freezing
temperature, the water at depth is not, because of the pressure dependence of the
freezing temperature. This causes the ice at depth to melt, freshen, and cool the
adjacent water.

(c) As seen in Fig. 2, the melting creates less dense water because of the freshening,
leading to the cooled water rising. When close to the surface, the reduced freezing
temperature leads the cooled water to freeze and form ice.

(d) At equilibrium, all the ice is at the surface.

1.2 The ice-ocean boundary layer

Considering the conditions required for an equilibrium between ice and seawater, we discuss 
the boundary layers in the ocean, in particular the ones below ice shelves. We first disregard 
the flow motion, then take it into account in turbulent boundary layer models.

1.2.1 Laminar boundary layers

If the water in the ocean is at rest, the situation below ice shelves could be represented by one 
of the sketches of Fig. 4. To connect the ocean temperature and salinity to the ones at the ice-
ocean interface, where they are prescribed by the phase equilibrium, a boundary layer 
develops. As heat and molecular diffusion take place, this boundary layer thickens. This 
process may lead to convective instabilities.

Figure 4: Temperature and salinity close to the interface.

(a) If the temperature in the ocean is larger than the one at the interface, heat is transfered
to the ice shelf, that causes melting . That ablation process is unstable because of the
dynamics of double diffusion: whereas the salt diffusion stabilizes the stratification,
the faster heat diffusion triggers a convective instability1. This leads to thermohaline
staircases, that are well-mixed layers separated by sharp interfaces [1]. Note that in the
presence of enough shear, this differential diffusive pattern vanishes, which stabilizes
the boundary (melting causes upwelling, see Fig. 2).

1As can be seen in Fig. 2, for ocean salinity of ∼ 34.5 psu, the density evolution of water with temperature
no longer presents an anomaly at low temperatures.
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(b) If the temperature in the ocean is smaller than that at the interface, heat is transfered
from the ice shelf to the ocean, which causes freezing. This process is unstable, because
in this range of parameters freezing causes downwelling (see Fig. 2).

1.2.2 Turbulent boundary layers

Even though laminar boundary layers can be observed where the currents are weak, turbulent
boundary layers are more common. They occur when there is enough shear to observe mixing
in the boundary layers. They can be modeled as shown in Fig. 5, where we identify

• A surface layer, where turbulent mixing is influenced by the boundary, and an outer
layer, where is it not.

• An interfacial sublayer, where the turbulence is greatly damped by viscosity. Its width,
of the order of a millimeter or less, is determined by the turbulence in the outer layer.
The rapid evolution of the temperature and salinity needed to match the bulk flow
ones to the surface ones occur within this thin layer.

Figure 5: Turbulent boundary layer.

Whereas heat and salt fluxes, crucial to predict the dynamics of the ice shelf, can be
easily worked out for a laminar boundary layer, they are much more difficult to predict in
the case of a turbulent boundary layer. We present one model that describes the ice shelf
evolution from these fluxes. We start by making the assumption that the freezing point at
the ice-ocean interface Tb can be expressed as a linear function of salinity Sb and pressure
(i.e. depth zb) at this same place which we call the liquidus relationship:

Tb = aSb + b+ czb. (6)

We then write the energy flux balance at the ice-ocean interface,

ρiab�i = ρiciκi

(
∂Ti

∂z

)
b

− qTb , (7)

where:
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• ρiab�i is the heat flux resulting from ice melting (ab is the ablation rate, and �i is the
specific latent heat).

• ρiciκi

(
∂Ti

∂z

)
b
is the heat flux from the ice shelf (ρi is the ice shelf reference density, ci

its specific heat capacity, and κi its thermal diffusivity).

• qTb is the heat flux from the turbulent boundary layer that we wish to model.

We also balance the salt flux at the ice-ocean interface qSb with the height variation of
seawater,

ρiabSb = −qSb , (8)

where Sb is the salinity at the ice-ocean interface. For given heat and salt fluxes, we can
therefore predict the evolution of the ice shelf from this set of equations.

Theoretical predictions for these fluxes in turbulent layers can be carried out by matching
solutions for an inner laminar and a turbulent logarithmic layer. The roughness of the surface
can also be modeled (see, e.g., [2]). In situ experiments suggest that simple laws apply [3],
that read for the heat flux,

qTb = ρwcw

(√
Cd

0.006

)
U(Tf − T ), (9)

where w refers to the seawater, Cd is the momentum exchange coefficient, U is the velocity of
the mixed layer, T is the temperature of the far-field water and Tf the freezing temperature.

1.2.3 Observations and open questions

Ice-shelf evolution As mentioned, in situ measurements of the heat and salt fluxes can
be done based on oceanic observations of correlations between vertical velocities and tem-
perature/salinity. In this section, we describe how direct observations of the melt rate can
be performed.

Figure 6: Power spectrum of a radar signal.

To investigate the dynamics of the basal melting, high precision radars can be used. The
echo is recorded at the same place and at different times. For a given acquisition, a typical
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power spectra is reported in Fig. 6; it consists of a dominant component at approximately
800m (the bottom of the ice shelf), and a multitude of other peaks, resulting from internal
reflectors. The precise positions of these reflectors, randomly distributed among the ice,
evolve between each acquisition because the ice shelf thickens. By looking at the displacement
of the peaks in the power spectrum, it is therefore possible to track these reflectors, i.e. to
acquire the vertical deformation field in the ice shelf, see Fig. 7.

Figure 7: Evolutions of the reflectors positions.

Another possibility is to record the temperature, salinity and current below the ice shelf.
This provides the information necessary to calculate the ice-ocean heat flux and the melting
rate. The comparison of these two experimental methods can be used, for instance, to
constrain the ice-shelf evolution models.

Vertical natural convection boundary layers The flow generated by a heated wall has
been theoretically studied by Wells and Worster [4], who discuss three regimes:

1. At the smallest scales, molecular diffusion controls the heat transfer.

2. A turbulent flow develops, but initially heat transfer is controlled by the buoyancy
generated at the wall.

3. As the turbulent flow grows, heat transfer is eventually controlled by the shear gener-
ated by the flow.

This problem shares similar features as the one met in the ice-ocean interactions, and may
provide a model for the melting rate of vertical ice surfaces. The first regime has been
sampled by early lab experiments (see, e.g., [5]), the second one has been recently described
[6], but the third regime has so far not been fully characterized. It remains also unclear how
the processes and scales change when the ice-ocean interface becomes near-horizontal (the
bottom of the ice shelf). Finally, the effect of the roughness of the interface would also need
to be taken into account.
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2 Buoyancy-driven Flow on Geophysical Scales

In this section, we study buoyancy-driven flows outside the boundary layer.

2.1 Scales of motion beneath an ice shelf

In the earth-fixed reference frame, the motion of seawater beneath an ice shelf obeys the 
Navier-Stokes equation,

ρ

(
d�v

dt

)
+ 2ρ�Ω× �v = �∇ ·

↔
T + ρ�g, (10)

where �Ω stands for the rotation of the earth, and
↔
T is the stress tensor (the centrifugal force

has been incorporated in the pressure field). For water, the stress tensor is given by

Ti,j = −Pδi,j + ρν (∂ivj + ∂jvi) . (11)

Compared to the dynamics of ice described in Lecture 1, we have retained the left-hand side
of (10) and assumed water to be a Newtonian fluid.

As we shall see, depending on the part of the flow described (boundary layer, large scales,
. . . ), some of the terms in (10) can be neglected. Typical values of the parameters for an ice
shelf are given in Tab. 1.

Horizontal length Depth Horizontal velocity Rotation

L ∼ 105 m H ∼ 102 m U ∼ 10−1 m · s−1 Ω ∼ 10−4 s−1

Table 1: Scales of motion beneath an ice shelf.

Horizontal flow beneath an ice shelf For the horizontal large scales, the Rossby number
(ratio of the inertial force to the Coriolis force) scales as

RoL ∼ U

LΩ
∼ 10−2 � 1, (12)

and the inertial term can therefore be dropped. Similarly, the Reynolds number scales as

Re ∼ LU

ν
∼ 102 � 1, (13)

and viscous terms remain small. Therefore, the dynamics of these large scales results from a
balance between the pressure gradient and Coriolis force, which is called geostrophic balance.
This approximation may not always be valid, for instance if the velocity is high and/or the
relevant length scale is small (for instance, in or close to the boundary layer).
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Structure of the Ekman layers Velocity must vanish at the solid boundaries (ice shelf
base or seabed), which leads to Ekman layers. Their thickness δ can be evaluated by bal-
ancing the Coriolis force with the viscous term,

ρΩU ∼ ρν

(
U

δ2

)
⇒ δ ∼ ν

Ω
(14)

For a typical eddy viscosity of 10−2, the depth scale is δ ∼ 10 m. Within the Ekman layer,
the velocity reduces (vanishes at the solid boundary) and its direction changes (becomes
perpendicular to the geostrophic current close to the solid boundary).

Vertical motion beneath an ice shelf Since the ratio H/L is small, the flow can be
described in hydrostatic balance. It turns out that gravity is balanced by the vertical pressure
gradient, i.e. that

∂P � −ρg. (15)
∂z

Therefore, we can diagnose the pressure within the ocean directly from the density distribu-
tion, as if the water were at rest.

2.2        Buoyancy-driven flow on a slope

2.2.1 Frame of reference and driving pressure gradient

We apply these approximations to the description of a flow generated by the buoyancy 
forcing associated with melting ice. The ice-ocean interface is assumed to be planar, but not 
horizontal: we note the angle α with the horizontal. This tilt allows light water to upwell 
along the ice shelf base.

Figure 8: Coordinate system used to model the problem.

To use the same shallow water approximation as before, we consider the reference frame
aligned with the boundary, see Fig. 8. We then write the Navier-Stokes equation with the
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Boussinesq approximation,

(
d�v

dt

)
+ 2�Ω× �v = − 1

ρ0
�∇P − ρ

ρ0
g�k + �∇ · ν �∇ · �v , (16)

where �k is a unit vector in the local vertical direction (z′ in Fig. 8) and ρ0 is the reference
density. Similarly to (15), we can apply the hydrostatic approximation along the transformed
z coordinate axis, that is

(
∂P

∂z

)
+ ρg cosα = 0 =⇒ P (x, y, z, t) = P (x, y, η, t) + g cosα

∫ η

z

ρdz, (17)

where η(x, y, t) is the instantaneous deviation of the ice-ocean interface from its equilibrium
position. We wish to compute the horizontal pressure gradient, that as mentioned before is
essential for the dynamics of the large scales. For this use, we define the gradient parallel to
the ice-ocean interface �∇H, and apply it to (17):

�∇HP (x, y, z, t) = �∇HP (x, y, η, t) + g cosα

(
ρ�∇Hη +

∫ η

z

�∇Hρdz

)
. (18)

We further remove the pressure field associated with a stationary state of the ambient fluid,
and assume that the ice sheet float in equilibrium with this fluid (P (x, y, η, t) = 0): this
leads to the following expression for the reduced pressure gradient in the x and y direction,

�∇HP
′ = g cosα

(
ρ0�∇Hη +

∫ η

z

�∇Hρ
′dz

)
. (19)

2.2.2 Evolution for the layer thickness

If we consider a single active layer, depth-averaged equations sufficiently describe its dynam-
ics. For instance, the incompressibility condition depth-averaged becomes an equation for
the layer thickness D(x, y, t):

∫ 0

−D

�∇ · �v dz =

∫ 0

−D

∂

∂x
vxdz +

∫ 0

−D

∂

∂y
vydz + vz(z = 0)− vz(z = −D) = 0. (20)

The vertical velocity vz(0) describes how the layer develops upward, i.e. is related to the
melt rate ṁ (ṁ > 0 if ice melts),

vz(z = 0) = ṁ. (21)

Moreover, the kinematic evolution of the layer thickness is, with ė the rate at which ambient
water is entrained into the active layer,2

(
∂D

∂t

)
+ �v(z = −D) · �∇H D = vz(−D) + ė. (22)

2This kinematic condition is similar to the one describing the evolution of surface elevation in the surface
wave theory, where ė = 0.
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Combining equations (20), (21) and (22), we obtain(
∂D

∂t

)
+ �∇H · D�U = ṁ+ ė, (23)

where �U is the depth-averaged velocity, defined as

�U =
1

D

∫ 0

−D

�v dz = U�ex + V �ey. (24)

2.2.3 Depth integration of the momentum equation

The equations of motion can also be projected on the frame of reference, then depth-
integrated. Note that the subscript a represents the ambient fluid and b represents the
fluid at the ice-plume interface. This gives (see [7] for some details):(

∂(DU)

∂t

)
+ �∇H · Dvx�U − ėvx,a − ṁvx,b − φDV = (25)

− Dρ̄

ρ
g sinα + g cosα

[
D

∂

∂x
(η +Dρ̄)

]
+ �∇H · (Dvy �∇HU) +

[(
ν
∂vx
∂z

)
0

−
(
ν
∂vx
∂z

)
−D

]
,

and(
∂(DV )

∂t

)
+�∇H · Dvy �U − ėvy,a − ṁvy,b + φDU = (26)

g cosα

[
D

∂

∂y
(η +Dρ̄)

]
+ �∇H · (Dvx�∇HV ) +

[(
ν
∂vy
∂z

)
0

−
(
ν
∂vy
∂z

)
−D

]
,

where ρ̄ is the depth-averaged density, subscript a refers to the ambient fluid, subscript b to
the base of the ice shelf, and φ is the Coriolis parameter, defined as

φ = 2Ω(cos θ sin β sinα + sin θ cosα). (27)

The surface stress term can be modeled by a quadratic drag law:(
ν
∂vx
∂z

)
0

= −Cd|�U |U,
(
ν
∂vy
∂z

)
0

= −Cd|�U |V. (28)

2.2.4 Depth integration of conservation equations

Similarly, conservation equations of temperature and salinity can be derived and integrated
over the depth. We get for the temperature

∂(DT̄ )

∂t
+ �∇H · D�UT̄ −ṁTb− ėTa = �∇H · DκT

�∇HT̄ +

[(
κT

∂T

∂z

)
0

−
(
κT

∂T

∂z

)
−D

]
, (29)

where κT is the thermal diffusivity, and for the salinity

∂(DS̄)

∂t
+ �∇H · D�US̄ −ṁSb− ėSa = �∇H · DκS

�∇HS̄ +

[(
κS

∂S

∂z

)
0

−
(
κS

∂S

∂z

)
−D

]
, (30)
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where κS is the diffusion coefficient. Models can also be used to describe the fluxes at the
ice-ocean interface, for instance

(
κT

∂T

∂z

)
0

= CdΓTU(Tb − T ),

(
κS

∂S

∂z

)
0

= CdΓSU(Sb − S), (31)

where ΓT and ΓS are thermal and salinity transfer parameters.

2.2.5 Simplifications

Although restricted to a single layer, this model is relatively complete and complex to solve.
Some assumptions are needed to obtain an equation that describes, at a first approximation,
the flow of an inclined plume. We make the following assumptions:

• the flow is in steady state

• the gradients in the cross-slope direction are negligible

• the layer is thin

• the flow is primarily baroclinic and the barotropic forcing term is unimportant

• the flow is supercritical (i.e. sufficiently fast compared to the speed of waves)

This leads to a simple differential equation for momentum conservation,

∂(DU2)

∂x
= −DΔρ

ρ0
g sinα− CdU

2. (32)

2.3 A simple plume model of ice-ocean interaction

We use these simplifications to consider an even simpler problem of a buoyant plume driven 
by melting ice but with no outflow from underneath the glacier. In this model, ambient 
water melts the ice shelf at depth. It then refreezes as the plume travels upwards, like the 
“ice pump” example (Fig. 9). Entrainment of ambient water supplies the heat that drives 
melting, which modifies the buoyancy through cooling and freshening. These plumes are 
turbulent and entrain fluid from the surroundings, so they grow in volume as they rise. The 
entrainment rate is also a function of the plume velocity. Since the flow is driven by the 
component of gravity along the ice base, circulation and melting are sensitive to the interface 
slope. This process is just like a dense overflow turned upside-down.

The geometry of this problem is now simplified into one dimension where D is the depth 
of the plume layer, X is the along slope direction, U is the velocity of the plume in the 
along-slope direction, α is the angle of the slope, and T and S are the temperatures and 
salinities in the plume, Ti,Si are in the ice, Tb, Sb are at the ice-ocean boundary layer, Ta, Sa 
are the ambient properties of the reservoir of the ocean (Fig. 10). We consider the reservoir 
of the ocean to be infinite in depth and to have no flow.
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Figure 9: A schematic of a simple plume model of ice-ocean interaction. Dense water inflows
at depth and melts the ice shelf, it then refreezes as the plume travels upwards.

2.3.1 Equations

We simplify the across-slope integrated equations from the previous section into 1 dimension
as discussed in the previous section [8]. Conservation of mass becomes:

d

dX
(DU) = ė+ ṁ (33)

where ė is the entrainment rate and ṁ is the melt rate. This tells us that the mass flux
upward is equal to the entrainment rate plus the melt rate, because we have no other sources
of mass in the system. Conservation of momentum is as derived above (Eq. 32)

d

dX
(DU2) = D

Δρ

ρ0
g sin(α)− CdU

2 (34)

where Cd is the drag coefficient. This tells us that the momentum imparted by the buoyancy
of the plume is balanced by the drag. Conservation of heat is then written as:

d

dX
(DUT ) = ėTa + ṁTb − C

1/2
d ΓTU(T − Tb) (35)

where ΓT is the turbulent transfer coefficient for heat. The equation tells us that the con-
vergence of the heat flux is equal to the amount of heat fluxed in by entrainment of ambient
seawater at temperature Ta and the heat fluxed by the entrainment of boundary water, mi-
nus the turbulent transfer of heat out of the boundary layer into the plume. Conservation
of salinity gives a very similar equation:

d

dX
(DUS) = ėSa + ṁSb − C

1/2
d ΓSU(S − Sb) (36)

where ΓS is the turbulent transfer coefficient for salt. We take

ė = E0U sin(α) (37)
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Interface
Tb,S

b

Figure 10: Geometry of the 1-dimensional problem.

where E0 is a constant. This parameterization is related to the Richardson number of the
flow, i.e. when α = 0, then the flow cannot entrain any fluid nor travel up the slope. The
equation of state is given by

Δρ

ρ0
= βS(Sa − S)− βT (Ta − T ) (38)

The boundary conditions on the interface are given by:

C
1/2
d ΓTU(T − Tb) = ṁ

[
L

c
+

ci
c
(Tb − Ti)

]
(39)

This states that the turbulent transfer of heat at the boundary is equal to the amount of
heat required to bring up the ice to its melting point and melt the ice with melting flux ṁ.
The boundary condition for the salinity at the interface is:

C
1/2
d ΓSU(S − Sb) = ṁ(Sb − Si) (40)

which says that the turbulent flux of salt through the boundary is balanced by a flux of salt
generated by the entrainment of melt water. The final equation in our set is the liquidus
relationship Eq. (6). These equations are a complete set that can be solved to understand
the system.

2.3.2 Results from simplified model

First we show that the slope of the ice shelf determines how effective the buoyancy forcing
is at driving the plume. Figure 11 shows the dependence of the buoyancy and velocities on
the slope of the ice shelf. The plume buoyancy changes down the length of the ice shelf.
The buoyancy initially increases because of the input of meltwater from the ice shelf, then
decreases as freezing transfers freshwater back to the ice shelf. The steeper slopes experience
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Figure 11: A figure showing the properties of plumes with different slopes. Red describes
the steepest slope, green moderate, and blue shallowest. The top left panel shows the slope
of the shelf, the top middle panel shows the plume buoyancy, and the plume velocity in the
top right panel versus distance along the shelf (should be in m/s). The bottom left shows
the entrainment rate, the bottom middle shows the temperature of the plume (solid) and
the freezing temperature (dashed) and the melt rate is shown in the bottom right panel.

the maximum buoyancy at shorter distances along the shelf. The other thing to notice is
that with a steeper shelf, the plume velocity is larger. The velocity also has a maximum
corresponding to the location of maximum buoyancy in the plume. The plume grows in
thickness as it entrains ambient seawater, which supplies the heat for melting. The buoyancy
imparted by the melting drives the plume up the sloping ice shelf base. The entrainment
rate is larger for a steeper slope, both because the velocity is larger, but also because α is
larger (Eq. 37). We also see that the temperature begins above the freezing temperature,
but depth decreases along the slope (raising the freezing temperature) and ice is melted
(lowering the plume temperature), so the temperature in the plume falls below the freezing
point, which leads to freezing. For a steeper slope, the melt rate is large but it quickly
transitions to freezing as we move along the slope. For a shallower slope, the melt rate is
lower and freezing starts much further along the slope. The heat supplied by entrainment and
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Figure 12: Entrainment rate (left), temperature (middle) and melt rate (right) for different
ambient ocean temperatures. The warmest ambient ocean temperature is given in red and
the coolest is blue. The dashed line gives the freezing temperature in the middle panel and
the solid line gives the plume temperature.

heat lost to the ice shelf in the production of melt water are both proportional to velocity.
Melting is also proportional to the temperature difference across the ice-ocean boundary
layer. Entrainment warms the plume towards the ambient temperature but melting cools
it towards the freezing point. As the plume grows in volume and rises towards the surface,
warming by entrainment becomes less effective, leading to freezing.

Warming the ambient ocean increases the effectiveness of entrainment, so the temperature
difference across the boundary layer also increases. More rapid melting implies greater
buoyancy and a faster plume. Entrainment and melting both rise in response. Eventually,
the zone of freezing is eliminated. In Fig. 12 we see that it takes longer for the entrainment
rate to decrease in a warmer ocean and it takes longer for the freezing to begin. This begins
to quantify how changing ambient ocean temperatures will affect plumes and the melting of
ice shelves.

2.3.3 Melt rate scaling

In this section we will derive the temperature dependence of the melt rate. The melt rate has
a non-linear dependence on the thermal driving, the difference between the ambient ocean
temperature and the freezing point or Ta − Tb. From the thermal boundary condition in the
boundary layer (Eq. 39), since the latent heat of fusion is generally much larger than the
heat required to bring ice up to the melting point, this equation scales like

C
1/2
d ΓTU(T − Tb) ∼ ṁ

L

c

or that
ṁ ∼ U(T − Tb)

where T is the temperature of the plume.
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Figure 13: Mixing of the water masses.

The plume is ambient water that is modified by the addition of meltwater. Right at the
ice shelf base, the water is at the freezing point. The properties of the plume water lie in
between the properties of the boundary and the ambient (Fig. 13). This is evident when
considering the case in steady state, where the heat entrained by mixing is equal to the heat
used to melt, or

UE0 sin θ(Ta − T ) ≈ UC
1/2
d ΓT (T − Tb)

so that
(T − Tb)

(Ta − T )
≈ constant

or a function of slope. Thus,
(T − Tb) ∼ (Ta − Tb)

or this temperature difference scales linearly with the thermal driving. Our scaling then
becomes

ṁ ∼ U(Ta − Tb)

Now we consider the scaling for the velocity. From the momentum equation, assuming
along slope changes are small, we have the scaling that

U2 ∼ Δρ ∼ (Ta − T )

Using the linear relationship with temperature again, we write that

U ∼
√
Ta − Tb

Finally this gives us the melt rate dependence on the temperature difference,

ṁ ∼ (Ta − Tb)
3/2 (41)

That scaling is confirmed by solving the entire set of equations where we see that that the
melt rate depends on (Ta − Tb)

3/2 (Fig. 14). While the relationship is always of the form
given in (41), the proportionality depends on the slope of the ice-ocean interface. Steeper
slopes increase the sensitivity to temperature change.
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Figure 14: A figure showing the relationship between melt rate and the driving temperature.
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1 Insights from Plume Theory

1.1 Impact of meltwater outflow at the grounding line

Near the grounding lines of ice shelves and tidewater glaciers there is often an outflow of
freshwater. The buoyancy flux from this meltwater will initially dominate over buoyancy
due to melting to form a simple plume. As shown in figure1, the plume rises up the ice face
entraining the ambient more saline water. This supplies heat which drives melting of the ice
face adding further buoyancy to the plume and in turn driving the flow. The generation of
meltwater at the grounding line can be due to a combination of factors. For glaciers in polar
regions, geothermal heating and frictional heating causes melting at the base of the glacier,
which drains through to the grounding line. In contrast, for more temperate glaciers, the
freshwater is generated by surface melting and rain which drains to the base of glacier and
then flows along to the grounding line.

We consider the full model derived in the previous lecture [3] that describes the conser-
vation of mass, momentum, heat, and salt, respectively,

d

dX
(DU) = ė+ ṁ, (1)

d

dX

(
DU2

)
= D∆ρg sinα− CdU2, (2)

d

dX
(DUT ) = ėTa + ṁ Tb −

L

c

[ ]
, (3)

d

dX
(DUS) = ėSa + ṁSi, (4)

where subscripts i, a and b are for water properties evaluated in the ice, ambient and at the
ice-ocean boundary, respectively; α is the slope angle, and Cd is the drag coefficient. The
entrainment is assumed proportional to the speed of the plume and written as ė = E0U sinα.
By defining the density contrast ∆ρ and thermal driving ∆T of the plume as

∆ρ = βS(Sa − S)− βT (Ta − T ), (5)
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Figure 1: (a) Diagram of a plume originating from a flow of freshwater at the grounding line.
(b) Schematic of the plume model with key variables indicated. From [3].

ΔT = T − Tf where Tf = λ1S + λ2 + λ3Zb, (6)

and using equations (1-4), evolution equations for the buoyancy and sensible heat flux can
be found,

d

dX
(DUΔT ) = (Ta − Taf )ė+ (T ef

i − Tif )ṁ− (λ3 sinα)DU, (7)

d

dX
(DUΔρ) =

(
dΔρa
dZ

sinα

)
DU +Δρefi ṁ, (8)

where T ef
i = Tf − L

c
− ci

c
(Tf − Ti) is the effective meltwater temperature and Δρefi =

βS(Sa − Si)− βT (Ta − T ef
i ) is the effective meltwater density contrast.

When the flow of freshwater at the grounding line is large, the initial buoyancy flux
dominates the flow, and hence, terms involving feedback due to melting can be neglected
(e.g. setting ṁ = 0 in equations (1, 2, 7, 8)). In an unstratified ambient ocean, dΔρa/dZ = 0,
and neglecting the pressure dependence on the freezing point, λ3 = 0, there is a simple
solution where the plume increases linearly in thickness and all other parameters remain
constant. Substituting in ansatz D = AXd, U = BXu, Δρ = CXp and ΔT = DX t results
in d = 1, u = 0, p = −1 and t = 0. Hence, the solution is given by

U0 =

(
B0 sinα

E0 sinα + Cd

)1/3

, D = E0 sinαX, B0 = gD0U0Δρ0

(T − Tf )0 =

(
E0 sinα

E0 sinα + C
1/2
d Γ

)
(Ta − Taf ). (9)
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Figure 2: (a) Melt rate ṁ plotted against thermal driving showing the linear relationship.
The line width represent the spread of gradients for a the range of salinities from 25-35. (b)
The geometrical factors, the second and third factors in melt rate in equation 11, plotted
against the slope of the ice-ocean interface demonstrating the strong dependence on geometry.
From [3].

The melt rate is then derived from the heat balance at the ice-ocean interface where the
sensible heat is balanced by the heat flux from the plume mixture,

ṁ0L+ ṁ0ci(Tf − Ti) = cC
1/2
d U0ΓT (T − Tf )0. (10)

Rearranging and substituting in U0 and (T − Tf )0 from equation (9) then gives the constant
melt rate as

ṁ0 =

(
cC

1/2
d Γ

L+ ci(Tf − Ti)

)(
sinα

E0 sinα + Cd

)1/3
(

E0 sinα

E0 sinα + C
1/2
d Γ

)
B

1/3
0 (Ta − Taf ). (11)

The melt rate in equation 11 is made up of several factors. The first factor is made up of
physical constants such as the drag coefficient, heat capacity, transfer coefficients and the
latent heat of fusion for ice. The second and third factors come from the dependence of the
velocity and temperature gradient on the slope of the interface. The fourth and fifth factors
identify the linear dependence on the thermal driving from the ambient ocean and the cube
root dependence on the buoyancy flux, see figure 2.

The approximations made thus far allow progress to be made analytically but are unreal-
istic in terms of modeling plume dynamics at the ice-ocean interface. Therefore, the ambient
stratification, increasing freezing point with depth and feedback from melting need to be
included. The full system given by equations (1, 2, 7, 8) can be normalised by the scales
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found in equation (9). A scale for the along slope distance X can be found by considering the
lengthscale over which melting balances the initial amount of buoyancy from the grounding
line,

L0 =
B0

ṁ0Δρefi g
. (12)

Ambient conditions can also be important in the plume dynamics. Figure 3 shows dimen-
sionless solutions for the melt rate, volume flux, momentum flux, thermal driving, buoyancy
flux, and sensible heat flux against the distance along slope for increasing stratifications.
Consider first the unstratified case (red line in figure 3). As the plume rises, entrainment
of the ambient ocean provides heat to keep the plume above the freezing point, with more
heat required as the volume flux increases. However, as the plume rises the freezing point
increases and in turn decreases the sensible heat flux; the ambient thermal driving can be
seen to fall almost linearly as a result. There is a transition from melting to freezing when the
thermal driving equals zero. As thermal driving continues to decrease all of the meltwater
is subsequently refrozen. As the ambient stratification is increased, towards the purple line,
the buoyancy flux reaches its maximum further downslope and hence loses momentum before
all of the meltwater has frozen out. By increasing the stratification further, the section of
freezing can be reduced to zero before the plume runs out of momentum.

The importance of the ambient conditions can be summarised in two key lengthscales.
The first is the lengthscale over which the plumes’ buoyancy changes and can be written as

Lρa =
Δρ0

(dΔρ/dZ) sinα
. (13)

The second is the lengthscale over which thermal driving changes,

Ltf =
(T − Tf )0
λ3 sinα

, (14)

initially recognised by [6] to be an important lengthscale characterizing the distance from
the source to the ambient freezing point.

Slater et al [10] looked at the importance of lengthscale Lρa when the plume buoyancy is
dominated by subglacial discharge, and hence feedback from submarine melting on the plume
can be neglected, and LTF = ∞. Initially they considered a uniform stratification, Lρa = ∞,

and found that melt rate scaled with B
1/3
0 regardless of plume geometry providing discharge

was below a critical value. This is consistent with the results derived above in equation (11).
The addition of temperature stratification increased the sensitivity of the plume temperature
to subglacial discharge. However, when the initial buoyancy at the grounding line is taken
to be a point source the temperature in the plume becomes independent of discharge and
so they found the exponent to be only slightly different from 1/3. Finally, if the salinity or
temperature and salinity set the stratification, the melt rate exponent can vary from 1/3 to
as large as 2/3 depending on other plume conditions. These higher exponents suggest that
melt rates may depend more on subglacial discharge than previously thought.

1.2 Impact of ambient properties
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Figure 3: Change in plume dynamics depending on the ambient stratification. Dimension-
less solutions for (a) melt rate, (b) volume flux, (c) momentum flux, (d) thermal driving,
(e) buoyancy flux and (f) sensible heat flux plotted against distance along slope from the
grounding line for an initial fresh water flux of 5× 10−5m2s−1 with slope sinα = 0.01. Col-
ored lines indicate varying ambient stratification with zero stratification given by the red
line and ambient stratification of −1× 10−6m−1 given by the purple line. From [3].
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Figure 4: Case study of Helheim glacier in Sermelik fjord. (a) Linear approximation to change
in temperature (blue line) and salinity (red line) with depth motivated by observations.
Variation of width (bI and bII) and melt rate (cI and cII) with depth for the two regions
shaded in grey in (a). From [7].

Conversely, Magorrian and Wells [7] studied the case when the initial discharge at the
grounding line is zero and the buoyancy is dominated by meltwater from the ice-ocean
interface, again with LTF = ∞. They applied their theoretical and numerical results to a
case study of melting of Helheim glacier in Sermelik fjord, Greenland, in winter, see figure 4.
The numerical solution showed a repeated layered intrusion pattern as the plume reached
its neutral buoyancy and the width d diverged. Further melting at the ice-ocean interface
then starts the next intrusion. They argue that the layered melting pattern would lead to
the formation of notches on the ice-ocean interface. As the depth decreases, the temperature
and salinity decreases reducing thermal driving and melt rate causing the layered scaling to
decrease, as seen in figure 4.

To identify when the governing lengthscales become important, the size of the lengthscale
can be plotted against the thermal driving, temperature above the freezing point. Figure (5)
compares the three lengthscales given in equations 12, (13) and (14) for an ice shelf and a
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Figure 5: Governing lengthscales for a plume flowing upslope along an ice-ocean interface of
slope (a) sinα = 0.01 (ice shelf grounding line) and slope (b) sinα = 1 (tidewater glacier).
The coloured lines are plots of L0 for different initial freshwater fluxes, the grey lines are Lρa

for a range of ambient stratifications, and the magnenta line is LTF . From [3].

tidewater glacier. For the ice shelf, 5(a), other than the strongest stratification (black line),
LTF is the first lengthscale that becomes important for scales of hundreds of metres to tens
of kilometres. Below this lengthscale the approximation of a plume in an unstratified envi-
ronment, with freezing temperature independent of depth and no feedback from melting on
the buoyancy of the plume is valid; see section 1.1. For a tidewater glacier, 5(b), entrainment
is more important with the strongest stratification limiting the approximation in section 1.1
to tens of metres.

Slater et al [10] and Magorrian and Wells [7] both looked at the role of Lρa in plume
evolution. To consider the impacts of LTF we need to return to the full model. We can run
the model for a range of basal slopes from 10−3 to 10−2 with a grounding line depth of 500m
and ambient water temperatures from 0 to 7C above the surface freezing point to get a series
of melt rate curves. Figure 6(b) shows these melt rates where the evolution of the plume is
stopped by the plume reaching the surface (termination of the ice shelf).

From the lengthscale recognised by Lane-Serff [6], see equation (14), one can see that the
plume dynamics are unchanged by a linear transformation of the ambient temperature profile.
Thus, we can construct equivalent ambient temperature profiles with a surface temperature
fixed at Tf by varying grounding line from depths of 500m to 10000m. Running the model
for these new profiles produces a series of melt rates given in figure 6(c), where again the
solution is stopped by reaching the ice shelf edge.

In order to understand the role of lengthscales in the problem we would like to collapse
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Figure 6: (a) Schematic of full solution. (b) Melt rate against (m/yr) against horizontal
distance away from the grounding line for a range of ice shelves with a grounding line (km)
depth of 500m, basal slopes from 10−3 to 10−2 and ambient ocean temperatures from 0 to 7C.
(c) Melt rate (m/yr) against distance away from the grounding line (km) for a fixed surface
freezing point temperature and grounding line depths from 500m to 10000m. (d) Melt rate
(m/yr) against dimensionless distance away from the grounding line. (e) Melt rate (m/yr)
for a rescaled dimensionless distance away from the grounding line. (f) Dimensionless melt
rate against dimensionless distance away from the grounding line. See section 1.2.
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all of the lines onto a universal curve by scaling the melt rate and distance from the origin
suitably. By scaling the distance by LTF the graph transforms to 6(d). Here the transition
between melting and refreezing doesn’t coincide exactly for all curves because the balance
between entrainment and melting is a function of the basal slope. Rearranging equation (3)
we have

DU
dT

dX
= ėTa + ṁ

[
Tb − L

c

]
− (ė+ ṁ)T. (15)

By balancing the heat due to entrainment and latent heat that goes into melting we can get
a scaling for the thermal driving,

E0U sinα(Ta − T )− C
1/2
d UΓT (T − Tb) � 0,

⇒ (T − Tb) � E0 sinα

C
1/2
d ΓT + E0 sinα

(Ta − Tb). (16)

The prefactor here allows us to rescale LTF such that the transition between melting and
freezing is the same for each run, see figure 6(e).

Finally, the melt rate scaling comes from the plume speed and thermal driving. From
equation (2) we have

DU
dU

dX
= DΔρg sinα− CdU

2 − (ė+ ṁ)U. (17)

By balancing the momentum due to plume buoyancy with entrainment and friction, we can
get a scaling for plume velocity,

U2 � sinα

Cd + E0 sinα
DΔρg. (18)

By considering the remainder of the thermal driving budget we have

(Ta − T ) � C
1/2
d ΓT

C
1/2
d ΓT + E0 sinα

(Ta − Tb), (19)

which can be used to scale the buoyancy Δρ. Hence, this finally allows the solutions to
collapse on to one universal curve, see figure 6(f).

1.3 Adding further processes

The model investigated thus far has only considered the refreezing of meltwater at the ice-
ocean interface. In reality, freshwater can freeze in the plume in the form of suspended
disc-shaped frazil ice crystals [5]. This increases the buoyancy and causes the plume to
accelerate which in turn promotes rapid crystal growth creating a positive feedback. If the
ice crystals are able to deposit out in a manner opposite to sedimentation this reduces the
bulk density causing the plume to decelerate and hence allowing crystals to settle out more
easily. The formation of frazil ice comes in intense bursts that settle out in discrete intervals.
These high rates of accumulation on the order of 1m/yr then give a mechanism for creation
of thick layers of marine ice beneath ice shelves [1].
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The coupling between ice shelf geometry and plume flow can also provide a mechanism for
positive feedback. Le Brocq et al [2] used satellite imagery to show that channelisation often
forms on the base of ice shelves. They found that these channels coincide with the predictions
of outflow locations of freshwater at the grounding line. This suggests that meltwater plumes
create ice-shelf channels which in turn focus plume flow promoting further melting in the
channels. These features have been explored numerically in the form of 2D fully coupled
ice-shelf/sub-ice shelf ocean models [9], which has shed light on the dynamics involved in the
formation of these channels. However, plume models have yet to be able to simulate realistic
circulation and melt rates beneath ice shelves.

2 Models of the Circulation ithin a Cavity

2.1 Structure normal to the ice-ocean interface

To study the structure of the circulation normal to the ice-ocean interface, a simplified
version of the rotated viscous Boussinesq equations are used. Since the focus is on the
vertical structure, the gradients along the shelf are assumed to vanish, which eliminates the
horizontal advection and diffusion terms. This leaves

∂u

∂t
− φv = Δρg sinα− gcosα

∂η

∂x
+

∂

∂z

(
ν
∂u

∂z

)
, (20)

∂v

∂t
+ φu = −g cosα

∂η

∂y
+

∂

∂z

(
ν
∂u

∂z

)
, (21)

where η is the deviation of the ice-ocean interface from its equilibrium position, and φ is the
Coriolis parameter in the rotated system. Under the same assumptions the equations for
conservation of energy and salinity become

∂T

∂t
=

∂

∂z

(
κT

∂T

∂z

)
, (22)

∂S

∂t
=

∂

∂z

(
κS

∂S

∂z

)
. (23)

By linearizing the dependence of the freezing temperature on salinity and pressure, the
thermal driving can be expressed as

T∗ =T − (λ1S + λ2 + λ3P (η)) , (24)

and applying equation (24) with equations (23) allows us to write a conservation equation
for thermal driving as

∂T∗
∂t

=
∂

∂z

(
κ
∂T∗
∂z

)
.

3D
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In order to simplify the analysis throughout this section, we will take ν = κ and make κ
a fixed constant. To relate T∗ to buoyancy, we will use equation (7).

Equations (7) and (24) can be used to write a simple expression for the ratio of the
density difference to the difference in thermal driving due to melting of ice into the plume

Δρ

ΔT∗
=

SaβS − βT [T∗a + (Li − ciT∗i) c−1
w ]

T∗a + (Li − ciT∗i)c−1
w − Saλ1

.

Note that the expression includes both the enthalpy required to reduce the ice to the freezing
point temperature and the latent heat.

Requiring that the solutions are in equilibrium with the ice-ocean interface (no slip mo-
mentum condition and at the freezing point) implies an upper boundary condition of

u = 0, T∗ = 0 at z = 0 (25)

. Since we are interested in studying the boundary layer near to the ice-ocean interface
we will consider solutions that decay to the ambient conditions in the far field. Taking the
ambient flows to be in geostrophic balance, this gives the lower boundary of

u =
ig∇η

φ
, T∗ = T∗a at z = −∞. (26)

Similar equations have been used to describe the flow of dense currents down a continental
slope. Here, however, the top condition is to fix the temperature to the freezing point, a
Dirichlet boundary condition, instead of the zero flux Neumann boundary condition that
would be applied at the seabed.

In order to get a lengthscale to normalize the solutions, we start by calculating the Ekman
depth for the system. By looking for stationary solutions at the ambient density with the
ice-ocean interface at its equilibrium position equations (21) become

−φv = κ
∂2u

∂z2
,

φu = κ
∂2v

∂z2
.

These have the well known (bottom layer) Ekman solution:

u = vigexp

(
− z

dE

)
sin

(
z

dE

)
,

v = vigexp

(
− z

dE

)
cos

(
z

dE

)
,

with relevant scales

vig =
g

φ
sinα

Δρ

ΔT∗
, (27)

dE =

√
2κ

|φ| . (28)

(29)
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The depth scale is the e-folding distance of the boundary layer. The velocity scale is the
geostrophic current that would occur in the absence of friction along the ice-ocean interface.
This is why it is T∗a and not T∗ that appears in ui

g. When the slope is small, the Coriolis
parameter φ ≈ 2Ωsinθcosα and the velocity scale is, incidentally, the same as the Nof speed,
which describes the translation of cold eddies along a sloped bottom. The temperature scale
is simply chosen to be the thermal driving of the ambient system, T∗a.

The solution to this system for some simple cases is given in figure 7. The thermal
driving is shown in panels (a) and (d); the solution shows the diffusion of cold water into the
far field. This produces a gradually weakening stratification. If a finite domain was used,
equation (24) with a constant diffusivity would imply that the steady state solution is just a
linear profile joining the thermal driving at the ice-ocean interface and the ambient thermal
driving. This is why the transient solutions are studied, since the steady state solution (or
the asymptotic solution in the case where the boundary condition is applied in the far field)
does not permit a boundary layer.

Panels (b) and (e) show the velocity components of the system when a background
pressure gradient is applied with a flat ice-ocean interface. A relatively shallow boundary
layer is formed at the surface, and quickly converges to the Ekman solution. This is to
be expected, since the Ekman solution is calculated without the influence of the sloped ice-
ocean interface. When the ice interface slope is sloped, as in panels (c) and (f), the boundary
layer thickens initially, and the cross slope currents do not appear to converge to the Ekman
solution. When the ice interface is sloped, it introduces baroclinicity and links the thermal
and current profiles. Thus, the impact of thermal diffusion will be felt on the currents in
this case.

We can further explore impacts of the slope of the ice-ocean interface on the response of
the boundary layer current by decomposing the long term response of the boundary layer with
and without a sloped interface (figure 7, panels (e) and (f), respectively) into geostrophic and
ageostrophic components (figure 8). This is done by assuming that the geostrophic current
is time dependent and in the cross shelf direction:

φvg = Δρgsinα, (30)

∂vg
∂t

= ν
∂2vg
∂z2

. (31)

The time dependence results from the diffusion of less buoyant water away from the
ice-ocean interface. This is shown in panels (b) and (e) of figure 8. In the case without a
slope in the ice-ocean interface, the geostrophic component has no vertical shear, since the
applied forcing is barotropic. In the case with a sloped ice interface condition the geostrophic
component shows a vertical structure, in thermal wind balance with the applied baroclinic
forcing. The ageostrophic components are assumed to be time independent, and can be
shown to the same as the Ekman solution (27). Thus the frictional boundary layer response
is unaffected by whether a barotropic or baroclinic forcing is applied to the system (panels
(e) and (f) in figure 8).

In general the total response will be a combination of the frictional boundary layer, the
applied barotropic and baroclinic forcings, and the ice shelf geometry. For instance, if the
baroclinic forcing is chosen to oppose the barotropic forcing, the results can stop or even
reverse the upslope current (u) near the ice-ocean interface. For a finite cavity, curvature in
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Figure 7: The thermal driving, (a) and (d), and boundary layer currents, (b),(c),(e) and (f),
for two simple cases described in the text. The solid lines in (b),(c),(e) and (f) correspond to
the up slow flow (u) and the dashed lines correspond to across slope flow. In the top row is
the transient solution after 0.1 (red), 0.2(green), 0.5(cyan) and 1.0(magenta) inertial periods,
and the bottom row is the transient solution after 1.0 (red), 2.0(green), 5.0(cyan) and 10.0
(magenta) inertial periods, T = 2π

f
. The black lines show the Ekman solution obtained from

(29). From [4]

the sea floor bottom, h, can also create a current that can oppose the barotropic forcing and
oppose the upslope flow, since the planetary vorticity is φ

h
.

Another interesting regime occurs when it is assumed that the upslope density gradient
balances the turbulent diffusion of upslope momentum instead of the Coriolis term that
balances it in the Ekman regime. The density gradient is assumed to be replenished by
advection from a steady state upslope current. This results in a solution similar to the
Prandtl model of the Katabatic wind

−g sinαΔρ = κ
∂2u

∂z2
, (32)

∂Δρ

∂x
= κ

∂2Δρ

∂z2
. (33)

which has solutions
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Figure 8: The decomposition of panels (e) (top row) and (f) (bottom row) into their
geostrophic (middle column) and ageostrophic (right column) components. The times and
current directions indicated by the lines are the same as in panels (e) and (f). From [4].

u = upexp

(
− z

dP

)
sin

(
z

dP

)

Δρ =
Δρ

ΔT∗
T∗aexp

(
− z

dP

)
cos

(
z

dP

)

where the scales are

uP =

(
g sinα
∂Δρ
∂x

) 1
2
Δρ

ΔT∗
T∗a (34)

dP =

(
4K2

g sinα∂Δρ
∂x

) 1
4

(35)

These solutions look similar to the Ekman solutions, but with a different scaling. Notably,
φ no longer appears in the equations, but instead the horizontal buoyancy gradient, ∂Δρ/∂x
appears.

To determine whether the boundary layer will better resemble the Prandlt or Ekman
solution, we note that uP exp(−z/dP ) and uE exp(−z/dE) so that uP ≥E when dP ≤ dE.
This is true when
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Figure 9: Top Row: the thermal driving for the case with dP/dE =
√

(2), (left column),

dP/dE = 1 (middle column), and dP/dE =
√

1
2
(right column). The black line is the

theoretical Prandtl solution given by (35) The colors indicate the same time periods as in 
figure 8. Bottom Row: as for the top row, but now for the velocity components. The dashed 
black line is the theoretical Ekman solution, and the solid black line is the theoretical Prandtl 
solution. In the middle column they overlie each other. The colors indicate the same as in 
figure 8. from [4]

∂T∗
∂x

≥ ΔT∗
Δρ

φ2

g sinα
(36)

or equivalently when

(
g
∂Δρ

∂z

)(
sinα

φ

)2

≥ 1 (37)

This last equation has the form of a Boundary Layer Burger number. Solutions to the
full for a case with upslope temperature advection are shown in figure 9 for differing values
of dP/dE. For low values of dP/dE the solution has a thick and strong boundary layer near
the ice-ocean interface. When the values of dP/dE are higher, the boundary layer becomes
thinner and sharper. The addition of the along slope temperature gradient allows for a
maintained stratification in a thin layer near the surface. Since, typically, we expect that(
g ∂Δρ

∂z

)
> φ2, and for an ice shelf with sinα ≈ 0 we would expect the Ekman solution to be

more appropriate. For sinα ≈ 1 however the Prandtl solution might become appropriate.
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The solutions shown in figure 7 panels (c) and (f) can also be compared with a model
with a more realistic diffusivity from a parametrized turbulence closure scheme. We take

ν = λu∗, (38)

u∗ =

(
ν|du
dz

|
) 1

2

, (39)

λ = min(κvu∗, λmax). (40)

This allows us to include the production of TKE from shear layers. Inspection of the so-
lution with the scheme included (figure 10) reveals that the boundary layer becomes trapped
in a layer near the surface.

2.2 From a 1d column to the 3d circulation

Now we consider what affects the finite geometry of a real cavity would have on the 1d model
of the previous section. The pressure at any point in the fluid can be written as

P (z) = g

[∫ zs+η

zio+η

ρidz +

∫ zio+η

z

ρdz

]
, (41)

and assuming that density of the ice is constant, we find that

∇P (z) = g

[
ρi∇Hi + ρio∇ (zio + η) +

∫ zio+η

z

∇ρdz

]
. (42)

The first term is the contribution to pressure from the weight of the ice, the second term
is the gradient in the ice-ocean interface (both the equilibrium position and the deviation),
and the third is the is baroclinic contribution of the (assumed) density profile. Assuming
that the weight of the ice shelf is balanced by the water in its equilibrium position, we can
write the flotation condition as

ρi∇Hi + ρ∇zio = 0. (43)

Applying this equation to the model and solving it over a finite depth reveals a deep cross
slope geostrophic flow and a second Ekman layer in the cavity along the seabed. This second
Ekman layer creates a mass flux convergence along the grounding line. By conservation of
mass, this would raise the ice shelf there and generate an opposing barotropic flow. For a
semi-infinite ice sheet we can rationalize this by supposing that this flow is in the across shelf
direction. However for an actual 2d dimensional cavity this paradox needs to be resolved
differently.

In order to understand the structure of the circulation in the cavity we start by construct-
ing a 2d idealized model of a steady state current in balance with the pressure gradients
applied at the ice-ocean interface. This will allow us to understand the two-dimensional
structure imposed by finite cavity geometry. We start by assuming that the momentum
equations are in approximate geostrophic balance, with only the vertical momentum diffu-
sion equation term retained:
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Figure 10: The solutions from a model using a parametrized turbulence closure scheme. The
situation is the same as shown for figure 7, panels (c) and (f). The first row uses the scheme
described in the text; going down rows the turbulence closure scheme increases in complexity.

−fv = − 1

ρ0

∂P

∂x
+

∂

∂z
ν
∂u

∂z
(44)

fu = − 1

ρ0

∂P

∂y
+

∂

∂z
ν
∂v

∂z
. (45)

(46)

The inclusion of the vertical mixing terms allows us to retain the features of Ekman
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solution that were studied in the previous section. The pressure is as given in (42) but with
the flotation condition applied and the baroclinic term approximated by the equilibrium
height of the ice-ocean interface:

∇P = g

[
ρ0∇η +

∫ zio

z

∇ρdz

]
(47)

The depth integrated geostrophic flow is given by

Vg =
g

f
k×

(
Hw∇η +

∫ zio

z

∇ρ (z − zb) dz

)
(48)

where Hw is the depth of the water column. The depth integrated ageostrophic velocity
comes from the top and bottom Ekman layers and is given by

Va =
dE
2
k× (vgio + vgb) +

dE
2
(vgio + vgb), (49)

where the top and bottom geostrophic currents are given by

vgio =
g

f
k×∇η, (50)

and

vgb =
g

f
k×∇η +

∫ zio

zb

∇ρdz, (51)

respectively. The first term in (49) is a transport normal to the geostrophic flow, and
the second term is a transport in the along geostrophic flow created by a reduction in the
geostrophic flow speed in the boundary layer.

Mass conservation implies that the divergence of these two currents has to vanish in
steady state:

∇ · (Vg +Va) = 0 (52)

Substituting equations (48) and (49) into (52) and assuming a constant linear stratifica-
tion (constant N2) profile parallel to the ice shelf gives a second order hyperbolic equation
for the deviation of the ice-ocean interface from its equilibrium position:

g
f

[
∂Hw

∂y
∂η
∂x

− ∂Hw

∂x
∂η
∂y

]
+ N2

f
Hw

(
∂Hw

∂y
∂zi
∂x

− ∂Hw

∂x
∂zi
∂y

)
+

g
f
dE

[
∂2η
∂x2 +

∂2η
∂y2

]
+ N2

f
Hw

dE
2

[
∂2zi
∂x2 + ∂2zi

∂y2

]
+

N2

f
dE
2

[
∂Hw

∂x
∂zi
∂x

+ ∂Hw

∂y
∂zi
∂y

− ∂Hw

∂y
∂zi
∂x

+ ∂Hw

∂x
∂zi
∂y

]
= 0

(53)

The first term represents the barotropic geostrophic flow caused by the ice ocean interface
forced through depth contours. The second term is similar, it is the geostrophic flow being
forced by the tilt of the sea level. The second two terms are the Ekman transports that
result from the curvature of the ice ocean interface and the sea level, respectively. These
terms are similar to the windstress forcing that would occur in an Ekman layer exposed to
the atmosphere. The last term is a correction to the second term that results from the depth
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Figure 11: The simplified geometry used to test the circulation models. Left: the seabed
depth and Right: a cross section showing the geometry of the ice shelf. Note that the bed
has been tapered in order to avoid numerical artifacts.

Figure 12: The barotropic streamfunction (left) and the meridional overturning circulation
(right) from the primitive equation model using the same geometry show in figure 11. From
[8].

of the Ekman depth. Over this depth part of the current in the second term will be canceled
by the Ekman divergence, and this is accounted for in the last term.

If boundary conditions are given, this model can be solved for η. Using a simple test
geometry (figure 11) this gives an asymmetric circulation, with increased sea heights on
the bottom left side of the domain and decreased sea heights on the upper right side of
the domain. It should be noted that since this calculation is done with an f-plane, this
intensification is not related to the usual western boundary current intensification, and is
instead related to the meridional gradient in water column thickness. These results compare
favorably with a primitive equation model (NEMO) run with full physical parametrization
(figure 12, left panel). The primitive equation model also shows the full three dimensional
circulation, which shows a meridional overturning cell (figure 12, right panel) as well as a
melt freeze pattern similar to an ice pump (figure 13). The gyre circulation is imprinted on
the melt freeze pattern, and shifts the horizontal structure so that the melting is in the west,
and the freezing in the east.

The full primitive equation model can be used to simulate the full circulation beneath all
of the antarctic ice shelves, including observed bathymetry. The model simulation shows that
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Figure 13: The freezing patterns from the primitive equation model, from [8].

the ice shelves in the warm regions of West Antarctica are rapidly melting (figure 14, panel
(a)). In the cold water regions of the Ross and Weddell seas and also East Antarctica the
melting occurs more slowly, and there are also extensive areas of refreezing (figure 14, panels
(b), (c), and (d)). This model compares much better to observations than the plume model
does in the area of the Ronne ice shelf. This is because the fully 3d model can simulate the
buoyancy driven circulation that carries water away from melt zone, which is not included
in the depth integrated plume model.

Sensitivity tests which involve removing the ice shelves show that there is a large influence
of the ice shelves on sea ice formation. When the shelves are removed, large buildups of sea
ice occur on West Antartica. This occurs because the melting of the land ice is introduced
into the ocean at the surface in the grid cell nearest to the coast. This introduces a layer
of fresh water at the surface that produces an unrealistically strong stratification, which
prevents heat fluxes from the ocean from reaching the ice and an unrealistically thick layer
of sea ice can form. The impact of the ice shelves is to input a similar amount of water as
the land ice, but by inputing the water at depth, the ice shelves change the stratification
and so do not allow such large regions of ice to grow. Similarly, melting of the shelves drives
gyres within troughs in the continental shelf. These gyres can connect otherwise separate
troughs, and also introduce cold fresh water fluxes at depth, which is critical to the formation
of Antartic Bottom Water.

A caveat to these simulations is that the bathymetry is unknown in many circumstances.
The areas where the bathymetry are the least well known are also the areas where the dis-
agreement between the model and the observations are the largest. Improving the knowledge
of the bathymetry could be a key step in our ability to simulate the circulation under the
Antarctic ice shelves.
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Figure 14: The melting patterns from the primitive equation model, run using observed
bathemetry. From [8].
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GFD 2017 Lecture 7:  Ice Ocean Interactions around
 Antarctica

Adrian Jenkins; notes by Federico Fuentes and Madelaine Gamble Rosevear

This document comprises the third review lecture given by Adrian Jenkins during the 2017
Geophysical Fluid Dynamics program at the Woods Hole Oceanographic Institution (WHOI).
It is about the ice-ocean interaction in the continent of Antarctica, and is divided in two parts:
cold water regimes and warm water regimes. Several figures and figure captions were copied
literally or almost literally from their original sources to facilitate comprehension. In those
cases, the relevant references are given.

1 Cold Water Regimes

1.1 Surface properties of Antarctica

For ease of reference, a map of Antarctica is included (Figure 1).

Figure 1: Map of Antarctica (image from NASA is in the public domain).

June 27, 2017
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The continent of Antarctica is uniformly surrounded by very cold near-freezing water
close to the surface. However, the distribution of near-surface (0-100 m) salinity is not as
simple. Indeed, it can vary depending on precipitation and redistribution by sea ice, which
adds salt during formation and fresh water when it melts. This can be observed in Figure
2, where the ocean tends to be fresher towards the north. Wherever the salinity is higher, it
is easier to deepen the cold layer of water.

Figure 2: Near-surface temperature and near-surface salinity in the continent of Antarctica.

Around the Antarctic peninsula precipitation is high because the westerlies (winds blow-
ing from west towards east, i.e., clockwise in Antarctic maps) encounter steep topography on
the Antarctic Peninsula and are forced to rise, losing moisture as snowfall. This orographic
effect can be observed in Figure 3, which shows the surface mass balance (effectively the
snowfall) on the continent. The precipitation is then much lower in the Ross and Weddell
seas due to the cold dry air which flows from the interior of the continent. Freezing (ice
production) occurs pretty uniformly around the continent.

Strong katabatic winds (from higher elevations to lower elevations) are carried by the
high and steep topography, especially in East Antarctica, where winds with speeds up to 320
km/hr have been reported in winter. These katabatic winds feed the near-coastal easterly
winds. Meanwhile, in the Ross and Weddell seas winds are deviated north by topographic
barriers. All this can be observed in Figure 4.

1.2 Shelf properties of Antarctica

In [23] an idealised model was used to study the processes setting the shelf water proper-
ties. The transport of relatively warm and salty circumpolar deep water (CDW) across the
Antarctic slope front (ASF) (which almost completely surrounds the Antarctic continental
shelf) was of particular interest, as the steep isopycnals (surfaces of constant density) asso-
ciated with the ASF provide a barrier to on-shelf transport. The model was idealized by
being essentially 2D, with no variations in the along-shore direction and periodic boundary
conditions assumed. This is shown in Figure 5.
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Figure 3: Left: Mean (1979-2010) surface mass balance (SMB) in mm w.e./yr (where w.e. means
water equivalent) using simulations and observations. Note that on the seasonal sea-ice, SMB
equals precipitation (P ) minus surface sublimation (SUs) and on open ocean SMB = P [13].
Right: Mean concentration difference from residual freezing (does not represent ice thickness!) [5].

The investigation showed that shelf-water properties were mainly defined by wind-driven
transport of Antarctic surface water (AASW) and by mesoscale eddies carrying CDW along
isopycnals. Weaker winds allowed more warm CDW to flow onto the shelf, heating up the
shelf waters, as did broader and deeper shelves. A higher surface salt flux (representative
of higher sea ice formation) had the same effect, as it increased the production and outflow
of cold, salty Antarctic bottom water (AABW). It is the presence of AABW that creates a
connection between the shelf waters and the offshore CDW and allows mesoscale eddies to
transport CDW onto the shelf. All these results are shown in Figure 6.

Another process that affects the shelf water properties is precipitation. When precipita-
tion is high, the upper ocean is stabilised and the thermocline is shallower, thus in regions
with high precipitation and weak coastal easterly winds (i.e. the Antarctic peninsula), warm
CDW intrudes onto the shelf. Meanwhile, in regions where precipitation is lower and coastal
easterlies are stronger, downwelling (accumulation and sinking of higher density water be-
low lower density water) is sufficient to exclude CDW from the shelf. In the case where
precipitation is low and the sea ice production is high, cold, salty shelf water is present.

This picture is confirmed by comparing temperature and salinity (Figure 7), precipitation
(Figure 3) and winds (Figure 4) with shelf properties observed around Antarctica (Figure
8). At depth, the shelves are dominated by cold and salty shelf water off the coasts of the
Filchner and Ross ice shelves; by cold and fresh AASW off the coasts of Dronning Maud
Land and Wilkes Land; and by warm and salty CDW off the coast of Ellsworth Land and
the Antarctic peninsula (see Figure 1 for geographic references).
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Figure 4: Left: Mean winter wind vector. Right: Mean winter stream lines. Data is from 1980-93.
The elevation of the surface is shown by contour lines in red [24].

Figure 5: Taken from [23]. (a) Schematic cross-section of the Antarctic slope front (ASF), which
separates the continental shelf waters from the warm circumpolar deep water (CDW) at mid-depth
offshore. In regions of Antarctic bottom water (AABW) outflow, such as the western Weddell and
Ross Seas, isopycnal (i.e. constant density) surfaces connecting the shelf waters to CDW may facil-
itate onshore heat transport and AABW export via the action of mesoscale eddies. (b) Schematic
profiles of ocean depth, along-shore surface wind stress, and associated parameters. (c) potential
temperature profile used as reference, where eddy boluses of warm CDW are visible crossing the
shelf break. (d) Salinity profile used as reference.
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Figure 6: Taken from [23]. Left: Sensitivity of the transports crossing the Antarctic slope front
(ASF) of Antarctic surface water (FAASW ), circumpolar deep water (FCDW ), and Antarctic bottom
water (FAABW ). The sensitivity is to (a) the wind stress maximum amplitude τmax, (b) the brine
rejection rate on the continental shelf Σpolynya, (c) the depth of the continental shelf Hshelf , (d)
the width of the continental slope Wslope, (e) the offset of the wind stress maximum from the
center of the continental slope (Lwind), and (f) the model’s horizontal grid spacing Δx. In (a) the
theoretical wind-driven southward surface Ekman transport is also shown, and it agrees closely
with the shoreward transport of Antarctic surface water (AASW).

Figure 7: Deep water temperature and salinity in the continent of Antarctica.
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Figure 8: Temperature (θ) and salinity (S) profiles at different parts of Antarctica. At depth the
shelves are dominated by either: cold and salty shelf water (8, 5, and to a lesser extent 2 and 4);
cold and fresh Antarctic surface water (AASW) (1, 3, and much of the area around 2 and 4); or
warm and salty circumpolar deep water (CDW) (7 and 6).
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1.3 Melting modes

The different melting modes are illustrated in Figure 9, and are briefly described next:

• Mode 1: This form of melting occurs when shelf water (SW) dominates. There are
extensive areas of refreezing and melt rates on the order of 0.1 m/yr. Both SW and
ice shelf water (ISW) are sufficiently dense to form Antarctic bottom water (AABW).

• Mode 2: Here, the warmer circumpolar deep water (CDW) dominates. There is no
refreezing and much higher melt rates on the order of 1-10 m/yr are observed.

• Mode 3: This occurs when Antarctic surface water (AASW) dominates and CDW
intrusions only occur at the seabed. Some refreezing does occur and due to AASW
being seasonally warmer than SW, higher melt rates than Mode 1 are observed; on the
order of 0.1-1 m/yr.

1.4 Melting mode 1

In the southern Weddell Sea, where the Filchner-Ronne ice shelf (FRIS) lies, the cold SW is
dominant and denser than CDW. The complicated seabed and ice shelf geometry results in
a modified (with respect to the usual) pattern of melting and freezing, as shown in Figure
10, where the basic “ice pump”mechanism is visible from the satellite data. From the figure
it can be observed that relatively little warm water enters the cavity, and that the highest
melting occurs at depth, near the grounding line.

Figure 11 presents results from models, which show an overturning circulation, but also
strong horizontal flows guided by ice-base and seabed topography. The presence of tides in-
duces much stronger circulation, where increased melting results in higher buoyancy forcing.
The model also reproduces the observed pattern of melting where the warm water enters
the cavity and reaches the deep grounding lines, while freezing is present along the outflow
paths (right in Figure 11). The freezing and melting are low when the effects of the tides
are not considered, but increase significantly with tidal forcing. Even though tides generate
only weak time-averaged currents, tidal currents can dominate the instantaneous flow if the
buoyancy forcing is weak. In that case, the tides control the turbulent transport of heat to
the ice shelf base.

The outflows of ice shelf water (ISW) are possibly supercooled, due to the fact that
inflowing waters have a temperature close to the surface freezing point. The addition of
meltwater at depth, where the in situ freezing temperature is even lower due to the effect of
pressure, means that the buoyant outflow may become supercooled as it rises. In that case,
platelet ice may form and can generate regions of very thick (about 10 m) land-fast sea ice.
These insights can be appreciated in Figure 10 (bottom).

Most ISW exits the cavity at depth and contributes to the Antarctic bottom water
(AABW) formation as it spills off the continental shelf. Similar processes occur in the Ross
Sea, but melting and production of ISW appear to be slightly lower, probably because the
ice shelf is thinner on average.

Ice shelves of the Ross and Weddell seas are probably relatively insensitive to climate
change. The shelf water will be fixed at the surface freezing point as long as enough sea ice
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Figure 9: Taken from [8]: Three modes of sub-ice-shelf circulation and associated stratification on
the continental shelf. (a) In Mode 1, dense shelf water (SW), formed by brine rejection beneath
growing sea ice, dominates the sub-ice cavity. SW has a temperature at or close to the surface
freezing point, and can melt ice at depth only because of the pressure dependence of the freezing
point. Some refreezing occurs in the cavity because the water produced by melting (ice shelf water
(ISW)) becomes supercooled as it rises along the shoaling ice shelf base. (b) Mode 2 dominates
if SW is absent and circumpolar deep water (CDW) is the densest water on the shelf. CDW
temperatures are typically around 3◦C above the surface freezing point so melting is rapid, no ISW
forms, and there is no refreezing. (c) Mode 3 dominates where both SW and CDW are absent,
leaving Antarctic surface water (AASW) as the densest water on the shelf. Only the upper layer
of AASW is seasonally warmer than the surface freezing point, so melt rates are low and ISW
formation and refreezing can result. Although the CDW is denser, its access to the shelf is limited
by the deepening of the AASW layer at the coast, where the southward Ekman transport driven
by the easterly wind is blocked. Note that in (a), Modes 2 and 3 may influence the outer cavity
because AASW and modified CDW are present in the upper water column, while in (b), Mode 3
melting may occur above the permanent thermocline separating AASW and CDW.
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Figure 10: Top left: Basal melt rates under assumptions of steady-state ice shelf and conservation
of mass. Positive values represent freezing and negative values melting (with color saturation for
magnitudes over 5 m/yr). Yellow line shows separation of region with strong melt at the Ronne
shelf, while light blue lines illustrate inferred ocean circulation paths [10]. Top right: Southwestern
Weddell Sea. Bathymetric contours are labeled in hundreds of meters beneath the ice shelves. Dot-
ted black arrows indicate inflow of modified warm deep water (MWDW) [18]. Bottom: (a) Salinity
and (b) potential temperature at the Filchner and Ronne ice fronts, where the light gray represents
the draft of the ice shelf in the ice front [18].

is produced. One model suggests the possibility of a future regime change [4]. It argues that
thinning of sea ice may increase the wind stress and strengthen the inflow of modified CDW.
However, as this happens, there must also be a decrease in shelf water density.

1.5 Melting mode 3

The Fimbul ice shelf (FIS) is located in the eastern Weddell Sea, where wind-forced down-
welling of Antarctic surface water (AASW) dominates and keeps the shelf cold. Note that
the topography in this region is very steep, as can be observed in Figure 12. It is thought
that the wind-forced overturning is opposed by eddy overturning of the front, which brings
warm water on-shelf at depth (see Figure 12). This has a subtle difference to the case
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Figure 11: From [14]. Left-center: Flow lines of the modeled mean annual circulation in (a) the
lower twelve layers without tides, (b) the upper four layers (including the mixed layer) without tides,
(c) the lower twelve layers with tides, and (d) the upper four layers with tides. The color scale
shows the mean current speed. Right: Mean basal ice melt rates beneath the Filchner-Ronne ice
shelf (FRIS) in cm/yr from the model for non-tidal (top) and tidal (bottom) simulations. Negative
values indicate freezing.

where shelf water (SW) formation creates an isopycnal connection to the deep waters off-
shelf. That being said, an analogous model with the ice shelf included and without any SW
formation, shows a similar result. As observed in Figure 12 (right), a weaker easterly wind
allows warmer CDW to intrude along the seabed (note the higher temperatures at the seabed
when the wind is 3 m/s as compared to when the wind is 9 m/s). Therefore, the wind is a
fundamental factor of the heat transfer.

In the summer, the seasonally warmer upper layer of Antarctic surface water (AASW)
drives melting in the outer cavity (see left of Figure 13). This layer is relatively fresh and
typically too thin to get beneath the ice, but again, wind-forced coastal downwelling is what
allows it to access the Fimbul cavity. However, in this case, stronger easterly winds lead to
a greater flux of warm water into the cavity.

Before observations were made in the Fimbul cavity, a modeling study suggested that
more circumpolar deep water (CDW) could be present at depth (see right of Figure 13).
This ended up being wrong, but for an interesting reason. An eastward-flowing undercurrent
beneath the westward-flowing AASW carried CDW along the upper slope. It turned on-
shelf within a seabed trough that cut the shelf edge and carried CDW beneath the ice shelf.
Stronger easterly winds could exclude the inflow by pushing the front and the undercurrent
deeper. This undercurrent has been identified in observations, but always deep down on the
continental slope [1].
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Figure 12: From [19]. Top left: Temperature section across the Antarctic slope front (ASF) at 17◦W
showing the typical structure of the ASF. Bottom left: Sketch illustrating the hypothesized exchange
processes across the ASF. Yellow arrows illustrate Ekman overturning (Vek), while red and blue
arrows illustrate the overturning of the slope front (Veo) and the sub-ice shelf overturning (γVeo)
respectively. Right: The along-slope-averaged temperature estimated from daily snapshots. Negative
velocities are to left. The black lines are contours of zero residual velocity. Further right is the
observed temperature profile beneath the Fimbul ice shelf (FIS) (in black) along with the modeled
temperature profiles (in colors) taken from the vertical red line in the previous plots.

1.6 A note on the warm water regimes

Warm derivatives of warm circumpolar deep water (CDW) are found at depth on the shelf
from 55-155◦W. Often, it is assumed that the dominant processes are common and connected
with the proximity of the Antarctic circumpolar current (ACC). Nevertheless, the ACC does
not reach the continental slope until about 90◦W (see left of Figure 14). In the Amundsen Sea
it flows north of the Marie-Byrd Seamounts.

In the Bellingshausen Sea, upper CDW comes on the shelf as eddies that shed from the
ACC (see right of Figure 14). Thus, upper CDW is not confined to troughs. On the other
hand, lower CDW intrusions follow the trough topography and appear to be steadier.
Meanwhile, in the Amundsen Sea, the deeper thermocline seems to exclude most upper CDW,
while lower CDW intrudes along the troughs. The presence of CDW on the shelf is not a
novelty, since it was observed as early as the Belgian Antarctic expedition from 1897-1899.
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Figure 13: Left: From [3]. (a) Map of Fimbul ice shelf (FIS), with mooring locations M1, M2, and
M3 indicated by red dots, together with water column thickness (gray shading). Black contours
show the ice draft in 100 m intervals. The ice front is shown in magenta, and the continental shelf
break in green (1500 m isobath). Vectors originating at each site show the annual mean value of the
currents, surrounded by their associated variance ellipses (the white arrow in the upper right corner
indicates the velocity scale). (b) Potential temperature-salinity diagram comparing observations
below the FIS with coastal hydrography. The color shading shows the relative occurrence of different
water masses at the mooring sensors, binned in T-S space, with yellow indicating many observations
on a logarithmic scale. Two arrays of melt water mixing lines, as described in the text, highlight the
melting regimes associated with Antarctic surface water (AASW or ASW) (blue) and modified warm
deep water (MWDW) (magenta). Right: From [21]. (Top) Annual mean potential temperature
(◦C) along 1◦W in the steady state solution. FIS is shown in light blue, and the bedrock in gray.
Potential density contours are shown as black lines. (Middle) Annual mean flow at 450 m depth
in the steady state solution. The color scale shows current magnitude (cm/s) and the arrows are
current vectors with a 7.5 cm/s arrow to scale in the upper right corner. The thick black line is the
ice front of FIS. (Bottom) Annual mean eastward current speed (cm/s) at 1◦W in the steady state
solution.
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Figure 14: Left: From [15]. Location of climatological Antarctic circumpolar current (ACC),
transporting warm upper circumpolar deep water (UCDW). The ACC flows along the slope-shelf
break for the entire western Antarctic. Bathymetry shallower than 3 km is shaded. Right: From
[16]. Conceptual diagram showing the characteristics of circumpolar deep water (CDW) intrusions
to the western Antarctic Peninsula (wAP) shelf. UCDW intrudes on the shelf in the form of
relatively small and frequent middepth features. Lower circumpolar deep water (LCDW) is found
at the bottom of deep depressions. The thick black arrows represent upwelling of LCDW water to
the overlying water, and the rounded arrows represent mixing across layers.

2 Warm Water Regimes

Here, we turn our attention the high melt regime driven by the transport of warm circumpolar
deep water (CDW) onto the continental shelf, or mode 2 melting. Whilst CDW is present
all around Antarctica, there are only a few regions in which it can penetrate beneath ice
shelves. The Amundsen sea sector is one such region.

2.1 Mean state

In the eastern Amundsen Sea, the broad continental shelf is interspersed with a series of
deeper troughs (Figure 15). These troughs, which were carved out by glaciers during previous
advances of the Antarctic ice sheet, now provide a pathway for CDW to access the ice shelves
in the region.

Moving east to west along the shelf, the thermocline deepens (Figure 16) and the CDW
present below becomes cooler. In the west, the combination of a shallower shelf and a deeper
thermocline means that CDW is almost completely blocked from coming on-shelf. As a
result, the ice shelves in the western part of the Amundsen sector are close to a transition to
the cold water regimes discussed in Part I, where the shelf is effectively isolated from CDW.

2.1.1 Observations of heat transport to Pine Island Glacier

Access for CDW to Pine Island Glacier occurs through two troughs, Pine Island Trough
East (PITE) and Pine Island Trough West (PITW). Observations of PITW show an inflow
of CDW of about 0.2 Sv which delivers an on-shelf heat flux of around 2.8 TW [25].
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Figure 15: The Amundsen Sea continental shelf and floating ice shelves of the region. Figure taken
from [6].

Figure 16: Temperature (◦C) above pressure freezing point (T − Tf ) moving along the shelf, with
nominal ice shelf draft (white). Figure from [6]

Along shelf flow is dominated by the Antarctic Slope Current, an eastward flow driven
by winds off the Antarctic continent. Intriguingly, observations on the western side of PITW
show a strong, eastward flowing undercurrent carrying CDW along the shelf edge (see upper
two panels of Figure 17). The troughs are approximately 30 km wide, considerably larger
in scale than the Rossby radius of deformation which is on the order of 3 km, so when the
current encounters the trough it is steered south onto the shelf (see lower two panels of Figure
17).

Kimura et al. (in review) find that the inflows combined supply about 6 TW of heat to
the shelf. Of this heat, approximately one third is lost to the atmosphere, one third is used
to melt ice shelves and one third is carried westward by the on-shelf circulation.

108



Figure 17: Potential temperature and geostrophic velocity sections for two separate transects; one
slightly westward of Pine Island Trough West (PITW) and the other at the entrance to PITW.
Positive values are eastward flowing currents. Figure from [26].

2.2 Variability

2.2.1 Instrumental record

Conditions in the Amundsen Sea lie somewhere in between the strongly stratified conditions
to the east (e.g. Marguerite Bay) and the weakly stratified conditions in the Ross Sea to
the west. In Marguerite Bay the thermocline is extremely shallow and warm CDW occupies
most of the water column (Figure 18), however the Ross Sea is almost uniformly cold with
some freshening at the surface.

The thermocline depth in the Amundsen sea is highly variable and is sensitive to both
wind and buoyancy forcing. Furthermore, variability in thermocline depth drives variability
in ice shelf melt. Observations from in front of the Pine Island Glacier (PIG) calving front
show that changes in the depth of the thermocline are accompanied by changes in meltwater
fraction and thus ice shelf melt (Figure 19). At the PIG calving front, meltwater is identified
as a warm, salty anomaly. This result, which is somewhat counter-intuitive as melting is
associated with cooling and freshening, can be understood in terms of the watermasses in
Figure 20. If the cavity beneath an ice shelf has the temperature-salinity (TS) properties of
Ambient 1, warm, salty CDW (x1) may drive melt and follow the meltwater mixing line to
x2. The mix of meltwater and ambient fluid will then rise in the water column to its level
of neutral buoyancy. Tracing the isopycnal between x2 and the open circle on Ambient 1,
we can see that the meltwater mix will be warmer and saltier than the ambient fluid of the
same density, and will therefore appear as a warm and salty anomaly. This effect will only
occur if the slope of the ambient in TS space is steeper than the meltwater mixing lines; if
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Figure 18: In situ temperature and salinity averages showing thermohaline properties in the
Amundsen Sea for 1994, 2000 and 2007. Labels indicate profiles from east of Bear Island (E)
and west of Siple Islands (W). The dashed profiles, which are provided for comparison, are from
Marguerite Bay (MB) and near Ross Island (RS). Figure from [6].

the slope is shallower (e.g. Ambient 2) the water mass will be cooled and freshened through
the addition of meltwater.

In the Amundsen sector, the ambient stratification is set by the mixing of Antarctic
surface water (AASW) and CDW. Provided that the AASW salinity is above 33.6 psu,
the CDW/meltwater mix will be warmer and saltier at any given density. In winter, the
meltwater outflows contain enough heat to melt sea ice.

How different water masses interact with ice shelves is also determined by the geometry of
the ice shelf cavity. Beneath Pine Island Glacier, a 300 m high seafloor ridge provides a partial
barrier to inflowing CDW. Much like the relative depths of the thermocline and continental
shelf control the flow of CDW onto the shelf, the relative positions of the thermocline depth
to the ridge determine how much heat reaches the grounding zone. However, here a positive
feedback may be present; the more the ice thins, the wider the gap over the ridge becomes,
allowing more CDW to access the grounding line.

West of Pine Island Glacier, at the Dotson Ice Shelf, a time series of temperature sections
across the calving front shows that variability in the depth of the thermocline is the primary
influence on the average temperature of inflowing water, and that this drives extreme vari-
ability in melt fluxes. The melt fluxes calculated from oceanic properties are consistent with
satellite-derived measurements of ice shelf melt rate.

Results from the Dotson suggest that melt rate is a non-linear function of temperature.
Whilst it is difficult to ascertain this from the Dotson data alone, Figure 22 also includes
an estimate of melt in cold water ice shelves, as we know that the pressure dependence of
the freezing point allows melting to occur beneath an ice shelf even when the water masses
driving it are at surface freezing point. Thus, the melt flux is positive definite even at zero
degrees on Figure 22. As a result of this non-linearity, the Amundsen ice shelves are more
sensitive to ocean variability because the mean state is warm.
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Figure 19: Potential temperature (A–E) and meltwater fraction (F–J) sections at the Pine Island
Glacier ice shelf calving front for individual years of observation (labeled). Sections are facing into
the cavity beneath the ice shelf. Figure from supplementary material of [2].

2.3 What’s driving the variability?

Model results from Kimura et al. (in review) suggest that variability in shelf edge inflows
rather than surface fluxes is the primary control on themocline depth, and hence on melt
rates. Whilst surface fluxes affect the AASW layer, they have little impact at the depths
that matter to the ice shelf.

