


Preface	

Stochastic	Processes	 in	Atmospheric	&	Oceanic	Dynamics	was	 the	 theme	at	 the	2015	
GFD	 Program.	 Professors	 Charlie	 Doering	 (University	 of	 Michigan)	 and	 Henk	 Dijkstra	
(University	of	Utrecht)	were	the	principal	lecturers.	Their	lectures	were	collectively	two‐
pronged.	 The	 first	 prong	 was	 launched	 by	 Charlie,	 who	 laid	 down	 the	 mathematical	
foundations	 of	 random	 variables,	 stochastic	 processes	 and	 the	 nature	 and	 analysis	 of	
stochastic	differential	equations.		In	the	second,	Henk	took	us	through	the	many	places	in	
the	 Atmosphere,	 Ocean	 and	 Climate	 system	 where	 the	 infrastructure	 from	 the	 first			
prong	plays	out.	

John	Wettlaufer	and	Oliver	Bühler	were	the	stochastic	co‐directors.	 In	keeping	with	
the	 theme,	 the	 Cottage	was	 in	 constant	motion	with	many	 visitors	 and	 long‐term	 staff	
members.	 Following	 the	 thematic	 principal	 lectures,	 the	 seminar	 room	 was	 busy	 all	
summer,	with	talks	spanning	an	impressive	range	of	topics	that	we	are	typically	fortunate	
to	experience	 in	Walsh	Cottage.	 	 Importantly,	some	of	 the	newer	staff	ably	 jumped	 into	
the	 supervision	 of	 fellows	 projects	 ‒	 directly	 or	 indirectly.	 The	 fellows	 pursued	 a	 rich	
range	of	projects	and	have	produced	a	 fine	set	of	reports.	 	As	usual	 they	came	from	far	
and	wide:	

• Yana	Bebieva,	Yale	University

• Tom	Beucler,	Massachusetts	Institute	of	Technology

• Tom	Eaves,	University	of	Cambridge

• Giovanni	Fantuzzi,	Imperial	College	London

• Anna	FitzMaurice,	Princeton	University

• Florence	Marcotte,	Inst.	Physique	du	Globe	de	Paris

• Gunnar	Peng,	University	of	Cambridge

• Cesar	Rocha,	University	of	California,	San	Diego

• Andre	Souza,	University	of	Michigan

• Chris	Spalding,	California	Institute	of	Technology

As	 the	second	week	wound	down,	 the	2015	GFD	Sears	Public	Lecture	was	given	by	
Susan	Solomon	(MIT)	in	Redfield	Auditorium.	She	took	us	through	a	fascinating	success	
story	 of	 how	 science	 impacted	 policy	 and	 eventually	 the	 global	 economy	 in	 her	 talk	
“Ozone	Depletion:		A	Science	and	Policy	Success	Story.”		As	a	key	player	in	the	Ozone	Hole	
Saga,	Susan’s	talk	drew	a	large	and	engaged	audience,	who	asked	many	questions.	

Some	 important	 acknowledgements:	 Support	 from	Anders	 Jensen	 in	 the	 laboratory	
was	appreciated,	particularly	as	the	going	with	some	sensors	got	tough.	Annie	Doucette,	
Janet	 Fields	 and	 Julie	 Hildebrandt	 formed	 the	 administrative	 team	 that	 ensured	 the	
program	 ran	 with	 admirable	 efficiency.	 Srikanth	 Toppaladoddi,	 a	 2012	 fellow,	 was	 of	
great	help	in	corralling	the	disparate	piece	of	the	proceedings.		We	are	indebted	to	WHOI	
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Academic	Programs	Office,	who	continue	to	provide	an	ideal	atmosphere.	
Finally,	 we	 note	 that	 the	 passing	 of	 Louis	 Howard,	 who	 impacted	 the	 program	 in	

countless	ways,	marked	the	summer	in	a	
for	 Louis	 at	 Carriage	 House	 was	 organized	 by	 George	 Veronis.	 Those	 of	 us	 who	 were	
fortunate	 to	 attend	 were	 emboldened	 by	 the	 many	 and	 varied	 stories	 shared	 by	 the	
participants.	 His	 smile,	 encouragement	 and	 scientific	 sage	 will	 be	 deeply	 missed.	 A	
detailed	obituary	is	found	at	the	following	link:		
https://math.mit.edu/about/history/obituaries/howard.php	

different manner. On 13 August 2015, a memorial
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Lecture 1 - Mathematical Foundations of Stochastic Processes

Charles R. Doering; notes by Tom Beucler & Andre Souza

June 15, 2015

We will talk about stochastic processes in general but focusing on differential equations
with white noise coefficients in them. We will try to give an intuitive feeling for this field.
There is actually some sense in the whole thing. By the end of the lectures you should have
a clue of how to model systems with white noise.

When we are dealing with many-body nonlinear systems, there are too many variables.
They are too high dimensional to extract useful information, forcing us to use reduced
models. In applied math there is a great tradition of getting reduced models from large or
small parameters in equations or a separation of scales in time or length. We also model
things with noise. How do we know the difference between random and complicated? Well
we don’t. This is a difficult concept.

The great victory of this approach is statistical mechanics. Settling for bulk quantities
of interest as opposed to 1023 degrees of freedom was tractable and has stimulated people
in the physics community to try to take this concept to the extreme. There are a lot of
specific successes and examples, but no general theory.

Specifically what we be talking about:

1. Markov diffusion processes

2. Brownian motion

3. Gaussian white noise

4. Stochastic differential equations

5. Fokker-Planck equations or Forward Kolmogorov equations

6. Mean first passage times

SDEs are what you write down and the Fokker-Planck equations are what you can actually
solve. The latter equations give you the evolution for a probability density function.

A random variable X is characterized by its cumulative distribution function (CDF)
which is the probability that a random variable is below some scalar. In symbols (P(X ≤ x)).
It is a monotonically increasing function with values between 0 and 1. It is “continuous
from the right”. The probablity distribution function is the derivative of the probability
with respect to x.

PDF =
dCDF

dx
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Another way to say it is PDF = P(x ≤ X ≤ x+ dx)/dx where dx is an infinitesimal or

P(a < x < b) =

∫ b

a
PDF(x)dx

Stochastic Processes are a random functions of an “index set” which we will call time.

X(t) = Random variable

We can plot X(t) (for a given realization of the random variable), which we will assume to
be continuous. We can ask the question “what is the probability that X(t)” falls in some
window. We will now introduce some notation

PDF of X(t) = ρ(x, t)

This is not enough to answer all the statistical questions that we would like to pose. We also
need the joint distribution functions (ρ(x1, t1;x2, t2) 2-time) and ρ(xn, tn;xn−1, tn−1; ...;x1, t1)
n-time. A property of white noise is that ρ(x1, t1)ρ(x2, t2). This type of process does not
have enough structure for us to do modeling. We don’t need an uncountable number of
joint distributions to have a well-defined probability space. Smooth things tend to have a
memory associated with them, thus white noise won’t be continuous. The condition

1 =

∫ ∞
−∞

ρ(x, t)dx

says that “I exist” and the compatibility condition is

ρ(x1, t1) =

∫ ∞
−∞

ρ(x1, t1;x2, t2)dx2.

This says that the probability of going through one window is the same as going through
the same window as well as an infinitely large window. See Figure 1.

To answer sensible questions about the random process we need all of the joint prob-
ability functions. Suppose that we just give the joint probabilities, then we need to check
the compatibility conditions.

ρ(x1, t1) (1)

ρ(x1, t1;x2, t2) (2)

ρ(x1, t1;x2, t2, ;x3, t3) (3)

... (4)

We need to define expectations, averages, and moments of the random variables. The
expectation of a random variable is

E(X) =

∫ ∞
−∞

xρ(x)dx = 〈x〉 = X̄.
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dx1

dx2

x

tt1 t2

Figure 1: ρ(x1, x2; t1, t2)dx1dx2 is the probability that the process X(t) passes through
windows of sizes dx1 and dx2 at times t1 and t2 respectively.

We can also calculate

E(f(X)) =

∫ ∞
−∞

f(x)ρ(x)dx

and get moments

E(XN ) =

∫ ∞
−∞

xNρ(x)dx.

Furthermore we have

E

 N∏
j=1

X(tj)

 =

∫
· · ·

∫ N∏
j=1

xjρ(x1, t1; ...;xN , tN )dx1 · · · dxN

which are known as the n-point correlation functions. The two point correlation function
is sometimes known as THE correlation function. The moments DO NOT determine the
probability distribution (in general). If it is the case that

E(X(t)X(s)) = E(X(t))E(X(s))

we say the variables are uncorrelated. This does not imply independence, but independence
does imply uncorrelated.
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One more thing. Let’s talk about this idea of independence. Suppose that two events
A and B happen. We can look at P(A),P(B) and P(A∩B) and P(A|B) = P(A∩B)/P(B).
If the variables are independent then P(A|B) = P(A). For stochastic processes we may
want to know things like “given that my random variable went through window 1, what
is the probability that it goes through window 2?” We write this as ρ(x2, t2|x1, t1) =
ρ(x2, t2;x1, t1)/ρ(x1, t1).

We have all these joint probability functions

ρ(xn, tn|xn−1, tn−1; ...;x1, t1) ≡
ρ(xn, tn;xn−1, tn−1; ...;x1, t1)

ρ(xn−1, tn−1; ...;x1, t1)

which is the probability of going through my latest window given that I went through all
the other windows. We are now in a position to define Markov processes. If

ρ(xn, tn|xn−1, tn−1; ...;x1, t1) = ρ(xn, tn|xn−1, tn−1),

we can reconstruct the n-point distribution function

ρ(xn, tn;xn−1, tn−1; ...;x1, t1) = ρ(x1, t1)

j=N∏
j=2

ρ(xj , tj |xj−1, tj−1).

A Markov process is independent of the past, given the present. An example of a Markov
process is a first order ODE.

Brownian motion (which is the same as Wiener process) is our next topic. These are
random functions of time denoted by

W (t) = Wt.

The probability density at t = 0 is a delta function, ρ(ω, 0) = δ(ω). The transition density
is

ρ(ω, t|ω′, t′) =
1√

2π(t− t′)
e
− 1

2
(w−w′)2

t−t′

We have

ρ(ω, t) =

∫ ∞
−∞

ρ(ω, t|ω′, 0)ρ(ω′, 0)dω′ =
1√
2πt

e−
1
2

ω′2
t

There are some properties of Brownian motion that
white noise which we will talk about next time.

are absolutely essential to understanding
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Lecture 2 - Mathematical Foundations of Stochastic Processes

Charles R. Doering; notes by Gunnar Peng & Chris Spalding

June 16, 2015

1 Examples for last lecture

The moments do not determine the distribution. Consider the log-normal distri-
bution and perturbed versions, whose PDFs are

f0(x) = (2π)1/2x−1e−(log x)2/2, fa(x) = f0(x)[1 + a sin(2π log x)] with |a| ≤ 1. (1)

It can be verified that these have the same moments – the nth moment is en
2/2 – even

though the distributions are different. (Roughly speaking, the moments do determine the
distribution if they do not grow too quickly, and evidently en

2/2 is too quick.)

Uncorrelation does not imply independence. The random variables

X ∼ Uniform[−1, 1] and Y = X2 (2)

are clearly not independent. However, if we consider their mutual covariance,

E[XY ] = E[X3] = 0, E[X] = 0, E[Y ] = E[X2] = 1/3 ⇒ E[XY ] = 0 = E[X]E[Y ],
(3)

it becomes apparent that the variables are uncorrelated.

2 Brownian motion / Wiener process (continued)

Recall. The Wiener process W (t) = Wt has transition probabilities and initial condition

ρ(w, t
∣∣ w′, t′) =

1√
2π(t− s)

exp

(
−1

2

(w − w′)2

t− s

)
for t ≥ s, ρ(w, 0) = δ(w), (4)

which is illustrated in Figure 2. From this continuous distribution we can recover the
discretized, n-time, probability density

ρ(wn, tn; . . . ;w1, t1) = ρ(wn, tn
∣∣ wn−1, tn−1) . . . ρ(w2, t2

∣∣ w1, t1)ρ(w1, t1) for tn > · · · > t1.
(5)

Note that this is a natural factorization into independent increments, reflecting the Marko-
vian property that each future increment is independent of the past.
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Figure 1: A typical realization of a Wiener process beginning at W (0) = 0. The step size
used was ∆t = 0.001.

To simulate the Wiener process on a computer, we discretize time from, say, t0 = 0 to
tN , and start with w0 = 0. Given the current value wn, we repeatedly draw the next random
value wn+1 using the probability distribution ρ(wn+1, tn+1

∣∣ wn, tn) given by Equation 4.
This yields a single realization of the process; an example is shown in figure 1.

For comparison, Figure 3 displays both the continuous distribution (Equation 4) and
a discrete distribution, obtained by sampling multiple realizations of the Wiener process
(a typical example of which is shown in Figure 1). As is apparent, the continuous and
discrete distributions look very similar, at least with the sample size of 10,000 used here.
Note that the size of the time steps used to obtain realizations of the process does not affect
the distribution, since the distribution obtained is given by equation 5, which is not an
approximation.

Moments. The odd moments of a Wiener process vanish by symmetry, while the even
moments may be calculated through integration by parts:

E
[
W (t)2n+1

]
=

∫ ∞

−∞
w2n+1ρ(w, t) dw = 0, (6)

E
[
W (t)2n

]
=

∫ ∞

−∞
w2nρ(w, t) dw =

(2n)!

2nn!
tn

= (2n− 1) · (2n− 3) · · · · · 3 · 1 tn, (7)

(8)

e.g. E[W (t)2] = t, E[W (t)4] = 3t2, E[W (t)6] = 15t3. (9)

Correlation: It can be shown that, for t ≥ s,

E[W (t)W (s)] ≡
∫ ∞

−∞
dw

∫ ∞

−∞
dw′ww′ ρ(w, t;w′, s) = s, (10)

6



0-1 1 2-2
0

0.2

0.4

0.6

0.8

1

1.2
t = 0.1

t = 0.2

t = 0.6

t = 0.0 :- δ(w’)

1p
2⇡t

Exp

✓
� 1

2

(w � w0)2

t

◆

w0 = �1

⇢

w

Figure 2: Illustration of the transition probability (density) appropriate for a Wiener process
as a function of time. The initial distribution, set at time t = s = 0, is a delta function
centered on w′ = −1.

and hence, in general E[W (t)W (s)] = min(t, s).
Exercise: Prove it the old-fashioned way (i.e., by changing variables and integrating)!

One may get the answer through the slicker method below:

E[W (t)W (s)] = E[{W (t)−W (s)}W (s) +W (s)2]

= E[W (t)−W (s)]E[W (s)] + s = s, (11)

where we used that the increment W (t)−W (s) is independent of the past W (s) provided
that t ≥ s.

2.1 Discrete analysis

Consider a discrete increment ∆W (t) = W (t+ ∆t)−W (t). It has mean and variance

E[∆W (t)] = E[W (t+ ∆t)]︸ ︷︷ ︸
0

−E[W (t)]︸ ︷︷ ︸
0

= 0, (12a)

E[∆W (t)2] = E[W (t+ ∆t)2]︸ ︷︷ ︸
t+∆t

−2E[W (t+ ∆t)W (t)]︸ ︷︷ ︸
t (the earlier time)

+E[W (t)2]︸ ︷︷ ︸
t

= ∆t. (12b)

This suggests that ∆W (t) = O(
√

∆t). Hence ∆W/∆t = O(1/
√

∆t) which will not converge
as we take the continuum limit. Hence, W (t) is not differentiable. However, there is no
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reason we can’t simply tabulate the random variable ∆W (t)/∆t for many time-steps of finite
width ∆t > 0. We call this Gaussian white noise (GWN). From realizations of W (t) (such as
the one illustrated in Figure 1), we can explicitly calculate ∆W/∆t (see Figure 4), provided
that ∆t is a multiple of the time step used to generate W (t). The GWN thus created
remains confined to the ‘x’-axis - reflecting its statistically steady nature. Deviations from
zero occur with a typical magnitude that is of order 1/

√
∆t where ∆t−1 is the rate at which

the derivative is sampled.
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discrete sampling 
 versus  

continuous distribution

Figure 3: A comparison between the continuous distribution (as plotted in Figure 2) and
the discrete distribution obtained by sampling multiple realizations of the Wiener Process
(such as the one shown in Figure 1) starting with W = 0 at s = 0. Specifically, we recorded
the value of W (t) for N = 10, 000 realizations of the Wiener process at the three values
of time illustrated in Figure 2 (t = 0.1, 0.2 and 0.6). The resulting histograms, binned in
groups of width 0.1, are presented. The respective continuous distributions, with mean
w′ = 0, are superimposed for comparison.

2.2 Continuous analysis

We (formally) define Gaussian white noise as

ξ(t) ≡ dW

dt
. (13)

This is a distribution-valued process, in contrast to a function-valued process. Hence, we
investigate it through integration against smooth test functions (with compact support). If
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Figure 4: Numerical calculation of ∆W (t)/∆t sampled from the specific realization of W (t)
that is illustrated in Figure 1. We sample with 4 different values of the discrete time interval
∆t (0.08, 0.04, 0.02 and 0.01). Gaussian white noise (GWN) is defined through such an
operation. The GWN arising out of the Wiener process is statistically steady and confined
to the ‘x′-axis. Fluctuations from zero occur with a typical magnitude of the same order as
σ−1 = (∆t)−1/2. When compared to Figure 1 just after t = 3, for example, W (t) begins to
fall at the point where a large negative excursion occurs in ∆W/∆t.