The variability in the shelf edge currents themselves is driven by wind, although the mech-
anism for this is not yet clear. Periods of strong easterlies (Figure 23a) enhance downwelling
on the shelf and buoyancy forcing in polynyas and suppress the slope front undercurrent,
decreasing transport of CDW onto the shelf and making it more likely to mix with the over-
lying waters as it passes over the ridge. This results in an overall cooling and decrease in
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Figure 20: Potential temperature vs salinity diagram illustrating properties of two idealized ambient
water columns (bold lines), with melt-water mixing lines (dashed lines) extending from the top, the
bottom, and the midpoint of each. Open circles indicate possible properties produced by melting
into Ambient 1, while open squares indicate the same for Ambient 2. Figure adapted from [7].

Figure 21: Potential temperature vs salinity plot at the calving front of Pine Island Glacier. Num-
bered solid lines are isopycnals, and the solid line near the bottom of the diagram indicates the
surface freezing point. In (c) dashed lines represent approximations to the ambient trend in the
main thermocline (bold) and a melt-water mixing line. The dash-dotted lines are contours of
melt-water fraction. Figure from [7].
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Figure 22: Average temperatures and melt fluxes from the Dotson Ice Shelf. Figure from Jenkins
et al. (in preparation).

melt. Conversely, weaker easterly winds are often accompanied by weak westerlies at the
shelf edge (Figure 23b). This enhances inflow of CDW which raises the thermocline, allowing
more transport over the ridge and increased melting.

Figure 23: Schematic of processes that lead to (a) cooling and (b) warming of the eastern Amundsen
Sea continental shelf. Figure from [9].

2.3.1 A mechanism for changing the winds

The weak easterlies in the Amundsen sector are themselves associated with El Niño Southern
Oscillation (ENSO). Anomalous heating in the central equatorial Pacific triggers a standing
Rossby wave that which results in sea level pressure anomalies in the Amundsen Sea. These
anomalies weaken the easterly winds over the Amundsen Sea shelf and can result in westerly
winds over the shelf edge.

Over the instrumental record, mooring and CTD (sonde used to measure conductivity,
temperature and pressure) observations of inflow properties show a good agreement with
zonal wind anomalies and central Pacific Sea Surface Temperature (SST) anomalies (Figure
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Figure 24: Proxies for thermocline depth on the inner shelf of the eastern Amundsen Sea (the upper

panel is an expanded version over the observational period). The depth of the 0.8◦C isotherm (left-
hand axis) is extracted from mooring data (black line) and averages of summer CTD stations (black
diamonds). Less direct proxies come from the cumulative zonal wind anomaly (dark blue line) and
cumulative central tropical Pacific sea surface temperature anomaly (red line). Figure from [9].

24, upper panel), suggesting that the link between these may explain the dominant mode of
variability.

2.4 Implications for driving ice sheet change

The Last Glacial Maximum (LGM) was the period during the last glacial cycle during which
Earth’s ice sheets were at their maximum extent. As such, the retreat of ice between the LGM
and present day extent is used to understand the mechanisms for ice loss from Antarctica,
and the speed at which they occur.

In the Amundsen sector, the retreat of ice from LGM to present day extent occurred
mainly between 10 and 20 thousand years before present. In the following period, the margin
appears to have been stable [12].

2.4.1 The retreat of Pine Island Glacier

Sediment cores from the ridge beneath Pine Island Glacier reveal that there has been recent
change. Pre-1940s sediment records show only coarse grained sediments, transported by the
glacier itself, to either side of the ridge (Figure 25). Behind the ridge is a small cavity of
water, but this cavity has no connection to the ocean. Post 1945, the presence of fine grained
sediments transported by plumes suggest the there was an oceanic cavity behind the ridge
with a connection to the outer cavity, either through a bathymetric feature or due to tides.
However, the coarse sediments on the front of the ridge demonstrate that the ice shelf is still
pinned to the ridge. Post 1970, the presence of fine sediments on both sides of the ridge
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suggest that this is when the cavity took on its current geometry. This assertion is confirmed
by early satellite imagery.

Satellite radar interferometry since the early 1990s shows the glacier is still retreating, as
are many others along the eastern Amundsen coastline.

Figure 25: Sedimentation and processes beneath Pine Island Glacier. Figure from [22].

The retreat has been explained as a result of warming of the waters on the Amundsen
Sea Shelf [20]. However, the study that published this result uses data up to early 2010,
and thus does not include the subsequent cooling of shelf waters. Instead, the recent record
of grounding line movement is more consistent with the ocean variability. Grounding line
retreat has slowed during the cool phase and the Kohler Glacier has even re-advanced.

2.4.2 Glacier thinning

Analysis from satellite altimetry shows that the thinning of glaciers is not a continuous
process. During warm periods, enhanced thinning at the grounding line triggers a wave
of thinning that propagates inland (Figure 26). Periods of reduced thinning are similarly
followed by reduced thinning, or even thickening, inland. For example, the Kohler glacier
(Figure 26c) shows a thinning signature initiated pre 1996, however the stability of the
current grounding line has prevented any more recent thinning, in contrast to Pine Island
and Thwaites glaciers (Figures 26a and 26b).

Using the relationships established in Section 2.3.1 between shelf edge winds (and thus
thermocline depth and melt flux) and Pacific SSTs, we can extend our proxy record back in
time. Two prominent anomalies occur in the 1940s and 1970s, coinciding with the grounding
line events seen in the sediments beneath the Pine Island Glacier. The anomalous period in
the 1940s is well documented in ice core records from the West Antarctica, and is the most
anomalous period in the 20th century, with the exception of the 1990s.

Records of ice flux across the grounding line of glaciers in the Amundsen region start in the
1970s, when satellite imagery became available. Since the 1970s, each glacier has experienced
periods of rapid acceleration and periods of relatively steady flow or slight deceleration.
Whilst responses vary from glacier to glacier, it is clear that accelerations correspond with
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Figure 26: Ice surface-lowering rates along flowlines in the three basins. Figure from [11].

Figure 27: Evolution of ice discharge at the grounding line, where the red shading indicates a warm
period and the blue shading is a cool period. Figure adapted from [17].

warm periods, while steady flow coincides with cool periods (Figure 27). The varied responses
of individual glaciers is determined by the geometry and properties.

The mechanism for increased melting of an ice shelf driving thinning of a glacier upstream
is illustrated in Figure 28. Increased transport of CDW on shelf increases melt rates and
thins the glacier (top panel). This decreases the buttressing effect the ice shelf can provide
and moves the grounding line back (middle panel), and the glacier accelerates. This changes
the surface slope of the glacier, accelerating flow upstream and allowing the thinning signal
to propagate. In the lower panel, the ice shelf thickens due to decreased melt, itself a result
of a deeper thermocline, which isolates the shelf from CDW.

The propagation of the thinning signal upstream operates on far longer timescales than
the adjustment which occurs at the glacier front. Thus, at any one time we may be looking
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Figure 28: Schematic linking atmospheric and oceanic forcing to ice sheet flow via the thin-
ning/thickening of an ice shelf. Upper: CDW accesses the ice shelf cavity, driving high melt.
Middle: The ice shelf thins and the grounding line retreats. The surface slope increases, as does
the grounded ice flow. Lower: Increased westerlies lower the thermocline and restrict CDW access,
thickening and flattening the ice shelf.
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at a superposition of cooling (thickening, advancing) and warming (thinning, retreating)
signals. To further complicate the matter, a key factor in the stability of the grounding line
is the geometry of the bed, meaning that a given forcing may influence different glaciers in
different ways.

2.5 Summary

The Amundsen sea sector is an especially interesting region in that wind variability has the
capacity to drive a large response in ice shelves, and consequently in the upstream flow of
grounded ice. The sensitivity of the ice to the winds is a result of the ocean state and
bathymetry of the region; variability in the thermocline depth and the strength of the slope
front undercurrent modulate the on-shelf flow of warm CDW.

Since the 1940s, the ice sheet has been experiencing episodic retreat. Decadal ocean
variability can trigger retreat, and once the grounding line is forced from a seabed high, it
will continue until the grounding line stabilises long enough for the inland flow to equilibrate.
A key question to address is whether, were the shelf to thicken, the previous grounding line
could be re-established. In other words, is this a cycle, or is it irreversible?
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Ding, Q., Abrahamsen, E. P., and Schröder, M. (2014). Strong sensitivity of Pine Island
ice-shelf melting to climatic variability. Science, 343(6167):174–178.

[3] Hattermann, T., Nøst, O. A., Lilly, J. M., and Smedsrud, L. H. (2012). Two years of
oceanic observations below the Fimbul Ice Shelf, Antarctica. Geophysical Research Letters,
39(12).

[4] Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J., and Rae, J. (2012).
Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal
current. Nature, 485(7397):225–228.

[5] Holland, P. R. and Kwok, R. (2012). Wind-driven trends in antarctic sea-ice drift. Nature
Geoscience, 5(12):872–875.

[6] JacoBS, S., Jenkins, A., Hellmer, H., Giulivi, C., Nitsche, F., Huber, B., and Guerrero,
R. (2012). The Amundsen Sea and the Antarctic ice sheet. Oceanography, 25(3):154–163.

[7] Jenkins, A. (1999). The impact of melting ice on ocean waters. Journal of Physical
Oceanography, 29(9):2370–2381.

118



[8] Jenkins, A., Dutrieux, P., Jacobs, S., Steig, E. J., Gudmundsson, G. H., Smith, J., and
Heywood, K. J. (2016a). Decadal ocean forcing and Antarctic ice sheet response: Lessons
from the Amundsen Sea. Oceanography, 29(4):106–117.

[9] Jenkins, A., Dutrieux, P., Jacobs, S., Steig, E. J., Gudmundsson, G. H., Smith, J., and
Heywood, K. J. (2016b). Decadal ocean forcing and Antarctic ice sheet response: Lessons
from the Amundsen Sea. Oceanography, 29(4):106–117.

[10] Joughin, I. and Padman, L. (2003). Melting and freezing beneath Filchner-Ronne ice
shelf, Antarctica. Geophysical Research Letters, 30(9). 1477.

[11] Konrad, H., Gilbert, L., Cornford, S. L., Payne, A., Hogg, A., Muir, A., and Shepherd,
A. (2017). Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea
Embayment, West Antarctica. Geophysical Research Letters, 44(2):910–918.

[12] Larter, R. D., Anderson, J. B., Graham, A. G., Gohl, K., Hillenbrand, C.-D., Jakobsson,
M., Johnson, J. S., Kuhn, G., Nitsche, F. O., Smith, J. A., et al. (2014). Reconstruction
of changes in the Amundsen Sea and Bellingshausen sea sector of the West Antarctic ice
sheet since the last glacial maximum. Quaternary Science Reviews, 100:55–86.

[13] Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard, E., and
Kuipers Munneke, P. (2012). A new, high-resolution surface mass balance map of Antarc-
tica (1979-2010) based on regional atmospheric climate modeling. Geophysical Research
Letters, 39(4). L04501.

[14] Makinson, K., Holland, P. R., Jenkins, A., Nicholls, K. W., and Holland, D. M. (2011).
Influence of tides on melting and freezing beneath Filchner-Ronne Ice Shelf, Antarctica.
Geophysical Research Letters, 38(6).

[15] Martinson, D. and McKee, D. (2012). Transport of warm Upper Circumpolar Deep
Water onto the western Antarctic Peninsula continental shelf. Ocean Science, 8(4):433.

[16] Moffat, C., Owens, B., and Beardsley, R. C. (2009). On the characteristics of Circum-
polar Deep Water intrusions to the west Antarctic Peninsula continental shelf. Journal of
Geophysical Research: Oceans, 114(C5).

[17] Mouginot, J., Rignot, E., and Scheuchl, B. (2014). Sustained increase in ice discharge
from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophysical
Research Letters, 41(5):1576–1584.

[18] Nicholls, K. W., Østerhus, S., Makinson, K., Gammelsrød, T., and Fahrbach, E. (2009).
Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A
review. Reviews of Geophysics, 47(3).

[19] Nøst, O., Biuw, M., Tverberg, V., Lydersen, C., Hattermann, T., Zhou, Q., Smedsrud,
L., and Kovacs, K. (2011). Eddy overturning of the Antarctic Slope Front controls glacial
melting in the Eastern Weddell Sea. Journal of Geophysical Research: Oceans, 116(C11).

119



[20] Schmidtko, S., Heywood, K. J., Thompson, A. F., and Aoki, S. (2014). Multidecadal
warming of Antarctic waters. Science, 346(6214):1227–1231.

[21] Smedsrud, L. H., Jenkins, A., Holland, D. M., and Nøst, O. A. (2006). Modeling
ocean processes below Fimbulisen, Antarctica. Journal of Geophysical Research: Oceans,
111(C1).

[22] Smith, J., Andersen, T. J., Shortt, M., Gaffney, A., Truffer, M., Stanton, T., Bind-
schadler, R., Dutrieux, P., Jenkins, A., Hillenbrand, C.-D., et al. (2016). Sub-ice-shelf
sediments record history of twentieth-century retreat of Pine Island Glacier. Nature.

[23] Stewart, A. L. and Thompson, A. F. (2015). Eddy-mediated transport of warm Cir-
cumpolar Deep Water across the Antarctic Shelf Break. Geophysical Research Letters,
42(2):432–440.

[24] van Lipzig, N. P. M., Turner, J., Colwell, S. R., and van Den Broeke, M. R. (2004). The
near-surface wind field over the Antarctic continent. International Journal of Climatology,
24(15):1973–1982.

[25] Walker, D. P., Brandon, M. A., Jenkins, A., Allen, J. T., Dowdeswell, J. A., and Evans,
J. (2007). Oceanic heat transport onto the Amundsen Sea shelf through a submarine
glacial trough. Geophysical Research Letters, 34(2).

[26] Walker, D. P., Jenkins, A., Assmann, K. M., Shoosmith, D. R., and Brandon, M. A.
(2013). Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica.
Journal of Geophysical Research: Oceans, 118(6):2906–2918.

120



GFD 2017 Lecture 8: Testing the Ocean Trigger Hypothesis

for Greenland’s Recent Glacier Retreat

Fiamma Straneo; notes by Eric Hester and Jessica Kenigson

June 28, 2017

1.1 Establishing rates of mass loss in Greenland

The change in mass M of an ice sheet with respect to time is given by

dM

dt
= SMB −D (1)

where SMB represents the surface mass balance and D represents the rate of ice discharge.
Here SMB is the difference between the rate of accumulation due to precipitation and the
rate of ablation due to surface melt and sublimation, while D represents the rate of loss due
to glacial calving and melting at the ice margins by the ocean. In order to accurately monitor
and predict the ice sheet mass balance in a changing climate, it is necessary to isolate SMB
and D. In Antarctica, mass loss occurs primarily though D (as ambient temperatures are
too low to permit significant mass loss from surface melting); in Greenland this is not the
case.

Since 2002, GRACE satellite observations of Greenland mass balance changes through
gravimetry have provided data on an ice-sheet-wide scale. Figure 1 shows the cumulative
mass change of the ice sheet since 2002 as resolved by GRACE. The declining mass is
superimposed upon a significant seasonal cycle of SMB.

Prior to GRACE, ice mass changes were necessarily interpolated from scattered in situ
observations. Greenland SMB has been relatively adequately monitored since ∼1980. In
order to obtain estimates for earlier periods, Greenland Ice Sheet SMB is reconstructed from
(typically) atmospheric and snow-pack models. The Regional Atmospheric Climate Model
(RACMO) simulates the spatial distribution of climatological SMB from 1958 – 2007 [3].
Spatially, SMB is O(1000 kg m−2 yr−1) along the coast of southeast Greenland due to
significant orographic precipitation. Over much of northern Greenland, SMB is O(100 kg
m−2 yr−1) due to the relatively low precipitation rates in the interior (and by relatively cold
temperatures at high latitudes). Over the coastal margin of southwest Greenland, SMB can
reach O(−1000 kg m−2 yr−1), which is attributable to significant surface melting.

1 Testing the Ocean Trigger Hypothesis for Greenland’s
Glaciers
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Figure 1: Monthly change in mass of Greenland from April 2002 – April 2016
(cumulative). Figure reproduced from https://www.climate.gov/news-features/featured-
images/greenland-ice-mass-loss-continued-2016.

Measurements of D for a particular glacier are made via remote sensing of the ice velocity
across a transect (fluxgate) as near as possible to the grounding line, and D is approximated
by

D = V hH (2)

where V is the velocity perpendicular to the transect, h is the width of the fluxgate, andH
is the depth of the glacier [5, 2]. Typically, D is assumed to be seasonally invariant (due both
to a paucity of observations and, when observations have been available, a lack of evidence
of a clear seasonal dependence). In one study, D was calculated at 178 outlet glaciers [2]; V
was estimated (where possible) by repeat imaging from the Landsat 7 Enhanced Thematic
Mapper Plus and the Advanced Spaceborne Thermal and Reflectance Radiometer (ASTER).
In addition, H was obtained from digital elevation models (DEMs) by differencing the bed
elevation from the surface elevation (where possible; bed elevation data was not available in
the cross-flow direction at all glaciers).

Historical reconstructions of the total mass balance (TMB, defined as SMB−D) require
estimates of D, which are often based upon correlations between SMB and D over periods in
which both quantities have been observed. Figure 2 shows a reconstruction of the Greenland
Ice Sheet SMB, D, and TMB from 1900 – 2010 [6]. The historical reconstruction is based
upon differences between the maximum extent of the ice sheet during the Little Ice Age (as
inferred from trimlines and moraines) and aerial photogrammetry from 1978-1987, which
allows the change in elevation around the entire perimeter of the ice sheet to be calculated.
This is then interpolated to the interior. SMB modeling is used to resolve the mass balance
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Figure 2: Five-year mean of SMB (orange line), modeled ice discharge (blue line), and 5-year
mean of total mass balance (gray) with 1σ uncertainty range (shading). Figure subsetted
from [6].

into components arising from SMB and D (see their “Methods” section). Mass loss is seen
to significantly accelerate around ∼1990, with mass balance deficits increasing at a rate not
seen since perhaps ∼1920¯1930. What might account for the accelerated mass loss since
∼1990?

1.2 Ocean trigger hypothesis

Changes in both SMB and D contribute in approximately equal part to the mass loss from

the Greenland Ice Sheet since ∼1990. Moreover, an accelerated retreat of large outlet glaciers
beginning around ∼2000 (primarily around the western and southern coast of Greenland)
has been documented.

Two major types of glaciers exist along the margins of Greenland: “floating ice tongue”
glaciers and tidewater glaciers. Tidewater glaciers are characterized by a relatively shear
vertical face and primarily lose mass through glacial calving, while floating ice tongue glaciers
are characterized by a long, thin, floating ice protrusion into the ocean from the grounding
line and primarily lose mass through melting. Many of Greenland’s large tidewater glaciers
(including, for example, Jacobskavn Isbrae, Helheim, and Zachariae Isstrom) had floating
ice tongues in the recent past.

The ocean trigger hypothesis [13] suggests that the glacier retreat beginning around

∼2000 (Figure 3) and contributing to the relative increase of D (as in [6]) was initiated
by oceanic drivers. The intrusion of anomalously warm ocean water onto the shelf causes
submarine melting of the floating ice tongue, triggering rapid thinning and ungrounding,
which reduces buttressing and causes acceleration and calving. For instance, Jacobshavn
Isbrae transitioned from a regime of slow ice accumulation to rapid thinning beginning around
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Figure 3: Shift in the calving front at Jacobshavn Isbrae from 1851-2006. Figure reproduced
from https://svs.gsfc.nasa.gov/3395.

1997, and this was accompanied by an approximate doubling of velocity [4]. The accelerated
mass loss is thought to be associated with warm oceanic inflow from the Irminger Sea. This
is in contrast to the hypothesis that atmospheric warming causes enhanced surface melt and
bed lubrication, leading to accelerated sliding. Hydrographic data in and around Greenland’s
fjords is difficult to obtain, particularly at depth. However, this warming signal beginning
around 1997 (at depths of 150-600 m) was captured by trawl fishery measurements made
from 1991 – 2006.

The ocean trigger hypothesis is supported by several independent lines of evidence. In-
deed, ocean currents which bifurcate from the North Atlantic Current transport warm equa-
torial waters close to the southern coastal shelf of Greenland (Figure 5 shows a schematic
diagram), suggesting that it is plausible for outlet glaciers to respond sensitively to changes
in ocean temperature. However, few direct measurements of ocean temperature at depth
along the shelf are available over the period of interest, requiring the use of sparse direct
measurements, proxy data, and models. For instance, a numerical ice-flow model with a
dynamic calving front has been used to study the reponse of Helheim glacier to various
front-stress perturbations, changes in basal lubrication, and changes in the ablation rate [8].
Experiments with front-stress perturbations (which could occur due to rapid thinning of the
floating ice tongue) best captured the observed rate of retreat and lend credence to the ocean
trigger hypothesis.

Furthermore, paleooceanographic reconstructions fail to refute the ocean trigger hypoth-
esis. For example, at Disko Bugt (West Greenland), a 100-year long (1910 – 2007) record of
ocean temperature at approximately 300 m depth was reconstructed based upon the relative
presence of warm and cold water taxa of benthic foraminifera in a series of sediment cores
[7]. Indeed, the accelerated retreat of Jacobshavn Isbrae beginning after 1998 coincided with
a period of ocean warming locally (and local ocean temperatures were related to the Atlantic
Multidecadal Oscillation).
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Figure 4: Depth-averaged temperature as obtained from trawl fisheries for1991-2006 (150-
600 m average). Note the increase in temperature near Jacobshavn Isbrae in 1997. Figure
reproduced from [4].
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Figure 5: Schematic diagram of the ocean circulation around Greenland. Note the proximity
of the warm Irminger Current (warm northward-flowing current branching from the North
Atlantic Current to the west) to the coastal shelf of Greenland. Figure adapted from [13].
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Calving rates may be reconstructed using the observation that icebergs are“dirty.”Specif-

ically, Ice-Rafted Debris (IRD) deposited in Semilik Fjord near the Helheim Glacier terminus
has been used as a proxy for glacial calving [1]. Based upon measurements from sediment
cores, a record of the calving rate has been reconstructed from 1890 to near present. In
particular, the sand fraction is used to represent the IRD since sand grains are likely to have
been transported by icebergs rather than advected by meltwater plumes due to their large
size (which causes them to rain out of suspension). The authors note that the accelerated
calving event of the early 2000s (as well as a period during the early ∼1930s – 1940s) was
associated with warm phases of the Atlantic Multidecadal Oscillation (indicating that in-
flowing Atlantic waters were relatively warm) and with relatively low export of cold Arctic
water. This supports the hypothesis that enhanced submarine melt at Helheim was triggered
by contact with anomalously warm ocean water.

Indeed, the influx of cold Arctic water through the Fram Strait to the coastal margins
of Greenland (as indicated by the Storis index, related to the latitude of the sea ice extent
along the coast of southwest Greenland) versus the influx of relatively warm water from the
south via the North Atlantic Current/Irminger Current (as given by a temperature transect
south of Iceland) likely influences the calving rate [1]. For this reason, a “Shelf Index”
is constructed as the sum of these indices, and the Shelf Index is seen to correlate with
the calving rate on interannual and longer timescales (r = 0.41 for 3-year mean, which is
statistically significant at the 95% level). Correlations between the (negative) Storis index
and Atlantic water temperatures as measured along the transect are nearly as strong, yet
correlations with atmospheric variables such as the wintertime North Atlantic Oscillation
index are also significant (r = −0.45).

Thus, we see that there are multiple independent lines of evidence to support the Ocean
Trigger hypothesis.

2 Ice-ocean Interactions in Greenland laciers

The evolution of Greenland glaciers depends on a range of complex phenomena, associated
with changes in atmospheric and oceanic conditions on multiple spatial and temporal scales.

This lecture will outline the current understanding of the effect of oceanic forcing on
Greenland glaciers, and the techniques used to establish these facts.

2.1 Greenland glaciers: tidewater vs tongues

There are two types of outlet glaciers in Greenland, characterised by their structure beyond
their grounding line (the furthest point at which they are in contact with the sea bed).

The first and most common, tidewater glaciers, do not extend far beyond their grounding
line, and display vigorous calving (iceberg production) at their edge. The other type, floating
tongue glaciers, instead extend tens of kilometres beyond their grounding line. Further,
floating ice tongues typically balance the incoming ice flux by melt, and do not strongly
calve. Floating tongue glaciers are able to balance the incoming ice flux by melt as they
have a much larger area in contact with the fjord waters.
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Figure 7: Floating tongue glaciers extend
far beyond the grounding line. Figure
adapted from [14].

Figure 6: Schematic of typical Greenland
tidewater glacier. Figure adapted from
[14].

2.2 Ocean water in fjords

Figure 8: Schematic of ocean currents around Greenland. Figure from [10].

Importantly, they found that these waters were continuously replenished [12]. There are
several mechanisms that contribute to this replacement, but one main driver of fjord/shelf

The waters surrounding East Greenland are divided between two dominant water types
- the warmer Atlantic water (AW) supplied by the North Atlantic current, and cooler polar
water (PW) from the pole (Figure 8). The location of these waters, and in particular their
interaction with glaciers when within the fjord, is believed to control glacial melting.

Straneo et. al. [12] performed ship and mooring based measurements of oceanographic
data in Sermilik Fjord during 2008. They found the bottom of the fjord (beyond 200-300 m)
was filled with warmer Atlantic water, while cooler polar water resided in the higher layers.
These two modes were supplemented by a third water mass of glacial meltwater during the
summer.
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exchange is variations in the pycnocline on the shelf near the mouth of the fjord.
Figure 9 illustrates this mechanism with the example of Ekman transport by along coast

winds. These winds (into the page) force transport of the surface layer toward the right
(into the fjord), depressing the shelf pycnocline. The fjord waters then equilibrate to this
new stratification by inflow of the top polar water, and outflow of the bottom Atlantic water.
When the forcing ceases, the fjord waters will then relax to the original equilibrium, thereby
replenishing the waters.

Figure 9: Wind driven forcing of shelf waters will adjust the shelf pycnocline, to which the
fjord waters equilibrate. When the forcing ceases, the fjord waters readjust to the previous
equilibrium (c). Figure adapted from [12] (Supplementary Information).

The presence of high sills in fjords may be able to block this transfer however [9, 16],
mitigating the i nfluence of the warmer Atlantic water.

2.3 Glacial melt from emperature- alinity diagrams

The distribution of fjord water characteristics is highly revealing when plotted on a (poten-
tial) Temperature (θ) - Salinity (S) diagram. This is because when salt water melts ice,

the properties of the water-ice mixture will evolve along a straight line in θ − S space - as
explained in Adrian Jenkins’ first lecture. Water measurements close to the line imply the
melting of glacial ice; divergence implies some other process is occurring (such as mixing
with glacial runoff).

Straneo and others [11, 15] found that measurements around Greenland glaciers were
consistent with melting of glaciers by Atlantic Water. The red curves in Figure 10 show

θ − S measurements of water near the fjord mouth, while the blue curves are near the
glacier. The winter measurements (on the right), show that water near the glacier lies closer
to the melting line of Atlantic water, implying that the water is melting the glacier.
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The summer measurements tell a different story however. Now, the near-glacier water di-
verges from the melting line of the Atlantic water, instead being much fresher than expected.
This is due to discharge, including at depth, of surface melt driven by a warm atmosphere
above the ice.

2.4 Lagrangian ice flux divergence measurements

The melting of ice tongues can be inferred by measuring the divergence of the ice flow.
Assuming a vertically uniform velocity u = (u, v) and density ρi, the melt rate ȧ of a
floating ice tongue can be inferred from the conservation law for ice thickness h:

∂h

∂t
+∇ · (hu) = ∂h

∂t
+ u · ∇h+ h∇ · u = ȧ. (3)

This Eulerian framework suffers from a key drawback however; for sparse sampling times,
the calculation of time derivatives will be affected by aliasing – If the sampling time is too
sparse and a second peak is in the same location as a past peak, then there is no way to infer
a change in thickness of the ice.

A more effective approach is to switch to a Lagrangian framework, in which we track the
time derivative of the ice thickness following the ice, Dh/Dt = ∂h/∂t+u · ∇h. By tracking
the ice, we are able to minimize aliasing. This gives our conservation law as

Dh

Dt
+ h∇ · u = ȧ. (4)

Figure 10: θ − S measurements near Helheim glacier in summer (left) and winter (right).
The red curves are of waters near the mouth of the fjord, and the blue readings are as close
as possible to the glacier edge. The influence of the glacier is seen through the differences
between the red and blue curves. The solid black line shows the melting line of Atlantic
water, while the dashed line shows the line for mixing with glacial runoff. The curved lines
are isopycnals, the cyan line shows the freezing temperature at zero pressure for varying
salinities. Figure adapted from [11].
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Figure 11: Greenland glacier melt rates determined using Lagrangian ice flux divergence
measurements. Figure from [17].

The first step in estimating these quantities is to measure the surface elevation of the ice
tongue using Digital Elevation Maps at multiple times.

The thickness of the ice tongue can the be measured given knowledge of the tidal data,
and assuming hydrostatic balance of the ice. The hydrostatic approximation becomes invalid
within several kilometres of the grounding line, preventing the use of this technique in these
areas.

By cross correlating successive elevation maps, the velocity of the ice u can be inferred,
and the elevation (thus thickness) change Dh/Dt can be measured. From these measure-
ments, the total melt rate of the ice tongue can then be inferred. The submarine melting
can finally be isolated by subtracting the surface melt using a model of atmospheric melting.
Putting all this together, the subglacial melt of glaciers can be calculated, as seen in Figure
11 for three Greenland glaciers [17].
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1 The Near Ice Zone

1.1 Diagnosing the nfluence of subglacial scharge

The Greenland I ce Sheet (GIS) is l osing mass at an accelerated rate and is responsible f or
approximately 25% of the current rate of global sea-level rise (Church et al., 2011; Chen
et al., 2017). Much of this mass loss occurs via the release of ice and melt water at outlet
glaciers, which terminate in deep and narrow fjords (van den Broeke et al., 2009). Here it is
argued that the mass loss is in part affected by the release of subglacial melt water into the
ocean.

Subglacial discharge is due to large catchments upstream of the glacier’s marine interface
and has a peak discharge of approximately 30× 103 m3/s during summer months (Jackson
and Straneo, 2016). This seasonal discharge of subglacial meltwater can be diagnosed from
glacier-induced changes in water properties in Sermilik Fjord, the fjord adjacent to Helheim
Glacier. Figure 1 shows distributions of potential temperature and salinity in the Sermilik
Fjord for the summer of 2009 (left) and the winter of 2010 (right).

Ambient waters within the fjord can be modified by two glacial sources of freshwater:
subglacial discharge and submarine melt. Subglacial discharge is assumed to be fresh and
at its local freezing point at depth. If no other sources of freshwater are present, mixing
between the deep ambient waters of the fjord and the cold, fresh subglacial discharge water
from beneath glacier results in a modified water mass whose properties lie along the runoff
line indicated by the dashed line in Figure 1. Submarine melt modifies the ambient water in
a similar fashion but causes additional ocean cooling through the extraction of latent heat.
If no other sources of freshwater are present, the melting of the ice and its subsequent mixing
with ambient ocean water will result in a new water mass that lies along the melting line
indicated by the solid line in Figure 1.

Figure 1 shows that, during the summer months, the waters of the Sermilik Fjord are

modified by both runoff/subglacial discharge and submarine melt. The is evidenced by the

fact that the near-glacier fjord water has a θ− S distribution that lies between the runoff

Fiamma Straneo; notes by  Margaret Lindeman, Agostino Meroni,
and Earle Wilson

June 29, 2017

 Greenland Glacier Ocean Interaction
Part I

GFD 2017 Lecture 9: -

134



Figure 1: Seasonal distribution of water mass properties in the Sermilik Fjord. Left: Poten-
tial temperature (θ) versus salinity (S) of the ocean at the mouth of the fjord (red) and near
the glacier (blue) collected in August 2009. Right: Same, but for March 2010. The dashed
and solid line represent the mixing lines for runoff and submarine melt, respectively. The
cyan line shows the freezing point of seawater for different salinities. Figure is adapted from
Straneo et al. (2011).

and melt lines. During the winter months, the θ−S distribution of the ocean indicates that
submarine melt is the main source of freshwater for the fjord.

If the ambient waters consist of a single water mass, the relative contributions of fresh-
water from submarine melt and subglacial discharge can be quantified (e.g Mortensen et al.,
2011; Jackson and Straneo, 2016).

1.2 Dynamics at the ice-ocean interface

When subglacial discharge enters the ocean at the grounding line, it rises as a turbulent
buoyant plume. The mixing generated by this turbulent plume enhances the exchange of
heat between the ambient ocean and the ice surface, thereby elevating the submarine melt
rate. Since submarine melting has a primary control on the mass balance of the entire ice
sheet, it is essential that we understand the dynamics of this interaction.
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Figure 2: A schematic describing the processes governing the temperature, salinity and melt
rate at the ice-ocean interface. QT

a is the heat flux from the ambient fjord water to the
glacier, QT

i is the heat flux into the ice, and QT
lat is the latent heat flux from phase changes.

Corresponding freshwater fluxes are denoted by the superscript S with the addition of QS
brine,

associated with the melting or freezing of ice. All other variables are defined in the text.
Figure is taken from Straneo and Cenedese (2015), which is modified from Holland and
Jenkins (1999).

The submarine melt rate is typically determined through the use of a three-equation
plume model. This model, which was first developed for the floating ice shelves of Antarctica,
solves for the temperature Tb, salinity Sb and melt rate ṁ at the ice-ocean interface(Hellmer
and Olbers, 1989; Holland and Jenkins, 1999). A schematic of the processes represented by
the model is provided in Figure 2.

Tb is constrained to be at the in situ freezing point of seawater, which is governed by

Tb = λ1 Sb + λ2 + λ3 pb, (1)

where λ1, λ2 and λ3 are known constants, and Zb is the pressure at the interface. Tb and Sb

are further constrained by the heat and salt fluxes across the viscous sublayer that separates
the ice boundary from the ambient ocean. The heat budget of the viscous sublayer is a
balance of the heat flux supplied by the ambient ocean and the sensible and latent heat flux
to the ice

Cp γT (Ta − Tb) = ṁCi (Tb − Ti) + ṁ L, (2)

where Ta is the ambient ocean temperature, Cp and Ci are the specific heat capacities of
seawater and ice, L is the latent heat of fusion, and γT is the thermal exchange velocity.
Likewise, the salt budget of the viscous sublayer is a balance of the salt flux supplied by the
ambient ocean and the salt flux across the ice boundary. This is given by

γS (Sa − Sb) = ṁ (Sb − Si), (3)
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where γS is the salinity exchange velocity, Sa is the salinity of the ambient ocean and Si

is the salinity of the ice, which is sometimes assumed to be zero. In the turbulent region
outside the viscous sublayer, heat and salt diffuse at the same rate. However, within the
viscous sublayer, the exchange of heat and salt are governed by molecular diffusion. In this
region, heat is transferred at a faster rate than salt. Additionally, these exchange rates are
dependent on the shear generated by the ambient ocean as it drags along the ice. These
effects are parameterized as

γT,S = C
1
2
D ΓT,S Ua, (4)

1

Dwhere C 2 ΓT,S represents the thermal and haline Stanton numbers for a hydraulically smooth
surface (Kader and Yaglom, 1972; Steele et al., 1989).

From equations (1)-(4), we see that an increase in near-ice ocean velocity Ua, will lead
to an increase in the submarine melt rate ṁ. This velocity can be influenced by either
large scale ocean circulation, driven by processes like tidal motions, or by local buoyant
plumes supplied by subglacial discharge. For the near-vertical calving fronts typically found
in Greenland, the latter mechanism is dominant, especially during summer months (Sciascia
et al., 2013).

A major caveat to the three-equation model is that it was developed for the near hori-
zontal floating ice-shelves of Antarctica. The tidewater glaciers of Greenland have a much
steeper ocean interface and receive much greater freshwater input from subglacial discharge.
These differences l ikely affect the turbulent exchange rates parameterized by (4).

1.3 Plume modeling

The ultimate goal of plume modeling is to predict the submarine melt rate (SMR) along the
front of a glacier. The SMR will depend on the plume’s buoyancy forcing, vertical extent
and lateral extent. Additionally, the vertical structure and velocity of the nearby ocean will
also have an impact. Due to the paucity of in situ data, many of these factors remain largely
unconstrained. We therefore rely on models to inform our understanding of these processes.

Plume models currently fall into two broad categories: simple one-dimensional buoyant
plume models (e.g. Hellmer and Olbers, 1989; Jenkins, 2011) based on buoyant plume theory
originally developed by Morton et al. (1956) and Turner (1973), and fully three-dimensional
plume models that utilize physics from high-resolution, non-hydrostatic general circulation
models (e.g. Sciascia et al., 2013; Slater et al., 2015). In each case, the subglacial discharge
forcing the plume may be funneled through a single point source, a distribution of small
point sources or across the full width of the grounding line.

One-dimensional plume models have been used to varying degrees of success to explain
observations of water mass properties near tidewater glaciers. For example, Stevens et al.
(2016) showed that the line plume model introduced by (Jenkins, 2011) is able to reproduce
the measured vertical extent and composition of glacially modified waters near a major
subglacial discharge site at the Saqqarliup sermia outlet glacier system in West Greenland.
However, the same model was unable represent the properties of glacially modified waters at
another nearby subglacial discharge site. This discrepancy was attributed to uncertainties
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in subglacial discharge and missing physics (such as the detachment of the plume after it
reaches neutral buoyancy).

Other studies have used three-dimensional plume models to quantify the sensitivity of
SMR to certain unknown parameters. For example, Slater et al. (2015) showed that sub-
glacial discharge, when distributed over a wide area, could produce up to five times as much
submarine melt as when the amount of discharge is passed through a single localized outlet.
Additionally, Sciascia et al. (2013) showed that the intrusion depth of a buoyant plume will
depend on the magnitude of the subglacial discharge. These sensitivity studies highlight the
great uncertainty surrounding SMR and stresses the need for more observational studies.

1.4 Summary

1. The seasonal injection of subglacial discharge affects ice-ocean exchanges by affecting
the dynamics at the interface.

2. Plume models work well near the glacier front, but the far-field impacts of plumes is
not represented by these models.

3. Melt rates from models are highly uncertain, to a large extent because they have not
been validated by data.

2 Fjord ynamics

Many tidewater glaciers, especially in Greenland, do not have terminate in open ocean waters,
but in a fjord. The fjord connects the glacier and its catchment, which are influenced by the
atmospheric dynamics of the region, with the open ocean circulation, which determines the
heat input to the glacier front, all of which influence ice sheet and grounding line dynamics.
Due to the inherent difficulties in performing field campaigns in these regions, the fjord
dynamics is still a topic of very active research. The fjord circulation is known to be mainly
driven by the freshwater input of the subglacial discharge (Motyka et al., 2003; Rignot et al.,
2010), the along-fjord katabatic winds that flow downhill from the ice-sheet and the along-
shelf winds that drive the so-called intermediary circulation, by imposing density fluctuations
at the mouth of the fjord itself (Jackson et al., 2014). Additionally, processes of deep water
renewal and transient motions (namely internal waves or internal seiches) characterize the
fjord circulation.

2.1 Iceberg trajectories

Using GPS trackers such as the one in figure 3, icebergs can be tracked until they completely
melt or capsize. The sensors are deployed from a helicopter, on large icebergs with a waterline
length longer than 100 m. The motion of large icebergs is primarily driven by the ocean
currents, rather than wind.
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Figure 3: Picture of a GPS tracker placed on the surface of a large iceberg in the Sermilik
Fjord (South-East Greenland) from a helicopter. (Photo by F. Straneo)

Observations of iceberg trajectories through GPS tracking show a net mean displacement
of the ice mélange, a mixture of icebergs and sea ce extending O(10 km) beyond the glacier
front, out of the fjord (Sutherland et al., 2014). In particular, multiple icebergs in the mélange
are observed to undergo sudden simultaneous motions. These are caused either by strong
calving events at the glacier front or by the action of intense katabatic winds that can flush
the whole ice mélange out of the fjord in few days. Figure 4, from Sutherland et al. (2014),
shows the daily average distance from the glacier front of three icebergs in the ice mélange
as a function of time deployed. The average velocities marked on the intervals of constant
slope shows that the mélange is a compact system that moves at a roughly constant speed
for its whole extension. The sudden changes in position that happens in two or three days
(around day 120) indicates a strong calving event that pushed the entire mélange out of the
fjord. After this first phase of motion, the icebergs, if they do not capsize or become trapped
by bottom topography, are observed to move on average out of the fjord until they reach the
open ocean, where they are driven south-westward by the East Greenland Coastal Current.
This mean displacement is indicative of the buoyancy-driven estuarine-like circulation due

2.2 Buoyancy-driven circulation

As mentioned earlier, the freshwater released at the base of the glacier front has been observed
to form plumes that rise buoyantly near the glacier front, entraining ambient water until
they reach the surface or a neutral buoyancy depth. This gives rise to a buoyancy-driven
circulation, with the relatively cold, fresh plume detaching from the glacier front and flowing
toward the fjord mouth, while the entrainment drives flow of warmer, saltier Atlantic Water

to the subglacial runoff at the glacier front (Motyka et al., 2003; Rignot et al., 2010).
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Figure 4: Displacement from the glacier terminus of three icebergs in the ice mélange in
the Sermilik Fjord in South-East Greenland as a function of the time deployed (Sutherland
et al., 2014).

toward the glacier (Straneo and Cenedese, 2015). Figure 5 shows a scheme of this kind of
circulation, highlighting the salty water input on the bottom of the fjord and the relatively
fresher water export at the surface (Rignot et al., 2010).

The flux of subglacial discharge and resulting entrainment of ambient water thus have a
strong influence on the heat flux to the glacier front from warm Atlantic Water. Observations
of enhanced submarine melting corresponding to the buoyant plumes have shown a strong
seasonal variability, corresponding to the seasonality of subglacial discharge, which has a
maximum in summer or after intense rainfalls (Motyka et al., 2003). Moreover, it was found
that submarine melting can contribute to the ice-sheet mass balance as significantly as the
calving, making it an important factor in grounding-line and ice-flow dynamics (Rignot et al.,
2010).
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Figure 5: Scheme of the estuarine-like circulation observed in the fjords driven by the pos-
itively buoyant freshwater input of the subglacial runoff. In most fjords, the dynamics
is almost two-dimensional and small across-fjord variations are generally observed (Rignot
et al., 2010).

Exercise: The importance of heat transport from outside a fjord can be shown with a simple
calculation using typical characteristics of each fjord and glacier, as given in table 1. What
would the change in mean fjord temperature be if the entire ice flux from each glacier was
melted by water in the fjord?
The necessary input of heat is calculated as the heat needed to warm the ice to its freezing
point plus the heat needed for the phase change:

QH = ρiQi

[
ci(Tf − Ti) + L

] ∗ 1 year. (5)

The change in fjord temperature is calculated as

ΔT =
QH

cwρwVfjord

, (6)

where Vfjord ≡ l ∗ w ∗ d. Inputting the values from table 1 gives a temperature decrease of
approximately 8oC for Sermilik Fjord and 1oC for 79 North Fjord. With no renewal of water
from outside the fjord, this would bring the temperature of both fjords below freezing. This
exercise is indicative of the importance of heat transport from outside the fjords to maintain
a steady state balance between the fjord and glacier.

2.3 Observing seasonal variability

Moored observations of current velocities are crucial to understanding fjord dynamics during
the non-summer months, when the subglacial runoff forcing is weak, but icebergs pose a sig-
nificant challenge to collecting long timeseries of observations. Figure 6 shows how iceberg
impacts may affect a mooring (Jackson, 2016). Panel (A) shows how the pressure measure-
ments at three different levels all collapse to the bottom value simultaneously, indicating
that the impact with an iceberg has pushed the buoy below a critical depth at which the
water pressure has compressed it, so that is it no longer able to float. Panel (B) shows the
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79 North Glacier
+ Fjord

Helheim Glacier
+ Sermilik Fjord

Ice flux Qi (km
3 yr−1) 15 30

Grounding depth d (m) 600 600
Width w (km) 20 6
Length l (km) 80 80
Ice temperature Ti (

oC) -10 -10
Upper 100m water temp.
(oC)

Tf Tf

Lower 500m water temp.
(oC)

1 4

Constants:
Heat capacity of ice ci: 2 kJ kg−1 oC−1

Heat capacity of seawater cw: 4 kJ kg−1 oC−1

Latent heat of fusion L: 334 kJ kg−1

Ice density ρi: ∼ 917 kg km−3

Seawater density ρw: ∼ 1025 kg km−3

Table 1: Estimates of typical characteristics of the 79 North Glacier and Fjord, Helheim
Glacier, and Sermilik Fjord and pertinent physical constants to be used in the exercise.

track of the iceberg that hit the mooring and panel (C) contains a scheme for the two kinds
of impact with an iceberg. In the type 1 hit, the buoy is not compressed and thus it still
floats after the iceberg has passed, while in the type 2 hit, the buoy sinks after the pressure
has squeezed it, as shown in the picture of panel (D).

Using timeseries of moored observations in Sermilik Fjord, a new decomposition of the
mass, salt and heat budgets that include mechanisms that have been neglected in the past
literature is introduced (Jackson and Straneo, 2016). Two major circulation regimes are iden-
tified: shelf variability via barrier winds (dominant in nonsummer months) and freshwater
discharge f rom runoff (dominant in summer).

2.4 Other drivers of fjord circulation

Figure 7 shows the timeseries of along-fjord velocity (a,b) and potential temperature (c,d) 
at two different locations in the Sermilik fjord.(Jackson et al., 2014). The moorings that 
survived the season show that the currents have a strong variability on the O(2 − 3 days) 
scale, associated with the periodic tilting of the halocline at the mouth of the fjord due 
to the atmospheric mesoscale forcing. When cyclonic winds blow along the continental 
shelf in front of the south-eastern coasts of Greenland (see figure 8), the Ekman transport 
induces an increase in pressure in the upper layer at the mouth of the fjord. This generates 
an overturning circulation that opposes the buoyancy-driven one. This explains the short 
scales O(days) variability in the direction of the fjord circulation, as opposed to the monthly 
variations induced by the subglacial runoff forcing that controls the estuarine-like circulation
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Figure 6: (A) pressure measurements before and after the impact with the iceberg. (B)
Track of the iceberg. (C) Schemes of the two types of impact, in the former the buoy is
still able to float because the pressure has not deformed it, while in the latter the buoy has
been pushed at such a depth that the it cannot sustain the water pressure and it sinks. (D)
Picture of a buoy recovered after a type 2 hit (Jackson, 2016).
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Figure 7: (a), (b) Along-fjord velocity (positive is towards the glacier) in two locations in the
Sermilik fjord. (c), (d) Potential temperature timeseries for the same two locations with the
contours of potential density anomaly σθ = [27.0, 27.5] kg m−3 overlaid. (b), (d) are closer
to the glacier front than (a) and (c).‘’ Adapted from (Jackson et al., 2014).

described above.
The fjord circulation is also driven by along-fjord katabatic winds, which have been

observed to flush out the entire ice mélange of a fjord on a O(1 day) scale. These winds,
which blow from the ice sheet to the open ocean and can reach hurricane velocities, have
a significant influence on the fjord circulation in the same direction as the buoyancy-driven
one (Oltmanns et al., 2014, 2015). An example of this kind of event is shown in figure 9,
where a series of three satellite images (Moderate Resolution Imaging Spectroradiometer,
MODIS) shows how a strong wind event removes almost completely the ice mélange of the
Ammassalik fjord in roughly one day (Oltmanns et al., 2014). Numerical simulations of a
typical katabatic wind event in Greenland fjords show that O(10%) of the upper layer is
flushed out in a single event, in agreement with observations (Spall et al., 2017).
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Figure 8: Composite analysis of the 10 meters winds (shading) and mean sea level pressure
(contours) for the times of wind events over 15 m s−1 in the location indicated by the blue
cross roughly between August 2009 and August 2013 (Harden et al., 2014).

Figure 9: MODIS satellite images showing in the visible range the flushing of the ice mélange
out of the Ammassalik fjord by the action of an intense katabatic wind event in roughly one
day. Adapted from (Oltmanns et al., 2014).
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2.5 Impact of topographic sills

With the same numerical setup it is possible to simulate the role of a sill in the fjord bottom
topography, a feature present at the mouth of some glacial fjords. Numerical simulations
by Gladish et al. (2015), focused on the water renewal in Illulisat Fjord, West Greenland,
show that the position of the pycnocline with respect to the height of the sill is crucial in
determining the circulation. In particular, a sill shallower than the pycnocline will block
the inflow of warmer deep waters, reducing submarine melt at the glacier front. Moreover,
numerical simulations show that while the subglacial runoff circulation can drive the water
renewal in the fjord in a single summer, the external baroclinic forcing cannot, because of the
presence of the sill blocking the flow at depth. The effect of a sill deeper than the pycnocline
on the fjord water renewal mechanism is small.

2.6 Modeling the full fjord circulation

From the above discussion, it is evident that phenomena on multiple scales control the com-
plex interaction between the ice-sheet and ocean components that characterize the Greenland
coastal system. Examples of recent numerical efforts in modeling this broad range of pro-
cesses, encompassing buoyant plumes due to the subglacial runoff at the glacier front, fjord
buoyancy and wind circulation, iceberg displacement and open ocean dynamics include Car-
roll et al. (2015) and Cowton et al. (2015). The sensitivity of the glacier melting to the
subsurface runoff, through the oceanic warmer water entrainment in the buoyant plume,
is studied by means of numerical simulations by modifying the runoff flux and geometri-
cal configuration (line plume versus point source plume, for example). Despite the lack of
knowledge of some feedback mechanisms, for example between submarine melting and ice-
berg calving at the front, numerical results show that the submarine melt rates increase with
subglacial runoff, but they appear to be insensitive to the annual runoff variability (Cowton
et al., 2015). Instead, there is both numerical (Carroll et al., 2015) and observational (Beaird
et al., 2015) evidence that the stratification at the glacier front influences the terminal level
of a buoyant plume. In fact, depending on the depth profile of density, the subglacial runoff,
and the turbulent entrainment, the plume can reach a neutral buoyancy level before surfac-
ing. Other works are trying to model case studies of fjord circulation and to link the fjord
variability to the large scale ocean variability.

2.7 Summary

1. Drivers of the circulation in the fjord include buoyancy due to meltwater release, re-
gional winds, shelf-forced exchanges, tides.

2. The geometry of the fjord (sills, width, ice tongue extent) affects the circulation.

3. Theories of the fjord circulation typically do not cover the parameter space of the
glacial fjords.
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4. Future studies will need to explore the coupling between near-ice dynamics and fjord
scale circulation, which are characterized by different length scales.
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Ice edge Fjord Nearby ocean Far-field ocean

L ∼ 10− 100 m, H ∼ km W ∼ 10 km, L ∼ 100 km ∼ 100 km ∼ 1000 km

Table 1: Typical length-scales involved in the glacier–ocean coupling. L stands for length,
H for height, and W for width.

To estimate the melt rate, one can either:

1. For floating ice tongues, use the ice-flux divergence method, presented in the previous
lectures. This method is recent and there is so far not enough data to investigate
seasonal variability.

2. Perform a numerical simulation, and/or use a theoretical model. The thermal and
salinity fluxes must then be characterized by transfer parameters (see e.g. equation
(31) of lecture 5), whose values are not universal.

Since we lack data, we therefore lack an experimental way to estimate these fluxes. To
fill this gap, we propose the gate flux method.

In this lecture, we detail the two-way coupling between the dynamics of glaciers and of the 
ocean: the melting of glaciers is caused by an inflow of warm seawater, that in return is cooled 
and freshened. This interaction affects the large-scale ocean dynamics, and is usually only 
considered as a boundary condition in numerical simulations.

In the first part o f this l ecture, we show how the melt r ate can b e e valuated. We then 
present how it is connected to the ocean dynamics.

1 How to estimate the melt rate?

For a given glacier, the melt rate depends on the characteristics of the water flow (e.g. 
temperature, salinity, vertical stratification and v elocity). These p roperties s et by the far-
field ocean properties, but it remains challenging to infer a  variation of the melt rate based 
on records in the ocean. This is a consequence of the large range of length-scales lying 
between an ice edge, a fjord, the nearby ocean, and the large-scale ocean currents, see Tab. 
1.
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1.1.1 General overview

Given that the width of a fjord is much smaller than its length, the large-scale dynamics of 
the water in this domain can be supposed to be uniform over the width. Therefore, local 
measurements of the water temperature, salinity and velocity with depth combined with 
conservation equations can be used to estimate the melt rate, see e.g. [1, 2, 3, 4].

For instance, the measurements of Inall et al. [4] performed in the calving front of 
Kangerdlugssuaq have been used to deduce that heat delivered by the warm water coming 
from the ocean is equivalent to a melt rate of ∼ 10 m · day−1 (between 30% and 60% of the 
ice flux). The measurements, some of them being reported in F ig. 1, show a  general feature 
of these exchanges:

1. Relatively hot water heads for the glacier below a few hundred meters.

2. Melting causes cooling, freshening and eventually upwelling (see Fig. 2 of Lecture 5).

3. Cold water leaves the Fjord near the surface.

Figure 1: Left: schematic of the Kangerdlugssuaq Fjord, vector arrows represent upper
velocity. Right: temperature and along-axis velocity across the measurement section AA’.
Figures extracted from [4].

1.1     The gate flux method
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1.1.2 The underlying equations

In the gate flux framework, the complete heat, salt and mass budgets have been worked out 
by Jackson and Straneo [5]. Given the processes sketched in Fig. 2, they are as follows.

• Mass budget: ∫
Ax

udA+QR +QMW = 0, (1)

where u is the velocity perpendicular to the cross-section Ax (vertical left boundary of
the control volume), QR is the runoff volume flux and QMW is the meltwater volume
flux.

• Heat budget:

ρcp

∫
Ax

uθdA+ ρcpQRθR + ρcpQMWθMW + ρcpQsurfθsurf = ρcp
∂

∂t

∫
V
θdV +Hm +Hs,

(2)
where the left-hand side terms stand for the advective heat flux through the control
volume’s boundaries (respectively : the cross-section Ax, runoff, meltwater and sur-
face). In the right-hand side, we identify the evolution of the properties of the control
volume, the heat required to melt ice and the heat flux through the surface.

• Salt budget: ∫
Ax

uSdA =

∫
V

∂S

∂t
dV, (3)

that balances advective transport through the section Ax with changes in the amount
of salt stored in the control volume.

Figure 2: Control volume (grey dashed volume) and different processes taken into account.
Figure extracted from [5].

For a practical use, time averaging as well as a differentiation between barotropic and
baroclinic flow are useful. This leads to a new set of equations, see [5] for more details. Even-
tually, the mean meltwater volume flux, as well as other dominant fluxes, can be deduced
from measurements.
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1.1.3 Application to the Helheim glacier

The resulting set of equations is used to analyze measurements performed in the Sermilik 
Fjord, that connects to the Helheim Glacier. A satellite image is shown in Fig. 3, together 
with records of the water properties with time and depth. They strongly fluctuate, hence 
the need to distinguish between fast and slow time-scales.

Figure 3: Left: sketch of the Sermilik Fjord. Right: velocity, potential temperature and 
salinity records at positions MF1 and MF2. Figure extracted from [5].

In winter, signal to noise ratio is low and freshwater fluxes do not appear c learly. On the 
other hand, in summer, the energy balance can be deduced and involves both the transported 
heat toward the glacier, storage in the water close to the glacier and melting.

Note that the melt rate deduced from these measurements includes icebergs melt, and 
thus differs from the melt rate of the glacier.

1.1.4 Application to an ice tongue

Exercise Consider the situation within the 79 North Cavity, sketched in Fig. 4, where 
Qin, Qout and Sm are the incoming, outgoing and melting volume fluxes, and T in and Tout 
are the associated temperatures.

Figure 4: Exchanges with the 79 North Cavity.
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Question: in a steady-state, give numerical estimates for Qin and Qout. Below are some
numerical values that may be useful:

• The incoming temperature is Tin = 1◦C.

• The outgoing temperature is Tout = 0.2◦C.

• The temperature of ice is Ti = −10◦C.

• The flux of meltwater is Qm = 0.36 mSv. (1Sv = 106 m · s−1)

• The heat capacity of ice is ci = 2 kJ · kg−1 ·K−1.

• The heat capacity of seawater is cw = 4 kJ · kg−1 ·K−1.

• The latent heat of fusion is Lf = 334 kJ · kg−1.

• The density of ice is ρ = 917 kg ·m−3.

Solution: In a steady-state, the mass budget reads

Qin = Qout = Qe, (4)

with Qe defined as the overturning exchange flow. The incoming heat balances the outgoing
one and sustains the melting process,

Qe (Tin − Tout) cw = LfQm =⇒ Qe =
Lf

cw

(
Qm

Tin − Tout

)
= 38 mSv. (5)

See [6] for a detailed discussion of these water exchanges. Note that we ignore the heat 
required to raise the ice temperature from -10 ◦C to 0 ◦C because the latent heat is much 
higher than the heat capacity of ice.

1.2 Diagnosing meltwater and runoff concentrations

We thereafter present three methods that can be used to estimate both the meltwater and 
the runoff fluxes.

1.2.1 Using T − S diagrams

As seen in a previous lecture, the melting of ice results, on a temperature-salinity diagram, 
in an evolution along a straight line toward the point (Teff , Seff ) given in equation (5) of 
lecture 5.

Experimental measurements of the water properties at different depths may lie on this 
line (see the winter profiles in F ig. 5) or not ( e.g. the summer measurements in F ig. 5 ). This 
deviation from the theoretical melting evolution indicates that another process is involved, 
namely the addition of run-off to ambient water. In this case, the addition of fresh run-off 
water at freezing temperature in the heat and salt budgets (equations (1) and (2) of lecture
5) can be used to deduce the run-off concentration from measurements.

For applications of this method, see e.g. [7, 8, 9].
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Figure 5: (T, S) diagram measurement in winter (left) and in summer (right) [7].

1.2.2 Using noble gases

Another method is based upon the non-uniform distribution of noble gases in seawater. 
Noble gases are inert and do not undergo chemical reactions: their concentrations only 
depend on the diffusive processes they have been through. Depending on the quantity of 
noble gas measured, it is therefore possible to distinguish between the different water origins:

• Surface melt runoff is formed at the surface of an ice sheet, is isolated and eventually
melts into fresh water. The fraction of noble gas is then the one associated with
solubility in fresh water at zero degree and one atmosphere.

• Submarine melt water, on the other hand, comes from melting under pressure, that
results in anomalous noble gas concentration signals.

Examples of results than can be deduced from these measurements are reported in Fig. 
6. We recognize the general structure of water fluxes close to a  glacier, described in section
1.1.1, see [10] for an extensive discussion. This method has recently been used in the Sermilik
fjord [11], to disentangle the subglacial discharge from the submarine melt, that turned out
to be of similar amplitude.

1.2.3 Using nutrients

The upwelling of subglacial discharge and the entrained waters also results in an upwelling 
of nutrients, including nitrate, silicate and phosphate. They have been recently evidenced 
[12]. This provides an interesting information to discuss the biological life in a fjord. A 
posteriori, nutrients could also be used instead of noble gases.
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Figure 6: Extrapolation of the data to infer the distributions of submarine melt water
(SMW), Antartic water (AW), surface melt runoff (SMR) and polar water (PW). Figure
extracted from [10].

2 Ocean forcing by Greenland

There is clear evidence that freshwater fluxes from Greenland into the North Atlantic in-
crease [13, 14, 15], which may have an impact on the ocean dynamics [16, 17, 18]. So far,
ocean forcing by Greenland is taken into account through freshwater discharge conditions
(see, e.g., [15]), that are rough estimates and are not consistent with progress in ice/ocean
exchanges. These difficulties in obtaining the freshwater flux partly come from icebergs.

2.1 Shortcomings in the current estimates of the freshwater flux

Consider the Sermilik Fjord, that consists of three glaciers and a significant catchment basin.
A first approach to estimate the freshwater flux (FWF) consists of adding the discharge and
the runoff fluxes, where:

• The discharge is obtained by adding the discharge of each of the three glaciers.

• The runoff is obtained by defining a catchment basin then by estimating the net melt
from a regional climate models.

However, the freshwater flux evaluated this way differs from the freshwater flux at the
fjord mouth, because of the transformation (my mixing) or delay (by storing) inside the
fjord. Therefore, it is necessary either to resolve the dynamics at these small scales, which
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is unrealistic for the current oceanic models, or to model this dynamics. This has been 
reviewed in [19], and we thereafter focus on the effect of icebergs. The calving of icebergs is 
necessary to balance the mass flux o f  a  g l acier w hen t he m e lt r ate f rom t he g l acier cannot 
remove enough mass.

2.2 

2.2.1 Measurements from satellite images

Icebergs affect the FWF because they can either leave the fjord or melt in the fjord (some 
of this meltwater could then be trapped subsurface and/or affect the fjord circulation).

This solid ice flux has recently been estimated from satellite images and showed to 
dominate the freshwater budget in iceberg-congested glacial fjord [20]. Many properties 
of the icebergs can be deduced from satellite images (combined with models), such as the 
icebergs aspect ratio, size distribution and melt rates [21]. As can been seen in Fig. 7, 
the aspect ratio of iceberg is roughly constant (W ' 2H, where W is the width and H is 
the thickness), and the size distribution is self-similar. Similarly, the meltwater flux c an be 
characterized as a function of the draft or as a function of the size of the dense matrix of 
floating i ce [21].

Figure 7: Icebergs ratio and size distribution for Ilulissat fjord. Figure extracted from [20].

2.2.2 In-situ measurements

Icebergs properties including draft and speed can also be measured using a inverted echo 
sounder at the bottom of the ocean [22]. This information gives us the mass flux of ice out 
of the domain and information about the freshwater budget. The current parameterizations 
of freshwater flux due to icebergs only use the surface velocities, but an iceberg actually 
travels using the vertical average of speeds along its draft, so we need better iceberg param-
eterizations to appropriately model the freshwater fluxes f rom glaciers [23].

Icebergs in fjords
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2.2.3 Models of the iceberg melt flux

Models of iceberg melting are also used to examine the contribution of meltwater flux from 
icebergs [24]. This model includes a seasonality of the freshwater fluxes from icebergs due 
to changes in temperature distribution where the icebergs are melting (Fig. 8). Overall, 
there is more melting in the summer as expected, but the vertical distribution of the melting 
changes with the season and temperature distributions in the fjords.

Figure 8: A figure showing the model of freshwater flux into ocean from icebergs. Figure 
extracted from [24].

This iceberg model is coupled with data to estimate the total freshwater flux into the 
ocean from the glacial system (Fig. 9). There is a large peak in the freshwater fluxes due to 
subglacial discharge in the summer months as the largest contribution. The second largest 
contribution is from iceberg melting which is lagged behind the subglacial discharge with a 
minimum in April and a maximum in September. The observations of iceberg melt agree 
well with the model where observations exist.

Figure 9: A figure showing the total freshwater flux into ocean throughout a year. Figure 
extracted from [24].
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Seeing the Ocean through Sea Ice

Robert A Fajber

November 15, 2017

Abstract

Signatures of submesoscale ocean filaments are commonly observed in satellite images
of thin, sparse sea ice. However, sea ice is not a passive tracer, and its distribution over
regions of surface ocean convergence depends on a balance between the external ocean
drag and the internal stresses due to ice-floe interactions. Therefore, the distribution
of sea ice thus depends on ice-ocean interactions at the submesoscale.

This study looks at two idealized cases. The first is a convergent filament with
surface flow that is independent from the sea-ice. Sea ice accumulates over the center
of the filament, and shows multi-timescale behavior. The second case is a filament
where the surface flow is driven by ocean dynamics through Ekman transport. It
is shown that the coupled ice-ocean system is able to accumulate sea-ice for certain
rheological regimes.

The results of these two idealized test cases show that concentrations of sea ice
over filaments are able to develop on timescales of 1-2 days, and that the peak of the
concentration profile can be several times the background. This gives an indication
that snapshots of sea ice could be used to constrain surface ocean currents.

1 Motivation

Upper ocean dynamics contains a rich array of submesoscale eddies and filaments with
high Rossby numbers and scales below the Rossby deformation radius, resulting from
mixed layer and submesoscale instabilities [9]. Submesoscale currents can frequently
develop energetic ageostrophic vertical velocities. This provides a mechanism of
vertical tracer transport across the mixed layer that is critical for biogeochemical
processes in the ocean [6] and also creates strong vertical heat fluxes. In addition,
submesoscale eddies provide a mechanism for the forward energy cascade towards
dissipation (contrary to mesoscale dynamics, which leads to energy cascade to large
scales). Understanding submesoscale dynamics as it relates to upper ocean tracer
transport, modification of surface buoyancy fluxes, and energy cycles remains a long-
standing problem in oceanography.

161



Figure 1.1: Satellite reflectance image (Aqua/MODIS) of sea ice in the
marginal ice zone in the Labrador sea, taken from NASA Worldview:
https://worldview.earthdata.nasa.gov/. Image resolution is 250 m and total width is
about 400 km with eddy sizes O(20 km) and filament widths O(5 km). The Labrador
coastline is visible in the bottom of the photograph, and small clouds are visible at
the top of the photograph.
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Satellite observations of ocean altimetry and sea ice are limited to the larger,
geostrophically constrained scales [2]. Making in situ observations in the polar oceans
is particularly complicated due to the presence of sea ice and icebergs, which can
destroy instruments [1]. As a result, studies of submesoscale currents in the polar
oceans are limited to relatively few observations [13]. Under the heavily packed
multi-year sea ice, the submesoscale variability is significantly damped since ice acts
as a momentum and energy sink for upper ocean flows [10]. However, submesoscale
variability is energetic in marginal ice zones and can substantially enhance the ocean-
ice heat source by bringing warm sub-mixed layer waters in contact with the ice
[8].

At sufficiently low concentrations, the sea ice can accumulate in convergent surface
ocean currents creating submesoscale concentration patterns visible from satellite
images [8], see figure 1.1 for example. The sea ice accumulation is opposed by internal
ice stresses, leading to a quasi-steady balance with elevated sea ice concentrations
over converging cyclonic eddies and filaments. Identifying conditions favorable for
pattern formation in sea ice is complicated by the fact that the sea ice rheology is
still largely unknown [3]. Yet, satellite images of marginal ice zones suggest that ice
concentrations are indeed tightly related to the divergence patterns of the underlying
ocean currents.

Here, we present a theoretical framework to explain the development of sea ice
concentration patterns over idealized ocean eddies and filaments. Throughout this
work we prioritize analytical tractability over rheological complexity by retaining
only the very critical aspects of sea ice rheology, with the goal of elucidating the
key physical balances. The report is organized as follows: In Section 2 we derive an
idealized model of sea ice evolution driven by converging upper ocean flow. In Section
3 we apply the model to a cyclonic filament that has a strong ageostrophic surface flow
resulting in sea ice accumulation. In Section 4 we explore sea ice accumulation over
near-geostrophic flows where it is the presence of sea ice (and a corresponding ice-
ocean stress) that generates the Ekman convergence. In Section 5 we discuss potential
applications of our theoretical framework to estimating the statistical properties of
upper-ocean divergence field from still images of sea ice concentration.

2 Equations of Sea Ice Motion

2.1 Development of equations

The model that we use treats sea ice as a continuous media, similar to [4, 11]. The
development of the model follows a standard approach for the fluid dynamics of a
continuum mixture, which we review below to introduce the key assumptions made.

Although sea ice is composed of individual floes that strongly interact with each
other, we assume that the the dynamics can be averaged over a sufficiently large
scale that the properties of the floes (e.g. floe-floe stresses) can be represented using
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Figure 2.1: (a) Distribution of sea ice (with dark areas representing open ocean)
emphasizing strong interactions between individual ice floes (with characteristic
diameters of about 100 m). The ice occupies an area AI within a total image area
A, over which the sea ice is considered as a continuous media (see Eq. 2.4 and
discussion in the text). Taken from [7]. (b) The continuous power-law ’equation of
state’ showing the critical dependence of sea ice pressure on concentrations (black).
The Hibler rheology [4] is shown in red for comparison.

average properties (e.g. the concentration and average velocity). Our study will focus
only on the dynamic equations of sea ice motion, since on submesoscale timescales
(order of days to a week), much shorter than the sea ice thermodynamic timescale of
several months [11], justifying the neglect of the sea ice.

We assume that the ice within some region A has a uniform thickness h and covers
an area AI , a typical sea ice state is shown in Fig. 2.1a. The resulting concentration
C(r, t) = AIA

−1 can evolve in time and space. We consider purely two-dimensional
ice motion along the ocean surface with sea ice velocities u = (u, v) that may be
divergent. Dividing the mass conservation equation by A yields

0 = ∂t

∫
V

ρCdV +

∫
V

ρ∇ · (Cu) dV,

where ρ is the density of the ice. Doing this integral and noting that the vertical
component vanishes, and dividing by ρh gives the concentration evolution equation

0 = ∂t (C) +∇ · (uC) , (2.1)

with ∇ = (∂x, ∂y). We note that C ∈ [0, 1], but this constraint is not enforced by
equation 2.1. If a system produces C > 1, then this corresponds to a breakdown of
model physics, implying that the assumption of constant height is broken.

Assuming that the ice has negligible inertia, the conservation of momentum equation
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can be written as a balance between the internal, τ
int
, and external stresses τ

ext
,

0 =

∮
S

(
τ
ext

+ τ
int

)
· dS, (2.2)

where S is the surface of V . To simplify the external stress we assume

• τ
ext

= 0 except on the top and bottom surfaces.

• τ
ext

acts only on the sea ice .

• τ
ext

is constant on the lower surface of S.

Taken together these assumptions give

A−1

∫
S

τ
ext

· dS = Cτw, (2.3)

where τw is the water stress on the bottom surface of the ice. We note that there is
also an atmospheric force acting on the top of the ice in principle, but we will ignore
it here since the focus of the project is on the interaction of the ice and the ocean.
To simplify the internal stress we assume that:

• τ
int

parameterizes collisions between sea ice on the boundary of V .

• τ
int

is independent of z,

so that ∮
τ
int

· dS =

∫
V

∇ · τ
int

dV

= h

∫
A

∇ · τ
int

dA.
(2.4)

To understand why the integral involving τint appears as a boundary term, consider
an ensemble of interacting floes in an area A. If there are no other forces other than
the collisions between floes, then the total force acting on all the floes must be 0, since
by Newton’s third law every collisional force will have an equal and opposite force. If
the area A is subdivided into two areas, A1 and A2, then the total force on the sea
ice inside area A1 will be due to collisions between floes in A1 and A2, since collisions
between floes only in A1 will cancel. Thus, the interactions which can exert a force
on an ensemble of floes are interactions that involve floes from another ensemble. If
we consider the ensembles of floes to be in neighboring areas, then the only place for
these floes to interact is at the boundary of the area that we are averaging over.
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Since this internal stress represents the average statistical properties of the collisions
within the area A, then they have to be evaluated over the entire boundary. After
applying the divergence theorem, this is equivalent to saying that they have to be
integrated over the entire volume. This is different than the external stress, which
only acts on the surface of the sea ice, hence the factor of C difference between the
two terms.

The internal stress can be further separated into an isotropic component inlcuding
a pressure P that we assume only depends on the concentration of ice, and a deviatoric
stress σ:

τ
int

= −PI + σ. (2.5)

By assuming that the area A is arbitrary and combining equations (2.2)-(2.5), we
find

0 = Cτw − h
[∇P +∇ · σ] . (2.6)

2.2   Simplified sea ice rheology

To complete the system we have to specify a drag law for τw, an equation of state for 
P and an equation for σ. Our choices for this are motivated by the physics governing 
the system, but we have also made additional simplifications to allow for a more 
tractable mathematical anlaysis. Our final system differs therefore from other more 
complicated models (for example the Hibler model [4]) that include more terms in 
the momentum equation in order to have simulations that are realistic enough to 
compare to large scale observations of thick, high concentration sea ice.

We assume that the drag law can be linearized so that

τ = −ρwΓd (u− uw) (2.7)

where ρw is the density of water, and Γd is a drag coefficient with units ms−1, and uw

is the water velocity.
The pressure term includes the large scale effect of collisions between individual

ice floes. To include this we use an ’equation of state’ which describes the pressure as
a function of the concentration. This means that a concentration gradient in the ice
will create a force on the ice due to internal stresses. Physically, this corresponds to
there being more collisions in a region with high ice concentration and fewer collisions
in a region with low ice concentration, with the result of an average force towards the
region with lower concentration (the intuition here is similar to an ideal gas, hence
the comparison with the equation of state). In principle, the equation of state should
be determined by either detailed field measurements or by consideration of a model
of sea ice floe collisions. In this study however, we will pick a form that matches
our physical intuition, namely that at low concentrations the pressure should become
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very small, and at concentrations approaching 1 the pressure should become very
large, with a sharp transition in between. We also choose a form that is convenient
for analytical analysis. One form that accomplishes these goals is

P = P0C
α, (2.8)

In this study we choose α = 4; note that the choice α = 4 corresponds to the
dynamics of a thin viscous film (see section 3 in [14]). The choice of the rheology
is essentially arbitrary. The rheology of [4] is chosen on the basis of observational
comparison with wintertime ice distributions. The function is somewhat arbitrary –
the only real constraints are the ones mentioned in the previous section. Our choice
of a power law gives a good qualitative comparison to the rheology of [4], but is more
more analytically tractable, allowing us to advance our analysis further.

We specify the deviatoric stress by assuming that the fluid behaves like a Newtownian
fluid so that

σ = η
(
∇u+ (∇u)T

)
(2.9)

where the viscosity η is a constant. This approximation is a significant simplification
compared to the physical nature of sea ice, which is thought to behave as a shear
thinning fluid [3]. Other models have assumed that ice can be treated either as a
visco-plastic material [4], or an elastic-visco-plastic material [5] where the elasticity is
introduced for numerical convenience. However, in these models it is found that the ice
usually goes between the two extremes, either as a plastic fluid at high concentrations
or as a viscous fluid at low concentrations. Since we are primarily interested in the
low concentration limit with high shear, the Newtownian approximation should be
valid in this region. In section 4 we will also take both the η → 0 and the η → ∞
limits of the system to further understand the implications of this choice.

Equations (2.1), (2.6), (2.7), (2.8), and (2.9) are a closed set of equations that
can be solved to find the time varying ice concentration field. In the geometry of our
problems, we will only be interested in motion that varies in one direction, which we
will take to be y. We can substitute equations (2.7), (2.8), and (2.9) into equation
(2.6) and simplify all the equations by eliminating terms involving ∂x to get

∂tC = −∂y(vC),
0 = −CρwΓd (v − vw)− hP0∂yC

α + η∂2
yv,

0 = −CρwΓd (u− uw) + η∂2
yu.

(2.10)

2.3 Comment on assumptions

Throughout the development of the model we have made several assumptions to 
simplify the theory, some of which have been made for mathematical expediency. 
In deriving equations (2.1) and (2.6), it was assumed that the distribution of floe 
sizes was irrelevant. If the distribution of floe thicknesses and sizes is important, 
an additional equation that constrains the distribution (like the thickness equation)
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would have to be added. This would also add a meaningful constrain on C, as well
to constrain it to be C ∈ [0, 1].

Atmospheric drag is removed primarily for the sake of simplicity. At the scales
below 1km, atmospheric drag is highly variable. At the larger scale, the atmospheric
drag can be very important for the sea ice distribution, but the scales are much
larger than the ones here. During strong atmospheric storms, the atmospheric drag
destroys all of the structure described in this study. For instance, atmospheric arctic
mesocyclones referred to as ”polar lows” can reach hurricane force winds, but typically
have horizontal scales of 100-500km [12]. Atmospheric drag at much smaller scales
could also create deviations from a purely ocean-driven sea ice distribution while not
completely removing all of the structures inherited from the ocean currents. Ignoring
the atmospheric drag thus restricts us to using the model on relatively calm days,
with weak atmospheric drag.

The choices of the sea ice rheology are not expected to make a large difference
compared to Hibler’s model [4] and are primarily done for the sake of mathematical
tractability. This is because we are interested in low-concentration sea ice with strong
shear, and so we are less interested in the plastic part of the rheology. The choice of
pressure function could be made the same as [4], however it would not change much,
since at low concentrations it is similar to our pressure function.

The boundary condition in C used for both the uncoupled and coupled filament
model is to impose an outer boundary condition C(L) = C∞. As will be seen in
sections 3 and 4, this choice of boundary condition allows a flux of mass through
the domain. Outside the filament there are other processes acting to redistribute sea
ice. If these processes act to produce a concentration of C∞ then it is reasonable to
impose this as a condition at the outside of the domain. Additionally, this situation
allows us to approximate the case where there is a small filament in a large domain,

i.e. a case where vw = 0 for |y| > l and ∂yC(L) = 0. In such a case, the flux through
y = l is supplied by the diffusion in the outer boundary. Numerically simulating such a
setup can be computationally challenging however, due to the range of concentrations
involved. Analysis of this case is currently ongoing.

2.4 Non-dimensionalization

These equations can be non-dimensionalized with:

y = ŷY, v = V v̂, vw = V v̂w, u = Uû, uw = Uûw, η = λη̂. (2.11)

The values for these scales are given in table 2.4, except for λ, which is investigated
in section 4. The length scale of 1km is characteristic of motion in the submesoscale
[9]. If we use the constraint that the Rossby number is 1, and we assume a latitude
of 60N, then we get a velocity scale V ∼ 0.05ms−1. The other scales are chosen either
from [8] or [4].
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Parameter P0 V U L Γd h ρw

Value 5x103 Nm-1 10-2 ms-1 1ms−1 103 m 5x10-3 ms-1 1 m 103 kgm-3

Table 1: Parameters for the Uncoupled Filament problem (e.g. without Ekman
divergence): sea ice pressure scale P0, across- and along-filament ocean velocities
U, V , filament width L, linear drag coefficient Γd, characteristic sea ice thickness h,
and water density ρw.

We can find scalings for the variables t and C by using the equations 2.10. In
order for the concentration equation for C to have leading order time dependence,
then time time must scale advectively with v, e.g.

t = t̂Y V −1. (2.12)

In steady state, it must be the case that v = 0. This means that any steady state
momentum balance in the y direction must be between the pressure term and the
drag term, e.g.

C (vw − v) =
hP0

ρwΓd

∂yC
α. (2.13)

This yields an intrinsic scale for C;

C ∼
(
V Y ρwΓd

hP0

) 1
α−1

C ∼ (10−4)
1

α−1 .
(2.14)

This is an intrinsic concentration scale that we use to scale the concentration C = CĈ.
If the concentration scale departs greatly from this scale then no steady state balance
will be possible. In the limit of low concentration (free ice drift), this corresponds to
insufficient ice to provide collisions or a resistive force against the underlying ocean
currents. In the limit of high concentrations (packed ice) this represents ice that
is unable to be significantly influenced by the ocean currents. For convenience, we
include the non-dimensionalized equations here, ignoring the hat symbol hereafter:

∂tC = −∂y(vC, )
0 = −C (v − vw)− ∂yC

α + λ∂2
yv,

0 = −C (u− uw) + λ∂2
yu.