ϕ(t) is such a function, then we define

ξ[ϕ] ≡
∫ ∞

0
ξ(t)ϕ(t) dt ≡ −

∫ ∞

0
W (t)ϕ′(t) dt (using integration by parts). (14)

This is a Gaussian random variable with mean E[ξ[ϕ]] = −
∫
E[W (t)]ϕ′(t) dt = 0. (We

assume that integrals and expectations commute when necessary.) For the variance, we
compute

E
[
ξ[ϕ]2

]
= E

[∫ ∞

0
W (t)ϕ′(t) dt

∫ ∞

0
W (s)ϕ′(s) ds

]
=

∫ ∞

0

∫ ∞

0
E [W (t)W (s)]︸ ︷︷ ︸

min(t,s)

ϕ′(t)ϕ′(s) dt ds.

(15)
We simplify the s-integral first, by integrating by parts:

∫ ∞

0
ϕ′(s) min(t, s) ds = −

∫ t

0
ϕ(s) ds ⇒ E

[
ξ[ϕ]2

]
= −

∫ ∞

0
ϕ′(t)

(∫ t

0
ϕ(s) ds

)
dt,

(16)

9



where the first equality came from noticing that min(t, s) as a function of s has a gradient
of unity for s < t and zero elsewhere.

A second integration by parts yields the variance,

E
[
ξ[ϕ]2

]
=

∫ ∞

0
ϕ(t)2 dt =

∫ ∞

0

∫ ∞

0
ϕ(t)ϕ(s)δ(t− s) dtds. (17)

Comparing the final expression with the formal calculation

E
[
ξ[ϕ]2

]
= E

[∫ ∞

0
ξ(t)ϕ(t) dt

∫ ∞

0
ξ(s)ϕ(s) ds

]
=

∫ ∞

0

∫ ∞

0
E [ξ(t)ξ(s)]ϕ(t)ϕ(s) dtds (18)

suggests the formal result

E[ξ(t)ξ(s)] = δ(t− s). (19)

A similar calculation yields E [ξ[ϕ]ξ[ψ]] =
∫∞

0 ϕ(t)ψ(t) dt.
We note that white noise is stationary, i.e. its statistics are independent of time. For

any stationary process, the covariance is

C(t, s) ≡ E[X(t)X(s)]− E[X(t)]E[X(t)] = E[X(t− s)X(0)]− E[X(0)]2 = c(t− s), (20)

i.e. a function of t− s only. We define the power spectrum as the Fourier transform

S(ω) =

∫ ∞

−∞
c(t)e−iωt dt. (21)

For Gaussian white noise,

c(t− s) = E[ξ(t)ξ(s)] = δ(t− s) ⇒ S(ω) =

∫ ∞

−∞
δ(t)e−iωt dt = 1. (22)

The noise is called “white” because it has a flat power spectrum, i.e. the same amount of
energy at each frequency.

3 Stochastic differential equations, a.k.a. Langevin equa-
tions

A stochastic differential equation (SDE) is one that contains noise terms ξ(t).

Example. What is the solution X(t) to the equation

dX

dt
= ξ(t), (23)

with X(0) = 0? It’s clearly X(t) = W (t)!
Now, each X(t) is but one random realization of the variable X described by the tran-

sition density ρ. In order to describe the spatial and temporal evolution of an ensemble of
such realizations of X(t), it is appropriate to ask how ρ itself evolves. For a pure Wiener
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process (Exercise), show that the transition density satisfies the diffusion equation and
the initial condition

ρ(x, t
∣∣ y, s) =

1√
2π(t− s)

exp

(
−1

2

(x− y)2

t− s

)
⇒ ∂ρ

∂t
=

1

2

∂2ρ

∂x2
for t > s,

ρ(x, s) = δ(x− y). (24)

Since distributions can only be manipulated linearly, the most general SDE (without
time delay) has the form

dX(t)

dt
= f(X(t), t) + g(X(t), t)ξ(t), (25a)

which some mathematicians write (in a futile attempt to avoid differentiating non-differentiable
things) as

dXt = f(Xt, t) dt+ g(Xt, t) dWt. (25b)

The first term (with the function f) represents a deterministic, ‘drift’, term such as may be
found in a regular dynamical systems equation. The second term describes stochastic noise
with amplitude g.

The equivalent integral forms may be written as

X(t) = X(0) +

∫ t

0
f(X(s), s) ds+

∫ t

0
g(X(s), s)ξ(s) ds (26a)

Xt = X0 +

∫ t

0
f(Xs, s) ds +

∫ t

0
g(Xs, s) dWs. (26b)

(Note that the limits on the last integral indicate the range of s, not Ws.) The last integrals,
involving the stochastic terms ξ(s) or dWs, are ambiguous, and we will find that they may
give different answers depending on how they are interpreted.

We mainly work with the Itō interpretation, in which (25) is defined as the continuous-
time limit of the discrete-time system

∆X(t) ≡ X(t+ ∆t)−X(t) = f(X(t), t) ∆t+ g(X(t), t) ∆W (t), (27)

where ∆W (t) = W (t + ∆t) − W (t) ∼ N(0,
√

∆t) (with X(0) determined by an initial
condition).

3.1 Conditional expectations

Recall. For t ≥ s, the conditional expectation

E
[
F (X(t))

∣∣ X(s) = y
]

=

∫ ∞

−∞
F (x)ρ(x, t

∣∣ y, s) dx. (28)

For example,

E
[
W (t)

∣∣ W (s) = w′
]

=

∫ ∞

−∞
w ρ(w, t

∣∣ w′, s) dw = w′. (29)
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We now compute the expectation E
[
∆X(t)

∣∣ X(t) = x
]

in two different ways. Firstly,
in terms of the density:

E
[
∆X(t)

∣∣ X(t) = x
]

= E
[
X(t+ ∆t)

∣∣ X(t) = x
]
− E

[
X(t)

∣∣ X(t) = x
]

︸ ︷︷ ︸
x

= (30a)

=

∫
x′ ρ(x′, t+ ∆t

∣∣ x, t) dx′ − x
∫
ρ(x′, t+ ∆t

∣∣ x, t) dx′

︸ ︷︷ ︸
1 in disguise

= (30b)

=

∫
(x′ − x)ρ(x′, t+ ∆t

∣∣ x, t) dx′. (30c)

Secondly, making use of (27):

E
[
∆X(t)

∣∣ X(t) = x
]

= E
[
f(X(t), t)

∣∣ X(t) = x
]

∆t+ E
[
g(X(t), t)︸ ︷︷ ︸∆W (t)︸ ︷︷ ︸

∣∣ X(t) = x

]

independent

=

(31a)

= f(x, t) ∆t+ E
[
g(X(t), t)

∣∣ X(t) = x
]

︸ ︷︷ ︸
g(x,t)

E
[
∆W (t)

∣∣ X(t) = x
]

︸ ︷︷ ︸
0

= f(x, t) ∆t

(31b)

Hence, we conclude that

∫ ∞

−∞
(x′ − x) ρ(x′, t+ ∆t

∣∣ x, t) dx′ = f(x, t) ∆t. (32)

Similarly, we compute the expectation E
[
∆X(t)2

∣∣ X(t) = x
]

in two different ways:

E
[
∆X(t)2

∣∣ X(t) = x
]

=

∫
(x′ − x)2ρ(x′, t+ ∆t

∣∣ x, t) dx′ as before, and (33a)

E
[
∆X(t)2

∣∣ X(t) = x
]

= EW

∫ [
f(x′, t) ∆t+ g(x′, t) ∆W (t)

]2
ρ(x′, t+ ∆t|x, t) dx′ =

(33b)

= f(x, t)2 ∆t2 + g(x, t)EW [∆W (t)]︸ ︷︷ ︸
0

+g(x, t)2 EW [∆W (t)2]︸ ︷︷ ︸
∆t

. (33c)

Hence, ∫ ∞

−∞
(x′ − x)2 ρ(x′, t+ ∆t

∣∣ x, t) dx′ = f(x, t)2 ∆t2 + g(x, t)2 ∆t. (34)
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Lecture 3 - Mathematical Foundations of Stochastic Processes

Charles R. Doering; notes by Florence Marcotte & Cesar B. Rocha

June 17, 2015

Recalling from lecture 2 that we are studying the general first-order linear stochastic ordi-
nary differential equation

∆X = f(X(t), t) + g(X(t), t)ξ(t)∆t , (1)

where ξ(t) is a Gaussian white noise, and

∆X(t) = X(t+ ∆t)−X(t) , (2)

with
X(0) = X0 . (3)

The first and second moments of the transition density are∫
(y − x)ρ(y, t+ ∆t|x, t)dy = E(∆X(t)|X(t) = x) = f(X, t)∆t , (4)∫

(y − x)2ρ(y, t+ ∆t|x, t)dy = E(∆X(t)2|X(t) = x) = f(X, t)2∆t2 + g(X(t), t)2∆t , (5)

The higher order moments (n > 2) are smaller than O(∆t):

E(∆X(t)n|X(t) = x) = o(∆t) . (6)

The Fokker-Planck equation

The Chapman-Kolmogorov relation for the Markovian probability density ρ gives the transi-
tion density from state y at time s to state x at time t (where s < t) through an intermediate
state z at time u, by integrating over all the possible intermediate states z:

ρ(x, t|y, s) =

∫
ρ(x, t|z, u)ρ(z, u|y, s)dz . (7)

This relation will be used here to interpret a stochastic differential equation as a continuous
limit of the discrete process above. Let ϕ(X) a smooth test-function.∫

ϕ(x)ρ(x, t+ ∆t|y, s)dx =

∫
dxϕ(x)

∫
ρ(x, t+ ∆t|z, t)ρ(z, t|y, s)dz

=

∫
dzρ(z, t|y, s)

∫
dxϕ(x)ρ(x, t+ ∆t|z, t) . (8)
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Expanding ϕ(x) about ϕ(z) for small ∆t we obtain

ϕ(x) = ϕ(z) + (x− z)ϕ′(z) +
(x− z)2

2
ϕ′′(z) + . . . . (9)

Hence, using the moments formulae (4) through (6), we have∫
ϕ(x)ρ(x, t+ ∆t|z, t)dx =ϕ(z)

∫
ρ(x, t+ ∆t|z, t)dx︸ ︷︷ ︸

=1

+ϕ′(z)

∫
(x− z)ρ(x, t+ ∆t|z, t)dx︸ ︷︷ ︸

=f(z,t)∆t

(10)

+
1

2
ϕ′′(z)

∫
(x− z)2ρ(x, t+ ∆t|z, t)dx︸ ︷︷ ︸

=f(z,t)2∆t2+g(z,t)2∆t

+O(∆t) . (11)

Thus ∫
ϕ(z)

(
ρ(z, t+ ∆t|y, s)− ρ(z, t|y, s)

∆t

)
dz = (12)∫ (

ϕ′(z)f(z, t) +
1

2
ϕ′′(z)g(z, t)2

)
ρ(z, t|y, s)dz +O(1) . (13)

Since ϕ(z) is arbitrary, in the continuous limit we obtain the following partial differential
equation (PDE) for the Markovian transition density ρ(x, t|y, s);

∂

∂t
ρ(x, t|y, s) =

∂

∂x

[(
−f(x, t) +

1

2

∂

∂x
g(x, t)2

)
ρ(x, t|y, s)

]
, (14)

known as the Fokker-Planck (or forward Kolmogorov) equation. To solve (14) we need
initial data and boundary conditions. Here we will only worry about the former, which is
given by

lim
t→s

ρ(x, t|y, s) = δ(x− y) , (15)

where the limit above is taken from the right (i.e., t > s). The derivation of the Fokker-
Planck equation can be generalized to higher dimensions. Consider the n-dimensional
stochastic process

X(t) = (X1(t), X2(t), . . .) = Xi(t) . (16)

The stochastic differential equation is

dXi

dt
= fi(x, t) + gij(x, t)ξj(t) , (17)

where the summation over repeated indices is implicit. The associated Fokker-Planck equa-
tion for the Markovian transition density is

∂

∂t
ρ(x, t|y, s) =

∂

∂xi

[(
−fi +

1

2

∂

∂xj
gikgjk

)
ρ(x, t|y, s)

]
, (18)

where we can introduce the symmetric positive, semi-definite diffusion matrix Dij
def
= gikgjk.

At this point it is important to remark that different interpretations of the stochastic dif-
ferential equation lead to different partial differential equations on the transition density.
We will take up this important fact later.
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Itô’s Lemma

Let Xt be a stochastic variable whose evolution is governed by the following SDE, according
to Itô’s interpretation:

dXt = f(Xt)dt+ g(Xt)dWt , (19)

and whose transition probability density satisfies the following Fokker-Planck (or Kol-
mogorov Forward) equation

∂ρX
∂t

=
∂

∂X

[(
−f +

1

2

∂

∂X
g(X)2

)
ρX

]
. (20)

We emphasize that the subscripts above are labels – they do not represent partial differen-
tiation.

Now consider a function of the random process X(t) with a well defined inverse

Y = F (X)⇐⇒ X = G(Y ) . (21)

We want to find a stochastic differential equation for Y and thus we write

ρY dY = ρXdX , (22)

and
∂

∂X
= F ′

∂

∂Y
or G′

∂

∂X
=

∂

∂Y
, (23)

from which we obtain

∂ρY
∂t

=
∂

∂Y

[(
−f +

1

2

∂

∂X
g2

)
F ′ρY

]
=

∂

∂Y

[(
−F ′f +

1

2

∂

∂X

1

F ′
(gF ′)2

)
ρY

]
. (24)

Finally, the equation for the Markovian transition density is then

∂ρY
∂t

=
∂

∂Y

[(
−F ′f − 1

2
F ′′g2 +

1

2

∂

∂Y
(gF ′)2

)
ρY

]
. (25)

Using our “recipe”, we obtain the associated stochastic differential equation

dY =

(
F ′f +

1

2
F ′′g2

)
dt+ gF ′dW , (26)

dF (X) = F ′(X)dX +
1

2
F ′′(X)(dX)2 , (27)

plugging in the equation for dX, using (dX)2 = g2dt+ o(∆t), we obtain

dF (X) =

(
F ′(X)f +

1

2
F ′′(X)g2

)
dt+ gF ′dW . (28)

Equation (28) is known as Itô’s change of variables formula or Itô’s lemma (note the extra-
term 1

2F
′′(X)g2, due to the presence of the noise).
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A linear example: The Ornstein–Uhlenbeck equation

Consider the following model
dU

dt
= −γU + σξ(t) , (29)

where γ and σ are constants, which is Langevin equation with a linear damping term (first
term on the right hand side), the second term being a fluctuation forcing. This could model
for example the acceleration of a solid body immersed in a fluid, resulting on the combination
of the Stokes drag (if the fluid happens to have a mean flow) and the constant battering of
molecules around the body (white noise). Using Itô’s interpretation, the associated Fokker-
Planck equation is

∂

∂t
ρ(u, t|v, s) =

∂

∂u

[(
γu+

σ2

2

∂

∂u
ρ(u, t|v, s)

)]
, (30)

with the initial condition
lim
t→s

ρ(u, t|v, s) = δ(u− v) . (31)

The solution is then

ρ(u, t|v, s) =
1√

2πΣ(t− s)
exp

[
−1

2

(u− ve−γ(t−s))2

Σ(t− s)

]
, (32)

with

Σ(t− s) def
=

σ2

2γ

(
1− e−2γ(t−s)

)
. (33)

To obtain an equation for the expectation of u, we just take the expectation of (29), to
obtain

dE(U)

dt
= −γE(U) , (34)

whose solution is
E(U) = ve−γ(t−s) . (35)

To derive an equation for the second moment, we first obtain an equation for U2. Using
Itô’s change of variables (28) we have

F = u2 , F ′ = 2u , and F ′′ = 2 , (36)

we obtain
dU2 = −2γU2dt+ 2UσdW + σ2dt . (37)

or
dU2 = 2UdU + σ2dt . (38)

The last term in (38) arises from the presence of the noise term. Now take the expectation
of (38) to obtain

dE(U2) = −2γE(U2)dt+ σ2dt , (39)

or
dE(U2)

dt
= −2γE(U2) + σ2 , (40)
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with the initial condition
E(U2) = v2 , t→ s . (41)

The Markovian density equilibrates to a stationary state

lim
t→∞

ρ(u, t|v, s) =

√
γ

πσ2
e−

γ

σ2 u
2

, (42)

which is in the form
ρstat(u, t|v, s) = ρ(u, t|v, s)ρstat(v) . (43)

For the stationary state, the covariance is

Estat(U(t)U(s)) =

∫ ∫
uvρ(u, t; v, s)dudv =

σ2

2γ
e−γ|t−s| . (44)

The power spectrum is simply the Fourier transform of the autocovariance C(t)

S(ω)
def
=

∫ ∞
−∞

C(t)e−iωtdt . (45)

Hence we obtain the Lorenzian spectrum

S(ω) =

∫ ∞
−∞

σ2

2γ
e−γ|t|−iωtdt =

σ2

γ2 + ω2
. (46)

Note that with (46) we can recover a flat spectrum in the white noise limit γ → ∞ with
appropriately rescaled noise amplitude.

Figure 1: The stationary covariance (left) and spectrum (right) for the Ornstein–Uhlenbeck
process with γ = 1 and σ2 = 0.1.
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A nonlinear example: The logistic equation

As an example of nonlinear equation, we consider the logistic equation

dX = (µX −X2)dt , (47)

where µ represents the ratio of birth rate to death rate, with initial condition X(0) = X0 >
0. This is also known as the Verhulst model for population dynamics. The behavior of the
deterministic equation (47) is well known; at large t, the solution approaches the fixed point
µ (this is sometimes referred to as the carrying capacity of the system).

We now consider a stochastic logistic equation by adding a white noise term to the ratio
of birth rate to death rate:

µ(t) = µ̄+ σξ(t) , (48)

with µ̄ a constant. The stochastic differential equation is then

dX = (µ̄X −X2)dt+ σXξ(t)dt , (49)

with the associated Fokker-Planck equation

∂ρ

∂t
=

∂

∂X

[(
X2 − µ̄X +

σ2

2

∂

∂X
X2

)
ρ

]
. (50)

Figure (2) shows numerical simulations for the stochastic logistic equation with two
different initial conditions and various levels of noise. As discussed above, the deterministic
behavior is well known; the solution initially grows (X(0) < µ) or decays (X(0) > µ) and
asymptotically approaches the steady state, or the carrying capacity of the system, µ. For
small noise (σ < 0.1), the solutions oscillate about the deterministic solution. For moderate
noise levels (σ2 ∼ O(1)), the solutions become very intermittent. For even larger levels of
noise, the solutions show a tendency towards extinction.

If there is a stationary state then it must satisfy

0 =
∂

∂X

[(
X2 − µ̄X +

σ2

2

∂X2

∂X

)
ρstat

]
. (51)

In general we can write

0 =
∂

∂X

[(
−f +

1

2

∂

∂X
g(X)2

)
ρstat

]
, (52)

from which we find

ρstat(X) =
N

g(X)2
exp

[
2

∫ X f(ξ)

g(ξ)2
dξ

]
. (53)

With the explicit f and g from the stochastic version of the Verhulst model, we obtain

ρstat(X) = NX2(µ̄/σ2−1)e−
2
σ2X . (54)

The normalization constant is defined as∫
ρstat(X)dX = 1⇒ N

(
σ2

2

)(2µ̄/σ2−1)

Γ

(
2µ̄

σ2
− 1

)
= 1 , (55)
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where Γ(x) is the gamma function. Note that for µ̄/σ2 ≤ 1/2 the normalization constant
defined above is not bounded. Thus there is no stationary state with support on x > 0.
For every small ε > 0, the probability for Xt to fall above ε > 0 as time goes to ∞ is 1
(convergence in probability).

Figure 3 shows a comparison of the stationary probability density (53) with empirical
probability densities at t = 50 based on 10000 numerical simulations, similar to those
presented in figure 2. With small noise, the probability density function almost Gaussian.
As the level of noise increases, the probability density becomes highly skewed (the solution
becomes highly intermittent). Moreover, there is a qualitative change in the behavior of the
stationary density functions for σ2 > 1.0 in (53). With a large level of noise, the probability
density function is compressed near x = 0 (the probability of extinction is very high).

Figure 2: Numerical solutions to the stochastic logistic equation with µ̄ = 1 for various
levels of noise. Note that σ2 = 0 is simply the deterministic solution. For high levels of
noise (σ2 > 1), one observes a tendency towards extinction.
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Figure 3: A comparison between the analytical stationary probability density function Eq.
(53) (solid lines) against the empirical probability function (dots) at t = 50 based on 10000
simulations of the stochastic logistic equation with µ̄ = 1. Note the qualitative change at
σ2 ≥ 1. (In these figure labels X from Eq. (53) is written as x.)
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Lecture 4 - Mathematical Foundations of Stochastic Processes

(substitute lecturer Oliver Bühler)

Oliver Bühler; notes by Tom Eaves & Anna FitzMaurice

June 18, 2015

1 Itō calculus

Recall that for the stochastic differential equation

dXt = f(Xt)dt+ g(Xt)dWt (1)

we have the important relations

E(g(Xt)dWt) = 0 (2)

dWtdWt = dt (3)

E(dW (t1)dW (t2)) = δ(t1 − t2)dt1dt2 (4)

We would like to reconcile the fact that we have terms of order dt and terms of order√
dt in the same equation. Essentially, dWt is large and incoherent, whereas dt is small but

coherent, and they act together to result in equal contributions. The fact that dWtdWt = dt
means that when attempting to work with the chain rule when changing variables, we need
to evaluate more derivatives than expected in order to complete the stochastic differental
equation to the correct order. For example,

d(F (Xt)) = F ′(Xt)dXt + F ′′(Xt)dXtdXt/2 + o(dXtdXt). (5)

Additionally, dWtdWt = dt requires careful interpretation. Recall that for finite incre-
ments in the Weiner process,

E(∆W 2) = ∆t (6)

and so the infinitesimal statement should be interpreted as any errors associated with ap-
proximating ∆W 2 ≈ ∆t are canceled in the limit of infinitesimal increments which are then
summed over as an integral, and this process works because we are summing a family of
independent Gaussian-distributed random variables.

With the Itō calculus rule (5) we may re-examine the examples already considered
without reference to the Fokker–Planck equation.
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1.1 Ornstein-Uhlenbeck Equation

Consider again the Ornstein-Uhlenbeck stochastic differential equation

dUt = −γUtdt+ σdWt. (7)

We can in fact integrate this exactly by multiplying through by eγt to get

d(eγtUt) = eγtσdWt, (8)

and so

Ut = U0e
−γt + σe−γt

∫ t

0
eγsdWs, (9)

which gives the expectation
E(Ut) = e−γtE(U0) (10)

and variance

E(U2
t ) = σ2e−2γt

∫ t

0

∫ t

0
eγ(s1+s2)E(dW (s1)dW (s2)). (11)

We could instead obtain these results directly from the stochastic differential equation
by forming an equation for d(U2

t ) using Itō calculus. From the Itō formula (5) we have

UtdUt =
d(U2

t )

2
− dUtdUt

2
, (12)

and from (7) and the relation dWtdWt = dt,

dUtdUt = σ2dt+ o(dt), (13)

which gives
d(U2

t )

2
− σ2

2
dt = −γU2

t dt+ UtσdWt. (14)

In steady state Es(d) = 0 and so

σ2

2
= Es(γU2

t ), (15)

which is the fluctuation-dissipation relation for this process.

1.2 Linear population model

Consider the stochastic differential equation

dXt = µXtdt+ σXtdWt. (16)

This equation can be interpreted as a random interest rate model.
We have

E(dXt) = µE(Xtdt), (17)

and so
E(Xt) = X0e

µt. (18)
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We also have

d(Xn
t ) = nXn−1

t dXt +
n(n− 1)Xn−2

t dXtdXt

2
(19)

=

(
nµ+

n(n− 1)σ2

2

)
Xn
t dt+ nσXn

t dWt, (20)

and so the n-th moment is

E(Xn
t ) = Xn

0 exp

[(
nµ+

n(n− 1)σ2

2

)
t

]
. (21)

Alternatively, using the Itō calculus formula (5), we note that in the absence of noise,
we would be interested in d(log(X)), and so we compute

d(log(Xt)) =
dXt

Xt
− dXtdXt

2X2
t

=
dXt

Xt
− σ2dt

2
(22)

= µdt− σ2

2
dt+ σdWt. (23)

Hence, the solution is

Xt = X0 exp

[(
µ− σ2

2

)
t+ σWt

]
. (24)

We can reconcile the fact that at first glance the results E(Wt) = 0 and E(Xt) = X0e
µt

appear incompatible with this solution by recognising that the occasions for which Wt > 0
and Wt < 0 do not contribute equally after exponentiating.

From this solution we see that if σ2 > 2µ, then extinction is guaranteed almost surely,
as for the nonlinear population model discussed in a previous lecture. This is since near
extinction, X is small, and so the linearised approximation is accurate.

We can find the transition density ρ(x, t|x0, 0) by solving the Fokker–Planck equation
for ρY (y, t|y0, 0) for the variable Yt = log(Xt), since

∂ρY
∂t

=

(
σ2

2
− µ

)
∂ρY
∂y

+
σ2

2

∂2ρY
∂y2

, (25)

which can be solved with Fourier transforms to give

ρY =
1√

2πσ2t
exp

−
(
y − y0 −

(
µ− σ2

2

)
t
)2

2σ2t

 , (26)

and so Yt is normally distributed, meaning that Xt is log-normally distributed, with

ρ(x, t|x0, 0) =
1

x
√

2πσ2t
exp

−
(

log x− log x0 −
(
µ− σ2

2

)
t
)2

2σ2t

 . (27)
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Now let ε > 0. Then,

P(Xt > ε|X0 = x0) =

∫ ∞
ε

ρ(x, t|x0, 0)dx =
1√
π

erfc

(
log ε− log x0 − (µ− σ2

2 )t
√

2σ2t

)
, (28)

and so if σ2 > 2µ, we have that P(Xt > ε|X0 = x0) → 0 as t → ∞, despite the fact
that E(Xt) = X0 exp(µt). Almost all trajectories decay eventually, but the moments of the
distribution grow rapidly, and so in an ensemble we expect an occasional ‘success’. We can
see that the distribution becomes more shifted towards x = 0 as time t increases in Figure
1, in which the distribution for µ = 1, σ = 2 and x0 = 1 is plotted at various times.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

ρ

t

Figure 1: The transition density ρ(x, t|1, 0) for the linear population growth model with
µ = 1 and σ = 2 at times t = 0.0001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1 and 2.

1.3 Nonlinear population model

Consider the stochastic differential equation

dXt = (µXt −X2
t )dt+ σXtdWt. (29)

Let Yt = X−1t . Then, the Itō calculus formula (5) gives

dYt = −dXt

X2
t

+
dXtdXt

X3
t

(30)

= −(µXt −X2
t )dt+ σXtdWt

X2
t

+
σ2X2

t dt

X3
t

(31)

= (1− (µ− σ2)Yt)dt− σYtdWt, (32)
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which is linear in Yt.
Then,

E(dYt) = −(µ− σ2)E(Ytdt), (33)

which gives
E(Yt) = Y0e

−(µ−σ2)t →∞ as t→∞ if µ < σ2, (34)

as expected from a previous lecture.

2 Probability currents and steady states

Recall the Fokker-Planck equation for x ∈ Rn and noise w ∈ Rm subject to

dXi = fidt+ gijdWj , (35)

namely
∂ρ

∂t
+∇ · (ρf) =

∂2

∂xi∂xj

(
Dij

2
ρ

)
, (36)

where Dij = gikgjk is an n× n matrix.
We can introduce a probability current J by

∂ρ

∂t
+∇ · J = 0, (37)

and so

Ji = fiρ−
∂

∂xj

(
Dij

2
ρ

)
(38)

To have a steady state we need ∇ · J = 0, which can be achieved in two ways.

1. J = 0 corresponds to equilibrium solutions, or detailed balance solutions in which
each point of any boundary has zero net flux across it.

2. J 6= 0 corresponds to solutions with flux.

First consider J = 0. Then, write ρ = e−φ > 0. The condition J = 0 becomes

Dij

2

∂φ

∂xj
= −(fi + vi), (39)

where

vi = − ∂

∂xj

(
Dij

2

)
, (40)

and so provided that Dij is invertible the solution is obtained from

∂φ

∂xj
= −2D−1ij (vi + fi). (41)

Given that the left hand side of this equation is ∇φ, we have a compatibility condition
for the existence of such a solution,

curl(D−1 · (v + f)) = 0. (42)

We now show some examples of density currents satisfying ∇ · J = 0.
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2.1 Uniform noise

This is an example of ∇ · J = 0 achieved through J = 0. Let Dij ∝ δij . Then (41) becomes
f = ∇φ, which is a gradient drift solution, and for compatibility we require ∇× f = 0.

2.2 Gradient flow plus Hamiltonian flow

In two dimensions, let f = −σ2∇φ+∇× (Hx̂3) and Dij = 2σ2δij .
The corresponding deterministic equation would be

ẋ1 = −φx1 −Hx2 , (43)

ẋ2 = −φx2 +Hx1 , (44)

i.e. the sum of a gradient flow φ and a Hamiltonian flow H.
An example of such a stochastic differential equation would be noisy rotating decay

dUt = −γUtdt+ fVtdt+ σdWt1 , (45)

dVt = −γVtdt− fUtdt+ σdWt2 . (46)

For this f and D, try the solution ρ = e−φ to get

J = e−φf + σe−φ∇φ. (47)

When taking the divergence, many terms cancel, and we are left with

∇ · J = −e−φ∇φ · ∇ × (Hx̂3), (48)

and so we obtain ∇ · J = 0 provided that

J(φ,H) = 0, (49)

where J(· , ·) is the Jacobian.

2.3 Forced harmonic oscillator

The stochastic differential equation

dXt = Ytdt, (50)

dYt = −Xtdt− γYtdt+ σdWt, (51)

has stationary solution

ρs = N exp
(
− γ

σ2
(x2 + y2)

)
. (52)

3 Kolmogorov Backward Equation

We have so far considered the Fokker-Planck equation, which tells us the evolution forwards
in time of a probability distribution for a given SDE from a corresponding initial condition.
We now derive the Kolmogorov Backward Equation (KBE), which can be thought of as the
PDE governing the evolution of a distribution backwards in time, and will subsequently
demonstrate the application of this equation to a variety of problems of interest.
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3.1 Derivation of the KBE

Starting from the Chapman-Kolmogorov equation (which follows simply from the Markov
property for all Markovian processes)

ρ(x, t|y, s) =

∫ ∞
−∞

ρ(x, t|x′, t′)ρ(x′, t′|y, s) dx′, (53)

differentiate with respect to t′ to obtain

0 =

∫ ∞
−∞

[
∂ρ

∂t′
(x, t|x′, t′)ρ(x′, t′|y, s) + ρ(x, t|x′, t′) ∂ρ

∂t′
(x′, t′|y, s)

]
dx′. (54)

Now substituting for ∂ρ
∂t′ (x

′, t′|y, s) using the Fokker-Planck (forward) equation, and using
integration by parts

0 =

∫ ∞
−∞

dx′
∂ρ

∂t′
(x, t|x′, t′)ρ(x′, t′|y, s)

+ ρ(x, t|x′, t′) ∂

∂x′

(
−f(x′) +

1

2

∂

∂x′
g(x′)2

)
ρ(x′, t′|y, s)

0 =

∫ ∞
−∞

dx′ ρ(x′, t′|y, s)
[
∂ρ

∂t′
(x, t|x′, t′) + f(x′)

∂ρ

∂x′
(x, t|x′, t′) +

1

2
g(x′)2

∂2ρ

∂x′2
(x, t|x′, t′)

]
.

If we now let the time interval |t′− s| → 0, then ρ(x′, t′|y, s)→ δ(x′− y), so we are left with

0 =
∂ρ

∂s
(x, t|y, s) + f(y)

∂ρ

∂y
(x, t|y, s) +

1

2
g(y)2

∂2ρ

∂y2
(x, t|y, s), (55)

or
∂ρ

∂s
(x, t|y, s) =

(
f(y)

∂

∂y
+

1

2
g(y)2

∂2

∂y2

)
ρ(x, t|y, s), (56)

which is known as the Kolmogorov Backward Equation. Note that the operator L ≡
f∂x+ g2

2 ∂
2
x is the formal adjoint of the forward Fokker-Planck operator L† ≡ ∂x(−f+∂x

g2

2 ).

3.2 Survival times and first passage times

The power of the KBE becomes transparent if we consider the problem of a random process
on some specified domain, and wish to make statements about the time taken for the process
to stray outside the domain (variously known as the first passage time, the exit time, the
escape time, the stopping time, or the hitting time of the process), or if we wish to determine
the region of the boundary through which the process exits the domain.

3.2.1 Survival time

Consider a 1D process X(t) on x ∈ (xa, xb), and impose absorbing boundary conditions
ρ(xa, t|x0, t0) = ρ(xb, t|x0, t0) = 0. It is of interest to compute the survival probability
S(t|x0, t0) ≡ P(xa < X(u) < xb ∀u < t). By definition, S is a monotonically decreasing
function of t, with S(t0|x0, t0) = 1 for x0 ∈ (xa, xb) and S(t|x0, t0) → 0 as t → ∞, so
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probability can be thought of as “leaking” over the edge of the domain as time progresses.
Thus probability density is not conserved, and it can be seen that S(t|x0, t0) is given by

S(t|x0, t0) =

∫ xb

xa

ρ(x, t|x0, t0) dx. (57)

Consequently we may obtain a PDE for S by integrating the KBE for the process, as follows∫ xb

xa

[
∂ρ

∂t0
(x, t|x0, t0) =

(
f(x0)

∂

∂x0
+

1

2
g(x0)

2 ∂
2

∂x20

)
ρ(x, t|x0, t0)

]
dx (58)

− ∂

∂t0
S(t|x0, t0) =

(
f(x0)

∂

∂x0
+

1

2
g(x0)

2 ∂
2

∂x20

)
S(t|x0, t0), (59)

which can be solved for survival time S given boundary conditions S(t|xa, t0) = S(t|xb, t0) =
0 and initial condition S(t0|x0, t0) = 1 for xa < x0 < xb.