(2.15)

3 Sea Ice Dynamics Over Strongly Converging Cyclonic Filaments

3.1    Model formulation

The geometry of the problem is summarized in figure 3.1. If we assume that there is
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Figure 3.1: Schematic of the of the various forces on acting on the sea ice, the
concentration profile that is produced (top line), and the boundary conditions.

no Ekman velocity, and further ignore the viscous term in the y momentum equation
(see appendix), we find that the equations become

∂tC + ∂y (vC) = 0
0 = C (vw − v) + ∂yC

α.
(3.1)

Doing this allows us to write a single PDE for the concentration (in terms of the
dimensionless variables):

∂tC = −∂y (vwC) + ∂2
yC

α. (3.2)

We assume that the filament is symmetric on the domain y ∈ [−1, 1], so that we
don’t expect there to be any diffusive flux through the center of the domain. Hence
we simulate over 0 ≤ y ≤ 1 with a symmetry condition

∂yC(y = 0) = 0. (3.3)

Outside of the domain we assume that there are processes unrelated to the filament
that maintain the concentrations at some far-field value C∞. This leads us to impose
the condition

C(y = 1) = C∞. (3.4)

In ongoing work we have also done some analysis using a no flux condition at the
outer boundary, although these results will be described elsewhere. We also assume
that initially the entire domain is at the far field concentration before the eddy begins
applying a stress to the ice, so that

C(t = 0) = C∞. (3.5)

The filament is assumed to have a parabolic structure in the ageostrophic direction,
so that in dimensionless form the velocity is

vw = y(y − 1) (3.6)
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Figure 3.2: Solutions to equation (3.7), for different values of α and C∞.

This form is chosen because it satisfies v(0) = v(1) = 0 and permits simple analytical 
steady state solutions.

Equations (3.2)-(3.6) define the system describing the evolution of the sea ice field 
over the ocean filament.

3.2 Steady state solutions

We can find the steady state solution by integrating (3.1)

0 = − d
dy

(
Cvw − d

dy
Cα

)
,∫ y

1
vwdy =

∫ y

1
αCα−1dC,

C =
[
α−1
α

∫ y

1
vwdy + C(1)α−1

] 1
α−1 ,

=
[
α−1
α

(
y3−1
3

− y2−1
2

)
+ C(1)α−1

] 1
α−1

(3.7)

These solutions are plotted in figure (3.2) for various choices of α and C(1) = C∞. The 
results show that the solution tends to flatten when C∞ is increased. This is consistent 
with our physical intuition that when the far-field concentration is increased, the 
diffusivity is increased, and so the solution becomes flatter.

3.3 Transient solutions

We use a simple numerical scheme to simulate the transient evolution to equation 3.2. 
The advective term is discretized with an upwind advection scheme, and the diffusive 
term is solved using a second order difference:

∂tC
i =

C i−1vi−1
w − C iviw
Δy

+
(Ci+1)

α − 2 (C i)
α
+ (C i−1)

α

(Δy)2
.
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Figure 3.3: Transient evolution of the sea ice concentrations over the uncoupled
filament for several exponentially sampled times showing the different stages of
evolution. The blue dashed line is the initial condition. The last panel also shows the
steady state solution (red dashed line).

The time stepping is done using the integrate.odeint routine which is part of the SciPy
package (http://www.scipy.org/). The exact details of the scheme are unimportant,
but it includes both implicit and explicit methods; deciding between an implicit or
explicit method with substepping depending on the stiffness of the problem.

The transient solution to equations (2.10) C∞ = 0.1 is shown in figure 3.3. The
solution shows that initially the system responds advectively until close to t = 2.
This is because initially ∂yC = 0, and so there is no diffusion in the system. The
result of this early time evolution is shown in the C(t = 2) panel; there is a buildup
of concentration in the center of the domain (near y = 0), a region of near zero
concentrations (between y = 0.5 and y = 1.0 in the C(t = 2) panel), and a region
near y=1 which connects the low-concentration region to the boundary condition
C(1) = C∞. This boundary condition has a profound consequence for solutions of
our equations. Since there is a non-zero flux through the right hand boundary, the
total concentration

M =

∫ 1

0

Cdy

is not constant in time.
We can think of the evolution of the system as having three distinct stages, an

initially advective state where the concentration is redistributed in the system, then
an adjustment to equilibrium as M grows larger, and then an approach to the final
equilibrium stage (shown in the panel of figure 3.3 corresponding to C(t = 200)).
These different stages can be visualized by looking at C(y = 0) and M as functions
of time, shown in figure 3.4. The initial advective stage happens in the first few time
units, and is shown by a rapid change in C(y = 0). This is shown in the t = 2 panel.
Following this, there is a quasistatic adjustment to the final state, whereby the the
central built-up region slowly grows to the edge of the domain due to the flux through
the boundary. This happens between approximately times t = 5 and t = 200. The
final adjustment to equilibrium occurs with very little change in either C(y = 0) or
M .
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Figure 3.4: The integrated concentration over the domain M =
∫ 1

0
Cdy and the

concentration in the center of the filament over the entire simulation, C(y = 0).

3.4 Asymptotic structure

We can understand the slow evolution towards equilibrium by analyzing the concentration
equation

∂tC = −∂yq = ∂yA− ∂yD (3.8)

whereA = −Cvw is the advective component ; D = −∂yC
α is the diffusive component;

and q = A − D is the total flux of concentration. This is shown in figure 3.5 for a
single time in the experiment shown in figure 3.3.We define two lengths: y = L is
defined as the point where there is a minimum in ∂yC, and y = δ is defined as the
point in the outer region where A(δ) = D(δ). These lines are shown in figure 3.5, and
can be used to split the domain into three regions.

The inner region, 0 ≤ y ≤ L contains high concentrations. Since the adjective
and diffusive flux are close to balancing, the concentrations are changing slowly, and
so the profile inside this region can be approximated with the steady state solution.
By symmetry, ∂yC(0) = 0, and if we make the approximation that C(L) = 0 (e.g. so
that the flux at y = L vanishes) we can solve the steady state profile in the region
y ∈ [0, L] up to a choice of constant, equivalent to a choice of C(0). We can choose
this constant by requiring the total mass M to match the M from the numerical
simulation. This solution is shown as a dashed redline in the upper left panel of 3.5.
This is the quasi-steady approximation: at any given time the concentration profile
inside this region can be approximated by knowing only the total mass. In this region
the fluxes are large, and diffusion can balance advection since the concentration is
large. The small residual balance between A and D is what allows the built-up region
to accrue mass in time.

In the outer region, δ ≤ y ≤ 1, the diffusive flux dominates (by definition). The
reason for this is vw → 0 as y → 0, but there is no constraint on the diffusive flux.
Since C(1) = C∞, and ∂yC(1) �= 0, there is a diffusive flux into the domain and a
diffusive boundary layer. Immediately away from the outer boundary vw increases
and removes sea ice from the diffusive boundary layer. Since D ∼ Cα, this decreases
the diffusivity and limits the size of the boundary layer.
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Figure 3.5: The concentration (top left), concentration flux q (top right), advective
flux A (bottom left) and the diffusive flux D (bottom right) taken at t=10 from the
experiment shown in figures 3.3 and 3.4. The red dashed line in the top plot is the
steady state solution described in the text. The two grey lines show y = L and y = δ

In the middle region, L ≤ y ≤ δ, the concentrations are very small, and since
D/A ∼ Cα−1, the flux of concentration q is dominated by advection. The advection
effectively transfers sea ice from the outer region to inner region without diffusive
losses, since the concentrations are low. There is a sharp discontinuity at the left
boundary of this region, y = L. This is where the regions join, and there is a large
growth right at the boundary of the built-up region, which indicates the expansion
of the built-up region towards the outer boundary.

Taken together, these observations give an explanation for how the outer boundary
fluxes drive the expansion of the central built-up region towards the outer boundary.
In the outer region the diffusive flux puts sea ice into the domain, but the advection
removes sea ice from this region and advects it through the middle region into the
edge, y = L of the central built-up region.
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3.5 A heuristic theory for L

dL

dt
=

∂L

∂M

dM

dt
(L) =

∂L

∂M
q(δ). (3.9)

The last line comes from the observation that dM/dt(L) ≈ q(δ) since q does not vary
over the interior region. The term ∂L/∂M can be determined numerically from the
steady state solutions. To complete a theory for dL/dt, all we need is a theory for
q(δ).

To determine q(δ), we start by assuming that δ is quite small, so we can write
vw ∼ βδ where β is a shear scale. The advective and diffusive fluxes scale like

A = vwC ∼ βδC∞,
D = ∂

∂y
Cα ∼ δ−1Cα

∞,
(3.10)

and since this is the length scale where A = D, we can solve for δ, and so find

q ∼ β
1
2C

α+1
2∞ . (3.11)

We can plot this scaling by doing simulations over a wide range of V and C∞, as
shown in figure 3.6(a). There is generally good agreement, but for the larger values
of C∞ the values deviate from the prediction. This is not unexpected since for larger
C∞ the inner advective region is not able to develop since the concentrations never
become small enough.

We can also use the scaling of (3.11) and (3.9) to propagate L in time. At later
times the estimate for L diverges from the value determined by simulating the full
system. This is because as the edge of the buildup region approaches the edge of the
domain, the scaling theory ceases to apply since there is no longer a clear advective
region with small C. The numerical estimate of L also shows some step-like behaviour.
This is due to the finite size used for the computational grid.

3.6 Summary

When a parabolic velocity is used, the uncoupled filament equations can be solved for
both the steady state as well as for the transient case. The steady state solutions show
a strong dependence on the outer boundary concentration condition. The transient
solution shows two different timescales. The first is a short advective timescale, which
ends when the system is split into three regions; an inner region of high concentrations,
a middle region with very low concentrations and an outer diffusive boundary layer.
The approach to equilibrium from this state takes a long time because the fluxes from
the diffusive boundary layer are limited through the middle region.

Based on the observations in the previous section we can develop∫ L a theory for the
position of L. We start by assuming that the total mass M = C(y)dy is given.

0

If we approximate C(L) ≈ 0, then we can calculate L from M , assuming that the
system is in a quasi steady state. This gives
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Figure 3.6: (a) Scaling of q given in equation (3.11). (b) L(t) calculated from (3.9)
and the numerical solution.

4 Coupled Filament

For a balanced filament or eddy, there will, in general, be no secondary circulation
supplied by the ocean that can create convergent motions in the sea ice. The presence
of sea ice introduces an additional stress into the system that couples the ice and ocean
together by creating an Ekman flow in the surface layer of the ocean. In this section
we ask whether this added flow can induce convergent motion of the sea ice, and, if
so, what properties does the convergence have that are different from the uncoupled
filament? In section 4.1 we introduce the equations, and in section 4.2 we consider
some transient solutions. The geometry of the problem is summarized in figure 4.1.

4.1 Equations

For convenience we rewrite equation (2.10) with vw = 0 but with an Ekman velocity
vE (in the non-dimensionalized variables):

∂tC = −∂y(vC)
0 = −C (v − vE)− ∂yC

α

0 = −C (u− uw) + λ∂2
yu

(4.1)

where once again we ignore the viscous stress in the equation for v. For the purposes
of this work, we treat the case of a filament using cartesian coordinates (rather than
working in polar coordinates as would be required for a circular eddy). We assume
that vE can be taken as an average over the depth D of the Ekman layer. Assuming
that in this layer the surface stress from the ice balances a Coriolis force, the stress
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Figure 4.1: Schematic of the of the various forces on acting on the sea ice and the
concentration profile (similar to figure 3.1, in a plane (top) and bird’s eye (bottom)
views. The bottom figure also contains the along filament velocity profile.

in the across frontal direction is

τw,x = −ρwfDvE

Since the drag in the across frontal direction is

τw,x = C(u− uw)

we can write the Ekman velocity in non-dimensional variables as

vE = C (u− uw) (4.2)

where we have rescaled V to be V = UCΓ/fD. Note that this velocity scale is very
different than in the previous section where we assumed that this velocity scale was
supplied by the imposed ocean velocity. We model the geostrophic water velocity uw

in a similar way to the ageostrophic component vw in the previous section and choose

uw = y(y − 1), (4.3)

in non-dimensional variables.
The addition of equation (4.2) couples the momentum balances in the x and y

directions, and hence changes the nature of solving the system in equation (4.1).
Before, the equation for the geostrophic velocity u could be ignored in solving the
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Figure 4.2: C with 3 different values of λ, sampled at various times. The dashed lines
show the value of C∞ for that experiment, 0.2.

rest of the system. We now instead have to solve a boundary value problem to find
u, which in turn can be used with C to find vE. Once vE is found, this allows v to be
determined and used to advance C to a new time step, using the procedure described
in the previous section.

Since we now have to solve for u, we have to introduce boundary conditions. We
choose

u(0) = 0 (4.4)

on the basis of symmetry, and
∂yu(1) = 0, (4.5)

equivalent to a no-stress boundary at the edge of the domain. If we did not impose
the second condition, then there would be a viscous stress at the edge of the domain
that could change the sea ice field outside the domain. Similar to the previous section
we choose the boundary condition so that the motion of sea ice inside the domain
does not impact outside of the domain.

4.2 Transient solutions

We solve the transient solutions to the system posed in the previous section using a
method similar to that in section 3. Now, however, we have to solve the boundary
problem associated with u in order to determine vE before we can timestep C. We
do this by using the solve BC package in the scipy library (http://www.scipy.org/).
Briefly, the package uses a collocation method with a cubic spline interpolation of C.

Figure 4.2 shows C for several times and 3 different parameter values of λ. All of
the simulations were run for 50 time units. For the smallest value of λ, the total mass
of sea ice in the domain decreases by approximately 25% over the simulation and the
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Figure 4.3: u left and vE right sampled at the end of the experiment show in figure
4.2. In the left figure the dashed black line is the ocean velocity uW , and in the right
figure it is vE.

profile becomes almost flat. For the largest value of λ, the total mass increases by
approximately 60% and the built-up region is able to extend over almost the entire
domain. The intermediate value of λ keeps the total mass of ice almost constant over
the domain, and has a structure similar to the uncoupled case at short times.

To understand why λ has this control on the total mass and concentration profile
inside the domain, we examine profiles of u and vE taken from the end of the
simulation (figure 4.3). In all cases we see that the ice velocity is faster than the
ocean velocity near the outer boundary of the domain. The viscous stress is able to
spread momentum throughout the domain, and since the outer boundary condition
is ∂yu = 0, the momentum is not completely removed from the ice and the ice moves
faster than the ocean. By contrast, the inner boundary condition is u = 0, and so
there is a momentum sink.

For the largest value of λ the ice velocity is very close to 0, and for the smallest λ
the ice velocity is very close to the ocean velocity. This matches our intuition, since
for a very small viscosity the ice has little viscous resistance and should be moving
with the ocean, and for a very large viscosity all of the momentum is transferred to
the momentum sink at y = 0.

Since vE ∝ (u− uW ), the point where u and uW cross separates vE into a positive
and negative region. Near the outer boundary u > uW , and so the Ekman transport
is actually exporting ice from the eddy into the far field. In the interior of the domain
the ice transport is towards the center, and the velocity vanishes at the inner boundary
since u = uW = 0. This means that for the largest viscosity there is only a small
export of ice near the outer boundary and a strong Ekman transport in the interior.
For the smallest viscosity there is a strong export of ice near the outer boundary
and a weak convergence in the interior of the domain (since u ≈ uw there). For

179



the intermediate case the structure of the Ekman transport is not unlike vw in the
uncoupled case.

These differences explain why some parameter values of λ accrue ice in the domain,
and others reduce the amount of ice in the domain. For small values of λ, the
convergence of vE is not very strong, and so the system loses some ice mass. This
mass loss is eventually stopped because of the diffusive flux across the boundary. For
large values of λ, the convergence into the center of the domain is quite strong, and
the mass is able to accrue in the center of the domain.

4.3 Summary

The viscous stresses in the ice redistribute momentum in the along-filament direction
in such a way that ice near the inner boundary moves slower than the ocean underneath,
while the ice near the outer boundary moves faster than the ocean. This creates an
Ekman transport that exports sea ice out of the filament near the outer boundary,
and pushes sea ice towards the center in the rest of the domain. Strongly viscous sea
ice is able to create large Ekman transports that accrue ice over top of the filament
because of the large difference between the ice and water velocities. Weakly viscous
sea ice is only able to create a weakly convergent Ekman transport and exports ice
into the far field. This implies that understanding sea ice rheology in this regime will
be important for constraining the ability of eddies and filaments to self-accrue ice.

The previous two sections have discussed two one-dimensional models of sea ice and
ocean interaction. In this section we discuss the implications of these models for doing
inversions to determine upper ocean velocity from sea ice concentration fields. The
main challenges of doing inversions from single sea ice images are:

1. Is there a large difference between C(0) and C∞? If not, the concentration
buildup will not be detectable from the background.

2. Does the system reach an equilibrium on a timescale similar to or shorter than
the persistence timescale of ocean flows (approximately 5 days)? If not, then
we need time dependent information to properly constrain the flow and so will
not be able to do so from a single image.

Here we try to recast the results from previous sections in terms of these questions
and try to provide some heuristic criteria about which conditions will be suitable for
inversions.

Ramifications for Estimating Surface Ocean Conver-
gences from Sea Ice Concentrations

5
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Figure 5.1: (a) Time series of the signal-to-background ratio C(0)/C∞ for different
values of C∞, from the uncoupled model. (b) [C(0) − C∞] /C∞ for different values of 
λ and the forcing velocity scale (U) after 5 time units (˜5.8 days). for the coupled
model

5.1 Timescales for uncoupled inversions

To answer the above questions we compute the signal-to-background ratio C(0)/C∞,
which quantifies the concentration buildup in the center of the domain compared
with the outer boundary. This is shown for several boundary conditions in figure 5.1.
Two timescales are clearly visible: there is a sharp increase for t < 1, and then a
second longer timescale with a smaller increase. For large values of C∞ there is a
small signal-to-background ratio over the entire time. This means that the steady
state solution will be a good approximation to the time-dependent solution, since
the period of transience is relatively small and the solution quickly converges to the
steady state.

These results yield two rules of thumb:

1. Low background concentrations give higher signal-to-background ratios, which
means that inversions will be able to be computed more accurately. This also
means that packed ice (˜100% concentration) are unlikely to be invertible, even
without taking account of any plastic part of the rheology [4].

2. The fast time scale of the sea ice adjustment means that the ice concentration
will be approximately in balance with the ocean forcing on short (5-10 day time
scales).
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5.2 Timescales for coupled inversions

For the coupled system, the solutions evolve in a much more complicated manner
compared with the uncoupled system. If there were a non-monotonic relationship
between the strength of the forcing velocity U and the other system parameters, then
the system will no longer be invertible. We test whether or not this in the case
in figure 5.1 by calculating the enhancement of the sea ice concentration over the
center of the filament for various U and λ. We find a monotonic relationship between
the enhancement and the scale of the forcing velocity when λ is fixed, although the
relationship is strongest for the stronger sea ice.

This suggest the following simple observations:

1. Higher viscosity allows a stronger coupling between the ocean currents and the
sea ice concentrations.

2. There is an approximately monotonic relationship between the scaling of the
ocean velocity and the enhancement of sea ice above.

Together, these results suggest that it may be possible to invert submesoscale
currents from observations of ice concentration. Note that this result was not guaranteed,
nor obvious a priori. There are many ways that this model could have failed to validate
the hypothesis that inversions would be possible. The adjustment timescales between
the ice and the ocean could have been too different, or the enhancement of sea ice
in the center of the domain could have been too low to be meaningful. However
our results suggest that the fast adjustment timescale associated with advection of
low concentration sea ice allows ocean forcing to enhance sea ice concentration over
convergent ocean currents. Future studies could analyze models with more realistic
rheologies, or attempt simple inversion methods on data from realistic ice-ocean
circulation models.

6 Conclusions

In the marginal ice zone, ocean filaments are able to accrue significant sea ice.
In this study we have considered two idealized test cases. We first considered an
uncoupled filament, where the surface ocean currents create a convergence of ice over
the filament. We find that there are two timescales. The first is a short advective
timescale that is able to accumulate sea ice into a built-up region over the filament
in a few days. The second timescale can take several hundred days, and is related to
a diffusive boundary layer (where the diffusion is controlled by internal ice stresses
providing a driving force to redistribute ice mass). We have developed a simple theory
to calculate the scaling of the diffusive flux and shown how it can be used to propagate
the boundary of the built-up region near the center where the sea ice concentration
is in quasi-steady equilibrium.
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We also considered a coupled filament, where we assume that the surface currents
are non-divergent, but the ocean boundary layer is coupled to the ice stress through
Ekman transport. The viscous stress spreads ice velocity in the along-filament direction
so that the ice near the outer boundary of the filament is moving faster than the ocean
underneath. This results in an Ekman transport that exports sea ice through the outer
boundary but also has a convergent section pushing sea ice towards the inner section.
We show that in this case the ability of the filament to accumulate sea ice is strongly
dependent on the strength of the ice viscosity. When the ice viscosity parameter is
very large, there are strong convergent velocities at the ocean surface. When the
ice viscosity parameter is very small, the convergent velocity is small. This idealized
study shows that both the uncoupled and coupled filaments are able to accumulate
significant amounts of sea ice on oceanographically relevant timescales. These results
suggest that ocean turbulence statistics can be inferred from still satellite images of
sea ice in marginal ice zones.

Appendix: justification for ignoring the viscous term in the
uncoupled filament

The Hibler model [4] assumes that the viscosity is

ν = max,

(
1

E2

P

max (emin, |e|) , νmin

)
(6.1)

where

|e| = 1

α

√
2tr (e · e) + (E2 − 1) [tr (e)]2 (6.2)

is the strain invariant associated with an elliptical yield curve of eccentricity E = 4,
with the strain rate tensor eij =

1
2
(∂iuj + ∂jui).

If we assume that the geostrophic velocity is larger than the ageostrophic velocity,
but that both vary over the same spatial scale, then we find that

|e| ∼ U

L
. (6.3)

For the purposes of this scaling, we will be interested in only the part of the
viscosity that does not involve emin and νmin. We ignore νmin because we are interested
in the largest values of ν and ignore emin because this value is much smaller (by a
factor of 106) than U/L (from the parameters listed in table 1).
The viscosity then scales like

ν ∼ PL

U
, (6.4)

so the ratio of the pressure gradient force to the viscous force in the along-filament
direction is
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∂y (ν∂yv)

∂yP
∼ V

U
(6.5)

which we assume to be small.

Acknowledgments

I would sincerely like to thank Georgy Manucharyan, Andrew Wells, and Sam Pegler
for their time and guidance through this project. I would also like to thank Mary-
Louise Timmermans and Claudia Cenedese for organizing the summer school, and
my fellow fellows for their companionship.

References
[1] E. Abrahamsen, Sustaining observations in the polar oceans, Philosophical

Transactions of the Royal Society A, 372 (2014), p. 20130337.

[2] T. W. Armitage, S. Bacon, A. L. Ridout, S. F. Thomas, Y. Aksenov,
and D. J. Wingham, Arctic sea surface height variability and change from
satellite radar altimetry and grace, 2003–2014, Journal of Geophysical Research:
Oceans, 121 (2016), pp. 4303–4322.

[3] D. L. Feltham, Sea ice rheology, Annual Review of Fluid Mechanics, 40 (2008),
pp. 91–112.

[4] W. Hibler III, A dynamic thermodynamic sea ice model, Journal of Physical
Oceanography, 9 (1979), pp. 815–846.

[5] E. Hunke and J. Dukowicz, An elastic–viscous–plastic model for sea
ice dynamics, Journal of Physical Oceanography, 27 (1997), pp. 1849–1867.

[6] P. Klein and G. Lapeyre, The oceanic vertical pump induced by
mesoscale and submesoscale turbulence, Annual Review of Marine Science,
1 (2009), pp. 351–375.

[7] V. Lytle, R. Massom, A. Worby, and I. Allison, Floe sizes in the east
antarctic sea ice zone estimated using combined sar and field data, in Space at the
service of our Environment, 1997, pp. 931–936.

[8] G. E. Manucharyan and A. F. Thompson, Submesoscale sea ice-
ocean interactions in marginal ice zones, Journal of Geophysical Research:
Oceans,(2017).

[9] J. C. McWilliams, Submesoscale currents in the ocean, 2016.

184



[10] J. A. Mensa and M.-L. Timmermans, Characterizing the seasonal cycle of
upper-ocean flows under multi-year sea ice, Ocean Modelling, 113 (2017), pp.
115–130.

[11] B. Rallabandi, Z. Zheng, M. Winton, and H. A. Stone, Formation of
sea ice bridges in narrow straits in response to wind and water stresses,
Journal of Geophysical Research: Oceans, (2017).

[12] M. C. Serreze and R. G. Barry, The Arctic climate system, Cambridge
University Press, 2014.

[13] M.-L. Timmermans and P. Winsor, Scales of horizontal density structure in
the chukchi sea surface layer, Continental Shelf Research, 52 (2013), pp. 39–45.

[14] J. A. Whitehead, Dimensions of continents and oceans–water has carved a
perfect cistern, Earth and Planetary Science Letters, 467 (2017), pp. 18–29.

185



A Mechanism for Secondary Sea Ice Formation

Driven by Double-diffusive Supercooling

Margaret R. Lindeman

October 23, 2019

Abstract

Sea ice forms rapidly in gaps in ice cover, driven by large heat fluxes from the ocean
to the atmosphere. The resulting brine rejection forms a cold, salty water mass that
sinks and flows away from its source. Here, we present a mechanism for secondary
ice formation due to supercooling at the interface between this cold, salty water mass
and the relatively fresh mixed layer overlying it. Motivated by Ice-Tethered Profiler
(ITP) measurements from the Canada Basin that show the onset and persistence of
these conditions, we develop a model for supercooling-driven frazil ice formation that
can be generalized to the Arctic or Antarctic. We quantify the contribution of the
frazil ice formed through this mechanism to the thickness of the overlying sea ice and
the resulting evolution of the mixed layer temperature and salinity fields.

1 Introduction

1.1    Motivation

Sea ice has a key impact on the planetary energy budget, and impacts air-sea ex-
changes near the poles [1, 16]. In a changing climate, the fate of sea ice is of crit-
ical importance, but complicated dynamics make prediction challenging. Sea ice
has long posed an impediment to observing ocean properties in the Arctic. Since
the mid-2000s, Ice Tethered Profilers (ITPs) have been deployed to mitigate this
challenge [15]. ITPs are anchored in sea ice and periodically measure conductivity,
temperature, and depth (CTD) profiles of the underlying water column, producing
unprecedented year-round hydrographic observations of the ice-covered Arctic Ocean.
These measurements provide insight into ocean circulation under sea ice as well as
thermodynamic interactions between the sea ice and ocean [14].

Most sea ice growth is driven directly by local surface cooling where the ocean is
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Figure 1: Ice Tethered Profiler observations from the Canada Basin (figure from [13]).

exposed to the atmosphere, such as in polynyas and leads, which are gaps in sea ice 
cover [8]. As sea ice forms, it excludes salt from its crystal structure, leaving behind 
very cold, saline water known as brine. The dense brine then sinks until it is neutrally 
buoyant, and may flow outward from where it formed, intruding beneath the relatively 
warm and fresh mixed layer insulated by the surrounding sea ice. Some ITP profiles 
show the arrival of cold, salty water mass at a depth of around 20m (e.g. the transition 
from the dark blue to red lines in figure 1a-b), which is speculated to be brine 
generated by this primary ice formation process. Due to the salinity dependence of the 
freezing point, each of these water masses is at its local freezing temperature (figure 
1c). Because heat diffuses faster than salt, as the mixed layer loses heat to the 
underlying brine, it may become supercooled (figure 2). This could result in the 
nucleation of ice crystals called frazil ice. However, measuring supercooling directly is 
difficult, because the instrument itself can act as a nucleus for ice formation. It is 
desirable to develop a model for this mechanism to identify an observable signature of 
the process and to quantify its potential for secondary frazil ice production.

1.2 Double-diffusive supercooling

A number of earlier studies utilized theory and laboratory experiments to investigate 
similar processes related to double-diffusive supercooling. Notably, Martin and Kauf-
mann’s 1974 experimental setup allowed them to describe a three-phase ice growth 
process that occurs in under-ice melt ponds [5]. In this situation, the meltwater tem-
perature is 0oC and salinity is 0 g/kg, causing the upper layer to become less dense 
as it cools (freshwater has a maximum density at 4oC), which drives convective insta-
bility. Stigebrandt (1981) similarly developed a theory where convective instability 
arises in both layers [11]. Voropayev et al. (1995) build on these earlier results, still 
considering an overlying layer of purely fresh meltwater but adding turbulence to their 
model to better reproduce observed quantities of frazil production [17]. Observational 
results are presented in McPhee et al. (2013), who propose a similar supercooling 
mechanism. Instead of an intrusion of cold brine on a timescale of days to weeks, they 
observe a tidally-advected salinity front that is speculated to induce double-diffusive

supercooling in a fully turbulent water column [7].
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Figure 2: Schematic of double-diffusive supercooling. The initial temperature in-
dicated by the red dashed profile is the salinity- dependent freezing point (right).
Because heat diffuses faster than salt (left), after a short time, the temperature in
the upper layer has decreased (solid red profile), while the salinity remains at its ini-
tial value (yellow profile). The blue triangle represents supercooling of the boundary
layer, where the temperature is below the freezing point.

1.3 Frazil ice

Jeffries et al. (1995) measured sea ice cores from the Beaufort Sea and found that 9%
of ice thickness was formed from incorporated frazil ice, including layers ranging from
5cm to 60cm thick [2]. They speculate that most of that ice may be attributed to
under-ice melt pond growth (see section 1.2), with a plausible alternative being “ice
pumps,” analogous to those observed in the Antarctic by Langhorne et al. (2015). Ice
pumps arise due to the pressure dependence of the freezing point. In the Ross Sea, this
happens where deep ice shelves melt and the buoyant meltwater becomes supercooled
as it ascends, producing a platelet ice layer up to about 1m thick [4]. Building on
these observational studies, modeling studies including Svensson and Omstedt (1994)
and Rees Jones and Wells (2017) make significant contributions to understanding
the conditions that generate frazil ice and facilitating generalization of supercooling-
driven frazil ice growth and the subsequent dynamics to other situations [12, 10].

The aim of this project was to use an idealized model to quantify the parameters
affecting the magnitude and persistence of supercooling driven by double-diffusion at
the interface between a mixed layer and underlying cold brine water mass, and ulti-
mately quantify the contribution of the resulting frazil ice formation to the thickness
of the overlying sea ice.

188



We use an idealized model of supercooling at the base of a well-mixed under-ice layer
to simulate a situation similar to the one seen in ITP observations (e.g. figure 1).
See figure 3 for a schematic representation of the model setup. The model simulates
mixed layer temperature T and salinity S, as well as the number density N and mean
radius R̄ of ice crystals suspended in the layer. The layer is assumed to be well-mixed,
with the temperature and salinity both uniform with depth. The frazil ice crystals
are assumed to be disc shaped, with a constant thickness H and variable radius R [6].
The crystals rise through the layer at a velocity proportional to the mean radius, but
otherwise there is no flow in the mixed layer.

The initial salinity S0 of the mixed layer is chosen based on observations, and its initial
temperature T0 is the freezing point determined by its salinity. The underlying cold
brine layer will be referred to as the reservoir. The reservoir salinity is assumed to be
constant and greater than the mixed layer salinity, and its temperature (also constant)
is also at the salinity-dependent freezing point, making the reservoir colder than the
mixed layer. The freezing point Tf is assumed to be approximately independent of
pressure (i.e. a function of salinity S) and calculated as

Tf (S) = Tf (S0) + Γ(S − S0), (1)

N̄ =

where Tf (S) is the freezing temperature at salinity S0 and Γ = −0.06oC [3]. Mixed 
layer temperature and salinity are subject to diffusion of heat and salt across the
bottom boundary, with diffusivities of heat κT and salt κS acting across a boundary

layer of thickness δ. Under molecular diffusion, κT � κS , but the ratio τ = κT /κS 
may vary with the level of turbulence.

2.2 Model formulation

To model the ice crystal suspension, we assume a crystal size distribution such that
n(R) is the number density of crystals of any given radius R, as illustrated in figure
4. The total number density N is defined as

∫ ∞

0

ndR, (2)

measured in units of crystal number per unit volume, and the mean radius R̄ as

R̄ =
1

N

∫ ∞
0

RndR. (3)

2 Model

2.1 Model setup
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Figure 3: Model schematic and list of variables. Subscript 0 indicates the initial value
of a variable. Tf (S) is the salinity-dependent freezing point as defined in (1). C0 is
an initial ice crystal concentration as defined in (10). Ice crystal image from [6].

The rise velocity of disc shaped ice crystals may be parameterized simply with the
linear relationship

wc = γR, (4)

where the constant γ = 16 s−1 is estimated from experimental data [6, 10].

The time derivative of n(R) can be formulated relatively simply following [10] as

∂n

∂t
= − ∂

∂R
(Gn)− wc

∂n

∂z
, (5)

where G = G0

[
Tf (S)− T

]
and the growth constant G0 is defined as

G0 =
κTmρwcw
ρiLH

. (6)

The first term on the right hand side of (5) is due to crystal growth, which shifts the
crystal size distribution n(R) to the right. The second term is the settling of crystals
as they rise. In order to model the suspension of ice crystals in a well-mixed layer,
we integrate (5) with respect to R and z.
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Figure 4: Schematic of crystal size distribution. R0 is the initial radius and R̄ is the
mean radius.

This leads to the equation for evolution of the depth-averaged number densityN :

D
∂N

∂t
= γR0N0 − γR̄N, (7)

which is a balance between influx of crystals at the initial radius R0 and number
density N0 at the base of the mixed layer, and the settling of crystals at the mean
radius and number density at the top. This is independent of the growth term because,
while crystal growth shifts the size distribution, it has no effect on the total number
of crystals.

Because the mixed layer temperature and freezing temperature are assumed to be
independent of depth, the supercooling is distributed through the mixed layer and
crystals continue to grow radially as they rise. By multiplying (5) by R before inte-
grating, we arrive at an equation for the change in mean radius R̄:

D
∂(NR̄)

∂t
= DG0

[
Tf (S)− T

]
N + (α + 1)

[
γR2

0N0 − γR̄2N
]
, (8)

with mixed layer depth D, latent heat of solidification L, ice density ρi, seawater
density ρw, and molecular diffusivity of heat κTm. α is a parameter that accounts for
the shape of the crystal size distribution, defined as

α ≡
∫∞
0
R2ndR

R̄
∫∞
0
RndR

. (9a)

The distribution shape determines the relationship between R̄2 and R2. If all crystals
are the same size (corresponding to a delta function distribution), α = 0. Otherwise,
α > 0. For example, for a Gaussian distribution with standard deviation σ,
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α ≈ σ

R̄
. (9b)

For the purposes of this report, we found the impact of α to be negligible, so henceforth
we consider (8) with α = 0.

The ice concentration can thus be expressed as the characteristic volume of a crystal
times the number of crystals per unit volume:

C = πR̄2HN. (10)

The evolution of mixed layer temperature T and salinity S are governed by diffusion
of heat and salt across the interface and the addition of salt and latent heat due to
the growth of ice crystals:

∂T

∂t
=

Lρi
cwρw

G0[Tf (S)− T ]NR̄2πH − κT
[
T − Tres
Dδ

]
, (11)

∂S

∂t
=

ρi
ρw
G0[Tf (S)− T ]NR̄2πHS − κS

[
S − Sres

Dδ

]
, (12)

with diffusivities of heat and salt κS and κT reservoir temperature Tres and salinity
Sres.

It is useful to define supercooling θ as

θ = T − Tf (S), (13)

choosing a sign convention where negative θ indicates supercooling (i.e. the mixed
layer temperature is below the freezing point determined by its current salinity). We
can directly compute the evolution of θ as

∂θ

∂t
=
∂T

∂t
− Γ

∂S

∂t
, (14)

as we do in our definition of the dimensionless system below, or it can be computed
post hoc given the evolution of T and S.
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2.3 Dimensionless parameters

We nondimensionalize the variables as

θ̂ =
T − Tf (S)

∆T
, Ŝ =

S

S0

, R̂ =
R̄

R0

, N̂ =
DG0∆T

γR2
0N0

N, t̂ =
κT
Dδ

t, (15)

with ∆T defined as
∆T = Tf (S0)− Tres. (16)

The timescale we have chosen is the adjustment timescale for cooling of the whole
mixed layer depth D by diffusion of heat across the boundary layer δ.

The resulting nondimensional governing equations corresponding to (14), (12), (7),
and (8), respectively, can be written as

∂θ̂

∂t̂
= −2PeC0N̂R̂θ̂

[
St− L ρi

ρw
Ŝ
]
−
[
θ̂ + L(Ŝ − 1) + 1

]
+ Lτ

[
Ŝ − Ŝres], (17a)

∂Ŝ

∂t̂
= −2PeC0

ρi
ρw
N̂R̂θ̂Ŝ − τ(Ŝ − Ŝres), (17b)

∂N̂

∂t̂
= −PeR̂N̂ + Gr, (17c)

∂(R̂N̂)

∂t̂
= GrN̂ θ̂ − PeR̂2N̂ + Gr, (17d)

where the six dimensionless parameters are defined as follows:

τ ≡ κS
κT
, (18a)

Pe ≡ γR0δ

κT
, (18b)

St ≡ ρiL

ρwcw∆T
, (18c)

Gr ≡ G0∆TδD

κTR0

, (18d)

L ≡ ΓS0

∆T
, (18e)

Ŝres ≡
Sres

S0

. (18f)
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It is worth briefly explaining the significance of these parameters and their approxi-
mate values for the parameter ranges that will be explored in section 3. It is critical
to this problem that τ (18a), the ratio of salt diffusivity to heat diffusivity, have a
value much less than 1, because that is the origin of the supercooling. The Péclet
number Pe (18b) is defined as a ratio of crystal rise velocity to heat diffusion across
the basal boundary layer, which has a value on the order of 50, indicating that heat
diffuses slowly relative to the timescale on which crystals remain in the suspension.

The Stefan number St (18c) describes the ratio of latent to sensible heat, an indicator
of the efficiency of ice production, and is on the order of 103. The growth parameter 
Gr (18d) increases as St decreases, and describes the relative change in size by crystal
growth over the cooling timescale, compared to the initial radius. It is on the order of
104, indicating that the timescale of crystal growth is much faster than the timescale 
of heat diffusion, and crystals will grow substantially. The liquidus number L (18e)
is the ratio of the initial mixed layer freezing temperature to temperature gradient,

and is on the order of 20. The scaled reservoir salinity Ŝres is order 1.

3 Results

3.1 Timescales of system evolution

The system of equations (17) is solved numerically to simulate the evolution of the
system over 30 days, providing some insight into the basic behavior and important
timescales of this system (figure 5). Henceforth, dimensional quantities will be used in
the figures and discussion. The initial conditions and parameter values used for this
simulation are initial mixed layer salinity S0 = 28 g/kg, reservoir salinity Sres = 29
g/kg, temperature gradient ∆T = 0.06oC, initial concentration C0 = 10−7, initial 
radius R0 = 0.2mm, and mixed layer depth D = 10m. Consistent with previous
laboratory and modeling experiments of supercooling and frazil ice formation, the
system first cools rapidly, which is accompanied by an explosion in ice concentration
(e.g. [9, 10]).

After the time of peak supercooling, which scales as the cooling adjustment timescale
discussed earlier,

t ∼ Dδ

κT
, (19)

the magnitude of supercooling shows a small and gradual decrease, along with the
ice concentration and mean radius. This change coincides with the salinity increasing
approximately linearly with time.

By running the simulation over 500 days (which is unrealistic physically because of the
relative ephemerality of these conditions), we can see the full theoretical evolution of
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Figure 5: 30-day evolution of mixed layer (a) supercooling θ, (b) salinity S, (c) ice
concentration C (10), and (d) mean crystal radius R̄. The red line indicates the
timescale of peak supercooling (19). The initial conditions used for this simulation
are S0 = 28 g/kg, Sres = 29 g/kg, ∆T = 0.06oC, C0 = 10−7, R0 = 0.2mm, and
D = 10m.
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Figure 6: 500-day simulation of mixed layer (a) temperature and (b) salinity. The
magenta lines indicate the time of peak supercooling. (c) Points on the T-S plot are
colored by day and indicate the mixed layer conditions. The red circle in the T-S plot
indicates the initial temperature and salinity of the mixed layer; magenta indicates
the magnitude of peak supercooling; blue is the reservoir temperature and salinity.
The dashed grey line is the freezing line. Parameter values as in figure 5.
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this system in temperature-salinity space (figure 6c). The magnitude of supercooling
decreases monotonically after the peak, qualitatively following the salinity (figure 6a-
b), although the T-S plot shows that the temperature of the mixed layer continues to
decrease, indicating that the slow evolution of the system is driven by the increasing
salinity lowering the freezing temperature. The steady decrease in temperature and
increase in salinity are qualitatively consistent with the changing temperature and
salinity profiles in figure 1.

3.2 Fast evolution

Plotting the time evolution of each variable’s time derivative gives some more insight
into the initial transient period (figure 7e-h). Prior to the peak supercooling, the
supercooling is dominated by the heat flux out of the mixed layer. However, as the
ice concentration increases, more latent heat is released into the mixed layer as those
crystals grow, and the peak supercooling is reached when those tendencies balance
(figure 7e):

Lρi
cpρw

G0(Tf − T )NR̄2πH ∼ κT

[
T − Tres
Dδ

]
. (20a)

The crystal number density N and mean radius R̄ also peak at this point, with the
crystals settling out at the top balancing the influx of crystals, and radial crystal
growth balancing reduction of the mean radius by precipitation of larger crystals
(figure 7g-h), respectively:

γR̄N ∼ γR0N0 (20b)

G0(Tf − T )DN ∼ γR̄N (20c)

These balances lead to scalings for the peak supercooling,

θpeak
∆T

∼ β

2

κT
DδG0

ρwcp∆T

ρiL

1

N0R0πH
, (21a)

mean ice crystal radius,

R̄2
peak

R2
0

∼ β

2

κT
γδ

cpρw∆T

ρiL

1

N0R0πH
, (21b)

and ice concentration,

Cpeak ∼
C0

R0

R̄peak, (21c)
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Figure 7: (a-d) Evolution for the first 10 days of the simulation with parameter values
as in figure 5 are plotted with the time of peak supercooling indicated by the grey
dashed line. (e-h) The associated tendencies are plotted (blue) along with their major
constituents (red and yellow). The top legend applies to θ and S; the bottom legend
applies to C and R̄.
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Figure 8: (a) The squared maximum radius R̄2 calculated using (21b) is plotted
against the simulated value for a range of values of initial heat flux Q0 and mixed
layer depth D. (b) As in (a), but for peak supercooling θ (21a).

with dimensionless factor β arising from the assumption that Tf (S)−Tres ≈ ∆T :

β ≡ 1

1 + κT
2πR0HN0G0Dδ

cwρw
Lρi

=
1

1 + 1
StGr C0

. (22)

These can also be written in terms of the dimensionless parameters (18):

θpeak
∆T

∼ β

2C0GrSt
, (23a)

R̄2
peak

R2
0

∼ β

2PeStC0

(23b)

The scaling R̄2
peak slightly underestimates the peak radius relative to the simulation

(figure 8a), while the θpeak scaling slightly overestimates the magnitude of supercooling
(figure 8b), but both are linear with respect to initial heat flux Q0 and mixed layer
depth D.
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3.3 Slow evolution

The slow evolution of the system after the time of peak supercooling is driven by
increasing salinity due to salt rejection as the ice crystals grow (figure 7f). This
depresses the freezing point, reducing the magnitude of supercooling. As a result, the
mean ice crystal radius and concentration also decline very gradually.

To get some more insight into this timescale, we can arrive at a scaling estimate using
a few simplifications. First, a balance between latent heat release due to ice freezing
and cooling due to the heat flux across the boundary is assumed (20a). Second, mean
radius and number density are approximated to be constant, with

R̄N ≈ R0N0. (24)

We also require τ � 1.

This gives us a leading order balance for ∂S
∂t

:

∂S

∂t
∼ ρi
ρw
G0

[
Tf (S)− T

]
NR̄2πHS. (25)

Defining Tm = 0oC and

Tf (S) = Tm + ΓS, (26)

we can substitute for Tf − T in (25) to get

∂S

∂t
≈
(

λΓ

Tres − Tm

)
S

[
S +

Tm − Tres
Γ

]
. (27)

Here we have defined a parameter λ, which has units s−1:

λ ≡ (Tres − Tm)
cp
L

κT
Dδ

[
1

1− 1
N0R02πH

κT cp
DδG0L

]
. (28)

The solution of (27) yields a scaling for the slow evolution of salinity S(t):

S(t) ∼ −Tres
Γ

(
1 +

∆T

ΓS0

e−λt
)−1

, (29)

and 1
λ

is an approximate timescale for relaxation of the mixed layer salinity S to the
reservoir salinity Sres (i.e. the timescale on which supercooling would be depleted if
the appropriate conditions persisted).
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Figure 9: (a) The simulated slow evolution of S(t) over 500 days (blue) is plotted
with the scaling estimate from (29) (red) for the baseline initial conditions. (b) The
scaling value of the salinity is plotted against the simulation value of the salinity over
the 500-day run for a range of values of initial heat flux Q0. (c) As in (b), but for a
range of values of mixed layer depth D.

For the parameter values used in these simulations (see section 3.1), this scaling qual-
itatively captures the timing and magnitude of mixed layer salinity evolution on long
timescales (figure 9a). However, it doesn’t apply to all parameter ranges, overesti-
mating salinity for very small heat fluxes and deep mixed layers, and underestimating
salinity for large heat fluxes and shallow mixed layers (figure 9b-c).

3.4 Quantifying ice accumulation

We are interested in quantifying the potential contribution to ice thickness resulting
from this mechanism. We can define accumulation at each timestep as
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Figure 10: (a-b) Ice concentration C and mean radius R̄ are plotted over 500
days. (c) Ice accumulation as calculated in (30) (red) and assuming (γR0)πR
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∂h

∂t
= (γR̄)πR̄2HN − (γR0)πR

2
0N0, (30)

where the first term represents settling of ice crystals at the mean radius and the
second term removes the contribution of the crystals seeded at the bottom of the
mixed layer in the model. We see that for about 100 days of the simulation, the
contribution of the second term is negligible (figure 10c). In theory, the system would
saturate where these terms were equal, i.e.

R̄3N

R3
0N0

∼ 1, (31)

which is where the red curve levels out in figure 10c. However, as discussed previously,
these conditions are unlikely to persist for more than a few weeks. On more realistic
timescales, we can approximate that N and R are equal to their peak values Npeak

and Rpeak, leading us to the scaling

∂h

∂t
∼ 1

2

κT
δ

1

St
, (32a)

with St, defined in (18c), representing the efficiency of ice production relative to cool-
ing at the mixed layer boundary. This is easily solved (and the constants rearranged)
to find

h(t) ∼ 1

2

Q0

Lρi
t, (32b)

We find that this is one half of the theoretical upper bound, assuming perfect con-
version of cooling to ice production:

hmax(t) =
Q

Lρi
t. (33)

We test this scaling using a model simulation over 30 days (figure 11a). We find that
for small values of Q0 up to about 10W/m2 and large mixed layer depths of 10-20m, or
relatively slow adjustment timescales (19), the scaling estimate (dashed line) agrees
qualitatively with the simulated ice production. In general, larger heat fluxes generate
more ice production, which is captured by the scaling, but it does not account for the
impact of mixed layer depth D. The colors overlaid on the curve for each mixed layer
depth show the mean radius R̄ at the end of the simulation. Deeper mixed layers
have larger R̄, indicating that one explanation for the dependence on depth is that ice
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crystals in deep layers remain in the supercooled mixed layer longer before settling
at the top, facilitating more radial growth and thus greater total accumulation.

The depth dependence is further explained in figure 11b, which shows the peak and
final supercooling θ of the mixed layer at various values of D. The greatest magni-
tude of supercooling is much greater for the 1m mixed layer than for the 20m mixed
layer. However, the final magnitude of θ is substantially smaller than the peak for
the shallower layer, because the latent heat and salt released by ice freezing in the
shallow mixed layer are relatively concentrated and erode the supercooling rapidly.
In contrast, the final value of θ in the 20m layer is very close to its peak, and nearly
indistinguishable for lower values of Q0. This is supported by the depletion timescale
1
λ

(28), which is directly related to D and inversely related to κT
δ

. Finally, ice accumu-
lation is also well-correlated with maximum ice concentration C (figure 11c).

In order to compare the values of ice accumulation to frazil ice layer thickness in
observational studies, it is necessary to estimate an ice volume fraction. Based on a
combination of observational and modeling estimates, this factor is approximated as

T = 0.25 ± 0.09 [4], resulting in a layer thickness around 4 times greater than the
accumulation values shown in figures 10c and 11a, or between 1cm and 15cm over 30
days as calculated using (32b) and Q0 between 1 and 10 W/m2.

4 Conclusions and Future Work

Our model reaffirms that differing rates of heat and salt diffusion can generate su-
percooling at the interface between water masses. We have described the evolution
of the mixed layer as a result of this process and derived scalings to quantify the ef-
fects of system parameters on key quantities, including the peak supercooling, which
defines the overall phase-space trajectory of mixed layer properties, and ice crystal
radius. We have shown that under realistic Arctic conditions, this mechanism could
contribute non-negligible secondary sea ice growth, and identified key parameters that
may determine the quantity of ice production.

In order to rigorously quantify the uncertainties, more observations are necessary to
constrain appropriate parameter ranges and evaluate the model predictions. We will
continue to improve the model, notably by adding depth variation. We also intend
to evaluate the potential for convective mixing by the rising ice crystals.
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Eddy Energy Fluxes in Mixed Barotropic–Baroclinic Instability:

Upgradient or Downgradient?

Madeleine K. Youngs

October 21, 2019

1 Introduction

Wave-type instabilities, such as barotropic and baroclinic instability, are important types of vari-
ability in the oceanic and atmospheric system. These instabilities generate storms in the atmosphere
and eddies in the ocean, set the stratification of the global ocean [Marshall and Speer , 2012], gener-
ate surface westerlies in the atmosphere (see Vallis [2006] and references therein) and more. They
are generally important for setting the mean state of the system. In the ocean, these instabilities
are parameterized as a diffusion of buoyancy along isopycnals, which decreases the baroclinic shear,
but does nothing to account for barotropic instability or the momentum fluxes associated with
both instabilities and their effects on the mean flow, because they are too complicated [Gent and
McWilliams, 1990]. In effect, the mean state of ocean models is likely to be inaccurate at best in
some regions. I examine these momentum fluxes to determine the effects of eddies on the mean
flow.

The necessary conditions for barotropic and baroclinic instability state that there must be a
sign change of the potential vorticity (PV) gradient somewhere in the domain for instability to
occur [Charney and Stern, 1962]. Purely barotropic flow and thus instability would have a sign
change of the PV gradient within a layer, which would indicate a downgradient momentum flux and
extraction of energy from the mean flow [Rayleigh, 1880; Drazin and Howard , 1966]. For a purely
baroclinic flow, there must be a sign change in the PV gradient between the layers and this results
in a downgradient flux of buoyancy and extraction of energy from available potential energy [Eady ,
1949; Charney , 1947]. In the real world, however, flows have both vertical and horizontal shear and
thus have two mean energy reservoirs, kinetic and potential energy. The necessary conditions for
instability in this case don’t indicate which energy reserves are being tapped, but just that energy is
being extracted from the mean. Thus, it would be useful to be able to determine a priori the energy
pathways in an unstable system, but so far this goal has been elusive. For example, it is sometimes
assumed that a change in sign of the PV gradient in a layer implies that there is a down-gradient
momentum flux [Pedlosky , 1964]. This assumption is false. I show that the dynamical interaction
between layers is responsible for setting the direction of the momentum fluxes in a linearly unstable
system.

In a baroclinically unstable fluid with a horizontal shear, interesting interactions occur between
the instability and the horizontal shear. There can be upgradient momentum fluxes associated with
the baroclinic instability [Pedlosky , 1964], but also downgradient momentum fluxes. Held [1975]
found that when a two-layer flow has the same sign PV gradient in both layers, the direction of the
momentum fluxes can be determined. Killworth [1980] examines the parameter space of instabilities
with horizontal and vertical shear and found that when the horizontal length scale of the shear was
larger than the internal deformation radius, then baroclinic conversion dominated, but when the
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horizontal length scale was much smaller than the deformation radius, then barotropic conversion 
dominated (see also Holland and Haidvogel [1980]).

In this report I look at the linear stability of a zonal channel flow to understand the direction of 
the momentum and buoyancy fluxes of a wide parameter space and answer the question: what sets 
the direction of the eddy energy fluxes in mixed instability? In section 2, I set up the model and 
diagnostics used to analyze the momentum fluxes. In sections 3 and 4, I describe the Gaussian and 
cosine jet configurations, respectively. I conclude in section 5.

2 Model

2.1 Linear stability problem
The derivation that follows parallels Pedlosky [1987]. I consider the two–layer quasi–geostrophic 
potential vorticity (QGPV) non-dimensionalized equations on a β-plane:[

∂

∂t
+
∂ψn
∂x

∂

∂y
− ∂ψn

∂y

∂

∂x

] [
βy +∇2ψn − Fn(−1)n(ψ2 − ψ1) + ηbδn2

]
= 0 n = 1, 2 (1)

where ψn is the stream function, δij is the Kronecker delta function and

∇2 =
∂2

∂x2
+

∂2

∂y2
.

I have

β = β0
L2

U
(2)

where β0 is the meridional gradient in planetary vorticity, L is a length scale given by the width of
the channel, and U is the velocity scale of the jet and

Fn =
f2

0L
2

g(ρ2 − ρ1)/ρ0Dn
(3)

where f0 is the planetary vorticity, ρn is the density of the n-th layer, ρ0 is a reference density and
Dn is the depth of the layer and

F =
f2

0L
2

g(ρ2 − ρ1)/ρ0D
(4)

where D is the total depth. I relate Fn to F by a ratio of depth of top layer to lower layer
∆ = D1/D2: F1 = F (1 + ∆)/∆ and F2 = F (1 + ∆). The topographic forcing is given by:

ηb =
f0hb
D2

L

U
(5)

and is only included in the lowest layer.
I consider a zonal basic flow

Un(y) = −∂Ψn

∂y
(6)

that has a horizontal shear as a source of kinetic energy and a vertical shear (through thermal
wind) as a source of available potential energy. Let φn be the eddy stream function such that

ψn = Ψn(y) + φn(x, y, t) (7)
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with eddy velocities

un = −∂φn
∂y

, vn =
∂φn
∂x

(8)

I substitute Eq. 7 into Eq. 1 to get:[
∂

∂t
+ Un

∂

∂x

]
qn +

∂φn
∂x

∂Qn
∂y

+

[
∂φn
∂x

∂qn
∂y
− ∂φn

∂y

∂qn
∂x

]
= 0 (9)

where the potential vorticity gradient of the basic state is

∂Qn
∂y

= β − ∂2Un
∂y2

− Fn(−1)n(U1 − U2) +
∂ηb
∂y

δn2 (10)

and the perturbation potential vorticity is given by

qn = ∇2φn − Fn(−1)n(φ2 − φ1) (11)

We then consider the linear stability problem by neglecting the terms of order O(φ2
n) and higher

where I get the linearized QGPV equation.[
∂

∂t
+ Un

∂

∂x

]
qn +

∂φn
∂x

∂Qn
∂y

= 0 (12)

with boundary conditions
∂φn
∂x

= 0, y = ±1 (13)

which says that there is no flow into or out of the walls at the boundary.
The necessary conditions for instability in this case are given by:∫ 1

−1
dy
∑
n

∂

∂t

|φn|2

|Un − c|2
∂Qn
∂y

= 0 (14)

where c is the phase speed of the wave as developed in section 2.2. This equation is derived from

the zonally averaged momentum equation. If the flow is unstable, ∂
∂t
|φn|2
|Un−c|2 must be positive such

that the eddy energy is growing, so in order for this equation to be satisfied, ∂Qn∂y must change sign
somewhere in the domain.

2.2 Diagnostics

In order to understand the energetics of the flow, I use the energy equation for the perturbations.
I set Dn/D = dn. I take Eq. 12 and multiply by −dnφn and sum the two layers, and integrate in
y.

∂

∂t

∫ 1

−1
dy [EKE1 + EKE2 + EAPE] =

∫ 1

−1
dy [∆EKE1 + ∆EKE2 + ∆EAPE] (15)

EKEn =
dn
2

(
∂φn
∂x

)2

+

(
∂φn
∂y

)2

(16)

EAPE =
(φ1 − φ2)2

2
F0 (17)

∆EKEn = dn
∂φn
∂x

∂φn
∂y

∂Un
∂y

(18)

∆EAPE = F0(U1 − U2)
∂φ2

∂x
φ1 (19)
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where the left-hand side represents the time change of total eddy energy and the right-hand side
represents the conversion from the mean into the eddy energy. If there is energy converted into
eddies through a positive (negative) ∆EKEn, then the momentum fluxes are said to be downgradient
(upgradient) because they act to relax (strengthen) the mean flow and transfer kinetic energy from
regions of high (low) energy to regions of low (high) kinetic energy. If there is energy converted into
eddies through a positive (negative) ∆EAPE, then the buoyancy fluxes are said to be downgradient
(upgradient) because they act to relax (strengthen) the mean buoyancy gradient and transfer
potential energy from regions of high (low) potential energy to regions of low (high) potential
energy.

Another way to assess how eddies affect the mean flow is to consider the zonally averaged, zonal
momentum equation summed over both layers:

∂

∂t

[
2∑

n=1

dnun

]
= − ∂

∂y

[
2∑

n=1

dnunvn

]
(20)

so the change of zonal momentum is related to the divergence of the Reynolds stresses. I can take
the PV equation and the enstrophy equation to show that

∂

∂t

[
2∑

n=1

dnun

]
= − ∂

∂y

[
2∑

n=1

dn
q2
n

∂Qn/∂y

]
(21)

Ultimately, I want to know if the barotropic flow accelerates or decelerates, and this expression
tells us that I know the sign of the acceleration if ∂Qn/∂y has the same sign in both layers [Held ,
1975]. If the PV gradients are not the same sign then the sign of the acceleration also depends on
the ratio of the magnitudes of q2

n as well as ∂Qn/∂y.

2.3 Eigenvalue solver

I use an eigenvalue solver to compute the solutions to Eq. 12. First I assume a solution of the form

φn = Re Φn(y)eik(x−ct) (22)

where Eq. 12 becomes two coupled ordinary differential equations

(U1 − c)
[
d2Φ1

dy2
− k2Φ1 − F1(Φ1 − Φ2)

]
+ Φ1

∂Q1

∂y
= 0 (23)

(U2 − c)
[
d2Φ2

dy2
− k2Φ2 − F2(Φ2 − Φ1)

]
+ Φ2

∂Q2

∂y
= 0 (24)

I discretize the various parameters across my channel and use second order finite differencing to
create a differentiation matrix for the operator d2

dy2
which gives an equivalent matrix expression for

Equations 23 and 24. Then for every k, I can use an eigenvalue solver to compute the eigenvalues c

and the eigenvectors
[
d2Φn
dy2
− k2Φn + Fn(−1)n(Φ1 − Φ2)

]
and Φn. Then I normalize Φn so that the

total energy in the domain is 1 (EKE1 + EKE2 + EAPE = 1). Then growth rates kci and energy
conversions are computed (Eq. 18 and 19). After computing the solution for all ks the solution
(Φn) with maximum growth rate (kci) is selected for further analysis. In reality, the solution that is
selected is not always the one with the maximum growth rate but can be another mode [Pedlosky ,
1981].
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3 Gaussian Jet

3.1 Set up

I set up the two layers with a Gaussian jet of half-width δ in the upper layer and no flow in the
lower layer (Fig. 1).

U1 =
1

2
+

1

2
e−

y2

δ2 (25)

U2 = 0 (26)

Note that the velocity has been scaled out of the problem and is included in the β parameter.
δ ranges from 0 to 1 in our non-dimensionalized domain. In this case the basic state potential
vorticity gradient is given by

∂Q1

∂y
= β − ∂2U1

∂y2
+ F1U1 (27)

∂Q2

∂y
= β − F2U1 (28)

We have 4 non-dimensional parameters to vary in this case: F0, δ, ∆, and β. For experiments
discussed here, I set ∆ = 1.

3.2 Results

I examine the energy conversion over a range of F and β and set δ = 0.05 as a constant. I scale
the constants F and β with δ2. This rescales the

Fδ2 = F =
f2

0 δ
2
0

g(ρ2 − ρ1)/ρ0D
(29)

and

βδ2 = β0
δ2

0

U
(30)

where δ = δ0/L is the length scale of the jet width. First, I notice that when the PV gradient
changes sign in the upper layer, the momentum fluxes are not always downgradient (Fig. 2). There
are also downgradient momentum fluxes associated with no sign change of the PV gradient in the
upper layer. So, it is not the introduction of a sign change in the upper-layer PV gradient that leads
to downgradient momentum fluxes. I also notice that as I decrease F or increase the deformation
radius, the kinetic energy conversion comes to dominate over the potential energy conversion.

I split up the domain into 5 regions. Region 1 has downgradient momentum fluxes but no sign
change in the upper layer PV gradient; this is an unexpected result. Region 2 has downgradient
momentum fluxes and a sign change in the upper layer PV gradient. Region 3 has upgradient
momentum fluxes and no sign change in the upper layer PV gradient. Region 4 has upgradient
momentum fluxes and a sign change in the upper layer PV gradient; this is also an unexpected
result. Region 5 is dominated by barotropic conversion and has a sign change in the upper layer
PV gradient.

In these 5 different regions, there are defining characteristics in the wavenumber space (Fig. 3).
In regions 1-4, the dominant mode (with largest growth rate) is a mode with primarily baroclinic
production (downgradient buoyancy fluxes) and weak barotropic production (kinetic energy fluxes).
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When a mode has primarily kinetic energy conversion, I call it a barotropic mode and when it has
primarily baroclinic conversion, I call it a baroclinic mode. Regions 1 and 2 have downgradient
kinetic energy fluxes and regions 3 and 4 have upgradient kinetic energy fluxes at the most unstable
wavenumber. Comparing region 1 and region 2, the primary difference is that modes with higher
wavenumber appear. These new modes have primarily barotropic conversion. Similarly, this mode
appears in region 4 but not region 3. So when the sign change is introduced into the upper layer PV
gradient in regions 2 and 4, a higher-wavenumber barotropic mode appears as a solution. In these
regions, the dominate barotropic modes both have locations where U1 − c vanishes. This indicates
that the barotropic modes are contiguous with neutral modes, and is a result consistent with
previous studies [Kuo, 1949]. The dominant (baroclinic) mode sets the direction of the momentum
fluxes in regions 1-4 and the mode primarily dependent on F , β, and δ and not on the upper-
layer PV gradient in particular. In region 5, the baroclinic mode’s growth rate decreases but the
barotropic mode’s growth rate increases and becomes dominant.

The direction of the momentum fluxes in the baroclinic mode can be visualized geometrically
(Fig. 4). When the stream function is tilted with the flow, then the fluxes are upgradient and
energy is being fed back into the mean, but when the stream function is tilted against the flow,
then the momentum fluxes are downgradient and energy is being extracted from the mean. In region
2 near the center of the jet, the stream function is tilted against the flow, leading to downgradient
momentum fluxes. In region 3 near the center of the jet, the stream function is tilted with the
flow, indicating upgradient momentum fluxes. This shows us that the particular arrangement of
the stream function in the baroclinic mode is important for setting the direction of the momentum
fluxes.

As I increase δ similar structures appear but the line that separates upgradient and downgradient
momentum fluxes moves to the right (larger βδ2), eventually until there is no region 4 (Fig. 5).
This indicates the role of the channel walls in setting the structure of the streamfunction and the
direction of the fluxes.

3.3 Physical interpretation

As I reduce F , I reduce the coupling between the layers or increase the internal deformation radius.
Physically this corresponds to a weakening of the baroclinic mode, largely without modifying the
barotropic mode. The deformation radius becomes much larger than the length scale defining the
horizontal shear (Fδ2 << 1), making PV gradients and growth rates dominated by the horizontal
shear. When Fδ2 >> 1 the baroclinic mode dominates. This result is discussed at length in
Killworth [1980].

4 Cosine Jet

In the previous section, I examined the cases where there was always a sign change between the two
layers, which doesn’t allow an examination of cases with no sign change between two layers. By
examining set-ups where there is no change in the PV gradient between layers but a change within
each layer, I examine cases that are analogous to the Gaussian jet set-up where there is no change
in the PV gradient within the layer. By comparing these two cases, I expect a super-symmetry
in this system because baroclinic and barotropic instability are described by the same eigenvalue
problem [Drazin and Reid , 2004] and a just a rotation of the same system.
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4.1 Set up

I set up a cosine jet in this case, so that I can set up a flow where the potential vorticity gradient
can be the same sign between the two layers but a different sign within the layer (Fig. 6). I
introduce topography into my lower layer in order to force the PV gradients to change sign at the
same location. My flow is then:

U1 = 1/2 + 1/2 cos(πy) (31)

U2 = 0 (32)

The topography that I construct is

∂ηb
∂y

= γ cos(πy) + C (33)

The potential vorticity gradient

∂Q1

∂y
= β +

π2

2
cos(πy) +

F1

2
(1 + cos(πy)) (34)

∂Q2

∂y
= β − F2

2
(1 + cos(πy)) + γ cos(πy) + C (35)

where γ = 8 is the magnitude of the topography variation and C is the magnitude of the constant
slope added to enforce the condition that the PV gradient change sign at the same location in both
layers.

4.2 Results

I analyze this configuration following section 3 by varying F and β and interpreting the eddy
energy conversion. There are three distinct regions in the domain (Fig. 7). Region 1 has upgradient
buoyancy fluxes and downgradient momentum fluxes and has no sign change between the two layers.
Region 2 has downgradient buoyancy fluxes and downgradient momentum fluxes and has no sign
change between the two layers (this is counter intuitive). Region 3 has downgradient buoyancy
fluxes and has a sign change between the two layers. Notice that unlike the Gaussian jet case, there
is no region with upgradient buoyancy fluxes but a sign change between the layers.

In comparing region 1 and region 2, the buoyancy fluxes change from upgradient to downgradient
(Fig. 8). This is seen in the barotropic mode of the flow. As the sign change between the two
layers is introduced a baroclinic mode is introduced, just as I found in section 3.2 for the barotropic
mode. I see a symmetry in the modes that appear.

4.3 Physical Interpretation

As I increase F , I increase the coupling between the two layers so the baroclinic mode becomes
stronger and eventually dominates. With a smaller β I see a larger region of down-gradient buoyancy
fluxes but no sign change. In the Gaussian jet case the walls act to eliminate region 4, or the region
with upgradient momentum fluxes with a sign change in the upper layer PV gradient, but in this
case there is no region with upgradient buoyancy fluxes with a sign change between the layers.
The QG approximation involves assuming that the layers are thin, which seems to be preventing
a region with upgradient buoyancy fluxes and a sign change between the layers, just like the walls
prevent region 4 in the Gaussian jet.

214



5 Conclusion

In this report, I have shown that the change in sign of the PV gradient within a layer (between
layers) is not generally responsible for setting the sign of the eddy momentum (buoyancy) fluxes.
I have shown that the relative magnitude of the eddy PV of the two layers is fundamental for
determining the direction of the eddy momentum fluxes. The relative magnitude of the eddy PV
is set by the PV gradients, the position of the walls, and the structure of the most unstable mode,
but there is not a straightforward way to determine the relative magnitude.
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Figure 1: An example velocity profile and PV gradient for β = 60, F = 100 and δ = 0.1.
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Figure 2: Energy conversion computed for the most unstable eigenfunctions normalized by total
(potential plus kinetic) energy conversion at δ = 0.05. Potential energy conversion (a) and kinetic
energy conversion (b). The domain is divided into 5 regions. The dotted line shows where the
momentum fluxes change sign and the solid line shows where the upper layer PV gradient changes
sign, with no sign change to the right and a sign change to the left. Blue represents downgradient
fluxes and red represents upgradient fluxes. A cross section of kinetic energy conversion (c) as
shown in red line of panel (b).
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Figure 3: Example growth rates and normalized energy conversions from 5 different regions. Growth
rates (a), kinetic energy conversion (b,d) and potential energy conversion (c,e). Region 1: β = 120,
δ = 0.05, F = 520. Region 2: β = 80, δ = 0.05, F = 360. Region 3: β = 280, δ = 0.05, F = 400.
Region 4: β = 200, δ = 0.05, F = 280. Region 5: β = 240, δ = 0.05, F = 200.
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Figure 4: A jet profile (a) with the most unstable eigenfunction plotted in space given at β = 20,
δ = 0.05 and F = 360 in region 2 (b) and at β = 320, δ = 0.05 and F = 400 in region 3 (c).
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Figure 5: Same as Fig. 2 but for δ = 0.3.
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Figure 6: An example velocity profile and PV gradient for β = 1, F = 4 for cosine jet case.
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Figure 7: Energy conversion computed for the most unstable eigenfunctions normalized by total
(potential plus kinetic) energy conversion for cosine jet. Potential energy conversion (a) and kinetic
energy conversion (b). The dotted line shows where the momentum fluxes change sign and the solid
line shows where the PV gradient changes sign between layers, with no sign below and a sign change
above. Blue represents downgradient fluxes and red represents up-gradient fluxes.
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Figure 8: Example growth rates and normalized energy conversions from 3 different regions. Growth
rates (a), kinetic energy conversion (b,d) and potential energy conversion (c,e). See text for loca-
tions. Region 1: F = 4, β = 1. Region 2: F = 7, β = 1. Region 3: F = 10, β = 1.
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1 Introduction

The field of hydrodynamic stability studies the transient responses of an initial perturbation
around a known steady flow. Due to being fundamental in the understanding of transition to
turbulence, it has garnered the attention of influential scientists over the years, including
Reynolds, Orr, and Heisenberg, among others [4].

x

y

z

U

h

Re = Uh
ν

x

y

U

h Re = Uh
ν 

3D Plane Couette Flow 2D Plane Couette Flow

Figure 1.1: Diagram illustrating plane Couette flow (in 3D and 2D) with the corresponding system
of coordinates, Reynolds number and steady laminar flow.

Sound theoretical results matching experiments have readily been found in many cases,
such as Taylor-Couette flow [17], but others have remained more elusive. One classical
example is plane Couette flow, which, as shown in Figure 1.1, is the flow between two
infinite parallel plates separated by a distance h with the top plate moving at speed U
in a direction parallel to the plates. The Reynolds number is defined as Re = Uh

ν > 0,
where ν is the kinematic viscosity, while x, y and z are called the axial, wall-normal and
transverse directions respectively. A linear shear flow is well-known to be the steady laminar
equilibrium (see Figure 1.1), and it is the evolution of perturbations about this flow that
are of interest.

This flow was proved by Romanov [15] to have a linear stability limit of ReL = ∞,
meaning that it is linearly stable for any Reynolds number. That is, there always exist
initial perturbations, u(0), under an infinitesimal energy which will decay (i.e., u(t) → 0
as t → ∞) to the laminar steady flow. Hence, other notions of stability must be studied
to explain when and how the flow becomes unstable. With this in mind, it is important to
look at global stability, meaning that every initial perturbation u(0) decays, and conditional

Global Stability of 2D Plane Couette Flow Beyond the Energy 
Stability Limit
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stability, meaning that a certain subset of initial perturbations u(0) decay. The global
stability limit, denoted ReG, is the largest number under which the flow is globally stable.

The problem of finding the global stability limit of 2D plane Couette flow dates back to
1907 [13], over 110 years ago, when William McFadden Orr found a lower bound for this
flow’s global stability limit, the so-called energy stability limit, ReE = 177.2 ≤ ReG. He did
so using what we now call the energy method, first proposed by Reynolds shortly before,
and since then, this has been the only systematic mechanism to rigorously establish lower
bounds to the global stability limit of fluid flows. In some rare situations, ad hoc techniques
can be developed to find a larger lower bound, but in general this is a difficult task, which,
in over a century, has proved to be an unsuccessful endeavor for the particular case of plane
Couette flow. The purpose of this work is to find a better lower bound to the ReG of 2D
plane Couette flow using techniques that can additionally be applied to other flows in the
future.

It is worth noting that 2D plane Couette flow (right of Figure 1.1) is the transversely-

independent (∂(·)
∂z = 0) simplification of 3D plane Couette flow (left of Figure 1.1). In

3D plane Couette flow, the energy stability limit was proved to be actually lower than
the 2D counterpart, ReE = 82.6 [1, 11, 10, 16], but once again no lower bound to ReG
beyond ReE has been established. A theoretical upper bound to ReG was determined for
3D plane Couette flow by the 3D finite-amplitude periodic solutions found by Nagata [12],
which occur at about Re = 500. Meanwhile, experiments place upper bounds of ReG on
3D plane Couette flow to be around Re = 1300 [8, 3, 18]. By contrast, no upper bounds
of ReG have been found for 2D plane Couette flow either through theoretical means or
numerical simulations [14]. Thus, it could be true that ReG = ∞ for 2D plane Couette
flow, and finding a set of increasing lower bounds of ReG could shed some light onto this
open question.

This report is organized as follows. In Section 2 a brief review of how to write a fluid
system as an uncertain dynamical system will be given. The energy method used to prove
global stability will be described, and an alternative based on new techniques coming from
sum-of-squares (SOS) polynomials optimization will be introduced. These techniques allow
to reduce the problem to a tractable semidefinite program (SDP) which can be solved
using a computer. They will produce high-order Lyapunov functions more general than the
energy. In Section 3, solving the energy eigenvalue problem for 2D plane Couette flow will
be outlined. Section 4 will present the results and discussion, while Section 5 will contain
the concluding remarks. Lastly, the family of Appendices A–E will have extensive technical
details associated to the computations and mathematical derivations.

2 Review of Fluid Dynamical Systems

What follows is a brief review of the uncertain fluid dynamical system first presented in [7].
Assume Ω is a bounded domain, and boundary conditions for the fluid velocity v and

pressure p0 consist of a combination of fixed known velocities and periodicity of the velocity
and pressure fields, which additionally satisfy the nondimensional Navier-Stokes equations,

∂v
∂t + v · ∇v = −∇p0 + 1

Re∇
2v + fg ,

∇ · v = 0 ,
(2.1)
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where fg represents the gravity effects. Provided a steady solution, V and P , is known, the
Navier-Stokes equations become

∂u
∂t + u · ∇u + u · ∇V + V · ∇u = −∇p+ 1

Re∇
2u ,

∇ · u = 0 ,
(2.2)

where the unknown perturbations u = v − V and p = p0 − P satisfy no-slip boundary
conditions (u = 0) wherever v is fixed, and periodic boundary conditions elsewhere.

Consider the following series expansion for the perturbation velocity field,

u(x, t) =
m∑
i=1

ai(t)ui(x) + us(x, t) ,

∇ · ui = 0 , 〈ui ,uj〉 = δij , ∇ · us = 0 , 〈us ,ui〉 = 0 ,

(2.3)

where δij is the Kronecker delta. Hence, the basis fields, ui, and the residual perturba-
tion velocity, us, are solenoidal, meaning their divergence vanishes and implying that the
incompressibility of the perturbation velocity is satisfied, ∇ · u = 0. Moreover, the ui are
orthonormal in the L2 inner product, and us is orthogonal to all the ui. Here, 〈· , ·〉 is the
L2 inner product, so that

〈w1 ,w2〉 =

∫
Ω

w1 ·w2 dΩ , ‖w‖2 = 〈w ,w〉 =

∫
Ω
|w|2 dΩ , (2.4)

where ‖ · ‖ is the L2 norm, and | · | is the usual Euclidean norm of a vector.
Next, let a(t) = [a1(t), . . . , am(t)] ∈ Rm and q(t) = ‖us(t)‖, so that the perturbation

energy is ‖u(t)‖2 = |a(t)|2 + q2(t). Chernyshenko and Goulart [7] show that the dynamical
system ã(t) = (a(t), q2(t)) describing the perturbation velocity is

da

dt
= f(a) + Θa(us) + Θb(us,a) + Θc(us) ,

1

2

dq2

dt
= −a ·

(
Θa(us) + Θb(us,a) + Θc(us)

)
+ Γ(us) + χ(us,a) ,

(2.5)

where

fi(a) =

(L·a)i︷ ︸︸ ︷(
1

Re〈ui ,∇
2uj〉 − 〈ui ,uj · ∇V + V · ∇uj〉

)
aj +

(N :a⊗a)i︷ ︸︸ ︷
(−〈ui ,uj · ∇uk〉)ajak ,

Θai(us) = 〈us ,hi0〉 , hi0 = 1
Re∇

2ui + V · ∇ui − ui · ∇TV ,

Θbi(us,a) = 〈us ,hij〉aj , hij = uj · ∇ui − ui · ∇Tuj ,

Θci(us) = 〈us ,us · ∇ui〉 ,
Γ(us) = 1

Re〈us ,∇2us〉 − 〈us ,Dus〉 ,
χ(us,a) = 2〈us ,dj〉aj , dj = 1

Re∇
2uj −Duj ,

(2.6)

with D = 1
2(∇V +∇TV) being the rate of strain tensor of the steady flow V, and where

∇Tw = (∇w)T for any vector field w (e.g. (hij)k = (uj)l(∇ui)lk − (ui)l(∇uj)kl for j ≥ 1,
where (∇w)ij = ∂wi

∂xj
).
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The evolution of the fluid dynamical system described through dã
dt in (2.5), is nonlinear

in a (via N : a⊗ a in ξ(a)), and more importantly it is uncertain in q due to the fact that
it is multivalued in that variable. Indeed, for a fixed q, there are multiple values us such
that q = ‖us‖ meaning that dã

dt can take multiple values for a single value of q.

2.1 Lyapunov functionals and the energy method

Now, consider a real-valued Lyapunov functional V (u), with V (0) = 0. Then, Lyapunov’s
theorem says that if V is positive-definite and radially unbounded (i.e. V (u) > 0 for all

u 6= 0 and V (u) → ∞ as ‖u‖ → ∞), and dV (u(t))
dt is negative definite (i.e. dV (u(t))

dt < 0 for
all u 6= 0), it follows that the flow is globally asymptotically stable (meaning that for every
initial perturbation u(0) it follows u(t)→ 0 as t→∞).

The classical approach to proving global stability is to use the energy method, where
the Lyapunov function is chosen as the perturbation energy, V (u) = E = 1

2‖u‖
2. In

the simplest case, where m = 0 in (2.3), so u = us and ã(t) = q(t) = ‖u(t)‖, then
V (u(t)) = E(t) = 1

2q
2(t), a does not exist and (2.5) becomes

dE

dt
=

1

2

dq2

dt
= Γ(u) =

1

Re
〈u ,∇2u〉 − 〈u ,Du〉 . (2.7)

It is clear V (0) = 0, V (u) > 0 for all u 6= 0 and more importantly dV
dt = dE

dt . Therefore, if
dV
dt ≤ κsq

2 for some κs < 0, the flow will be globally stable.

Thus, solving for the minimum κs ∈ R such that dV
dt ≤ κsq

2 yields a constrained
minimization problem which is equivalent to an eigenvalue problem known as the energy
eigenvalue problem,

−λu = Du− 1

Re
∇2u +∇ζ ,

∇ · u = 0 ,
(2.8)

which is solved for u and ζ satisfying the same boundary conditions as the perturbation
velocity and pressure in (2.2). Its solution is the eigenvalues and eigenfunctions of the
Hermitian (symmetric) energy operator, AEu = 1

Re∇
2u −Du − ∇ζ, where ζ depends on

u through the auxiliary Poisson problem ∇2ζ = −∇ · Du with the boundary conditions
∇ζ · n = ( 1

Re∇
2u − Du) · n wherever u has no-slip boundary conditions, and periodic

otherwise. Recalling the meaning of κs, yields that the flow is globally stable provided the
largest eigenvalue of the energy operator is negative. The energy stability limit, ReE , is
obtained by solving for Re in limiting case in which the largest eigenvalue is 0. This implies
any Re < ReE is associated to a negative eigenvalue, so that the flow is globally stable, and
thus ReE is a lower bound of the global stability limit, ReG ≥ ReE .