3.2.2 First passage time

For the 1D process above, define random variable texit as the first time at which X = xa or
X = xb. Then the mean exit time for a process starting at (x0, t0) is, by definition

Ex0(texit − t0) =

∫ ∞
t0

(t− t0)p(t|x0, t0) dt, (60)

where p(t|x0, t0) ≡ − d
dtS(t|x0, t0) is the probability of absorption at time t. Integrating by

parts,

Ex0(texit − t0) = −
[
(t− t0)S(t|x0, t0)

]∞
t0

+

∫ ∞
t0

S(t|x0, t0) dt, (61)

and it can be seen that the boundary terms vanish provided S(t|x0, t0) ∼ o(t−1) as t→∞,
which holds provided the mean survival time is well-defined, so

Ex0(texit − t0) =

∫ ∞
t0

S(t|x0, t0) dt. (62)

To get an equation for the mean exit time, we then integrate equation (59) between (t0,∞)
to give

− ∂

∂t0

∫ ∞
t0

S(t|x0, t0) dt− S(t0|x0, t0) =

∫ ∞
t0

(
f(x0)

∂

∂x0
+

1

2
g(x0)

2 ∂
2

∂x20

)
S(t|x0, t0) dt,

(63)
using Leibniz’s rule. Now noting that the mean exit time is independent of t0 for an
autonomous system, and that S(t0|x0, t0) = 1, we have

−1 =

(
f(x0)

∂

∂x0
+

1

2
g(x0)

2 ∂
2

∂x20

)
Ex0(texit − t0), (64)

which may be solved for mean exit time Ex0(texit − t0).
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3.3 Alternative derivation: Change of variables

An alternative derivation of the KBE to that above is to consider the change of variables
Y = u(X, t) in the SDE dX = f(X)dt+ g(X)dW , for some function u. Using Itō calculus,
the change of variables becomes

dY = utdt+ uXdX +
1

2
uXXdXdX (65)

= (ut + fuX +
g2

2
uXX)dt+ uXgdW, (66)

on substituting for dX using the governing SDE, and noting that dWdW = dt. We then
have

dY = (ut + Lu)dt+ uXgdW (67)

for operator L ≡ f∂x + g2

2 ∂
2
x, as before. The KBE is precisely the equation ut + Lu = 0,

and (as a backward heat equation) is well-posed when conditions are specified on some
final time t = T > t0. It can be seen from integrating equation (67) that the solution
to the homogeneous problem ut + Lu = 0 with condition u(X,T ) = φ(X) generates the
expectation u(X,T ) = E(φ(X(T ))|X(t) = x), so for this reason L is sometimes referred to
as the generator.
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Lecture 5 - Mathematical Foundations of Stochastic Processes

Charles R. Doering; notes by Yana Bebieva & Giovanni Fantuzzi

June 19, 2015

1 Stratonovich Interpretation of an SDE

There are different ways of interpreting stochastic differential equations (SDE). We know
Itō’s interpretation that gives the evolution equation for the transition density

∂

∂t
ρ(x, t|y, s) =

∂

∂xi

(
−fi +

1

2

∂

∂xi
gikgjk

)
ρ = − ∂

∂xi
Ji.

Here, ~J is a probability current vector field and gij are functions of x and t (i.e. g = g(x, t),
but for simplicity we will suppress the arguments).

The transition density satisfies an evolution equation when we differentiate with respect
to the initial time, i.e. the Kolmogorov backward equation

− ∂

∂s
ρ(x, t|y, s) =

(
fi

∂

∂yi
+

1

2
gikgjk

∂

∂yj

∂

∂yi

)
︸ ︷︷ ︸

Generator of the process

ρ.

We are still in a white noise limit and we should still get Markov process as the solution
of the SDE (i.e. X(t)).

Now, we consider two examples where two different kinds of white noise limits give the
same answer. Consider the process (in one dimension for simplicity)

Ẋ = f(X) + g(X)× (“approximate white noise”).

White noise has a spectrum that is flat, meaning that correlation function is the delta-
function. However if there is a very short time correlation (that we just can not resolve well
enough), then this noise can be considered as an approximate white noise (note it is still
a real noise). We take a very specific example of approximate white noise as a Gaussian
process g(X), that is statistically stationary with a very short correlation time τ . For
example, we may consider the Ornstein - Uhlenbeck process ζ(t), whose SDE is

dζ(t) = −1

τ
ζ(t)dt+

1√
τ
dW.
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We pick the amplitude of the noise to be 1/
√
τ , when the relaxation time gets smaller and

smaller, the noise influence gets bigger and bigger. The Fokker - Planck equation for ζ(t)
becomes

∂

∂t
ρ(z, t|z0, t0) =

∂

∂z

(
1

τ
z +

1

2

1

τ

∂

∂z

)
ρ =

1

τ

∂

∂z

(
z +

1

2

∂

∂z

)
ρ,

and we see that τ is a time scale for the evolution transition density. The stationary solution
of this equation is the Gaussian distribution

ρstat(z) =
1√
π
e−z

2 ∼ N (0, 1).

Moreover, the stationary correlation function is an exponential decay

E(ζ(t)ζ(s)) =
1

2
e−
|t−s|
τ ,

so that the power spectrum of the process is a Lorentzian spectrum

S(w) =
τ

1 + w2τ2
.

When τ goes to zero, the spectrum widens but the amplitude decreases to zero. In order
to prevent this the amplitude from vanishing, we rescale

ζ(t)→ 1√
τ
ζ(t),

so that the spectrum becomes

S(w) =
1

τ

τ

1 + w2τ2
.

The amplitude of the spectrum is now 1 when τ → 0.
The arguments above lead us to conclude that the system of SDEs

dX

dt
= f(X) + g(X)

1√
τ
ζ(t), (1)

dζ

dt
= −1

τ
ζ +

1√
τ
ξ(t), (2)

in the limit of short correlation time τ behaves similarly to an SDE for X where the noise
is approximately white (note the functions f and g could have explicit time dependence).
The combination (1) and (2) is a vector-valued Markov process, and the Fokker - Planck
equation for its transitions density is

∂

∂t
ρ(x, z, t|x0, z0, t0) =

[
∂

∂x

(
−f − 1√

τ
zg

)
+

1

τ

∂

∂z

(
z +

1

2

∂

∂z

)]
ρ (3)

We would like to deduce from this an evolution equation for the distribution of X alone, i.e.
the marginal (reduced) distribution

r(x, t|x0, t0) =

∫
dz

(∫
ρ(x, z, t|x0, z0, t0)ρstat(z0)dz0

)
,
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in the limit τ → 0.
To this end, let ε =

√
τ and rearrange equation (3) by grouping terms of order εn. We

obtain

0 =

(
1

ε2
F0 +

1

ε
F1 + F2

)
ρ, (4)

where

F0 =
∂

∂z
(z +

1

2

∂

∂z
) – the Ornstein - Uhlenbeck operator,

F1 = −z ∂
∂x
g,

F2 = −(
∂

∂t
+

∂

∂x
f).

Our ansatz is

ρ(x, z, t|x0, z0, t0) = ρ0 + ερ1 + ε2ρ2 + ... ,

i.e. the subscript of each ρi in the expansion indicates the corresponding power of ε. Now
we plug this expression for ρ into (4) and group the terms according to the order of ε to
obtain

O(ε−2) : 0 = F0ρ0 (5a)

O
(
ε−1
)

: 0 = F0ρ1 + F1ρ0 (5b)

O(ε0) : 0 = F0ρ2 + F1ρ1 + F2ρ0 (5c)

We keep in mind that we want to derive from this an evolution equation for the reduced
distribution

r(x, t|x0, t0) =

∫
dz

(∫
ρ(x, z, t|x0, z0, t0)ρstat(z0)dz0

)
= r0 + εr1 + ε2r2 + ... (6)

We know all properties of the operator F0; in particular, we can solve the eigenvalue problem

F0pn(z) = −npn(z),

to find the eigenfunctions

pn(z) = Hn(z)pstat(z) ≡ Hn(z)p0(z),

where the Hermite polynomials Hn are defined as

Hn(z) = (−1)nez
2 dn

dzn
e−z

2
,

H0(z) = 1,

H1(z) = 2z,

H2(z) = 2(2z2 − 1).
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We may compute all Hermite polynomials using the recursion relation

zHn(z) =
1

2
Hn+1(z) + nHn−1(z).

Now we are ready to solve (5a) to find

0 = F0ρ0 ⇒ ρ0(x, z, t) = p0(z)r0(x, t)

where p0(z) can be multiplied by any function of x and t (it plays the role of the amplitude
of the eigenfunction p0 at each point in space and time). In this case this function is r0(x, t)
because if we integrate ρ = ρ0 + ερ1 + ... over z to obtain r, the leading term is exactly r0.

To order ε−1, equation (5b) now reads

F0ρ1 = −F1ρ0 = zp0(z)
∂

∂x
gr0(x, t) =

1

2
p1(z)

∂

∂x
gr0(x, t)

where we used the recursion relation to replace zp0 = p1/2. Here, we deal with a linear
inhomogeneous differential equation and the general solution of this equation is a particular
solution plus a general solution of the homogeneous equation. Therefore

ρ1 = − 1

2

∂

∂x
gr0(x, t)p1(z)︸ ︷︷ ︸

particular solution

+ r1(x, t)p0(z)︸ ︷︷ ︸
general solution

.

Finally, upon substitution of ρ0 and ρ1, equation (5c) becomes

F0ρ2 = z
∂

∂x
g

(
−1

2

∂

∂x
gr0(x, t)p1(z) + r1(x, t)p0(z)

)
+

(
∂

∂t
+

∂

∂x
f

)
r0(x, t)p0(z).

Let us now use zp1 = 2z2p0 = 1
2p2 + p0 and zp0 = 1

2p1, to show that

F0ρ2 = −
(

1

4
p2(z) +

1

2
p0(z)

)
∂

∂x
g
∂

∂x
gr0(x, t) +

1

2
p1(z)

∂

∂x
gr1(x, t) + (

∂

∂t
+

∂

∂x
f)r0(x, t)p0(z)

= p0(z)

[
∂

∂t
+

∂

∂x
f − 1

2

∂

∂x
g
∂

∂x
g

]
r0(x, t) + p1(z)

[
1

2

∂

∂x
gr1(x, t)

]
+ p2(z)

[
−1

4

∂

∂x
g
∂

∂x
gr0(x, t)

]
.

(7)

Again, we need to add a particular solution and the solution of the homogeneous equation,
i.e. ρ2 = ρpart + r2(x, t)p0. In order for a particular solution for this equation to exist
the right hand side should be orthogonal to null space of the operator F0. We know that
F0p1(z) = −p1(z) and F0p2(z) = −2p2(z), but we can not invert F0 on p0(z). Thus, in
order to solve (7) the coefficient of p0(z) has to vanish and this gives a condition on r0(x, t)

∂

∂t
r0(x, t|x0, t0) =

∂

∂x

(
−f +

1

2
g
∂

∂x
g

)
r0(x, t)
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If we find r0(x, t) that satisfies this, we can get an explicit equation for r1(x, t), r2(x, t)
etc. So if start with a real noise that is very fast (τ → 0, or ε → 0 in (6)), equation (1)
becomes an SDE with an approximate white noise, r(x, t)→ r0(x, t) as r0(x, t) is the leading
order term and we conclude that ρ(x, t|x0, t0) of the process X satisfies the Fokker - Planck
equation (a.k.a. Forward Kolmogorov Equation)

∂

∂t
ρ =

∂

∂x

(
−f +

1

2
g
∂

∂x
g

)
ρ︸ ︷︷ ︸

Stratonovich Fokker - Planck

. (8)

We remark that Itō’s interpretation of the SDE yielded the Fokker - Planck equation

∂

∂t
ρ =

∂

∂x

(
−f +

1

2

∂

∂x
g2

)
ρ︸ ︷︷ ︸

Itō’s the Fokker - Planck

. (9)

Thus if g is not a function of x (an additive noise), the transition density satisfying (8) is
the same as that obtained from Itō’s interpretation.

In the case of multiplicative noise, i.e. g = g(x, t), can rewrite equation (8) as

∂

∂t
ρ =

(
−f − 1

2
gg′ +

∂

∂x
g2

)
ρ (10)

and then this equation is in the Itō form but with the modified drift. So if we let f 7→ f+ 1
2gg
′

in the SDE (9), then equation (10) describes the evolution of X according to the Itō’s SDE.

2 Interpretation of an SDE: Itō vs Stratonovich

As remarked at the end of the previous section, in Itō’s calculus the solution Xt = X(t) of
the SDE

dXt = f(Xt, t) dt+ g(Xt, t) dWt (11)

is the Markov process Xt whose transition density ρ(x, t|x0, t0) satisfies the Itō’s Fokker-
Planck equation

∂ρ

∂t
=

∂

∂x

(
−f +

1

2

∂

∂x
g2

)
ρ (12)

(note the convention that an operator acts on all terms to its right). As previously explained,
this followed from interpreting (11) as the continuous-time limit of the discrete-time process
X(t + ∆t) −X(t) = f [X(t), t] ∆t + g[X(t), t] ∆W , where ∆W = W (t + ∆t) −W (t) is the
jump of a Wiener process over the time interval ∆t.

In the Stratonovich interpretation of (11), instead, the stochastic forcing in the SDE
is obtained as the white-noise limit of a coloured stochastic process, such as the Ornstein-
Uhlenbeck process. In this case, it is customary to write the SDE as

dXt = f(Xt, t) dt+ g(Xt, t) ◦ dWt, (13)

where the “ ◦ ” sign indicates that dWt should be interpreted as the white-noise limit of a
coloured noise. The difference with Itō’s interpretation is that the solution to (13) is the
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Markov process Xt whose transition density ρ(x, t|x0, t0) satisfies the Stratonovich Fokker-
Planck equation

∂ρ

∂t
=

∂

∂x

(
−f +

1

2
g
∂

∂x
g

)
ρ. (14)

Clearly, the differential operators in equations (12) and (14) differ unless g(x, t) is a
constant, and the evolution of the PDF ρ depends on which interpretation of the SDE is
chosen. However, an Itō SDE can easily be reformulated as a Stratonovich SDE (and vice
versa). In fact, the solution of (11) is the same (in the sense of its statistics) as that of the
Stratonovich SDE

dXt =

[
f − 1

2
g
∂g

∂x

]
dt+ g ◦ dWt, (15)

since the corresponding Fokker-Planck equation, computed from (14) using the modified
drift f − 1

2g
∂g
∂x , can be rearranged to obtain (12). Similarly, one can see that the solution

of (13) is the same (again, in the sense of its statistics) as the solution of the Itō SDE

dXt = f dt+
1

2
g
∂g

∂x
+ g dWt. (16)

This is particularly convenient since many physical systems are modelled by a coloured
noise with very fast dynamics, which corresponds to a Stratonovich interpretation of the
SDE; however, Itō’s formulation is easier to implement numerically to simulate the system
(for example, via the simple Euler-Maruyama or Milstein discretisation schemes).

Finally, we note that the Stratonovich interpretation maintains the standard rules of
calculus for the differential of the random variable Yt = F (Xt), i.e.

dYt = dF (Xt) = F ′(Xt) ◦ dXt. (17)

The symbol “ ◦ ” indicates that Xt obeys a Stratonovich SDE. Equation (17) can be shown
for one-dimensional processes if we assume that F is invertible, with inverse G. Then, the
transition density ρY (y, t|y0, t0) of Yt is related to ρX(x, t|x0, t0) by

ρY (y, t|y0, t0) = ρX [G(y), t|G(y0), t0)]G′(y), (18)

Moreover, noticing that G′(·)F ′(·) = 1 and ∂
∂y = G′ ∂∂x one obtains

∂

∂t
ρY = G′

∂

∂t
ρX

=
∂

∂x

(
−f +

1

2
g
∂

∂x
g

)
ρY

=
∂

∂y

(
−F ′f +

1

2
F ′g

∂

∂x
g
F ′

F ′

)
ρY

=
∂

∂y

(
−F ′f +

1

2
F ′g

∂

∂y
gF ′
)
ρY .

(19)

The claimed result follows from the Fokker-Planck equation for a Stratonovich SDE, which
implies dYt = F ′(f dt+ g ◦ dWt) = F ′(Xt) ◦ dXt.
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Example 1. (Stratonovich Logistic Equation) Consider the logistic equation

dXt = (µ̄Xt −X2
t )dt+ σXt ◦ dWt

where Xt ≥ 0 is the size of a population at time t and µ̄ and σ are given constants. The
corresponding Fokker-Planck equation is

∂ρ

∂t
=

∂

∂x

(
x2 − µ̄x− σ2

2
x+

σ2

2

∂

∂x
x2

)
ρ,

and the corresponding stationary distribution can be calculated as

ρstat(x) = N x

(
2µ̄

σ2−1
)

exp

(
−2x

σ2

)
,

N =

(
σ2

2

)− 2µ̄

σ2
[
Γ

(
2µ̄

σ2

)]−1

.

Moreover, the exact solution of the Stratonovich Logistic equation can be found using an
appropriate change of variables. Dividing (1) by X2

t dt and applying the chain rule (17), we
have

− d

dt

(
1

Xt

)
=

µ̄

Xt
+

σ

Xt

dWt

dt
− 1.

Letting Yt = (Xt)
−1, we obtain the differential equation

dYt
dt

+ [µ̄+ σξ(t)]Yt = 1,

which can be solved to find

Yt = Y0 e
−µ̄t−σW (t) + e−µ̄t−σW (t)

∫ t

0
eµ̄s+σW (s)ds

∴ Xt =
X0 e

µ̄t+σW (t)

1 +

∫ t

0
eµ̄s+σW (s)ds

.

Sample realisation of the SDE are shown in Figure 1, while Figure 2 illustrates the
stationary transition density functions. For any noise amplitude σ, the process is driven by
the exponential growth eµ̄t, until saturation. The qualitative difference with Itō’s interpre-
tation of the same SDE (the solution of which can be found by substituting µ̄ 7→ µ̄− 1

2σ
2,

cf. Lecture 3) is remarkable: in the Itō’s interpretation a stationary probability distribution

ceases to exist when σ2 > 2µ̄, i.e. when the exponential term e(µ̄−
1
2
σ2)t decays in time. In

terms of the population dynamics described by the SDE, this means that Itō’s formulation
predicts extinction (at least in the infinite-time limit) when σ2 > 2µ̄, while the individuals
are always alive for any σ according to the Stratonovich solution (see the case σ = 2 in
Figure 1).
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Figure 1: Sample realisation of the stochastic logistic equation, compared to the determin-
istic version (no noise) for µ̄ = 1, x0 = 0.1 and increasing noise amplitude σ. Clockwise
(starting top-left): σ = 0, σ = 0.05, σ = 0.5, σ = 2.
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Figure 2: Comparison between the analytical transition density ρstat(x) and the density
function computed over 104 realisations of the SDE for σ = 0.5 (top) and σ = 2 (bottom).
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3 Stratonovich SDEs for Vector-Valued Processes

The results presented in the previous section can be generalised to vector-valued processes.
If X(t) = (X1(t), X2(t), ...) satisfies the set of SDEs

dXi(t) = fi(X(t), t)dt+ gij(X(t), t) ◦ dWj(t), i = 1, 2, ..., N, j = 1, 2, ...,M, (20)

then its transition density ρ(x, t|x0, t0) can be computed with the Fokker-Planck equation

∂

∂t
ρ =

∂

∂xi

(
−fi(x, t) +

1

2
gik(x, t)

∂

∂xj
gjk(x, t)

)
ρ. (21)

Finally, we can translate this into the Itō’s formulation (and vice versa) by modifying
the drift in the same way as for the one-dimensional case.

4 White-noise Limit of a Dichotomous Markov Process

A symmetric dichotomous (a.k.a. two-step) Markov process I(t) (t ≥ 0) can take two values
A and −A (see Figure 3), the transition between one state and the other taking place at
a constant rate α. The time intervals between state transitions are thus exponentially
distributed and the probabilities p+(t) = P[I(t) = A] and p−(t) = P[I(t) = −A] evolve
according to the master equation

d

dt

(
p+(t)
p−(t)

)
=

(
−α α
α −α

)(
p+(t)
p−(t)

)
. (22)

This equation can be solved to find(
p+(t)
p−(t)

)
=

1

2

(
1 + e−2αt 1− e−2αt

1− e−2αt 1 + e−2αt

)(
p+(0)
p−(0)

)
, (23)

where p+(0) and p−(0) are the probabilities that the process starts at A or −A respectively,
with p+(0) + p−(0) = 1. The stationary distributions are immediately found as(

pstat
+

pstat
−

)
=

(
1
2

1
2

)
(24)
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Figure 3: Sample realisation of I(t) for α = 1, A = 5.
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and the conditional distributions P[I(t) = A|I(0) = ±A], P[I(t) = −A|I(0) = ±A] are
obtained by setting p+(0) and p−(0) to 1 and 0 in turn. Specifically, one has

P[I(t) = A|I(0) = ±A] =
1

2

(
1± e−2αt

)
,

P[I(t) = −A|I(0) = ±A] =
1

2

(
1∓ e−2αt

)
.

(25)

The conditional expectations can be used to compute the correlation

E[I(t)I(0)] =
∑

n,m∈{A,−A}

nmP[I(t) = n; I(0) = m]

=
∑

n,m∈{A,−A}

nmP[I(t) = n|I(0) = m]P[I(0) = m]

= A2 e−2αt,

(26)

for t ≥ 0, which can be generalised to E[I(t)I(s)] = A2 e−2α|t−s| for any two time instants t
and s. This means that the dichotomous process has the Lorenzian power spectrum

S(ω) =

∫ +∞

−∞
A2 e−2α|t|e−iωtdt =

A2

α

4α2

4α2 + ω2
. (27)

Note that, as shown in Figure 4, S(ω) tends to a white spectrum in the limit α → ∞ if
A =

√
α.

Let us now consider a stochastic process Xt evolving according to

dXt = f(Xt, t)dt+ g(Xt, t)I(t). (28)

The transition density of this process can be computed as ρ(x, t|x0, t0) = ρ+(x, t|x0, t0) +
ρ−(x, t|x0, t0), where the transition densities ρ+ and ρ− correspond to the mutually exclusive
cases I(t) = A and I(t) = −A and satisfy the master equation

∂

∂t

(
ρ+

ρ−

)
=

(
−α− ∂

∂x (f +Ag) α

α −α− ∂
∂x (f −Ag)

)(
ρ+

ρ−

)
. (29)
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Figure 4: Correlation spectrum of I(t) for A =
√
α and increasing values α.
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Letting α = A2 in order to obtain the correct scaling of the noise spectrum, the equations
for ρ = ρ+ + ρ− and for q = ρ+ − ρ− then read

∂

∂t

(
ρ
q

)
=

(
− ∂
∂x (fρ+Agq)

−2A2q − ∂
∂x (fq +Agρ)

)
. (30)

When the noise amplitude A is very large, we argue that ρ and q can be expanded as

ρ(x, t) = ρ0(x, t) +
1

A
ρ1(x, t) + higher order terms

q(x, t) = q0(x, t) +
1

A
q1(x, t) + higher order terms

(31)

so that the evolution of the random variable Xt in the white-noise limit is described by ρ0.
Substituting into (30) and collecting terms of the same order yields

O(A2) : 2q0 = 0, (32a)

O(A) :


2q1 +

∂

∂x
(g ρ0) = 0,

∂

∂x
(g q0) = 0,

(32b)

O(1) :


∂q0

∂t
+ 2q2 +

∂

∂x
(fq0 + g ρ1) = 0,

∂q0

∂t
+

∂

∂x
(fρ0 + g q1) = 0,

(32c)

from which the following Fokker-Planck equation can be derived for ρ0:

∂ρ0

∂t
=

∂

∂x

(
−f +

1

2
g
∂

∂x
g

)
ρ0. (33)

This equation is the same as the Stratonovich Fokker-Planck equation. We conclude that
the solution to the SDE

dXt

dt
= f(Xt, t) + g(Xt, t) ◦ ξ(t), (34)

where ξ(t) is the white-noise limit of a dichotomous Markov process (a.k.a. dichotomous
noise or DMN), is the process Xt whose transition density satisfies the Stratonovich Fokker-
Planck equation.
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Lecture 6 - Climate Variability and its Null Hypothesis

Henk A. Dijkstra; notes by Yana Bebieva & Giovanni Fantuzzi

June 22, 2015

1 Introduction

The Earth’s system is very non-linear and complicated. For instance, if a periodic forcing,
as an input signal, is coming into the Earth’s system (e.g. variability in a solar constant),
then very complicated signal is coming out and we want to understand what process can
explain this transformation. The ice core oxygen isotope records, that is usually linked to
the local temperature, (Figure 1) shows various oscillation and variation in temperature of
5◦C. The other example of a noisy signal is El Niño/Southern Oscillation. Temperature
anomaly with respect to the mean in the equatorial Pacific is shown in Figure 2.

Now, we are going to analyze these two cases by choosing the special time and spatial
scale of phenomenon. For example, for El Niño it would be Pacific Basin and few years
(inter-annual) correspondingly. And we try to understand that phenomenon using deter-
ministic type of model and all unresolved processes we consider as a noise. In this sense
stochastic dynamical system is obtained (Figure 3. We start with the simple example where
underlying dynamical system is linear.

2 The Null Hypothesis

Consider stochastic climate model developed by Hasselmann in 1976 (Figure 4). It is a layer
of the ocean (mixed layer) that has the heat flux coming from the atmosphere (Qoa) and
we are interested how mixed layer temperature (T ) evolves in time. Write down the heat
balance

ρCp
∂T

∂t
= λ

∂2T

∂z2

where Cp is the specific heat of seawater, ρ is density, λ is mixing coefficient, t is time, and
z is vertical coordinate. Boundary conditions are

z = 0 : λ
∂T

∂z
= Qoa

z = −h :
∂T

∂z
= 0,

41



Figure 1: Ice core oxygen isotope record (ratio of 18O to 16O) taken from the NGRIP ice
core at Greenland.

Figure 2: Temperature anomaly with respect to the mean in the equatorial Pacific in the
Nino 3.4 region.

Figure 3: Stochastic dynamical systems approach scheme.
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where h is depth of the layer. Now, we define depth averaged temperature

T =
1

h

∫ 0

−h
Tdz

This implies

ρCph
∂T

∂t
= Qoa = α

(
Ta − T

)
,

where Ta is atmospheric temperature.
We eventually get the equation

∂T

∂t
=

α

ρCph

(
Ta − T

)
γ =

α

ρCph

∂T

∂t
= −γT + γTa.

The time scale 1/γ is roughly 100 days. The question is how to represent γTa. We look at
a Fast-Slow systems with fast variable x and slow variable y.

dx

dt
= f(x, y)

dy

dt
= g(x, y).

Looking at data measurements, one finds that variations of atmospheric temperature are
much faster than ocean temperature fluctuations. Let y0 be an initial condition, ∆y = y−y0,
t� τy and take ensemble average. Assuming ergodicity

〈∂y
∂t
〉 =

d

dt
〈y〉 = 〈g(x, y)〉 =

d∆y

dt
〈∆y〉 = 〈g(x, y)〉t

ỹ = ∆y − 〈∆y〉
dỹ

dt
= g(x, y)− 〈g(x, y)〉 = g̃(x, y)

〈g̃(x, y)〉 = 0.

If x is stationary, so is g̃. Then, g̃ looks like white noise and the model is

dỹ

dt
= σξ(t).

In total we have

dT

dt
= −γT + σξ(t),

or

dT t = −γT tdt+ σdWt.
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Figure 4: Scheme of Hasselmann’s stochastic climate model. See text for definition of all
parameters.

3 Analysis of the SDE

Let Xt = T t be a stochastic process that satisfies the equation

dXt = −γXtdt+ σdWt

Xt = X0 − γ
∫ t

0
Xsds+

∫ t

0
σdWs.

How do we define a stochastic integral
∫ t

0 σdWs? The Itô stochastic integral definition is∫ T

0
h(t)dWt = lim

N→∞

N−1∑
j=0

h(tj) (W (tj+1)−W (tj))

and the Stratonovich stochastic integral is∫ T

0
h(t) ◦ dWt = lim

N→∞

N−1∑
j=0

h

(
tj + tj+1

2

)
(W (tj+1)−W (tj)) .

Where the limits exist in the L2 norm (mean square) sense. So find 1)
∫ τ

0 dWt = Wτ (apply
definition and the fact that W0 = 0) and 2)

∫ τ
0 WtdWt. Start with Taylor expansion using

(dWt)
2 = dt

h(Wt + dWt)− h(Wt) = h′(Wt)dWt +
1

2
h′′(Wt)(dWt)

2 + ...

= h′(Wt)dWt +
1

2
h′′(Wt)dt+ ...

Integrate both sides

h(WT )− h(W0) =

∫ T

0
h′(Wt)dWt +

∫ T

0

1

2
h′′(Wt)dt.

We obtained the Itô’s lemma.
Now, choosing h(Wt) = W 2

t (consequently h′ = 2Wt and h′′ = 2) we find using the Itô’s
lemma

W 2
T −W 2

0 =

∫ T

0
2WtdWt +

1

2

∫ T

0
2dt.
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Again using that W0 = 0 we obtain∫ T

0
WtdWt =

1

2

(
W 2
T − T

)
.

Thus, any linear 1-D stochastic differential equation can be solved analytically via the
Itô lemma.

dXt = Atdt+BtdWt

f = f(x, t), f1(x, t) =
∂f

∂t
, f2(x, t) =

∂f

∂x
, f22(x, t) =

∂2f

∂x2
.

Now, Taylor expand

f(t+ dt, xt + dXt)− f(t,Xt) = f1dt+ f2dXt +
1

2
(f11(dt)2 + 2f12dtdXt + f22(dXt)

2) + ...

Then plug SDE into this and find

f(t,Xt)− f(0, X0) =

∫ t

0

(
f1 + f2As +

1

2
f22B

2
s

)
ds+

∫ t

0
f2BsdWs.

For our SDE model, choose

f(x, t) = eγtx

f1(x, t) = γeγtx

f2(x, t) = eγt

f22(x, t) = 0.

Using this with our stochastic ODE and applying the Itô lemma

eγtXt −X0 =

∫ t

0
(γeγsXs − γeγsXs) ds+ σ

∫ t

0
eγsdWs.

And we have solved the SDE exactly as

Xt = e−γt
[
X0 +

∫ t

0
σeγsdWs

]
.

4 Numerical Solution of SDEs

One often requires a numerical solution of the SDE (interpreted in Itō’s sense)

dXt = f(t,Xt)dt+ g(t,Xt)dWt (1)

over the time interval [0, T ]. A basic approach to this problem is to consider discrete time
instants tn = n∆t, for a given time-step ∆t, and approximate (1) with the Euler-Maruyama
scheme

X̃n+1 = X̃n + f(tn, X̃n)∆t+ g(tn, X̃n)∆Wn+1. (2)
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Here, we have denoted X̃n = X̃(tn) the approximate solution of (1) and ∆Wn+1 = Wn+1−
Wn is the jump of a Wiener process over the time interval ∆t. The jumps ∆W are indepen-
dent, Gaussian random variables ∆W ∼ N (0,∆t) and can therefore be generated at each
iteration with an appropriate random number generator (e.g. DW = sqrt(Dt)*randn(1) in
MATLAB). We also remark that Itō’s interpretation of an SDE consists of the continuous-
time limit of the Euler-Maruyama scheme.

Of course, more sophisticated schemes can be derived. An example is the Milstein
scheme, which approximates the solution X(t) of (1) as

X̃n+1 = X̃n + f(tn, X̃n)∆t+ g(tn, X̃n)∆Wn+1 +
1

2

[
(∆Wn+1)2 −∆t

]
. (3)

The main difference between the various numerical schemes regards their convergence
properties in the limit ∆t → 0. In the context of numerical schemes for SDEs, there are
two notions of convergence. The first, known as weak convergence, considers convergence
of the expectations of the approximation error |X(tn)− X̃n|; that is, a numerical scheme is
weakly convergent if

E
(
|X(tn)− X̃n|

)
≤ c∆tη. (4)

Here, c and η are constants (dependent on the type of scheme and the SDE considered); η
is the convergence rate of the scheme.

Similarly, we say that a numerical scheme is strongly convergent if the expectations
E[X(tn)] and E(X̃n) converge, i.e.

|E[X(tn)]− E(X̃n)| ≤ c∆tη. (5)

Example 1 (Ornstein-Uhlenbeck Process). Consider the Ornstein-Uhlenbeck process
dXt = −γXtdt+ σdWt, discretised with the Euler-Maruyama (EM) scheme as

Xn+1 = Xn − γXn∆t+ σ∆W = (1− γ∆t)Xn + σ∆W. (6)

We know that the stationary state solution Xstat(t) is a Gaussian random variable with
zero mean (E[X(t)] = 0). In order to check the strong convergence of the EM scheme, we
can take the expectation of (6), obtaining

E(Xn+1) = (1− γ∆t)E(Xn) = (1− γ∆t)n+1X0 (7)

As n→∞, the expectation E(Xn+1) converges to the analytic stationary result E[X(t)] = 0
only if

|1− γ∆t| ≤ 1⇒ ∆t ≤ 2

γ
, (8)

that is the EM scheme converges strongly if ∆t ≤ 2
γ .

5 Applicability of the Hasselmann’s Model to the SST Anomaly

Hasselmann’s linear model for the SST anomaly, derived in Section 2, resulted in the SDE

dT̄

dt
= −γT̄ + σξ(t) (9)
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which is the Ornstein-Uhlenbeck process. Thus, according to Hasselmann’s model, the
transition density ρ of T̄ satisfies the Fokker-Planck equation

∂ρ

∂t
=
∂(γxρ)

∂x
+
σ2

2

∂2ρ

∂x2
, (10)

and there exists a stationary distribution

ρstat(x) =

√
γ

πσ2
e−

γx2

σ2 . (11)

Moreover, we recall that the stationary autocorrelation and the spectrum of the Ornstein-
Uhlenbeck solution are, respectively,

E(XsXt) =
σ2

γ
e−|t−s|, (12)

S(ω) =
σ2

γ2 + ω2
. (13)

The main question to be answered at this point is how this model can be tuned using
experimental observations of the SST anomaly (say, {T̄ ex

0 , T̄ ex
1 , ... , T̄ ex

N }), so that any
predictions based on Hasselmann’s model can be trusted. In fact, we would like the analytic
solution of the continuous time Ornstein-Uhlenbeck process, i.e.

T̄ (t) = e−γtT̄0 + σe−γt
∫ t

0
eγsdWs, (14)

to reproduce the statistics of the time-series of measurements T̄ ex
0 , T̄ ex

1 , ... , T̄ ex
N . To this

purpose, we discretise (14) by looking at the time instants tn and tn+1, i.e. we consider

T̄n+1 = e−γtn+1 T̄0 + σe−γtn+1

∫ tn+1

0
eγsdWs, (15a)

T̄n = e−γtn T̄0 + σe−γtn
∫ tn

0
eγsdWs. (15b)

We can multiply (15b) by e−γ(tn+1−tn) = e−γ∆t and subtract it from (15a) to obtain

T̄n+1 = e−γ∆tT̄n + σe−γtn+1

∫ tn+1

tn

eγsdWs. (16)

When ∆t is small, we can approximate the integral in the last expression by c∆Wn+1,
where c is a suitable constant. So, the last term can be approximated with a Gaussian
random variable Zn with zero mean and variance σ̃2 (chosen appropriately). Then, we
may approximate the solution of the Ornstein-Uhlenbeck process by the discrete stochastic
process

T̄n+1 = αT̄n + Zn+1, (17)

where α = e−γ∆t ∈ (0, 1). This type of discrete process is known as the AR(1) process
(where AR stands for auto-regressive), or as a red noise process. We can now compute
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the spectrum of the AR(1) process and compare it to the spectrum obtained from the
experimental data set {T̄ ex

0 , T̄ ex
1 , ... , T̄ ex

N } to compute appropriate values of α and σ̃. To
this purpose, we first note that

T̄k = αT̄k−1 + Zk

= α(αT̄k−2 + Zk−1) + Zk
...