Despite being very practical, it is clear that the energy method is simply a special choice
of quadratic Lyapunov functional in the context of a much more general theorem. The ideal
scenario would be to find other Lyapunov functionals that hopefully allow to establish that
the flow can be globally stable for values of Re above ReE . It is possible to deduce that if
this is desired, then high-order (above quadratic) Lyapunov functionals that are not powers
of the energy should be considered. In view of the form of the uncertain system (2.5), look
at high-order polynomial functions of the form V (u) = V (a, q2) (with m > 0). Additionally,
note that the uncertain terms in (2.5) do not impede the use of the Lyapunov theorem as
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long as the terms dependent on us (namely Θa, Θb, Θc, Γ and χ) are bounded in some
sense in terms of a single valued function of a and q.

Before proceeding, it is useful to simplify (2.5) further if possible. In this sense, the
energy eigenvalue problem is of practical use. Indeed, from now on, assume that the basis
fields ui for i = 1, . . . ,m are a subset of the energy eigenfunctions. That is, for each
i = 1, . . . ,m assume there exist ζi and λi ∈ R such that (ui, ζi, λi) is a solution to the
energy eigenvalue problem in (2.8). Under this assumption of the ui, it follows χ(us,a) = 0
and Γ(us) ≤ κq2, where κ is the largest eigenvalue of (2.8) different from all the λi for
i = 1, . . . ,m.

Then, provided ∂V
∂q2
≥ 0, it is obvious that

dV

dt
=
∂V

∂a
· f(a) + 2

∂V

∂q2
Γ(us)︸ ︷︷ ︸

G(a,q2,us)

+
(∂V
∂a
− 2

∂V

∂q2
a
)

︸ ︷︷ ︸
M(a,q2)

·
(
Θa(us) + Θb(us,a)︸ ︷︷ ︸

Θab(us,a)

+Θc(us)
)

≤ ∂V

∂a
· f(a) + 2

∂V

∂q2
κq2︸ ︷︷ ︸

G̃(a,q2)

+ Ξ(a, q2) ,
(2.9)

for some Ξ(a, q2) satisfying M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤ Ξ(a, q2), with Ξ(0, 0) = 0.

Finally, the idea is to use sum-of-squares (SOS) polynomial constraints to setup a semi-
definite program (SDP) that ensures that V (0, 0) = 0 and Ξ(0, 0) = 0, and that V > 0,
∂V
∂q2
≥ 0 and G̃+ Ξ < 0 whenever (a, q2) 6= (0, 0).

The details to construct a valid Ξ(a, q2) and to properly set up the SDP are of tanta-
mount importance (there is no unique way of doing this). Having said that, the details are
quite technical and better left for the Appendices, where several techniques were attempted.
The only details worth repeating here are the bounds of each component of Θab and Θc,
first derived in [7, 9]. Let ã = [1, a1, . . . , am], indexed from 0 so that ã0 = 1 and ãi = ai for
i = 1, . . . ,m. Then, Θabi(us,a) = 〈us ,hij〉ãj , and the bounds are,

|Θabi(us,a)| ≤
√

ãTRiãq2 , (Ri)kl = 〈h̃ik , h̃il〉 ,
|Θci(us)| ≤ Ciq2 , Ci = ‖ρ(Di)‖∞ = sup

x∈Ω
ρ
(
Di(x)

)
,

(2.10)

where Di = 1
2(∇ui +∇Tui), and ρ(Di(x)) is the spectral radius of Di(x). Here, h̃ij is the

solenoidal projection (so ∇ · h̃ij = 0) of hij such that 〈h̃ij ,uk〉 = 0 for all k = 1, . . . ,m and

satisfying that h̃ij · n = 0 (n is the outer normal) wherever the perturbation velocity has
no-slip boundary conditions. These bounds are important as they eliminate us and yield
expressions only in terms of a1, . . . , am and q2.

3 Solving for the Energy Eigenfunctions and Bounds

Recall the setup and coordinates of 2D plane Couette flow in Figure 1.1 (or Figure 3.1).
Assuming all parameters are naturally nondimensionalised, note that the well-known steady
solution is V =

[ y
0

]
, which satisfies the nondimensional boundary conditions V = 0 at y = 0

and V =
[

1
0

]
at y = 1.
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Lα = 2π
α

x

y

h

Figure 3.1: Diagram illustrating a periodic 2D plane Couette flow domain with the subperiods.

Assume a periodic 2D domain Ω = (0, Lx) × (0, 1) as in Figure (3.1), and consider a
perturbed velocity field v = V + u and pressure p0 = P + p with respect to the steady
solution V and P , such that the perturbation velocity and pressure are u =

[ ux
uy

]
and p

and subject to no-slip boundary conditions at both plates u(x, 0) = u(x, 1) = 0.
The energy eigenvalue problem is written in (2.8), and from what is known from the

flow, it follows that it can be simplified to

−λ

[
ux

uy

]
=

[
0 1

2
1
2 0

][
ux

uy

]
− 1

Re

[
∂2ux
∂x2

+ ∂2ux
∂y2

∂2uy
∂x2

+
∂2uy
∂y2

]
+

[
∂ζ
∂x
∂ζ
∂y

]
(3.1)

∂ux
∂x

+
∂uy
∂y

= 0. (3.2)

To eliminate ζ one can take the (2D) curl of (3.1) to get

− λωz =
(
∇× (Du)

)
z
− 1

Re
∇2ωz , (3.3)

where ωz =
∂uy
∂x −

∂ux
∂y and

(
∇× (Du)

)
z

= 1
2

(
∂ux
∂x −

∂uy
∂y

)
Moreover, since this is a 2D problem, there must exist a stream function ψ automatically

satisfying the continuity equation (3.2) with

ux =
∂ψ

∂y
and uy = −∂ψ

∂x
. (3.4)

In this case, verification of ωz = −∇2ψ is trivial, while (∇× (Du))z = ∂2ψ
∂x∂y , so (3.3) may

be rewritten in terms of ψ as

λ∇2ψ =
∂2ψ

∂x∂y
+

1

Re
∇2(∇2ψ). (3.5)

The equation above is important, because it is sufficient (along with the boundary condi-
tions) to solve the energy problem. The no-slip boundary conditions of the perturbation
velocity in terms of the stream function are

ux = ∂ψ
∂y = 0 at y = 0 and y = 1 for all x ∈ (0, Lx), (3.6a)

uy = −∂ψ
∂x = 0 at y = 0 and y = 1 for all x ∈ (0, Lx). (3.6b)
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As mentioned before, the perturbation velocity is assumed periodic in the x direction, so ψ
must accept a Fourier series expansion. It is written as

ψ(x, y) =
∑
n∈Z

ψ̂n(y)eiαnx, where αn =
2π

Lx
n. (3.7)

Since ψ : Ω → R is a real function, it easily follows that ψ̂−n(y) = ψ̂n(y), where the bar
denotes complex conjugation. Substitution of (3.7) into equation (3.5) and the boundary
conditions in (3.6) yield∑

n∈Z
λ
(
−α2

nψ̂n+ d2ψ̂n
dy2

)
eiαnx=

∑
n∈Z

(
iαn

dψ̂n
dy + 1

Re

(
α4
nψ̂n−2α2

n
d2ψ̂n
dy2

+ d4ψ̂n
dy4

))
eiαnx, (3.8)

∂ψ
∂y =

∑
n∈Z

dψ̂n
dy e

iαnx=0 at y = 0 and y = 1 for all x ∈ (0, Lx), (3.9a)

−∂ψ
∂x =−

∑
n∈Ziαnψ̂ne

iαnx=0 at y = 0 and y = 1 for all x ∈ (0, Lx). (3.9b)

Now, since the Fourier modes are known to be orthogonal with the L2(0, Lx) inner prod-
uct, it follows that each Fourier mode can be treated separately. Therefore, dropping the
subindex n, the equations above become

λ
(
− α2ψ̂ +

d2ψ̂

dy2

)
=
(

iα
dψ̂

dy
+

1

Re

(
α4ψ̂ − 2α2 d2ψ̂

dy2
+

d4ψ̂

dy4

))
, (3.10)

ψ̂(0) = ψ̂(1) =
dψ̂

dy
(0) =

dψ̂

dy
(1) = 0. (3.11)

The equation is a fourth order homogeneous ordinary differential equation with constant
coefficients and four vanishing boundary conditions. Hence, the solution is known to be a
linear combination of exponentials. With this in mind, one first proposes that ψ̂(y) = eiβy.
Substitution into (3.10) gives

−λ(α2 + β2) = −αβ + 1
Re(α2 + β2)2 , (3.12)

which is the characteristic equation whose solutions are the roots of the characteristic poly-
nomial

pψ(λ,Re, α, β) = 1
Re(α2 + β2)2 + λ(α2 + β2)− αβ , (3.13)

with discriminant

∆ψ(λ,Re, α) = 256α8+384α6λRe− 27α4Re2 + 120α4λ2Re2

+ 16α4λ4Re2 − 4α2λ3Re3 + 16α2λ5Re3.
(3.14)

The characteristic polynomial is symmetric in α and β. Given a fixed triplet (λ,Re, α), pψ
will have exactly four roots βj(λ,Re, α) for j = 1, . . . , 4, which are obviously dependent on
that triplet. The roots βj can even be computed analytically due to pψ being quartic in β.
Moreover, if only real values of λ are considered, which is reasonable due to the operator
being symmetric, then the coefficients in β of pψ will be real. This implies the roots βj will
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either be real or come in conjugate pairs. Finally, since the coefficient of β3 is 0 it follows
that

∑4
j=1 βj = 0.

For convenience, assume that all the roots are different, i.e. ∆ψ(λ,Re, α) 6= 0, so that
due to linearity, the general solution of (3.10) will be

ψ̂(y) = C1e
iβ1y + C2e

iβ2y + C3e
iβ3y + C4e

iβ4y, (3.15)

where the Cj are constant coefficients in C.
The constant coefficients Cj in (3.15) are chosen to satisfy the boundary conditions

(3.11). When ∆ψ(λ,Re, α) 6= 0, substituting (3.15) into (3.11) yields a linear system of
equations, which in matrix form is

1 1 1 1
eiβ1 eiβ2 eiβ3 eiβ4

iβ1 iβ2 iβ3 iβ4

iβ1e
iβ1 iβ2e

iβ2 iβ3e
iβ3 iβ4e

iβ4


︸ ︷︷ ︸

Mψ(λ,Re,α)


C1

C2

C3

C4


︸ ︷︷ ︸

C

=


0
0
0
0

 . (3.16)

The complex matrix Mψ is dependent on the triplet (λ,Re, α) via the distinct roots βj
of pψ(λ,Re, α, β). To have a nonzero eigenfunction it is then necessary for det(Mψ) = 0,
and C ∈ ker(Mψ) \ 0, which can then be substituted into (3.15) to calculate the complex

function ψ̂. By adding the complementary Fourier mode, a real stream function is computed
pointwise as

ψ(x, y) = ψ̂(y)eiαx + ψ̂(y)e−iαx ∈ R. (3.17)

Then, a real eigenvelocity field [ux(x, y), uy(x, y)]T ∈ R2 corresponding to that stream
function is easily determined via (3.4). In fact, if α 6= 0, and C ∈ ker(Mψ) \ 0, then iC
is another relevant solution (shift by π

2 ) which leads to a shifted and linearly independent
eigenvelocity field associated to the same eigenvalue. All eigenfunctions can be normalized
(to have ‖u‖ = 1).

If ∆ψ(λ,Re, α) = 0, then the necessary and tedious modifications associated having
repeated roots must be done. This is left for the reader to ponder. Additionally, if α = 0,
then ψ is only a function of y and solving (3.1) directly gives ui = [sin(2πky), 0]T with

(unique) eigenvalues λi = − (2πk)2

Re for k ∈ N.
Next, assume that the Galerkin basis vector fields ui for i = 1, . . . ,m are chosen as

eigenfunctions of the energy eigenvalue problem. The idea is to calculate the matrices Ri

in (2.10). Let b = [bx, by]
T be either hi0 or hij for some i, j = 1, . . . ,m. The first step is to

find φb such that b = b̆ + ∇φb, with ∇ · b̆ = 0 and b̆ · n = 0 wherever the perturbation
velocity has no-slip boundary conditions. This is equivalent to solving the Poisson problem

∇2φb = ∇ · b, (3.18)

subject to the boundary conditions

∇φb · n = b · n (3.19)
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wherever the perturbation velocity has no-slip boundary conditions. In this case no-slip
boundary conditions occur at the plates, and those are precisely the points (x, y) ∈ ∂Ω for
which y = 0 and y = 1. The outward unit normal n corresponding to those points are
n = [0,−1]T when y = 0 and n = [0, 1]T when y = 1.

Proceeding as with the eigenvalue problem, the Fourier series expansions of φb and b
are

φb(x, y) =
∑
n∈Z

φ̂n(y)eiαnx and b(x, y) =
∑
n∈Z

b̂n(y)eiαnx. (3.20)

One can then substitute these expansions into (3.18) and treat each Fourier mode separately
due to their orthogonality with the L2(Ω) inner product. Therefore, dropping the n, the
Poisson problem eventually becomes the nonhomogeneous second order ordinary differential
equation

d2φ̂

dy2
− α2φ̂ =

db̂y
dy

+ iαb̂x, (3.21)

with the boundary conditions

dφ̂

dy
(0) = b̂y(0) and

dφ̂

dy
(1) = b̂y(1), (3.22)

where b̂(y) = [̂bx(y), b̂y(y)]T. This equation must be solved for each Fourier mode separately.
Due to the form of hi0, hij and the energy eigenfunctions (only having 1 or 2 Fourier modes),
it follows that b will have at most 4 separate Fourier modes.

The details will be skipped, but as usual, one must find first a general homogeneous

solution φ̂h(y) such that d2φ̂h
dy2
− α2φ̂h = 0, followed by a particular solution φ̂p. This can

actually be done analytically for the current problem. In the end, the full solution will be
φ̂ = φ̂h + φ̂p, and φb can be reconstructed via (3.20).

This means b̆ = b−∇φb is known explicitly, and then b̃ is easy to compute as

b̃ = b−∇φb −
m∑
j=1

〈b̆ ,uj〉uj . (3.23)

Finally, one can proceed to calculate the integrals to find Ri for each i = 1, . . . ,m.
As mentioned before, κs is the m + 1 largest eigenvalue, provided the Galerkin basis

vector fields ui for i = 1, . . . ,m are chosen as eigenfunctions associated to the largest
eigenvalues. Their strain rate tensor is Di for all i = 1, . . . ,m. Now, given that the
flow is two dimensional and using the incompressibility of the eigenfunctions in the form
tr(Di(x)) = 0 for some arbitrary x ∈ Ω, it follows that the eigenvalues of Di(x) can be
computed explicitly. They have the same magnitude, which must be the spectral radius.
Hence, the spectral radius ρ(Di) : Ω→ R as a scalar field is

ρ(Di(x)) =

√( ∂2ψi
∂x∂y

)2
+

1

4

(
∇2ψi

)2
. (3.24)

This immediately implies that the problem of finding ||ρ(Di(x))||∞ becomes much easier.
Nevertheless, it is solved numerically by being formulated as a constrained optimization
problem of finding the global maximum of ρ(Di) constrained to x ∈ Ω.
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4 Results

Solving for the energy eigenmodes and bounds for 2D plane Couette flow as described in
Section 3 allows to setup an optimization problem with sum-of-squares (SOS) constraints
that can be written as a semidefinite program (SDP). This was done for each periodic
domain of length L. The specific method used to produce the results in this section is
described in Section B.1 in Appendix B.

Two families of carefully chosen modes were considered. These can be appreciated in
Figure 4.1. One family is composed of six modes (boxed in blue) and the other is comprised
of those six modes plus two more for a total of eight modes (boxed in red). Then the SDP
was used to attempt to find a quartic Lyapunov function (as opposed to quadratic) for each
of the two families.

0 1 2 3 4 5 6 7
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

α

λ

2π/LRe = 180

Figure 4.1: Determinant of the matrix associated to the eigenvalue problem. The branches in blue
correspond to eigenvalues (where the determinant vanishes) with the exception of a triangle-looking
shape in the upper left which corresponds to repeated roots (zero discriminant). The value of
the Reynolds number is fixed (at 180), so the eigenvalues are a function of α. Each eigenvalue
corresponding to α 6= 0 has two eigenfunctions associated to it (shifted by a quarter period from
each other). Two families of eigenmodes illustrated: six-mode family boxed in blue, and eight-mode
family boxed in red.

The results can be observed in Figure 4.2, where the energy stability limit was shown for
each periodic length L. The two curves above the energy stability limit are new larger lower
bounds of the global stability limit, and for every Re under those curves the flow is globally
asymptotically stable. For periodic lengths of under L/h = 2.28 the new lower bounds for
ReG are ReSOS,1 = 190 using the six-mode family of eigenmodes and ReSOS,2 = 200 using
the eight-mode family of eigenmodes, which are both above the energy stability limit of
ReE = 177.2 found by Orr over a century ago. This is the first improvement to the bound
in that time-frame.

It should be noted that being able to find better bounds beyond the “bump” in the
energy stability curve that occurs at about L/h = 2.4 is no easy task. The reason is that it
would require using more modes (at least twelve), which make the computation much more
expensive. At the current moment, the algorithms and solvers are definitely a limitation
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to getting more and better results. This is why posing the constraints in the more efficient
manner possible is an important matter (see the Appendices).

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
160

180

200

220

240

L/h

R
e

ReE
ReSOS,1
ReSOS,2

Figure 4.2: Energy stability limit (black) as a function of the periodic length of the domain. Larger
lower bounds for the global stability limit resulting from the quartic Lyapunov functions found by
the semidefinite program (SDP) with sum-of-squares (SOS) constraints for two families of energy
eigenmodes: a six-mode family in blue and an eight-mode family in red.

5 Conclusions

Using new techniques from optimization, namely, the tractable imposition of sum-of-squares
polynomial constraints in an optimization algorithm, it was possible to construct high-order
quartic Lyapunov functions that proved the global stability of 2D plane Couette flow beyond
the energy stability limit. This marks the first improvement in such a result in over a
century! More importantly, the techniques can be utilized to analyze different flows. This
will be left for future work. The current main limitation is computational power or better
algorithms, and overcoming this limitation would allow to increase the number of energy
eigenmodes to be included in the uncertain dynamical system that describes the fluid.
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A Original Approach

First, I will give some general comments on the choice of V (a, q2). Then, I will give the
bounds derived for Θab(us,a) and Θc(us), and describe the usual choice of Ξ(a, q2), which
will be non-polynomial, and how it converts to a valid SDP.

A.1 Choice of Lyapunov function ansatz

The goal is for V (a, q2) to be an SOS, where in this context a polynomial in (a, q2) means a
linear combination of monomials in the variables a = [a1, . . . , am] and even powers of q (i.e.
monomials like a1 of degree 1, a1q

2 of degree 3, a1a2q
4 of degree 6, etc.). Since V (a, q2)

will be constrained to be an SOS, it follows that the highest and lowest degree monomials
in the linear combination must be of even degree. In particular, deg(V ) must be even.

Additionally, we want −(G̃ + Ξ) to be an SOS too, so it must also have even degree.
Here, Ξ is assumed to be positive definite (it is normally a positive bound of M·(Θab+Θc)).
Thus, G̃ must be negative definite such that G̃ + Ξ is still negative definite. If deg(Ξ) >
deg(G̃), then G̃ + Ξ will be positive for large (a, q2) and this is precisely what we do not
want. Therefore, assume deg(G̃) ≥ deg(Ξ), with deg(G̃) being even (in order for it to be
negative definite). The term ∂V

∂a · f(a) in G̃ seems to be inconveniently of odd degree as

f(a) is quadratic in a and deg(∂V∂a ) is odd (as deg(V ) is even). To overcome this hurdle,
a viable and elegant approach is to choose the component of highest degree in V to be
a power of the kinetic energy E = 1

2(|a|2 + q2), because with this choice, ∂V
∂a · f(a) is of

even degree (there are cancellations). Thus, the only component of degree deg(V ) in V is
chosen to be (|a|2 + q2)deg(V )/2, and this ensures that G̃ and M are of even degree, with
deg(V ) = deg(G̃) = deg(M) + 2.

Next, we know V (0, 0) = 0, so there must not be any constants in V . Since V will
be chosen to be an SOS polynomial, this implies there must not be any linear terms in
a1, . . . , am either. As a result, in the interest of generality, V is assumed to be a linear
combination of monomials in the variables a1, . . . , am and q2 of degree greater than or equal
to 2 and less than or equal to deg(V )−1 along with the polynomial (|a|2 +q2)deg(V )/2. That
is, it should take the form,

V (a, q2) =
∑

2≤deg(monι)≤deg(V )−1

cιmonι(a, q
2) + (|a|2 + q2)deg(V )/2 , (A.1)

where ι indexes all monomials in the variables a1, . . . , am and even powers of q, monι(a, q
2),

and the cι are unknown real coefficients associated to those monomials. Notice that the last
homogeneous polynomial, (|a|2 + q2)deg(V )/2, does not have a coefficient. This is because,
in principle, V can be scaled by any constant, and this will not change the conclusion that
V > 0 and that dV

dt < 0, so there is a freedom to fix at least one of the coefficients in

V . Also, note that with this choice, G̃ does not have any constant or linear terms and
M(0, 0) = 0.

Finally, placing the constraint that V should be an SOS polynomial is not sufficient,
since this only ensures that V is positive semidefinite. To ensure that it is positive definite,
a margin or barrier function must be added. That is, replace the condition V (a, q2) > 0,
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by V (a, q2) ≥ ε(|a|2 + q2) > 0. Thus, place the constraints

V (a, q2)− ε(|a|2 + q2) ∈ SOS(a, q) ,
∂V (a, q2)

∂q2
∈ SOS(a, q) , (A.2)

where SOS(a, q) is the set of sum-of-squares polynomials in the variables a1, . . . , am and q.

A.2 Bounds of Θab and Θc

In [7, 9] the bounds of each component of Θab and Θc were derived. Let ã = [1, a1, . . . , am],
indexed from 0 so that ã0 = 1 and ãi = ai for i = 1, . . . ,m. Then, Θabi(us,a) = 〈us ,hij〉ãj ,
and the bounds are,

|Θabi(us,a)| ≤
√

ãTRiãq2 , (Ri)kl = 〈h̃ik , h̃il〉 ,
|Θci(us)| ≤ Ciq2 , Ci = ‖ρ(Di)‖∞ = sup

x∈Ω
ρ
(
Di(x)

)
,

(A.3)

where Di = 1
2(∇ui +∇Tui), and ρ(Di(x)) is the spectral radius of Di(x). Here, h̃ij is the

solenoidal projection (so ∇ · h̃ij = 0) of hij such that 〈h̃ij ,uk〉 = 0 for all k = 1, . . . ,m and

satisfying that h̃ij · n = 0 (n is the outer normal) wherever the perturbation velocity has
no-slip boundary conditions. These bounds are important as they eliminate us and yield
expressions only in terms of a1, . . . , am and q2.

A.3 A conservative bound of M · (Θab + Θc)

The original approach relies on first bounding with the absolute value, then using the
triangle inequality twice, and lastly using the Cauchy-Schwarz inequality in Rm,

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤ |M(a, q2) ·Θab(us,a)|+ |M(a, q2) ·Θc(us)|

≤
m∑
i=1

|Mi(a, q
2)|
(
|Θabi(us,a)|+ |Θci(us,a)|

)
≤ |M(a, q2)|

√∑m
i=1

(
|Θabi(us,a)|+ |Θci(us,a)|

)2
.

(A.4)
Next, let δi ∈ (0,∞) for all i = 1, . . . ,m, and note that

m∑
i=1

(|Θabi(us,a)|+ |Θci(us)|)2 =

m∑
i=1

Θ2
abi(us,a) + 2|Θabi(us,a)| |Θci(us)|+ Θ2

ci(us)

≤
m∑
i=1

(
(1 + δi)Θ

2
abi(us,a) + (1 + 1

δi
)Θ2

ci(us)
)

≤
m∑
i=1

(
(1 + δi)ã

TRiãq
2 + (1 + 1

δi
)C2

i q
4
)

= pΘ(a, q2) ,

(A.5)
where the so-called “Peter-Paul” inequality, 2w1w2 ≤ δw2

1 + 1
δw

2
2 for any δ ∈ (0,∞), is used.

Hence,

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤ |M(a, q2)|

√
pΘ(a, q2) = Ξ(a, q2) . (A.6)
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Now we need to have that G̃ + Ξ < 0 for all (a, q2) 6= (0, 0) (it is clear already that
Ξ(0, 0) = 0 because pΘ(0, 0) = 0). Unfortunately, Ξ is not polynomial (but Ξ2 = pΘ|M|2 =
pΘMTM is), so some manipulations are necessary to obtain a polynomial expression that
is linear in the unknown coefficients cι of V (note that the cι are linearly present in G̃ and
M). Using Schur complements, the inequality can be rewritten as,

G̃+ Ξ < 0 ⇔ 0 ≤ Ξ < −G̃ ⇔

{
−G̃ > 0

pΘG̃
2 − pΘΞ2 > 0

⇔
[
−pΘG̃ pΘMT

pΘM −G̃I

]
� 0 .

(A.7)
Again, use a barrier function to obtain strict positivity, so that you should enforce the

constraint [
−pΘG̃ pΘMT

pΘM −G̃I

]
− ε(|a|2 + q2)

[
1 0
0 I

]
∈ SOSM(a, q) , (A.8)

where SOSM(a, q) is the set of sum-of-squares polynomial positive semidefinite matrices.
Another slight deviation of this condition is to use the barrier function beforehand, so

that G̃+ Ξ + ε(|a|2 + q2) ≤ 0, which results in the constraint[
−pΘ

(
G̃+ ε(|a|2 + q2)

)
pΘMT

pΘM −
(
G̃+ ε(|a|2 + q2)

)
I

]
∈ SOSM(a, q) . (A.9)

Both (A.8) and (A.9) are “matrix” constraints of the form T � 0. These can be quite
expensive to enforce. As an example, with only m = 6 modes and the fastest solver available,
the SDP enforcing (A.2) and (A.8) took roughly 2 hours. However, T is a very sparse matrix
so if you are careful, it is natural to expect some savings. The most natural approach is
to add variables z̃ = (z0, z1, . . . , zm), where z = (z1, . . . , zm), and consider the equivalent
statement z̃TTz̃ ≥ 0. Due to the sparsity, (A.8) is rewritten as

−
(
pΘG̃+ ε(|a|2 + q2)

)
z2

0 + 2z0pΘM · z−
(
G̃+ ε(|a|2 + q2)

)
z · z ∈ SOS(a, q, z̃) . (A.10)

With this formulation, the computation time was reduced to roughly 1 minute in the same
machine. Similarly, (A.8) is rewritten as

− pΘ

(
G̃+ ε(|a|2 + q2)

)
z2

0 + 2z0pΘM · z−
(
G̃+ ε(|a|2 + q2)

)
z · z ∈ SOS(a, q, z̃) . (A.11)

Lastly, an alternative to exploit the sparsity of T (and does not require extra variables) is
to use Agler’s theorem as proposed in [5], but we have not implemented it in this note.

The SDP enforcing the constraints (A.2) and (A.10) is called “Original 1”, while the
SDP enforcing the constraints (A.2) and (A.11) is called “Original 2”,

max ε , subject to (A.2) & (A.10) ← Original 1 ,

max ε , subject to (A.2) & (A.11) ← Original 2 .
(A.12)

In both cases ε is maximized. If max ε is ultimately positive, then the problem is feasible,
and otherwise it is infeasible. As expected, both methods above seem to behave very
similarly and have the same limitations, but Original 2 produces larger values of ε which
are safer to trust. Unfortunately, adding just two more modes (m = 8) has huge memory
requirements for solvers using interior point methods, so no simulations could be completed.
More detailed results are found in Section E.
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B A New Family of Methods

This family of methods relies on a better bound for M · (Θab + Θc), which still uses (A.4),
but considers the bound before the Cauchy-Schwarz inequality is applied,

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤

m∑
i=1

|Mi(a, q
2)|
(
|Θabi(us,a)|+ |Θci(us)|

)
. (B.1)

The results of the methods about to be described can be found in Section E.

B.1 Method 1

Consider first
|Mi| |Θabi| ≤ |Mi|

√
ãTRiãq2 ≤ ri , (B.2)

where (A.3) was used and where ri(a, q
2) is an unknown polynomial of the form,

ri(a, q
2) =

∑
2≤deg(monι)≤deg(V )

crιmonι(a, q
2) , (B.3)

where the coefficients, crι are unknown. Notice that the constant and linear terms are
eliminated because we eventually want Ξ(0, 0) = 0. Also, we want that deg(V ) = deg(G̃) ≥
deg(Ξ) ≥ deg(ri), so it follows deg(ri) ≤ deg(V ). Additionally, deg(ri) should be an even
power strictly larger than deg(Mi) = deg(V )− 2 (see (B.2)). The only choice is then to set
deg(ri) = deg(V ) and this explains the expression in (B.3). Proceeding as with (A.7) now
yields,

|Mi|
√

ãTRiãq2 ≤ ri ⇔
[

ãTRiãq
2ri ãTRiãq

2Mi

ãTRiãq
2Mi ri

]
� 0 , (B.4)

for each i = 1, . . . ,m. Therefore, add the SOS constraints,[
ãTRiãq

2ri ãTRiãq
2Mi

ãTRiãq
2Mi ri

]
∈ SOSM(a, q) , ∀i = 1, . . . ,m . (B.5)

Next, using (A.3) again, look at

|Mi| |Θci| ≤ |Mi|Ciq2 ≤ siCiq2 , (B.6)

where si(a, q
2) is an unknown polynomial of the form,

si(a, q
2) =

∑
0≤deg(monι)≤deg(V )−2

csιmonι(a, q
2) , (B.7)

where the coefficients, csι are unknown. Notice that deg(si) = deg(V )−2 = deg(M), because
we want that deg(V ) = deg(G̃) ≥ deg(Ξ) ≥ deg(siCiq

2) (so deg(si) cannot be any larger
than deg(V )− 2). Now, the condition can be rewritten as

|Mi| ≤ si ⇔

{
Mi ≤ si
−si ≤Mi

, (B.8)
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for each i = 1, . . . ,m. Therefore, add the SOS constraints,{
si −Mi ∈ SOS(a, q)

si +Mi ∈ SOS(a, q)
, ∀i = 1, . . . ,m . (B.9)

Lastly, add (B.2) and (B.6) across all i = 1, . . . ,m to yield,

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤

m∑
i=1

(
ri(a, q

2) + si(a, q
2)Ciq

2
)

= Ξ(a, q2) . (B.10)

By design, Ξ(0, 0) = 0 and in general deg(Ξ) = deg(G̃) = deg(V ). It only remains to
enforce the condition that G̃ + Ξ < 0, which in this case is very simple by imposing the
SOS constraint,

− G̃− Ξ− ε(|a|2 + q2) ∈ SOS(a, q) . (B.11)

The final SDP takes the form,

max ε , subject to (A.2), (B.5), (B.9) & (B.11) ← Method 1 . (B.12)

B.2 Method 2

This time, let δi ∈ (0,∞) for all i = 1, . . . ,m, and proceed as in (A.5) (but with each
component separately and taking square roots a posteriori), so that

|Mi|
(
|Θabi|+|Θci|

)
≤ |Mi|

(√
ãTRiãq2+Ciq

2
)
≤ |Mi|

√
(1 + δi)ãTRiãq2 + (1 + 1

δi
)C2

i q
4︸ ︷︷ ︸√

di(a,q2)

≤ ri ,

(B.13)
where ri(a, q

2) is an unknown polynomial with an ansatz as in (B.3). Manipulating as in
(B.4), yields the SOS constraints[

diri diMi

diMi ri

]
∈ SOSM(a, q) , ∀i = 1, . . . ,m . (B.14)

Adding (B.13) among all i = 1, . . . ,m gives,

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤

m∑
i=1

ri(a, q
2) = Ξ(a, q2) , (B.15)

and the remaining SOS constraint is

− G̃− Ξ− ε(|a|2 + q2) ∈ SOS(a, q) , (B.16)

with the final SDP taking the form,

max ε , subject to (A.2), (B.14) & (B.16) ← Method 2 . (B.17)
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B.3 Method 3

This method aims to precompute bounds of each |Θabi| and then use the bounds of |Mi| via
the constraints in (B.9). It is supposed to produce a significant speed up in the computations
by avoiding constraints of the form of (B.5) in the global (large) problem, and instead
tackling these type of constraints in a previous step consisting of a series of much cheaper
and easier small problems that precompute particular bounds. The crux is to develop a
viable method to precompute these bounds and to find good criteria to have the most
effective bounds possible.

First, consider bounds

0 ≤ |Θabi| ≤
√

ãTRiãq2 ≤ bi , (B.18)

with bi(a, q
2) being an unknown homogeneous quadratic polynomial of the form,

bi(a, q
2) =

∑
deg(monι)=2

cbιmonι(a, q
2) , (B.19)

where the coefficients, cbι , are unknown. Note the ansatz forces bi(0, 0) = 0 (so that later
on Ξ(0, 0) = 0 as well). This is equivalent to the SOS constraints[

ãTRiãq
2bi ãTRiãq

2

ãTRiãq
2 bi

]
∈ SOSM(a, q) , ∀i = 1, . . . ,m . (B.20)

The idea is to precompute the bi beforehand under some optimization criterion (we have to
choose what to minimize and maximize). Then, the cbι coefficients will be known, and it is
valid to use

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤

m∑
i=1

si(a, q
2)
(
bi(a, q

2) + Ciq
2
)

= Ξ(a, q2) , (B.21)

where the si bound |Mi| as in (B.6). This may look viable if one proceeds as in the previous
two methods, but it is actually impossible.

To see the problem, simply focus on the assumed bound (B.18), and notice it is impos-
sible to find such a bound. Indeed, assuming a = 0 and q 6= 0 (recall ã has a constant
nonzero component) it follows√

ãTRiãq2 =
√
Diq2 =

√
Di |q| , if a = 0 , (B.22)

where Di > 0 is a constant. It is impossible to bound this positive function with a positive
quadratic polynomial that passes through q = 0 (see the behaviour near q = 0).

To fix this issue, note that dV
dt < 0 if and only if dV

dt (|a|2 + q2)kE < 0 for any positive
integer kE ∈ N. Thus, let 2E(a, q2) = |a|2 + q2, choose some kE ∈ N, and as in (2.9), note
that

dV

dt

(
2E(a, q2)

)kE ≤ G̃(a, q2)
(
2E(a, q2)

)kE + Ξ̃(a, q2) , (B.23)

as long as ∂V
∂q2
≥ 0 and that there exists Ξ̃(a, q2) such that Ξ̃(0, 0) = 0 and

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
·
(
2E(a, q2)

)kE ≤ Ξ̃(a, q2) . (B.24)
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Thus, if such a Ξ̃ exists, ∂V
∂q2
≥ 0, and G̃(2E)kE + Ξ̃ < 0 it follows that dV

dt < 0.

To find such a Ξ̃, instead of (B.18), consider the bounds

|Θabi|(2E)kE ≤
√

ãTRiãq2(2E)kE ≤ bi , (B.25)

with bi(a, q
2) being an unknown polynomial of the form,

bi(a, q
2) =

∑
2≤deg(monι)≤2(kE+1)

cbιmonι(a, q
2) , (B.26)

where the coefficients, cbι , are unknown. These bounds are now truly viable to find, since
the situation in (B.22) no longer holds (i.e., when a = 0 and kE = 1 the function now
grows cubically about the origin and this can be bounded by a positive quartic polynomial
passing through q = 0). As before, (B.25) is equivalent to the SOS constraints,[

ãTRiãq
2(2E)2kEbi ãTRiãq

2(2E)2kE

ãTRiãq
2(2E)2kE bi

]
∈ SOSM(a, q) , ∀i = 1, . . . ,m . (B.27)

Making m SOS feasibility tests could provide the precomputed bounds bi,

Check feasibility of (B.27) ← Precompute bound i , ∀i = 1, . . . ,m , (B.28)

which yields the coefficients, cbι for each i = 1, . . . ,m.
Then, Ξ̃ is simply,

M ·
(
Θab + Θc

)
· (2E)kE ≤

m∑
i=1

si
(
bi + Ciq

2(2E)kE
)

= Ξ̃ , (B.29)

and the SOS constraint that implies dV
dt < 0 is

− (G̃(2E)kE + Ξ̃)− ε(|a|2 + q2) ∈ SOS(a, q) . (B.30)

Lastly, this method would consist of the SDP

max ε , subject to (A.2), (B.9) & (B.30) ← Method 3 , (B.31)

provided the m bounds in (B.25) have been precomputed using (B.28) in a previous step.
The feasibility test in (B.28) is by no means optimal in the sense that one would want the

smallest possible upper bound in (B.25), but (B.28) only provides one such upper bound,
which could be huge. Ideally, it could be useful to modify the ansatz for bi in (B.26) to
include an optimization parameter that somehow ensures that bi is as small as possible. In
essence, one should try to change (B.28) from a feasibility problem to an intelligently chosen
optimization problem. There are many ways to do this, but no more details are given here
for the time being, since the method has not been implemented yet.

From experience, we expect this method to be two or three orders of magnitude faster
than the previous two methods. Once we implement this method, more details will be given.
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C Improving the Bounds Even More

Now look at (A.4) once again, but this time stop right after using the triangle inequality
for the first time,

M(a, q2) ·
(
Θab(us,a) + Θc(us)

)
≤ |M(a, q2) ·Θab(us,a)|+ |M(a, q2) ·Θc(us)| . (C.1)

C.1 Bound of |M ·Θab|

Proceed as in [2] and using the summation convention note that

|M ·Θab| = |〈us ,Mih̃ij ãj〉| ≤ ‖Mih̃ij ãj‖ |q| . (C.2)

In [2], (31) is incorrect (it is even dependent on x ∈ Ω), because this an L2 norm and must
be computed explicitly. It can be written as,

‖Mih̃ij ãj‖2 =

ã�
1
...

ã�
m


T

︸ ︷︷ ︸
(aM)T

H�
11 · · · H�

1m
...

. . .
...

H�
m1 · · · H�

mm


︸ ︷︷ ︸

H

ã�
1
...

ã�
m


︸ ︷︷ ︸

aM

, ã�
i = Miã = Mi


1
a1
...
am

 , (H�
ij )kl = 〈h̃ik , h̃jl〉 ,

(C.3)
so that H ∈ Rm(m+1)×m(m+1) is a positive semidefinite matrix (compare to the much smaller
matrices Ri ∈ R(m+1)×(m+1)), and where it is clear that H�

ii = Ri for every i = 1, . . . ,m.
Thus,

|M ·Θabi| ≤
√

(aM)THaMq2 =
√

(H1/2aMq)T(H1/2aMq) , (C.4)

where H1/2 = (H1/2)T is the unique positive semidefinite square root of H (computed using
the eigenvalue decomposition). Note that a unique Cholesky decomposition also exists and
could be used, but the typical algorithm breaks down in the semidefinite case, so it is
preferable to use the usual square root of the matrix.

To give a rough idea of how to deal with this bound, assume M ·Θc has been bounded
as in (B.6)–(B.9) from Method 1, so that

M(a, q2)·
(
Θab(us,a)+Θc(us)

)
≤
√

(H1/2aMq)T(H1/2aMq)+

m∑
i=1

si(a, q
2)Ciq

2 = Ξ(a, q2) .

(C.5)
Then, to enforce G̃+ Ξ < 0, note that

G̃+ Ξ < 0 ⇐ G̃+
m∑
i=1

si(a, q
2)Ciq

2 + ε(|a|2 + q2)︸ ︷︷ ︸
G̃0

+
√

(H1/2aMq)T(H1/2aMq) ≤ 0

⇔
[
−G̃0 (H1/2aMq)T

H1/2aMq −G̃0I

]
� 0 .

(C.6)
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This formulation would have been impossible without the decomposition in (C.4) which uses
H1/2, since (aM)THaMq2 is quadratic in M and thus quadratic in the unknown coefficients
cι of V . Thankfully, this reformulation avoids any such problems. However, one should note
that the matrix in (C.6) is huge. Therefore, creating auxiliary variables z0, z1, . . . , zm(m+1)

to exploit the sparsity might be computationally prohibitive. Perhaps using Agler’s theorem
as described in [5] is a more viable approach. In any case, this formulation was discovered
at the last moment, so it has not been implemented.

C.2 Bound of |M ·Θc|

The best one could hope for is to proceed as in [9] but with the whole M ·Θc instead. This
yields,

|M ·Θc| ≤
∥∥∥ρ(∑m

i=1MiDi

)∥∥∥
∞

= sup
x∈Ω

ρ
(∑m

i=1MiDi

)
. (C.7)

Unfortunately we have not found a way to compute this quantity, even if Mi was known,
which in principle it is not. The best bounds at this moment are those calculated via
(B.6)–(B.9) in Method 1.

D Global Stability Using Bounds and Conditional Stability

This approach was proposed in [2] very briefly, so here I will give some more details. As
a heads up, it is more expensive computationally, but, in principle, still worth trying if it
allows to prove global stability beyond what the other methods can. It is divided into three
steps:

1. Choose a positive definite quantity of interest Φ(a, q2) ≥ 0, so that Φ(a, q2) = 0 if and
only if (a, q2) = (0, 0), and which you expect to be conditionally stable for the known
equilibrium point of the dynamical system, (0, 0).

2. Compute a time-average bound U ∈ R such that Φ(a, q2) ≤ U , where Φ(a, q2) =
limT→∞

1
T

∫ t
0 Φ(a(t), q2(t)) dt. Obviously this implies that for each initial condition

(a(0), q2(0)) there exists some instant t∗, such that Φ(a(t∗), q2(t∗)) = U .
3. Show that whenever 0 < Φ < C = U + ε̄, then dΦ

dt < 0. This implies that if
Φ(a, q2) < C at some instant t, then limt→∞Φ(a(t), q2(t)) = 0 and as a result
limt→∞(a(t), q2(t)) = (0, 0). Here, ε̄ > 0 is a fixed positive small quantity. In partic-
ular, by step 2, it follows that regardless of the initial condition limt→∞(a(t), q2(t)) =
(0, 0), which means that the flow is globally stable (since the velocity satifies ‖u(t)‖2 =
|a(t)|2 + q2(t)).

An important comment on step 3, is that it is not sufficient to simply prove that dΦ
dt < 0

in an open set (like any ball of radius R) containing (a, q2) = (0, 0), as this will only imply
that (0, 0) is locally asymptotically stable, but will not give any information on the critical
set (which will be some unknown ball of radius 0 < R0 < R if your initial set was a ball of
radius R) leading to asymptotic convergence. You will only know that such a critical set
around (0, 0) exists and is a subset of the original open set. So it is fundamental to prove
that dΦ

dt < 0 whenever Φ < C, since this actually does imply that the critical set are the
points for which Φ < C.
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The combination of the three steps will be referred to as the “Bounding” method for
short.

D.1 Step 1

The most natural choice for a positive-definite Φ, which you expect to be conditionally
stable, is precisely the Lyapunov function associated to the linearized system of equations.
For a truncated set of m modes, a = (a1, . . . , am), and forgetting about us, the linearized
dynamical system (see (2.5) and (2.6)) is simply,

da

dt
= f(a) = La , fi(a) =

(
1

Re〈ui ,∇
2uj〉 − 〈ui ,uj · ∇V + V · ∇uj〉

)
aj = Lijaj . (D.1)

To find a Lyapunov function simply seek a positive definite matrix P � 0 such that LTP +
PL ≺ 0, and the Lyapunov function will be ΦT (a) = aTPa. As usual to ensure strict
positivity or negativity one needs barrier functions, so that one can solve an SDP enforcing,

max ε , subject to P− εI � 0 −
(
LTP + PL

)
− εI � 0, tr(P) = m, (D.2)

where tr(P) is the usual trace of a matrix. The last condition simply ensures the scaling of
P is fixed, and also has the nice property that |a|2 also satisfies it. The maximization of ε
intuitively ensures that ΦT (a) = aTPa is as far away from zero as possible, and thus more
likely to have better conditional stability behavior.

However, the role of q2 must also be added. We decided to do this a posteriori by simply
considering,

Φ(a, q2) = aTPa + αΦq
2 , (D.3)

where αΦ > 0 is a constant to be chosen. Due to the constraint that tr(P) = m, it makes
sense (in terms of order of magnitude) to choose αΦ = 1, but other possibilities include
αΦ = mini Pii or αΦ = maxi Pii. In this work we chose αΦ = 1.

D.2 Step 2

Here, we proceed as described in [6], where it was shown that for bounded trajectories (in
a fluid system all trajectories are bounded) and for any storage function V (a, q2),

dV (a(t), q2(t))

dt
+ Φ(a, q2) ≤ U ⇒ Φ(a, q2) ≤ U . (D.4)

Looking at (2.9), it is clear that it suffices to show that

G̃+ Ξ + Φ ≤ U . (D.5)

Here, once again Ξ is simply a bound in terms of (a, q2), and there are several ways
to obtain a valid Ξ, as we have shown throughout this document. We chose the one from
Method 1, as it is the one of the tightest bounds leading to a problem of reasonable size
and which does not use the “Peter-Paul” inequality. Thus, choose Ξ as in (B.10), so that
the SDP becomes

minU , subject to
∂V

∂q2
∈ SOS(a, q), (B.5), (B.9) & U − G̃− Ξ− Φ ∈ SOS(a, q) .

(D.6)
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The main difference in these constraints and derivation (with respect to the other methods)
is the presence of U , that V no longer has to be positive definite (and is no longer free of
scaling) and more importantly that V (0, 0) and Ξ(0, 0) no longer have to vanish. Therefore,
the ansatzes (A.1) and (B.3) should be modified to

V (a, q2) =
∑

0≤deg(monι)≤deg(V )−1

cιmonι(a, q
2) + cE(|a|2 + q2)deg(V )/2 ,

ri(a, q
2) =

∑
0≤deg(monι)≤deg(V )

crιmonι(a, q
2) .

(D.7)

D.3 Step 3

We know that Φ(0, 0) = 0 and that dΦ
dt (0, 0) = 0, so when (a, q2) 6= (0, 0), the final step

is to prove that Φ < C = U + ε̄ implies that dΦ
dt < 0, where ε̄ is a small positive number.

Using the S-procedure, it is sufficient to satisfy the condition

dΦ

dt
≤ −(C − Φ)S , (D.8)

where S is a positive definite function satisfying that S(0, 0) = 0 (so that dΦ
dt (0, 0) = 0 does

not violate the inequality). Note, all the focus here is the behavior near the origin (0, 0)
since far away, where −(C − Φ)S is very positive, it does not really matter.

Next, simply treat Φ as V in (2.9) and proceed analogously to note that it is sufficient
to prove that

G̃Φ + ΞΦ ≤ −(C − Φ)S , (D.9)

where G̃Φ = ∂Φ
∂a ·f(a)+2 ∂Φ

∂q2
κq2 and where MΦ ·(Θab+Θc) ≤ ΞΦ with MΦ = ∂Φ

∂a−2 ∂Φ
∂q2

a and

ΞΦ(0, 0) = 0. Note that the inequality is sufficient since we already know that ∂Φ
∂q2

= αΦ > 0

by construction (see (D.3)). Once again, ΞΦ can be estimated in different ways, and for
much the same reasons described in step 2 we chose the technique from Method 1.

Since S is unknown, expected to be an SOS polynomial and with S(0, 0) = 0, consider
the ansatz

S(a, q2) =
∑

2≤deg(monι)≤deg(S)

cSι monι(a, q
2) , (D.10)

where deg(S) is an even number to be chosen freely. Therefore, the final SDP is a feasibility
test of the following conditions,

S−ε(|a|2+q2) ∈ SOS(a, q), (B.5)Φ, (B.9)Φ & −G̃Φ−ΞΦ−(C−Φ)S ∈ SOS(a, q) , (D.11)

where ε is another small positive number. One could attempt to maximize ε, but in this
particular case does not yield interesting insight and seems to add cost. Here, (B.5)Φ

and (B.9)Φ are simply (B.5) and (B.9) but with M replaced by MΦ instead. Meanwhile
in the ansatzes (B.3) and (B.7), deg(V ) should be replaced by 4, since deg(MΦ) is not
deg(Φ)− 2 = 0 (deg(M) = deg(V )− 2 only happens due to the ansatz for V in (B.3)), but
rather deg(MΦ) = 1 so the ri and si are chosen to be the smallest even degree which makes
sense, i.e. deg(ri) = 4 and deg(si) = 2.
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E Computational Results of Different Approaches

The results shown here are for two-dimensional plane Couette flow with a length Ldom = 2π
3.75

(where the height is unity), so that the principal wavenumber is α1 = 3.75. This is very
close to the critical wavenumber obtained via the energy stability limit, and the energy
stability limit in this domain is ReE = 177.3.

The idea is to compare the different methods described (at least those that were im-
plemented). With this in mind, we first show results at Re = 179.5 which is above the
energy stability limit. We do this using six eigenmodes: the eigenmodes corresponding to
the two largest eigenvalues at α0 = 0 and the same with α1 = 3.75. There are six, because
for each eigenvalue associated to α 6= 0 there are two eigenmodes: horizontal translation
invariance requires choosing two linearly independent eigenmodes and we choose them to
be π

2 out of phase to ensure orthogonality. We refer to this set of six eigenmodes as “Modes
I.” Additionally, “Modes II” has all the modes in “Modes I” with two additional associated
to the highest eigenvalue of α2 = 7.5, for a total of eight modes. All experiments were per-
formed with deg(V ) = 4. A value of δi = 1 was used at every point where the “Peter-Paul”
inequality was utilized. Lastly, in the Bounding method (§D) it was used that ε̄ = 10−8 and
ε = 10−4. To compare the results and computational performance of each algorithm, it is
useful to show the final value of ε, as this gives a rough idea of how effective the algorithm
is (the higher the value of ε the better), and we also are showing the time inside the SDP
solver to give a rough estimate of the computational costs, which are typically high. Having
said that, the total computation time consists of: (i) the time taken to solve the eigenvalue
problem and compute the relevant tensors (L, N , Ri and Ci in (2.6) and (A.3)), (ii) the
time to setup the SDP (i.e., computing the dynamical system itself along with all the SDP
constraints), (iii) the preprocessing time to find symmetries and parse to the appropriate
format compatible with a given SDP solver, and (iv) the SDP solver time. The results are
shown in Table 1.

Re = 179.5
SDP Modes I Modes II

ε SDP solver time (s) ε SDP solver time (s)

Original 1 2.54×10−6 48 – –
Original 2 0.0030 48 – –
Method 1 0.0175 210 0.1495 3462
Method 2 0.0170 235 0.1512 8931
Bounding – 339 – 5195

Table 1: Performance of the methods at a fixed Re = 179.5 and for two different sets of modes.

In terms of ε, the two methods that seem to be the most robust are Method 1 and
Method 2, but for some reason, the computational cost of Method 2 is actually higher and
does not scale well as more modes are added, so Method 1 is preferred. Also, Original 1 and
Original 2 behave very similarly, as expected, but Original 1 produces a value of ε which
is safer to trust. Unfortunately, large memory requirements did not allow for simulations
to be completed with Modes II via Original 1 and Original 2. Thus, these methods do
not scale well as more modes are added, and to overcome this, probably an alternative
implementation that does not use auxiliary variables is required (see Section A.3 for more
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details). Lastly, since the Bounding method is based on Method 1, it was to be expected
that the cost was higher than that of Method 1, which indeed is the case.

Next, the results are shown for both sets of modes, but this time showing the highest
Reynolds number at Ldom = 2π

3.75 for which each method was found to be stable. These are
presented in Table 2.

Best Re attaining global stability
SDP Modes I Modes II

Re ε Re ε

Original 1 179.5 2.54×10−6 – –
Original 2 179.5 0.0030 – –
Method 1 194 1.60×10−4 230 1.07×10−5

Method 2 195 2.97×10−5 228 9.16×10−5

Bounding 190 – 214 –

Table 2: Best Re resulting in global stability for each method and for two different sets of modes.

Clearly, Method 1 seems to be the best in terms of obtaining the largest value of Re
(combined with a better computational performance over Method 2). Method 2 and the
Bounding method perform quite well but are more expensive than Method 1. Meanwhile
the Original 1 and Original 2 methods perform almost the same and do not go very high.
When adding more modes, the question was if higher Re could be attained or if the bounds
would degenerate to the point where it was not viable to add more modes. Thankfully, it
seems, up to the precision of the solvers, that for Method 1 and Method 2 the performance
does improve (Method 2 is much more expensive). In any case, the results are satisfactory,
since the highest value one could hope for with these sets of modes (i.e. where the truncated
system becomes unstable with both Modes I and Modes II) was Re = 266, and Method 1
resulted in Re = 230, which is not very far. Experimenting with different δi might improve
the results of Method 2 even further. In the future, Method 3 could provide significant
advantages in terms of speed, and is certainly worth looking into. On the other hand, the
method using much better bounds for M ·Θab seems very expensive but it could be useful
to try out eventually, as it may improve the global stability results.

Note that all results reported here were implemented using MATLAB via YALMIP. The
SDP solver used was MOSEK. To cement the confidence in the results, they could potentially
be verified with multiple-precision (using the solver SDPA-GMP) or with interval arithmetic
(using the solver VSDP which relies on INTLAB), but such verification has not been done.
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Indentation of Deformable Plastic Layers
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1 Introduction

One application of studying the indentation of deformable plastic layers is in understand-
ing the formation of footprints. Tracks and traces are of particular interest when studying
extinct animals as they provide evidence for behaviour, paleoecology and evolution [7]. A
number of studies have investigated the relationship between the indenter shape, the inden-
tation left behind and the rheology of the substrate to try and deduce what characteristics
can be determined from tracks and traces of distinct animals. Simple indentation mod-
els [1] have been used when looking at subfossil mammalian tracks in the Severn estuary.
These experiments consisted of indenting an axisymmetric indenter into a layered plasticine
structure and showed qualitative agreement with the essential features of track formation.
Other experimental work has focused on practical field studies such [12] looking at live emus
running across a range of substrate rheologies, from dry to damp sand and firm to fluid mud
or clay. They found that footprints from the same trackmaker can appear morphologically
different according to the properties of the sediment, and hence shows that care needs to
be taken to understand the original rheological conditions of the substrate at the time of
track making. More recently, numerical studies have been used to simulate the indentation
of a deformable layer [2]. They used a finite-element simulation to study the depth versus

The indentation of deformable plastic layers has been studied extensively for determining
the vertical bearing capacity of rigid strip footings. The solutions to this classic prob-
lem [14; 9] use the method of characteristics to determine an upper bound on the pressure
underneath a vertically loaded indenter placed onto an idealised semi-inifinite rigid-plastic
foundation. These studies for a homogeneous half-space have been extended to consider
non-homogeneous plastic solids [17; 15]; irregular shaped bodies [18]; rolling contacts [11; 4]
and axisymmetric geometries [16; 6; 3]. The connection to a finite layer has also been con-
sidered for the plastic flow between two rough parallel plates being forced together [14; 9],
with application to the flow near the end of a glacier [13]. However, apart from a few excep-
tions, most problems require numerical integration along characteristic curves to calculate
the pressure.

More recently, the behaviour of a finite plastic layer has been explored through the
use of viscoplastic fluids. Viscoplastic lubrication theory has been used to model the final
shape of a two-dimensional slump [5] and the confined flow of viscoplastic fluid between
rigid moving boundaries [8], where asymptotic expansion is based on the small aspect ratio
ε. This formulation provides a more simple approach to calculating the plastic deformation
of a shallow layer.
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pressure exerted due to a rigid human foot indenting an elastic-plastic substrate with and
without a firm subsurface layer. They found that depending on the depth of the initial
deformable layer, regions either indented deeper or shallower than expected from the peak
pressure in that region. This work demonstrated the importance of underfoot consolidation
in altering when sediment is able to resist deformation under load and support larger pres-
sures. These laboratory and numerical studies described above demonstrate the complexity
of understanding the formation of footprints and the leading order effects substrate rheology
and foot morphology can have. However, a simple quantitative approach to understanding
the characteristics of footprints has yet to be taken.

In this study, we will explore the indentation of deformable plastic layers by building on
the current advances in viscoplastic lubrication theory. In particular, we will consider the
vertical indentation of a shallow viscoplastic layer by a flat-based and cylindrical indenter.
We hope this will give insight the dominant balances in plastic deformation with application
to footprint formation amongst many other interesting problems.

2 Theoretical odel: Loading

We wish to understand the deformation of a plastic layer by a rigid indenter. To do so
we consider two stages: i) loading stage, where indentation is due to a given force, and ii)
lift off stage, where the indenter lifts off the deformed substrate at a given speed. In all of
the analysis to follow, we assume a two-dimensional geometry and that the motion of the
indenter is always perpendicular to the substrate.

To model the substrate, we consider two different rheologies: a purely cohesive model
with cohesion τY to describe a mud-like substrate, and secondly a non-cohesive model with
angle of friction φ to describe a granular substrate such as dry sand. During the loading
stage, a rigid indenter deforms the substrate due to a given force F . We consider firstly the
indentation of a shallow viscoplastic layer and then outline current theory for the indentation
of a deep plastic layer.

2.1 Shallow layer

We use viscoplastic lubrication theory with a Bingham rheology as a vehicle for understand-
ing a shallow plastic layer [8]. We consider the deformation of a uniform layer of viscoplastic
fluid of height h0, density ρ, viscosity μ with an indenter of geometry η(x), and character-
istic length scale x0. The height of the indenter is given by h(x, t) = δ(t) + η(x), where
δ(0) = h0, for −L < x < L where L is the contact point on the indenter. The free-surface
height of the fluid outside of this region x > L is also defined as h(x, t). We consider two
particular cases: (a) when the the contact point L is fixed for example a flat indenter with
corners, η(x) = 0, and (b) when the contact point L is moving and the indenter has some
geometry η(x) for example a cylindrical indenter or a flat indenter with rounded edges. In
case (a) we would like to solve for the height the free-surface reaches up the side of the
indenter h(L, t) = hL(t), whereas in case (b) we would like to solve for the contact point
L(t) and hence calculate hL(t) = δ(t) + η(L), see figure 1.

The shallow-layer approximation can be used when the characteristic length scales are
much greater than the characteristic height scales, x0 � h0.
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Figure 1: Schematic of (a) flat-based indenter, η(x) = 0 and (b) cylinder, η(x) = 1
2Rc

x2.

2.2 Bingham rheology

To parametrise the viscoplastic layer we consider a Bingham rheology. A Bingham rheology
is one in which the stress tensor varies linearly with strain rate provided the stress is above
a given yield stress. Below this yield stress the strain rate is zero. This can be summarised
as follows

τij =

(
τY
γ̇

+ μ

)
γ̇ij |τ | > τY , (1)

γ̇ij = 0 otherwise, (2)

where γ̇ =
√

1
2 γ̇ij γ̇ij and τ =

√
1
2τijτij . The form of the yield stress τY depends on the

rheology of the substrate. For the purely cohesive case, the yield stress is constant and for
the non-cohesive case the yield stress varies linearly with pressure, τY = p tanφ, where φ is
the angle of friction.

Assuming horizontal scales x0 are much larger than vertical scales h0, the thin film
approximation can be used such that

u � w and
∂

∂x
� ∂

∂z
. (3)

These scales allow O(ε = h0/x0) terms to be identified in the momentum equation and the
strain rate tensor, and hence gives

∂

∂z
τxz =

∂p

∂x
, (4)

0 =
∂p

∂z
+ ρg. (5)

The pressure can then be integrated to give

p = P + ρg(h− z), (6)

where P is the pressure at z = h. Substituting into the momentum equation then gives the
stress as a function of x and z,

τxz = Txz + (Px + ρghx)(z − h) ≡
(
τY
γ̇

+ μ

)
uz for |τxz| > τY , (7)
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where Txz is the stress at z = h. The model can be split into two regions: region 1 below 
the indenter −L ≤ x ≤ L ; and region 2 outside the indenter x ≥ L. In region 1 there 
are no-slip conditions on the top and bottom boundaries generating a squeeze flow beneath 
the indenter. In region 2 there is a free-surface on the top boundary giving a zero stress 
boundary condition there.

2.3 Purely cohesive, τY = constant

2.3.1 Free-surface flow

For the free-surface flow Txz = 0 and P = 0 due to the zero normal stress condition on the 
top surface. From equation (7) in section 2.2 we then have

uz =
(Px + ρghx)

μ
(z − h)− sgn(uz)

μ
τY . (8)

The sgn(uz) is required because the fluid is yielded when |τ | > τY . Rearranging the equation
for the velocity gradient gives an expression for the yield surface Y when γ̇ ≡ |uz| = 0,

uz = −ρghx
μ

(Y − z) where Y = h+
τY
ρghx

. (9)

Integrating and using the no-slip boundary condition at z = 0 gives velocity field

u = −ρghx
2μ

(2Y − z)z 0 ≤ z ≤ Y, (10)

u = up = −ρghx
2μ

Y 2 Y ≤ z ≤ h, (11)

where up is the plug velocity. Integrating the free-surface flux and then applying local mass
conservation gives a governing equation for the evolution of the free surface

∂h

∂t
=

ρg

6μ

∂

∂x

(
hxY

2(3h− Y )
)
, FFS = −ρghx

6μ
Y 2(3h− Y ), (12)

where F FS  is the net horizontal flux.

2.3.2 Squeeze flow

Underneath the indenter there is a squeeze flow as fluid is pushed out the way by the 
indenter. The no-slip boundaries conditions give a parabolic profile suggesting there is a 
plug region in the centre at the turning point where uz = 0. We can also assume symmetry 
about the centre line z = h/2 and hence apply boundary conditions

u = 0 at z = 0, uz = 0 ⇒ τxz = 0 at z =
h

2
. (13)

The stress can the be written as

τxz = (Px + ρghx)

(
z − h

2

)
≡

(
τY
γ̇

+ μ

)
uz. (14)
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As in the free-surface case, this can be rearranged to give the velocity gradient in terms of
the yield surfaces Y± for z < Y− and z > Y+,

uz = −Γ

μ
(Y± − z) where Y± =

(
h

2
± τY

|Γ|
)
, (15)

and Γ = Px+ ρghx is the reduced pressure gradient. The squeeze flow flux can be found by
integrating the velocity gradient

FSF = 2

∫ h
2

0
u dz ≡ 2

∫ Y−

0

(
h

2
− z

)
uz dz = − Γ

3μ
Y 2
−

(
3h

2
− Y−

)
. (16)

Hence, applying local mass conservation with h(x, t) = δ(t) + η(x), the governing equation
for the pressure gradient can be written as

xδ̇ =
Γ

3μ

(
h

2
− τY

|Γ|
)2(

h+
τY
|Γ|

)
. (17)

2.3.3  Global mass conservation and equation of motion for δ(t)

We consider global conservation of mass to relate the depth δ to contact length L. By 
considering the area underneath the indenter, global conservation of mass can be written 
as a sum of integrals in the two regions,

h0L0 = δL+

∫ L

0
η dx+

∫ L0

L
hFSdx, (18)

where L0 is the half-length of the deforming substrate, see figure 1. To close the system,
the equation of motion for δ(t) can be written as,

mδ̈ = −mg + 2

∫ L

0
P dx, (19)

where m is the mass per unit width of the indenter and g is the acceleration due to gravity.

2.3.4   Non-dimensionalisation

We non-dimensionalise vertical and horizontal lengthscales by the initial depth of fluid h0 and 
characteristic lengthscale of the geometry x0 respectively. A scale for the pressure is defined 
by balancing the normal force due to the fluid with the weight of the indenter. Finally, a 
timescale is defined by balancing the inertial forcing with the weight of the indenter. Hence, 
non-dimensional variables can be defined as,

x̂ =
x

x0
, ĥ =

h

h0
, P̂ =

P

P0
=

x0
mg

P, t̂ =
t

t0
=

(
g

h0

)1/2

t. (20)
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Dropping the hat decoration, the governing equations for the free-surface flow, the
squeeze flow and the evolution of δ(t) then reduce to

V
∂h

∂t
=

R

6

∂

∂x

(
hxY

2(3h− Y )
)

with Y = h+
B

Rhx
(21)

V xδ̇ =
Γ

3

(
h

2
− B

|Γ|
)2(

h+
B

|Γ|
)
, (22)

L0 = δL+

∫ L

0
η dx+

∫ L0

L
hFSdx (23)

δ̈ = −1 + 2

∫ L

0
P dx, (24)

with parameters

B = τY x
2
0/mgh0, R = ρx0h0/m, and V = μx30/mh20

√
gh0. (25)

The Bingham number B characterises the strength of the substrate, R controls the influence
of gravity and V the influence of viscosity. This model is valid until δ̇ = 0 at which point 
the squeeze flow turns off and the layer plugs up.

2.3.5 Plastic limit, free-surface

In the plastic limit, as V → 0, the terms involving time dependence in the free-surface and 
squeeze evolution equations are small and hence the flow becomes quasi-static. For the
free-surface flow this implies Y = h + B/Rhx → 0, hence

hhx = −B

R
⇒ h =

(
h2L +

2B

R
(L− x)

)1/2

. (26)

2.3.6    Plastic l imit, squeeze flow case (a): flat-based i ndenter, η(x) = 0, x0  
= L

In  the plastic l imit,  the yield surfaces Y± = h/2 ∓ B /(Px + R hx)  in  the squeeze flow also 
tend to  the boundaries, Y− →   0, Y+ →   h  implying

h

2
= − B

Px +Rhx
. (27)

Assuming further that R � 1 so the hydrostatic pressure is small, the pressure in the
squeeze flow can be solved for with boundary condition P (x = 1) = R(hL − δ) � 1,

Px = −2B

δ
⇒ P =

2B

δ
(1− x). (28)

Substituting the pressure into the evolution equation for δ we have,

δ̈ = −1 +
4B

δ

∫ 1

0
1− x dx = −1 +

2B

δ
, (29)
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Figure 2: Potential energy V (δ) against depth δ for the flat-based indenter (solid lines) and
the parabolic indenter (dashed lines) and two values of the Bingham number 2B = 1, 1/3 ln 3
given by the blue and red lines respectively.

which defines equilibrium depth δeq = 2B where the normal force due to the fluid balances

the weight of the object. Multiplying by δ̇ the energy equation can be derived, and hence
an expression for the final depth of the indenter δf ,

1 +
δ̇20
2

= V (δf ) = δf − 2B ln δf . (30)

The minimum value of V (δ) is attained at the equilibrium depth δ = δeq = 2B, with value
V (δeq) = 2B − 2B ln 2B. When δ̇0 = 0 and 2B < 1 (δeq < 1), the indenter sinks to a height
δf . However, when δ̇0 = 0 and 2B > 1, the equilibrium depth is above the height of the
layer. This is because the layer is not sufficiently stressed to deform so the indenter remains
on the surface with δf = 1, see figure 2.

2.3.7 Plastic limit, squeeze flow case (b): parabola η(x) = 1
2x

2, x0 = (Rch0)
1/2

In the case of a parabolic indenter (local approximation for a cylinder), the pressure gradient
can be written as,

Px = −Rx− 2B

δ
(
1 + 1

2δx
2
) . (31)

The normal force due to the fluid is given by

2

∫ L

0
P dx = −2

∫ L

0
xPx dx = 2

∫ L

0
Rx2 +

2Bx

δ
(
1 + 1

2δx
2
) dx =

2RL3

3
+ 4B ln

(
1 +

1

2δ
L2

)
.

(32)
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Unlike the flat-based indenter with fixed L, for the parabola the evolution of δ(t) is coupled
to the evolution of L(t). Global conservation of mass gives

L3

6
− L(1− δ) +

R

6B
(2hL + 1)(hL − 1)2 = 0. (33)

In the limit of R � 1, the conservation of volume reduces to L2 = 6(1−δ), hence the energy
equation for δ can be written as

δ̇20
2

+ 1 = V (δ) = δf + 4B

(
1

2
(3− 2δf ) ln(3− 2δf ) + δf ln δf

)
. (34)

Figure 2 plots the potential energy V (δ) against the depth of the indenter. The minimum
point is given by δ = δeq = 3/(exp(1/4B) + 2) which tends to 1 as the Bingham number
diverges. For δ̇0 = 0, the parabola appears to reach the bottom provided 2B < 1/3 ln 3. In
general, equation (34) suggests the parabola reaches the bottom of the initial layer provided
the initial speed of the indenter is sufficiently large,

δ̇20 > 2(6B ln 3− 1). (35)

However, in the plastic limit there will always be a thin viscous layer between the parabola
and the base of the substrate. This is violated in this case because the assumption that the
yield surfaces tend towards the boundaries, Y− → 0, Y+ → h, breaks down as δ → 0. If we
rescale the variables in terms of δ, x̂ = x/δ1/2, ĥ = h/δ, for η(x) = η0x

n, then we have

V δ
1
n
− 3

2 δ̇ =
Γ

3

(
h

2
− B

|Γ|
)2(

h+
B

|Γ|
)
. (36)

For n > 0 the left hand side diverges as δ → 0 suggesting we are no longer in the quasistatic
limit so the approximation of Y− → 0, Y+ → h is not valid. Hence, equation (34) does not
hold for small δ.

2.4 Numerical solution

The full system (21 24) can be solved numerically using
MATLAB’s in-built solver ODE15s. Figure 3 shows the numerical solution for

parameters V = 1, B = 1 and R = 1 with initial condition δ̇0 = −2. Figure 3(a-c)
show the position of the cylinder, yield surfaces and free-surface profile at time
intervals t = 0.02, 0.14 and 0.26. Figure 3(d) plots depth of the cylinder δ(t) with
time to its stopping position at δf = 0.71, t = 0.29. In figure 3(a-c) there appears to
be a discontinuity between the squeeze flow and free-surface flow as indicated by the
transition from two yield surfaces to one. This is because there is an O(1) aspect
ratio region at the contact line x = L which is not captured by the lubrication
model, where the yielded and plug regions smoothly transition. Instead the lubrication
model matches the two regions by taking the horizontal volume flux to be continuous
at x = L.

−
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Figure 3: Full numerical solution for a parabolic indenter dropped onto a pure cohesive
substrate with δ̇0 = −2, V = 1, B = 1 and R = 1 plotted at (a) t = 0.02, (b) t = 0.14, and
(c) t = 0.26. The coloured lines indicate the edge of cylinder (black), free surface (blue),
yield surfaces in the squeeze flow (red), and yield surfaces in free surface flow (green), with
black dashed lines separating the squeeze flow and the free-surface flow. The squeeze flow
plug, free-surface plug and cylinder are shaded in red, green and grey respectively. (d)
Height of the cylinder with time. Blue dots are plots are t = 0.02, 0.14, 0.26 and the black
dot is final resting place of cylinder when δ̇ = 0 at δf = 0.71, t = 0.29.
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2.5 Mohr-Coulomb τY = p tanφ

In a Mohr-Coulomb model, the stress tensor can be written as

τij = τY
γ̇ij
γ̇

where τY = c+ p tanφ, (37)

where c is the cohesion and φ is the internal friction angle. For generality, we will consider
c 
= 0 to begin with and then take c = 0 for the non-cohesive case. As in the Bingham
model, we regularise by adding a viscous term in order to solve for the flow field. This gives

τij =

(
c+ p tanφ

γ̇
+ μ

)
γ̇ij . (38)

2.5.1  Free-surface flow

For the free surface flow p(z = h) = 0, which gives

μu = (−ρghhx − c− ρgh tanφ) z +
1

2
(ρghx + ρg tanφ) z2. (39)

Setting uz = 0 defines the yield surfaces

Y = h− c

ρg(|hx| − tanφ)
. (40)

As in the pure cohesive case, the governing equation for h can be found by considering local
mass conservation to give

∂h

∂t
=

∂

∂x

(
ρg(hx + tanφ)

6μ
Y 2(3h− Y )

)
. (41)

2.5.2   Squeeze flow

The squeeze flow is treated in a similar manner to the pure cohesive case. In the bottom 
yielded region, the velocity gradient can be integrated to give the velocity for 0 < z  < Y−

μuz = Γ(z − Y−) + ρg tanφ(z − Y−) ⇒ μu− = (Γ + ρg tanφ)z
(z
2
− Y−

)
, (42)

where Γ = Px + ρghx. Similarly, the velocity in the top yielded region for Y+ < z < h can
be written as

μu+ = (Γ− ρg tanφ)

[
z
(z
2
− Y+

)
− h

(
h

2
− Y+

)]
. (43)

One equation for the yield surfaces is given by matching the plug speeds, u−(Y−) = u+(Y+),

h−
(−Γ− ρg tanφ

−Γ + ρg tanφ

)1/2

Y− = Y+. (44)

Another equation is given by setting the top and bottom boundaries to be at the yield stress

−Γ(Y+ − Y−) = 2c+ 2P tanφ+ ρg tanφ(2h− Y− − Y+). (45)

Depth integrating the velocity and applying local mass conservation an ODE for the pressure
P can be found,

−xδ̇ =
(Γ + ρg tanφ)

6μ
Y 3
− − (Γ− ρg tanφ)

6μ

(
Y 3
+ − 3Y+h

2 + 2h3
)
. (46)
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h0

2.5.3 Non-dimensionalisation

We non-dimensionalise as in section 2.3.4 which gives the additional non-dimensional pa-
rameter Φ = x0 tan φ which controls the influence of the angle of friction φ. The Bingham
number is now written as B = cx20/mgh0.

2.5.4 Plastic limit, free-surface

In the plastic limit, Y → 0, and equation for the quasistatic free surface h(x, t) can be found
hhx

B
RΦ + h

= −Φ, (47)

Using boundary condition h(L, t) = hL, this can be integrated to give

h− hL − B

RΦ
ln

(
h+ B

RΦ

hL + B
RΦ

)
= (L− x)Φ. (48)

In the non-cohesive case, B = 0, the free surface profile in the plastic limit reduces to the
linear profile with gradient given by the angle of friction φ,

h− hL = (L− x)Φ. (49)

2.5.5 Plastic limit, squeeze flow case (a): flat-based indenter η(x) = 0, x0 = L

In the plastic limit, the yield surfaces tend to the boundaries, Y− → 0, Y+ → h = δ(t). 
Hence, this gives

−Pxδ = 2B + 2ΦP +RΦδ. (50)

Multiplying by an integrating factor and using boundary condition P (x = 1) = R(hL − δ),
an expression for the pressure can be found

P = −
(
B

Φ
+

Rδ

2

)
+

(
RhL − Rδ

2
+

B

Φ

)
exp

(
2Φ

δ
(1− x)

)
(51)

The equation of motion for the depth of the indenter in the non-cohesive case is then given
by

δ̈ = −1−Rδ − δ

Φ

(
RhL − Rδ

2

)(
1− exp

(
2Φ

δ

))
. (52)

A relationship between hL and δ is found by considering global mass conservation

1− δ =
1

2
(hL − 1)(L0 − 1) ⇒ hL = 1 + (2Φ(1− δ))1/2 . (53)

The force balance equation can then be integrated to give an expression for δf in terms of
initial condition δ̇0 and parameters Φ and R,

1 +
δ̇20
2

= δf +R

∫ δf

δ0

(
δ + δ

((
2(1− δ)

Φ

)1/2

− δ

2Φ

)(
1− exp

(
2Φ

δ

)))
dδ. (54)

Figure 4 plots the final depth δf as a function of Φ and R (blue and red solid lines). For
small 1/R, the flat-based indenter sits on the surface of the plastic layer with δf = 1. As
in the pure cohesive case, this defines a yield criterion as a function of parameters Φ and R
where the layer is not sufficiently stressed to deform.
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Figure 4: Plot of the final depth δf as a function of 1/R for a flat-based indenter (solid 
lines) and parabolic i  ndenter (  dashed l  i nes) with Φ = 1, 2.

For a parabolic indenter, h = δ(t) + 1
2x

2, the pressure in the squeeze flow is given by
Γ = Px +Rx. Hence, in the plastic limit

−(Px +Rx)

(
δ +

1

2
x2

)
= 2B + 2ΦP +RΦ

(
δ +

1

2
x2

)
. (55)

In the non-cohesive case,

Px +
2ΦP

δ + 1
2x

2
= −R(x+Φ). (56)

This can be integrated with boundary condition P (x = L) = R(hL − δ). Substituting the
pressure into the force balance equation, together with global mass conservation

(
δ +

1

2
L2 − 1

)2

= 2Φ

(
L(1− δ)− 1

6
L3

)
, (57)

and integrating twice, an expression for δf can be found in terms of δ̇0 and parameters Φ
and R, see section 2.5.5. Figure 4 plots the final depth δf as a function of Φ and R (blue
and red dashed lines).

2.6 Deep plastic layer

Thus far we have considered a shallow layer of viscoplastic fluid in order to understand
the deformation of a shallow plastic layer. The case of a deep layer has been studied
extensively using the method of characteristics [14 9]. These studies calculate the pressure

2.5.6 Plastic limit, squeeze flow case (b): parabola η(x) = 2
1x2, x0 = (Rch0)1/2
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underneath a flat-based indenter placed onto a rigid-plastic half-space by the construction
of sliplines. We outline here the method for constructing sliplines and state two key results
for a purely cohesive and a non-cohesive substrate. We then describe three possibilities for
the free-surface displacement.

In the deep layer limit, we require the full force-balance equations

∂σz
∂x

+
∂τxz
∂z

= 0,
∂σx
∂z

+
∂τxz
∂x

= 0, (58)

where σx and σz are the normal stress components in the x and z directions respectively
and τxz is the shear stress. Requiring yield condition (σx − σz)

2 + 4τ2xz = 4τ2Y , the stress
components can then be written in terms of new parameter θ,

σx = −p+ τY sin 2θ, σz = −p = −τY sin 2θ and τxz = τY cos 2θ. (59)

Substituting the parametrisation (59) into the full force-balance equations (58) and differ-
entiating, equations for p and θ can be found(

cos θ
∂

∂x
+ sin θ

∂

∂z

)
(p+ 2τY θ) =

(
sin θ

∂

∂x
− cos θ

∂

∂z

)
(p− 2τY θ) = 0. (60)

These define two sets of characteristics (α and β characteristics) along which quantities
p± 2τY θ are conserved. To solve for the slipline field the quantities p and θ first need to be
defined along some boundary. The values of p and θ are calculated elsewhere by integrating
along the characteristics equations (60) from a region of known information.

For the case of a pure cohesive plastic layer where τY = constant, the pressure under-
neath an indenter of contact length a = 2L can be calculated analytically and is given
by

p = τY (2 + π), (61)

[14]. The force per unit length is therefore F = τY (2 + π)a. For the case of a non-cohesive
material such that τY = p tanφ, the pressure is given by

p =
1

2
ρgNγa, (62)

where Nγ = 6.5 is a Terzaghi coefficient [19 3] calculated numerically, with force per unit
length F = 1

2ρgNγa
2. These expressions for the force F describe the initial condition where

a flat-based indenter of contact length a is placed onto the flat surface of a deep plastic
layer. Hence, this theory can only be extended to small deformations of the layer where the
surface can be approximated as horizontal.