= αkZ0 + αk−1Z1 + ...+ αZk−1 + Zk

(18)

so that

c0
def
= E(T̄ 2

k ) =
[
1 + α2 +

(
α2
)2

+ ...+
(
α2
)k]

σ̃2

k→∞
=

σ̃2

1− α2

(19)

Note that we have used the relation E(ZnZm) = σ̃2δnm and the fact that the geometric series
converges since 0 < α < 1. Thus, recalling that the random variable Zn is independent of
any past realisation T̄m, the correlation of the discrete process becomes

ck
def
= E(T̄iT̄k+i) =

1

N

N∑
i=0

T̄iT̄k+i

=
1

N

N∑
i=0

T̄i
(
αT̄k−1+i + Zk+i

)
=
α

N

N∑
i=0

T̄iT̄k−1+i

= α ck−1

= αk c0

(20)

so as k →∞ (i.e. the discrete time series becomes infinitely long) we obtain

ck =
αk σ̃2

1− α2
=

σ̃2

1− α2
e−γtk , (21)

where we have used α = e−γ∆t (constant for a given ∆t) and that, for uniform time-steps,
k∆t = tk. Taking the continuous-time version c(t) of (21), we can compute the spectrum
of the AR(1) process as

S(ω) =

∫ ∞
−∞

c(t)e−iωtdt

=

∫ ∞
−∞

σ̃2

1− α2
e−γ|t|e−iωtdt

=
2γ

1− α2

σ̃2

γ2 + ω2
(22)
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The absolute value was introduced to maintain the negativity of the argument of the expo-
nential term in c(t). Note that, up to a normalisation constant, this spectrum is the same
as for the continuous-time Ornstein-Uhlenbeck process. Thus, one can tune the AR(1) to
fit the measured data in the following way: compute the spectrum of the discrete mea-
surements {T̄ ex

0 , T̄ ex
1 , ... , T̄ ex

N }, then fit appropriate values of α and σ̃ in (22). Then,
the corresponding AR(1) process reproduces the measured statistics, and can be used to
estimate the statistical properties of the SST anomaly according to Hasselman’s model.
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Lecture 7: The El Niño Phenomenon

Henk A. Dijkstra; notes by Tom Eaves & Anna FitzMaurice

June 23, 2015

1 Phenomenology of El Niño Southern Oscillation

In its mean state, there is strong zonal asymmetry in the equatorial Pacific. The climato-
logical mean easterly trade winds pile up warm water in the western Pacific, whilst cool
water is upwelled in the east due to Ekman divergence there, as depicted in Figure 1.
Corresponding to this zonal temperature gradient is a sea surface height (SSH) gradient,
with high SSH in the west and low SSH in the east. The SSH gradient is compensated
at depth by a depressed thermocline in the west, and a shallower thermocline in the east.
We have good measurements of the equatorial Pacific from the TAO/TRITON array of
approximately 70 moored ocean buoys, which have been monitoring surface and subsurface
temperatures, wind speed and direction, and precipitation since 1994.

Every four to seven years, the western Pacific warm pool spreads eastward in a phe-
nomenon known as El Niño. This sea surface temperature (SST) anomaly is associated
with the eastward propagation of a subsurface temperature anomaly, which in turn is re-
lated to a shoaling of the western Pacific thermocline and a depression of eastern Pacific
thermocline. These temperature anomalies are coincident with a weakening of the Walker
circulation (the zonal circulation cell over the equatorial Pacific), and a shift of the region
of highest precipitation to follow the maximum SSTs. The opposite of the El Niño state
(i.e. a heightened “normal” state) is referred to as La Niña conditions, and the largescale
temperature, pressure, and precipitation, anomalies associated with transitions between El
Niño and La Niña states are together known as El Niño Southern Oscillation (ENSO). The
El Niño and La Niña phases are shown schematically in Figure 2.

The index used to describe ENSO is an average of the SST anomaly over a region of the
equatorial Pacific. Figure 3 shows a timeseries of the ENSO index for the NINO3 region
of the eastern Pacific, which spans the region 150W to 90W, between 5S and 5N. A power
series decomposition of this timeseries reveals a spectral peak centered about a period of 3
years.

2 The Zebiak & Cane model

To capture the oscillatory behavior of ENSO dynamically, a coupled atmosphere-ocean
model is required, which admits feedbacks between perturbations to the equatorial east-
erlies, the thermocline depth, and equatorial SSTs, and as such allows the spontaneous
growth of anomalies. We shall also see that oceanic wave dynamics are important to the
development and decay of El Niños, and so necessary in a minimal model of ENSO.

50



Figure 1: The climatological mean SST and wind stress in the tropical Pacific. [Reproduced
from faculty.washington.edu/kessler.]

Figure 2: A schematic of (A) El Niño and (B) La Niña states of the tropical Pacfic. [Re-
produced from www.noaa.gov.]

2.1 Model formulation

Zebiak & Cane (1987), hereon ZC, consider a 11
2 -layer reduced gravity ocean (depicted in

Figure 4) below a constant-depth mixed layer of temperature T , which feels a temperature-
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Figure 3: A timeseries of the NINO3 SST anomaly, with El Niño events colored in red and
La Niña events colored in blue. [Reproduced from http://www.seas.harvard.edu/climate.]

dependent wind stress
τx = τxext + µA(T − T0), (1)

for some atmospheric operator A, and coupling parameter µ (with µ = 0 corresponding to
the entirely uncoupled case, and µ = 1 describing “normal” coupling).

The reduced gravity ocean model equations for the horizontal velocities (u, v) and depth
h are

∂u1

∂t
− β0yv1 = −g′∂h

∂x
+
τx

ρh
, (2)

β0yu1 = −g′∂h
∂y
, (3)

∂h

∂t
= −H

(
∂u1

∂x
+
∂v1

∂y

)
, (4)

x = 0 :

∫ ∞
−∞

u1(y)dy = 0, (5)

x = L : u1 = 0, (6)

y → ±∞ : u1, v1, h, bounded, (7)

in the upper layer, and zero velocities in the lower layer.
The evolution of the mixed layer temperature T is governed by an advection-diffusion

equation with relaxation back to some atmospheric temperature T0, and relaxation to a
specified subsurface temperature profile Ts(h) in the presence of upwelling w > 0, as follows

∂T

∂t
+ u1

∂T

∂x
+ v1

∂T

∂y
+ w1H(w1)

T − Ts(h)

H
+ αT (T − T0)− κH∇2T = 0, (8)

where H is the Heaviside function, along with boundary conditions

x = 0, L :
∂T

∂x
= 0, (9)

y → ±∞ : T bounded. (10)
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Figure 4: The ocean component of the ZC model. A thermocline of density ρ overlies a
denser stationary layer of density ρ + ∆ρ. The ocean feels atmospheric wind stress and
temperature through constant depth mixed layer of temperature T .

2.2 Wave dynamics in the ZC ocean model

Consider free waves with τx = 0, corresponding to no wind stress input, and no coupling
with the mixed layer temperature field T . Let u = û(y)ei(kx−σt) and define v and h similarly.
Then,

−iσû− β0yv̂ = −ikg′ĥ, (11)

β0yû = −g′ĥ′, (12)

−iσĥ+H(ikû+ v̂′) = 0. (13)

Look first for solutions with v̂ = 0. Then,

−σû = −g′kĥ, (14)

−σĥ+Hkû = 0, (15)

(16)

which has a non-zero solution only if

σ2 = k2g′H, (17)

and so
σ

k
= ±

√
g′H ≡ ±c0. (18)

We can also solve for ĥ and û, since

β0yû =
β0yg

′kĥ

σ
= −g′ĥ′, (19)

and so

ĥ(y) = ĥ(0) exp

[
−β0k

2σ
y2

]
≡ ĥ(0) exp

[
−1

2

(
y

λ0

)2
]
, (20)
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where λ0 =
√
c0/β0 is the Rossby deformation radius. Note that for ĥ(y) to be bounded as

y → ±∞ we have set σ/k = +c0.
We can solve for the general case v̂ 6= 0 by using the Hermite polynomials Hn, in which

case

ûj(y) =
1

2
√

2

(
ψj+1(y)√
j + 1

− ψj−1(y)√
j

)
, (21)

ĥj(y) =
1

2
√

2

(
ψj+1(y)√
j + 1

+
ψj−1(y)√

j

)
, (22)

v̂j(y) = ψj(y), (23)

where

ψj(y) =
Hj(y/λ0) exp[−(y/λ0)2/2]

(2jj!π1/2)1/2
, (24)

and the corresponding phase speeds are

cj = − c0

2j + 1
. (25)

2.3 Possible feedbacks in the ZC model

To explore the feedbacks possible in the full model, consider a perturbation (denoted by
hats) to some steady state (denoted by overbars) of the simplified temperature equation

∂T

∂t
= −wT − Ts(h)

H
. (26)

Linearizing about the steady state, this becomes

∂T̂

∂t
= −ŵ T̄ − Ts(h̄)

H
− w̄ T̂ − T

′
s(h̄)ĥ

H
. (27)

Now it can be seen that if there is a warm anomaly in the mixed layer (i.e. T̂ > 0)
giving rise to a deepening of the thermocline (i.e. ĥ > 0), the second term on the right
of equation 27 will be positive, leading to more warming. This positive feedback is known
as the thermocline feedback. Similarly, from the first term on the right of equation 27,
it can be deduced that a positive temperature anomaly, associated with a reduction in
upwelling (ŵ < 0), will likewise enhance the positive temperature anomaly, acting as a
positive feedback. This is called the upwelling feedback.

An analogous treatment of the zonal advection terms of the temperature equation

∂T

∂t
= −u∂T

∂x
(28)

yields linearized equation
∂T̂

∂t
= −ū∂T̂

∂x
− û∂T̄

∂x
. (29)

Now a positive temperature anomaly will produce a zonal velocity anomaly û that acts to
enhance this anomaly by the advection of the mean temperature field T̄ . This is the zonal
advection feedback.
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2.4 ZC model equilibria, stability, and bifurcations

After discretisation, we can reduce the ZC model to the general form

x

dt
= f(x, µ). (30)

Then, equilibria x = x∗ are found by solving

f(x∗, µ) = 0. (31)

Suppose that we know one solution x∗(µ = 0). As µ is varied, we expect x∗(µ) to vary
continuously (at least for a while, generically). Such a branch of solutions traces out a
curve in the x-µ plane. A convenient way to solve such a system is to utilise this continuous
changing of the solutions by viewing the arclength s along this curve as a parameter and
solve instead

f(x∗(s), µ(s)) = 0, (32)

N
(
x∗

ds
,
µ

ds

)
= 0, (33)

where N is a normalisation constraint on the arclength.
Given an equilibria x∗, we are interested in its stability. For this purpose, write x =

x∗ + x′. Then, linearising in x′, the equation becomes

x′

dt
= Jx′, (34)

where Jij = ∂fj/∂xj(x
∗(µ)) is the Jacobian of the dynamical system evaluated at x = x∗(µ).

We can determine the stability of a given solution x∗ by writing x′ = x̂eσt, and then σ
satisfies the eigenvalue problem

J x̂ = σx̂. (35)

We say that x∗ is a stable equilibria if R(σ) < 0 and an unstable equilibria if R(σ) > 0.
As µ is varied, there are a number of possibilities for the behaviour of such equilibria. In

general there will be particular values of µ = µ∗, called bifurcation points, at which a given
solution changes its stability properties, or ceases to exist altogether, as µ is varied through
its bifurcation value µ∗. There a four canonical types of bifurcations found in dynamical
systems, namely

• Saddle–node bifurcation: A saddle–node bifurcation is the bifurcation in which
there are no equilibria for µ < µ∗ and a pair of equilibria with opposite stability
properties for µ > µ∗. Through a change of variables, any one-dimensional system
with a saddle–node bifurcation can be mapped, sufficiently close to its bifurcation
point, onto the form

ẋ = µ− x2. (36)

We see that for µ < 0 there are no equilibria, whilst for µ > 0 there are two equilibria
x∗ = ±√µ. The Jacobian is just −2x, and so the solution x∗ =

√
µ is stable, whilst

the solution x∗ = −√µ is unstable.
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• Pitchfork bifurcation: A pitchfork bifurcation is the bifurcation in which there is
a single equilibria (which may or may not be stable) for µ ≶ µ∗ (the case < is called
supercritical, and the case > is called subcritical), and three equilibria for µ ≷ µ∗ in
which the original equilibria point swaps its stability, and the two new equilibria have
the stability of the original solution. The normal form for a pitchfork bifurcation is

ẋ = µx− x3 (supercritical), (37)

ẋ = µx+ x3 (subcritical). (38)

In the first case, the solution x = 0 is stable for µ < 0 and unstable for µ > 0, and
the solutions x = ±√µ only exist for µ > 0, and are stable there. In the second
case, the solution x = 0 is stable for µ < 0 and unstable for µ > 0, and the solutions
x = ±

√
−µ only exist for µ < 0 and are unstable there. The transformation t 7→ −t

reverses the stability of all the solutions, but the systems still retain their original
labels ‘supercritical’ and ‘subcritical’.

• Transcritical bifurcation: A transcritical bifurcation is the bifurcation in which
there are two solutions for each of µ ≶ µ∗, but at µ = µ∗ they coincide, and swap
their stability. The normal form for a transcritical bifurcation is

ẋ = µx− x2. (39)

We see that the equilibria are always x = 0 or µ. However, the Jacobian is µ − 2x,
and so the solution x = 0 is stable for µ < 0 and unstable for µ > 0 whereas the
solution x = µ is unstable for µ < 0 and stable for µ > 0.

• Hopf bifurcation: A Hopf bifurcation is the bifurcation in which there is one equi-
libria for µ ≶ µ∗ (which we again call super/subcritical), and a single equilibria for
µ ≷ µ∗ with the opposite stability, and a periodic orbit that coincides with the equi-
libria when µ = µ∗. The normal form for a Hopf bifurcation is

ẋ = µx− ωy − x(x2 + y2), (40)

ẏ = µy + ωx− y(x2 + y2). (41)

It is clear that (x, y) = (0, 0) is an equilibria for this system. The Jacobian at (0, 0) is

J(0, 0) =

(
µ −ω
ω µ

)
, (42)

which has eigenvalues σ = µ ± iω, and so the equilibria (x, y) = (0, 0) is stable for
µ < 0 and unstable for µ > 0.

To demonstrate that this system has a periodic orbit for µ > 0 it is convenient to use
polar co-ordinates (x, y) = r(cos θ, sin θ), in which case

ṙ = µr − r3, (43)

θ̇ = ω, (44)

56



and so provided ω 6= 0, there is a stable periodic orbit solution r =
√
µ and θ = ωt+θ0

when µ > 0. Note that in the degenerate case ω = 0, we obtain a circle of fixed points
that are marginally stable in the angular direction, and stable in the radial direction.
Since the equation for r is nearly pitchfork-like (we don’t allow r < 0), changing the
signs of terms in the above equations yields super/subcritical Hopf bifurcations with
the same convention as for the pitchfork case.

A Hopf bifurcation can be viewed physically as feedbacks amplifying to give an oscil-
latory signal.

There are a whole range of other bifurcations which are typically degenerate cases in
which the first order nonlinearity occurs at even higher orders in x. We typically don’t see
these, and indeed typically don’t see pitchfork or transcritical bifurcations. The reason for
this is that, for example, if we have made some error in modeling whatever physical system
we are interested in, then perhaps each of the equations for these bifurcations should have an
extra constant ε added to the right hand side. Then we see that the saddle–node bifurcation
remains a saddle–node bifurcation, the Hopf bifurcation remains a Hopf bifurcation, but
the pitchfork bifurcation separates into an isolated non-bifurcating solution and a saddle–
node bifurcation, and the transcritical bifurcation separates into a pair of saddle–node
bifurcations.

For higher dimensional dynamical systems, we may invoke the centre manifold theorem
(which is quite technical) to see that near a bifurcation point, the dynamics of the dynamical
system collapses onto a low dimensional (often one or two) manifold on which the reduced
dynamics generically take the form of one of the bifurcations discussed above.

2.5 Hopf bifurcation in the ZC model

As the ocean–atmosphere coupling parameter µ in the ZC model is increased from zero,
there has been shown to be a Hopf bifurcation when µ ≈ 0.525, and the period of the
resulting periodic orbit is approximately 4 years. This observation has been used as a first
order explanation of El Niño. Additionally, it is known that µ scales with the square of
ocean basin size, and so, for example, given that the size of the Atlantic ocean basin is
approximately one third of the size of the Pacific ocean basin, we have µAtlantic ≈ µPacific/9,
and so the lack of an El Niño event in the Atlantic could be explained by the fact that
µAtlantic . 0.525 . µPacific, and so there does not exist a periodic orbit solution of the ZC
model.

For the ZC model, the Hopf bifurcation corresponds to an amplifying feedback of geo-
metrically confined Rossby and Kelvin basin modes with SST modes.

3 Physical Mechanisms for ENSO

We have seen from the ZC model that with idealized ocean-atmosphere coupling and oceanic
wave dynamics it is possible to find oscillatory solutions in certain parts of parameter
space that resemble ENSO in amplitude and period. Below we heuristically describe two
mechanisms that might give rise to such oscillatory behavior.
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3.1 Wave oscillator

Consider a positive temperature anomaly at the equator in the Pacific ocean, which cor-
responds to a positive SSH anomaly on-equator, with compensatory negative SSH anoma-
lies off-equator to the north and south. We have seen that such a signal may propagate
eastwards as an equatorial Kelvin wave on the equator, which may be interpreted as the
eastward propagating and growth of an El Niño. Meanwhile, the off-equator signal will
propagate westward as a Rossby wave and, on reaching the westerward basin boundary,
may be reflected as an equatorial Kelvin wave. This reflected wave signal has the possibil-
ity of interfering with and killing the original positive temperature anomaly, ending the El
Niño. Whilst this delayed oscillator mechanism of El Niño undoubtedly influences ENSO
dynamics, a consideration of the timescales involved (from the Kelvin and Rossby wave
speeds) does not explain the observed ENSO period of four to seven years.

3.2 Recharge oscillator

Figure 5: A schematic of the stages of the recharge oscillator mechanism for ENSO.