For a flat-based indenter, comparing the weight of the indenter with the force exerted
by the plastic layer gives a yield criterion for when the indenter can deform the substrate.
For example in the pure cohesive case, the indenter will deform the substrate provided

τY ≤ mg

(2 + π)wa
, (63)

where m and w are the mass and length of the indenter respectively. To determine the
equilibrium depth of the indenter, the velocity field must be calculated to update the free
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surface, and hence calculate the new force exerted by the plastic layer. An iterative numer-
ical approach can then be used to determine the depth at which the forces are in balance.

For the case of a parabolic indenter, the increasing contact length with depth of inden-
tation means more progress can be made analytically. Again, for the pure cohesive case,
equating the force exerted by the plastic layer with the weight of the indenter gives a con-
tact length a = mg/τY (2 + π)w. The contact length must now be related to the depth of
the indentation. Figure 5 shows possible relationships between contact length a and depth
of indentation d. Figure 5(a) shows when the layer is allowed to compact such that there
is no free-surface deformation, in contrast to the previous formulation where we assumed
incompressibility. As a result the free surface remains horizontal with d = 1

2Rc
(a/2)2 for

shallow depths d. In figure 5(c) we have considered when gravity is neglected giving a
vertical free-surface. Conservation of mass then implies d = 1

6Rc
(a/2)2. We anticipate the

free-surface to be in between these two end-members such as figure 5(b). For the pure
cohesive case, the free-surface displacement for shallow indentations can be found
using the slipline calculations [18]. For small deformations due to the curved surface
of a cylinder, the velocity on the surface of the plastic layer is shown to be

v(x, t) =

{−V 0 ≤ x ≤ a/2
V a/2 ≤ x ≤ a,

(64)

where the length of the deformed region outside is the same as the half-length of the indenter
due to the symmetry of the slipline field. And hence, the deformed region outside has
profile [18]

h = d− x2

14Rc
where d =

2

7Rc

(a
2

)2
. (65)

For the parabolic indenter, the contact length and depth as function of the mass of the
indenter are therefore given by

a =
mg

τY (2 + π)w
, d =

1

14Rc

(
mg

τY (2 + π)w

)2

, (66)

for a pure cohesive substrate, and

a =

(
2m

ρNγw

)1/2

, d =
2m

14RcρNγw
, (67)

for a Mohr-Coulomb substrate.
In this section we have described a theoretical model for the loading stage of indentation

where either a flat-based or parabolic indenter is placed onto a shallow plastic layer. We
have also outlined the current theory for indentation of a deep plastic layer using the method
of characteristics to build up a slipline field. In the next section we will describe experiments
of indentation into shallow and deep layers with the aim of making comparisons with the
theory described.
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Figure 5: Schematic showing possible relationships between contact length a and depth
indented into the plastic layer d. (a) Pure compaction d = 1

2Rc
(a/2)2, (b) some deformation

outside 1
6Rc

(a/2)2 < d < 1
2Rc

(a/2)2 , and (c) vertical free surface d = 1
6Rc

(a/2)2.

3 Experiments

3.1 Setup

Experiments were conducted to investigate the relationship between depth, contact length
and mass for a cylinder indenting a deformable substrate. Joint compound was used as a
Bingham rheology and two sizes of ballotini (0.2mm and 1mm) were used as Mohr-Coulomb
rheologies, both with angle of friction φ = 24.9 ± 0.7. The experimental setup is shown in
figure 6. A clear perspex cylinder of radius Rc = 0.076m was attached to the end of
a lever was allowed to rotate about a pivot. Weights were placed on the lever
and incrementally moved along to increase the moment, and hence mass on the
cylinder. A scale placed on the inside of the cylinder allowed the contact arc length
to be measured by eye. Two cameras were also set up to record the displacement of
the cylinder. The first camera took photos parallel to the substrate surface to measure
the depth of the cylinder, figure 6(b). The second camera was placed at a known
oblique angle to take photos of a laser line shone through the cylinder, figure 6(c).
This gave a second measurement of the contact arc length and depth as well as a
profile of the free surface outside.

3.2 Image processing

Photographs taken parallel to the substrate were analysed to determine the depth of the
indentation. A blue strip on the top of the cylinder was used to track the displacement
between images. We found that the cylinder compressed slightly due to the weight placed
on top. As a result, a compliance test was carried out to measure the deformation of the
cylinder under a given load when placed on a rigid surface. This is then subtracted from
the measured displacements.

Photographs of the laser line taken at known oblique angle were analysed to
deduce the profiles of the indentations, see figure 7(a). Firstly, the red filter of the
image is taken to get an intensity plot figure 7(b). A moving average is then used to
smooth the profiles, with a lower threshold chosen to eliminate noise. The profile is
then determined by calculating the weighted average along each vertical strip of
pixels, figure 7(c) (blue solid line). The laser line was imaged through the bottom half
of the cylinder causing some distortion of the profile to take place. This is corrected
for by subtracting off a reference profile of the
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Figure 6: Experimental setup. (a) Schematic of the experimental setup. (b) Sample photo-
graph taken from the first camera parallel to the substrate, and (c) taken from the second
camera at known oblique angle.

Figure 7: Image processing for joint compound experiment with h0 = 4 cm. (a) Image
of laser line, and (b) red filtered image of laser line. (c) Detected displacement of joint
compound (blue solid line) and reference profile of laser line projected through the perspex
cylinder (red solid line), edge of the cylinder indicated by vertical black-dashed lines. (d)
Final profile of displacement.
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cylinder resting on the surface of the joint compound with no mass, figure 7(c) (red solid
line), where the black-dashed lines indicate the edge of the cylinder. The final displacement
profile is given in figure 7(d) with the contact length a and the depth d indicated and
superimposed cylinder outline given by the black dashed line.

3.3 Joint Compound

3.3.1 Yield stress

A slump test can be used to measure the yield stress of the joint compound. From sec-
tion 2.3.5, the final profile of a shallow slump of plastic fluid is given by

h(x) =

(
2τY
ρg

(Ls − x)

)1/2

(68)

where Ls is the radius of the slump, [10]. By measuring the radius and central height
of a slump of joint compound, the yield stress can be measured, τY = ρgh20/2Ls. In our
experiments, the yield stress is measured to be τY = 35± 5Pa.

3.3.2 Loading experiments

For the joint compound, we carried out a series of loading experiments where the mass
on the cylinder was gradually increased by moving masses along the pivot lever. The
depth, δf , and contact length, a = 2L, where measured using the methods described in
section 3.1. Figure 8 plots the depth and contact length against the applied mass for four
different substrate heights h0 = 1, 2, 3 and 4cm. Figure 8(b) shows excellent agreement
between the contact length measured from the profiles (filled circles) and the contact length
measured by eye (empty squares). As the depth of the substrate increases, the contact
lengths begin to collapse onto a universal curve, seen by the close agreement between the
contact lengths for h0 = 3cm (orange points) and h0 = 4cm (purple points). This is to be
expected since as h0 increases there is a transition from indenting a shallow layer where the
depth δf is proportional to h0 to indenting a deep layer where the depth δf is independent
of h0. Figure 8(a) plots the depth against applied mass and shows there is a discrepancy
between the depth measured from the profiles (filled circles) and the depth measured
from tracking the side view of the cylinder (empty squares). The depth measured
from the profiles show a collapse of the data for larger substrate depths onto a
universal curve (orange and purple filled circles), consistent with the measured contact
length, whereas the depth measured from the side profiles show a continued increase
in depth. In addition, the profiles seen in figures 7, 9 are in excellent agreement with
the theoretical cylinder shape with measured radius Rc = 0.076m (black dashed lines)
suggesting there is no error in converting the profiles to depths. And hence, the laser
line gives a more accurate measure of the depth of the indentation. On possible
reason the depth calculated from the side images disagrees could be that the
compliance of the cylinder is not properly accounted for. In future experiments, more
tests need to be carried out to characterise the compliance of the indenter.

Figure 8 also plots the theoretical curves for the deep plastic layer (black dashed lines)
and the viscoplastic layer (black dot-dashed lines). The deep theory is given by equation (66)

266



Figure 8: Loading experiments for a cylinder indenting a layer of joint compound. (a) Depth
with mass measured using the detected profiles (filled circles) and the photographs tracking
the cylinder from side view (empty squares). (b) Contact length with mass measured using
the detected profiles (filled circles) and by eye (empty squares). The theoretical curves for
the deep plastic layer (black dashed lines) and the viscoplastic layer (black dot-dashed lines)

are plotted for parameters τY = 35Pa, ρ = 1517 kgm−3, h0 = 0.01m, Rc = 0.076m and
w = 0.2m.

and the viscoplastic theory by numerically solving the force balance outlined in section 2.3.7
with R non-negligible. Qualitatively the experimental data has the same characteristic
shape as suggested by the shallow viscoplastic theory but appears to disagree quantitatively
by a scale factor. In terms of the deep plastic theory, initially the contact length appears to
grow linearly as suggested by the theory but then quickly diverges. This may be because
the surface of the layer can no longer be approximated as horizontal.

3.3.3 Profiles

The detected free-surface profiles can also be used to compare with the theoretical models.
Figure 9(a-d) plots the profiles for layer depths h0 = 1, 2, 3 and 4 cm due to applied loads
m = 0.24, 1.05 kg. For the smallest depth, figure 9(a), the theoretical curve (26) is plotted
for two values of the yield stress τY = 20 and 35Pa and suggests a smaller yield stress
than measured from the slump test is required to fit the experimental results. As the layer
depth increases, the region over which deformation occurs increases. For the largest layer
depth, figure 9(d), the deformation begins to reach the edge of the containing box. As a
result, the flow can feel the influence of the side walls and hence mobilises a larger region
of the layer than suggested by the theoretical free-surface for the deep plastic layer (green
solid line). In addition, the profiles of layer depth h0 = 3 and 4cm suggest that mass is
not conserved. This could be due to an error zeroing the profiles with the reference image
or fluid escaping the test region. To experimentally increase the height of the layer depth,
blocks were added into the box to dam a smaller region. Any fluid escaping this region
would cause an apparent loss of mass with indentation.
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Figure 9: Profiles of loading experiments for a cylinder indenting joint compound for layer
depths h0 = 1, 2, 3 and 4cm, (a-d) respectively, and applied load m = 0.24, 1.05 kg
(blue lines). (Note change of axes ) Position of the cylinder given by the black dashed
lines.(a) Theoretical curves for a viscoplastic free-surface flow with yield stress τY = 35
Pa (red dot-dashed line) and τY = 20 Pa (red solid line). (d) Theoretical curve for a
deep plastic layer free-surface profile (green solid line).
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3.4 Ballotini

3.4.1 Loading experiments

For the ballotini we again carried out a series of loading experiments for a range of substrate
heights h0 = 1 − 5cm with ballotini diameters 0.2mm (small) and 1mm (large). Figure 10
plots the depth and contact length against the applied mass, where filled data points indicate
large ballotini and empty data points small ballotini. As in the joint compound case, there
is a clear difference between between shallow and deep substrate depths with the depth of
indentation and contact length smaller for h0 = 1cm (purple points). This again highlights
the transition from indenting a shallow layer to a deep layer. There also appears to be a
discrepancy between the small and large ballotini with the same angle of friction φ. At the
start of each experiment the ballotini substrate was mixed around then levelled once to give
a uniform h0 with a loose structure. This may have led to a different packing density for
the two ballotini sizes. For example, if the small ballotini had a tighter packing density we
would anticipate the depth of indentation to be less for a given mass. This could explain the
difference between the two ballotini sizes however further experiments need to be carried
out to rule out other possibilities.

The theoretical curves for the deep plastic layer (black dashed lines) and the viscoplastic
layer (black dot-dashed lines) are also plotted on figure 10. The deep plastic layer, see
equation (67), does a good job at replicating the linear and square root structure of the
depth and contact length for larger substrate depths, whilst the theory for a viscoplastic
layer, numerical solution in section 2.5.6, as in the joint compound case, over predicts the
depth and contact length for a given mass quantitatively by a scale factor.

3.4.2 Dropping experiments

In addition to the static loading experiments, we carried out a series of dropping experiments
to investigate the effect the initial speed of the indenter on the surface of the substrate δ̇0

has on the final depth δf . To do so we dropped the cylinder from a range of increasing
heights with the same loading mass each time onto a substrate of 1mm ballotini of depth
h0 = 5cm. Figure 11 shows the final profile for four different heights. This demonstrates
that the final depth δf increases with initial speed, as anticipated from our formulation in
section 2.1.

In this section we have described some preliminary experiments conducted to investigate
the indentation of two substrate rheologies with a clear transition between shallow layers,
where the indentation is predicted to be proportional to h0, and deep layers, where the
indentation is predicted to be independent of h0. In addition, for the experiments with bal-
lotini, we saw a difference with diameter size suggesting the experiments were very sensitive
to initial conditions. For both the ballotini and the joint compound, there is good agree-
ment with the overall shape suggested by the theoretical models however there appears to
be a scale factor discrepancy between experimental results and the viscoplastic model. The
profile shapes show promising comparisons with the viscoplastic model for the shallowest
depth h0 = 1cm, however highlight the need to measure more accurately the rheology of
the substrate. The dropping experiments also nicely demonstrate the relationship between
initial speed δ̇0 and the final depth of indentation δf .
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Figure 10: Loading experiments for a cylinder indenting a layer of ballotini of height h0 =
1 − 5cm. (a) Depth and (b) contact length with mass for small 0.2mm diameter (empty
points) and large 1mm diameter (filled points) ballotini. Theoretical curves for the deep
plastic layer (black dashed lines) and viscoplastic layer (black dot-dashed lines) are plotted
for parameters φ = 24.9, ρ = 1550 kgm−3, Nγ = 6.5, h0 = 0.01m, Rc = 0.076m and
w = 0.2m.

Figure 11: Profiles of dropping experiments for a substrate of 1mm ballotini with depth
h0 = 5cm. Coloured lines indicate different initial heights of the cylinder above the surface,
and hence different initial speeds δ̇0.
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Figure 12: Schematic of methods of lift off: (a) reverse squeeze flow, (b) avalanching, and
(c) adhesion.

4 Theoretical odel: Lift ff

We now consider the second stage of our theoretical model: lift off, where the indenter lifts
off the deformed substrate at a given speed. This stage describes the final indentation left
after the indenter has been removed. We consider three methods of lift off: (a) reverse
squeeze flow, (b) avalanching and (c) adhesion, see figure 12. We will primarily consider the
lift off of a flat-based indenter however the methods used could easily be applied to more
complicated geometries such as a parabola as discussed previously.

4.1 Reverse squeeze flow

The first method of lift off considers when no air can get underneath the indenter. Instead,
as the indenter is lifted above its final resting depth δf a reverse squeeze flow is generated
in which material from the outside free-surface flow is pulled underneath to fill the gap. We
assume final lift off can occur when the free surface outside meets the corner of the indenter
i.e. pressure is atmospheric. Figure 13(a) shows the final stage of lift off when the indenter
can detach from the substrate. At this point the depth of the indentation has raised from
the δf to δl with the excavated mound of material outside meeting the flat base at x = 1.

4.1.1 Purely cohesive, τY = constant

From section 2.3.5, the free-surface before lift off is given by

h =

(
h2L +

2B

R
(1− x)

)1/2

. (69)

Provided the speed of lift off is sufficiently slow that the free-surface flow remains in the
plastic limit, the free-surface profile steps through a series of static shapes with the final
profile given by

h =

{(
h2L + 2B

R (1− x)
)1/2

1 < x < Lf ,(
δ2L + 2B

R (x− 1)
)1/2

Lf < x < L0,
(70)

see figure 13(a). To find δL mass conservation is used, which in the plastic limit is an equal
areas construction given the quasistatic free-surface profiles. Hence by global conservation
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Figure 13: Schematic of the parameters for (a) the reverse squeeze flow, and (b) the
avalanching method.

of mass, the free-surface profile can be integrated to give

δL − δf =
R

3B

(
h3L + δ3L − 2

(
1

2

(
h2L + δ2L

))3/2
)
, (71)

using h2L + 2B
R (1−Lf ) = δ2L + 2B

R (Lf − 1). Calculating δf and hL from section 2, the depth
δL can be determined as a function of B and R. Figure 14(a) plots the final profile for two
sets of parameters, B = 2, R = 1 (red lines) and B = 1, R = 2 (blue lines).

4.1.2 Mohr-Coulomb, τY = p tanφ

For the Mohr-Coulomb case, the free-surface profile before lift off is given by

h = hL +Φ(1− x), (72)

see section 2.5.4. As in the pure cohesion case, for a sufficiently slow lift off speed the
free-surface flow remains in the plastic limit and hence can be written as (figure 13(a)).

h =

{
hL +Φ(1− x) 1 < x < Lf ,
δL +Φ(x− 1) Lf < x < L0,

(73)

Integrating the free-surface profile after lift off gives an equation relating δL, δf and hL,

δL − δf =
(hL − δL)

2

4Φ
. (74)

As in the pure cohesion case, together with the depth δf and height hL from section 2, the
depth δL can be determined as a function of Φ and R.

4.2 Avalanching

The second method of lift off considers when air can get underneath the indenter. When
the indenter is lifted off the substrate, the gap between the indenter and the final depth
δf is filled with air in the interior with ‘avalanching’ regions near the edge where there is
a squeeze flow and free surface flow, see figure 12(b). When the indenter is removed, the
base of the indentation remains at δf with the mound of material outside now meeting the
base at x = La < 1 (figure 13(b)).
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Figure 14: Plot of final indentation for the pure cohesion model after lift off for (a) squeeze
flow method, and (b) avalanching method for parameters B = 2, R = 1 (red lines) and
B = 1, R = 2 (blue lines). The profiles before and after lift off are given by the dashed and
solid lines respectively.

4.2.1 Purely cohesive, τY = constant

In the plastic limit, the profile of the free-surface can be written as

h =

⎧⎨
⎩
(
δ2f + 2B

R (x− La)
)1/2

La < x < Lf ,(
h2L + 2B

R (1− x)
)1/2

Lf < x < L0.
(75)

Using global mass conservation to match the areas of slumped material then gives

R

3B

(
h3L + δ3f

)
+ (1− La) =

2R

3B

[
h2L + δ2f

2
+

B

R
(1− La)

]3/2

. (76)

And hence, using δf and hL calculated in section 2, La can be found as a function of B and
R. Figure 14(b) plots the final profile for the two sets of parameters B = 2, R = 1 (red
lines) and B = 1R = 2 (blue lines).

4.2.2 Mohr-Coulomb, τY = p tanφ

The profile of the free-surface can be written as

h =

{
hL +Φ(1− x) La < x < Lf

δf +Φ(x− La) Lf < x < L0
(77)

Using global mass conservation to match the areas of slumped material then gives

(hL − δf )(hL − hf )− 1

2
(hL − hf )

2 − 1

2
(hf − δf )

2 = 0, (78)

where hf = hL + Φ(1 − Lf ) = δf + Φ(Lf − La). Together with δf and hL calculated in
section 2, La can be found as a function of parameters Φ and R.
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4.3 Adhesion

In both the reverse squeeze flow and the avalanching method, we have assumed that lift
off happens completely when the pressure at the edge of the indenter x = 1 is atmospheric
i.e. when the free-surface reaches the corner. A non-cohesive material has no strength in
tension therefore you would expect this to be the case. For a cohesive material however,
there would be some adhesion to the indenter. When thinking about track making, this
adhesion must be able to be characterised in the form of a pressure or stress condition on
the base allowing lift off at some point. In the experiments described in the next section
we have only considered a non-cohesive material therefore adhesion is not applicable.

4.4 Experiments

To investigate the lift off stage experimentally we used the setup as described in section 3
with a layer of 1mm diameter ballotini of depth h0 = 5cm. As the ballotini is dry, we would
anticipate that air can get in between the particles and underneath the indenter during lift
off. And hence, we expect the method of lift off to be as described in section 4.2 with the
bottom of the indentation remaining the same while avalanching occurs on the sides.

Figure 15 shows two lift off experiments with different initial depths for a cylindrical
indenter. Figure 15(a,b) plot the detected profiles before (blue solid line) and after (red
solid line) lift off together with the free-surface profile for a non-cohesive material with angle
of friction φ = 24.9 ± 0.7 (black dot-dashed line), see equation (49). The corresponding
photographs, figure 15(c,d) are taken after lift off to demonstrate the final profile. In
the first experiment, figure 15(a), the indentation is sufficiently shallow that the sides of
the indentation remain roughly at or below the angle of friction. As a result, almost no
avalanching occurs as seen by the negligible difference between the before and after profiles.
When the indentation depth is increased, the walls become steeper than the angle of friction
at the contact points, see figure 15(b). In this case, when lift off occurs, the ballotini
avalanches down into the interior of the indentation with the bottom of the indentation
remaining fixed. Figure 15(b) suggests that the final profile then sits at an angle less than
the angle of friction. This may be due to any added inertia caused by the process of lift off.

In this section we have considered a simple theoretical model to describe the process of
lift off for a flat-based indenter on either a purely cohesive or Mohr-Coulomb substrate. We
have looked at three different methods for lift off: (a) reverse squeeze flow, (b) avalanching
and (c) adhesion. Our preliminary experiments with dry ballotini demonstrate the method
of avalanching when air can get underneath the indenter. To explore to process of lift off
further we need to consider the problem of adhesion and the point at which completed
detachment from the substrate can occur.

5 Conclusion

The aim of this work was to understand the indentation of deformable plastic layers the-
oretically and experimentally. Our theoretical model using viscoplastic lubrication theory
describes the indentation of a shallow plastic layer. We have shown that the plastic limit
reduces to a force balance and equal areas construction given the quasistatic free-surface
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Figure 15: Lift off experiments with a layer of 1mm ballotini of depth h0 = 5cm. (a,b)
Depth profiles for increasing depths of indentation for before (blue solid line) and after (red
solid line) lift off. Black dot-dashed line indicates theoretical angle of friction φ = 24.9±0.7.
(c,d) Photographs of final profiles for experiments shown in (a,b) respectively.

profiles. The simple experimental setup used has produced promising preliminary results for
the indentation of a pure cohesive (joint compound) and non-cohesive (ballotini) substrate
with some qualitative comparisons with our theoretical model.

To extend this work in future, we plan on conducting further experiments to investigate
the indentation of deformable plastic layers. In terms of a pure cohesive material we would
like to better characterise the yield stress of the substrate and confirm that a Bingham
rheology is an appropriate approximation opposed to a more complicated Herschel-Bulkley
model. In addition, we would like to characterise the discrepancy between ballotini sizes to
check initial conditions resetting the surface are not playing a role. In terms of experimental
setup, we would like to improve the simple system to reduce the compliance of the indenter,
for example by clamping the sizes of half cylinder,
such a hemisphere. Finally, when discussing the problem of lift off, we touched on the case
of adhesion. This needs to be explored further both theoretically and experimentally as the
process of lift off ultimately determines the final indentation left behind.
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A Simple Adiabatic Model for Vertical Variation of Halocline

Slope in the Beaufort Gyre

Jessica Kenigson

November 25, 2019

1 Introduction

1.1 Forcing, circulation, and freshwater content of the Beaufort Gyre

The Beaufort Gyre is a large wind-driven circulation in the Canada Basin of the Western
Arctic Ocean between approximately 120◦ − 180◦ W and 70◦ − 85◦ N. Figure 1 shows the
bathymetry and spatial pattern of salinity at 200 m in the Beaufort Gyre. The gyre is a
persistent feature in the upper ∼300 m of the ocean, driven primarily by the climatological
anticyclonic winds associated with the wintertime Beaufort High sea level pressure system.
The winds cause Ekman downwelling, which pumps low-salinity surface water into the gyre
interior, deepens the halocline, and sets up the resulting anticyclonic circulation. Although
the climatological mean winds are anticyclonic, there is considerable seasonal variability; the
winds are strongly anticyclonic during the winter and weakest (potentially even cyclonic)
during the summer. Nevertheless, the upper-ocean circulation is persistently anticyclonic
due to the bowl-shaped deformation of the isopycnals associated with the freshwater storage
[9]. The surface waters of the Arctic are relatively fresh due to the excess of precipitation
over evaporation in the basin and due to its drainage of numerous large river systems and
low-salinity Pacific inflow.

The freshwater content (m) is defined as

FWC =

∫ η

D

Sref − S
Sref

dz (1)

where S is measured in practical salinity units, Sref is a reference salinity (typically 34.80),
η is the sea surface (m), and D (m) is the depth of the isohaline of the reference salinity
[4]. Sref is chosen to be near the mean salinity, and therefore FWC represents the amount
of freshwater that would need to be introduced in order to obtain the observed salinity
(beginning from Sref ). Equation 1 can be integrated over an area of interest to obtain the
volumetric fresh water content [4]. The total Arctic freshwater content has been estimated
to be 93,000 km3 over 1980–2000, with 18,500 km3 being stored in the Beaufort Gyre; over
2000–2010, the Arctic freshwater content increased to 101,000 km3 and the Beaufort Gyre
freshwater content increased to 23,500 km3 [9]. In addition, the freshwater content of the
Beaufort Gyre has been estimated to have increased by 8000 ± 2000 km3 from 1995–2010
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Figure 1: Salinity at 200 m (colormap)
from the PHC climatology (winter mean) and
bathymetry (black contours). Note the pro-
nounced salinity minimum within the Beau-
fort Gyre, which is a major freshwater reser-
voir in the Arctic Ocean.

Figure 2: Schematic diagram of the halo-
cline model in [7]. The halocline is repre-
sented as an interface that is deepened by Ek-
man pumping. Mesoscale eddies (baroclinic
instability) form along the interface to coun-
teract the deepening. The halocline is mod-
eled to be at a fixed depth at the gyre bound-
aries. Figure from [7].

due predominantly to the spin-up of the gyre by the increasing trend of the anticyclonic
wind stress curl [3].

Wind stress variability over the Beaufort Gyre modulates the storage and release of
freshwater, which has implications for freshwater and ice exchanges with the North Atlantic
Ocean and the Atlantic Meridional Overturning Circulation (AMOC). It has been proposed
that when high sea level pressure and anticyclonic wind anomalies prevail in the Arctic,
freshwater accumulates through various mechanisms [9]. River runoff into the Arctic Ocean
is enhanced due to shifts in storm tracks. Arctic sea ice also grows during anticyclonic wind
regimes due to the cooler temperatures that tend to predominate. Convergence of Ekman
transport pumps freshwater into the gyre, which also causes convergence and ridging of sea
ice. Finally, export of freshwater through Fram Strait declines, which increases the surface
salinity in the Greenland Sea, destabilizes the stratification of the water column and favors
deep water formation. As freshwater storage in the Beaufort Gyre is associated with doming
of the sea surface, eventually, an anomalous dynamic height gradient between the Beaufort
Gyre and the North Atlantic develops, which induces anomalous flow through Fram Strait
and the Canadian Arctic Archipelago and sets the stage for a transition to the cyclonic
circulation regime. During cyclonic circulation regimes, these processes are reversed.

The halocline in the Canada Basin is subdivided into a “warm halocline” centered
around 50 m depth with salinity from ∼30–32 and temperature ∼0 ◦C, and a “cold halo-
cline” centered around 150 m depth with salinity from ∼32–33 and temperature ∼ −1.5 ◦C
[10]. There is considerable interannual temperature variability and no significant seasonal
variability in the warm halocline. The warm halocline is a persistent year-round feature and
is sustained by summertime subduction of Chukchi Shelf Waters. The salinity minimum in
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the central Beaufort Gyre that is set up by the Ekman pumping prevents strong wintertime
mixing that would expose the overlying sea ice to the warm halocline; entrainment of this
heat could cause approximately 1 m of sea ice melt [10].

The storage and release of freshwater in the Beaufort Gyre thus has a broad range of
implications for the global climate. However, the dynamics of the Beaufort Gyre and the
processes that determine the halocline structure are uncertain.

1.2 Beaufort Gyre dynamics and simple model

The Beaufort Gyre is a persistent feature in the Canada Basin [9]. However, until recently
the basic dynamical balance of the mean circulation has been unclear. Specifically, what
processes oppose the deepening of the halocline due to Ekman pumping, allowing a steady-
state circulation to develop?

It has been proposed that mesoscale eddy fluxes are capable of balancing the Ekman
pumping in steady state [6]. The bowl-shaped deformation of the isopycnals in the halocline
is associated with the buildup of gravitational potential energy, which is a baroclinically
unstable configuration that leads to the formation of mesoscale eddies. These eddies act
to oppose the steepening of the halocline slope. Experiments with the MITgcm as well as
simple scaling arguments [6] suggest that the timescale of adjustment of the gyre to changes
in wind forcing (i.e., the time required for the halocline to reach its equilibrium depth) is

T ∼ R2

K
(2)

where R represents the radius of the gyre and K represents the eddy diffusivity. Therefore,
for a significant release of freshwater from the Beaufort Gyre to occur, it is necessary for wind
forcing anomalies to persist longer than the equilibration timescale, which was estimated
to be ∼6 years.

The following theory is developed in [7]. In this framework, the halocline is represented
as an isopycnal interface that is deepened by Ekman pumping; the deepening of the halocline
is opposed by the activity of mesoscale eddies (Figure 2). Assume that

Db

Dt
= S

where b represents buoyancy and S is a source term. Here we model the gyre in cylindrical
coordinates. Expanding and taking the Reynolds average of both sides yields

bt + vbr + wbz + v′b′r + w′b′z = S. (3)

Here v represents a velocity in the r-direction, w represents a velocity in the z-direction,
and v′b′r and w′b′z are interpreted as eddy fluxes of buoyancy. It is desirable to re-write the
eddy fluxes in Equation 3 as advection of mean buoyancy gradients by eddy velocities v∗

and w∗, i.e.,
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bt + (v + v∗)br + (w + w∗)bz = S. (4)

This condition requires that

v′b′r + w′b′z = v∗br + w∗bz. (5)

Using the Transformed Eulerian Mean framework [1], there exists a mean streamfunction
Ψ such that

v = −Ψz, w =
1

r
(rΨ)r (6)

which satisfies

Ψ =
τ

ρ0f
(7)

where τ(r, t) represents the (known) azimuthal surface wind forcing of the gyre, ρ0 is a ref-
erence density, and f is the coriolis parameter. In addition, there is an eddy streamfunction
Ψ∗ with associated eddy velocities

v∗ = −Ψ∗z, w
∗ =

1

r
(rΨ∗)r (8)

which is given by

Ψ∗ = −w
′b′

br
=
v′b′

bz
. (9)

This represents the so-called “adiabatic limit” in which eddy fluxes are assumed to be
along-isopycnal, i.e., perpendicular to gradients of buoyancy. In this formulation, eddies
“re-arrange” existing water masses but do not create “new” water masses (new density
classes). This condition can be observed by defining the eddy buoyancy flux as

Fb =

 v′b′

0

w′b′

 (10)

and noting that

Fb · ∇b = v′b′ · br + w′b′ · bz

= brbz

(
v′b′

bz
+
w′b′

br

)
= 0
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by Equation 9. Using the condition ∇ · (v∗, 0, w∗) = 0, which follows from Equation 8,
Equation 5 is satisfied. A mesoscale eddy parameterization is needed for the eddy fluxes in
Equation 9 and the Gent-McWilliams parameterization [2],

v′b′ = −Kbr, (11)

is used. Here K (m2 s−1) represents the eddy diffusivity and

Ψ∗ = Ks (12)

by Equation 9, where s = |br/bz|. (For the bowl-shaped deformation of the halocline, it
follows that br/bz < 0.)

It is the residual circulation, Ψ̃ = Ψ + Ψ∗, that drives changes in the halocline depth.
Substituting Equations 6 and 8 into Equation 4, it follows that

bt +
1

r

(
rΨ̃
)
r
bz − Ψ̃zbr = S. (13)

In ocean models (e.g., [12]), it is typical for the eddy diffusivity K to be parameterized to
be proportional to the isopycnal slope, i.e.,

K = ksn−1

where k represents the eddy efficiency and n is a small positive integer. This parameteriza-
tion is used in [7] with n = 2. Along with Equations 7 and 12, this implies that

Ψ̃ =
τ

ρ0f
+ k

(
−br
bz

)2

. (14)

Equations 13 and 14 are accompanied by the boundary conditions

b|r=R = bR(z), br|r=0 = 0, bz|z=0,H = 0, b|t=0 = b0(r, z). (15)

(From now on, the overbar over Reynolds averaged quantities will be dropped.) Linearizing
Equations 13 - 14 about the long-term time mean yields

bt +
1

r
(Ψ̃r)rb0z − Ψ̃zb0r = S

Ψ̃ =
τ

ρ0f
− n τ0

ρ0f

s

s0
s

s0
=

(
br
b0r
− bz
b0z

)
.

282



Here subscripts “0” indicate the basic state and other variables indicate perturbations about
the basic state. Defining h = b/b0z, where h represents the isopycnal depth perturbation,
these equations imply

ht =
1

r
(nK0rhr)r +

1

r

(
r
−τ
ρ0f

)
r

(16)

where

K0 = ksn−10 = k

(
−τ0
ρ0fk

)(n−1)/n
, (17)

and n = 2 is, again, a reasonable choice. The boundary conditions for the linearized depth
perturbation equation are given by

h|r=R = 0, hr|r=0 = 0. (18)

Equations 16 - 18 are derived in the appendix of [7]. A gyre adjustment timescale is also
derived in [7] and is obtained by decomposing the (nondimensionalized) eddy diffusion
operator

L :=
1

r
(K0rhr)r

into orthogonal eigenmodes h∗i and expressing

h =
∞∑
i=1

ai(t)h
∗
i

where ai(t) is an amplitude function that is exponentially decaying on a timescale Ti. The
equilibration timescale of the gyre is set by the slowest timescale

T0 =
1

nλ

R2

K0(R)

where the eigenvectors hi and eigenvalues λ are shown in Figure 6 of [7].

2 Extension of the Simple Model

2.1 Rationale for a modified model

The boundary conditions of the existing model assume that the isopycnal interface repre-
senting the halocline is at a fixed depth at the boundary of the gyre (see Figure 2). However,
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observations suggest that there is considerable seasonal variability in isopycnal outcropping
location [10].

The Polar Science Center Hydrographic Climatology (PHC) provides gridded (1◦ × 1◦)
means of summer (July, August, September) and winter (March, April, May) temperature
and salinity at a sequence of depths between 0 and 5500 m (Figure 3, left and central
columns). We use the Thermodynamic Equation of SeaWater 2010 (TEOS-10) equations
[5] to estimate the winter and summer climatological density and potential density (Figure
3, right column).

Figure 3 reveals considerable seasonal variability of buoyancy, particularly within the
upper ∼50 m of the gyre. This variability is predominantly associated with the seasonal
variability of salinity rather than temperature, and there is seasonal outcropping of isopyc-
nals (compare the top and bottom rows of Figure 3). Since this variability in the isopycnal
outcropping location cannot be captured by the existing model, we modify the model to
accommodate it.

Specifically, we consider Equation 16 with the modified boundary conditions

hr|r=0,R = 0 (19)

i.e., no flux is permitted through the gyre boundary.

2.2 Solution of linearized equations in an idealized case

We first consider a simplified case of Equation 16 with boundary conditions given by Equa-
tion 19 in which K0 is constant with respect to r and τ = 0. In this case Equation 16
simplifies to

ht =
nK0

r
(hr + rhrr).

Suppose that there is a solution of the form

h = a(t)b(r).

Then

a′(t)b(r) = nK0

(
1

r
a(t)b′(r) + a(t)b′′(r)

)
.

Separating variables,

a′(t)

a(t)
= nK0

(
1

r

b′(r)

b(r)
+
b′′(r)

b(r)

)
.

Then the LHS implies

7
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Figure 3: Longitude-depth transect of winter (March, April, May) and summer (June, July, Au-
gust) mean temperature and salinity from the PHC climatology in the upper 400 m of the Beaufort
Gyre at 75.5◦ N (left and central columns). Potential density is estimated from the TEOS-10 equa-
tions using the temperature and salinity profiles (right column).
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a′(t)

a(t)
= −λ

for some λ ≥ 0, and therefore

a(t) = c0e
−λt

for any constant c0. The RHS implies

nK0b
′′(r) +

nK0

r
b′(r) + λb(r) = 0

or equivalently

r2b′′(r) + rb′(r) +
λ

nK0
r2b(r) = 0.

With the substitution

c2 =
λ

nK0

the equation is seen to have solutions J0(cr) (Bessel function of the first kind) and Y0(cr)
(Bessel function of the second kind). The general solution to the separable PDE is then

h(r, t) = c0e
−λt

(
c1J0

(√
λ

nK0
r

)
+ c2Y0

(√
λ

nK0
r

))

for λ ≥ 0. The values of λ for which nontrivial solutions exist are constrained by the bound-
ary conditions. In the case of the simple halocline model in [7] with boundary conditions
given by Equation 19, the condition hr|r=0 = 0 requires c2 = 0. The condition hr|r=R = 0
requires

λm =
nK0

R2
α2
1m, m = 0, 1, ...

where α1m is the m-th zero of the Bessel function J1. In that case

h(r, t) =

∞∑
m=0

cme
−λmtJ0

(√
λm
nK0

r

)
.
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Figure 4: Diagram of the basic state wind forc-
ing given by Equation 20.
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Figure 5: Eigenfunctions of Equation 24 cor-
responding to the first three eigenvalues λ̂ =
0, 3, 8. (The eigenfunctions are not normalized
to be orthonormal.)

2.3 Eigenanalysis of linearized equation in the absence of wind forcing
perturbation

In reality, K0 varies spatially, in balance with the basic state wind forcing τ0 (Equation 17).
Therefore, Equation 16 does not lend itself to a simple analytical solution.

2.3.1 Basic state wind forcing

The wind forcing τ is assumed to be a known function. We assume that it has the form

τ0(r) = −30τM

( r
R

(
1− r

R

))2
(20)

where τM represents the magnitude of the mean value of τ0 over the gyre. That is,

τM =

∣∣∣∣ 1

A

∫ 2π

0

∫ R

0
τ0(r, θ) r drdθ

∣∣∣∣
where A = πR2 is the area of the gyre. Here we take τM = 0.015 N m−2, which is chosen
to facilitate comparison with [7]. Figure 4 shows the basic state wind forcing.

2.3.2 Eigenanalysis

Suppose that L[h] is a self-adjoint linear operator on a space of real-valued functions F
defined on [0, R] which are integrable with respect to an r-weighted inner product
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〈f, g〉 =

∫ R

0
rf(r)g(r) dr. (21)

Then the eigenfunctions of L form a complete orthonormal basis h∗i such that for any
function h in F ,

h =
∞∑
i=0

ci(t)h
∗
i

where ci = 〈h, h∗i 〉. We examine the eigenfunctions of the linear operator

L[h] =
1

r
(K0(r)rhr)r, hr(0) = 0, hr(R) = 0. (22)

Lemma 2.1 The linear operator defined by Equation 22 is self-adjoint with respect to the
inner product given by Equation 21.

Proof

〈L[f ], g〉 =

∫ R

0
(K0rfr)rg dr

=

∫ R

0
(K0rfrg)r dr −

∫ R

0
(K0rgr)fr dr

= (K0rfrg|R0 −
∫ R

0
(K0rgrf)r dr +

∫ R

0
(K0rgr)rf dr

= (K0rgrf |R0 + 〈f,L[g]〉
= 〈f,L[g]〉 .

Although we cannot solve Equation 16 analytically, as in [7] the solution h can be de-
composed into spatially-varying orthogonal modes (eigenvectors) hi with amplitudes ci(t)
which are exponentially decaying on a timescale Ti (inversely proportional to eigenvalues
λi). Therefore, we consider the eigenvalue problem

n

r
[rK0(r)hr]r = −λh (23)

subject to the boundary conditions (Equation 19). It is considerably more convenient to
solve the nondimensionalized problem that results from choosing

r̂ = r/R, ĥ = h/R, K̂0 = K0(r)/K0(R/2), T̂ = (nTK0(R/2))/R2.

The resulting problem is given by
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[r̂K̂0ĥr̂]r̂ = − r̂ĥ
T̂

= −λ̂r̂ĥ (24)

where λ := 1/T and K̂0 = 4r̂(1− r̂) by Equation 17 and Equation 20. The nondimension-
alized boundary conditions become

ĥr̂|r̂=0,1 = 0. (25)

Then the timescale of equilibration of the gyre is given by

T0 =
1

λ0
=

R2T̂0
nK0(R/2)

=
R2

nλ̂0K0(R/2)

where the eigenfunctions are assumed to be sorted such that λ0 is smallest, i.e., T0 is longest.
Thus the equilibration is controlled by the slowest eigenfunction.

We solve Equation 24 numerically. The first three eigenvalues are λ̂ = 0, 12, 32 and the
eigenfunctions are shown in Figure 5.

2.4 The nonlinear problem

2.4.1 Steady state solution

In steady state, the residual circulation vanishes, i.e., Ψ̃ = 0. It follows from Equation 14
that

h(r) = −
∫ r

0

(
−τ(r′)

ρ0fk

) 1
2

dr′ + h(0). (26)

Assume that the surface wind stress is given by Equation 20. Then Equation 26 implies

h(r) = −
(

30τM
ρ0fk

) 1
2
(
r2

2R
− r3

3R2

)
+ h(0). (27)

There is no particular reason that h(r), as given by Equation 27, must be positive. Given
that

−
(

30τM
ρ0fk

) 1
2
(
r2

2R
− r3

3R2

)
= −

(
30τM
ρ0fk

) 1
2 r2

R

(
1

2
− r

3R

)
< 0

for 0 ≤ r ≤ R, the sign of h(r) depends upon the choice of h(0). If h(0) is sufficiently
large, then h(r) > 0 for all r, i.e., the isopycnal does not “outcrop.” There is a relationship
between the location at which the steady state solution outcrops and the volume V that is
bounded between the isopycnal and the surface. If the isopycnal does not outcrop, then
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V = 2π

∫ R

0
rh(r) dr = −70πCR3

60
+ h(0)πR2 (28)

where

C =

(
30τM
ρ0fk

) 1
2

. (29)

Otherwise,

V = 2π

∫ y0

0
rh(r) dr = −πCy

4
0

4R
+

2πCy50
15R2

+ πy20h(0) (30)

where r = y0 is the outcropping location (i.e., the location at which h(y0) = 0). Substituting
h(0) from Equation 27 into Equation 30 (with h(y0) = 0), it follows that

V

2πC
= − 1

10R2
y50 +

1

8R
y40.

Let

q(y0) := − 1

10R2
y50 +

1

8R
y40 −

V

2πC
. (31)

Suppose that 0 ≤ y0 ≤ R. Then

q′(y0) = − 1

2R2
y40 +

1

2R
y30 =

y30
2R

(
1− y0

R

)
≥ 0

while

q(0) = − V

2πC
< 0.

Therefore, for the existence of a single root 0 ≤ y0 ≤ R of Equation 31, it is necessary and
sufficient that

q(R) =
R3

40
− V

2πC
≥ 0,

or equivalently

V ≤ CπR3

20
.
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Define

Vc =
CπR3

20
=

(
30τM
ρ0fk

) 1
2 πR3

20
. (32)

Then Vc represents the “critical volume” such that if V < Vc, then the isopycnal will outcrop;
if V > Vc, then the isopycnal will not outcrop. If V = Vc, then outcropping will occur at
y0 = R. A contour plot of Vc as a function of the wind stress τM and eddy efficiency k is
given in Figure 6.

Figure 6: Plot of the critical volume Vc defined in Equation 32 as a function of the mean surface
wind stress τM and the eddy efficiency k. Reference values for the model are τM = 0.015 N m−2

and k = 3 · 106 m2 s−1.

2.5 Numerical solution of the nonlinear problem

Consider the nonlinear problem

ht =
1

r
(rKhr)r +

1

r

(
r
−τ
ρ0f

)
r

(33)

with
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K = ks = k|hr| (34)

and

hr|r=0,R = 0. (35)

We assume that τ is a known function given by Equation 20. As previously noted, we
wish to relax the assumption of a fixed isopycnal depth at the gyre boundary in [7]. Using
these boundary conditions and the choice of τ according to Equation 20 (specifically, τ(0) =
τ(R) = 0), it follows from Equation 33 that

Vt = 2π

∫ R

0
rht dr = 0

i.e., the gyre volume is conserved. However, if h(r, t) changes sign on 0 ≤ r ≤ R, then
the positive volume bounded between the isopycnal and the surface is not conserved. In
addition, a constraint is needed to prevent h < 0, which is physically unrealistic. Thus, a
modification of Equation 33 is needed and we introduce a regularization factor F given by

F (h) = 100 exp(−10h) + 1. (36)

The modified halocline depth evolution equation is given by

ht =
1

r
(rKFhr)r +

1

r

(
r
−τ
ρ0f

)
r

. (37)

Now if h ≤ 0, then F (h) is very large, i.e., the diffusion term is strong. However, if h ≥ 0,
then F (h) ≈ 1, so that F (h) does not modify the solution. An added benefit is that if h ≥ 0
for all r and t, then the positive volume bounded between the isopycnal and the surface
will be conserved.

We implement a numerical scheme using the “pdepe” package in Matlab to solve Equa-
tion 37 to steady state (∼3 years) for three initial volumes (0.5Vc, Vc, and 1.5Vc). The results
are compared in Figure 7 with the theoretical steady state solution given by Equation 26
and reveal that the model closely approaches the theoretical steady state with minimal
volume “loss” (i.e., negative signed volume).

In addition, we explore the steady state solution as a function of the wind stress and
initial volume of the gyre (Figures 8 and 9). Strong mean surface wind stress deepens the
halocline near the gyre interior and shoals it near the boundary (Figure 8). Figure 9 shows
the steady state solution for the critical volume with τM = 0.015 N m−2 (yellow curve)
and for various fractions of the critical volume. For τM = 0.015 N m−2, it turns out that
Vc ≈ 34, 600 km3.
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Figure 7: Initial (flat colored lines) and steady state (dashed colored lines) h as obtained from
Equation 37 with initial conditions chosen such that the initial volumes are 0.5Vc, Vc, and 1.5Vc;
theoretical solution of Equation 26 for corresponding volumes (black curves).
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Figure 8: Steady state solutions of Equation 37
for varying choices of τM . Each equation is ini-
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2,
where Vc is the critical volume for τM = 0.015 N
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Figure 9: Steady state solutions of Equation 37
for varying initial volume V . Each equation is
initialized from a constant state h0(r) = V/πR2.
The yellow curve shows the solution for the crit-
ical volume Vc with τM = 0.015 N m−2.
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3 Multi-layer Model

Integrating Equation 33 with ht = 0 reveals that in steady state,

hr =
τ

ρ0fK
(38)

or with the assumption K = k|hr|,

hr = −
(
− τ

ρ0fk

) 1
2

.

In any case, in steady state, the slope hr is directly proportional to the surface wind stress
and inversely proportional to the eddy diffusivity/eddy efficiency. However, Figure 3 reveals
considerable vertical variation of the winter and summer mean halocline slope. Specifically,
between about ∼50-200 m, the isopycnal slope rapidly increases with depth. Evidently, the
single-layer halocline model cannot capture this vertical variation.

In addition, estimates of the along-isopycnal eddy diffusivity have recently been derived
from observations at four moorings in the Beaufort Gyre using the scaling law

K ∼ (EKE)
1
2 · l

where EKE represents the eddy kinetic energy and l represents a mixing length scale [8].
Figure 11 reveals that the eddy diffusivity decreases with depth, which is not immediately
consistent with the parameterization of the eddy diffusivity K as directly proportional to
the isopycnal slope hr.

3.1 Multi-layer uncoupled model with observed eddy diffusivity

In order to attempt to capture the observed vertical variation of the halocline slope, we
consider a multi-layer model in which each isopycnal has a depth evolution equation given
by

hit =
1

r
(rFKihir)r +

1

r

(
r
−τ
ρ0f

)
r

(39)

for 1 ≤ i ≤ N , where N represents the number of interfaces. The boundary conditions for
each interface are given by Equation 35 and the surface wind stress τ is given by Equation
20. Here Ki is a constant with respect to r and t. Note that in this model, the isopycnal
depths evolve independently of each other (i.e., the interfaces are uncoupled).

As for the nonlinear single-layer halocline model, we solve Equation 39 numerically to
steady state (∼10 years), initializing each equation from a state of constant depth zi (Figure
10). Here Ki is estimated from the mean diffusivity observed in the Beaufort Gyre at a
sequence of depths zi = {30, 80, 130, 180, 230, 280} m (see Figure 11, red line). Since the
observed diffusivity is noisy, we fit a cubic interpolant to a series of points from the observed
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Figure 10: Steady state solutions of Equa-
tion 39 for each isopycnal interface with constant
eddy diffusivity Ki indicated in the legend.
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Figure 11: Vertical profile of the estimated
along-isopycnal eddy diffusivity (Kλ) in the
Beaufort Gyre. Estimates from mean of four
moorings in [8] (blue circles) and interpolated
profile (red curve).
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data and use it to estimate Ki for each depth zi. The applied diffusivities and steady state
layer depths are shown in Figure 10.

Thus, this simple model is able to capture the observed mean vertical structure of
the halocline, and in particular, the increase of isopycnal slope with depth beneath the
mixed layer (Figure 3, right column). However, the model does not explain what processes
determine the observed vertical profile of the eddy diffusivity in the first place.

3.2 Multi-layer coupled model

By Equation 38, which was derived in the absence of boundary fluxes, it follows that a
necessary condition for vertical variation of the isopycnal slope is vertical variation of the
eddy diffusivity. Specifically, in steady state the ratio of the interface slopes satisfies

H1r

H2r
=
K2

K1
.

(From now on, h will denote a layer thickness and H will denote the depth of a particular
isopycnal interface, a distinction that will become relevant in the following derivation.)

A multi-layer coupled model should be capable of capturing the observed variation of
the halocline slope and eddy diffusivity with depth. As has been demonstrated, the existing
model with a given interface-dependent eddy diffusivity can capture the observed halocline
slope in steady state. However, it cannot explain how the gyre equilibrated to the observed
state with the observed vertical variation of eddy diffusivity. Baroclinic instability, and thus
the eddy diffusivity at any point in time, should depend not only upon the local interface
slope Hir, but upon the stability characteristics of the entire water column. Therefore, we
construct a multi-layer coupled model in which each interface depth Hi evolves according
to

Hit =
1

r
(rFKiHir)r +

1

r

(
r
−τ
ρ0f

)
r

(40)

for i = {1, 2}. This equation is accompanied by the boundary condition

Hir|r=0,R = 0, (41)

i.e., there is no flux of height (equivalently, volume) through the boundary. We consider a
three-layer model, which represents a compromise between the need to accurately capture
instability that arises from interactions between layers and the desire for simplicity and to
keep computational demands low.

Equation 40 is solved through the iterative process illustrated in Figure 12. First,
the time interval t0, . . . tN on which the solution is desired is subdivided into a number
of equally-spaced segments tj , . . . , tj+M . Beginning at time t0, the initial layer slopes and
densities are used to calculate the geostrophic velocities in the θ-direction in each layer from
the multi-layer shallow water equations. The resulting profile of the water column can be
baroclinically unstable, i.e., the tilt of the isopycnals relative to the isobars can represent a
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Figure 12: Process model of the solution
method of the three-layer coupled model.

Figure 13: Schematic diagram of the layer
thicknesses hi and layer geostrophic velocities
Vi in the three-layer model.

source of potential energy that is converted into kinetic energy as the baroclinic instability
(eddy) grows. Therefore, a stability analysis is performed in the setting of the multi-layer
shallow water quasi-geostrophic potential vorticity equations and the eddy diffusivity Ki for
each layer interface is estimated. Crucially, the eddy diffusivity depends upon the vertical
profile of the isopycnal slope and geostrophic current such that Equation 40 represents a
multi-layer coupled model in which the interfaces interact through the depth-varying eddy
diffusivity Ki. The eddy diffusivities Ki are then used to integrate Equation 40 forward
to time tM , and the process of obtaining the geostrophic velocities and eddy diffusivities is
repeated for the next segment beginning with the model state at time tM . Equation 40 is
thus integrated forward until the solution is obtained on the entire interval t0, . . . tN . Due to
the computational demands of this algorithm, we currently calculate Ki at a single spatial
location and update the eddy diffusivity every M timesteps. More detailed derivations of
these calculations follow.

3.2.1 Geostrophic velocities

The geostrophic velocities are obtained from the interface slopes and densities in the setting
of the multi-layer shallow water approximation via the geostrophic relations. Using the
hydrostatic relation and the simplified geometry in Figure 13, it follows that the pressure
Pi in the ith layer is given by
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P1 = ρ1g(η − z)
P2 = ρ1gη + ρ1gh1 − ρ2g(z + h1)

P3 = ρ1gη + ρ1gh1 + ρ2gh2 − ρ3g(z + h1 + h2),

where η represents the sea surface height perturbation. Differentiating with respect to r
yields

∂P1

∂r
= ρ1g

∂η

∂r
∂P2

∂r
= (ρ2 − ρ1)g

∂h1
∂r

+ ρ1g
∂η

∂r
∂P3

∂r
= (ρ3 − ρ1)g

∂h1
∂r

+ (ρ3 − ρ2)g
∂h2
∂r

+ ρ1g
∂η

∂r
.

The system can be closed by imposing V3 = 0, i.e., the assumption of no motion in the deep
bottom layer. This then implies that

V1 =
g

ρ0f

[
(ρ3 − ρ1)

∂h1
∂r

+ (ρ3 − ρ2)
∂h2
∂r

]
V2 =

g

ρ0f

[
(ρ3 − ρ2)

∂h1
∂r

+ (ρ3 − ρ2)
∂h2
∂r

]
.

Now letting ρ0 = ρ1 and defining the reduced gravity g′i as

g′i =
ρi+1 − ρi

ρ1
g (42)

it follows that

V1 =
1

f

[
(g′2 + g′1)

∂h1
∂r

+ g′2
∂h2
∂r

]
(43)

V2 =
1

f

[
g′2
∂h1
∂r

+ g′2
∂h2
∂r

]
.

3.3 Stability analysis

The following theory is developed in [11]. Given the geostrophic velocities, we perform 
a stability analysis on the linearized multi-layer shallow water quasi-geostrophic potential 
vorticity equations. Given the shallow water approximation, in each layer the potential 
vorticity Qi satisfies

DQi
Dt

= 0, Qi =
ζi + f

hi
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where ζi is the relative vorticity of the fluid, f is the planetary vorticity, and hi is the layer
thickness. In other words, the potential vorticity is a conserved quantity. Assuming that
1) variations in layer thickness are small relative to the total layer thickness; 2) the Rossby
number is small; and 3) variations in the Coriolis parameter are small, then this equation
can be linearized to give the so-called quasi-geostrophic potential vorticity in each layer,

qi =

(
βy + ζi − f0

h′i
Hi

)
,

which is also conserved. Here Hi represents the basic state layer thickness and h′i represents
a layer thickness perturbation. For simplicity, we assume that β = 0.

The N -layer multi-layer shallow water equations may be obtained by introducing a
streamfunction ψi for each layer. Then the potential vorticity qi in each layer 1 ≤ i ≤ N
can be expressed as

q1 = ∇2ψ1 +
f20
H1

(
ψ2 − ψ1

g′1
− f20
gH1

ψ1

)
(44)

qi = ∇2ψi +
f20
Hi

(
ψi−1 − ψi
g′i−1

− ψi − ψi+1

g′i

)
(45)

qN = ∇2ψN +
f20
HN

(
ψN−1 − ψN

g′N−1
+

f0
Hn

ηb

)
, (46)

and evolves according to

∂qi
∂t

+ J(ψi, qi) = 0. (47)

Here we assume that the bottom topography ηb = 0. We now investigate this system for
the presence of baroclinic instability by linearizing Equations 44-46 and 47 (with N = 3)
about a basic state layer potential vorticity Qi, velocity Vi and streamfunction Ψi. Here
Vi is constant in each layer and represents the velocity in the y-direction (see Figure 13).
Then Equations 44-46 reduce to

q′1q′2
q′3

 =

∇2ψ′1
∇2ψ′2
∇2ψ′3

+ f20

−
1

gH1
− 1

g′1H1

1
g′1H1

0
1

g′1H2
− 1
g′1H2

− 1
g′2H2

1
g′2H2

0 1
g′2H3

− 1
g′2H3


ψ′1ψ′2
ψ′3

 (48)

Separating the terms in Equation 47 into sums of basic state variable and perturbations
(indicated by primes) yields

∂q′i
∂t

+
∂Qi
∂t

+
∂ψ′i
∂x

∂q′i
∂y

+
∂ψ′i
∂x

∂Qi
∂y

+
∂Ψi

∂x

∂q′i
∂y

+
∂Ψi

∂x

∂Qi
∂y

− ∂ψ′i
∂y

∂Qi
∂x
− ∂ψ′i

∂y

∂q′i
∂x
− ∂Ψi

∂y

∂Qi
∂x
− ∂Ψi

∂y

∂q′i
∂x

= 0.
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Subtracting the equation satisfied by the basic state variables and assuming that products
of perturbations are small, the linearized potential vorticity evolution equation reduces to

∂q′i
∂t

+
∂ψ′i
∂x

∂Qi
∂y

+
∂Ψi

∂x

∂q′i
∂y
− ∂ψ′i

∂y

∂Qi
∂x
− ∂Ψi

∂y

∂q′i
∂x

= 0.

Now by assumption, there are no gradients of basic state variables in the y-direction, so
this equation further reduces to

∂q′i
∂t

+ Vi
∂q′i
∂y

+ u′i
∂Qi
∂x

= 0 (49)

after making use of the streamfunction relations. Here

∂Q1

∂x
∂Q2

∂x
∂Q3

∂x

 = f20

−
1

gH1
− 1
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Now define

Lz := f20
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 .
We search for potential vorticity perturbations with a wave-like structure in the y-direction
that are growing in time. Specifically, assuming the ansatz

q′i = <
[
q̃ie

ik(y−ct)
]
, ′

i = <
[
ψ̃ie

ik(y−ct)
]
, (51)

and substituting Equations 50 and 51 into Equation 49 yields

Viq̃i − ψ̃i
∂Qi
∂x

= cq̃i, (52)

where, by Equation 48,

q̃i = (Lz − k2I)ψ̃i.

Therefore, Equation 52 is equivalent to a matrix eigenvalue problem that can be solved
numerically for c and q̃i. For every wavenumber k, there are three eigenvalues c1, c2, c3 and
corresponding eigenvectors q̃i1, q̃i2, q̃i3 that solve the system. By Equation 51, the fastest-
growing perturbation is represented by the eigenvector whose corresponding eigenvalue has
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maximum imaginary part. Therefore, we search numerically over a range of wavenumbers
spanning the baroclinic deformation radii for the maximum baroclinic instability growth
rate given by

λ = max
k

k=[c], (53)

and therefore

q′i = eλt(<[q̃i] cos(ky) + i=[q̃i] sin(ky))

u′i = eλt(<[ũi] cos(ky) + i=[ũi] sin(ky))

and

q′iu
′
i = e2λt(<[q̃i]<[ũi] cos2(ky) + =[q̃i]=[ũi] sin2(ky)

−<[q̃i]=[ũi] sin(ky) cos(ky)−=[q̃i]<[ũi] sin(ky) cos(ky)).

Averaging meridionally,

q′iu
′
i ∼ (<[q̃i]<[ũi] + =[q̃i]=[ũi]).

Now the layer eddy diffusivity κi that we seek is given by

κi = −
q′iu
′
i

Qix
. (54)

However, q′iu
′
i is known only up to a constant factor. Therefore, we choose the parameteri-

zation

κ̂i = −<[q̃i]<[ũi] + =[q̃i]=[ũi]

Qix
, κi = kcλ

κ̂i
maxi κ̂i

where kc = 109 is chosen such that ki has the observed order of magnitude for eddy diffu-
sivity in the Beaufort Gyre halocline (i.e., 100-1000 m2 s−1). Thus, κi is proportional to
the baroclinic instability growth rate λ and comparing κ̂i/κ̂j for i 6= j reflects the ratio of
the eddy diffusivities between the layers.

Notably, κi represents the eddy diffusivity of the i-th layer, rather than the i-th interface.
However, the geometry of the three-layer model (Figure 13) suggests that K1 = κ1 and
K2 = κ3, where Ki represents the eddy diffusivity coefficient for the i-th interface.
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3.4 Results

Using this algorithm, we investigate the solution of Equation 40 in steady state. Specifically,
we initialize the model from numerous configurations of initial isopycnal slopes (Figure 15,
red dots) and integrate forward until the model reaches steady state (typically ∼5 years).
In all cases, the model evolves to a steady state in which the isopycnals are approximately
parallel (Figure 15, black dots), i.e., S1 ≈ S2 and K1 ≈ K2. Figure 14 illustrates the
evolution to steady state for a representative case.

Figure 15 reveals that there are two configurations for the vertical profile of the eddy
diffusivity; these configurations correspond to the two baroclinic modes in the three-layer
problem (Figure 16). A sign change of the basic state potential vorticity gradient between
layers is a necessary condition for baroclinic instability. If this sign change occurs between
the second and third layers, then the baroclinic instability can be dominated by the first
baroclinic mode and K1 ≈ K2. On the other hand, if the sign change occurs between the
first and second layers, then the instability can be dominated by the second baroclinic mode
and K2 << K1.

Regardless of the initial conditions, the model evolves to a steady state in which S1 ≈ S2,
i.e., the line S1 = S2 is an attractor (Figure 15). The magnitude of the final slopes is
determined by the wind stress τ .

However, the observed winter and summer mean isopycnal slopes in the Beaufort Gyre
are depth-dependent (Figure 3, right column). In order to obtain depth-dependent isopycnal
slopes in steady state, it is necessary to introduce fluxes of potential vorticity (equivalently,
volume) at the gyre boundary. The following is a simplified proof-of-concept that is solved
analytically.

Suppose that a flux of volume Q enters the second layer only, and that no flux enters
the first layer, through the gyre boundary. Specifically, the boundary conditions for the
second layer thickness are

h2r|r=0 = 0, Kh2r|r=R =
Q

2πR
.

In order to preserve the gyre volume, it is necessary to remove an equivalent volume from
the gyre interior, distributed across the entire gyre. Specifically, the thickness evolution
equation is given by

h2t =
1

r
(rKh2r)r −

Q

πR2
.

(Here we are assuming that K = K1 = K2.) This equation satisfies

2π

∫ R

0
rh2t = 0,

i.e., the volume bounded between the first and second interfaces is constant with respect to
time. The steady-state solution of this equation is given by
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Figure 14: Example of the evolution of the halocline depth in the multi-layer model to steady state
(red curves; ∼5 years) from the indicated initial state (black curves). The model state after ∼2.5
years is also indicated (blue curves).
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Figure 15: Ratio of diffusivities K2 and K1 as a function of the isopycnal slopes S1 and S2

(colormap). Slope trajectories from the three-layer coupled model (colored lines) for various choices
of the initial slopes (red dots), and resulting steady-state slopes (black dots). The gyre attracts to
a steady state of parallel slopes (i.e., S1 = S2; dashed white line). The wind stress τM determines
the magnitude of the final slopes.
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Figure 16: (Center) Example of maximum growth rate kc for various wavenumbers k and wavenum-
ber corresponding to the maximum growth rate (red circle). In this case the instability is dominated
by the second baroclinic mode. Sign change of PV gradient Qix is a necessary condition for baro-
clinic instability. (Left) Schematic diagram of water column profile and eddy diffusivities when the
instability is dominated by the first baroclinic mode. (Right) Schematic diagram of water column
profile and eddy diffusivities when the instability is dominated by the second baroclinic mode.

Figure 17: Solution of Equations 55 and 56 with h1(0) = 150 m, h2(0) = 100 m, and Q = −15, 000
km3 yr−1.
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h2(r) = h2(0) +
Qr2

4πR2K
. (55)

As before, the evolution equation for the first layer depth is given by

h1t =
1

r
(rKh1r)r +

1

r

(
r
−τ
ρ0f

)
r

with boundary conditions

h1r|r=0,R = 0.

In steady state, the solution of this equation is given by

h1(r) = h1(0)− 30τM
ρ0fK

(
r3

3R2
− r4

2R3
+

r5

5R4

)
. (56)

The solution of Equations 55 and 56 is shown in Figure 17 with some representative choices
of the unspecified parameters (h1(0) = 150 m, h2(0) = 100 m, Q = −15, 000 km3 yr−1.
Here the boundary flux is exaggerated to show effect.) It can be seen that the isopycnal
slope increases with depth.

4 Conclusions

Current adiabatic models of the Beaufort Gyre halocline represent it as a buoyant interface
with a depth that is that is increased by Ekman pumping; the deepening is opposed by
mesoscale eddy transport. In steady state, the isopycnal slope is predicted to be propor-
tional to the strength of the surface wind stress and inversely proportional to the eddy
diffusivity. Eddy diffusivity is often parameterized to be proportional to isopycnal slope,
yet observations from the PHC climatology suggest that the isopycnal slope increases with
depth, while mooring-derived along-isopycnal eddy diffusivity decreases with depth. This
suggests that the current theory should be reconsidered.

First, we have improved the single-layer halocline model from [7]. Specifically, seasonal
outcropping of isopycnals is observed in the Beaufort Gyre, a phenomenon that the modified
single-layer model can now capture. In this setting, we have also derived an expression for
a so-called “critical volume” Vc that depends upon the wind stress and eddy diffusivity.
The volume of the gyre in relation to the critical volume determines whether the halocline
outcrops.

In addition, we have developed a multi-layer model in which the isopycnal interfaces are
coupled with each other through the depth-dependent eddy diffusivity. The strength and
vertical profile of the eddy diffusivity is determined from the baroclinic instability charac-
teristics of the geostrophic currents, which are derived from the isopycnal slope via thermal
wind balance. Using this simple model of eddy-mean flow interactions, we have identified
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the critical processes that determine the vertical structure of the halocline. Specifically, we
have shown that potential vorticity sources at the gyre boundary (over continental slopes)
are key to setting up a realistic depth-varying distribution of the isopycnal slope in steady
state. In the absence of the boundary fluxes, the gyre attracts to a steady state with depth-
independent isopycnal slope, regardless of the initial conditions. These findings further
justify the need for observational constraints on boundary fluxes and eddy diffusivity.
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Abstract

Icebergs play many roles in the dynamics of polar climates. Their geographical, and ge-
ometric, distributions have important consequences for shipping, polar ecosystems, and ice
sheet-ocean modelling. However, current parameterizations of iceberg deterioration largely ig-
nore their geometry. We examine the influence of aspect ratio and ambient relative velocity on
iceberg melting in a series of novel experiments. We find that aspect ratio is an important control
on iceberg melting, with lateral melt rates typically exceeding basal melt rates. The standard
parameterizations of Weeks and Campbell [37] and the Jenkins three equation model [16] could
not reproduce this geometry dependent melting, and underestimate the melt rate. We emphasise
that f urther nvestigation nto  nfluence of geometry on necessary.

1 An introduction to icebergs
Icebergs are generated by calving at the margins of ice shelves and glaciers, and constitute
a large component of the freshwater output from ice sheets, making up 45% of Antarctic
freshwater loss [27].

The most obvious impact of icebergs is on shipping. In the aftermath of the sinking of the
Titanic, the International Ice Patrol was set up to monitor iceberg locations in the North At-
lantic [29]. With projected increases in Arctic shipping, it is crucial to understand the expected
distributions of icebergs. Icebergs also have important impacts on ecosystems; nutrient release
during melting can boost biological productivity in an area up to 10 times their actual size [33],
while bed scouring can have devastating effects on seabed biology [8]. At the largest scales,
icebergs can be a dominant component of the freshwater flux from land ice to the ocean in
the Greenland and Antarctic ice shelves [11, 23, 31]. As such, understanding their subsequent
evolution is key to modelling the interaction between ice sheets and the ocean.

A central factor in modelling icebergs is their size, which determines iceberg evolution and
geographical distribution [31]. Many studies have examined iceberg size distribution, in both
Greenland [5, 35] and Antarctica [2, 9, 34, 36]. Enormous variation in sizes are observed, from
the smallest growlers at several meters wide, to iceberg B-15, the largest iceberg ever recorded,
at 300 km × 40 km. Importantly, there is a large range of iceberg aspect ratios observed in 
nature, where the aspect ratio is defined as the ratio of iceberg length L to submerged iceberg
depth H. Yet there has been very little investigation on the impact of aspect ratio on iceberg
melting – typically being ignored in melting parameterizations.

The current treatment of aspect ratio focusses on its impact on iceberg stability [4, 38].
Below a certain length L to total depth D ratio, the iceberg becomes unstable, overturning
when
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√
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58.32m

D
.

1.1 Our investigation
The goal of this summer project is to investigate specifically the effect of aspect ratio on iceberg
melting in a series of novel laboratory experiments.

We compare our experimental results with two common melting parameterizations, and
suggest directions for future investigation, with the ultimate goal to develop improved param-
eterizations of iceberg deterioration which take into account their geometry and aspect ratio.

2 Models of iceberg melt

The problem of modelling ice melting has been seriously considered for well over one and a half
centuries. The formalisation of the moving boundary interface condition was first established
by Josef Stefan in his 1889 paper (as cited by [6]).

2.1 Weeks and Campbell 1973 [37]
The first serious attempt to model iceberg deterioration was made by Weeks and Campbell in
1973 [37]. Their goal was to investigate the feasibility of towed icebergs as a fresh water source
for arid climates. Surprisingly, they found it was both technologically and economically feasible.
In doing so they had to account for the many sources of iceberg deterioration; melting, wave
erosion, calving, insolation, and others. We focus on their widely adopted parameterization of
iceberg melting.

Weeks and Campbell modelled the melting using empirical relations for turbulent heat
transfer over a flat plate [10], resulting from relative motion between the iceberg and water.
They saw this motion as a result of towing, but it can arise in nature. Any force other than
water drag (air drag, Coriolis force, wave induced motion) will lead to a velocity difference
between the ice and water. Furthermore, a sheared water column can result in substantial
increases in relative velocities [13]. We now examine Weeks and Campbell’s derivation.

N̄u =
h̄L

k
,

where h̄ is the averaged convective heat transfer coefficient, L is a characteristic length, and k
is the thermal conductivity of the fluid.

The turbulent heat transfer relation for the Nusselt number in flow past a heated plate is
given in term of the non-dimensional Reynolds, Re, and Prandtl, Pr, numbers,

N̄u = 0.037Re0.8 Pr1/3,

where Re is the ratio of inertial to viscous forces, and Pr is the ratio of heat and momentum
transfer,

The model relies on an empirical relation for the average Nusselt number N̄u (a non-
dimensional ratio of convective to conductive heat transfer) in turbulent convection [10],
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Re ≡ UL

ν
, Pr ≡ ν

κ
.

Here, U = |vi − vw| is the relative velocity between the ice and water, ν is the momentum
diffusivity, and κ is the thermal diffusivity, related to the thermal conductivity k by κ = k/ρwcp,
where ρw and cp are the density and heat capacity of seawater.

To determine the melt rate of a given submerged area, A, (either single or multiple faces),
we consider the total heat transfer into the ice q, given by

q = h̄AΔT,

where ΔT is the temperature difference between the ice and water. We can then relate the
heat absorption of the ice face q to a melt rate u (in units of velocity) through the latent heat
Λ

u =
q

AΛρi
.

Hence, we recover Weeks and Campbell’s relation [37]

u =

(
0.037

ρw
ρi

ν−7/15κ2/3 cw
Λ

)
U0.8ΔT

L0.2
.

It is important to note that this parametrisation implies the melt rate will go to zero as the
velocity goes to zero (though turbulence will cease at this point, invalidating the relation).

This issue is addressed by the improved parameterization of FitzMaurice et al. [12]. Fitz-
Maurice et al. found that there are three regimes of iceberg melting, dependent on the behaviour
of meltwater plumes [12]. These plumes rise along the iceberg sides, driven by the buoyancy
of the fresh meltwater. As they rise they become turbulent, entraining the warmer ambient
water. Thus, even when the iceberg is stationary relative to the ocean, there is a buoyancy
driven flow up the side walls, leading to increased melting. Once the relative velocity of the
iceberg becomes comparable to the plume velocity, the upstream plume is detached and swept
away. FitzMaurice et al. model this regime by substituting the plume velocity into Weeks
and Campbell’s parameterization (slightly modified to account for increasing entrainment as
the ambient velocity increases, and the appropriate plume temperature). Only at higher ve-
locities, when both the front and rear plumes are detached, is Weeks and Campbell’s original
parameterization correctly recovered.

2.2 Holland and Jenkins 1999 [16]
A second widely used parameterization of ice melting was derived by Holland and Jenkins [16].
Their parameterization uses the three thermodynamic equations for interfacial temperature Tb 

and salinity Sb that must be satisfied at the ice-water interface, which in general differ from
the far-field values of these quantities, in the ice (Ti, Si) and water (Tw, Sw).

The temperature at the interface lies on the liquidus line, where the temperature, Tb, is
salinity and pressure dependent, and approximated by a linear relation,

Tb(Sb) ≈ a + bSb + cp,

where p is the pressure and a, b, and c are constants. Heat is conserved at the interface, so
that the absorption of latent heat during melting is provided by heat transfer from the ice and
water

QT
latent = QT

ice + QT
water .
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A similar relation holds for salinity, though now there is no release of salt during melting of
fresh ice, nor any diffusion of salt through the ice.

QS
brine = QS

ice +QS
water.

Here QT
latent and QS

brine are given in terms of the latent heat, Λ, density of ice ρi, the melt
rate of the ice u, and the interface salinity Sb

QT
latent = −ρiuΛ, QS

brine = −ρuSb.

The heat flux from the ice is a simple diffusive solution, while the salt flux from the ice is zero.
The remaining components, Q

T/S
water, are obtained using a parameterization of turbulent heat

and salt transfer. This is the primary development of Holland and Jenkins’ work.
In it, the heat and salt transfer are parameterised in terms of transfer coefficients ΓT and

ΓS , and a drag coefficient Cd

Q
T/S
water = ρcpC

1/2
d ΓT/SU(Tb − Tw),

where U is the relative iceberg-ocean velocity. The heat diffusion is modelled by simply using
the temperature difference between the ice and interface. Putting these requirements together,
the ablation velocity u (and interfacial temperature Tb and salinity Sb) are found by solving
the following system of equations

u(ρiΛ + ρici(Tb − Ti)) = ρwcwC
1/2
d UΓT (Tw − Tb),

uρiSb = ρwC
1/2
d UΓS(Sw − Sb),

Tb = λ1Sb + λ2.

However, this parameterization is now completely independent of iceberg geometry, pre-
dicting the same melt rate for all sides of an iceberg in uniform ambient flow.

3 Experimental Method

3.1    Measuring a melt rate
We first define a measure of the overall melt rate for an ice block with differing melting between
and within each immersed face. There is otherwise no way to compare the melting of different
shaped ice blocks. Ideally, we would weight the rate of volume loss by the current submersed
surface area, to give a melt rate velocity

1

A(t)

dV

dt
.

However as written above it is an instantaneous measure, which is difficult to obtain exper-
imentally. Given that we only have access to the initial and final ice bass values during the
experiment, we assume the melt rate velocity u is constant in time, approximating it as

≡ 2

A(t) +A(0)

V (t)− V (0)

t
.

The volume change can be inferred from the mass loss, assuming the density of ice, and the
initial area is easily calculated from the dimensions of the block. It is the final area estimation
that requires the most effort, and will require several image processing techniques, discussed
later.

u
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3.2 Ice preparation
Having defined a metric for the melt rate, we now consider the manufacture of the ice blocks. 
To minimise bubble formation, fresh water that had been still for at least two days was siphoned 
into an ice block mold. Unfortunately, a small amount of bubble formation was still observed 
despite these precautions, though they are not expected to be of relevance. Two mold types 
were used, with (interior) dimensions 10 × 15 × 30 cm, and 32.5 × 22.5 × 6 cm.  These molds  
were kept in an industrial refrigerator at −30 to −25 ◦C for one to two days, to allow the 
entire block to fully freeze and equilibrate to fridge temperature. A wooden handle was frozen 
into the block using several clamps during the freezing process. The deeper mold was used to 
generate arbitrary length blocks. This was done by filling up to the desired length, freezing, 
removing the block, and finally refreezing the handle in the side of now tilted ice block. To 
visualise the melting of the block, several ml of blue food dye were injected in the water before 
freezing.

3.3 The experiment

Before each experiment, the mold was removed from the freezer, and dipped in a bucket of 
room temperature water to release the ice block. Once removed, pictures were taken of the ice 
using a Nikon Coolpix P7000 camera from approximately 1 m distance. A ruler was included 
in the picture for distance calibration. The mass of the combined ice and mold was measured 
before each experiment using a scale with 2 g precision. The temperature of the tank water was 
measured using a thermometer with 0.1 ◦C precision before each experiment, and the density 
at 20.000 ◦C was measured using an Anton Paar 5000M Density Meter.

The desired immersed depth of the ice block was scored on the side before each experiment, 
and the block was subsequently immersed in the tank to approximately this depth. Later 
experiments calibrated the immersed depth by measurement of the dimensions of the handle, 
iceblock, mold, and tank mount beforehand.

The tank (Fig. 1) was filled with oceanic saltwater of salinity 30 to 31 g/kg, and temperature 
18 to 21 ◦C, which could be pumped through the tank and recirculated at three speeds, 0, 1.5, 
and 3.5 cm s−1. 40 cm of plastic mesh and a 10 cm honeycomb grating were used to laminarise 
the incident flow. However, surface tension effects prevented a completely uniform velocity. 
Instead, the upper surface was stationary, with a roughly 1 cm shear layer below the surface, 
below which the velocity was approximately uniform. Adding surfactant reduced the pinning, 
but the effect was only temporary, (and potentially hazardous when reacting with bleach used 
to suppress algae growth).

The velocities of the tank were previously calibrated using multiple runs of large ‘floaters’ –
polystyrene blocks weighted down by a horizontal plastic cross (of diameter 4 cm and depth 2 
cm) located a given distance below the surface. The high drag of the cross forces the floater to 
move with the average velocity of the fluid at that depth. The time for the floater to traverse 
40 cm down the tank was calculated 10 times for each floater, giving the velocity measurement 
estimate.

The experiments were recorded for 10 minutes using the P7000 camera, after which the 
blocks were removed from the tank, weighed and photographed from each side to compare the 
ice shape to the initial dimensions.

3.4 Post-processing

We analyse these post-experiment images to detect the final shape of the iceberg using opencv 
for Python (Fig. 2). First, the image is cropped to contain only the melted part of the ice 
block. Then the red channel is used to detect the ice block, as the blue dye absorbs red. A
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Figure 1: Photo of experimental tank. The central region into which the block is immersed 
(see black arrow) measures 76.5 cm long, 42 cm wide, and 33.5 cm deep.

Figure 2: Stages of image processing. The red channel of the image is taken, then a 
uniform threshold applied to obtain a binary image. An opening morphological transform is used to 
eliminate noise, followed by corner detection and rotation. The red line is an estimate of the 
waterline.

Figure 3: A fter processing the image, the edges can be detected by looking at leftmost, bottommost, 
and r ightmost w hite pixels. The initial s ide edges are shown in dashed gray, the initial bottom edge i s 
the bottom of the graph, and the final shape of  the block i s given by the solid gray line. The top solid 
red line is an estimate of the waterline, while the dashed lines are mean values of left, bottom, and 
right melting.
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uniform threshold can then be applied to give a binary image, and inversion applied to give
a white block on a black background. This threshold was chosen manually for each image,
as different experiments had different lighting conditions. Spurious noise (small numbers of
isolated white pixels) is minimised by applying an erosion filter (white pixels near black pixels
are switched to black). The resultant shrinking of the ice block pixels is undone by applying a
subsequent dilation filter (black pixels adjacent to white are switched to white). This removes
small regions of noise, but preserves large features in the image. This process is known as
opening the image.