An alternative mechanism that produces longer timescale variability comes from con-
sidering the overall basin adjustment. A positive SST anomaly in the eastern Pacific will
produce a westerly wind stress anomaly. The wind stress acts to change the thermocline
slope, piling up water and so depressing the thermocline in the east, whilst shoaling the
thermocline in the west. Such a perturbation to the thermocline slope will enhance the
SST perturbation, acting as a positive feedback. As the positive temperature anomaly
strengthens, there is a divergent transport of heat off-equator by the ocean, which shoals
the thermocline, suppressing the SST anomaly and so reducing the westerly wind anomaly.
The shoaling of the thermocline eventually carries the system into the opposite phase, with
a negative SST anomaly in the east, and so an easterly wind stress anomaly. This causes
the convergent transport of heat to the equator, resulting in the “recharge” of the ocean
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heat content there. As such, this mechanism is known as the recharge oscillator view of
ENSO. This process is shown schematically in Figure 5.
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Lecture 8: The El Niño Phenomenon (continued)

Henk A. Dijkstra; notes by Florence Marcotte & Cesar Rocha

June 24, 2015

1 Deterministic Chaos

So far we have seen that the oscillatory behavior of El Nino Southern Oscillation (ENSO)
mechanism was related to the saturation of a unstable mode above the threshold of a Hopf
bifurcation, corresponding to a given critical coupling strength between the atmosphere
and the ocean. An interesting point in the record of the ENSO signal is the signature of
some mean seasonal cycle. For the western tropical Pacific ocean, negative anomalies in
the records of zonal winds occur around April, whereas positive anomalies occur around
December. Furthermore, sea surface temperature (SST) anomalies are observed at the same
periods: positive SST anomalies are associated with negative zonal wind anomalies, and
negative SST anomalies are associated with positive zonal wind anomalies. It is important
to note that ENSO events and the seasonal cycle are sensitive to the same environmental
factors such as wind forcing and the ocean circulation. ENSO’s non-linear interaction with
the seasonal cycle is characterized by a tendency to synchrony in periodic, subharmonic
oscillation. At this point we saw an interesting movie: illustration of the 5 unsynchronized
oscillators metronoms. Once they are coupled together through a moving plate, their oscil-
lation period tend to synchronize. Once the plate is removed (the coupling is broken), the
periods desynchronize again.

In order to illustrate the tendency for phase-locking of anomalous events, we pick up a
constant driving frequency Ω and a starting point x0, then iteratively compute xn+1 from
xn through the non-linear relationship:

xn+1 = xn + Ω− k

2π
sin
(
2 ∗ πx(mod1)

)
(1)

The map of the interaction between anomalies and the driving cycle is obtained by displaying
all the computed x in the (Ω, x) plane, for all the described Ω. As we increase the parameter
k in the non-linear forcing, an increasing number of “windows” are opening and widening in
the (Ω, x) space. These “windows” are the orbital periods of limit circles encountered in the
iterative process, and correspond to rational multiples of the driving frequency Ω onto which
the system is locking. The frequency ratio of the model to the driving frequency describe
a ”devil’s staircase” as the number and width of frequency-locked steps (corresponding to
the windows) increases infinitely.

The Zebiak-Cane model is the first coupled atmosphere-ocean model taking into account
the interaction between the seasonal cycle and the Hopf bifurcation oscillatory frequency
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by relating the seasonal frequency Ω to the atmospheric/oceanic coupling strength param-
eter µ and the upwelling feedback parameter δ through a “Devil’s terrace” (we recover a
Devil’s staircase with two non-linear forcing terms, equivalent of a k1 and a k2 in previous
description). As the coupling strength is increased, both the amplitude and the time scale
of the oscillations are enhanced. By tuning the parameters µ and δ, Zebiak-Cane model
predicts 3 ENSO events over 10 years, which is in good agreement with observational data.

This ends the deterministic part of the discussion. Stochasticity will be now included
by adding some noise into ENSO models.

2 Effect of Noise on the Hopf Bifurcation

Unresolved fast and short scales can be integrated into ENSO models by adding noise. As
an example, the westerly wind bursts (WWB) events are characterized by velocities above
7 m s−1, with a typical duration of a few days. These unresolved processes are known to
trigger the propagation of perturbations in the form of equatorial Kelvin and Rossby waves.
The correlation between this events can be verified in using a singular value decomposition
analysis of the SST-Wind covariance matrix.

If we assume that the effect of WWB is a noise in the system, then what is the response
of the model ?

The response of Zebiak-Cane model to white versus red noise is represented in the
subcritical and supercritical regimes. A remarkable result is that red noise can trigger a
response even before the critical point for the Hopf bifurcation is reached, that is, while
still in the subcritical regime. Adding red noise in the model can thus result in lowering
the bifurcation threshold.

We consider the following normal form:

Ẋ = λX − ωY −X(X2 + Y 2), (2)

Ẏ = λY + ωX − Y (X2 + Y 2). (3)

In our model, X would be the temperature anomaly on the East Pacific coast (at some
fixed longitude, say 30E) and Y the thermocline depth on the West coast. We derive the
stochastic extension of this normal form by adding some noise in the equation (where dW1

and dW2 are independent, Gaussian noises).

dX = (λX − ωY −X(X2 + Y 2))dt+ σdW1, (4)

dY = (λY + ωX − Y (X2 + Y 2))dt+ σdW2. (5)

In polar coordinates (r =
√
X2 + Y 2 and θ = arctan X

Y ), the system reads (using Ito’s
formula for change of variables):
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dR =
∂r

∂x
dX +

∂r

∂y
dY +

1

2

(∂2r
∂x2

(dX)2 +
∂2r

∂y2
(dY )2

)
+ ...

=
X

r
σdW1 +

Y

r
σdW2 +

1

2

(Y 2

r3
(σ)2 +

X2

r3
(σ)2

)
dt+ ...

=σ(cos θdW1 + sin θdW2)︸ ︷︷ ︸
noise term

+
σ2

2r
dt︸ ︷︷ ︸

additional drift term

,

dθ =− y

r2
σdW1 +

x

r2
σdW2 +

1

2

(2XY

r4
(σ)2 − 2XY

r4
(σ)2)dt+ ...

=σ(
cos θ

r
dW2 −

sin θ

r
dW1)︸ ︷︷ ︸

additional drift term

.

We now make the following transformation

dX = σdW1,

dY = σdW2.

dR = (λr − r3 +
σ2

2r
)dt+ σ(cos θdW1 + sin θdW2), (6)

dθ = σ(
cos θ

r
dW2 −

sin θ

r
dW1) + ωdt. (7)

The stationary probability density function is

ρS(r) = N exp
(λr2
σ2
− r4

2σ2
)
, (8)

To prove (8) we first derive a system of coupled Fokker-Planck equations associated with
the stochastic system above. We obtain:

f =

(
λr − r3 + σ2

2r
ω

)
(9)

g = σ

(
cos θ sin θ

− sin θ
r

cos θ
r

)
(10)

The diffusion operator Dij is then

D = ggT = σ2
(

1 0
0 1

r2

)
(11)

We look for a stationary density function ρS(r), that is, ∂tρS(r) = 0). Thus

0 = −1

r

(
(λr − r3 +

σ2

2r
)rρS

)′
+
σ2

2r
(rρ′S)
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ρ′S

ρS
= − 2

σ2
λr − 2

r3

σ2
+

1

r

ln ρS = − λ

σ2
r2 − r4

2σ2
+ ln r

Finally

ρS(r) = N exp
(λr2
σ2
− r4

2σ2
)

(12)

3 Stochastic Optimals

What forcing pattern is maximizing the variability of the system under subcritical condi-
tions? In order to address this question, we introduce white noise (delta-correlated noise in
time) with a spatial correlation given by the covariance matrix C:

dΨ

dt
= A(t)Ψ + f(t) (13)

Ψn = Ψn−1 +An−1Ψn−1dt+
√
dtζn−1︸ ︷︷ ︸
forcing

(14)

E(ζi) = 0, (15)

E(ζiζj) = δijC (16)

Now rewrite:

Ψn =(1 +An−1dt)Ψn−1 +
√
dtζn−1

=(1 +An−1dt)
(
(1 +An−2dt)Ψn−2 +

√
dtζn−1

)
+
√
dtζn−2

=...

By recurrence, we find:

= R0,nΨ0 +
√

(dt)

n−2∑
k=0

Rk+1,nζk, (17)

where we have introduced the ”propagator” Rn−1,n such that

Ψn = (1 +An−1dt)Ψn−1 = Rn−1,nΨn−1 (18)

Hence the mean variance is given by

E(Ψn) = E(R0,nΨ0) + 0 (19)

E(< Ψn − E(Ψn),Ψn − E(Ψn) >) = dt

n−2∑
k=0

n−2∑
j=0

E(< Rk+1,nζk, Rj+1,nζj >︸ ︷︷ ︸
<RT

j+1,n,Rk+1,nζk,ζj>

) (20)
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Now let

B = dt

n−2∑
k=0

n−2∑
j=0

RTj+1,nRk+1,nδj, kdt , (21)

so that the total covariance is

N = tr(BC) =
∑
i,j

λiµj︸︷︷︸
eigenvalues of B (resp C)

| < vi, wj︸ ︷︷ ︸
eigenvectors of B (resp C)

> |2 (22)

where C is the covariance matrix. The first eigenvector ofB is called the stochastic optimum.
The use of this eigenvector as a forcing pattern triggers the maximum response from the
model.
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Lecture 9 - Dansgaard-Oeschger Events

Henk A. Dijkstra; notes by Gunnar Peng & Chris Spalding

June 25, 2015

1 Dansgaard-Oeschger Events

In previous lectures, we discussed relatively short-term climatic fluctuations in the form of
the El Niño Southern Oscillation (ENSO). It is worth asking whether the global climate
system possesses similar, apparently stochastic oscillations over longer timescales, so long
that no human has lived through an entire cycle and so did not bother to call it an oscillation.
In order to seek such climatic modes we must turn to paleoclimatological data. Here, we
highlight evidence from ice cores. Specifically, one can drill into the ice on Greenland and
extract a core of ice, which has been inexorably laying down layer after layer of annual ice for
millennia, recording its local environment as it does so. Bubbles record the paleoatmosphere
and this has been used to deduce that, as suspected from its thermal absorption properties,
CO2 has gone done when the ice has gone up, consistent with its greenhouse gas properties.
However, it is difficult to use CO2 as an accurate thermometer. A better thermometer exists
in the form of the ratio of “heavy” 18O to “light” 16O isotopes within the water molecules
of the ice.

The standard way to measure isotope ratios is via the δ-notation defined for oxygen as

δ18O =
[18O]/[16O]sample − [18O]/[16O]standard

[18O]/[16O]standard
× 1000 (1)

or, in other words, the measured deviation of the isotope ratio from a given standard mul-
tiplied by a thousand, yielding “units” of permil. The lighter isotope of oxygen evaporates
more easily and so rain clouds are generally depleted in 18O relative to seawater. Further-
more, as these rainclouds move towards the poles, where they deposit ice, they rain out even
more heavy oxygen 1 until, by the time they form ice, they are depleted by 10s of permil
relative to their source water. The degree of water/vapour fractionation is temperature
dependent. Qualitatively, in colder periods, the fractionation is greater, leading to more
negative δ18O values in ice caps. Additionally, in colder climates, the poles tend to have
more ice, which sequesters much of the ocean’s light oxygen, making the ocean heavier in
general and the ice caps lighter. Cumulatively, these processes make for lighter ice caps in
colder periods.

With this theory under our belt, we can look at the measured ice isotope data from
Greenland ice cores (Figure 1). Notice first that the record spans about 120,000 years, just
long enough to resolve a full “glacial cycle”, i.e., the global oscillation from generally higher

1This process is known as “Rayleigh Distillation”.
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temperatures to generally low temperatures. Records going back much further have revealed
that glacial cycles follow such a ∼100,000 year periodicity for at least the previous four
cycles. The cause of such a periodicity in glacial cycles is still an active area of research, but
here we focus on shorter-scale features, occurring within glacial periods (periods of light ice
caps and lower temperatures). Specifically, the ice cores record rapid changes in temperature
from cold periods (known as stadiums) to warm periods (interstadials). Between about
70-20 kyr ago, the climate swung abruptly between these states with a periodicity of about
1470 years, with temperature changes up to about 10◦C. These transitions have been named
Dansgaard-Oeschger (DO) Events and possess a peculiar asymmetry in that the warming
phase is very rapid whereas cooling is more gradual.
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Dansgaard-Oeschger Events
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Figure 1: Plot of the δ18O data from the NGRIP ice core record. The numbers refer to
the interstadials (warm periods, high δ18O). So-called Heinrich events are marked with the
labels H1 to H6. The red arrow denotes the temporal range within which a strong 1470-year
periodicity is observed in the δ18O signal.

One mysterious feature of DO events is that they don’t appear to correspond to any
known natural frequency in climatic forcing, as opposed to the glacial cycles themselves
which have been linked (with varying degrees of success) to Milankovich Cycles (the Earth’s
spin-axis precession, obliquity cycles and orbital eccentricity oscillations). The literature
exploring the potential sources of DO-events is vast and we do not cover them here. However,
what we present is more of a cautionary tale arising out of stochastic theory, namely, that
stochastic forcing upon a dynamical system may amplify a periodic signal that you might
have otherwise thought negligible, through the process of “Stochastic Resonance”. In order
to arrive at the key result, we first lay down a theory which allows for multiple stable states
within the global overturning and then show how stochastic forcing might cause a system
to shift between these states - analogous to DO-events.

1.1 Ocean irculation

Before attempting a dynamical systems description for DO-events, we provide a very brief
background on the (Atlantic) Meridional Overturning Circulation, or (A)MOC. Looking at
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the Atlantic as whole, there are two main sources of “deep water”, meaning water that more
or less descends to the ocean floor by way of negative buoyancy forcing. The first source is
Antarctic Bottom Water (AABW), forming, unsurprisingly, near Antarctica. We shall not
describe this source in much more detail except to note that it forms the deepest water in
the Atlantic by way of extensive cooling in and around the edges of the Antarctic ice sheet.
The second source, North Atlantic Deep Water (NADW), is our primary concern here, and
more often supposed to be important in driving DO events.

NADW forms mostly in the Greenland and Labrador Seas. Its mechanism of formation
is roughly as follows. Strong evaporation at low northern latitudes in the Atlantic increases
the surface salinity of the water which is then carried northward into the regions of deep-
water formation. The high salinity comes with a high density, which “pre-conditions” the
water for convection by eroding its stable stratification. Subsequent cooling in the winter is
usually able to destabilise the stratification, leading to deep convection and the formation
of deep water. Owing to its high salinity, NADW is actually denser than southern-source
AABW at the surface of the ocean. However, an interesting property of seawater is that the
thermal expansion coefficient increases with pressure, making temperature more important
for density at the bottom of the ocean than at the surface. What this amounts to is the
coldness of the AABW leading to it being denser than NADW once both have reached the
bottom of the ocean. The MOC is often described in terms of a zonally (longitudinally)
averaged stream function

ΨMOC(y, z, t) =

∫ 0

z

∫ xe

xw

v(x, y, z′, t) dx dz′, (2)

where we have chosen ΨMOC = 0 at the ocean surface and consider a basin with western
margin situated at longitudinal position xw and eastern margin at xe. The variable y is
meridional (latitudinal) distance along the surface of the Earth. Notice that ΨMOC is a
volume transport and is usually measured in Sverdrups (Sv), where 1 Sv=10 6m3 yr−1. Of
interest is the heat carried by this volume, which depends upon the temperature of the
northern-ward moving surface water. In general, stronger AMOC correlates with greater
heat transport within recent, temporally-limited observations, but it is uncertain to extend
this conclusion to longer timescales.

Direct measurements of the MOC are sparse, with a detailed evaluation of ΨMOC often
drawn from numerical models. However, the MOC is now routinely monitored at 23oN
using the RAPID-MOCHA array. Essentially, what these observations have revealed is an
extremely variable MOC strength, with total transport even appearing to reverse in sign
briefly near the beginning of 2010. Paleoproxy evidence has been used to deduce changes
to the AMOC in past climate regimes. In particular, the ratio of 231Pa to 230Th in Atlantic
sediments has been used to deduce a dramatic and sudden switching off of the AMOC
roughly 18 kyr ago, coinciding with Heinrich Stadial 1 (H1, figure 1). The AMOC appears
to have abruptly switched back on again about 14,700 kyr ago, at the start of a period of
warming known as the Bølling-Allerød interstadial (McManus et al. 2004). We do not have
evidence for such transitions during all DO events, but the knowledge that the AMOC can
change so dramatically warrants further investigation into whether multiple stable states
might be inherent to the system.
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cold AABW

salty NADW

Latitude

Figure 2: A section along the Atlantic. The top diagram shows the measured salinity and
the lower depicts (potential) temperature. Water sinks to deep levels in the North and the
South, as can be seen in the sections as a salty tongue descending from the north and a cold
tongue from the south. At the ocean floor, the southern-source AABW is denser, by virtue
of its low temperature than the northern-sources NADW, which is warmer. Variability in
the associated heat transport from the northern regions has been implicated in the origin
of DO events.

1.2 The alt dvection eedback

Figure 3: Stommel two-box model of salt-advection feedback.

68



The simplest picture one can imagine that captures the key aspects of the AMOC can
be traced back to Stommel (1961). It is reasonable to suppose that the degree of mixing
between equatorial and polar water reservoirs depends upon their mutual density difference
Δρ. A physical reason for this is that denser polar water is more pre-conditioned to convect
to the ocean floor, enhancing meridional overturning and presumably pole-equator mixing.
Accordingly, we begin the formulation of our simple model by supposing there to exist two
reservoirs of water, one representing the poles and the other the equator, with temperatures
and salinities Tp, Sp and Te, Se respectively (see figure 3).