After this process, we detect the left, bottom, and right edges of the image by measuring the
leftmost, bottommost, and rightmost white pixels. Using this outline we can then determine
final dimensions of the block. To determine the amount of melting we attempted to infer the
waterline (the red line in figures 2 and 3). This was the uppermost point at which the ice block
had noticeable melting. Specifically, the highest point along the block more than a certain
number of pixels to the right/left of the leftmost/rightmost white pixel.

We then estimate an average depth and width from the final ice shape by taking the mean
depth between the bottom corners, and the mean width above the highest corner. The distance
from the waterline to the mean of the bottom is compared to the initial immersed depth of the
ice block to infer a mean basal melt. The side melts are estimated from the difference between
the rightmost and leftmost points (of the unmelted portion), and the average right and left
sides (Fig. 3).

The conversion ratio of pixel to cm for each photo is assumed to be uniform in each direction,
and at each point throughout the image. In reality this is not the case, however several pictures
with rulers in both orientations were taken, and differences are typically less than 1 percent.

3.4.1 Experimental video profiles
By subtracting the initial frame from subsequent video frames, and applying thresholding to
the result, we estimated side profiles of the ice blocks during the course of the experiment.
Example melting profiles for these experiments are shown in figure 6. Unfortunately, the video
processing cannot distinguish between the blue of the ice block and the blue of the melt water,
leading to poor shape detection for our melting experiments. However, we can discern that
the leading edge retreats at a roughly constant rate in time. Owing to these issues the main
results use pictures of the final profiles of the ice blocks.

4 Results

Over 50 experiments were performed, with aspect ratios from 0.4 to 13, at three ambient

velocities U of 0, 1.5, and 3.5 cm s−1. The ambient fluid temperature was kept as constant as 
possible at around 19 ◦C ± 2 ◦C, and the salinity of the water at 30 g/kg.

The main series of experiments examined the influence of aspect ratio using a constant
immersed depth of H = 3 cm, where the streamwise length L varied from 10 cm to 32.5 cm, in
approximate increments of 5 cm.

4.1 Qualitative observations

4.1.1 High flow velocity

A time series of two experiments at U = 3.5 cm s−1 is shown in Figure 4, confirming the highly 
nonuniform nature of ice block melting, both within and between experiments. The frontal
melt rate is much larger than that of the base and sides; the incoming flow is at the highest
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temperature at the front of the block, and cools as it loses heat into the ice, thereby reducing
the melt rate with distance.

The frontal melt is itself also nonuniform with depth, leading to an increasing slope on
the leading edge during the experiment. Part of this is expected from the nonuniform velocity
profile of the tank mentioned in the methods section, though this is only expected to be a small
effect. Further, the fluid speed would increase going toward the bottom edge of the face, as is
typical for any flow around a bluff body, enhancing the melt rate.

We also observe a striking non-uniformity in the basal melt, which reaches its maximum
away from the leading edge. Proceeding downstream along the bottom of the ice, we first
see a somewhat turbulent region of increased dye concentration, as implied by our Reynolds
number Re = UH/ν ≈ 1000. This increased concentration suggests recirculation, typical of
flow separation problems. This pooling of cold meltwater reduces heat replenishment (and
hence melting) from the ambient water. Turbulence would still cause some mixing with the
ambient water however, entraining heat and mitigating the insulating effect of the region.

Behind this recirculation region, we see a clear maximum in the basal melt. This region
moves downstream during the experiment, and has a measurably increased melt rate. Inter-
estingly, the general characteristics of the leading profiles of the two blocks are quite similar,
despite their different aspect ratios. The key difference is that the longer ice block extends
beyond the local maximum in basal melt, beyond which the melting is lower, and much more
uniform. In fact (though difficult to see from the time series in figure 4), the dye pattern has
changed from turbulent eddies to steady, straight streaks, suggesting a return to laminar flow
after the reattachment region.

This configuration is essentially that of flow past a forward-facing step, which while studied
previously [1, 18, 22, 26, 30], has not been thoroughly investigated from the perspective of heat
transfer [1, 18]. The general properties of turbulent flow past a forward facing step can be seen
in our experiment – flow separation after the leading edge, leading to a region of turbulent
recirculation, and subsequent reattachment of the flow. Furthermore, experiments on heat
transfer have also found a maximum in the Nusselt number at the point of reattachment [1].
This intuitively makes sense – the fluid at the reattachment point has not been cooled by the
ice, so should lead to an increased melt rate. The velocity in this region also has a nonzero
component normal to the ice face, which (as with the front face), has been observed to increase
the melt rate [21].

Understanding the scaling of this reattachment region is key to predicting whether this
local enhancement of the melting observed in the laboratory will be geophysically relevant. A
range of values have been found by different authors (summarised in [30]), but for Reynolds

Table 1: Experimental data.

L Initial Ice block streamwise length 10, 15, 20, 25, 32.5 cm
W Initial Ice block transverse width 10–22.5 cm
H Initial Ice block immersed depth 3–20 cm
Ti Ice block Temperature −30 to −4 ◦C
Tw Ambient water temperature 18–21 ◦C
Sw Ambient water salinity 30–31 g/kg
t Experiment duration 10min
U Ambient water velocity 0, 1.5, 3.5 cm s−1

ρi Ice density 0.92 g/cm3
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numbers Re = 103 to 105, the reattachment length is found to be a small multiple of the step 
height, ranging from roughly 1 to 5. Our experiments with different relative velocities and
iceberg lengths (but identical depths) all reveal a similar location (relative to the leading edge)
of the melting region – in agreement with previous studies indicating a depth dependence of
the recirculation region length. Should this dependence hold for higher Reynolds numbers (107

to 109), we can expect the increased melting at the reattachment point to have measurable 
consequences for real icebergs. If instead the reattachment length is limited to some smaller
scale, it may be also related to the scalloping of iceberg undersides (though our experiment did
not show evidence of further local maxima in the melting behind the first one).

It is important to note that past experiments of flow past a step [30] wereperformed for
two dimensional blocks, in which the step extended the entire length of the channel. In our
case (and for that of icebergs), we expect the transverse width to become relevant when it
approaches the same order of magnitude as the depth. Indeed, the shorter ice block was also
less wide than the longer one (Fig. 4) (10 cm to 22.5 cm). These turbulent reattachment regions
were also found on the sides of the ice block, leading to similar regions of increased melt on
the transverse sides  of  the block.

The complex shape evolution of a melting ice block echoes previous investigations on the
influence of flow and obstacle geometry on melting [15], dissolution [17], and erosion [24]. Higher
velocities will unsurprisingly increase melting, but that melting can be highly nonuniform –
emphasising the difficulties of applying current parameterizations to iceberg melting.

The suppressed turbulence observed downstream of the larger block also affects the distri-
bution of meltwater in the water column. The water near the free surface behind the longer
ice block is much darker than for the short block, suggesting that a larger proportion of melt-
water is reaching the surface – with important consequences for the biological environment
surrounding an iceberg, as well as the vertical distribution of the freshwater flux due to iceberg
melting.

4.1.2   Low flow velocity
Experiments were also performed for the same dimension ice blocks at the lower velocity of
1.5 cm s−1. The same trends can be identified in the 1.5 cm s−1 experiments, with a local 
maximum in the melt rate behind the leading edge, followed by a return to laminar flow, and
more uniform lower melt rate, behind this maximum. The length scale of this recirculation
region is similar to that observed in the higher velocity experiments.

The main differences are the lower melt rate, and the reduced turbulence of the flow, where
the dye streaks appear mostly laminar throughout the experiment. This means meltwater is
no longer mixed throughout the depth of the iceberg, and instead pools near the free surface
of the water.

4.1.3   Zero flow velocity
The zero velocity experiments unsurprisingly lack any local increases in the melt, unlike the
experiments with a relative velocity. However, these experiments also exhibit sinking plumes
of dyed water. Though the vast majority of melt water does appear to rise to the surface,
these plumes remain unexpected as fresh melt water should be far less dense than ambient salt
water, despite the temperature difference. It is believed this stems from the neglect of latent
heat in such an assertion. The melting of ice in salt water is a very different process to that of
mixing cold fresh water with salt water [14, 19]; during the melting, the latent heat is absorbed
from the adjacent salt water. As there is no replenishing of the ambient water from continual
circulation, this process can cool the salt water sufficiently that it will sink, entraining the dyed
meltwater along with it.
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Figure 4: Time series of two experiments with L = 10 cm (left) and 32.5 cm (right). Each ice
◦ C, moving at U =  3.5 cm s−1.

block was immersed up to 3 cm, in ambient water at 20 
Frames are shown every two minutes.

Figure 5: Time series of two experiments with L = 32.5 cm (left), for U = 0  and  1.5 cm s −1 (right).

Figure 6: Measured s ide profiles of 32.5 cm long i ce block i mmersed i n fluid moving at U = 3.5 cm  s −1.
 The edge detection works poorly as a result of the similar colour of the ice block and the dyed melt water. 
Contours are taken at one minute intervals.
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Using the image processing techniques described in section 3.4, the final profiles of the melted
ice blocks were extracted from the photos taken immediately after each experiment. In figure
7, the average melted profiles of the ice blocks are plotted. The average profile is taken by
averaging the profiles from the left and right side of the melted ice block, after aligning at the
upstream edge. For each relative fluid velocity, all experimental average melting profiles are
plotted on the same graph, revealing broadly similar trends. The profiles are positioned so that
the origin corresponds to the location of the front corner of the unmelted ice block. Averaging
the left and right profiles is done to compensate for possible asymmetries in the melting and
picture processing.

A final melting curve (dashed) was then constructed from the average of the individual
experiments. The downstream faces of the ice blocks are omitted from the average calculation,
and the most downstream points of the bases for each ice block length are shown with black
circles. The grey error bars around the average profile are twice the average of the standard
deviations of the individual profiles at each point. The reduced number of profiles at higher
lengths affects the standard deviation calculation, but acts as a sensible first estimate of the
variability of the melting profiles.

From this averaged profile we can estimate basal and frontal melt. The frontal melt is
estimated from the average of the curve between two points identified as the top and bottom
of the front face, and average basal melt as the average value of the dashed curve between the
start and end of the base. These profiles reveal the disparity between frontal and basal melt
for each velocity, highlighting the geometric dependence of iceberg melt (table 2).

As well as the non uniform melting between faces, there exist large variations within each
face. Figure 8 examines the nonuniform basal melt, showing the localised and cumulatively
averaged basal melt rate for each of the fluid velocities. Basal melt rates at fluid velocities
of 0 cm s−1 and 1.5 cm s−1 are comparable, though the more turbulent 3.5 cm s−1 experiment
is markedly increased. This is in agreement with the findings of FitzMaurice et al. [13],
who observed a roughly constant melt rate below a threshold fluid velocity – attributed to
the influence of rising meltwater plumes. The melt rate was observed to be controlled by the
maximum of the velocity of the meltwater plumes and the ambient fluid velocity. FitzMaurice’s
findings neglected the basal melt however, so her model is not directly applicable to the present
experiments.

Instead, the basal melting of our experiments would naturally give rise to a gravity current,
as melt water spreads along the iceberg base to then rise to the surface. The Froude
number of gravity currents is approximately unity, and the thickness of the meltwater layer
h was observed to be approximately 2 to 4mm, giving a gravity current velocity of around√
gh ≈ 1.4 to 2.0 cm s−1. As such, we expect a weak dependence on the ambient fluid velocity

when it is below this gravity current speed. We note however that this is not a confined channel
gravity current, and also that some small amount of sinking of the dye was observed. Waves
were also observed on the interface which propagated toward the center.

It is worth noting that the average melt rates in table 2 are of the entire dashed lines in
figure 7. The average basal melt of a shorter block should be larger, as a larger proportion of
the base is in the enhanced melting region. To understand the change in average basal melt
with length, we plot the cumulatively averaged basal melt in figure 8. The averaging procedure
will naturally reduce the influence of localised features, but we still see a noticeable variation in
the average basal melt rate for fluid velocity 3.5 cm s−1 as a function of length. This variation
in basal melt with length is less pronounced than that between the average frontal and basal
melt, and would likely be a secondary effect in the real world, though it is still detectable, with

___

the

4.2 Quantitative results

4.2.1   Post-experiment picture profiles
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Figure 7: Final profiles of experiments. The profiles are aligned at their edge. We observe highly 
nonuniform melting between and within each face of the block.

Figure 8: Local and cumulative basal melt rates at 0 cm s−1 (blue), 1.5 cm s−1 (green), and 
3.5 cm s−1 (red).

Table 2: Table of average melting rates (cm min−1) of each face.

Face U = 0 cm s−1 U = 1.5 cm s−1 U = 3.5 cm s−1

Front 0.15± 0.03 0.23± 0.05 0.41± 0.06
Sides 0.13± 0.02 0.14± 0.03 0.19± 0.06
Rear 0.15± 0.05 0.13± 0.10 0.15± 0.11
Base 0.09± 0.04 0.10± 0.04 0.15± 0.04
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up to 20% variation in the cumulative basal melt rate.
Figure 8 shows that the 1.5 cm s−1 velocity experiments have a slightly increasing basal melt 

rate with length. This is unfortunately a result of imperfect methodology in deriving melt rates
from the final ice block photos. The top corners of the ice blocks, where the melting begins, are
actually located somewhat above the water line of the tank. This is thought to result from a
positive meniscus forming at the air-water interface on the ice block. The typical amount of above
water melting was estimated as 3 mm, however this varied between velocities, experiments, and
faces (for 1.5 cm s−1). This can be exacerbated by tilting of the ice block when placed in the water. 
During the freezing process, the wooden handle would sometimes rotate and tilt in the ice, leading
to a slight rotation when placed in the tank.

To assess the accuracy of our averaged profile, we also compare it with an automated
procedure for calculating the dimensions of individual profile in figure 9, in which the width is
calculated from the average of the middle third horizontal section of the block, and the depth
is the average of the lowest third of the block. We see broad agreement between the automated
calculations, and the dimensions of the averaged profile, with the spread of values typically lying
within the uncertainty bars of the averaged melt rate. And again, we see a large difference
between typical melt rates observed for each face of the ice block; for non-zero fluid velocity,
frontal melting can be two to three times larger than that of the other faces. The basal melt
is observed to always be lower than side melting – implying that tabular icebergs with large
aspect ratios should melt at a lower rate than smaller aspect ratio icebergs. We additionally
observe a slight decrease in the basal melt rate as a function of length at the highest velocities,
in accord with the cumulative melt rate calculations discussed earlier.

As a test of our method, we compare estimates of volume loss obtained from the final
profiles, and the averaged profile, to the actual volume loss measured from the change in mass
over the experiment (Fig. 10). The estimates of volume loss assume that the melting of each
face occurs while maintaining a constant rectangular shape, at the rates estimated by the
respective method. The uncertainties of the volume loss are half the range of volume losses
calculated using upper and lower estimates for each the melt rates of each face. Albeit with
some scatter, we see clear agreement between the estimates and direct measurements of volume
loss.

Next, we use these estimates of melting to determine an overall melt rate for each experiment
(from section 3.1) in figure 11. The volume loss is measured from the change in mass, and
the average area inferred using the melt rate estimates from the averaged profiles in table 2,
assuming a rectangular shape is conserved during the melt. We note that an additional set of
experiments is also used in figures 10 and 11,  in which the ice block depth was varied from
5 cm to 20 cm, in increments of 5 cm. We compare our experimental measurements to typically
used parameterizations of Weeks and Campbell [37], and the three equation parameterization
of Holland and Jenkins [16] (with parameters used in table 3).

We observe a strong decrease in the overall melt rate as aspect ratio is increased, almost
halving from tall icebergs (aspect ratio less than unity), to the largest icebergs used (aspect
ratio 13). This variation is primarily due to the different relative side areas of each aspect
ratio. A longer ice block has a much larger basal area compared to a tall block of the same
total area. As such, the overall melting tends to the lower basal melt rate. Shorter blocks are
instead more affected by their side melt.

This geometric dependence in the melt is completely absent in the Jenkins’ three equation
parameterization, and only weakly accounted for in Weeks and Campbell parameterization,
each of which underestimate the melting for the parameters used in table 3. This failure
stresses the need to account for different side melt rates and side areas in iceberg modelling.
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Figure 9: Individual automated s ide melt calculations (points) and the estimates f rom the averaged 
profiles (coloured bars) as a function of aspect ratio. We see agreement between individual and 
averaged calculations, and strong differences between melt rates on each face of the block.

Figure 10: Comparisons of estimated volume loss to measured volume loss, using average (left) and 
individual (right) profiles, assuming uniform melt on each f ace (but still varying melt rates between 
faces). This plot includes additional experiments with greater depths. Uncertainties are estimated as 
half the range of volumes using high and low estimates f or the melt rates.

Figure 11: Averaged melt rates of different velocity experiments, as f unction of aspect ratio, for all sets 
of experiments. Both the Weeks and Campbell (+) and Jenkins three equation (×) parameterizations 
are also shown f or comparison, using values f rom table 3. Neither parameterization f ully captures 
the geometric dependence of the i ce block melting.
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5 Conclusion

Typical existing parameterizations of iceberg melting ignore the possible influence of the ice-
berg’s aspect ratio [16, 37]. To test these models, we ran a series of laboratory experiments,
examining the dependence of the melt rate on iceberg size and shape for three different ambi-
ent relative velocities. We find that iceberg geometry has a strong effect on the melt rate of
icebergs.

Melt rates are highest on the upstream facing side (with respect to the ambient flow),
followed by the remaining lateral sides, with lowest melting occurring at the base of the iceberg.
Changing the relative area of each face will thus change the overall melt rate.

Furthermore, the melt rate of each face is itself non uniform, with localised regions of
increased melt rate of over 50% observed. These regions are believed to correspond to the
reattachment zones of separated flow around the ice block [1]. The extent of these regions have
been observed to scale with the obstacle height [30], and as such may be geophysically relevant.

To improve melting estimates, we emphasise that melt rates must depend both on the
aspect ratio and orientation of the iceberg, in addition to the fluid velocity used by current
parameterizations.
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Table 3: Table of values of physical constants, from [3], and [20].

Symbol
Ti
Tw
Sw

ρw
ρi
ν
κ
cw
ci
Λ
λ1
λ2
Cd

Name
Ice temperature
Water temperature
Water salinity
Water density
Ice density
Water momentum diffusivity
Water thermal diffusivity
Water heat capacity
Ice heat capacity
Ice Latent heat
Liquidus slope
Liquidus intercept
Drag coefficient

Value
−4 ◦C
19 ◦C
30.5 g kg−1

1021 kg m−3

920 kg m−3

1.304 × 10−6 m2 s−1

1.38 × 10−7 m2 s−1

4192 J kg−1 ◦C−1

2108 J kg−1 ◦C−1

3.34 × 105 J kg−1

−0.057 ◦C kg g−1

0.083 ◦C
0.0025

ΓT 0.011
ΓS

Temperature transfer coefficient
Salinity transfer coefficient 3.1 × 10−4

remember

324



1. Abu-Mulaweh, H. Turbulent mixed convection flow over a forward-facing step—the
effect of step heights. International Journal of Thermal Sciences 44, 155–162
(2005).

2. Andres, M., Silvano, A., Straneo, F. & Watts, D. R. Icebergs and Sea Ice Detected
with Inverted Echo Sounders. Journal of Atmospheric and Oceanic Technology 32,
1042–1057 (2015).

3. Batchelor, G. An Introduction to Fluid Dynamics (Cambridge University Press,
2000).

4. Bigg, G. R., Wadley, M. R., Stevens, D. P. & Johnson, J. A. Modelling the dynamics
and thermodynamics of icebergs. Cold Regions Science and Technology 26, 113–
135 (1997).

5. Budd, W. F., Jacka, T. H. & Morgan, V. I. Antarctic Iceberg Melt Rates Derived
from Size Distributions and Movement Rates. Annals of Glaciology 1, 103 112
(1980).

6. Crepeau, J. Josef Stefan: His life and legacy in the thermal sciences. Experimental
Thermal and Fluid Science 31, 795–803 (2007).

7. Dinniman, M. S., Asay-Davis, X. S., Galton-Fenzi, B. K., Holland, P. R., Jenkins,
A. & Timmermann, R. Modeling Ice Shelf/Ocean Interaction in Antarctica: A
R Oceanography 29, 144–153 (2016).

8. Dowdeswell, J. & Bamber, J. Keel depths of modern Antarctic icebergs and impli-
cations for sea-floor scouring in the geological record. Marine Geology 243, 120–
131 (2007).

9. Dowdeswell, J. A., Whittington, R. J. & Hodgkins, R. The sizes, frequencies, and
freeboards of East Greenland icebergs observed using ship radar and sextant. Jour-
nal of Geophysical Research: Oceans 97, 3515–3528 (1992).

10. Eckert, E. & Drake, R. Heat and Mass Transfer (R.E. Krieger Publishing Com-
pany, 1959).

11. Enderlin, E. M., Hamilton, G. S., Straneo, F. & Sutherland, D. A. Iceberg meltwa-
ter fluxes dominate the freshwater budget in Greenland’s iceberg-congested glacial
fjords. Geophysical Research Letters 43. 2016GL070718, 11, 287–11, 294 (2016).

12. FitzMaurice, A., Cenedese, C. & Straneo, F. Nonlinear response of iceberg side
melting to ocean currents. Geophysical Research Letters 44. 2017GL073585, 5637–
5644 (2017).

13. FitzMaurice, A., Straneo, F., Cenedese, C. & Andres, M. Effect of a sheared flow
on iceberg motion and melting. Geophysical Research Letters 43. 2016GL071602,
12, 520–12, 527 (2016).

References

-

eview.

325



Gade, H. G. Melting of Ice in Sea Water: A Primitive Model with Application to
the Antarctic Ice Shelf and Icebergs. Journal of Physical Oceanography 9, 189–
198 (1979).

Hao, Y. L. & Tao, Y.-X. Heat Transfer Characteristics of Melting Ice Spheres
Under Forced and Mixed Convection. Journal of Heat Transfer 124, 891–903 (Sept.
2002).

Holland, D. M. & Jenkins, A. Modeling Thermodynamic Ice–Ocean Interactions at
the Base of an Ice Shelf. Journal of Physical Oceanography 29, 1787–1800
(1999).

Huang, J. M., Moore, M. N. J. & Ristroph, L. Shape dynamics and scaling laws for a
body dissolving in fluid flow. Journal of Fluid Mechanics 765 (2015).

Jayakumar, J. S., Kumar, I. & Eswaran, V. Hybrid mesh finite volume CFD code for
studying heat transfer in a forward-facing step. Physica Scripta 2010, 014060
(2010).

Jenkins, A. The Impact of Melting Ice on Ocean Waters. Journal of Physical
Oceanography 29, 2370–2381 (1999).

Jenkins, A., Nicholls, K. W. & Corr, H. F. J. Observation and Parameterization of
Ablation at the Base of Ronne Ice Shelf, Antarctica. Journal of Physical

40, 2298–2312 (2010).

Josberger, E. G. & Martin, S. A laboratory and theoretical study of the bound-
ary layer adjacent to a vertical melting ice wall in salt water. Journal of Fluid
Mechanics 111, 439–473 (1981).

Largeau, J. F. & Moriniere, V. Wall pressure fluctuations and topology in separated
flows over a forward-facing step. Experiments in Fluids 42, 21 (Nov. 2006).

Martin, T. & Adcroft, A. Parameterizing the fresh-water flux from land ice to ocean
with interactive icebergs in a coupled climate model. OceanModelling34, 111–124
(2010).

Moore, M. N. J., Ristroph, L., Childress, S., Zhang, J. & Shelley, M. J. Self-similar
evolution of a body eroding in a fluid flow. Physics of Fluids 25, 116602 (2013).

Neshyba, S. & Josberger, E. G. On the Estimation of Antarctic Iceberg Melt Rate.
Journal of Physical Oceanography 10, 1681–1685 (1980).

Pearson, D. S., Goulart, P. J. & Ganapathisubramani, B. Investigation of turbulent
separation in a forward-facing step flow. Journal of Physics: Conference Series 318,
022031 (2011).

Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-Shelf Melting Around
Antarctica. Science 341, 266–270 (2013).

Russell-Head, D. S. The Melting of Free-Drifting Icebergs. Annals of Glaciology 1,
119 122 (1980).

Savage, S. in Geomorphological Fluid Mechanics (eds Balmforth, N. J. &
A.) 279–318 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2001).

Sherry, M. J., Jacono, D. L., Sheridan, J., Mathis, R. & Marusic, I. Flow separation
characterisation of a forward facing immersed in a turbulent boundary layer.

Oceanography

Provenzale,

step

326



Sixth International Symposium on Turbulence and Shear Flow Phenomena, 1325
(2009).

31. Silva, T. A. M., Bigg, G. R. & Nicholls, K. W. Contribution of giant icebergs to
the Southern Ocean freshwater flux. Journal of Geophysical Research: Oceans 111.
C03004, n/a–n/a (2006).

32. Smith, F. T. Laminar flow of an incompressible fluid past a bluff body: the sep-
aration, reattachment, eddy properties and drag. Journal of Fluid Mechanics 92,
171–205 (1979).

33. Smith, K. L., Robison, B. H., Helly, J. J., Kaufmann, R. S., Ruhl, H. A., Shaw,
T. J., Twining, B. S. & Vernet, M. Free-Drifting Icebergs: Hot Spots of Chemical
and Biological Enrichment in the Weddell Sea. Science 317, 478–482 (2007).

34. El-Tahan, M., Venkatesh, S. & El-Tahan, H. Validation and Quantitative Assess-
ment of the Deterioration Mechanisms of Arctic Icebergs. Journal of Offshore Me-
chanics and Arctic Engineering 109, 102–108 (Feb. 1987).

35. Tournadre, J., Bouhier, N., Girard-Ardhuin, F. & Remy, F. Large icebergs char-
acteristics from altimeter waveforms analysis. Journal of Geophysical Research:
Oceans 120, 1954–1974 (2015).

36. Venkatesh, S. & El-Tahan, M. Iceberg life expectancies in the Grand Banks and
Labrador Sea. Cold Regions Science and Technology 15, 1–11 (1988).

37. Weeks, W. F. & Campbell, W. J. Icebergs as a Fresh-Water Source: An Appraisal.
Journal of Glaciology 12, 207 233 (1973).

38. Weeks, W. & Mellor, M. Some elements of iceberg technology. English (1978).

-

327



Nonlinear Influence of Background Rotation on Iceberg Melting
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1 Introduction

Iceberg dynamics and thermodynamics still include processes that are poorly 
understood. Indeed, there is lot of interest in comprehending the complex interactions 
between icebergs and their surrounding, both in terms of how the environment 
influences the iceberg and vice versa. In particular, the meltwater produced by icebergs 
themselves has been observed to modify the local ocean physical and chemical 
properties, affecting both the dynamical [17, 9] and the biogeochemical response [16, 4]. 
Moreover, icebergs are well known to pose a hazard for human activities such as oil 
platforms, submarine pipelines and, of course, navigation [3].

Recent numerical works have underlined the importance of correctly describing the 
iceberg size distribution in order to get the right climatology for sea-ice, ocean temperature 
and salinity [18, 14]. In particular around Antarctica, where large tabular icebergs with areas 
that can reach values up to O(103 km2) exist, the incorrect size distribution representation, 
for example by neglecting these giant icebergs, can lead to a bias towards the South in the 
freshwater input [14].

For a comprehensive review of the mechanisms that control icebergs dynamics and 
melting, the reader is referred to [15, 1]. Contributions to the melting come both from 
surface processes and from subsurface ones, as depicted in figure 1. In particular, above 
the air-sea interface, solar radiation, forced convection due to the winds and 
sublimation take place, but they represent the least important mechanisms. At the 
interface, instead, the dominant mechanism, wave erosion, continuously acts and 
reduces the iceberg volume both by directly transferring heat from the seawater 
through the periodic wave motion and by inducing calving of the iceberg fraction 
above the sea level that is left because of the melting itself. Below the sea level then, 
buoyant and forced convection significantly contribute to the submarine melting by 
entraining relatively warmer oceanic water in the turbulent layer attached to the 
iceberg. The former is due to the vertical motion associated to the positively buoyant 
meltwater, while the latter is due to the relative motion of the water masses, as 
explained more in detail below [15].

Forced convection at the base of the iceberg is the mechanism studied in the present 
work. It refers to the transfer of heat between a fluid and a submerged body through the 
turbulent boundary layer that develops at the interface due to the relative fluid flow [5]. 
In the case of icebergs, the relative fluid motion is provided by the fact that their 
displacement is not always controlled by vertically uniform flow. Thus, for example, if 
there is a vertical shear in the current or if the wind drives the iceberg or if the iceberg 
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Figure 1: Schematic of the iceberg deterioration processes, adapted from [1].

gets stuck by some bathymetric feature, it is easy to imagine the presence of a relative 
flow with respect to the iceberg [1, 7].

Various efforts have been done to represent this kind of melting as a function of the fluid 
and ice properties (relative flow speed, fluid temperature and salinity, ice temperature), 
to better understand the relevant physical quantities involved in the process and, as an 
application, to capture this submarine melting in general circulation models (GCM). 
The two most widespread parameterizations are Weeks and Campbell (WC) [21] and 
the three equations [10], first developed for the basal ice shelf melting. Examples of the 
use of both schemes in GCM are [2] for the former and [20, 14] for the latter, among 
others. In general, though, there is evidence that the iceberg melting representation in 
GCMs is over-simplified and active research brings new insights in how such 
mechanisms work [6].

The goal of the present study is to quantify the effects of a background rotation on 
iceberg melting, if any. In section 2 some background information about the current 
iceberg melting parameterizations and the analytical solutions of the flow below a solid 
obstacle in a rotating frame of reference in simple configurations, leading to the so-
called Taylor columns, is given. Section 3 is devoted to describing the experimental 
methods and setup to tackle the problem, the results of  which             are presented in section 4. 
Some remaining open issues and conclusions are given in section 5.

2 Background

2.1 Submarine melting parameterization

Following a similar experimental procedure to previous work [6], the focus is on the 
WC submarine melting parameterization [21] that describes the submarine melt rate 
per unit area SMR as a function of the relative flow speed U , the driving temperature ∆T = Tw
−Ti >   0 (with Tw   denoting the water temperature and Ti   denoting the ice temperature) 
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and the length scale of the iceberg in the direction of the flow ` as

SMR = K∆T
U0.8

`0.2
, (1)

where K is a constant of proportionality that contains various physical constants, as de-
scribed in the following derivation [21].

The SMR is defined as the iceberg volume loss per unit area and per unit time. It can
be written as

∆V
SMR = ,

A∆t

where ∆V is the volume loss, A is the area of the iceberg in contact with the fluid 
and ∆t i s the time interval considered. If the iceberg is already at its melting 
temperature and thus all the heat transferred from the fluid to the iceberg Q
contributes to its melting, then with ρi denoting the ice density and Li its latent heat 

of fusion, one can write
SMR =

Q

LiρiA∆t
.

At this point, to generalize this relationship, one introduces the Nusselt number Nu 
that, over a length scale ` and for a fluid with thermal conductivity κ, is the
nondimensional version of the heat per unit time, per unit area and per unit driving 
temperature transferred between the body and the fluid

q =
Q

A∆t∆T
,

namely

Nu =
q`

κ
. (2)

This gives that the SMR scales with the Nusselt number as

SMR =
∆Tκ

Liρi`
Nu. (3)

But the scaling of the Nu with respect to the Reynolds number, Re = U`/ν, with ν being
the fluid viscosity, and the Prandtl number, Pr = cpρwν/κ, with cp being the fluid specific
heat and ρw its density, are known from past experimental works in the form

Nu ' CRemPrn, (4)

where the coefficients C,m, n depend on the geometry of the body and on the Re of the
flow [5]. In this work, two geometrical configurations are considered: a flat plate, which has
been used to derive the WC parameterization [21], and an infinite cylinder, for reasons that
will be clarified in section 3. Table 1 contains the values of C,m, n for Re∼ 104, which is
consistent with the experimental setup described below. With the values for the flow past
a flat plate, it is now clear that by using equation (4) in equation (3), the final form of the
WC parameterization (1) is obtained.

As already mentioned, the WC parameterization has been applied both to numerical
works [2] and experimental ones [6]. In particular, in the laboratory it has been possible
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Geometry C m n

Flat plate 0.037 0.8 0.33
Infinite cylinder 0.193 0.618 0.31

Table 1: Coefficients of the scaling of Nu as a function of Re and Pr as in equation (4) for 

Re∼ 104 and for two geometrical configurations [5].

to test its behavior for vanishing relative speed U , which is a limit where the free stream 
forced convection becomes a second order process and the melting is controlled by other 
mechanisms. For the lateral melting, it has been shown that the forced convection due to 
the buoyant plumes is the major process for low U [6]. This happens because the meltwater 
produced by the ice block itself, being buoyant due to its lower salinity content, moves 
upwards forming plumes along the sides of the block. Figure 2 shows that, for low relative 

velocity (u < wp, where wp ' 2.5 cm s −1 is the characteristic vertical velocity of the 
plume), the melting is correctly parameterized using the buoyant plume temperature and 
velocity in the WC expression. While for higher velocity, u > wp, the WC parameterization 
with the free stream quantities fits the data well. The schemes in the right panel of the 
same figure show the different behavior of the vertical plumes in the two regimes (A) 
and (C). In the former, the meltwater produced by the ice block at the ice-water 
interface forms buoyant plumes that remain attached to the ice block, which is thus 
unaware of the free stream flow. In the latter, instead, due to the higher free stream 
velocity, the plumes are swept away and the free stream velocity and temperature 
control the forced convection that melts the ice block. There is also an intermediate 
regime, marked with (B) in the left panel of the figure, that is intermediate between 
the two.

2.2 Taylor column dynamics

Since the goal of the work is to study the effects of background rotation on iceberg 
melting, the fluid dynamics in a rotating frame of reference past an obstacle is here 
revised in some simple configurations. In particular, it is well known that in a 
barotropic, inviscid, fast- rotating flow (in the sense of low Rossby number, as 
explained more in detail below), the velocity field is independent of the coordinate in 
the direction of the axis of rotation. In a system where the axis of rotation is 

vertical, this can be written as
∂

∂z
u = 0

and implies that, if an obstacle is placed somewhere in the domain, the flow is forced to go 
around it not only at the depth where the obstacle is physically present, but also everywhere 
on top of (or below) it. It is as if the obstacle was virtually extended throughout the entire 
fluid column. The fluid that occupies this virtual volume remains stagnant and is a so-called 
Taylor column (TC) [19].

But this is the extreme case where the Coriolis time scale is much smaller than the 
advective one. In the range between the non-rotating case and this extreme one, the an-
alytical solution for a cylindrical obstacle is now revised following [12, 13]. Consider a
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Figure 2: Left panel: lateral SMR as a function of the free stream velocity. The WC
parameterization in regimes (A) and (B) is calculated with the plume temperature and
velocity, while in regime (C) it uses the free stream ones. Right panel: schemes of the two
regimes. (A) shows that for low relative speed the buoyant plumes shield the ice block
from the fluid flow and the buoyant convection controls the lateral melting. (C) shows that
for high relative speed the plumes are swept away and the forced convection controls the
melting. Regime (B) is intermediate and the figure is adapted from [6].
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homogeneous and constant fluid flow confined between two flat plates distant H from each 
other and rotating at a constant rate Ω, which sets a background constant absolute vorticity 
f = 2Ω. Let U be the fluid velocity and choose a frame of reference with the x axis along 
the direction of the flow, with no loss of generality. If a flat-topped cylindrical obstacle of 
radius L and height h � H is attached to one of the plates, defining the Rossby 
number as Ro= U/fL and the nondimensional height of the obstacle as h0 = h/H, the
steady state flow dynamics at low Ro is determined only by the parameter

α =
Ro

h0
=

U

fL

H

h
(5)

[12]. In particular, starting from a relatively large α, the presence of the obstacle affects
the flow by bending the streamlines, following potential vorticity (PV) conservation. As an
example, consider that the obstacle is attached to the upper plate. Then, by writing down
the nondimensional linearized PV conservation equation as

D

Dt

(
∇2Ψ + h0

)
= 0, (6)

where Ψ is the streamfunction, together with the far field conditions

u = −∂Ψ/∂y = α and v = ∂Ψ/∂x = 0 for x2 + y2 →∞, (7)

it is easy to understand that if the background vorticity is positive (f > 0), the squeezing 
due to the obstacle (h0 > 0) induces a negative (anticyclonic) component in the relative 

vorticity (∇2Ψ < 0). As α increases, a stagnation point appears in the velocity field. It 
has been shown that the critical value for which this condition is reached depends on the 
geometry of the obstacle and on the stratification of the fluid [11]. For even lower values 
of α, then, a closed circular streamline below the obstacle appears. Its radius increases 
for decreasing α and it delimits a region of zero motion, the so-called Taylor column. The 
panels of the top row of figure 3 show these solutions for three different values of α.

Since, as clarified in the following, in the experimental setup there is a horizontal 
shear in the far field flow, the solution of the problem of the above is obtained in a 
very similar way for the case of horizontally sheared flow, by adding a second 
parameter, β, that controls the horizontal shear [13]. In particular, if the horizontal 
velocity changes by an amount ∆U over a cross-flow distance ∆y, the new parameter 

is defined as

β =
∆U/∆y

f

H

h
(8)

and modifies the u velocity far field condition of equation (7) as

u = −∂Ψ/∂y = α+ βy. (9)

For the rest, the problem is the same and it can be shown that the solutions differ whether 
the vorticity added by the horizontal shear has the same sign of the vorticity anomaly 
induced by the squeezing below the obstacle or the opposite. In the former case, the 
stagnation region is generated for values of α higher than the zero-shear critical one 
αc, while in the latter, the Taylor column occurs for α < αc.

333



Figure 3 shows the analytical steady solution of the TC problem outlined above, both for
zero horizontal shear (top row) and for a positive one (bottom row). The parameters used
to plot this figure are taken from the experimental setup as described in section 3. In the
case of positive background rotation (f > 0), the direction of the flow along the streamlines
(solid thin black) is from left to right, while for f < 0 it is from right to left. The top
row is obtained for a uniform far field velocity U = 4 cm s−1, while the bottom row for a
positively sheared flow U = U0 + y∆U/∆y, with U0 = 4 cm s −1 and ∆U/∆y = 0.1 s−1.
The different columns correspond to different values of α = Ro/h0 and for the geometry
considered, the critical value at which the stagnation point in the zero-shear case appears
is αc = 0.5 [11]. Panels (A), (D) have α = 1 > αc and do not have any TC, because the
background rotation has a rather small effect on the flow and thus the difference between
the velocity magnitude of the flow with respect to the far field (denoted with the color
shading) is small. Panels (B), (E) have α = 0.5 = αc and in the zero-shear case, panel
(B), the stagnation point at the lower end of the obstacle is visible in correspondence of the
cusp in the appropriate streamline.
shear makes it easier to have a region of no motion (delimited by the black dashed line),
because the added background velocity due to the positive β is of the same sign of the
vorticity anomaly induced by the squeezing of the fluid below the obstacle. Panels (C) and
(F), then, have α = 0.25 < αc and they both show a region of zero motion, which has been
shown to grow bigger for lower values of α [12]. It is interesting to notice that while on the
lower side of the obstacle the region of zero motion appears, on the upper side there is a
relative increase in velocity with respect to the far field profile.

To have a sense of the importance of such dynamics in the real oceans, the following
typical values of the quantities defining α are considered. Take a relative speed of U ∼ 10
cm s−1, a Coriolis parameter of f ∼ 10−4 s−1, a horizontal length scale of the iceberg of
L ∼ 20 km, a depth of the water of Hw ∼ 103 m and a draft of the iceberg of hi ∼ 500 m.
This leads to

α =
U

fL

Hw

hi
∼ 10−1,

which is of the same order of magnitude of the critical value αc = 0.5 considered above,
which motivates the current investigation because it shows that rotation can be important
in the dynamics in the vicinity of an iceberg and, thus, can impact its melting.

3 Methods

The experiments were conducted in a rotating tank with a diameter of 210 cm and filled
with seawater with salinity of roughly 33 g kg−1 kept at room temperature, 18− 20◦C. At
least 30 minutes before the beginning of each experiment, the rotating tank was turned on
to set the fluid in solid body rotation with angular velocity Ω0 and corresponding absolute
vorticity f0 = 2Ω0. The spin-up time that characterizes this transient fluid acceleration has
been largely studied in the past [8] and is given by the expression

τE =
H

(2νf0)1/2
, (10)

Panel  E  shows  that  the  presence  of  a  positive
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Figure 3: Top row, panels (A), (B), (C): analytical steady solution of the TC problem
with zero horizontal shear for different values of α = Ro/h0 [12]. Bottom row, panels (D),
(E), (F): solution of the same problem and for the same values of α, but with positive
horizontal shear with ∆U/∆y = 0.1 s−1 [13]. The black solid thin lines are streamlines,
while the color shading indicates the difference between the flow velocity magnitude and
the far field velocity profile: constant and equal to 4 cm s−1 in the top row and increasing
with y with U(y = 0) = 4 cm s−1 in the bottom row. The green solid line is the section of
the cylindrical obstacle and the black dashed line in panels (C), (E) and (F) delimits the
region of no motion predicted by the analytical solutions.
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with H being the fluid column depth and ν its viscosity. The physics that controls this spin-
up process involves the Ekman boundary layer at the bottom of the tank, which pushes 
the fluid far from the axis of rotation and, by mass conservation, brings fluid parcels with 
higher angular momentum, that accelerate the fluid throughout the tank, inwards.

Once the fluid was in solid body rotation, a cylindrical ice block of radius L was sus-
pended in the water with a wooden support at a distance R from the axis of rotation and 
with a submerged part of height h (see figures 4 and 5). At this point, since the ice block 
was fixed in the frame of reference of the tank, two options were available to set a 
relative flow between the seawater and the ice block. The first consisted of increasing
the rotation rate of the tank by a certain amount ∆Ω at the beginning of the 
experiment, so that the relative flow speed at the center of the obstacle was initially 
U0 = R∆Ω. This resulted, according to the spin-up dynamics described before [8], in a 
relative flow decaying almost exponentially

U(t) ' U0e−t/τE (11)

in the frame of reference of the tank and the ice block. The second option, instead,

consisted in increasing the rotation rate of the tank by a smaller amount δΩ < ∆Ω at 
regular intervals δt, calculated using the exponential decay above, so that the relative 
flow speed would be constant. In particular, using the equivalent of equation (11) for 
the angular velocity together with the expression of the spin-up time (10), the 
interval δt at which the tank acceleration is needed to balance the relative velocity,
decay was found by inverting

δΩ = ∆Ω
(

1− e−t/τE
)
, (12)

after choosing δΩ to be some fraction of ∆Ω. The choice for the experiments was δΩ
= ∆Ω/10, so that the values of δt were between 15 to 40 s, as a function of the 
initial background rotation, f0. This procedure was tested for different values of f0, R, 
∆Ω by measuring the fluid angular velocity with floating tracers and after a few trial

and error tests, it was possible to keep the relative flow speed constant, with 
fluctuations of the order of 5% (not shown). Despite some experiments that were
carried in the first configuration (constant f decaying U), all the data analyzed and 
shown in what follows come from the series of experiments with constant U and 

increasing f .
The ice blocks were made in stainless steel cylindrical molds with radius L = 12.5 

cm and were roughly 5 cm tall, so that they could be half submerged during the 
experiments, resulting in values of h ' 2 or 3 cm. The water used to make the ice 
blocks was deaired and dyed with 2 ml blue food colorant in order to be able to 
distinguish the meltwater from the seawater of the tank. There are two reasons why 
the ice blocks were cylindrical. The former is because the focus of this work was on 
the basal iceberg melting rather than the lateral one. Thus, since the circle is the 
figure that maximizes the area for a given perimeter, the cylindrical shape has the 
highest basal-to-lateral area ratio for a given height. This means that it is the
optimal choice to study the melting coming from the base and for the values of the 

experiments, h ∼ 2 cm and L = 12.5 cm, the area of the base πL2 is roughly three 
times larger than the area of the side 2πLh. The latter reason is because the 
analytical solutions for the TC problem, described in section 2.2, has been developed 
only for flat-topped cylindrical obstacles [12, 13].
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Figure 4: On the left, a top view schematic of the apparatus (not to scale), where the
radially increasing relative velocity profile U = U(r) in the frame of reference of the ice
block is drawn. The distance of the center of the ice block (hatched) from the axis of
rotation R, the radius of the ice block L and the direction of the rotation in the frame of
reference of the laboratory f are marked, as well. On the right, a side view of the same
apparatus is sketched with also the draft of the ice block h and the depth of the seawater
H.
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Figure 5: Top view picture of the apparatus during an experiment that shows how all the
elements sketched in the previous schematic looked like in the laboratory.
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Special attention was paid during the experiments with high background rotation rate
because the water surface was free to adjust to the well known paraboloid shape reached
at the balance between the centrifugal acceleration and the hydrostatic pressure gradient.
Denoting with Heff the effective height of the water as a function of the radial distance r
from the axis of rotation and the rotation rate itself Ω, one can write

Heff (r,Ω) = H +
Ω2

4g
(2r2 −D2), (13)

where g is the acceleration due to gravity, D = 105 cm is the radius of the rotating tank 
and H, the non-rotating value, was chosen to be equal to 12 cm. All the experiments, even 
those with the most tilted free surface, were conducted making sure that the upper side of 
the ice block was never submerged in order to avoid the introduction of an extra melting 
source.

For each experiment, two quantities were measured: the mass loss ∆m and the initial 
submerged draft h0. To understand how the SMR was obtained, let us consider a reasonable 
scenario in which the average radius of the cylindrical ice block L = L(t) decreases linearly 
in time as

L(t) = L0 − δ̇t (14)

and the average submerged height as

h(t) = h0 − ε̇t. (15)

The lateral and basal ice block melt rates are thus

dL

dt
= −δ̇, dh

dt
= −ε̇, with δ̇, ε̇ > 0 (16)

and supposing that they are constant one can write that over a time interval ∆t the radius
and the height decrease by an amount δ = δ̇∆t and ε = ε̇∆t, respectively. Given the
expressions (14) and (15), the submerged instantaneous area is

A(t) = πL(t) [L(t) + 2h(t)] , (17)

and the corresponding volume is

V (t) = πL2(t)h(t), (18)

which decreases in time with a rate

dV

dt
= −πL(t)

[
L(t)ε̇+ 2h(t)δ̇

]
. (19)

This enables us  to write the instantaneous SMR as

SMR(t) = − 1

A(t)

dV

dt
=
L(t)ε̇+ 2h(t)δ̇

L(t) + 2h(t)
> 0. (20)

It is now interesting to have a sense of how the side melt rate and the basal melt rate
compare. To do so, the two different geometrical configurations (flat plate and infinite
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cylinder) discussed in section 2.1 for the heat turbulent transfer are considered. If the 
side melt rate is taken to scale with the Re as if the flow was around an infinite 
cylinder and if the basal melt rate scales as if flow was past a flat plate, the  ratio 

δ̇/ε̇ is
δ̇

ε̇
' 0.81, (21)

using the coefficients of table 1, the typical velocity of the experiments U = 4 cm s−1 and
the radius of the cylinder L = 12.5 cm as a length scale. This justifies the assumption

δ̇ = ε̇, (22)

(23)

which, if replaced in the expression (20), shows immediately that the SMR is constant 
and equal to

SMR = ε̇ = δ̇.

Over a time interval ∆t, the ice block volume loss with the assumption δ = ε is simply

|∆V | =
∫ ∆t

0
dt
∣∣∣dV
dt

∣∣∣ = π
[
L2

0h0 − (L0 − ε)2(h0 − ε)
]
. (24)

Thus, the correct value of the area A∗ to be used when calculating the SMR of the experi-
ments in the form

SMR =
|∆V |

(25)
A∗∆t

can be inferred by inverting the above expression to get to the first order in ε

A∗ = π [L0(L0 + 2h0)− ε(2L0 + h0)] . (26)

This, to same order in ε, can be shown with little algebra to be equal to the average area

Aav =
1

2
(Ain +Af ) , (27)

where
Ain = πL0(L0 + 2h0) and Af = π(L0 − ε)[(L0 − ε) + 2(h0 − ε)]

are simply the initial and the final submerged ice block areas. Since from the measurements 
∆V = ∆m/ρi, h0 and L0 are known, the two equivalent ways of obtaining the SMR from the 
experiments are to invert equation (24) to get ε and then find SMR as in equation 
(23) dividing ε by the duration of the experiment, or to calculate the average area of 
equation (27) imposing the same volume integral of equation (24) and then apply the 

definition (25) with A∗ = Aav. Note that the duration of the experiments, ∆t = 3 
min, was chosen so that the final shape was still a quite regular cylinder and in the 
case of high background rotation rate, where the free surface was significantly tilted, 
the mean value of the submerged height of the cylinder was used to calculate the 
geometrical properties of the block. The time interval was short enough to linearize 
the evolution of the submerged area in time and, thus, to justify the truncation to 
the first order in ε of the expressions (26) and (27).
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4 Results

In this section, the experimental data obtained from four series of experiments with different
values of free stream velocity, U ∈ {0, 2, 4, 6} cm s−1, are described.

Figure 6 shows the SMR of all the experiments as a function of U . The data points are
color-coded with the value of α = Ro/h0 (except for U = 0 cm s−1, where α = 0 because
Ro= 0), that controls the TC dynamics as described in section 2.2. The solid line shows the
WC parameterization, as in equation (1), with K = 0.052, ∆T = 18◦C and ` = 2L = 25 cm
(note that here the diameter of the ice block is used). The value of K, as discussed in 2.1,
contains several physical constants of the system and it is here chosen so that all the inputs
of the parameterization are taken in S.I. units and the SMR is measured in cm min−1. As
for ∆T , it is taken as the difference between the seawater room temperature, 18◦C, and the
ice freezing temperature in freshwater, 0◦C, because the temperature gradient between ice
and seawater is much larger than their salinity gradient and thus, the ice is in a condition
of pure melting with no dissolution. Physically, it means that a thin layer of freshwater
insulates the ice block from the seawater, so that the salinity at the interface is zero and
the freezing temperature is, accordingly, 0◦C.

Back to figure 6, the experimental error is shaded along the parameterization to have
an estimate of the uncertainty in the matching between the data and the parameterized
line. The first evident feature is that for U = 0 cm s−1 and U = 2 cm s−1, the SMR is
much higher than the parameterized one, which is indicative of another process controlling
the melting for low free stream velocity, as found in previous works [6]. The hypothesis is
that at low U , the positively buoyant meltwater formed at the base of the ice block will
flow as a gravity current faster than the free stream velocity. Unfortunately, due to the
configuration of the experimental setup, it has not been possible to observe this processes
at the base of the ice block accurately. Thus, further experiments with submerged cameras
and/or in a non-rotating transparent tank are encouraged to better observe and understand
what happens at the base of the block.

As a first simple attempt to include this basal meltwater pool process in the SMR depen-
dence on the free stream velocity, a constant SMR below a certain threshold velocity Uthr
was suggested. In particular, Uthr was calculated inverting the same WC parameterization
as before,

SMRU=0 = K∆T
U0.8
thr

`0.2
(28)

the SMR to be equal to the value obtained from the experiments at zero relative
flow velocity, SMRU=0 = 0.09± 0.01 cm min−1. The value obtained is Uthr = 3.8± 0.5 cm
s−1 and figure 7 shows the just mentioned constant SMR behavior below this threshold.
Data points at high α (which means low rotation rate) of both the 4 cm s −1 and 2 cm s−1

series agree quite well with this constant value.
Let us now focus on a single series of experiment with constant non-zero free stream

velocity. A common feature that the three series with U ∈ {2, 4, 6} cm s−1 share is that as
α decreases, the SMR increases. The SMR as a function of α for U = 4 cm s −1 is shown
in figure 8. The data points, together with their uncertainty, are shown as green dots. The
uncertainty on the SMR, σSMR = 0.01 cm min−1, is obtained from few repetitions of the
same experiment and has then been extended to all the data points. While the uncertainty

assuming

341



Figure 6: SMR as a function of the free stream velocity U for all the experiments considered.
The WC parameterization of equation (1) is shown as a solid line with the experimental
error shaded. The color of the data points is chosen according to the value of α of each
experiment.
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Figure 7: With respect to figure 6, a constant SMR line is added (black) in correspondence
of the experimental value obtained with no relative flow, SMRU=0 = 0.09± 0.01 cm min−1,
for relative velocity below the threshold Uthr = 3.8 ± 0.5 cm s−1. See the text for further
details.
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on α comes both from the experimental uncertainty on h, the draft of the ice block, and
from the fact that to maintain the relative velocity U constant, the rate of rotation had
to increase throughout the experiment. In this figure, the significant increasing trend as α
decreases, i.e. the background rotation increases, is visible. The black solid line denotes the
value of the WC parameterization calculated as before, for U = 4 cm s−1, which is constant
because it does not depend anyhow on the background rotation rate. The first step to try
to understand the increasing trend of melt rate for increasing background rotation was to
include the TC dynamics in the WC parameterization. To do so, instead of using the free
stream velocity U , the area average velocity over the base of the cylindrical obstacle of
the analytical steady solutions of the TC problem of section 2.2, U , is used to calculate the
parameterized SMR shown with the red line. Going from right to left, namely going towards
higher f , there is a small peak in the melt rate, due to the relative increase in velocity on
one of the side of the obstacle (see figure 3), but then, as the TC grows bigger, the average
velocity at the base of the obstacle decreases, determining a relatively fast decrease in the
melt rate, as well. The problem of such approach is that it neglects the well-known fact
that the parameterization underestimates the melting as the velocity vanishes. To avoid
that, the value of the threshold velocity Uthr determined above is replaced in the analytical
solution pointwise wherever the velocity magnitude drops below the value Uthr itself and
then the area average of this effective field is found, U∗. The effect of such correction on
the SMR is shown by the blue line, together with the uncertainty associated to the Uthr
itself. It still underestimates the experimental data, but the increasing trend as α decreses
is captured. It is important to underline that this last threshold correction is done only in
terms of the melt rate and there is no claim on the description of the effective velocity field
due to the meltwater pool that accumulates at the base of the obstacle.

Figures 9 and 10 show the data points of the series of experiments with U = 2 cm
s−1 and U = 6 cm s−1, respectively, together with the same curves introduced in figure 8.
While for U = 2 cm s−1, the velocity is always below threshold and thus there is not a
strong dependence on the rotation rate neither in the experimental data points nor in the
corrected velocity U∗ parameterization, which agree quite well, for U = 6 cm s−1 the trend
in the data points as a function of α is stronger and the U∗ parameterized curve is further
below the data with respect to the case with U = 4 cm s−1.

This is an indication that some other mechanism is happening at the base of the ice
block and it is still not described in the parameterization. A possible explanation for that
comes by looking a figure 11, which shows two pictures of the bottom of the ice blocks
after two different experiments with the same U = 4 cm s−1, but different background
rotation: the left panel shows the ice block after an experiment with low f and the right
panel with high f . One has to imagine that the flow was coming from the top of the picture,
with the velocity radially increasing in the tank from right to left. Even if no quantitative
measurements were done, this picture clearly shows that with the same relative speed U ,
the melting at the base of the ice block was higher for the experiment with high f with
respect to the one with low f . In particular, the melting was enhanced on the outer edge of
the block, because of the relative increase in velocity on one side of the cylinder at low α,
as shown in figure 3. This physically explains in general the trend of increasing melt rate
as the background rotation increases for the various U . But by taking a closer look to the
pictures, one might notice that in the case of high background rotation rate, the melting
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Figure 8: SMR as a function of α for U = 4 cm s−1. The black constant line is the WC
parameterization; the red line includes the TC dynamics using the parameterization the
area average velocity magnitude of the analytical solution of the TC problem, U ; and the
blue line includes both the TC dynamics and the threshold behavior observed in figure 7
applied pointwise before taking the velocity area average to find the corrected velocity U∗.
See the text for further details.
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Figure 9: As in figure 8 but for U = 2 cm s−1.

Figure 10: As in figure 8 but for U = 6 cm s−1.
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Figure 11: Two pictures of the bottom of the ice blocks after two experiments with the 

same free stream velocity U = 4 cm s−1. In the left panel the rotation rate was lower than 
the one in the right panel and, in particular, a partial TC was observed in the experiment 
of the right picture, which was not the case in the experiment of the left one. Wider and 
deeper elongated melted stripes are visible in the right panel, due to the increased velocity 
at the base of the ice block determined by the TC dynamics.

happens along some elongated stripes, which are more numerous, deeper and wider than 
in the case of low background rotation. This suggests that some form of instability growth 
linked to this little channel might explain the extra melting that the parameterization is 
not able to explain.

Finally, figure 12 is the same as figure 6 but with the corrected velocity U∗, which 
takes into account both the TC dynamics and the threshold behavior observed in figure 7, 
instead of the free stream one, U . The data points have different shape to distinguish their 
free stream velocity and one can see that, although the agreement is still not very good, 
especially for the very low α high free stream velocity U data, the WC parameterization 

calculated with the corrected velocity U∗ captures the increased melting at high rotation 
rate and the threshold behavior better than the same parameterization with the free stream 
velocity U .

5 Conclusions

Through laboratory experiments in a rotating tank with cylindrical ice blocks mimicking 
Antarctica tabular icebergs, the effects of background rotation on iceberg melting were 
investigated. Preliminary results show that at high rotation rate, the base of the ice block 
melts at a higher rate because of an increased average basal velocity below the block itself. 
This results from the enhanced relative vorticity below the block following the squeezing 
of the fluid column in the rotating system. In particular, at low background rotation, the 
fluid flow is almost unaffected. When increasing the rotation, i.e. lowering α, the ratio of 
the Rossby number and the non-dimensional height of the obstacle, the TC starts forming 
on one side of the obstacle and partially covers its base. In this condition, where the TC
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Figure 12: Similarly to figure 6, the SMR is shown as a typical velocity, which here is the 

corrected velocity U∗ which takes into account both the TC dynamics and the threshold 
behavior observed above, instead of the free stream velocity U , as was in figure 6.

is not present, the flow velocity is larger than the far-field value, which is thought to be 
responsible for the observed higher melting. At even higher background rotation, i.e. lower 
α, the TC extends its area until it covers the entire ice block base. It is expected, then, 
that the melt rate is no longer dependent on the rotation rate, because the TC 
dynamics do not modify the flow structure anymore.

The WC parameterization [21] is then applied to describe the trend of the SMR as a 
function of the free stream velocity U . It is observed that for low relative velocity, below a 
certain threshold Uthr, the basal melt is not controlled by the forced convection due to U , 
but it is probably controlled by a form of upside-down gravity current formed by the buoyant 
meltwater pool that shields the ice block from the external fluid flow. More work is needed 
to better understand what is happening in this region, both in a non-rotating environment 
and in a rotating one. Two corrections have been done to the WC parameterization to 
include the TC dynamics and the observed change in regime at low relative free stream 
velocity. Given the analytical steady solution for the velocity magnitude below a cylindrical 
obstacle in a rotating frame of reference uT C (x, y) [12, 13], wherever its value falls below 
the threshold velocity Uthr, it is replaced by Uthr itself. Then, the area average of this 

corrected velocity field over the base of the obstacle U∗ is used as effective velocity in the 
WC parameterization, resulting in a better agreement between data and theory.

However, some aspects of the dynamics that are thought to be important are yet to 
be included in the description of the process. Among the others, there are: the effects 
of the meltwater on the TC dynamics through changes in the stratification, which are 
known to  introduce a dependence of the  velocity on the height  [11]; the curvature of
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the streamlines due to the geometrical shape of the tank; the time transient features 
of the flow response and the turbulence added in the flow by the finiteness of the 
cylindrical obstacle. The possibility of an unstable growth of the melted channels at 
the base of the block (see figure 11) might partially explain the higher melting 
measured in the laboratory with respect to the parameterization, as well.

Despite a few issues that still need to be considered, the present work shows that 
the back-ground rotation can increase the basal melting of the large tabular icebergs 
due to modifi-cations of the flow typical of a rotating system and that for low 
relative velocity the basal melt is not controlled by the free-stream velocity.
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Introduction

As most waves, sound waves have the faculty to drive steady Eulerian flows. This effect, 
called acoustic streaming, can be sensed as a consequence of the conservation of momentum. 
Indeed, consider a progressive acoustic wave subject to an attenuation mechanism, e.g. 
viscosity or thermal conductivity: whereas the energy of the wave shall be mostly 
transferred to internal energy (and result in a local heating), a mean flow must be
generated in order to conserve momentum. Such non-zero Eulerian mean motions play 
a crucial role in mass and heat transport. This has been recognized for water waves 
by Longuet-Higgins [1], where it is of the same order as the Stokes drift (the 
difference between Lagrangian and Eulerian mean velocities). For sound waves, 
acoustic streaming is by far the main transport mechanism [2]. Given that powerful 
ultrasonic sources are nowadays of common use, acoustic streaming can be considered 
a simple and low-cost way to enhance heat transfer [3]. In this study, we investigate 
the effect of acoustic waves on a strong, stably stratified medium, namely a fluid in
between two parallel plates of very different temperatures.

In the absence of thermal driving, the  flow generated by plane standing
waves has been worked out by Rayleigh [4] in the limit H∗ � δBL, where H∗ is the
width of the system and δBL is the width of the boundary layers (for a more general 
study, see [5]). For a plane wave of the form U∗ cos(k∗x̃)�ex, it consists of two series of 
vortices located symmetrically about the median plane, of typical velocity 3U2/(16a∗), 
where a∗ is the speed of sound and k∗ the wavenumber. Note that, even though 
acoustic streaming results in this case from viscous dissipation in the Stokes boundary 
layers, the mean flow does not depend on the viscosity, and therefore does not vanish 
in the limit of infinitely small dissipation. Assuming that both the mean flow and the 
acoustic waves are not affected by heat, i.e. that the density does not depend on 
temperature, the additional heat flux associated with this streaming flow has been
computed for small aspect ratio [6]. Experiments have confirmed that acoustic 
streaming enhances heat transfers [7]. Direct numerical simulations have also been 
performed for relatively small aspect ratio, in the absence of gravity [8, 9], and show 
that moderate thermal driving results in a vertical merging of these stack cells and in
an increase of the velocity of the streaming flow. This solution strongly contrasts with 
the one theoretically considered for the computation of the heat flux [6].

This discrepancy between full DNS and previous theoretical studies results from the
assumption that the mean flow is driven by acoustic streaming taking place in the vis-
cous boundary layers. However, it has been recently recognized that in the presence of a
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stratification, the dominant driving force takes place in the bulk and results from baro-
clinic production of vorticity of acoustic waves [10]. Acknowledging this mechanism as the
leading one, Chini et al. were able to obtain the correct order of magnitude for the mean
velocity in a strongly stratified system driven by acoustic (a stabilized HIV lamp
[11]), whereas usual Rayleigh would lie two orders of magnitude below. Along the
same lines of these authors, we demonstrate in this report that a similar description can be
applied to a gas between two plates subjected to a intense temperature difference.

We perform a multi-scale analysis of this problem and obtain governing equations for
the mean flow and for the acoustic waves. This reduced model emphasizes the complex
dynamics of the system, as waves and flow present a two-way coupling: acoustic
waves drive a mean flow, that in return modifies the density field and thus affects the wave
field. We derive an approximate solution in some range of parameters, that provides an
accurate model for the previously mentioned direct numerical simulation of the full system.
We also present numerical simulations of this reduced set of equations, that can describe
regimes with strong coupling.

This report is organized as follows: we first review the basic mechanisms of acoustic
streaming, then describe the system and the multiple scale analysis. In section 3, we show
that the acoustic wave field can be obtained as the solution of a one-dimensional eigen-
value problem, and describe how its amplitude evolves. In section 4, we then compute an
approximate solution of this system and evaluate the associated heat flux and efficiency.
This is compared to previous direct numerical simulations of the full problem. Finally, in
section 6, we present the results of numerical simulations, then draw our conclusion.

1 Basic

1.1 The role of vorticity

In order to emphasize the role of stratification in acoustic streaming, we first review some
very basic facts about nonlinearities in acoustics. In all the following, acoustic fields will be
assumed to be of small amplitudes compared to the speed of sound a∗. As a result, nonlinear
terms in the Navier-Stokes equation do not the waves to a first approximation.
Indeed, this governing equation reads, for a Newtonian compressible fluid without second
viscosity,

ρ
[
∂t�v +

(
�v · �∇

)
�v
]
= −�∇P + �f + η

(
��v +

1

3
�∇(�∇ · �v)

)
, (1)

and, with ω the angular frequency of the wave, k its wavenumber and U the wave amplitude,∣∣∣∣∣∣
(
�v · �∇

)
�v

∂t�v

∣∣∣∣∣∣ ∼ U2k

ωU
∼ U

a∗
� 1. (2)

Therefore, nonlinearities appear as a small correction for the waves dynamics. However,
it would be unfortunate to disregard their consequences based on this fact since, although
small, such effects may be cumulative and affect the long-time evolution of the wave field.
Given the time-dependence of the waves, the nonlinear term will contain high frequencies:
this results in the apparition of harmonics in the signal, and may also lead to shock waves
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or transfers of energy between wave trains (acoustic waves undergo three-waves or more
interactions). Such high frequencies can still be regarded as waves, and will not be further
discussed.

In the present work, we are interested in the low-frequencies that may be driven by this
nonlinear term. For this purpose, it is useful to cast it as

(
�v · �∇

)
�v = �∇

(
�v2

2

)
+

(
�∇× �v

)
× �v. (3)

This evidences that, although constant terms shall always result from quadratic nonlinear-
ities of an oscillating field, part of them are balanced by a pressure variation1. Therefore,
in order to drive a mean flow, acoustic waves must have some vorticity.

It is then natural to wonder the conditions for an acoustic field to acquire
vorticity. This has been so far mostly discussed for fluids with uniform density background.
In this case vorticity is generated in an irrotational flow by viscosity [12, 13], although
external forces or moving boundary can also be considered. We shall see that another
strong source of vorticity resides in an inhomogeneous background density ρ0. This can be
evidenced by taking the curl of the linear Euler equation, that describes inviscid and linear
acoustics,

�∇×
(
ρ0∂t�v = −�∇P

)
=⇒ ∂t

(
�∇× �v

)
=

(�∇ρ)× (�∇P )

ρ20
. (4)

The left-hand side of this equation is the so-called “baroclinic contribution”, and is non-zero
when isobars and isopycnals differ.

1.2 Acoustic in a horizontal cavity

As a first approach of acoustic streaming, we review the theory in a channel with an uniform
density background, mostly done by Rayleigh [4]. It results from vorticity being generated
in the thin boundary layers, contrary to “quartz wind”, in which viscosity acts in the bulk
during the propagation of a wave train. We consider two parallel boundaries separated by
a height H∗, of same temperature, and describe the steady state associated with a plane
standing wave in the x direction, of wavenumber k∗. In all the following, tildes and stars
refer to dimensional quantities, boldfaces to vectors, bars to time-averaged quantities and
primes to oscillating fields. The setup is sketched in Fig. 1, and we assume that a steady-
state is reached. To derive the streaming flow, we proceed as follows:

1. We assume that an operator drives an acoustic wave along the x direction in the bulk,
then compute the corrections caused by the presence of boundary layers.

2. In the boundary layers, we define and compute the “Reynolds stress”, i.e. the mean
force density that acts on the streaming flow.

3. We balance this force with viscosity in the boundary layers, and show that it results
in an effective slip velocity for the streaming flow.

1Because acoustic waves are compressible flows, one should not forget about the term (ρ− ρ0)∂t�v, where

ρ0 is a background density field that may, however, often be expressed as a gradient.
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x̃

ỹ

0

H∗

2π/k∗Solid wall

Solid wall

Acoustic waves + mean flow

Figure 1: Rayleigh problem of acoustic streaming

Quantity Expansion or scaling Parameters involved

x velocity ũ(x̃, ỹ, t̃) εa∗ (u1(x, y, t) + εu2(x, y, t) + . . . ) The speed of sound a∗
y velocity ṽ(x̃, ỹ, t̃) ε2a∗ (v1(x, y, t) + εv2(x, y, t) + . . . ) The speed of sound a∗
Density ρ̃(x̃, ỹ, t̃) ερ∗ (1 + ερ1(x, y, t) + . . . ) The background density ρ∗
Pressure p̃(x̃, ỹ, t̃) p∗ + ρ∗a2∗ (εp1(x, y, t) + . . . ) The background pressure p∗

t̃ ω−1∗ t The angular frequency ω∗
x̃ k−1∗ x The wavenumber k∗ = ω∗/a∗
ỹ δy, where δBL =

√
2ν/ω∗ The B.L. thickness δBL

Small parameter ε ε = k∗δ ε is dimensionless and small

Table 1: Scaling of the variables for the Rayleigh streaming

4. We compute the bulk flow by balancing this driving with viscosity, and compare the
result to numerical simulations that include inertia.

1.2.1 Effect of the boundary layers on the acoustic field

The presence of solid boundaries in a fluid imposes no-slip boundary conditions, that can
not be handled by potential flows. It thus generates both vorticity and strong velocity gra-
dients, that are often the dominant damping mechanism (a typical example being sloshing).
Quite surprisingly, the wave field actually undergoes changes everywhere, even far from the
boundary layer. Here we derive the acoustic wave field at the leading order in the bottom
boundary layer, as well as the small correction that affects the bulk flow.

In this problem, we have several small dimensionless parameters. The first one, pre-
viously mentioned, is the ratio of the wave amplitude to the speed of sound. Other ones
compare the boundary layer thickness δBL =

√
2ν/ω, of the order of a few microns for ul-

trasounds in air, to the acoustic wavelength and to the width of the system. For simplicity, 
these numbers are chosen equal and small, which results in the expansions reported in Table
1. This problem has four governing equations:

1. The continuity equation,

∂t̃ρ̃+ ∂x̃(ρ̃ũ) + ∂ỹ(ρ̃ṽ) = 0, (5)
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that reads with our scalings and at the leading order

∂tρ1 + ∂xu1 + ∂yv1 = 0. (6)

2. The equation of state for an isentropic evolution,

βs =
1

ρ̃

(
∂ρ̃

∂p̃

)
S

, (7)

with a∗ = 1/
√
βsρ∗. At the leading order, it yields p1 = ρ1.

3. The Navier-Stokes equation along the y direction,

ρ̃ (∂t̃ṽ + ũ∂x̃ṽ + ṽ∂ỹṽ) = −∂ỹp̃+ ρ∗ν
(
∂x̃x̃ṽ + ∂ỹỹṽ +

1

3
∂ỹ(∂x̃ũ+ ∂ỹṽ)

)
, (8)

that reduces at the leading order to

∂yp1 = 0. (9)

4. The Navier-Stokes equation along the x direction,

ρ̃ (∂t̃ũ+ ũ∂x̃ũ+ ṽ∂ỹũ) = −∂x̃p̃+ ρ∗ν
(
∂x̃x̃ũ+ ∂ỹỹũ+

1

3
∂ỹ(∂x̃ũ+ ∂ỹṽ)

)
, (10)

that is at order O(ε)

∂tu1 = −∂xp1 +
∂yyu1
2

. (11)

This set of equations has to be solved with a no-slip boundary condition at y = 0 and
with the far-field assumed to be an acoustic standing wave of the form

u(x, y = ∞, t) = cos(x) cos(t). (12)

This boundary condition (12) with (9) and (11) gives the order one pressure,

p1(x, y, t) = sin(x) sin(t). (13)

We can then get a close equation for u1,

∂tu1 = − cos(x) sin(t) +
∂yyu1
2

, (14)

that describes a Stokes boundary layer and is straightforward to solve,

u1(x, y, t) = cos(x)
[
cos(t)

(
1− cos(y)e−y

)
+ sin(t) sin(y)e−y

]
. (15)

Now that we know both ρ1 (from p1 and the equation of state) and u1, the continuity
equation (6) with the boundary condition v(x, y = 0, t) = 0 result in

v1 =
sin(x)

2

[
cos(t)

(−1− sin(y)e−y + cos(y)e−y
)
+ sin(t)

(
1− sin(y)e−y − cos(y)e−y

)]
.

(16)
Note that v1 does not vanish in the limit y → ∞, i.e. that the effect of the solid boundary
is not restricted to the boundary layer. However, v is scaled as a small quantity compared
to u, so that this velocity field remains a correction.
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1.2.2 Definition and computation of the Reynolds stress

The flow is a second order quantity, and we therefore need to consider (10) at
order O(ε2),

∂tu2 + ρ1∂tu1 + u1∂xu1 + v1∂yu1 = −∂xp2 +
∂yyu2
2

+
1

3
∂y (∂xu1 + ∂yv1) . (17)

The left hand side can be modified with the continuity equation (6),

∂tu2 + ∂t(ρ1u1) = −∂xp2 − ∂xu
2
1 − ∂y(u1v1) +

∂yyu2
2

+
1

3
∂y (∂xu1 + ∂yv1) . (18)

We then take the time-average of this equation,

0 = −∂xp̄2 − ∂xu21 − ∂y(u1v1) +
∂yyū2
2

. (19)

We evidence on this simple system a general feature of acoustic streaming that 
consists of an effective force on the second order mean velocity field coming from
inertial leading order terms. Generally speaking, this force F = Fj ej can be written as 
the divergence of the Reynolds stress, and is

Fj = −∂(ρuiuj)

∂xi
(20)

where the repeated suffix i is summed over one to three. With (15) and (16), we obtain

Fx =
sin(2x)

4

(
2 + e−2y + sin(y)e−y − 3 cos(y)e−y

)
. (21)

Whereas the constant term along the y direction can be handled by the pressure field p̄2,
the other ones cannot.

1.2.3 Effective slip velocity

Most of the Reynolds stress divergence has to be balanced with viscosity, i.e. with the term
∂yyū2, that reads

∂yyū2 = −sin(2x)

2

(
sin(y)e−y − 3 cos(y)e−y + e−2y

)
. (22)

With the boundary conditions (∂yū2)(x, y = ∞, t) = 0 and ū2(x, y = 0, t) = 0, it provides

ū2(x, y, t) =
sin(2x)

8
e−y (−3 sin(t)− cos(y) + 2 sinh(y) + cosh(y)) . (23)

In particular, the mean second order flow does not vanish far away from the boundary layer,
where it takes the value

ū2(x, y = ∞, t) =
3 sin(2x)

8
(24)

This limit velocity is, with matched asymptotic expansion, a boundary condition for the
mean flow. In particular, we emphasize that this quantity does not depend on the value of
the viscosity, and is a small fraction of the acoustic wave amplitude. More precisely, if we
denote by U∗ = εa∗ the dimensional amplitude of the acoustic wave,

¯̃u(x̃, ỹ = 0, t̃) =
3U2∗
8a∗

sin(2k∗x̃). (25)
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If the driving imposed by acoustic streaming is balanced by viscosity (this regime being
called “Rayleigh streaming”), we have to solve in the entire domain

0 = −∇p̃+ η4¯̃u2, ¯̃u(x̃, ỹ = 0 or H∗, t̃) =
3U2
∗

8a∗
sin(2k∗x̃). (26)

The steady-state is found with the use of a stream function ψ (¯̃u2 = ∂ỹψ, ¯̃v2 = −∂x̃ψ), that
has to be a solution of ∇4ψ = 0. Note that

sinh(ny) sin(nx) and y cosh(ny) sin(nx) (27)

are solutions of ∇4ψ = 0, so we can look for ψ of the form

ψ(x̃, ỹ) = [A sinh(n(ỹ −H∗/2)) +Bn(ỹ −H∗/2) cosh(n(ỹ −H∗/2))] sin(nx̃). (28)

We still have to enforce the boundary conditions. Canceling ṽ at the solid boundaries gives
B = −A(nH∗/2)−1 tanh(nH∗/2). The effective slip condition fixes n = 2k̃ and B, so that

(x̃, ỹ) = AΨ(y) sin(2k̃x̃), (29)

with

A =

(
3U2
∗

16A∗k∗

)
×
(

sech(k̃H∗)− sinh(k̃H∗)/(k̃H∗)
)−1

(30)

and

Ψ(y) = sinh

(
2k̃(ỹ − H∗

2
)

)
− tanh(k̃H∗)

k̃H∗

(
2k̃(ỹ − H∗

2
)

)
cosh

(
2k̃(ỹ − H∗

2
)

)
. (31)

This solution describes a set four vortices per acoustic wavelength, two in the horizontal
direction, and two in the vertical one. Their energies are localized at a distance ∼ k̃−1 of
the boundaries, so that the streaming velocity at the center of the cell becomes very weak
if the aspect ratio k̃H∗ is large, see Fig. 2 . This is the reason why this regime of acoustic
streaming is usually described in the limit δ � H � k−1

∗ , where the stream function then
becomes

ψ(x̃, ỹ) ' 3U2
∗H∗

4a∗

[(
ỹ

H∗
− 1

2

)3

− 1

4

(
ỹ

H∗
− 1

2

)]
sin(2k∗x̃), (32)

and the velocities are

¯̃u2(x̃, ỹ) ' −3U2
∗

4a∗

[
1

4
− 3

(
ỹ

H∗
− 1

2

)2
]

sin(2k∗x̃), (33)

¯̃v2(x̃, ỹ) ' −3U2
∗k∗H∗
2a∗

[(
ỹ

H∗
− 1

2

)3

− 1

4

(
ỹ

H∗
− 1

2

)]
cos(2k∗x̃). (34)

A typical velocity induced in this system if often defined as the x velocity in the mid-plane,
that is 3U2

∗ /(16a∗).

1.2.4 Mean flow in the bulk
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Figure 2: Rayleigh streaming for aspect ratios k∗H∗ = 0.5 (top) and k∗H∗ = 5 (bottom).

1.2.5 Effect of inertia (“Stuart streaming” or “Eckart streaming”)

Up to now, we have considered that the flow in the bulk is fully balanced by viscosity,
which may not always be valid. In order to discuss this assumption, we have to evaluate
the streaming Reynolds number Rs, defined by

Rs =
U2∗ 
a∗ν

, (35)

where  is the relevant length-scale. We thereafter consider large and small aspect ratios.

Large aspect ratios If the aspect ratio is large, then the system does not depend on H∗
anymore and  = k−1∗ , so that

Rs =

(
U∗
a∗

)2

×
(

a∗
k∗ν

)
. (36)
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For an ideal gas (and, generally speaking, for most gas), the order of magnitude of
the kinematic viscosity is the product of the speed of sound to the mean free-path 
p, so that

Rs ∼
(
U∗
a∗

)2

×
(
λ∗
p

)
, (37)

where λ∗ = 2π/k∗. Therefore, although the first term is small, the streaming Reynolds
number can still be large (for air in usual conditions, p ∼ 10−7m). Inertia results in a
jet-like flow where the velocities are concentrated in a second boundary layer, whose length
δBL,MF lies between the one of the acoustic waves δBL ∼ √

ν/ω and the wavelength λ∗ [14].
It can be estimated based on the velocity U2∗ /a∗ and the characteristic length k−1∗ ,

δBL,MF ∼
√

ν

k−1∗ × (U2∗ /a∗)
∼

(
a∗
U∗

)
× δBL � δBL (38)

To illustrate this, we report in Fig. 3 the velocity field obtained with a direct numerical 
simulation of the bulk flow with Rs = 100 and k∗H∗ = 5. This has been obtained with 
Dedalus [15]. Compared to Fig. 2, this clearly evidences this jet-like structure.

Small aspect ratios Similarly, if the aspect ratio is small, we rather define a streaming 
Reynolds number based on H∗,

Rh =
U2∗H∗
a∗ν

= Rs × (k∗H∗) , (39)

where Rs is defined in (36). The jet-like structures are less pronounced (see Fig. 3), but
the effect of inertia can still be observed for large values of Rh.

1.3 Main features of Rayleigh streaming

The main features of this streaming flow can be summarized as:

1. The amplitude of the streaming flow is quadratic in the amplitude of the acoustic
wave (see, e.g., (25)).

2.

∗
In this setup, it results in stacked vortices of energy localized within a distance
k−1 from the walls.

3. The streaming flow close to the boundary layer is directed toward the velocity nodes
of the acoustic wave, i.e. away from the pressure nodes.

2 

2.1 Notations and dimensional equations

The problem we consider is sketched in Fig. 4 and consists of a thin layer of an ideal gas in
between two horizontal boundaries that drive the system toward a stably stratified steady
state. Compared to before, we add this temperature difference and our claim is that the

Governing Equations for the Waves and the Mean Flow
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Figure 3: Rayleigh streaming for k∗H∗ = 5, Rs = 100 (top two plots) and k∗H∗ = 0.5, Rh =
100 (bottom two plots). u and w are the horizontal and vertical velocity fields, scaled with
3U2∗ /(8a∗), z is scaled with H∗, and x with k−1∗ .
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x̃

ỹ

0

H∗

2π/k∗BC : constant temperature T∗

BC : constant temperature T∗ +ΔΘ∗

Acoustic waves + mean flow

Figure 4: Schematic of the problem: acoustic waves interact with a mean flow in a thin
layer of an ideal gas subject to a vertical thermal driving.

streaming flow will be driven by baroclinic vorticity in the bulk rather than viscosity in the
boundary layers. For simplicity, we still consider two-dimensional flows and we neglect the
effect of gravity2. The dimensional parameters and variables are defined in Tab

The kinematic boundary conditions are no slip boundary conditions at ỹ = 0 and ỹ = H∗,
and periodicity in the x̃ direction of period 2π/k∗. Moreover, we fix ũ(x = 0, y, t) = 0 so
that there is no exchange of mass between nearby cells. The thermal boundary conditions
also consist of periodicity in x̃, and we require a constant temperature at the bottom,
T̃ (ỹ = 0) = T∗, and at the top, T̃ (ỹ = H∗) = T∗ + ΔΘ∗. We then define Γ = ΔΘ∗/T∗ as
the dimensionless strength of this thermal driving. In the absence of flow, the dimensional
temperature therefore reads

T̃B(ỹ) = T∗
(
1 + Γ

ỹ

H∗

)
. (40)

The dimensional equations are the same as in [10], excepted that we consider viscous
heating. They are reported below, with ∇ = (∂x, ∂y).⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ̃
[
∂t̃ũ+ (ũ · ∇̃)ũ

]
= −∇̃p̃+ μ

[
∇̃2ũ+

1

3
∇̃(∇̃ · ũ)

]
, (41)

∂t̃ρ̃+ ∇̃ · (ρ̃ũ) = 0, (42)

ρ̃cv

[
∂t̃T̃ + (ũ · ∇̃)T̃

]
= −p̃

(
∇̃ · ũ

)
+ κ∇̃2T̃ − Φ, (43)

p̃ = ρ̃RsT̃ (44)

We consider the dynamic viscosity μ and the thermal conductivity κ to be independent of
the temperature. The dissipation function Φ describes viscous heating and is

Φ = 2μ

[
(∂x̃ũ)

2 + (∂ỹṽ)
2 − (∂x̃ũ+ (∂ỹṽ)

2

3

]
+ μ (∂ỹũ+ ∂x̃ṽ)

2 . (45)

2Gravity would affect the equations at the leading order if the Richardson number Ri = g∗/(k∗a2
∗) is

scaled as ε3/2, which corresponds to a typical value of this number.

le 2.
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Notation Definition

(x̃, ỹ) (Horizontal, vertical) coordinate
H∗ Height of the channel
k∗ Horizontal wavenumber of the acoustic waves
κ Thermal conductivity
ρ̃ Gas density

ũ = (ũ, ṽ) Gas velocity
p̃ Pressure

T̃ Temperature
μ Dynamic viscosity
Rs Specific gas constant

(cv, cp) Specific coefficient at constant (volume, pressure)

a∗ =
√
(cp/cv)RsT∗ Speed of sound

p∗ Equilibrium pressure at ỹ = 0 if T̃ (x̃, ỹ) = T∗
U∗ Typical amplitude of the acoustic wave (velocity)

Table 2: Definitions of the dimensional parameters

Since viscous heating results from the viscous term in the Navier-Stokes equation, we have∫∫
dxdyΦ =

∫∫
dxdy μu ·

[
∇̃2ũ+

1

3
∇̃(∇̃ · ũ)

]
. (46)

2.2 Dimensionless equations

We now turn to dimensionless variables and equations. The scalings and dimensionless
parameters used for this purpose are reported in Tab 3 (for clarity, we define ε = S−1).
Note that the aspect ratio has been chosen small. Even though the heat flux is not expected
to be maximal in this regime, since the flow will mainly be along the x direction, this is
motivated by the following facts. First, we expect the analysis of the acoustic wave-field
to be simple in a domain thin compared to the wavelength. We shall see that it constrains
the acoustic field to stay in the first mode along the vertical direction. Second, most
theoretical and analytical studies have been performed in this regime, so that comparisons
to previous works can be done. Third, at the leading order, the pressure gradient will be
found orthogonal to the background density gradient, resulting in an important baroclinic
contribution in the vorticity equation.

To illustrate these scalings, a setup in which ε = 10−3, and other parameters are perfectly
scaled (h = Γ = Res = Pes = 1, γ = 7/5), would consist in a transducer sending a powerful
audible sound (f � 600Hz) in a strongly stratified long and thin layer (H∗ � 3 mm,
2π/k∗ � 60 cm, ΔΘ � T∗ � 300 K). Since ε is very small, h and ΔΘ can be tuned so that
a height of 3 cm and a temperature difference of 30 K can also be described by this system.
The total temperature and pressure are written as a background profile plus a perturbation,

T (x, y, t) = TB(y) + Θ(x, y, t), P (x, y, t) = PB(y) + π(x, y, t). (47)

We report below the dimensionless set of equations.

le
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Variable Scale Parameter Definition Scaling

x k−1∗ Strouhal number S a∗/U∗ S = 1/ε

y H∗ Aspect ratio δ k∗H∗ δ =
√
εh

t (a∗k∗)−1 Temperature gradient Γ ΔΘ∗/T∗ Γ = O(1)

u a∗ Reynolds number Re ρ∗U∗/(k∗μ) Re = Res/ε

v (k∗H∗)a∗ Péclet number Pe ρ∗cpU∗/(k∗κ) Pe = Pes/ε

ρ ρ∗ ≡ p∗/(RsT∗) Specific heat ratio γ cp/cv γ = O(1)

T T∗
P p∗

Table 3: Definitions and scalings of the dimensionless parameters and variables

ρ [∂tu+ (u · ∇)u] = −1

γ
∂xπ +

ε2

Res

[(
∂xx +

1

εh2
∂yy

)
u+

1

3
∂x (∇ · u)

]
, (48)

ρ [∂tv + (u · ∇) v] = − 1

εγh2
∂yπ +

ε2

Res

[(
∂xx +

1

εh2
∂yy

)
v +

1

3εh2
∂y (∇ · u)

]
, (49)

∂tΘ+(u · ∇)Θ+ v
dTB

dy
= (1− γ)(TB +Θ)(∇·u)+ ε2γ

ρPes

(
∂xx +

1

εh2
∂yy

)
Θ+O(ε3), (50)

∂tρ+ ∂x(ρu) + ∂y(ρv) = 0, (51)

ρ =
1 + π

TB +Θ
. (52)

2.3 Expansion with respect to ε

To describe an acoustic field that evolves rapidly in time and whose properties depend on
a slow modification of the density field, we introduce a slow time scale T = εt and use the
WKB approximation. Therefore, a function f(x, y, t) becomes f(x, y, φ, T ), where φ and T
are independent variables. φ stands for the rapidly evolving phase, and may be written as

φ(t) =
Φ(T )

ε
, (53)

where dΦ/dT is of order one. We define the instantaneous angular frequency by

ω(T ) =
dφ

dt
=

dΦ

dT
. (54)

In this framework, the time-derivative of f reads

∂tf → ω∂φf + ε∂T f. (55)
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The fast time average of a function f is

f̄(x, y, T ) =
1

2nπ

∫ φ+2nπ

φ
f(x, y, s, T )ds, (56)

for sufficiently large positive integer n, so that any function can be split according to

f(x, y, φ, T ) = f̄(x, y, T ) + f ′(x, y, φ, T ), f̄ ′ = 0. (57)

We then express all the fields as series of ε:

• (u, v, π) = ε(u1, v1, π1) + ε2(u2, v2, π2) + . . .

• (Θ, ρ) = (Θ0, ρ0) + ε(Θ1, ρ1) + . . .

• Φ = Φ0 + εΦ1 + . . . , so that ω = ω0 + εω1 + . . .

The derivation of governing equations for the streaming flow at the leading order can
be found in [10], and are reproduced below,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̄0 (∂T ū1 + ū1∂xū1 + v̄1∂yū1) = −∂xπ̄2
γ

− ∂x

(
ρ̄0u′21

)
− ∂y

(
ρ̄0u′1v′1

)
+

∂yyū1
Resh2

(58)

∂yπ̄2 = 0 (59)

∂T ρ̄0 + ∂x(ρ̄0ū1) + ∂y(ρ̄0v̄1) = 0 (60)

∂T Θ̄0 + ū1∂xΘ̄0 + v̄1∂y
(
Θ̄0 + TB

)
= (1− γ)(Θ̄0 + TB)(∂xū1 + ∂yv̄1) +

γ∂yyΘ̄0

Pesh2ρ̄0
(61)

ρ̄0 =
1

Θ̄0 + TB
(62)

Substituting the density ρ̄0 with (62), it also reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T ū1 + ū1∂xū1 + v̄1∂yū1
Θ̄0 + TB

= −∂xπ̄2
γ

− ∂x

(
u′21

Θ̄0 + TB

)
− ∂y

(
u′1v′1

Θ̄0 + TB

)
+

∂yyū1
Resh2

(63)

∂yπ̄2 = 0 (64)

∂xū1 + ∂yv̄1 =
∂yyΘ̄0

Pesh2
(65)

∂T Θ̄0 + ū1∂xΘ̄0 + v̄1∂y
(
Θ̄0 + TB

)
= (Θ̄0 + TB)

∂yyΘ̄0

Pesh2
(66)

ρ̄0 =
1

Θ̄0 + TB
(67)

On the other hand, the equations describing the acoustic waves are⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ω0ρ̄0∂φu
′
1 +

1

γ
∂xπ

′
1 = 0 (68)

∂yπ
′
1 = 0 (69)

ω0∂φρ
′
1 + ∂x(ρ̄0u

′
1) + ∂y(ρ̄0v

′
1) = 0 (70)

ω0∂φΘ
′
1 + u′1∂xΘ̄0 + v′1∂y

(
Θ̄0 + TB

)
+ (γ − 1)(Θ̄0 + TB)(∂xu

′
1 + ∂yv

′
1) = 0 (71)

π′
1 − ρ′1(Θ̄0 + TB)− ρ̄0Θ

′
1 = 0 (72)
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We obtain a close set of equations that describes the coupled dynamics of a wave field and
a streaming flow. On a fast time-scale, the acoustic waves are not affected by attenuation
mechanisms (viscosity and thermal diffusivity). They are expected to affect the waves on
the slow time-scale, and this effect is not taken into account by this set of equations. We
shall see later on that such effects, among which are damping and energy transfer with the
mean flow, are part of a second order solvability condition.

2.4 Energy balance

2.4.1 Dimensional energy balance

Although not essential for the rest of the study, it it interesting to have a look at the energy
balance. For this system, it is (see Appendix A for more details),

dEc

dt
= Q̇ (73)

where Q̇ is the total heat flux received by the gas, defined by

Q̇ = κ

∫
dx

[
(∂ỹT̃ )(x̃, ỹ = 0, t̃)− (∂ỹT̃ )(x̃, ỹ = H∗, t̃)

]
, (74)

and Ec the kinetic energy, defined by

Ec =

∫∫
dxdy

(
ρ̃ũ2

2
+

p̃

γ − 1

)
. (75)

In (75), we recognize the macroscopic kinetic energy density and the microscopic kinetic
energy density of an ideal gas, i.e. the internal energy of an ideal gas3.

2.4.2 Dimensionless energy balance expended with respect to ε

With dimensionless quantities, (73) becomes

d

dt

∫∫
dxdy

[
p

γ(γ − 1)
+

ρ

2

(
u+

√
εhv

)2]
(76)

=
ε

h2Pes(γ − 1)

∫
dx [(∂yT )(x, y = 0, t)− (∂yT )(x, y = 1, t)] .

That gives, at order ε and with fast-time averaging,

0 =

∫
dx

[
(∂yΘ̄0)(x, y = 0, t)− (∂yΘ̄0)(x, y = 1, t)

]
, (77)

that can be also derived from the initial set of equations. This states that the instantaneous
heat fluxes at the top and at the bottom are equal.

3Since we assume that Cv does not depend on T , U(T ) = CvT = nRT
γ−1

= PV
γ−1

for an ideal gas.
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At order ε, for the fast time scale, we get∫∫
dxdy

(
∂φπ

′
1

)
= 0, (78)

given that Θ0 does not depend on the fast time. This equality also results from the study
of the acoustic modes (π′

1 ∝ g(x), see next section).
At order ε2, with fast-time averaging,∫∫

dxdy (∂T π̄1) =
γ

h2Pes

∫
dx

[
(∂yΘ̄1)(x, y = 0, t)− (∂yΘ̄1)(x, y = 1, t)

]
. (79)

This balances the internal energy variation of the gas with the instantaneous heat flux.
Given that π̄1(x, y, T ) = π̄1(T ), this equation gives access to π̄1, via

dπ̄1
dT

=
γ

2πh2Pes

∫
dx

[
(∂yΘ̄1)(x, y = 0, t)− (∂yΘ̄1)(x, y = 1, t)

]
. (80)

3 

We now focus on the acoustic waves. Their evolution only depends on one slow variable, the
first order density ρ̄0 (Θ̄0 + TB = ρ̄−1

0 ). This quantity is considered as a given function in
this section. Therefore, the set of governing equations is linear, and we thereafter consider
only one eigenvector. All the fields can then be expressed as

f ′
1(x, y, φ, T ) =

1

2

(
A(T )f̂1(x, y, T )e

iφ + c.c.
)
, (81)

where f stands for any variable (u,v,ρ,π,Θ), A(T ) is a slowly evolving amplitude, and f̂1,
a complex function, describes the geometry of the mode. For this decomposition to be
unique, we need a normalization condition for f̂ , that we shall derive later on. The slow
evolution of A cannot be obtained from the first order set of equations, and will be found
as a solvability condition for the waves at the next order.

3.1 Geometry of the mode

3.1.1 Reduction to a single ode

Given the decomposition (81), the governing equations are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

iω0ρ̄0û1 +
1

γ
∂xπ̂1 = 0 (82)

∂yπ̂1 = 0 (83)

iω0ρ̂1 + ∂x(ρ̄0û1) + ∂y(ρ̄0v̂1) = 0 (84)

iω0Θ̂1 + û1∂xΘ̄0 + v̂1∂y
(
Θ̄0 + TB

)
= (1− γ)(Θ̄0 + TB)(∂xû1 + ∂yv̂1) (85)

π̂1 = ρ̂1(Θ̄0 + TB) + ρ̄0Θ̂1 (86)

Properties of the Acoustic Waves
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This system becomes, with Θ̄0(x, y) + TB(y) = 1/ρ̄0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iω0ρ̄0û1 +
1

γ
∂xπ̂1 = 0 (87)

∂yπ̂1 = 0 (88)

ρ̂1 =
i

ω0
[∂x(ρ̄0û1) + ∂y(ρ̄0v̂1)] (89)

Θ̂1 =
i

ω0

[
û1∂xρ̄

−1
0 + v̂1∂yρ̄

−1
0 − 1− γ

ρ̄0
(∂xû1 + ∂yv̂1)

]
(90)

π̂1 =
ρ̂1
ρ̄0

+ ρ̄0Θ̂1 (91)

Combining (89), (90) and (91), π̂1 can then be expressed as a function of û1 and v̂1,

π̂1 =
iγ

ω0
(∂xû1 + ∂yv̂1). (92)

Therefore, the initial set of equations reduces to two coupled partial differential equations,{
∂x(∂xû1 + ∂yv̂1) = −ω2

0 ρ̄0û1 (93)

∂y(∂xû1 + ∂yv̂1) = 0 (94)

We can go further and obtain a single ordinary differential equation. To this end, we
formally integrate a combination of these equations,

∂y(93) + ∂x(94) =⇒ ∂y(ρ̄û1) = 0 =⇒ û1 =
f(x)

ρ̄0
, (95)

where f is an unknown function of x only. (94) then becomes

∂x

(
f(x)

ρ̄0

)
+ ∂yv̂1 = g(x), (96)

where g is another unknown function. (93) finally reads

g′ = −ω2
0f =⇒ f(x) = −g′(x)

ω2
0

. (97)

Equations (95) and (96) provide expressions for û1 and v̂1 as a function of this unknown
function g only (remember that the bottom boundary condition is v̂1(x, y = 0, T ) = 0):⎧⎪⎪⎨

⎪⎪⎩
û1(x, y, T ) = − g′(x)

ω2
0 ρ̄0(x, y)

(98)

v̂1(x, y, T ) = yg(x) + ∂x

(
g′(x)
ω2
0

∫ y

0

dy

ρ̄0

)
(99)

The upper boundary condition v̂1(x, y = 1, T ) = 0 provides a differential equation for g,

g(x) = − d

dx

(
g′(x)α(x)

ω2
0

)
⇐⇒ g′′(x) +

α′

α
g′(x) +

ω2
0

α
g(x) = 0 (100)
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where α(x) is defined by

α(x) =

∫ 1

0

dy

ρ̄0(x, y)
. (101)

The ability to describe a two-dimensional acoustic field with a single ordinary differential
equation is a result of the thin layer approximation: in any container of aspect ratio of order
unity, the frequencies of the modes have to be found through a two-dimensional eigenvalue
problem. This provides a huge simplification to the analysis of these acoustic modes, and
we thereafter characterize this function g.

3.1.2 General features of g

Real-valued function We impose û1 to be a real field. Equations (93) and (94) thus
imply that v̂1 is also a real field, (92) that π̂1 is a pure imaginary one, and so on. Given
that û1 and v̂1 are directly related to g (see (98) and (99)), we deduce that g is real-valued.

Orthogonality (100) is a second order differential equation in the “Sturm-Liouville form”
(or “self-adjoint form”), and cannot be solved explicitly. Its mechanical equivalent is the
motion of a mass attached to a spring of variable stiffness (note that α > 0), and driven or
damped by a linear friction force. We therefore expect that g is a function “that oscillates”.
This is confirmed by the following integral, computed with the 2π periodicity in x:∫ 2π

0
g(x)dx = −

[
g′(x)α(x)

ω2
0

]2π
0

= 0. (102)

Thus, there must exist one or more x0 such that g′(x0) = 0, which correspond to nodes
for the x-velocity: û1(x0, y, T ) = 0. To enforce the zero mass exchange at x = 0, the
boundary conditions of (100) must then be g′(0) = g′(1) = 04. We can also show that the
eigenvectors of this ode are orthogonal. Let (gA, gB) be two eigenvectors and (ωA, ωB) their
angular eigenfrequencies,

(ω2
A − ω2

B)

∫ 2π

0
gA(x)gB(x)dx =

∫ 2π

0

[
(ω2

AgA)gB − gA(ω
2
BgB)

]
dx (103)

=

∫ 2π

0

[
gA

d

dx
(g′Bα)− gB

d

dx
(g′Aα)

]
dx (104)

=
[
α(gAg

′
B − gBg

′
A)

]2π
0

= 0 (105)

This provides a scalar product on eigenvectors, and we therefore require them to be nor-
malized, i.e. ∫ 2π

0
g(x)2dx = 1 (106)

4 With (58), this implies that ū(x = 0, t, y) is always zero.
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Vertically averaged velocities We define (Û1, V̂1) as the vertically averaged x and y
velocity:

V̂1(x) =

∫ 1

0
v̂1(x, y)dy =

g(x)

2
+

d

dx

(
g′(x)
ω2
0

∫ 1

0
dy

∫ y

0

dy′

ρ̄0(x, y′, T )

)
(107)

=
g(x)

2
+

d

dx

(
g′(x)
2ω2

0

∫ 1

0
dy

∫ 1

0

dy′

ρ̄0(x, y′, T )

)
(108)

=
g(x)

2
+

d

dx

(
g′(x)α(x)

2ω2
0

)
=

g(x)

2
− g(x)

2
= 0. (109)

Therefore, the acoustic field has a zero vertical mean. For the horizontal velocity, we get

Û1(x) =

∫ 1

0
û1(x, y)dy = −g′(x)

ω2
0

∫ 1

0

dy

ρ̄0(x, y)
= −g′(x)α(x)

ω2
0

. (110)

Similarly, we can derive some kind of orthogonality condition for these mean x velocities.
Let (ÛA, ÛB) be two eigenvectors, associated with the angular eigenfrequencies (ωA, ωB)
and the functions (gA, gB):∫ 2π

0
ÛA(x)g

′
B(x)dx = −

∫ 2π

0

g′A(x)α(x)
ω2
A

g′B(x)dx (111)

= −
[
g′A(x)α(x)

ω2
A

gB(x)

]2π
0

−
∫ 2π

0
gA(x)gB(x)dx = −δBA . (112)

These equalities result from periodicity in x and from the differential equation (100) for gA.
δBA is the Kronecker delta, equal to unity if A = B, 0 otherwise.

3.2 Slow evolution of the amplitude

With the previous system, we can at every time find the shape and the frequency of any
acoustic mode. However, the evolution of A(T ) is not constrained. Since we expect several
physical effects that are not described at this order to be involved (as damping or energy
transfer to the mean flow), we have to derive equations for the waves at the next order (see
Appendix B). The following amplitude equation can then be obtained (see Appendix C):

2

Aω−1
0

d(Aω−1
0 )

dT
= − iω0

Pesh2

∫∫
dxdyg(x)∂yyΘ̂1 (113)

+

∫∫
dxdy(∂xū1 + ∂yv̄1)

[
(1− γ)g(x)2 +

g′(x)2

ω2
0 ρ̄0

(
Pes
Res

− 1

2

)]
(114)

− 1

2ω2
0

∫∫
dxdyg′(x)2

(
ū1∂xρ̄

−1
0 + v̄1∂yρ̄

−1
0

)
. (115)

The terms in the right-hand side of this equation describe thermal damping, energy
exchange with the mean flow, and heat transfer at the boundaries. The quantity on the
left-hand side, Aω−1

0 , is related to the energy of the wave-field, that is at the leading order∫∫
dxdyρ̄0

A(T )2

2
× û21

2
=

A(T )2

4ω4
0

∫
dxg′(x)2α(x) =

(
A(T )

2ω0

)2

. (116)
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We emphasize that, in order to describe phenomena that fully rely on baroclinic driving,
we have disregarded in this problem dissipation in the boundary layers. Although the
associated effective slip boundary condition would be of higher order in the reduced system
we consider, dissipation in the boundary layer would however dominate all the terms in
(113). Indeed, an order of magnitude of the dimensional time-scale τBL over which the
dissipation in the boundary layer damps the wave can be found by

τBL ∼
∫∫

dxdyρ∗(ũ′)2∫∫
dxdyρ∗ν(ũ′/δBL)2

∼ h
√
Rs

ω∗
√
ε
. (117)

Therefore, this time-scale is in between the fast one and the slow one. If we were to consider 
boundary layers, the input power would have to strictly balance such dissipation by viscosity 
at this time-scale, and this power would at order T result in an additional heat input at 
y = 0 and y = 1 as a consequence of viscous heating.

4 Linear response

We now consider the simplest regime of this system, in which an acoustic mode of given 
amplitude and geometry drives a laminar mean flow. For consistency, we hope that 
this flow will, in return, not much affect the geometry of the acoustic mode.

4.1 Reynolds stress

For this problem, ρ̄0 = T−1
B = (1 + Γy)−1, so that

α = 1 +
Γ

2
(118)

does not depend on x. We can therefore find an explicit expression for the function g,

g(x) = C1 cos

(
ω0√
α
x

)
+ C2 sin

(
ω0√
α
x

)
, (119)

where C1 and C2 are constants that have to be determined. The boundary conditions on
g, g′(0) = g′(2π) = 0, fix C2 = 0. Moreover, periodicity requires

ω0 = n
√
α, (120)

and, with the normalization condition, we end up with

g(x) =
cos(nx)√

π
. (121)

We can then compute û1 and v̂1. û1 is

û1 = − g′

ω2
0 ρ̄0

= (1 + Γy)
sin(nx)

nα
√
π
, (122)
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Figure 5: Geometry of the acoustic velocity fields for the mode n = 1.

and v̂1 is

v̂1 = y
cos(nx)√

π
− ∂x

(
n sin(nx)

n2α
√
π

∫ y

0
(1 + Γy)dy

)
=

y√
π

(
1− (1 + Γy/2)

α

)
cos(nx). (123)

According to (122) and (123), the vertical velocity field does not depend on n, contrary
to the horizontal one that decays with n. The velocity field for n = 1 is sketched in Fig.
5, and reveals the presence of vorticity. We then evaluate the first contribution to the
Reynolds stress,

−∂x(ρ̄0ū′21 ) = −∂x

(
1

1 + Γy

A(T )2

2
û21

)
= −A(T )2

(1 + Γy)

2nα2π
sin(2nx), (124)

the second one,

−∂y(ρ̄0u′1v′1) = −∂y

(
1

1 + Γy

A(T )2

2
û1v̂1

)
=

A(T )2

4πnα2
Γ

(
y − 1

2

)
sin(2nx), (125)

so that the full Reynolds stress reads

R(x, y) = −A(T )2

2πnα2

(
1 +

Γ

4
+

Γ

2
y

)
sin(2nx) (126)

4.2 Laminar mean flow

We then assume that the steady state mean flow is small enough so that equations can be
linearized. Contrary to the usual analysis of Rayleigh streaming, we cannot use a stream
function because, in general, this flow is compressible (even though the Mach number is
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negligible). The governing equations (63-67) read⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = −1

γ
∂xδπ̄ +R(x, y) +

∂yyδū

Resh2
(127)

∂yδπ̄ = 0 (128)

∂xδū+ ∂yδv̄ =
∂yyδΘ̄0

Pesh2
(129)

δv̄ = (1 + Γy)
∂yyδΘ̄

ΓPesh2
(130)

δρ̄ = − δΘ

(1 + Γy)2
(131)

We can remove π̄ by combining (127) and (128),

∂xyR = −∂yyyxδū

Resh2
. (132)

The conservation of mass (129) and (130) also imply

∂xδū = −(1 + Γy)

ΓPesh2
∂yyyδΘ̄. (133)

Finally, we obtain a close partial differential equation for Θ̄,

∂xyR =
(1 + Γy)∂yyyyyyδΘ̄ + 3Γ∂yyyyyδΘ̄

ΓResPesh4
, (134)

that is,

(1 + Γy)∂yyyyyyδΘ̄ + 3Γ∂yyyyyδΘ̄

ΓResPesh4
= − 2A2Γ

π(2 + Γ)2
cos(2nx) (135)

This equation has to be solved with the following boundary conditions

1. δΘ̄(y = 0) = δΘ̄(y = 0) = 0 (fixed temperatures at the boundaries)

2. δΘ̄′′(y = 0) = δΘ̄′′(y = 1) = 0 (from (130))

3. δΘ̄′′′(y = 0) = δΘ̄′′′(y = 1) = 0 (from (133))

4. 2π periodicity in x

With these boundary conditions, a unique solution can be found. Since it is quite 
lengthy, the general solution is postponed to Appendix D and we thereafter focus on 
Γ = 1, in which case

δΘ̄(x, y) = −2A2ResPesh
4

9π
cos(2nx)G(y), (136)

with

G(y) =
1

1080(−3 + ln(16))
× [

60(1 + y)2 ln(1 + y) (137)

+ y
(
94− 90y − 20y2 − 222 ln(2) + 3y4(−3 + ln(16))− 5y3(−5 + ln(64))

) ]
.
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Figure 6: Vertical structure of the temperature perturbation.

This function is always negative, and reaches its minimal value in the range [0, 1] at y =
0.488, where G � −1.63× 10−4. It turns out to be quite similar to a sine function, see Fig.
6. The very small values taken by this function in this range may seem surprising given
that it is the solution of an ordinary differential equation with coefficients of order unity.
However, similar features often arise when high order derivatives cap the variation speed of
a function with boundary condition zero at both sides (see, for instance, the linear regime
of convection between two vertical walls of different temperatures).

With this result, we can compare the amplitude of the velocity fields balanced by vis-
cosity caused by dissipation in the boundary layers (Rayleigh streaming) to the one driven
by a background density gradient. The dimensional maximal velocities of these flows along
the x direction are respectively5

ũR =
3U2∗
8a∗

=

(
3ε

8

)
U∗ and ũB =

(
3.2× 10−4A2Resh

2
)
U∗. (138)

Therefore, for small values of ε, the baroclinic forcing dominates the one caused by dissipa-
tion in the boundary layers.

4.3 Comparison with previous work

This streaming flow can be compared to the study of Lin and Farouk [8], in which direct
numerical simulations of the full set of equations have been performed. The system con-
sidered is similar to ours and consists in a thin channel in which a temperature difference

5Numerically, max
y∈[0,1]

|(1 + y)G′′′(y)| = 8.99× 10−3 (reached for y = 0.777).
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can be applied between the two horizontal walls. With no thermal driving, the response is
found close to the one described in Sec. 1 and consists of stack cells. When a temperature
difference is applied, the vertical cells merge.

For their case 1C, corresponding to the highest temperature difference, the dimensionless
parameters are:

ε = 10−2, γ = 1.4, Γ = 0.2, h = 2.3, Res = 5.7, P es = 4.1. (139)

The amplitude A of the wave field is not reported, but it can be reasonably assumed to be
the one in the absence of temperature difference, in which case A � 6.

For these parameters, the x (resp. y) component of the streaming velocity at x = 3π/4
(resp. π/2) are found to be in our model

δū(x =
3π

4
, y) = − (1 + Γy)

π(2 + Γ)2
A2Resh

2ΓG′′′
Γ (y), (140)

and

δv̄(x =
π

2
, y) =

(1 + Γy)

π(2 + Γ)2
2A2Resh

2ΓG′′
Γ(y). (141)

where the function G now reads

G0.2(y) = 47.664(7.19999866y − 0.1575906y2 + 0.096y3 − 0.0047285y4 (142)

+ 0.0002914y5 − 1.44y2ln(0.2)− (36 + 14.4y + 1.44y2) ln(1 + 0.2y)) (143)

The data of [8] are not dimensionless, and we then consider the dimensional streaming
velocities, obtained by multiplying δū by εa∗, and δv̄ by ε3/2a∗h, with a∗ = 353 m · s−1 here.
The comparison is reported in Fig. 7, and shows a quantitative agreement (no adjustable
parameter), although the dynamics in [8] involves several effects not taken into account by
the linear response model, as boundary layers, viscous heating, inertia, and evolution of the
viscosity and diffusivity with temperature. This confirms that our model captures the main
features of this dynamics.

4.4 Additional heat flux

Fig. 8 shows the streaming velocity field together with the temperature perturbation: we
can clearly infer an increase in the heat flux, that we want to compute. A practical issue we
face is that the first order additional heat flux vanishes, since the temperature disturbance
is of zero mean in the x direction:

κ

∫ 2π

0
dx(∂yδΘ̄)(x, y = 0) ∝

∫ 2π

0
dx cos(2nx) = 0. (144)

Instead of computing the next order temperature perturbation, we will show that the
integral of (∇̃T̃ )2 contains the information we are looking for. To prove this, we go back to
the dimensionless quantities and the expansion in power of ε. On one hand, integration by
part of this integral yields

κ

∫∫
(∇̃T̃ )2dxdy = κ

∫∫
dxdy(∇̃T̃B + ∇̃Θ̃0 + ε∇̃Θ̃1 + . . . )2 (145)

= κ

∫∫
dxdy

(
(∇̃T̃B)

2 + (∇̃Θ̃0)
2 + ε2(∇̃Θ̃1)

2 + . . .
)
. (146)
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Figure 7: Comparison between the numerical data of [8] (case 1C) and the linear response.

On the other hand, we also have

κ

∫∫
(∇̃T̃ )2dxdy = κ

∫
dx

[
T̃ ∂ỹT̃

]H∗

0
− κ

∫∫
dxdyT̃ ∇̃2T̃ = Q̇ΔΘ∗ − κ

∫∫
dxdyT̃ ∇̃2T̃ ,

(147)
where ΔΘ∗ = T̃ (ỹ = H∗)− T̃ (ỹ = 0) is the imposed temperature difference and Q̇ > 0 the
heat flux that goes through this system (see (74)). We then work out the last term with
the heat equation, with viscous heating denoted as Φ, as in (43).

κ

∫∫
dxdyT̃ ∇̃2T̃ =

∫∫
dxdyT̃

(
ρ̃cv

DT̃

Dt̃
+ p̃(∇̃ · ũ) + Φ

)
(148)

=
cv
2

∫∫
dxdyρ̃(ũ · ∇̃)T̃ 2 −

∫∫
T̃ p̃

(ũ · ∇̃)ρ̃

ρ̃
dxdy +

∫∫
dxdyΦT (149)

= 0−
∫∫

p̃

ρ̃

(
(ũ · ∇̃)(T̃ ρ̃)− ρ̃(ũ · ∇̃)T̃

)
dxdy +

∫∫
dxdyΦT̃ (150)

To derive these equations, we explicitly state that we consider a steady-state, for which
∇̃ · (ρ̃ũ) = 0. Using the equality

∫∫
dxdyρ̃T̃ (ũ · ∇̃)T̃ = 0 derived in this set of equations, we

obtain

κ

∫∫
dxdyT̃ ∇̃2T̃ = −

∫∫
dxdyT̃ ũ · ∇̃p̃+

∫∫
dxdyp̃(ũ · ∇̃)T̃ +

∫∫
dxdyΦT̃ (151)

= −
∫∫

dxdyT̃ ũ · ∇̃p̃+

∫∫
dxdyΦT̃ . (152)
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Figure 8: Mean velocity field forced by the mode n = 1. Color is the supplementary
temperature perturbation (blue is cold): remember that the bottom boundary is cold in
this setup.

We recognize the pressure gradient of the momentum equation, so that

−κ

∫∫
dxdyT̃ ∇̃2T̃ =

∫∫
dxdyT̃

(
ũ · (∇̃p̃)− Φ

)
(153)

=

∫∫
dxdyT̃

(
ũ · μ

[
∇̃2ũ+

1

3
∇̃(∇̃ · ũ)

]
− ũ · (ũ · ∇̃)ũ− Φ

)
. (154)

If the temperature were constant, viscous heating would cancel out the viscous term, see
(46). For the given study, all these terms are of high order in ε, and can then be neglected.
Therefore, at the leading order, the heat flux in a steady state is given by

Q̇ΔΘ∗ = κ

∫∫
(∇̃T̃ )2dxdy. (155)

To deal with dimensionless quantities, we introduce the Nusselt number Nu for the heat
flux, defined by

Nu =
Q̇

2πκΔΘ∗(k∗H∗)−1
= 1 +

1

2πΓ

∫ 2π

0
dx(∂y(Θ0 + εΘ1 + . . . ))(y = 0). (156)

From (155) and (156), we obtain at the leading order in ε

Nu− 1 =
1

2πΓ

∫ 2π

0
dx(∂yΘ̄0)(y = 0) =

1

2πΓ2

∫∫
dxdy(∂yΘ̄0)

2 (157)

In this section, Θ̄0 has been computed for Γ = 1 as a linear response at the leading order
in the wave amplitude A(T ), see (136). Thus, 6

Nu− 1 =
Γ=1

2A4Re2sPe2sh
8

81π2

∫ 1

0
dyG′

BC1(y)
2 �
Γ=1

3.2A4Re2sPe2sh
810−10. (158)

6Numerics give
∫ 1

0
dyG′

BC1(y)
2 � 1.276× 10−7.
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Generally speaking, it can be cast under the form

Nu− 1 = N(Γ)A4Re2sPe2sh
8, (159)

where N(Γ) is reported in Fig. 9. This has to be compared to the result obtained for
streaming based on dissipation in the boundary layers, worked out in [6], that reads7

(Nu− 1)BL = 6.2Pe2sh
4ε210−6. (160)

This demonstrates that, although the Nusselt number we just derived is very small, it
still lies several order of magnitude above the one resulting from acoustic streaming in the
boundary layers. Our very small Nusselt number is a consequence of the fact that the
Reynolds stress is balanced for this linear solution by viscosity, and not by inertia. This
second regime is associated with larger velocities, hence larger heat conduction.

We emphasize, again, that the present study neglects dissipation in the boundary layers.
Would it be considered, the additional heat flux would be dominated by the power required
to sustain the wave.

4.5 Efficiency of this heat pump

We look for the power required to sustain the linear steady state. This can be done with
the amplitude equation. In the limit of small amplitude, the dominant term is the one that
does not vanish for ū1 = v̄1 = Θ̄1 = 0. For Γ = 1, we find

Θ̂1 =
i cos(x)

ω0
√
π

(
(γ − 1) + y(γ − 2

3
)− y2

3

)
, (161)

7The Péclet number PE defined in [6] is in our notations PE = 3Pesh
2ε/32.
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and then

− iω0

Pesh2

∫∫
dxdyg(x)∂yyΘ̂1 = − 2

3Pesh2
. (162)

This stands for dissipation caused by thermal diffusion. In order to observe a steady-state,
this has to be an input power P, so that the amplitude equation finally reads

1

E

dE

dT
= − 2

3Pesh2
+

P
E
, (163)

where E = A2/(2ω2
0) is the mean energy of the acoustic waves. This yields in a steady state

P =
2A2

9Pesh2
. (164)

Finally, the efficiency E is given by

E =
2πΓ(Nu− 1)

P =
Γ=1

0.9× 10−8A2Re2sPe3sh
8 (165)

The dependence on A comes from the fact that most of the injected power is, for small
A, actually used to balance linear damping of the waves (and not energy transfer from
the waves to the mean flow). Although definitely small, this efficiency presents a huge
dependence on h that emphasizes the importance on cells of aspect ratio of order one.

5 Numerical imulations

The linear response solution previously derived, and upon which the additional heat flux 
and Nusselt number have been computed, does not hold when there is inertia or 
feedback to the acoustic wave field. In order to describe the dynamics of the system 
in this regime, we performed numerical simulations of the reduced set of equations (63 
- 66), where the Reynolds stress is computed at each time step by solving the 
eigenvalue problem (100). This has been done with Dedalus [15].

For parameters of order unity, the solution obtained is a steady-state very similar to the 
linear response. This has been used to check the correctness of our theoretical 
computa-tions. On the other hand, when these dimensionless parameters are increased, 
the numerical solution differs from the linear response, and states with strong 
feedback can be described. The characterization of this regime is still under progress, 
but as a preliminary result we report the solution obtained for the parameters of Lin 
et al. in Fig. 10.

Conclusion

One main conclusion of this work is that acknowledging the presence of a density 
gradient as the main driving mechanism of acoustic streaming is crucial to get the 
correct dynamics in stratified flows. In particular, baroclinic acoustic streaming has 
been shown to result in velocity fields much bigger than the ones obtained from the 
usual boundary layer theory. This mechanism is especially favorable for enhancing 
heat transfers with a good efficiency:

balanced by

S
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Figure 10: Numerical solution for the parameters of [8] and comparison with the linear 
model.

whereas the power used to excite the acoustic waves is mainly converted to heat 
within the boundary layers in the absence of temperature driving, it can a priori be
fully transferred to the streaming flow with the baroclinic mechanism.

Because streaming motions are important in this regime, the temperature 
disturbance is also large, which results in a two-way coupling between the waves and
the mean flow [10]. For a strongly stratified thin layer, the dynamics involve both a 
fast time (associated with the period of the waves) and a slow one (on which the 
mean quantities evolve). With a solvability condition, we have completely eliminated 
the fast time scale, and found that both the geometry and the amplitude of the 
waves can be explicitly solved on the slow time scale. We have also obtained a first 
order solution for the steady-state that compares well with the previous numerical
study of the full system with moderate aspect ratio. Numerical simulations can be 
used to obtain the solution for any range of parameters. This has been done to check that 
our theoretical computations were correct, and to compare them to the DNS of Lin et al.
[8].

Moreover, the computation of the heat flux and of the efficiency clearly points out 
the relevance of aspect ratios of order one. In such limit, the flow associated with 
acoustic streaming caused by boundary layers is restricted to a small portion of the 
domain, whereas the one resulting from baroclinic acoustic streaming, acting as a bulk 
force, would probably not. More generally, such quasi-linear systems in which fast 
waves are coupled with the mean flow they drive, can be found in other domains of 
fluid mechanics. For instance, it describes zonal jets (see [16] and references therein) 
and strongly stratified turbulence [17].
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A Derivation of the energy equation

The energy balance can be obtained from the initial set of equations (41 - 44), starting from

0 =

∫
C
d(p̃ũ)d�S =

∫∫
dxdy∇̃ · (p̃ũ), (166)

and using the fact that for any function f , our boundary conditions lead to∫∫
dxdy

Df

Dt
=

∫∫
dxdy

(
∂tf + (ũ · ∇̃)f

)
=

d

dt

∫∫
dxdyf −

∫∫
dxdyf(∇̃ · ũ). (167)

The main steps of the computation are:

1. Split the divergence in (166) and use (41) and (43) to obtain

0 = −
∫∫

p̃

ρ̃

Dρ̃

Dt̃
−

∫∫
dxdyũρ̃

Dũ

Dt̃
+

∫∫
dxdyΦ. (168)

2. With (42), find ∫∫
dxdyũρ̃

Dũ

Dt̃
=

d

dt̃

∫∫
ρ̃ũ2

2
. (169)

3. Using (42), (43) and cv(γ − 1) = Rs for an ideal gas, derive

−
∫∫

p̃

ρ̃

Dρ̃

Dt̃
= − d

dt̃

∫∫
dxdy

p̃

γ − 1
+ Q̇+

∫∫
dxdyΦ, (170)

and finally obtain (73).

B Set of equations for the waves at the next order

NS in the x direction. We look for (68) at the next order. Eq. (48) at order ε2 is

ρ1
[
ω0∂φu

′
1

]
+ ρ̄0

[
ω0∂φu

′
2 + ω1∂φu

′
1 + ∂Tu1 + u1∂xu1 + v1∂yu1

]
= −1

γ
∂xπ2 +

1

Resh2
∂yyu1.

(171)
Fast-time averaging this equation yields

ω0ρ′1∂φu′1 + ρ̄0
[
∂T ū1 + u1∂xu1 + v1∂yu1

]
= −1

γ
∂xπ̄2 +

1

Resh2
∂yyū1, (172)
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that eventually becomes (58) with the use of (70). To get an equation for u′2, we subtract
equation (172) to (171),

ω0ρ̄0∂φu
′
2 +

1

γ
∂xπ

′
2 = −ω0

[
ρ1∂φu

′
1 − ρ′1∂φu′1

]
− ω1ρ̄0∂φu

′
1

− ρ̄0
[
∂Tu

′
1 + u1∂xu1 − u1∂xu1 + v1∂yu1 − v1∂yu1

]
+

1

Resh2
∂yyu

′
1. (173)

NS in the y direction. We look for (69) at the next order. Eq. (49) at order ε is

∂yπ2
γh2

= −ρ̄0ω0∂φv1 =⇒ ∂yπ
′
2 = −γh2ρ̄0ω0∂φv

′
1. (174)

Conservation of mass. We look for (70) at the next order. Eq. (51) at order ε2 is

(ω0∂φρ2 + ω1∂φρ1 + ∂Tρ1) + ∂x (ρ̄0u2 + ρ1u1) + ∂y (ρ̄0v2 + ρ1v1) = 0, (175)

Fast time average yields

∂T ρ̄1 + ∂x (ρ̄0ū2 + ρ1u1) + ∂y (ρ̄0v̄2 + ρ1v1) = 0, (176)

And then,

ω0∂φρ
′
2+∂x(ρ̄0u

′
2)+∂y(ρ̄0v

′
2) = −ω1∂φρ

′
1−∂Tρ

′
1−∂x (ρ1u1 − ρ1u1)−∂y (ρ1v1 − ρ1v1) . (177)

Internal energy balance We look for (71) at the next order. Eq. (50) at order ε2 is

ω0∂φΘ2 + ω1∂φΘ1 + ∂TΘ1 + u2∂xΘ̄0 + u1∂xΘ1 + v2∂yΘ̄0 + v1∂yΘ1 + v2
dTB

dy
= (1− γ)

[
(TB + Θ̄0)(∂xu2 + ∂yv2) + Θ1(∂xu1 + ∂yv1)

]
+

γ

ρ̄0Pes

(
∂xxΘ̄0 +

∂yyΘ1

h2
− ρ1∂yyΘ̄0

ρ̄0h2

)
,

Fast time average yields

∂T Θ̄1 + ū2∂xΘ̄0 + u1∂xΘ1 + v̄2∂yΘ̄0 + v1∂yΘ1 + v̄2
dTB

dy
= (1− γ) (178)[

(TB + Θ̄0)(∂xū2 + ∂yv̄2) + Θ1(∂xu1 + ∂yv1)
]
+

γ

ρ̄0Pes

(
∂xxΘ̄0 +

∂yyΘ̄1

h2
− ρ̄1∂yyΘ̄0

ρ̄0h2

)
,

And then

ω0∂φΘ
′
2 + ω1∂φΘ

′
1 + ∂TΘ

′
1 + u′2∂xΘ̄0 + u1∂xΘ1 − u1∂xΘ1 + v′2∂yΘ̄0 + v1∂yΘ1 − v1∂yΘ1

+ v′2
dTB

dy
= (1− γ)

[
(TB + Θ̄0)(∂xu

′
2 + ∂yv

′
2) + Θ1(∂xu1 + ∂yv1)−Θ1(∂xu1 + ∂yv1)

]
+

γ

Pes

(
∂yyΘ

′
1

ρ̄0h2
− ρ′1∂yyΘ̄0

ρ̄20h
2

)
,

that also reads

ω0∂φΘ
′
2 + u′2∂xΘ̄0 + v′2∂y

(
Θ̄0 + TB

)
+ (γ − 1)

[
(TB + Θ̄0)(∂xu

′
2 + ∂yv

′
2)
]

= −ω1∂φΘ
′
1 − ∂TΘ

′
1 − u1∂xΘ1 + u1∂xΘ1 − v1∂yΘ1 + v1∂yΘ1

+ (1− γ)
[
Θ1(∂xu1 + ∂yv1)−Θ1(∂xu1 + ∂yv1)

]
+

γ

ρ̄0Pesh2

(
∂yyΘ

′
1 −

ρ′1∂yyΘ̄0

ρ̄0

)
. (179)
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Equation of state. We look for (72) at the next order. Eq. (52) at order ε2 is

π2 = ρ2(TB + Θ̄0) + ρ1Θ1 + ρ̄0Θ2, (180)

Fast time average yields

π̄2 = ρ̄2(TB + Θ̄0) + ρ1Θ1 + ρ̄0Θ̄2, (181)

And then
π′
2 − ρ′2(TB + Θ̄0)− ρ̄0Θ

′
2 = ρ1Θ1 − ρ1Θ1. (182)

C Slow evolution of the amplitude

We wish to derive an equation for the evolution of A(T ). To do so, we have to find a
solvability condition. We proceed as follows:

1. We write all the variables at the next order as

f(x, y, T, φ)′2 = B(T )/2
(
eiφf̂2(x, y, T ) + c.c.

)
. (183)

We keep the previous form for the variables at order one, and we discard all the terms
that do not go as e±iφ.

2. Using the set of equations at the next order, we reduce this system of five variables
(û2, v̂2, π̂2 , ρ̂2, Θ̂2) to a system of two variables (û2 and v̂2).

3. We find the adjoint of this linear system and the general form of the solvability
condition.

4. We enforce it and get a close equation for dA(T )/dT .

C.1 Step 2, part 1: get an expression for ρ̂2

We recall the conservation of mass at the next order, equation (177):

ω0∂φρ
′
2 + ∂x(ρ̄0u

′
2) + ∂y(ρ̄0v

′
2) = −ω1∂φρ

′
1 − ∂Tρ

′
1 − ∂x (ρ1u1 − ρ1u1)− ∂y (ρ1v1 − ρ1v1) .

It becomes

B(T ) (ω0iρ̂2 + ∂x(ρ̄0û2) + ∂y(ρ̄0v̂2)) =

− dA

dT
ρ̂1 −A(T )

[
ω1iρ̂1 +

δρ̂1
δT

+ ∂x(ρ̄1û1 + ρ̂1ū1) + ∂y(ρ̄1v̂1 + ρ̂1v̄1)

]
, (184)

where δf̂/δT is the functional derivative of f̂ with respect to any dependence it may have
on slow time T . For a later use, we rewrite this equation as

B(T )ρ̂2
ρ̄0

=
iB(T )

ω0ρ̄0
(∂x(ρ̄0û2) + ∂y(ρ̄0v̂2)) +

i

ω0ρ̄0

dA

dT
ρ̂1

+
i

ω0ρ̄0
A(T )

[
δρ̂1
δT

+ iω1ρ̂1 + ∂x(ρ̄1û1 + ρ̂1ū1) + ∂y(ρ̄1v̂1 + ρ̂1v̄1)

]
. (185)
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C.2 Step 2, part 2: get an expression for Θ̂2

We perform the same simplification for the internal energy balance at order two (179),

B(T )

A(T )

(
iω0Θ̂2 + û2∂xΘ̄0 + v̂2∂y

(
Θ̄0 + TB

)
+ (γ − 1)

[
(TB + Θ̄0)(∂xû2 + ∂yv̂2)

])
= −ω1iΘ̂1 − 1

A(T )

dA

dT
Θ̂1 − δΘ

δT
− û1∂xΘ̄1 − ū1∂xΘ̂1 − v̂1∂yΘ̄1 − v̄1∂yΘ̂1

+ (1− γ)
[
Θ̂1(∂xū1 + ∂yv̄1) + Θ̄1(∂xû1 + ∂yv̂1)

]
+

γ

ρ̄0Pesh2

(
∂yyΘ̂1 − ρ̂1

ρ̄0
∂yyΘ̄0

)
, (186)

that can also be written

B(T )Θ̂2 =
B(T )i

ω0

(
û2∂xΘ̄0 + v̂2∂y

(
Θ̄0 + TB

)
+ (γ − 1)

[
(TB + Θ̄0)(∂xû2 + ∂yv̂2)

])
+

iA(T )

ω0

(
ω1iΘ̂1 +

1

A(T )

dA

dT
Θ̂1 +

δΘ

δT
+ û1∂xΘ̄1 + ū1∂xΘ̂1 + v̂1∂yΘ̄1 + v̄1∂yΘ̂1

)

+
iA(T )

ω0
(γ − 1)

[
Θ̂1(∂xū1 + ∂yv̄1) + Θ̄1(∂xû1 + ∂yv̂1)

]
− iA(T )

ω0

γ

ρ̄0Pesh2

(
∂yyΘ̂1 − ρ̂1

ρ̄0
∂yyΘ̄0

)
. (187)

C.3 Step 2, part 3: get an expression for π̂2

We recall the equation of state (182),

π′
2 − ρ′2(TB + Θ̄0)− ρ̄0Θ

′
2 = ρ1Θ1 − ρ1Θ1. (188)

Now that we know ρ̂2 and Θ̂2, we can find π̂2. First, with our notations and (TB+Θ̄0) = ρ̄−1
0 ,

B(T )π̂2 = B(T )
ρ̂2
ρ̄0

+B(T )ρ̄0Θ̂2 +A(T )ρ̂1Θ̄1 +A(T )ρ̄1Θ̂1. (189)

If A(T ) = 0, this equation would be the same as at order one and read

π̂2 =
iγ

ω0
(∂xû2 + ∂yv̂2). (190)

We have to complete this equation with forcing terms. We get:

B(T )

(
π̂2 − iγ

ω0
(∂xû2 + ∂yv̂2)

)
= (191)

i

ω0ρ̄0

dA

dT
ρ̂1 +

i

ω0ρ̄0
A(T )

[
δρ̂1
δT

+ iρ̂1ω1 + ∂x(ρ̄1û1 + ρ̂1ū1) + ∂y(ρ̄1v̂1 + ρ̂1v̄1)

]

+
iA(T )ρ̄0

ω0

(
ω1iΘ̂1 +

1

A(T )

dA

dT
Θ̂1 +

δΘ̂1

δT
+ û1∂xΘ̄1 + ū1∂xΘ̂1 + v̂1∂yΘ̄1 + v̄1∂yΘ̂1

)

+
iA(T )ρ̄0

ω0
(γ − 1)

[
Θ̂1(∂xū1 + ∂yv̄1) + Θ̄1(∂xû1 + ∂yv̂1)

]
− iA(T )

ω0

γ

Pesh2

(
∂yyΘ̂1 − ρ̂1

ρ̄0
∂yyΘ̄0

)
+A(T )ρ̂1Θ̄1 +A(T )ρ̄1Θ̂1.
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We write this equation as

π̂2 =
iγ

ω0
(∂xû2 + ∂yv̂2) +

H
B(T )

, (192)

where H is a known complex-valued function.

C.4 Step 2, part 4: get a system of equations for û2 and v̂2

We start with the Navier-Stokes equation on the y direction at the second order (174),

B(T )∂yπ̂2 = −iγh2ρ̄0ω0A(T )v̂1 =⇒ B(T )∂y (∂xû2 + ∂yv̂2) =
i∂yHω0

γ
− h2ρ̄0ω

2
0A(T )v̂1.

Similarly, the Navier-Stokes equation on the x direction at the second order (173) is

ω0ρ̄0iB(T )û2 +
iB(T )

ω0
∂x (∂xû2 + ∂yv̂2) +

∂xH
γ

= (193)

− iω0ρ̄1A(T )û1 − iω1ρ̄0A(T )û1 +
A(T )

Resh2
∂yyû1

− ρ̄0

(
dA

dT
û1 +A(T )

δû1
δT

+A(T )û1∂xū1 +A(T )ū1∂xû1 +A(T )v̂1∂yū1 +A(T )v̄1∂yû1

)
,

that is,

B(T )
(
∂x(∂xû2 + ∂yv̂2) + ω2

0 ρ̄0û2
)
=

iω0∂xH
γ

(194)

− ω2
0 ρ̄1A(T )û1 − ω0ω1ρ̄0A(T )û1 − iω0

A(T )

Resh2
∂yyû1

+ iω0ρ̄0

(
dA

dT
û1 +A(T )

δû1
δT

+A(T )û1∂xū1 +A(T )ū1∂xû1 +A(T )v̂1∂yū1 +A(T )v̄1∂yû1

)
.

C.5 Step 3: general solvability condition

The previous system is of the form{
∂x(∂xû2 + ∂yv̂2) + ω2

0 ρ̄0û2 = F (195)

∂y(∂xû2 + ∂yv̂2) = G (196)

where F and G are complex-valued functions. In this vector space (R2 → C)2, a vector
writes

V =

(
û

v̂

)
. (197)

The linear operator we consider is

L =

(
∂xx + ω2

0 ρ̄0 ∂xy

∂xy ∂yy

)
, (198)
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so that the above system is simply LV = F. We define a scalar product (·|·) as

(VA|VB) =

∫ 2π

0
dx

∫ 1

0
dy

(
VT

A ·V∗
B

)
=

∫ 2π

0
dx

∫ 1

0
dy (ûAû

∗
B + v̂Av̂

∗
B) , (199)

where ∗ stands for the conjugate. We can easily check that L is self-adjoint (L = L†), given
the 2π periodicity in x and the kinematic boundary conditions in y (v(x, y = 0) = v(x, y =
1) = 0):

(LVA|VB) =

∫∫
dxdy

[(
∂xxûA + ω2

0 ρ̄0ûA + ∂xyv̂A
)
û∗B + (∂xyûA + ∂yyv̂A) v̂

∗
B

]
(200)

=

∫∫
dxdy

[(
∂xxû

∗
B + ω2

0 ρ̄0û
∗
B + ∂xyv̂

∗
B

)
ûA + (∂xyû

∗
B + ∂yyv̂

∗
B) v̂A

]
(201)

= (VA|LVB) . (202)

We also know what vectors are in the kernel of L: it consists of the first order acoustic
modes already described, one of them being V1 = (û1, v̂1). Therefore, we must have

(F|V1) = 0, (203)

that also reads, ∫∫
(F(x, y)û∗1(x, y) + G(x, y)v̂∗1(x, y)) dxdy = 0 (204)

C.6 Step 4, part 1: first approach of the solvability condition

Given that û1 and v̂1 are real-valued fields, the solvability condition (204) can be easily
decomposed in a real and imaginary one. The crucial one concerns the imaginary part of
F = Fr + iFi and G = Gr + iGi, that are respectively

Fi =
ω0

γ
∂xHr − ω0A(T )

Resh2
∂yyû1 (205)

+ ω0ρ̄0

(
dA

dT
û1 +A(T )

δû1
δT

+A(T )û1∂xū1 +A(T )ū1∂xû1 +A(T )v̂1∂yū1 +A(T )v̄1∂yû1

)
,

and,

Gi =
∂yHrω0

γ
. (206)

The terms involving Hr in the solvability conditions are

ω0

γ

∫∫
dxdy (û1∂xHr + v̂1∂yHr) = −ω0

γ

∫∫
dxdyHr(∂xû1 + ∂yv̂1) = −ω0

γ

∫∫
dxdyg(x)Hr,

(207)
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where the real part of H results from (191). For this purpose, remember that both ρ̂1, Θ̂1

and π̂1 are pure imaginary fields. Thus,

Hr =
i

ω0ρ̄0

dA

dT
ρ̂1 +

i

ω0ρ̄0
A(T )

[
δρ̂1
δT

+ ∂x(ρ̂1ū1) + ∂y(ρ̂1v̄1)

]
(208)

+
iA(T )ρ̄0

ω0

(
1

A(T )

dA

dT
Θ̂1 +

δΘ̂1

δT
+ ū1∂xΘ̂1 + v̄1∂yΘ̂1

)

+
iA(T )ρ̄0

ω0
(γ − 1)

[
Θ̂1(∂xū1 + ∂yv̄1)

]
− iA(T )

ω0

γ

Pesh2

(
∂yyΘ̂1 − ρ̂1

ρ̄0
∂yyΘ̄0

)
.

Note that this procedure has removed all the higher order mean-flow terms (Θ̄1, ρ̄1). This
has also removed ω1, and if we keep to this part of the solvability condition we will not
be able to get the slow evolution of the phase. Now, we are going to simplify Hr with the
expressions of ρ̂1 and Θ̂1. For instance, with (91) and (92),

i

ω0ρ̄0

dA

dT
ρ̂1 +

iρ̄0
ω0

dA

dT
Θ̂1 =

i

ω0

dA

dT

(
ρ̂1
ρ̄0

+ ρ̄0Θ̂1

)
=

i

ω0

dA

dT
π̂1 = − γ

ω2
0

dA

dT
g(x). (209)

C.7 Step 4, part 2: a closer look at the functional derivatives

For further simplifications, we have to give a formal definition of the functional derivative
δ/δT . For a given real-valued functional F defined by

F

{
function space → R (210)

f → F (f) (211)

the functional derivative
δF

δf
(h) describes how F (f) evolves when f → f + h, with |h| → 0:

δF

δf
(h) = lim

ε→0

(
F (f + εh)− F (f)

ε

)
. (212)

In the present work, we consider functions f that have a functional dependence on ρ̄0 and
also depend on the real parameters x and y. In all the previous calculations, we were
interested in how the real number f(x, y; [ρ̄0]) evolves for fixed x and y, while ρ̄0 evolves on
the slow time. Formally, we should therefore define a functional fx,y, such that

fx,y

{
([0, 2π]× [0, 1] → R) → R (213)

ρ̄0 → f(x, y; [ρ̄0]) (214)

and the shorthand
δf

δT
should therefore be understood as(

δf

δT

)
→ δfx,y

δρ̄0
(∂T ρ̄0). (215)

This term is the increment in f(x, y; [ρ̄0]) at fixed x and y for an infinitely small slow-time
increase (ρ̄0 → ρ̄0+ε∂T ρ̄0). We can perform basic operations on these functional derivatives.
Let us for instance take the example of one showing up in (208):(

δρ̂1
δT

)
→ δρ̂1,x,y

δρ̄0
(∂T ρ̄0), (216)
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with similar notations as above. Moreover, equations (91), (92) and (96) give

ρ̂1 =
iγρ̄0g

ω0
− ρ̄20Θ̂1. (217)

In this equation, both ρ̄0, g, Θ̂1 and ω0 have a functional dependence on ρ̄0. Functional
derivatives obey linearity and product rule, so that (216) becomes(

δρ̂1
δT

)
= iγ

(
ρ̄0
ω0

δg

δT
+

g

ω0

δρ̄0
δT

+ ρ̄0g
δω−1

0

δT

)
− ρ̄20

δΘ̂1

δT
− Θ̂1

δρ̄20
δT

. (218)

We then detail each of these terms successively.

δg

δT
: since g does only depend on α, this term is formally defined as

δg

δT
=

δgx
δα

(∂Tα). (219)

δρ̄0
δT

: it stands for the evolution of ρ̄0 at given x and y as time goes by, i.e.

δρ̄0
δT

=
δρ̄0,x,y
δρ̄0

(∂T ρ̄0) = ∂T ρ̄0(x, y, T ). (220)

δω−1
0

δT
: ω0 is also a functional of ρ̄0 (or rather α), because it is defined as an eigenvalue of

an ode involving α. This term cannot be changed much,

δω−1
0

δT
= − 1

ω2
0

δω0

δα
(∂Tα) = −∂Tω0

ω2
0

. (221)

δΘ̂1

δT
: this term fortunately cancels out with another one in the expression of Hr.

δρ̄20
δT

: similarly to (220),

δρ̄20
δT

= 2ρ̄0∂T ρ̄0(x, y, T ). (222)

Therefore,
δρ̂1
δT

can be written as

δρ̂1
δT

= iγ

(
ρ̄0
ω0

δg

δT
+

g∂T ρ̄0
ω0

− ρ̄0g∂Tω0

ω2
0

)
− ρ̄20

δΘ̂1

δT
− 2ρ̄0∂T ρ̄0Θ̂1. (223)

The term
δΘ̂1

δT
being canceled by a similar one in (208), we end up with only one functional

derivative left in Hr, that reads in the solvability condition

X = −ω0

γ

∫∫
dxdyg(x)× iA(T )

ω0ρ̄0
×

(
iγ

ρ̄0
ω0

δg

δT

)
=

A(T )

ω0

∫∫
dxdyg(x)

δg

δT
. (224)
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The integral over y is immediately computed, since nothing depends on y. Going back to
more formal notations, we have

X =
A(T )

ω0

∫ 2π

0
dxg(x)

δgx
δα

(∂Tα) =
A(T )

2ω0

∫ 2π

0
dx

δg2x
δα

(∂Tα). (225)

We then use the formal definition of the functional derivative (215) together with the nor-
malization condition (106):

X =
A(T )

2ω0
lim
ε→0

(∫ 2π
0 dxg2x(α+ ε∂Tα)−

∫ 2π
0 dxg2x(α)

ε

)
=

A(T )

2ω0
lim
ε→0

(
1− 1

ε

)
= 0. (226)

Finally, we end up with no functional derivative left from Hr in the solvability condition.

Let us have a look at the other contribution, i.e. the term
δû1
δT

in Fi (see (205)). It reads

Y =

∫∫
dxdyû1 × ω0ρ̄0A(T )

δû1
δT

. (227)

According to (98), û1 = −g′/(ω2
0 ρ̄0), and then

Y =
A(T )

ω0

∫∫
dxdyg′(x)

δ

δT

(
g′

ω2
0 ρ̄0

)
. (228)

As previously, we simplify the functional derivative,

Y =
A(T )

ω0

∫∫
dxdyg′(x)

(
1

ω2
0 ρ̄0

δg′

δT
− 2g′∂Tω0

ρ̄0ω3
0

− g′∂T ρ̄0
ω2
0 ρ̄

2
0

)
(229)

=
A(T )

ω3
0

∫
dxαg′

δg′

δT
− 2A(T )∂Tω0

ω4
0

∫
dxαg′2 − A(T )

ω3
0

∫
dxg′2(x)

∫
dy

∂T ρ̄0
ρ̄20

. (230)

The normalization condition (106) with the constitutive relation on g (100) gives∫ 2π

0
dxg′(x)2α(x) =

[
g(x)α(x)g′(x)

]2π
0

+

∫ 2π

0
dxg(x)× (ω2

0g(x)) = ω2
0. (231)

The second term of Y , involving ∂Tω0, can then be immediately computed. The functional
derivative becomes

A(T )

ω3
0

∫
dxαg′

δg′

δT
=

A(T )

2ω3
0

∫
dxα

δg′2

δT
=

A(T )

2ω3
0

∫
dx

(
δ(αg′2)
δT

− g′2
δα

δT

)
(232)

=
A(T )

2ω3
0

[
lim
ε→0

(∫
dx[αg′2][α+ ε∂Tα]−

∫
dx[αg′2][α]

ε

)
−

∫
dxg′(x)2∂Tα

]
(233)

=
A(T )

2ω3
0

[
2ω0∂Tω0 −

∫
dxg′(x)2∂Tα

]
=

A(T )∂Tω0

ω2
0

− A(T )

2ω3
0

∫
dxg′(x)2∂Tα. (234)

Coming back to Y , we get,

Y = −A(T )∂Tω0

ω2
0

− A(T )

2ω3
0

∫
dxg′(x)2∂Tα− A(T )

ω3
0

∫
dxg′2(x)

∫
dy

∂T ρ̄0
ρ̄20

, (235)
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and finally, with the definition of α,

Y = −A(T )∂Tω0

ω2
0

+
A(T )

2ω3
0

∫
dxg′(x)2∂Tα. (236)

Again, the functional derivative is simplified with the use of the normalization condition:
finally, we no longer have them in the solvability condition.

C.8 Step 4, part 3: simplifying the first part of the solvability condition

According to (207), the solvability condition can be written as∫∫
dxdyû1

(
Fi − ω0

γ
∂xHr

)
︸ ︷︷ ︸

S1

− ω0

γ

∫∫
dxdyg(x)Hr︸ ︷︷ ︸
S2

= 0, (237)

and we are in this section interested in simplifying S1. With (205), we have

S1 =

∫∫
dxdyû1ω0ρ̄0

dA

dT
û1 −

∫∫
dxdyû1

ω0A(T )

Resh2
∂yyû1 (238)

+A(T )

∫∫
dxdyû1ω0ρ̄0

(
δû1
δT

+ û1∂xū1 + ū1∂xû1 + v̂1∂yū1 + v̄1∂yû1

)
. (239)

We detail all these terms successively:

• Combining (231) and (98), the first term is found to be ω−1
0

dA

dT
.

• The second term can be written as

−
∫∫

dxdyû1
ω0A(T )

Resh2
∂yyû1 = − A(T )

Resh2ω3
0

∫
dxg′(x)2

∫
dy

1

ρ̄0
∂yy

1

ρ̄0
. (240)

Integrating by part this integral splits it into a sign-definite bulk dissipation and a
sign-indefinite power exchanges at the solid boundaries.

• The third term involves the functional derivative of û1 and has already been worked
out, see (236). It reads

A(T )ω0

∫∫
dxdyû1ρ̄0

δû1
δT

= −A(T )∂Tω0

ω2
0

+
A(T )

2ω3
0

∫
dxg′(x)2∂Tα. (241)

• The fourth term is:

A(T )

∫∫
dxdyû1ω0ρ̄0û1∂xū1 =

A(T )

ω3
0

∫∫
dxdy

g′(x)2

ρ̄0
∂xū1 (242)

= −A(T )

ω3
0

∫∫
dxdyū1

(
2g′(x)g′′(x)

ρ̄0
+ g′(x)2∂xρ̄−1

0

)
. (243)
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• The fifth term is

A(T )

∫∫
dxdyû1ω0ρ̄0ū1∂xû1 =

A(T )

ω3
0

∫∫
dxdyg′(x)ū1∂x

(
g′(x)
ρ̄0

)
(244)

=
A(T )

ω3
0

∫∫
dxdyū1

(
g′(x)2∂xρ̄−1

0 +
g′(x)g′′(x)

ρ̄0

)
. (245)

• The sixth term is

A(T )

∫∫
dxdyû1ω0ρ̄0v̂1∂yū1 = −A(T )

ω0

∫∫
dxdyg′(x)v̂1∂yū1 (246)

=
A(T )

ω0

∫∫
dxdyg′(x)ū1∂yv̂1 (247)

=
A(T )

ω0

∫∫
dxdyg′(x)ū1

(
g(x) +

g′(x)
ω2
0

∂xρ̄
−1
0 +

g′′(x)
ω2
0 ρ̄0

)
. (248)

• The last term is

A(T )

∫∫
dxdyû1ω0ρ̄0v̄1∂yû1 =

A(T )

ω3
0

∫∫
dxdyg′(x)2v̄1∂yρ̄−1

0 . (249)

Putting all this together, we get

S1 =
1

ω0

dA

dT
− A(T )

Resh2ω3
0

∫∫
dxdy

g′(x)2

ρ̄0
∂yyρ̄

−1
0 − A(T )∂Tω0

ω2
0

+
A(T )

2ω3
0

∫
dxg′(x)2∂Tα (250)

+
A(T )

ω3
0

∫∫
dxdyū1

(
g′(x)2∂xρ̄−1

0 + ω2
0g(x)g

′(x)
)
+

A(T )

ω3
0

∫∫
dxdyg′(x)2v̄1∂yρ̄−1

0 .

C.9 Step 4, part 4: simplifying the second part of the solvability condition

We are interested in simplifying S2, that is defined as

S2 =
ω0

γ

∫∫
dxdyg(x)Hr, (251)

with Hr given by (208) simplified with (209),

Hr = −γg(x)

ω2
0

dA

dT
+

i

ω0ρ̄0
A(T )

[
δρ̂1
δT

+ ∂x(ρ̂1ū1) + ∂y(ρ̂1v̄1)

]
(252)

+
iA(T )ρ̄0

ω0

(
δΘ̂1

δT
+ ū1∂xΘ̂1 + v̄1∂yΘ̂1

)

+
iA(T )ρ̄0

ω0
(γ − 1)

[
Θ̂1(∂xū1 + ∂yv̄1)

]
− iA(T )

ω0

γ

Pesh2

(
∂yyΘ̂1 − ρ̂1

ρ̄0
∂yyΘ̄0

)
.

Again, we compute this term by term:

• The first term is

ω0

γ

∫∫
dxdyg(x)×

(
−γg(x)

ω2
0

dA

dT

)
= − 1

ω0

dA

dT
. (253)
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• The two functional derivatives give, according to (223),

ω0

γ

∫∫
dxdyg(x)×

(
i

ω0ρ̄0
A(T )

δρ̂1
δT

+
iA(T )ρ̄0

ω0

δΘ̂1

δT

)
(254)

=
iA(T )

γ

∫∫
dxdy

g(x)

ρ̄0
×

(
−2ρ̄0∂T ρ̄0Θ̂1 + iγ

(
ρ̄0
ω0

δg

δT
+

g∂T ρ̄0
ω0

− ρ̄0g∂Tω0

ω2
0

))

= −2iA(T )

γ

∫∫
dxdyg(x)Θ̂1∂T ρ̄0 +

A(T )

ω0

∫∫
dxdyg(x)2

(
∂Tω0

ω0
− ∂T ρ̄0

ρ̄0

)
(255)

= −2iA(T )

γ

∫∫
dxdyg(x)Θ̂1∂T ρ̄0 − A(T )

ω0

∫∫
dxdyg(x)2

∂T ρ̄0
ρ̄0

+
A(T )∂Tω0

ω2
0

. (256)

• The term involving ρ̂1 is,

ω0

γ

∫∫
dxdyg(x)×

(
i

ω0ρ̄0
A(T )(∂x(ρ̂1ū1) + ∂y(ρ̂1v̄1))

)
(257)

= − iA

γ

∫∫
dxdy

(
−ρ̄20Θ̂1 +

iγρ̄0g

ω0

)
×

(
ū1∂x(

g

ρ̄0
) + v̄1∂y(

g

ρ̄0
)

)
(258)

=
iA

γ

∫∫
dxdyΘ̂1

(
ρ̄0g

′ū1 − gū1∂xρ̄0 − gv̄1∂yρ̄0
)

(259)

+
A

ω0

∫∫
dxdyg(x)ρ̄0

(
ū1

g′(x)
ρ̄0

+ ū1g(x)∂xρ̄
−1
0 + v̄1g(x)∂yρ̄

−1
0

)
. (260)

• Other terms read, with the use of (60),

ω0

γ

∫∫
dxdyg(x)× iρ̄0

ω0
A(T )

(
ū1∂xΘ̂1 + v̄1∂yΘ̂1

)
(261)

=
iA(T )

γ

∫∫
dxdyg(x)ρ̄0

(
ū1∂xΘ̂1 + v̄1∂yΘ̂1

)
(262)

= − iA(T )

γ

∫∫
dxdyΘ̂1

(
g′(x)ρ̄0ū1 + g(x)∂x [ρ̄0ū1] + g(x)∂y [ρ̄0v̄1]

)
(263)

=
iA(T )

γ

∫∫
dxdyΘ̂1

(
g(x)∂T ρ̄0 − g′(x)ρ̄0ū1

)
. (264)

• We also have

ω0

γ

∫∫
dxdyg(x)× iρ̄0

ω0
A(T )

(
(γ − 1)Θ̂1(∂xū1 + ∂yv̄1)

)
(265)

= (γ − 1)
iA(T )

γ

∫∫
dxdyΘ̂1g(x)ρ̄0(∂xū1 + ∂yv̄1) (266)

= (1− γ)
iA(T )

γ

∫∫
dxdyΘ̂1g(x) (∂T ρ̄0 + ū1∂xρ̄0 + v̄1∂yρ̄0) . (267)

• Finally, the thermal diffusion term reads

ω0

γ

∫∫
dxdyg(x)×− iA(T )

ω0

γ

Pesh2

(
∂yyΘ̂1 − ρ̂1

ρ̄0
∂yyΘ̄0

)
(268)

= − iA(T )

Pesh2

∫∫
dxdyg(x)

(
∂yyΘ̂1 − ρ̂1

ρ̄0
∂yyΘ̄0

)
. (269)
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All these results provide an expression for S2:

S2 =− 1

ω0

dA

dT
+

A(T )∂Tω0

ω2
0

− iA(T )

Pesh2

∫∫
dxdyg(x)

(
∂yyΘ̂1 − ρ̂1

ρ̄0
∂yyΘ̄0

)
(270)

+
A

ω0

∫∫
dxdyg(x)ρ̄0

(
ū1

g′(x)
ρ̄0

+ ū1g(x)∂xρ̄
−1
0 + v̄1g(x)∂yρ̄

−1
0

)
(271)

− A

ω0

∫∫
g(x)2

∂T ρ̄0
ρ̄0

− iA

∫∫
Θ̂1g(x) (∂T ρ̄0 + ū1∂xρ̄0 + v̄1∂yρ̄0) . (272)

This can be simplified with the continuity equation,

S2 =− 1

ω0

dA

dT
+

A(T )∂Tω0

ω2
0

− iA(T )

Pesh2

∫∫
dxdyg(x)

(
∂yyΘ̂1 − ρ̂1

ρ̄0
∂yyΘ̄0

)
(273)

+
A

ω0

∫∫
dxdy

(
g(x)g′(x)ū1 + g(x)2(∂xū1 + ∂yv̄1)

)
(274)

+ iA

∫∫
Θ̂1g(x)ρ̄0 (∂xū1 + ∂yv̄1) . (275)

C.10 Step 4, part 5: A final expression for the solvability condition

The solvability condition S1 = S2 can finally be expressed, and is after simplification

2

A

dA

dT
− 2

ω0

dω0

dT
= − iω0

Pesh2

∫∫
dxdyg(x)

(
∂yyΘ̂1 − ρ̂1

ρ̄0
∂yyΘ̄0

)
(276)

+

∫∫
dxdyg(x)2(∂xū1 + ∂yv̄1) + iω0

∫∫
Θ̂1g(x)ρ̄0 (∂xū1 + ∂yv̄1) (277)

+
1

Resh2ω2
0

∫∫
dxdy

g′(x)2

ρ̄0
∂yyρ̄

−1
0 − 1

2ω2
0

∫
dxg′(x)2∂Tα (278)

− 1

ω2
0

∫∫
dxdyg′(x)2

(
ū1∂xρ̄

−1
0 + v̄1∂yρ̄

−1
0

)
.

This can still be simplified:

• Note that

− 1

2ω2
0

∫
dxg′(x)2∂Tα =

1

2ω2
0

∫∫
dxdyg′(x)2

∂T ρ̄0
ρ̄20

(279)

= − 1

2ω2
0

∫∫
dxdyg′(x)2

(
∂xū1 + ∂yv̄1

ρ̄0
− ū1∂xρ̄

−1
0 − v̄1∂yρ̄

−1
0

)
. (280)

• Moreover,

iω0

Pesh2

∫∫
dxdyg(x)

(
ρ̂1
ρ̄0

∂yyΘ̄0

)
= iω0

∫∫
dxdyg

(
iγg

ω0
− ρ̄0Θ̂1

)
× (∂xū1 + ∂yv̄1) .

(281)

• The viscous term can also be written, since ∂yyρ̄
−1
0 = ∂yyΘ̄0,∫∫

dxdy
g′(x)2

ρ̄0
∂yyΘ̄0 = Pesh

2

∫∫
dxdy

g′(x)2

ρ̄0
(∂xū1 + ∂yv̄1). (282)
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Therefore, we obtain

2

Aω−1
0

d(Aω−1
0 )

dT
= − iω0

Pesh2

∫∫
dxdyg(x)∂yyΘ̂1 (283)

+

∫∫
dxdy(∂xū1 + ∂yv̄1)

[
(1− γ)g(x)2 +

g′(x)2

ω2
0 ρ̄0

(
Pes
Res

− 1

2

)]
(284)

− 1

2ω2
0

∫∫
dxdyg′(x)2

(
ū1∂xρ̄

−1
0 + v̄1∂yρ̄

−1
0

)
(285)

D Function G for any Γ

The solution of (135) for any value of Γ is obtained with Mathematica,

GΓ(y) =
A+B + C

D
, (286)

where

A = Γ2(y − 1)y
[
45 + Γ

(
46 + 3Γ + y + 3Γy − (9 + 7Γ)y2 + 3(2 + Γ)y3

)]− 30Γ ln(1 + Γy),

B = 3Γ2(Γ+1)y
(−7 + 10y − 5y3 + 2y4

)
ln(Γ)+30(1+Γ)(1+2Γ)y ln(1+Γ)−30 ln(1+Γy),

C = −3Γ(1+Γ)y
(
Γ(−7 + y3(−5 + 2y)

)
ln (Γ(1 + Γ))+20 ln(1+Γy)+10Γy ln (Γ(1 + Γy)) ,

and
D = 1080Γ3 [Γ(2 + Γ) + 2(1 + Γ) ln(Γ)− 2(1 + Γ) ln (Γ(1 + Γ))] .
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The Dynamics of Subglacial Plume Lift-off
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1 Introduction

The melting of the Greenland and Antarctic ice sheets currently contributes approximately
1.1 mm per year of the total 3.3 mm per year rise in global sea-level [1]. Most notably,
Greenland’s contribution to this rate has increased more than 8-fold between 1994 and 2014
[2]. Recent studies have attributed the accelerated mass loss of the Greenland Ice Sheet to
increased melting and ice loss at its marine interface [3–5]. Though much progress has been
made to identify the primary mechanisms driving this enhanced mass loss, many aspects
of this ice-ocean interaction remain poorly constrained. One such aspect is the impact of
subglacial discharge.

Subglacial discharge refers to the release of meltwater from beneath the ice sheet into
the ocean. This meltwater enters the ocean from the grounding line and rises along the face
of a glacier as a turbulent plume. The turbulent mixing that occurs along the plume’s path
enhances submarine melting, and such melting may also promote the calving of icebergs [6–
9]. Recent modeling efforts have shown that the submarine melt rate along a glacier’s front
is sensitive to the spatial distribution of subglacial outlets [10, 11]. In particular, model
results show that a distributed line plume can produce up to five times as much melting as a
single point source with the same discharge [10]. Despite its importance, the near-terminus
hydrology of marine terminating glaciers remains poorly constrained [12]. This is in no
small part due to the immense difficulty of accessing these regions.

The purpose of this project is to further our understanding of near-terminus subglacial
discharge by exploring its dynamics with simple models and lab experiments. Here, we
focus our attention on the transition that occurs as meltwater exits a subglacial channel
and begins to rise as a buoyant plume. We refer to this transition as subglacial plume
lift-off. We are specifically interested in where this lift-off occurs as it defines the extent to
which relatively warm seawater floods a subglacial channel. This will help us determine the
geometry of a subglacial channel’s outlet to the ocean.

In this report, we present simple models for subglacial plume lift-off in a rectangular
channel. This is accompanied by results from a series of laboratory experiments that at-
tempt to replicate the essential dynamics of plume lift-off. We conclude by using our results
to speculate on the extent of seawater intrusion under real-world glaciers.
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2 Theoretical Model for a Salt Wedge

2.1 The estuarine analogy

In the subglacial plume lift-off zone, cold, fresh subglacial water rises into warm, salty
seawater. It is conceivable that, under the right conditions, this lift-off may occur deep inside
the subglacial channel. In this scenario, the ocean floods into the subglacial channel and
undercuts the glacier. We assume that the dynamics of such an intrusion is fundamentally
similar to that of a salt wedge estuary. A salt wedge estuary forms when a fast flowing
fresh river discharges into a saline ocean with weak tidal mixing [13]. In this case, the salt
wedge refers to the intrusion of seawater inside an estuary and coincides with where the
river outflow lifts off the seabed and flows over the ocean [14]. In our case, the salt wedge
refers to the section of the subglacial channel that is filled with seawater. This is illustrated
in Figure 1.

We note that the dynamics of a salt wedge is somewhat similar to that of a two-layer
exchange flow. In a typical two-layer exchange flow, two fluid reservoirs of different densities
exchange mass via a narrow channel [15, 16]. Within the exchange flow’s channel, light fluid
flows above dense fluid in opposite directions. However, the flow within a salt wedge system
is mostly uni-directional as the saline lower layer only partially intrudes the channel and
terminates at a front. We believe the dynamics of a subglacial system is more similar to
that of a salt wedge than a two-layer exchange flow.

2.2 An idealized salt-wedge with no entrainment

θ

freshwater outflow

h2

H
h1

u2

u1
Salt wedge

x
z

Figure 1: Schematic showing a cross-sectional view of a salt wedge in a rectangular channel

The schematic in Figure 1 illustrates an idealized salt wedge in a rectangular channel. Here,
freshwater enters the channel from the right as salt water flows in from the left. The terms
u1 and u2 are the along channel, layer averaged, velocities in the upper and lower layers,
respectively.
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To build our mathematical description of a subglacial salt wedge, we adapt the two layer
salt wedge model presented in [17]. Like [17], we assume that the freshwater and salt water
layers are well mixed and flow at a uniform speed. We likewise assume that the interface
between the two layers is infinitely thin and features no interfacial mixing. However, unlike
[17], which assumes a free upper surface for the top layer, we assume a rigid upper boundary
to better represent the conditions within a subglacial channel. Additionally, we permit the
channel to be tilted at a slight angle θ. Lastly, we restrict the height of the channel H to
be constant but, for generality, permit its width w to vary.

Given the above assumptions, we can model this system using a pair of shallow water
equations. With the stipulation of no entrainment, the continuity equations for the upper
and lower layers are

w
∂h1
∂t

+
∂Q1

∂x
= 0, (1)

w
∂h2
∂t

+
∂Q2

∂x
= 0. (2)

Here, h1 and h2 are the thicknesses of the upper and lower layers, respectively. The
thickness of the individual layers sum to give the height of the channel, H. Similarly, Q1

and Q2 are the volume fluxes of each layer, which in steady state are conserved along the
channel. Continuing with our assumption of no entrainment, the momentum balance for
both layers are given by

∂u1
∂t

+ u1
∂u1
∂x

+
∂P

∂x
+
Ci |u1 − u2| (u1 − u2)

h1
+ Cd u

2
1

(
1

h1
+

2

w

)
= 0 (3)

∂u2
∂t

+ u2
∂u2
∂x

+
∂P

∂x
+ g′

(
∂h2
∂x

+ tan θ

)
− Ci |u1 − u2| (u1 − u2)

h2

+Cd u
2
2

(
1

h2
+

2

w

)
= 0,

(4)

where Ci and Cd are the coefficients for interfacial and wall drag, ∂P/∂x is the along channel
pressure gradient, and g′ is reduced gravity. In (3) and (4), we parameterize the interfacial
and wall drag forces using the quadratic drag law. For interfacial drag, the transfer of
momentum between the two layers is assumed to be proportional to the square of the
difference between the layer-averaged velocities. For wall drag, the loss of momentum is
assumed to be proportional to the square of the flow velocity that is adjacent to the wall.
The 1/h1 and 1/h2 terms in (3) and (4) represent the scaling for drag along the top and
bottom walls of the channel. The 2/w term is the corresponding scaling for drag along both
side walls. If the width of the channel is much greater than its height, the effect of side wall
drag is negligible.

Reduced gravity is defined as

g′ =
∆ρ

ρ0
g, (5)
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where ∆ρ is the density difference between the two layers, g is the acceleration due to gravity 
and ρ0 is a reference density. If the temperature of the two layers are the same, ∆ρ/ρ0 may be 
approximated by

∆ρ

ρ0
= β∆S, (6)

where ∆S is the salinity difference between the two layers and β ∼ 8× 10−4 PSU−1 is the
haline contraction coefficient [17].

The along channel pressure gradient, ∂P/∂x, serves a similar role to the hydrostatic
pressure gradient induced by the sea surface slope gradient in a salt wedge estuary. In that
system, the sea surface slopes downward towards the ocean and forces flow in the seaward

direction. This is distinct from the force represented by g′
(
∂h2
∂x

)
, which acts to drive flow

that flattens the interface between the two layers.
To simplify the system, we assume a steady state where the freshwater volume flux,

Q1, is constant and the lower layer is stagnant (u2 = 0). Furthermore, we assume that
freshwater flow is always positive (Q1 > 0). Additionally, we substitute the upper layer
velocity u1 in the momentum equations in favor of the upper layer volume flux by using the
relationship u1 = Q1/w h1, to obtain

Q2
1

w h1

∂

∂x

(
1

w h1

)
+
∂P

∂x
+ Ci

(
Q1

w h1

)2 1

h1

+Cd

(
Q1

w h1

)2( 1

h1
+

2

w

)
= 0,

(7)

∂P

∂x
= Ci

(
Q2

1

w2 h21h2

)
− g′

(
∂h2
∂x

+ tan θ

)
, (8)

where have used h2 = H − h1 for constant H. Combining the above equations and doing
some algebra, we find

− Q2
1

g′w2h31

(
∂h1
∂x

+
h1
w

∂w

∂x

)
+ Ci

Q2
1

g′w2h21(H − h1)
+
∂h1
∂x
− tan θ

+Ci
Q2

1

g′w2 h31
+ Cd

Q2
1

g′w2h31

(
1 +

2h1
w

)
= 0.

(9)

At this stage, we define the non-dimensional upper layer Froude number as

Fr21 =
Q2

1

g′w2 h31
=

u21
g′h1

. (10)

By this definition, the upper layer Froude number varies in the along channel direction as
h1 and u1 vary. When Fr1 = 1, the flow is said to be critical. Flows for which Fr1 > 1
and Fr1 < 1 are classified as supercritical and subcritical, respectively. We also define the
Froude number for the special case where h1 = H as

Fr20 =
Q2

1

g′w2H3
= Fr21

(
h1
H

)3

. (11)
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Fr0 is known as the freshwater Froude number [17]. Using (10), we re-write the previous
equations as

(Fr21 − 1)
∂h1
∂x

= Fr21

[
Ci

(
H

H − h1

)
+ Cd

(
1 +

2h1
w

)
− h1
w

∂w

∂x

]
− tan θ. (12)

The above equation describes the shape of a steady, non-entraining salt wedge in a
rectangular channel, with variable width w and constant tilt θ. To gain some insight, we
first consider the simpler case of a horizontal channel (θ = 0) with constant width, for which

(Fr21 − 1)
∂h1
∂x

= Fr21

[
Ci

(
H

H − h1

)
+ Cd

(
1 +

2h1
w

)]
. (13)

The salt wedge is defined as the distance between the freshwater lift-off point (i.e. the
nose of the wedge) and the point at which Fr1 = 1. For convenience, we designate x = −L
as the freshwater lift-off point and x = 0 as the point where the flow becomes critical. In
this framework, the length of wedge is given by L. Additionally, Fr1 = 1 at x = 0 and
Fr1 = Fr0 at x = −L. To obtain the full shape of the wedge, we begin our integration of
(13) from the point of critical flow, at x = 0. Since Fr1 = 1 at x = 0, this determines h1
at that boundary1. The integration is carried out in the negative x-direction (towards the
freshwater source) until h1 ≈ H. Through this process, we can determine the freshwater
liftoff point and the length of the salt wedge L.

Since the terms on the right of (13) are always positive, supercritical flow in the upper
layer results in ∂h1/∂x being positive. This means the freshwater layer will expand upon
encountering the salt wedge and continue to do so until it becomes subcritical. However,
if Fr20 > 1, subcritical flow cannot occur within the channel. Therefore, a salt wedge
cannot exist in a flat, uniform channel where Fr20 > 1. If the upper layer flow is subcritical
(Fr21 < 1 and thus Fr20 < 1), (13) predicts that the upper layer will decrease in height upon
encountering the salt water layer. Unlike the supercritical case, this is conducive to a tw-
layer flow and potentially a salt wedge.

If h1 decreases indefinitely in the downstream direction, there must be a point along the
channel where Fr21 = 1. However, at this point, (13) becomes singular and thus appears to
preclude the existence of such a flow. This apparent paradox can be avoided if we return
to the more general case of a channel with variable width. If the width of the channel
expands in the downstream direction, it is possible for the right of (12) to sum to zero. If
that is case, the flow becomes critical wherever (h1/w) (∂w/∂x) balances the other terms in
(12). More importantly, this permits the formation of a salt wedge. Alternatively, we can
avoid this breakdown of our model by specifying that Fr1 = 1 at the mouth of the channel,
thereby establishing a hydraulic control at x = 0.

To summarize, a steady salt wedge can only occur if the flow in the freshwater layer is
subcritical. Furthermore, for a salt wedge to occur in a horizontal rectangular channel with
uniform cross-section, critical flow must occur outside the channel. More generally, critical
flow can only be supported by a change in channel geometry.

1For practical purposes, we set Fr1 = 1− ε at x = 0 to avoid the singularity associated with critical flow.
For these simulations, ε = 10−4.
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Figure 2 shows solutions of equation 12 for a 10m channel with various freshwater flow
velocities. The stated flow velocities are the freshwater flow rates that are imposed at the
x = −L boundary, where the plume lifts off the channel. The parameters used for this
integration reflect that of a shallow estuary. Here, it is assumed that the width of the
channel is much greater than its height and that there is no drag along the upper surface.
Following [17], we set Ci = 10−4, which is a value that is typical of salt-wedge estuaries.

Though this example is somewhat contrived, it allows us to visualize some key features
of a salt wedge. In Figure 2, we see that the slope of the interface is steepest at both ends
where h1 ≈ H and h1 ≈ 0. This is expected since h1 = 0 and h1 = H are singularities in
equation 12. Additionally, Figure 2b suggests an inverse relationship between the freshwater
flow speed and the equilibrated wedge length.

For the parameters chosen in this example, the wedge length is much longer than its
height. However, this aspect ratio is set by the interfacial drag coefficient, which in this
case is 10−4. More generally, the wedge aspect ratio is dependent on some combination of
the interfacial and wall drag coefficients, which are generally not known.
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(b) Wedge length versus freshwater Froude number (Fr2
0 = u2/g ′H)

Figure 2: (a) Numerical solutions of equation 12 for a flat estuarine channel with various
freshwater flow rates imposed at x = −L. For this example, H = 10m, g′ = 0.25 ms−2

and Ci = 10−4. The value g′ = 0.25 corresponds to a freshwater and saltwater layer with
salinities of 0 PSU and 25 PSU respectively. (b) Wedge length versus freshwater Froude
number for the solutions shown in the top plot.

3 Laboratory Experiments

3.1 Experimental set-up

The main goals of these laboratory experiments are to test the theory outlined in the
previous section and to obtain a scaling relationship that allows us to predict the extent of
seawater intrusion in a hypothetical subglacial channel. Figure 3 provides a schematic of
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our experimental setup.

Freshwater inflow

Mixed layer 
Overflow

Salt water 
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Freshwater 
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Figure 3: A schematic detailing the salt wedge experiments.

For all experiments, freshwater was pumped through a narrow rectangular duct into a
much larger tank filled with saline water. The salt water tank was approximately 150 cm
long, 16 cm wide and 35 cm deep The rectangular duct/channel was approximately 100
cm long and had an inner cross-section of 2.1 x 2.1 cm2. This experimental configuration

chosen so that a steady salt wedge would develop within the rectangular channel for
the range of flow rates that could be supplied by the freshwater pump.

For these experiments, there were three main control parameters: the freshwater flow
rate, the salinity of the main tank and the slope of the rectangular channel. The freshwater
flow rated was varied using an adjustable pump over an approximate range of 5-30 cm3/s.
After careful calibration, this allowed us to precisely set the volume flux of freshwater into
the tank. The tank or ambient salinity was varied by mixing local seawater (∼33 PSU) with
various amounts of freshwater. The tube slope was adjusted via a simple pulley system.

If we define the Reynolds number as

Re =
uH

ν
, (14)

where u is the imposed freshwater velocity prior to lift-off, H is the height of the channel and
ν = 10−6 m2/s is the kinematic viscosity. The imposed flow rate of 5-30 cm3/s corresponds
to a Re range of 250-1400.

Once set, the freshwater flow rate and tube slope remained fixed during an experiment.
However, over the course of an experiment, a mixed layer would form at the top of the
tank and grow overtime. To minimize the impact of this dilution, experiments were termi-
nated when the depth of the diluted mixed layer grew to fill the upper two-thirds of the
tank. To delay the recirculation of this diluted water to the opening of the rectangular
channel, a styrofoam block was inserted above the channel’s outlet. This styrofoam block
was approximately 10cm high and spanned the width of the tank to form a partial dam.

To maintain a constant water level within the tank, a siphon into the mixed layer. In
some runs, the salt water within the tank was replenished via a pump that was connected to
a larger salt water reservoir. By tuning the siphon’s drainage rate and salt water inflow rate,
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it was possible to maintain a quasi-steady mixed layer depth and thus maintain constant
ambient salinity at the level of the rectangular channel for an extended period of time.

3.2 Experimental procedure and data processing

The first set of experiments were conducted with the tank filled with seawater and the
rectangular channel in a horizontal position (θ = 0). With the freshwater pump turned on,
the flow rate was held constant until a salt wedge appeared and visibly came to rest within
the channel. Once that was realized, the flow rate was adjusted and held constant until
the salt wedge evolved to a new equilibrium. This was repeated several times and came to
end when the surface mixed layer began to encroach the lower third of the tank. At the
end of an experimental run, the tank was drained then refilled with salt water for the next
experiment.

A second set of experiments was conducted using seawater mixed with different amounts
of freshwater to produce solutions with salinities that range from 16-33 PSU. A third set of
experiments was conducted with the channel tilted at small positive angles as indicated in
Figure 3.

Each experiment was video recorded with a digital camera that was mounted on a tripod
facing the tank. The camera height was adjusted so that it was approximately level with
the channel. To highlight the interface between the two layers, the inflowing freshwater was
dyed blue and the tank was backlit by a diffuse light source. An image of the salt wedge,
as observed during an experiment, is provided in Figure 4.

Figure 4: A closeup image of a part of the rectangular channel during an experiment. Here,
a salt wedge is observed in the lower half of the tube. For reference, the height of the tube
is 2.1 cm

To obtain quantitative data from these experiments, the video recordings were converted
to a series of images sampled at every second. To identify the interface between the layers,
the images were analyzed through their red channel. Since the dyed water was almost
completely opaque to red light, the red channel provided the sharpest contrast between the
two layers - much more so than the green and blue channels. This contrast was exploited
through the use of a simple red-light intensity threshold. This thresholding was applied to
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vertical sections of the tube in the image. Starting from the saline layer at the base of the
tube, the interface was taken to be wherever the red light intensity fell below 10% of its
maximum value. The majority of this process was automated with a set routines written
in Python.

4 Horizontal Channel Experiments

4.1 Results summary

Figures 5 - 6 show example results for a single experimental run. In this run, the freshwater
inflow was gradually reduced in five steps. The leftmost, dark blue bold line in Figure 5
indicates the initial equilibrated wedge position. Subsequent bold lines indicate the wedge
position just before the pump speed was adjusted. This shows that the image processing
algorithm was able to cleanly resolve the shape of the wedge.

Figure 5: The evolution of a salt wedge for a horizontal channel experiment. Here, the
freshwater volume flux was gradually reduced in five steps. Each line represents the position
of the salt wedge interface at a 5 second interval. The bold lines indicate the final wedge
position just before the freshwater volume was changed.

Figure 6a shows the evolution of the salt wedge length over the duration of the exper-
iment. This plot confirms the salt wedge approached an equilibrium position before each
step-change in the freshwater flow rate. In subsequent runs, this experiment was repeated
in reverse to ensure that these longer wedge lengths did in fact reach their equilibrium
positions. The right plot of Figure 6 shows the wedge length has an apparent inverse re-
lationship with the freshwater volume flux. This relationship bears close resemblance to
theoretical curve previously shown in Figure 2.
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(b) Equilibrium wedge length versus volume flux

Figure 6: (a) Wedge length versus time for the volume fluxes shown Figure 5. The vertical
dashed lines indicate when the freshwater flow rate was ramped down to a new value. (b)
Equilibrated wedge length versus the freshwater volume flux.
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(b) Equilibrium wedge length versus freshwater Froude Number

Figure 7: (a) Plot showing results for all horizontal channel experiments. Dark circles
represent experiments with pure seawater. Colored squares represent experiments done with
diluted seawater. Multiple data points are plotted for repeated runs. The ambient salinity
S0 for each experiment is provided in the legend. (b) Results for horizontal experiments
rescaled in terms of the freshwater Froude number Q2/(g′H3w2).

Figure 7 shows the results for all horizontal channel experiments. Experiments with
pure seawater are indicated by black circles. As indicated by the overlapping data points,
most of these experiments were repeated several times at the same freshwater flow rate.
The colored dots show results for runs done with diluted seawater. Three different seawater
to freshwater ratios (3:1, 2:1 and 1:1) were used to produce tank salinities of 24.75 PSU,
22 PSU and 16 PSU. We observe that decreasing the tank salinity, and thus the density
difference between the two fluids, reduces the length of the salt wedge for a given flow rate.
This is consistent with our theory as reducing the density difference between the two layers
is expected to reduce the tendency of the saline layer to slide under the fresh layer.

The effect of varying ambient salinity is mostly accounted for by rescaling the freshwater
volume flux by each experiment’s reduced gravity g′. This is shown in the lower plot of
Figure 7, which compares the equilibrium wedge length with the non-dimensional freshwa-
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ter Froude number. With this rescaling, the results mostly collapse along a single curve.
However, we note that the runs done with the lower ambient salinities are still slightly
offset from the other experiments. This slight discrepancy suggests the effect of varying the
ambient salinity is not completely captured by g′.

4.2 Comparison with theory

Our next step is to compare the results described in the previous section with our theoretical
expectations. The interface slope equation for a flat rectangular duct is given by (13) and
is reproduced here for convenience

(Fr21 − 1)
∂h1
∂x

= Fr21

[
Ci

(
H

H − h1

)
+ Cd

(
1 +

2h1
w

)]
.

From our experiment, we have direct measures of all values in the above equation except
the wall and interfacial drag coefficients. Though there is a rich literature devoted to the wall
drag experienced by single layer pipe flows [18–20], there is very little experimental precedent
for the two-layer salt wedge system described here. Moreover, it is not immediately obvious
that the wall drag scaling developed for single layer flow is appropriate for this particular
two layer flow. Furthermore, we have no a priori knowledge for the value of the interfacial
drag coefficient. Our recourse is to approximate these coefficients from the experimental
data.

To accomplish this, we first reduce our number of unknowns to one by considering three
limiting cases: Ci = Cd, Ci = 0 and Cd = 0. Next, we rescale the x-coordinate in our model
such that x = Co x̂, where Co = Ci and/or Co = Cd depending the limiting case being
considered. Doing this eliminates the drag coefficients from our model and gives

∂h1
∂x̂

=
Fr21

(Fr21 − 1)

(
1 +

2h1
w

)
for Ci = 0, (15)

∂h1
∂x̂

=
Fr21

(Fr21 − 1)

(
H

H − h1

)
for Cd = 0, (16)

∂h1
∂x̂

=
Fr21

(Fr21 − 1)

[(
H

H − h1

)
+

(
1 +

2h1
w

)]
for Cd = Ci. (17)

For each case, we find solutions for the scaled wedge lengths L̂ using the flow parameters
from our experiments. With these theoretical wedge lengths, we then find Co such that
L = Co L̂. We accomplish this by performing a linear least-squares fit for each L̂ versus L
distribution. The result of this analysis is shown in Figure 8.
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Figure 8: Plot showing scaled theoretical wedge lengths L̂ versus experimental wedge lengths
L for the three cases described by equations (15)-(17). The blue, green and red dots
represent solutions for L̂ assuming Ci = 0, Cd = 0, and Cd = Ci, respectively. The colored
dashed lines represent the best fit line for each distribution. Here, the best fit line is forced
to pass through y = 0.

The result of this analysis is shown in Figure 8, which plots the scaled theoretical wedge
lengths L̂, from equations (15)-(17), against their measured counterparts. Here, we have
forced the best fit line to pass through y = 0. For each case, we see that the relationship
between L̂ and L is somewhat linear. The R-squared value for each fit is somewhat good
(R2 ∼ 0.8) but the best fit lines generally lie above the data points associated with shorter
wedges. This indicates that assuming Co L̂, where Co is the slope of the best fit line, will
generally underestimate the salt wedge length for higher flow rates or Froude numbers.
Figure 9 shows that this is the case.
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Figure 9: Data from Figure 7 overlain with theoretical curves for the three limiting cases
described by (15)-(17). Here, the drag coefficients are assumed to be constant.

This discrepancy suggests that the relationship between L̂ and L is not truly linear.
A closer examination of Figure 8 reveals that the distribution of data points at shorter
wedge lengths have a smaller slope than those at longer wedge lengths. Since shorter wedge
lengths are associated with higher flow rates, this result suggest that the drag coefficients
have an inverse relationship with the freshwater flow rate. This inverse relationship is well-
established for the case of single layer pipe flow. For laminar flow pipe flow (Re < 2000),
the Darcy friction factor fD for wall drag is given by

fD =
64

Re
, (18)

where fD = 8Cd [18, 19]. This formulation suggests we should instead model our drag
coefficients as

Cd =
C̃d

Re
, (19)

Ci =
C̃i

Re
, (20)

where is Re is given by (14). With this parameterization for the drag coefficients, we repeat
the previous analysis now seeking values of C̃d and C̃i that best match our experimental
data. For each case, our scaled salt wedge model is given by
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1
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H
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)
+

(
1 +

2h1
w

)]
for C̃d = C̃i. (23)

The result of this analysis is shown in Figure 10. In this case, the relationship between
the scaled theoretical wedge lengths and the measured wedge lengths are well approximated
by a straight line that pass through y = 0. Additionally, the quality of the line fits are
significantly better (R2 > 0.9). However, we note that in this case, Ci = 0 assumption
produces a linear fit that is notably worse than the others. As expected, we see that the
theoretical wedge lengths now have a much better agreement with the data (Figure 11).
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Figure 10: Like Figure 8 but now showing solutions for L̂ for (21)-(23), which assume the
drag coefficients are inversely proportional to Re.
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to Re.

From our regression analysis, we find that the Cd = 0 and Ci = Cd scenarios produce
theoretical wedge lengths that have equally good agreement with our data. When Ci = Cd,
the best agreement is obtained when

Ci = Cd ≈
7

Re
. (24)

This result is similar to the drag parameterization for laminar flow in a pipe [18]. We
note that this result can only be validated for the range of Froude numbers we tested in the
laboratory.
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Figure 12: Comparisons between observed and theoretical wedge shapes. The observations
are from a single run where the freshwater flow rate was varied back and forth between 6.7
cm3/s and 14.2 cm3/s. Data from the higher freshwater flow rate run are represented by
the lower distribution of purple-red dots; the greenish dots represent the data for the higher
flow rate. The black dashed lines represent the theoretical solution for each distribution.
The theoretical wedge shapes were obtained by assuming Ci = Cd ≈ 7/Re.

Next, we compare the shape of the observed salt wedge to that predicted by theory.
Figure 12 shows direct comparisons between theoretical (black dashed lines) and observed
(colored dots) interface shapes. The observations chosen here are for a single experimental
run where the freshwater flow rate was varied between two flow rates that almost span
the range of flow rates used throughout the experiments. In this example, we see that the
observed wedge shapes agree reasonably well with our theoretical expectations.

5 Sloped Channel Experiments

5.1 Results summary

The experimental results described thus far have all been in the laminar regime (Re ∼
250-1400). In each case, the interface between the salt and freshwater layers was always
well defined and resembled the image shown in Figure 4. While this bodes well for our no-
entrainment theory, the real subglacial system (with its much larger scales) is well within
the turbulent regime. Thus, the final phase of this experiment, was an attempt to observe
the salt wedge in a more turbulent state with significant interfacial mixing.
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Figure 13: Solutions of (12) for a fixed freshwater flow rate at different channel slopes. For
these simulations Q1=15 cm3/s, H = w = 2.1cm, g′ = and Ci = Cd ≈ 7/Re.

Given the narrow constraints of the rectangular channel and the limited range of the
pump, the best way to achieve a state of significant interfacial mixing was to tilt the tube
so that freshwater layer flowed upwards into the salt water tank. Introducing an upwards
tilt allowed the freshwater layer to accelerate under the influence of its own buoyancy. This
also introduced an additional tendency for the salt water layer to flow down slope into
the channel. Together, both effects act to enhance the velocity shear across the interface
((u1−u2)/H). This tendency is captured by the original theory as demonstrated in Figure
13.
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(b) Equilibrium wedge length versus freshwater Froude Number

Figure 14: Equilibrium wedge length as in Figure 7, but for sloped channel experiments

Results for the sloped channel experiments are shown in Figure 14. As predicted by
(12), increasing the channel slope produces longer salt wedges for a given flow rate. These
results are for experiments conducted at relatively shallow channel slopes. At 3.3◦, the
steepest angle shown in Figure 14, the salt wedge still showed no signs of entrainment.

However, at slightly steeper channel slopes and higher freshwater flow rates, small am-
plitude interfacial waves began to appear. At even steeper slopes and higher freshwater flow
rates, these interfacial waves grew and eventually began to overturn. At the steepest slopes
obtained with the tank (θ ∼ 8◦), the salt wedge transitioned into what visibly appeared to
be an unsteady flow with significant interfacial mixing.
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Figure 15: Rotated images showing the time evolution of interfacial waves inside a “steeply”
sloped channel. For this experiment, the channel was tilted at 7.8◦ and the freshwater flow
rate was set to 28 cm3/s. In the top image, the red and blue arrows indicate the direction
of the upper and lower layer flows while the orange bar shows the approximate position of
the salt wedge.

Figure 15 shows rotated image snapshots of breaking interfacial waves in the wake of a
salt wedge inside a channel tilted at 7.8◦. For this run, the freshwater flow rate was held
at 28 cm3/s for just over 12 minutes. For the latter part of this run, the nose of the salt
wedge occupied roughly the same position within the channel. During this period, the flow
downstream of the salt wedge displayed episodic bursts of interfacial mixing, an example of
which is presented in Figure 15.

At t = 0 seconds in Figure 15, the region downstream of the salt wedge was in a relatively
quiescent state. Approximately five seconds later, a pulse of salt water entered the channel
from the left. As this pulse of salt water travelled down the channel, it created wave-
like disturbances that overturned and causing mixing across the interface (t = 10 − 20s).
During this time, the salt wedge gradually contracted in size. The end result of this intense
mixing was an intermediate layer of mixed fluid that continued to flow down the tube. At
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t = 35s, the now diluted pulse of salt water replenished the salt wedge and the two layer
flow returned to its initial quiescent state.

Such strong mixing episodes clearly violate the no-entrainment assumption used to build
the earlier theory. We must therefore revise our theory to account for this new behavior.

6 Revised Theory for a Salt Wedge with Entrainment

6.1 Derivation

θ

freshwater outflow

Salt wedge h2

H
h1

u2

u1

x

z

Figure 16: Schematic showing a cross-sectional view of a salt wedge in a sloped rectangular
channel - now including entrainment.

With entrainment, the upper and lower layer continuity equations are given by

∂h1
∂t

+
∂q1
∂x

= e, (25)

∂h2
∂t

+
∂q2
∂x

= −e, (26)

where e is the entrainment rate, q1 = h1 u1 and q2 = h2 u2. The entrainment rate e has
units of velocity and is parameterized in terms of the velocity difference between the layers

e = E (u1 − u2). (27)

where E is an entrainment coefficient. Summing the continuity equations, we see that the
total volume flux is conserved along the channel

q1 + q2 = q0. (28)
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Likewise, salt conservation is given by

∂

∂t
(S1 h1) +

∂

∂x
(q1 S1) = eS2, (29)

∂

∂t
(S2 h2) +

∂

∂x
(q2 S2) = −eS2, (30)

where salinities within each layer, S1 and S2, are assumed to be uniform. Using (25) and
(26), the salt conservation equation becomes

h1
∂S1
∂t

+ q1
∂S1
∂x

= e(S2 − S1), (31)

h2
∂S2
∂t

+ q2
∂S2
∂x

= 0. (32)

During entrainment, the upper layer expands and becomes more saline while the lower
shrinks and maintains its salinity. In other words, entrainment is directed from the lower
layer to the upper layer. Furthermore, S2 is constant and determined by its value at the
mouth of the channel.

As before, reduced gravity is given by

g′ =
ρ2 − ρ1
ρ0

g = β (S2 − S1)g (33)

where β is the saline contraction coefficient. Using the above relation, we can re-write the
upper layer salt budget as an equation for g′

h1
∂g′

∂t
+ q1

∂g′

∂x
= −e g′. (34)

The momentum conservation equations are given by

∂u1
∂t

+ u1
∂u1
∂x

=
G1

h1
− Cd u

2
1

(
1

h1
+

2

w

)
− Ci

(u1 − u2)2

h1
+
e(u2 − u1)

h1
, (35)

∂u2
∂t

+ u2
∂u2
∂x

=
G2

h2
+ Cd u

2
2

(
1

h2
+

2

w

)
+ Ci

(u1 − u2)2

h2
, (36)

where

G1 =− ∂P

∂x
− ρ1 g tan θ − 1

2
h1 ρ1

∂g′

∂x
, (37)

G2 =− ∂P

∂x
− ρ1 g tan θ − ρg′

(
tan θ − ∂h1

∂x

)
. (38)

These momentum equations are analogous to the ones introduced earlier for the no-
entrainment case. Here, there are new additions that account for momentum exchange
between the two layers due to entrainment and the fact that g′ can now vary in the along
channel direction.
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After subtracting (36) from (35) and doing some simplifications, we arrive at

∂

∂t
(u1 − u2) + u1

∂u1
∂x
− u2

∂u2
∂x

= g′
(

tan θ − ∂h1
∂x

)
− 1

2
g′x h1

−Cd

[
u21
h1

(
1 +

2h1
w

)
+
u22
h2

(
1 +

2h2
w

)]
− Ci (u1 − u2)2

(
1

h1
+

1

h2

)
− E (u1 − u2)2

h1
.

(39)

The four main variables of interest are u1, u2, h1 and g′. These variables can be evaluated
using equations (25), (28), (34) and (39) provided the parameters q0, θ, E,Cd and Ci are
specified. In steady state, our four independent equations are

q1 + q2 = q0, (40)

∂q1
∂x

= E (u1 − u2), (41)

q1
∂g′

∂x
= −E (u1 − u2) g′, (42)

u1
∂u1
∂x
− u2

∂u2
∂x

= g′
(

tan θ − ∂h1
∂x

)
− 1

2
g′x h1 − Cd

[
u21
h1

(
1 +

2h1
w

)
+
u22
h2

(
1 +

2h2
w

)]
− Ci (u1 − u2)2

(
1

h1
+

1

h2

)
− E (u1 − u2)2

h1
.

(43)

For the sake of generality, we non-dimensionalize the above system of equations using
the following scaling relationships: x = Lx̂, h1 = Hĥ1, h2 = Hĥ2, w = Hŵ, u1 = Uû1,
u2 = Uû2, g

′ = g′oĝ
′ and q1 = HUq̂1. Here, H = h1 + h2 is the height of the channel and

U is a characteristic velocity scale, which we define as U =
√
g′0H. This allows us to state

the upper and lower layer Froude numbers as

Fr21 =
u2

g′h1
=

U2 û2

g′0Hĝ
′ĥ1

=
û21

ĝ′ĥ1
, (44)

Fr22 =
û22

ĝ′ĥ2
. (45)

In this non-dimensional framework, our system parameters can be written as

tan θ =
H

L
Ŝ, (46)

Cd =
H

L
Ĉd, (47)

Ci =
H

L
Ĉi, (48)

E =
H

L
Ê, (49)

q0 =
q̂0
H U

. (50)
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With these choice of scalings, our non-dimensional conservation equations have the exact
form as the original dimensional equations ((40) - (43)). For the sake of convenience and
at the risk of confusion, we now drop the hats off the non-dimensional variables.

Using u1 = q1/h1 and u2 = q2/h2, we re-write the momentum equations in terms of
volume fluxes as

(
q1
h21

+
q2
h22

)
∂q1
∂x
−
(
q21
h31

+
q22
h32
− g′

)
∂h1
∂x

= g′S +
1

2
h1

q0
q21

∂q1
∂x

−Cd

[
q21
h31

(
1 +

2h1
w

)
+
q22
h32

(
1 +

2h2
w

)]
−
(

Ci

h1h2
+
E

h1

)(
q1
h1
− q2
h2

)2

.

(51)

Here, we have made use of the fact that h1 +h2 = 1 and q1 +q2 = q0 in our non-dimensional
framework. Additionally, by combining (41) and (42), we find

∂

∂x
(q1 g

′) = 0. (52)

This means the along slope buoyancy flux q1 g
′ is conserved in this model. Moreover,

from our definition of g′, it follows that g′ = 1 upstream of the salt wedge where the
freshwater layer fills the entire channel. Since the total volume flux is given by q0, it follows
that

g′ =
q0
q1
. (53)

With some rearrangement to (51), we can now completely outline our model for an
entraining salt-wedge in a sloped channel as

h1 + h2 = H = 1, (54)

q1 + q2 = q0, (55)

∂q1
∂x

= E

(
q1
h1
− q2
u2

)
, (56)

Γ
∂q1
∂x
−
[
Fr21 + Fr22 − 1

] ∂h1
∂x

= S − Cd

[
Fr21

(
1 +

2h1
w

)
+ Fr22

(
1 +

2h2
w

)]
−
(

Ci

g′h1h2
+

E

g′h1

)(
q1
h1
− q2
h2

)2

,

(57)

where Γ = 1
g′

(
q1
h2
1

+ q2
h2
2
− 1

2
h1q0
q21

)
. In the previous non-entraining case, the flow was critical

when Fr1 = 1. Here, critical flow occurs when the composite Froude number G2 = Fr21 +
Fr22 is unity. It should be noted that when E = 0, equations (55)-(57) reduce to equation
13 - the original salt-wedge model that did not permit entrainment.

As before, x = 0 is defined to be where the flow becomes critical, which here is where
G2 = 1. At the nose of the wedge, where x = −L, h1 = 1 and q1 = q0. In the non-entraining
case, we found solutions for h1 by starting our integrations at x = 0, where Fr21 = 1, and
integrating in reverse until h1 ≈ H. In that case, the critical point is associated with a
unique value for h1. However, in this case, there are many possible combinations of h1 and
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h2 for which G2 = 1. For this reason, we begin the numerical integrations at x = −L where
h1 = H2 and continue forward until G2 = 1. Once this criteria is met, L can be determined.

6.2 Simulations

In this section, we present simulations of our revised salt wedge model that permits en-
trainment. For these simulations, we assume a rectangular channel with a 2.1 cm ×2.1
cm cross-section, similar to the one used in the laboratory experiments. At the boundary
x = −L, the integrations were initialized with a 15 cm3/s freshwater flux, which is again
similar to what was used in some of the laboratory experiments. As described earlier,
integrations were done in the positive x direction and came to end when G2 = 1.

Following [6], we model the entrainment coefficient E as

E = Eo sin θ, (58)

where θ is the slope of the channel and Eo is some constant. With this parameterization,
entrainment is only permitted for non-zero channel slopes.

2Similar to the method for the non-entraining simulations, we specify h1 = H − ε at x = −L to avoid the
singularity associated with zero lower layer thickness with ε = 10−4.
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Figure 17: Figure showing solutions for the two-layer salt wedge model with entrainment
for various channel slopes and entrainment coefficients. Rows: (From top to bottom) Solu-
tions for along channel interface height, upper (solid lines) and lower (dashed lines) layer
velocities, composite Froude number and reduced gravity. Columns: Solutions for various
channel slopes θ. From left to right: θ = 1◦, θ = 2.5◦, θ = 5◦. These simulations were for a
rectangular tube with a 2.1 cm ×2.1 cm cross-section. The upper layer flow was set to 15
cm3/s at x = −L. Additionally, Ci = Cd ≈ 7/Re.

Solutions for our two-layer salt wedge model for various channel slopes and entrainment
coefficients are shown in Figure 17. Figure 17 a-d show simulations for various entrainment
coefficients for a channel with a 1◦ slope. The values for the entrainment coefficients range
from Eo = 0.018 to Eo = 0.36, corresponding to half and ten times the value used by [6].

In Figure 17a we observe that increasing the entrainment rate reduces the length of
the salt wedge. This is because higher entrainment leads to a more rapid thinning and
acceleration of the lower layer. Since the Froude number is inversely proportional to layer
thickness, the acceleration of the initially thin lower layer drives a quick increase in the
composite Froude number and thus a fast approach to critical flow (Figure 17 b-c). As
expected, the reduced gravity decreases more rapidly in the along channel direction with
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higher entrainment (Figure 17d).
Figure 17 e-h show similar results for a channel slope of 2.5◦. In the non-entraining case,

increasing the channel slope increases the length of the salt wedge for a given freshwater
flux. Here, we observe that this response depends on the entrainment efficiency. For low
entrainment efficiency, a steeper channel slope leads to a longer wedge (for example, the
case for Eo = 0.018 in Figure 17 a, d), but at higher entrainment rates, a steeper channel
can lead to a shorter wedge. The reason for this is two-fold. First, with our parametrization
of entrainment (equation 58), increasing the channel slope results in a direct increase in the
entrainment rate. Second, increasing the slope of the channel enhances the velocity shear
across the two layers, which also enhances entrainment. Both effects tend produce shorter
salt wedge intrusions due to their effect on the lower layer thickness and composite Froude
number.

At θ = 5◦, we see the dominating effects of entrainment (Figure 17 i-l). The salt wedges
produced by these simulations are all shorter and thinner than the previous cases. This
behavior is again dominated by the rapid increase in Fr22.

While these simulations are illuminating, they do not reproduce the initial expansion and
subsequent contraction of the salt wedge downstream of its nose as shown in Figure 15. This
points to several limitations of our salt wedge model. One reason for this discrepancy is that
our salt wedge model has no time dependence. The mixing observed in the lab was driven
by the intermittent breaking of interfacial waves. Therefore, accurate representation of this
process may require a time dependent model. Second, our entrainment model assumes that
momentum and mass from the lower is efficiently mixed throughout the upper layer. In
contrast, the mixing observed in the laboratory was mostly concentrated near the two-layer
interface. One could think of the laboratory observations as a case where the entrainment
efficiency is relatively low. However, a more appropriate model for this type of mixing may
be a three layer model, where entrainment results in the expansion of an intermediate layer
with mixed fluid. Nevertheless, these simulations represent a significant improvement over
the non-entraining model and will form the basis for future theoretical development.

7 Seawater Intrusions in a Realistic Subglacial Channel

As a final exercise, we use the salt wedge model developed in the previous section to predict
the extent of seawater intrusions under real-world glaciers. For this exercise, we will assume
a 10m by 10m channel that is oriented at a very shallow slope θ ≤ 1. For this channel,
we find a range of subglacial discharge rates that produces freshwater Froude numbers Fr0
between 0.2 and 0.9. Here, we note that our empirically derived drag coefficients are only
valid for laminar flow and do not apply to this much larger system with Re ∼ 107. From
pipe flow theory, the wall drag coefficient is expected asymptote to some mean value (which
will depend on wall roughness), rather than rapidly approach zero at very large Re [18]. As
a matter of convenience, we simply assume Cd = Ci = 7/1000 - the approximate value for
laminar flow when Re = 1000.
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Figure 18: Solutions of salt wedge intrusions using parameters representative of a subglacial
outlet. (a) Equilibrium salt wedge length versus subglacial discharge at x = −L for different
entrainment coefficients as represented by (58). (b) Equilibrium salt wedge length versus
freshwater Froude number Fr0. For this simulation, we assume a 10m by 10m subglacial
channel and a range of subglacial discharge rates that produce Fr0 values between 0.2 an
0.9. Since this system is well within the turbulent regime (Re ∼ 107), we assume constant
drag coefficients Cd = Ci = 0.007.

The results of this simulation are shown in Figure 18. Here, the equilibrium salt wedge
length represents the extent of seawater intrusion into the subglacial channel. For a channel
of this size, a Fr0 range of 0.2 - 0.9 corresponds to a subglacial discharge range of approxi-
mately 30 m3/s to 140 m3/s. These values are consistent with parameters commonly used
in axisymmetric plume models representing subglacial discharge in Greenland [10, 21].
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For the imposed range of freshwater discharge Q, we see that the range of seawater
intrusions span several orders of magnitude. For subglacial discharge above 100 m3/s,
the extent of seawater intrusion is minimal (less than a meter). For subglacial discharge
below 50 m3/s, the salt water intrusion extends hundreds of meters into the channel. This
result suggests that subglacial channels with weak discharge likely have deep intrusions of
seawater. Since the flooding of seawater will likely enhance melting within the subglacial
channel, particularly along the lower walls that are in contact with the ocean, our results
suggest that these channels will widen over time.

As the channel widens, our theory predicts even deeper seawater intrusions. For exam-
ple, consider the the case Q ≈ 90 m3/s. For this channel geometry, Fr0 = 0.6. In this state,
the extent of seawater intrusion is only a few meters. However, a doubling of the channel’s
width results in a halving of the Fr0. Assuming Q remains constant, the expected seawater
intrusion is for Fr0 = 0.3. From Figure 18b, we see that the length of this intrusion ranges
from several hundred to several thousand meters - depending on the entrainment efficiency
assumed.

Though this example is very idealized, it clearly illustrates the potential for salt wedges
to greatly widen an initially narrow subglacial channel. These results appear to be consistent
with recent field observations that suggest that subglacial discharge enters the ocean through
broad line plumes rather than concentric point sources [9, 21]. However, we emphasize that
these results are on a preliminary model and hinge on assumptions that are not completely
justified. As stated in the previous section, our entraining salt wedge model does not
accurately represent entrainment at steep channel relatively steep slopes. Additionally, our
empirically derived drag coefficients are only valid for low Reynolds number flows.

8 Summary

In this study, we explored the dynamics of subglacial plume lift-off using a combination of
idealized models and laboratory experiments. We developed our theoretical framework with
the critical assumption that the subglacial flow system is fundamentally similar to that of
a salt wedge estuary. With this understanding, we first formulated a theory that describes
the steady-state properties of a non-entraining salt wedge confined to a rectangular channel.
This theory predicts the shape and length of a salt wedge for a given freshwater volume
flux, channel geometry and slope.

In parallel with this theoretical effort, we conducted a series of laboratory experiments
to observe the behavior of a salt wedge in a rectangular channel. In these experiments,
freshwater was pumped through a narrow rectangular tube into the bottom of tank, filled
with water of higher salinity. Experiments were conducted with various freshwater flow
rates, tank salinities and channel slopes. With the rectangular tube in a horizontal position,
there were no visible signs of mixing across the salt wedge interface.

One key limitation of our salt wedge theory is that it relies on unconstrained coefficients
for wall drag, Cd, and interfacial drag, Ci. These coefficients were ultimately determined
by applying a least squares fit to the experimental data. From this analysis, we found that
Cd = Ci ≈ 7/Re produced the best agreement between theoretical and observed wedge
lengths (Figure 11). This result is only valid for the narrow range of laminar flow observed
in our laboratory experiments.
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Results from experiments conducted with small positive channel slopes (θ less than ∼ 3◦)
were qualitatively similar to those from the horizontal channel experiments. However, at
steeper channel slopes, waves began to appear along the salt wedge interface. At the steepest
channel slopes tested, the interfacial waves became unstable and caused mixing between the
two layers (Figure 15). Since this observation violated our initial theoretical assumptions,
an attempt was made to incorporate entrainment into our salt wedge theory.

This effort led to a revised salt wedge model that permitted the freshwater layer to ac-
quire mass and momentum via entrainment of the more saline lower layer. A key assumption
in this model is that both layers remain homogenous during and after entrainment. Follow-
ing [6], the entrainment rate was assumed to be proportional to the shear across the salt
wedge interface and the sine of the channel slope. With this revised salt wedge model, we
find that increasing the entrainment rate leads to shorter salt wedges. At high entrainment
rates, momentum is efficiently transferred from the upper layer to the lower layer. If the
lower layer is initially thin, this results in a rapid increase in the lower layer Froude number
and thus the composite Froude number. This was the case in our simulations since we
began our integrations at the nose of the salt wedge, where the freshwater begins to lift off
the base of the channel.

With our entraining salt wedge model, we speculated on the extent of seawater intru-
sions for a typical subglacial outlet system. Though these results are preliminary, we find
that the extent of seawater intrusion into a subglacial channel can be quite significant and
there is a strong tendency for the subglacial channel to expand laterally. This tendency
for the subglacial system to form wide discharge outlets would be consistent with recent
observations of broad line plumes at tidewater glaciers in Greenland [9, 21].

9 Future work

Though insightful, our revised model did not reproduce the observed thinning and subse-
quent expansion of the freshwater layer as it lifts off the channel and begins to entrain the
lower layer (Figure 15). For future work, we propose further developing the two-layer salt
wedge model to better represent our experimental results. One possible improvement to
our model would be to introduce an intermediate layer along the salt wedge interface. Close
observations of experiments done with a steeply sloped channel revealed that the entrain-
ment was mostly confined to the interface. This is similar to what has been observed in
exchange flow experiments [15, 16]. Furthermore, the transient mixing observed in some of
our experiments seems to warrant a time-dependent salt wedge model.

A natural extension of our laboratory experiments would be to repeat them at a higher
Reynolds number. Achieving full turbulence would almost certainly require a much larger
experiment set-up. Doing this would allow for proper determination of the drag coefficients
that better represent actual subglacial flow, which is highly turbulent.
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Turbid Tales:
Where do Sub-glacial Sediments Go?

Madelaine Gamble Rosevear

October 12, 2018

1 Introduction

1.1 Motivation

At high latitudes, especially around the Antarctic and Greenlandic coastlines, many 
glaciers terminate in the ocean. Depending on their behaviour sea-ward of the 
grounding line, these glaciers terminate as either tidewater glaciers, with steep faces, 
or as ice shelves, with large floating tongues of ice. Water may be present at the bed 
of a glacier due to in situ basal melting, especially if the ice is very thick, or due to 
surface melt, which can travel to the bed through englacial conduits.

Figure 1: Simple schematic of a glacier terminating in the ocean. Meltwater drains to 
the bed and enters the ocean at depth, rising to the surface of the ocean as a 
buoyant plume. Sediments rain out of the plume as it spreads and are deposited on 
the sea floor.

A considerable amount of glacially eroded sediment is present at the bed, which is 
entrained into the basal meltwater and transported to the glacier front. The turbid mix 
of freshwater and sediment that emerges from under the glacier, through one or many 
channels, is typically less dense than the seawater and rises along the glacier front as 
a buoyant plume. It may then arrive at the surface (e.g. Fig. 4) or find a level of neutral 
buoyancy below the surface as its buoyancy evolves with the entrainment of saltwater, the
settling of particles, and the addition meltwater from the ice face. Sediments frozen into
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the glacier front may also be released as the ice front melts, providing another source of
fresh, particle laden fluid.

The velocity, temperature and salinity of a glacial meltwater plume are used in determin-
ing the ablation velocity, or rate of melting, of the glacier face. In models of glacier-ocean
systems, the ablation velocity is typically parametrised as being proportional to the plume
velocity [6], thus the omission of sediments in plume dynamics could have implications for
accurate modelling of ablation and making projections of ice sheet mass balance and sea
level. Sedimentary records from fjords and beneath ice shelves contain information about ice
sheet history [9], however detailed interpretation of these records requires a model linking
sediment deposition to to discharge conditions at the grounding line.

1.2 Previous studies

The largest body of relevant literature pertains to turbidity currents, or particle laden
gravity currents, which have been studied for their numerous environmental and industrial
applications, for example sediment laden rivers entering the ocean, submarine landslides,
pyroclastic flows and avalanches. In these instances it is the particles that give the fluid
negative buoyancy and drive flow. As the flow evolves, entrainment of ambient fluid and
settling of particles will modify the buoyancy of the flow, or remove it alltogether.

Many such studies have considered a particle driven gravity current over a flat bottom
[2, 11] however some some have investigated the effect of an inclined bottom [3, 10] and
stratification [10], looking at the evolution of gravity current density due to the competing
effects of particle settling and the entrainment of ambient fluid and the eventual separation
of the current from the slope and intrusion into the ambient. Other studies have looked at
the patterns of sediment deposited from particle laden flows such as gravity currents [3] and
particle bearing plumes rising vertically in homogeneous [5] and stratified [13] ambients.

One study has developed a model of sedimentation due to subglacial discharge from
beneath a vertical ice face [7]. They considered an outflow with sufficient initial momentum
that the plume never attached to the ice face; the initial jet like behaviour of the flow carries
it away from the ice before buoyancy takes over and the behaviour becomes closer to that
of a pure plume. Once the current hits the surface it flows radially as a surface gravity
current.

1.3 Overview

The case in which a buoyant, particle bearing plume flows up an inclined ceiling has not been
previously studied. Whilst one previous study has investigated sediment deposition due to
subglacial discharge [7] they considered distinctly different conditions to those investigated
in this study, and have not performed laboratory experiments. Sediment deposition has
been measured in some particle laden flows [5, 13], however it has never been studied in this
configuration. As such, this study addresses a big gap understanding the effects of slope
and particle properties on sediment distribution beneath a sloping “ice” face.

The remainder of the report is arranged as follows. In section 2 we outline the theory
developed to explain the observed particle distribution. We then describe the experimental
methods used (section 3). In section 4 we show the dependence of particle distribution
on the key physical parameters of the study, and apply the theory outlined in section 2.
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Finally, we discuss the key results and considerations in a geophysical setting (section 5), 
and outline the conclusions of the study (section 6).

2 Theory

Figure 1 illustrates the key processes thought to be taking place in the transport and 
deposition of sediments by a forced line plume rising beneath a model ice shelf in our 
experiments. The particle laden plume is a mix of fresh water and particles of diameter dp, 
density ρp and concentration (by volume) φ0. It enters the domain as a forced line plume, 
assumed to be uniform in the spanwise direction, characterised by Q0, the volume injected 
per unit time, per unit width of the domain. In all experiments, the density of the injected 
fluid is less than the density of the saltwater ambient ρa. The line plume enters the domain 
at a height between z = h0 and H0. The domain has a trapezoidal cross-section, with a 
horizontal lower boundary at z = 0 and a sloping upper boundary at z = H(x) = H0 + sx, 
in which s = tan(θ) is the slope corresponding to the upper boundary forming an angle θ to 
the horizontal. The forced plume enters the domain at x = 0 and interacts with the upper 
and lower boundaries of the tank, forming a recirculating region, which we assume 
extends to horizontal distance xr. From this region a particle-bearing plume emerges, 
which rises along the upper slope. The plume propagates along the slope, entraining the 
underlying fluid at a rate proportional to the plume speed, while particles settle within 
the plume at a rate proportional to the Stokes settling velocity. As particles within the 
plume rain out from its base, they are advected back towards the source by a return
flow that results from entrainment of ambient fluid into the recirculating region. Some of
these particles rain out onto the bottom while some are carried into the recirculating 
region where they are recycled into the plume or settle out. In the following sections we 
consider these dynamics, assuming

Q0, φ0

Qp0, φp0

Qr0, φr0

Up

αpUp
βUs

Ur

x = 0 xr

X = 0
xc

Xc

xf

Xf

h0

H0

H(x)

hr(x)

bp(x)

bs(x)

slope: s
= tan(θ)

Figure 2: Schematic of the experimental domain with variables defined.

that the system is in steady state. Because the experiments have limited duration, we also 
consider the effect of particles remaining in the plume after the source has been turned off, 
and make the assumption that these particles settle vertically onto the bottom of the tank. 
The mass of settled particles is related to the depth of the particle bed by assuming they 
settle as loosely packed spheres.
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2.1 Recirculating region

The volume flux Qp0 and the reduced gravity g′0 = g(ρa − ρp0)/ρ0 set the momentum M0

and buoyancy F0 fluxes, per unit width, at the source:

M0 ≡ Q2
0/b0, F0 ≡ Q0g

′
0 (1)

where b0 = H0 − h0 is the vertical extent of the fluid at the source and ρp0 is the density
of the plume. The distance over which our forced plume is expected to behave like a jet is
found by dimensional analysis of (1), and we take the length of the recirculating region to
be twice this:

xr = 2(M3
0F

2
0 )1/3 (2)

The plume emerges from the recirculating region at x = xr with a volume flux per unit
width of Qp0 and a particle concentration φp0. These are both determined in part by
the properties of the return flow, namely the return flow volume flux Qr0 and return flow
particle concentration φr0. The corresponding mass fluxes, per unit width per unit time, of
particles from the source, into the plume, and from the return flow are

ṁ0 = ρpφ0Q0, ṁp0 = ρpφp0Qp0, ṁr0 = ρpφr0Qr0 (3)

Within the recirculating region a fraction ∆ of particles settle to the base per unit time and
are not resuspended. Thus the mass of particles entering the plume is

ṁp0 = (1−∆)(ṁ0 + ṁr0). (4)

Conservation of volume requires that the volume flux into the plume is balanced by the
sum of the volume flux into the domain and the return volume flux

Qp0 = Q0 −Qr0. (5)

Combining (3), (4) and (5) gives an expression for the particle concentration in the recir-
culating region

˙φp0 = (1−∆)(φ0Q0 + φr0Qr0)/(Q0 +Qr0). (6)

For which estimates of Qr0 and φr0 are needed. We assume the former is proportional to
Q0 such that

Qr0 = αrQ0. (7)

To find φr0 we consider how particles that settle out of the plume are advected back by the
return flow. These dynamics are considered in the following section.
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2.2 Sediment transport in the along-slope plume

We find that the plume propagates along the slope with near-constant speed Up, a result
that is consistent with [4]. Up is given by

Up = c(g′0Q0)
1/3 (8)

In our experiments, we find that turbulent entrainment into the plume is negligibly small.
As such, we ignore the effects of this on particle dynamics. In the absence of entrainment,
the volume flux and vertical thickness of the plume are constant along its length and

Qp = Qp0, bp = bp0 (9)

in which we assume the thickness of the plume emerging from the recirculating region is
equal to half the depth of the domain at x = xr:

bp0 = 0.5(H0 + sxr). (10)

Particles were not observed to stay well mixed within the plume as it propagated along the
slope. As a result, particles are assumed to settle within the plume at a rate proportional
to the stokes settling velocity Us

Us =
d2(ρp − ρp0)

18νρp0
(11)

Thus, whilst the plume has constant vertical extent bp = bp0, the thickness of the layer
within the plume that contains particles decreases along-slope according to

bs = bp − (βUs/Upx)X = bp0− βγX, (12)

in which X = x − xr is the horizontal distance from the recirculating region, Upx = Up cos θ 
is the x projection of the alongslope plume velocity and 0 ≤ β ≤ 1 is the proportionality 
constant which is a measure of the turbulent activity within the plume, which determines 
the capacity for the flow to keep the particles well mixed. If the flow is laminar, we would 
expect β = 1, corresponding to the particles settling at their stokes settling velocity, whereas 
if the flow were strongly turbulent we would expect β = 0, corresponding to them remaining 
well mixed within the plume. The introduction of this parameter allows for the 
possibility that all the particles will rain out of the flow in finite distance Xpf = bp0/
(βγ) if β > 0. In (12) we have defined γ ≡ Us/Upx by analogy with the parameter γ 
defined in [10].

Assuming the concentration of particles is uniform over the thickness bs, the mass 

flux of particles along the plume is found through consideration of the loss of particles 
dṁ p that rain out from the base of the plume over a distance dX [11, 10]:

dṁp = −Us(ṁp/bp)(dX/Upx) (13)

Hence

ṁp = ṁp0

[
1− βγ X

bp0

]1/β
. (14)
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In the case of well-mixed particles within the plume, so that β → 0, (14) reduces to the
exponential expression ṁp = ṁp0 exp(−γX/bp0), while for the laminar β = 1 case we would
obtain a linear relationship: ṁp = ṁp0(1 − γX/bp0). The concentration of particles in the
plume is given by (9)a and (14):

φp = ṁp/(ρpQp) (15)

Figure 3: Normalised mass flux profile within the plume, varying beta. For pd = 64

µm, φ0 = 0.01, Q0 = 50 cm3/s.

The height of the sediment bed due to mass lost from the plume is given by:

h =
−T
ρpC

dṁp

dX
(16)

where C is the particle packing fraction and T is the total duration of the experiment.

2.3 Sediment settling in return flow

Now we have an expression for the mass flux of particles leaving the plume, we consider
how they are advected in the underlying ambient before either settling at the base or being
re-entrained within the recirculating region. As we have already noted, there is some initial
entrainment in the recirculating region with a volume flux given by (4), but negligible
entrainment into the plume beyond x = xr. Thus, to conserve volume for x ≥ xr we require
a return flow

Ur = Qr/hr =
Ur0

1 + sX/hr0
(17)

in which Ur0 = Qr0/hr0, and, from (10), hr0 = H0 + sxr − bp0 = 0.5(H0 + sxr). The path
followed by a particle exiting the plume and setting in this flow is given by

dX

dt
= −Ur,

dZ

dt
= −Us, (18)
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Using (17) we obtain an implicit formula for the displacement (δx, δz) of a particle originating
at (X,hr(X) ≡ hr0 + sX):

δ2x
s

2hr0
+ δx

(
1 +

s

hr0
X

)
− Ur0

Us
δz = 0 (19)

where of particular interest is the critical distance Xc for which all particles that leave the
plume for 0 ≤ X ≤ Xc pass X = 0 before touching the bottom of the tank, and are thus
entrained back into the recirculating region. Setting X = Xc, δx = −Xc and δz = −hr(X)
in (19) gives a quadratic expression for for Xc:

−X2
c

s

2hr0
+Xc

(
Ur0
Us

s− 1

)
+
Ur0
Us

hr0 = 0 (20)
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Figure 4: Displacement δx(X) due to particle advection in the return flow. Colour-scale
indicates entrained volume (as a fraction of input volume flux Q0) in the recirculating
region, a proxy for return flow strength. Critical displacement δx = −Xc is denoted by the
black dashed line. Calculated for pd = 64 µm, φ0 = 0.01, Q0 = 50 cm3/s.

2.4 Sediment recycling

If a particle is lost from the flow at X ≤ Xc, it will return to the recirculating region before
being deposited at the base of the tank. The difference in plume particle mass flux at
X = Xc and X = 0 gives total mass of particles advected back to the recirculating region:

mr0 = mp0 −mp(Xc) = mp0

(
1−

[
1− βγ X

bp0

]1/β)
(21)

We assume that a fraction ∆ is deposited within the recirculating region, and (1−∆)mr0

is added to the plume mass flux. This may be solved iteratively until the mass of particles
sedimented out is equal to the mass flux into the plume.
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3 Methods

3.1 Apparatus

The experimental setup is shown in Figs. 5 and 6. The main experimental tank is rectan-
gular with width W=5 cm, length L=121 cm and height H=18.5 cm. At one end, a row of 
inlet pipes create an effective line source over the full width of the tank. The source 
is fed by a bucket of (usually fresh) particle-laden solution, which is kept well mixed
with the use of a mechanical stirrer attached to a smart motor. A clear perspex slope 
is inserted above the source with the desired angle, creating a sloping ceiling up 
which the plume travels. An electroluminescent light sheet is placed below the tank, 
covering almost the full length, and a camera is mounted above. A camera is also 
mounted from the side to track the speed of the current and record the qualitative 
evolution of the flow.

Figure 5: Side view of the experimental apparatus

3.2 Light attenuation technique and calibration

A non-intrusive method known as the light attenuation technique uses photographs taken
before and after the experiment to measure the thickness of the particle bed. The ex-
perimental tank is illuminated from below using an electroluminescent light sheet, which
provides a homogeneous light source over the majority of the tank area. The tank is pho-
tographed from above before and after each experiment. The light intensity I is related to
the particle bed depth h by

I = I0 + (I0 − Ib)e−h/σhl (22)

where I0 is the light intensity with no particles, Ib is effective “black” and σbl is the e-folding
depth, which is measured. A calibration tank is also placed on the light sheet. Within the
tank, a ramp of particles is created with a known bed depth, which is used to calculate σbl
(Fig. 7).
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Figure 6: Top view of the experimental aparratus

3.3 Experimental procedure

The tank was first filled with room temperature seawater. The source pipes were flushed 
with fresh water, and put into place in the tank. The whole tank volume was then thoroughly 
mixed and the tank density ρt and free surface height ht recorded. Next, freshwater of 
volume Vr and density ρr was added to the source reservoir, along with mass of particles 
mp, and the solution thoroughly mixed. The first photo of the tank was then taken from 
above, and the slope inserted into the tank at angle θ. Recording of the experiment 
was commenced, from above and from the side, and the source was turned on to 
begin the experiment. Each experiment was run for a time T , typically limited by the 
available volume of the tank which filled over the course of each experiment, and 
then the source was turned off. Once the particles had settled to the base of the tank,
the slope was removed and the final image taken from the above.

3.4 Experimental parameters

The key experimental parameters investigated were particle diameter, input particle con-
centration and slope angle. Particle diameter pd was varied by using different particle size 
classes: 38–53 µm; 53–75 µm and 63–90 µm, which will hereafter be reported using the 
mid-points of the ranges (45, 64 and 76 µm). Particle concentration φ0 was set to 
values of 1, 2 and 3 % by varying the mass of particles added to the plume mix, 

and the slope angle θ was varied over the range 2 ≤ θ ≤ 10◦ by manually adjusting the 
slope insert into the tank.
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Figure 7: (upper panel) Image of the calibration tank used to calculate intensity for 
known particle depth. The pixels are averaged in the y axis to obtain the depth-
intensity relation-ship. (lower panel) Depth-intensity calibration data (red) and fit 
using (22) (black dashed) for 45 µm particles.

4 Results
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Figure 8: (left) Stacked along-slope segment of pixels from sequential images with front 
position picked out (red markers). (right) The same data with linear fit Up.

The plume front position was measured by taking an along-slope slice through through 
sequential images of the side view of the tank during the initial phase of the experiment. 
These slices were stacked, giving a hovmoller-type view of the front position in time and 
space (Fig. 8a), and used to determine the steady state current speed Up (Fig. 8b). After an 
initial adjustment period we found that the displacement was well described by a constant
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Exp. pd (µm) θ (◦) φ (%) Q0 (cm3/s) g′0 (m/s2) (g′0Qf )1/3 (cm/s) T (s) τ (s)

1* 45 6.3 0.01 52 8.8 7.7 34 18
2 45 4.0 0.01 37 8.4 6.7 65 18
3* 45 3.8 0.01 33 9.3 6.7 59 18
4* 45 3.9 0.01 41 9.2 7.2 47 18
5* 45 2.0 0.01 53 7.8 7.4 45 18
6* 45 2.0 0.01 28 8.2 6.1 58 18
8 45 4.3 0.05 27 10.2 6.5 61 18
9 64 4.1 0.01 45 8.4 7.2 40 9
10 64 6.4 0.01 29 7.5 6.0 54 9
11 64 4.5 0.01 31 7.3 6.1 41 9
12 64 2.0 0.01 41 8.7 7.1 47 9
13 64 5.8 0.01 31 10.1 6.8 74 9
14 76 4.0 0.01 51 8.2 7.5 45 6
15 76 6.3 0.01 32 8.6 6.5 54 6
16 76 2.1 0.01 26 9.2 6.2 78 6
19* 45 6.4 0.01 54 8.8 7.8 42 18
20 64 4.0 0.02 45 8.0 7.1 40 9
22 64 3.9 0.03 55 7.9 7.5 48 9
23* 45 10.3 0.01 50 9.0 7.7 44 18
24* 45 4.0 0.01 59 72.8 16.3 38 18
25* 45 4.0 0.01 33 4.6 5.3 59 18
26* 45 4.0 0.01 53 46.9 13.5 33 18
28 64 4.0 0.03 56 10.1 8.3 40 9

Table 1: Experiments. Asterisk denotes τ/T > 1/3 indicating results are expected to be
strongly influenced by transient behaviour.
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velocity. The initial phase was interpreted as being dominated by the source momentum
M0 of the flow, and thus Up is given as the best fit to the data after this point.

Fig. 9 plots Up against the velocity scale (g′0Qf )
1/3. Whilst a limited range of source

conditions were used, the data show a linear dependence on (g′0Qf )
1/3 with a slope of 1.5,

and do not show slope-dependence, both results of    which are consistent with [4].

Figure 9: Along-slope front speed Up against velocity scale against (g′0Qf )
1/3 for all exper-

iments. The slope plotted c = 1.5.

4.2 Plume evolution

Fig. 10 shows the temporal evolution of the startup phase of a typical experiment. Once the 
source is turned on, the forced plume emerges into the experimental tank which is at this 
point extremely confined, and mixes over the full depth. The buoyant fluid that emerges 
from this region, which we term the recirculating region, then propagates along-slope. For a 
small pd experiment such as that in Fig. 10, it takes some time for the particles raining out 
of the plume to reach the base of the tank, and at later time we observe that the descending 
particles are being advected back towards the source in the return flow. Finally, we note 
that some particles can be seen, still in suspension, at the top of the tank.

Figure 11 illustrates the dependence of the relative particle distributions on key experimental 
parameters. For fixed particle size and concentration, the shape of the distribution has no 
observable dependence on the angle of the sloping ceiling (Fig. 11). This is consistent with 
equation 14, where θ appears only as a geometric relationship between along slope flow

4.3 Particle deposition
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speed Up and its x projection Upx: for the range of angles studied here (2 ≤ θ ≤ 10◦), cos θ
varies by less than 1.5%.

Figure 10: Sequence of images from Exp 2. Frames 1 and 2 are 8 seconds apart, and the 
subsequent frames are separated by 5 seconds.

The influence of particle diameter is also seen in Fig. 11 where the smaller particle 
size fraction has considerably shallower distribution of particles, indicating particles are 
remaining suspended within the flow for longer. This is consistent with expectations based 
on (14), where smaller particle diameter results in a slower stokes settling velocity. A 
key observation here is that we have a very “triangular” distribution of particles,
especially for larger particle diameters. For 64 µm we also observe a cutoff distance 
Xpf beyond which no particles are deposited.

Finally we consider the influence of particle concentration. Few experiments were per-
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Figure 11: Normalised particle distribution for a suite of experiments varying slope angle
for φ=0.01% and pd = 45 µm (squares) and pd = 64 µ (circles).

Figure 12: Snapshot of Exp. 20 showing the particle-free layer within the plume, adjacent 
to the slope and growing with along-slope distance.

formed at concentrations higher than 0.01% because of the experimental difficulty of 
keeping so many particles in suspension. Additionally, the high particle deposition rate 
meant that experiment length was limited by the thickness of the particle bed: too thick 
a bed absorbed all the source light and made the light attenuation technique impossible. 
From the experiments that were performed (Figure 13) we see no clear dependence of the 
normalised particle distribution on φ0.

4.4 Application of theory

The theory derived in section 2 applies only to the plume at steady state, thus for it to be
applicable we require that the particle deposition due to the startup phase, and due to the
particles remaining in the plume once the source has been turned off, is much smaller than
that due to the steady portion of the experiment. To test whether or not this is true, we
compare the total duration of the experiment T to a timescale based on a particle settling at
the stokes settling velocity though a typical plume width τ = bp0/Us. Table 1 shows these
values and highlights the experiments, predominantly those using the smallest particles,
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Figure 13: Normalised distributions varying concentration for 64 µm.

that are expected to be strongly influenced by transient behaviour.

4.4.1 Steady state

In order to apply the theory outlined in section 2 we first consider the experiments that are 
not affected by transient dynamics. There are two main unconstrained parameters in the 
theory. The first is β, describing how well mixed the plume is and allowing all the particles 
to rain out in finite distance. This is a feature of the experiments that is not consistent 
with a fully turbulent plume, in which the mass loss is exponential in x. The observed 
shape of the particle distribution, especially in the 64 and 76 µm experiments places a 
constraint on the value of β: as Fig. 3 shows, we require β ∼0.5 to obtain a triangular 
shaped-distribution.

The other unconstrained quantity is the amount of fluid that the plume entrains in 
the recirculating region, as this sets the strength of the return flow, and therefore the 
displacement of particles after they rain out of the plume. This is estimated to be on the 
order of the plume inflow Qr0 = const.Qp0 where the constant is taken to be 1 for most 
experiments.

Fig. 14 compares the experimental and model particle bed thicknesses, where the model 
is applied with and without the advection due to the return flow. The inclusion of the return 
flow allows the steepness of the particle bed thickness to be explained and greatly improves 
the model fit to the data. Fig. 15 applies the model to three different 64 µm experiments, 
reproducing the observed distributions extremely closely.

For the 76 µ m experiments, the model does not reproduce the data closely (Fig. 16). 
Using pd = 76 µm, the model produces a particle bed that is far too steep. Fig. 16 shows the 
expected distributions for the upper and lower bounds of the particle size class: 63–90 µm. 
The stokes settling velocity scales with the square of the particle diameter (11), thus the 
ratio between the settling velocity of the 90 µm particles to the 63–90 µm particles within
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Figure 14: Dimensional particle distribution for experiment 11 and modelled distribution 
with and without the return flow. For β = 0.55, QE = 0.8Q0.

the same size class is given by (90/63)2 ∼ 2. The inability of the model to reproduce the 
distribution using pd = 76 µm may therefore be explained by the differential settling of 
particles of different diameter within the same size class. This effect may be highlighted in 
these experiments as this size class has a larger range than either the 45 or 64 µm classes.

4.4.2 Transient

For the experiments expected to be strongly influenced by transient behaviour, we also 
consider the mass of particles remaining within the plume after the source has been turned 
off. The mass is given by (14) and is assumed to settle directly downwards. Additionally, 
the steady state mass flux out of the plume is assumed to operate over a restricted interval 
T − τ (instead of T as in previous experiments).

For all the 45 µm experiments, the inclusion of the mass in the plume was extremely 
important to capturing the final sediment depth. Fig. 17 shows the total modelled height 
of the sediment, as well as the component that remained in the plume after the source was 
turned off. This component alone accounts for the majority of the deposited sediment. Of 
the sediment deposited during the experiment, it is clear that the return flow has a strong 
influence. The stepped feature at x ∼ 50 cm shows the influence of the finite tank length: 
the model suggests that sediments raining out of the plume at the end of the tank should be 
advected all the way back to x ∼ 50 cm before being deposited. Given the small proportion 
of the sediment bed conforming to the steady state dynamics, it is not possible to ascertain 
whether the data support this.

While good agreement between the data and the model is found in Fig. 17, the same is 
not true for many other 45 µm experiments. In several cases the model vastly over-predicts 
the final sediment depth, and in the case of Exp. 6 the shape of the sediment bed is not 
captured.
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Figure 15: Dimensional particle distribution for several 64 µm experiments. Each curve has 
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5 Discussion

5.1 Geophysical considerations

The inclusion of the transient phase of the experiment, i.e. mass left in the plume at 
final time T , allowed us to take steps towards modelling the particle bed depth for the 
smallest particle class. However, these transient dynamics are unlikely to be important in 
a geophysical setting, where the plume operation timescale T is on the order of a month  
rather than ∼1 minute. The fact that the mass deposition from the transient part of the 
experiment was so much larger than that from the steady start part made it impossible to 
assess the validity of the steady state theory to these 45 µm experiments.

One process that we would expect to occur on geophysical scales, and that we neglected 
in our experiment, is entrainment into the plume. While this doesn’t modify the plume 
velocity, it would act to increase the width of the plume and therefore modify deposition. In 
addition, if the plume were sufficiently angled, and entrainment sufficiently strong, particles 
could be re-entrained into the flow, a process that has been considered in other particle laden 
flows [13, 5].

Another such process is modification of plume buoyancy through particle deposition. 
We observed Up to be constant, thus we did not need to consider this for our experiments,
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Figure 16: Dimensional particle distribution for experiment for two 76 µm experiments.
Each curve has been offset by h = 0.15cm

however in cases where φ0 is a large component of buoyancy and/or φp changes significantly
as the plume propagates along-slope, modification of buoyancy through particle settling is
expected to have a strong effect.

In these experiments our slope, or “ice” was both“non-thermodynamic” and “non-
reactive”, meaning it did not modify the plume properties by melting, as an ice shelf or
tidewater glacier would. In situations where sub-glacial discharge is relatively large as com-
pared to the volume flux from submarine melting, such as Greenland’s tidewater glaciers
in summer [12], this assumption is valid, however when melting is strong, the feedback
between melting and plume buoyancy must also be considered.

Our experiments demonstrated that the return flow generated through entrainment of
ambient fluid into the plume is an important process: only through including the advection
of particles towards the source in the return flow were we able to capture the observed
particle distribution. It is worth noting that this effect was particularly strong due to the
line plume geometry that we used. In the case of a more isolated plume in a larger cavity,
we expect that this effect would be smaller. However, both these cases (an isolated point
source and a more distributed source) may be relevant: a recent study of Kangiata Nunata
Sermia in South-west Greenland [8] inferred that a distributed source of buoyancy is the
most likely configuration for this particular glacier.

Sediment wedges are commonly found at the grounding lines of both Greenlandic tide-
water glaciers and Antarctic Ice Shelves, where they act to stabilise the grounding line [1].
They are thought to be the result of sub-glacially transported sediment. Our results suggest
that the advection of sediments back towards the plume source by the return flow is another
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Figure 17: Dimensional particle distribution for Exp. 4 with pd = 45 µm, showing the total
modelled distribution and the contribution from the transient part of the experiment only.

possible mechanism for the creation of these wedges.

5.2 Settling model

A key observation from the experiments we performed was that the particles often did not
remain well mixed within the plume, suggesting the flow was not sufficiently turbulent to
keep them well mixed. The effect of this was accounted for using the parameter β, which
allowed the model to behave either as turbulent (mixing dominated), fully laminar (settling
dominated) or somewhere in between.

We can compare the relative importance of settling and mixing by comparing the time-
scale for settling, Tsettle ∼ bp0/us, and the time scale for mixing over the plume width,
TK ∼ b2p0/K, where K is an eddy viscosity. Using the scale K ∼ uτ bp0, for turbulent
channel flow, we find the ratio of time-scales:

Tsettle
TK

=
bp0/us

bp0
2/K

=
uτ
us

where uτ is the friction velocity which may be estimated as a function of the free stream
velocity (in this case plume velocity) as u2τ = Cdu

2
p, where an appropriate choice of the drag

coefficient Cd for a hydraulically smooth surface is 2.5× 10−3. For a typical plume velocity
of 6 cm/s, the friction velocity is ∼0.3 cm/s. For particle diameters 45–76 µm, us ranges
from 0.17–0.47 cm/s yielding Tsettle/TK ∼1.8–0.6. The settling and mixing timescales are
therefore of the same order for all experiments, explaining the “mixed” dynamics observed.
This ratio also suggests that these experiments are applicable geophysical scenarios in which
either the flow is relatively slow or particle diameter, and therefore settling velocity, is large.

446



0 10 20 30 40 50 60 70 80

x (cm)

0

0.1

0.2

0.3

0.4

0.5

0.6

h
 (

c
m

)

Exp4

=0.55,Q
r0

/Q
p0

=1

Exp6

=0.55,Q
r0

/Q
p0

=1

Exp19

=0.55,Q
r0

/Q
p0

=1

Exp25

=0.55,Q
r0

/Q
p0

=1

Figure 18: Dimensional particle distribution for several 45 µm experiments. Each curve has
been offset by h = 0.15cm

6 Conclusion

In this study we performed laboratory experiments to investigate particle laden plumes
travelling along an inclined ceiling; specifically the final distribution of particles deposited
beneath the plume and how this distribution depended on slope, particle concentration and
particle size. For the range of slope angles studied, 2 ≤ θ ≤ 10◦, the final distribution was
not observed to depend on slope. Particle size was shown to control the distribution through
parameter γ ≡ Us/Upx, moreover in order to explain some distributions we had to consider
the range of particle diameters within a given particle size-class. The return flow generated
by entrainment into the plume was found to advect particles back towards the source, and
the inclusion of this process was necessary to capture the final sediment distribution.
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