We approximate the density of seawater as following a simple linear dependence upon
T and S,

ρ = ρ0 − αT (T − T0) + αs(S − S0), (3)

where the thermal expansivity αT and salinity coefficients αs are assumed constant. We
may then express the density difference between the two reservoirs as

Δρ = −αT (Tp − Te) + αs(Sp − Se), (4)

which in turn governs the mixing rate Q(Δρ).
These two reservoirs not only interact with each other, but are individually forced at

their boundaries. Specifically, we suppose the temperature to relax, over a timescale tr,
to the local atmospheric temperature Ta. In the interest of symmetry, we suppose the
polar box to possess Ta,p = T0 − θ/2 and the equatorial box to relax to Ta,e = T0 + θ/2.
Salinity, too, is forced. However, a crucial aspect of atmosphere-ocean interactions is that,
whereas colder water will have greater tendency to draw in heat than warmer water, salty
water does not stimulate the atmosphere to rain on it! Consequently, salinity forcing is
poorly modelled as a relaxation to some equilibrium value. We adopt a more physical
form for the forcing whereby a prescribed flux Fs/2 of fresh water enters the polar ocean
(in the form of rain, meltwater, etc.), with an equal volume (for simplicity) leaving at the
equator by evaporation. As S0 is the typical value of salinity in the ocean, the result of the
freshwater flux is a decrease in salinity in the polar box with rate proportional to FSS0 and
an equivalent increase in the equatorial box.

We may now write out the equations governing the two-basin system (see Cessi 1994):

Ṫe = − 1

tr
[Te − (T0 +

1
2θ)]−

Q(Δρ)

2
(Te − Tp), Ṡe = +

Fs

2H
S0 − Q(Δρ)

2
(Se − Sp) (5a)

Ṫp = − 1

tr
[Tp − (T0 − 1

2θ)]−
Q(Δρ)

2
(Tp − Te), Ṡp = − Fs

2H
S0 − Q(Δρ)

2
(Sp − Se) (5b)

where H is the ocean depth. We can now see that in the form written above, Q(Δρ) must
be positive. The reason for this is that although Q is physically the advection of water
between two reservoirs, this advection is closed, with as much going in as is coming out
for each reservoir. If you reverse the direction of circulation the quantity of polar water
moving into the equator and vice versa remain unchanged. With this in mind, considering
the simplicity of the model, we are free to choose a functional form for Q that depends only
on the magnitude of Δρ. For definiteness, we choose

Q(Δρ) =
1

td
+

q

ρ20V
(Δρ)2, (6)
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where V is the volume of each reservoir, q is a dimensional transport coefficient and td is
the timescale of diffusive mixing between the two reservoirs that would occur in the absence
of a density difference.

We are interested in obtaining the possible steady state solutions to the system of
equations above and so it is convenient to define the temperature and salinity differences

ΔT ≡ Te − Ta, ΔS ≡ Se − Sa (7)

and work in terms of these variables. From equations 5, we obtain the time evolution of
the temperature and salinity differences:

dΔT

dt
= − 1

tr
(ΔT − θ)−Q(Δρ)ΔT, (8a)

dΔS

dt
=

Fs

H
S0 −Q(Δρ)ΔS. (8b)

We now introduce appropriate scales with which to reduce the dynamical variables ΔT
and ΔS, together with time t, to their respective dimensionless forms. Appropriate choices
are as follows

x ≡ ΔT

θ
, y ≡ αsΔS

αT θ
, t′ ≡ t

td
. (9)

Once scaled, the dynamical equations for x(t′) and y(t′) read

ẋ = −α(x− 1)− x
[
1 + μ2(x− y)2

]
, (10a)

ẏ = F − y
[
1 + μ2(x− y)2

]
, (10b)

where

α =
td
tr
, μ2 =

qtd(αtθ)
2

V
, F =

αsS0td
αtθH

Fs. (11)

The parameter α is the ratio of the diffusive timescale to the timescale over which tempera-
ture would exponentially decay to the local atmospheric value. The parameter μ measures
the strength of the buoyancy-driven convection between the two basins relative to the dif-
fusive mixing. The parameter F measures the amount of freshwater forcing.

Parameter Meaning Value Unit

tr temperature relaxation timescale 25 days
H mean ocean depth 4,500 m
td diffusion time scale 180 years
ta advection time scale 29 years
q transport coefficient 1.92× 1012 m3s−1

V ocean volume 300× 4.5× 8, 250 km3

αT thermal expansion coefficient 10−4 K−1

αS haline contraction coefficient 7.6× 10−4 –
S0 reference salinity 35 g kg−1

θ meridional temperature difference 25 K

Table 1: Parameters of the stochastic salt advection model.
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We may simplify the equation above by noting that for parameters typical of the real
ocean (see table) α � 1, which means that the reservoirs will equilibrate with their local
forcing temperatures much more rapidly than they are likely to mix each other’s tempera-
tures. Therefore, we may suppose that x remains close to 1 which reduces the problem to
an ODE in y(t) alone (where we drop the primes on t′ for convenience):

dy

dt
= F − y

[
1 + μ2(1− y)2

]
. (12)

If we suppose for now that F = F̄ is independent of time, we can represent the time
evolution of y using a potential function V (y):

dy

dt
= −V ′(y), where V (y) = −F̄ y +

1

2
y2 + μ2

(
1

4
y4 − 2

3
y3 +

1

2
y2
)
, (13)

and its derivative with respect to y is denoted by the prime. We illustrate V (y) using
F̄ = 1.1 and μ2 = 6.2 in Figure 4. As can be seen, V (y) is a double-welled potential with
two stable minima and an unstable maximum. In order to transition from one potential
well to the other, a finite amplitude “kick” in y is required.

Recalling that y is simply the dimensionless salinity difference, we immediately see that
the two reservoirs can remain in a stable state with either a large salinity difference or a
small one. Physically, these correspond to the following. The poles are colder and fresher
than the equator. If we freshen the poles, we increase ΔS, but because temperature drives
the convection, this freshening reduces Δρ and so the MOC weakens. Therefore, the higher
(lower) value of y is usually referred to as the off (on) state of circulation. Another way
to look at it is that in order to balance the freshwater forcing at a large ΔS we need less
mixing between the reservoirs than if we have a smaller ΔS. Ultimately, the conclusion
here is that the meridional overturning circulation can jump between the on and off states
impulsively, given a finite-amplitude forcing, such as a particularly large ice-melt event.

Of course, freshwater forcing F is unlikely to be constant in reality. Next, we consider
F to vary stochastically, perhaps modelling rainstorms, or ice-sheet collapses, which create
a set of random kicks of freshwater flux which we model as white noise with amplitude σ
such that F = F̄ + σξ(t). This leads to the stochastic Itô equation

dYt = −V ′(Yt) dt+ σ dWt. (14)

Note here that the result of adding fluctuations to F is additive noise in the equation for
Y , rather than noise in the potential V (y).

As we have seen in previous lectures, we can write down the forward Fokker-Planck
equation in order to solve for the probability density function p(y, t) that generates a given
trajectory in Yt

∂p

∂t
=

∂

∂y

(
V ′(y)p

)
+

1

2
σ2 ∂

2p

∂y2
. (15)

Now, in the deterministic case before, we sought time-independent solutions for y. Of
course, it makes no sense to look for truly time-independent solutions for the random
variable Yt, but a statistically steady solution may be found by setting ∂p/∂t = 0 and
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solving for the function pstat(y) satisfying stationary statistics. The solution is relatively
straightforward and we simply state the result,

pstat(y) = Ce−
2
σ2 V (y), where C =

(∫ ∞

−∞
e−

2
σ2 V (y) dy

)−1

(16)

is the normalization coefficient and we have used the boundary condition that p → 0 as
y → ±∞.

Some numerical results for equations 14 and 15 are shown in figure 4. The histograms
and probability densities are initially peaked at the well near which the system was launched,
indicating that the peak at y = yb is difficult to cross. They do eventually spread out,
though, and attain the steady state given by equation 16. In this state, the system typically
fluctuates around in one of the two wells and randomly transitions between them, while
spending more time overall in the deeper well.

y
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20

30
100
∞

V
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0

y
0 0.5 1 1.5

Figure 4: Motion in the double-well potential V (y) from equation 13 with F̄ = 1.1 and
μ2 = 6.2. Top: Potential V (y). Bottom: Stochastic motion (equation 14) with noise
amplitude σ = 0.2 starting from Y0 = 0 (left) or Y0 = 1 (right). The time evolution of
five realizations are shown, as well as histograms (blue) from 10 000 realizations and the
probability density (red) obtained from numerical solution of the corresponding Fokker–
Planck equation (15). The distribution labelled t = ∞ is the steady-state distribution
pstat(y) from equation 16.
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1.3 Escape time

We discussed in a previous lecture the concept of mean escape times. In this context,
suppose we are in the “on”-state y = ya of meridional overturning but subject the system
to given, stochastic freshwater forcing. How long is it likely to take for the system to flip
into the other (“off”) state y = yc?

The expected time T̄ (y) required to escape to yc when starting from y satisfies an
equation related to the backward Kolmogorov equation:

−1 = −V ′T̄ ′ + 1
2σ

2T̄ ′′, with T̄ (yc) = 0, T̄ ′(−∞) = 0, (17)

where the boundary conditions state that it takes no time to reach yc when starting from
yc, and that the escape time varies very little for y far below the potential well at ya since
the restoring deterministic drift is very strong there.

The equation is a linear first-order equation for T̄ ′(y) which we solve by multiplying by
the integrating factor exp(−2V (y)/σ2):

−e−
2
σ2 V = e−

2
σ2 V

(
−V ′T̄ ′ + σ2

2 T̄ ′′
)
= σ2

2

(
e−

2
σ2 V T̄ ′

)′
. (18)

Integration of both sides and using the boundary condition T̄ ′(−∞) = 0 yields

T̄ ′(y) = e
2
σ2 V (y)

∫ y

−∞
− 2

σ2 e
− 2

σ2 V (s) ds = − 2
σ2

∫ y

−∞
e

2
σ2 [V (y)−V (s)] ds. (19a)

A second integration using T̄ (yc) = 0 yields

T̄ (y) = − 2
σ2

∫ y

z=yc

∫ z

s=−∞
e

2
σ2 [V (z)−V (s)] ds dz. (20)

Hence the mean escape time from the “on” state y = ya to the “off” state y = yc is

T̄ (ya) =
2

σ2

∫ yc

z=ya

∫ z

s=−∞
exp

(
2

σ2
[V (z)− V (s)]

)
ds dz. (21)

1.3.1 Asymptotic approximation using Laplace’s method

We can obtain an asymptotic approximation to the above integral in the limit of small
noise, where σ2 is much smaller than the typical variation V (yb) − V (ya) of the potential,
so that we can treat M = 2/σ2 as a large parameter. In this case, the main contribution to
the integral in equation 21 comes from the region where the exponent M [V (z) − V (s)] is
maximal, i.e. z ≈ yb and s ≈ ya. The contributions from any other regions are exponentially
small and can be ignored. We can thus approximate the result as

T̄ (ya) ≈ M

∫ yb+ε

yb−ε
eMV (z) dz

∫ ya+ε

ya−ε
e−MV (s) ds, (22)

where ε > 0 is small.
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After a change of variables z = yb+x or s = ya+x, the two integral factors in equation
(22) have the form

I ≡
∫ ε

−ε
eMf(x) dx, (23)

where M � 1 and f(x) = V (yb + x) or f(x) = −V (ya + x) has a maximum at x = 0.
We have argued that almost all of the contribution to the integral I comes from the region
near this maximum, so we may Taylor expand f(x) as f(x) ≈ f(0) + f ′′(0)x2/2, where no
linear term is present and f ′′(0) < 0 since x = 0 is a maximum. After the expansion, we
can extend the limits to infinity, again because the contributions from regions away from
the exponential maximum near x = 0 are negligible, and hence∫ ε

−ε
eMf(x) dx ≈ eMf(0)

∫ ε

−ε
e−

1
2
M |f ′′(0)|x2

dx (24a)

≈ eMf(0)

∫ ∞

−∞
e−

1
2
M |f ′′(0)|x2

dx (24b)

≈ eMf(0)

√
2π

M |f ′′(0)| , (24c)

where we have made use of the standard result
∫∞
−∞ e−αx2

dx =
√
π/α.

The two integral factors in equation 22 are thus

∫ yb+ε

yb−ε
eMV (z) dz ≈

√
2π

M |V ′′(yb)|e
MV (yb), (25a)

∫ ya+ε

ya−ε
e−MV (s) ds ≈

√
2π

M |V ′′(ya)|e
−MV (ya), (25b)

and hence the mean escape time from the “on” state y = ya to the “off” state y = yc is
approximately

T̄ (ya) = 2π

√
1

|V ′′(ya)| |V ′′(yb)| exp
(

2

σ2
[V (yb)− V (ya)]

)
. (26)

From the calculations, we can see that this escape time is the same from any state in the
well near y = ya over the peak y = yb to any state in the well near y = yc. This is in line
with our intuition that, for weak noise, the deterministic drift quickly drives the system to
the bottom of the well y = ya where it fluctuates until eventually a large enough random
perturbation kicks the system over the crest y = yb and it falls into the other well y = yc.

1.4 Periodic forcing

Within the autonomous framework above, the system will jump between on and off states
stochastically, but will not display any periodic behaviour, as is observed for DO events.
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We therefore augment the previous model with a periodic modulation to the deterministic
part of the freshwater forcing, so that

F = F̄ + σξ(t) +A sin

(
2π

t

T

)
, (27)

where A is the amplitude of periodic forcing and T is the dimensionless period of forcing
(as we are still working with dimensionless variables). The governing equation is thus
dy/dt = −dV/dy + σξ(t), where the potential V (y, t) can be chosen as

V (y, t) = −F̄ y +
1

2
y2 + μ2

(
1

4
y4 − 2

3
y3 +

1

2
y2
)
−A sin

(
2π

t

T

)
(y − 0.7). (28)

Figure 5: Motion in a time-periodic double-well potential (equation 28 with F̄ = 1.1,
μ2 = 6.2 and A = 0.05). Top: The potential V at t = −T/2, 0, T/2. Bottom: Stochastic
motion with noise amplitude σ = 0.05 (left), σ = 0.15 (middle), σ = 0.25 (right). The time
evolution of one realization is shown (black curve), as well as the probability density (heat
map) obtained from evolving the corresponding Fokker–Planck equation forward until a
time-periodic state is reached. The period T chosen corresponds to 100 000 years.

In Figure 5, we show what happens for a small perturbation (A = 0.05) to the mean
forcing F̄ for various values of the noise amplitude σ. For small noise, the system remains
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in the deeper well most of the time as expected. For large noise, the probability density
system frequently transitions between the two wells, almost as if the middle peak at y = yb
did not exist, and the periodicity is quite weak. However, for an intermediate value of
noise strength, we recover periodic behaviour on the timescale T . The response is not a
small perturbation, but a jump between on and off states every cycle. We have ended up
with a system exhibiting so-called “stochastic resonance”, whereby the noise is just large
enough to switch between states almost every time the background forcing oscillates.

It is unclear whether the DO events are in fact generated by such a mechanism (the
addition of a ∼1500 year periodicity in freshwater forcing is ad hoc – we know of no such
forcing in reality), but it nonetheless constitutes a fascinating result that ordered behaviour
may come out of the addition of white noise.
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Lecture 10: Dansgaard-Oeschger Events (continued) & Ocean

Western Boundary Current Variability

Henk A. Dijkstra; notes by Tom Beucler & Andre Souza

June 26, 2015

1 Stochastic Resonance

It is possible to synchronize transitions when you have a periodic forcing on a double
potential well:

V (x) = −x
2

2
+
x4

4
− εx cos(Ωτ)

Note that the fixed points location (defined by V ′(x) = 0 and V ′′(x) > 0) do not strongly
vary with τ if the amplitude ε is small (in which case the fixed points are given by x± ≈ ±1),
unlike the value of the potential V at this fixed points. For ε � 1, these two values are
approximately given by:

V (x±) ≈ V (±1) = −[
1

4
± ε cos(Ωτ)]

Using the Laplace’s approximation, the transition times are approximately given by:

< t−1→1 >≈ 2π

√
1

−V ′′(0)V ′′(−1)
exp{2[V (0)− V (−1)]

σ2
} ≈
√

2π exp[
1− 4ε cos(Ωτ)

2σ2
]

< t1→−1 >≈ 2π

√
1

−V ′′(0)V ′′(1)
exp{2[V (0)− V (1)]

σ2
} ≈
√

2π exp[
1 + 4ε cos(Ωτ)

2σ2
]

The transition times vary with τ as the potential changes shape. Because the variance in
the transition time is very small compared to the transition time itself, the transition occurs
over a small time-interval. As a consequence, the Fourier spectrum has a strong peak at
the forcing frequency Ω. In the case of a small periodic forcing ε, the synchronization can
occur for moderate values of σ.

For example, if we take the small amplitude to be ε = 0.1, the shape of the potential
is very close to a double well. If we suppose that at τ = 0, the state of the system is near
x+ ≈ 1, the transition time < t1→−1 > at this τ is maximal, as the potential well is deepest.
If π

Ω �< t1→−1 > (τ = 0), then the well will change shape and the system will almost
surely exit the well at τ = π

Ω where the mean escape time < t1→−1 > is minimal:
The same reasoning can be applied when the system starts near x− ≈ −1 at τ = π

Ω .
Thus, for small amplitude, the transitions of the system approximately occur when τ is a
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Figure 1: V (x) vs x for τ = 0 (left) τ = π
2Ω (middle) and τ = π

Ω (right). The state of the
system is represented by the red dot.

multiple of π
Ω , and the system stochastically resonates with the forcing of angular frequency

Ω:

Figure 2: V (x) vs x for τ = π
Ω (left) τ = 3π

2Ω (middle) and τ = 2π
Ω (right). The state of the

system is represented by the red dot.

The synchronization of transitions has applications in climatic models: If a periodic
forcing is imposed, it is possible to have synchronization in the transitions, which allows
for the existence of multiple equillibria. However, attributing this signal to stochastic res-
onance is a controversial topic. For instance, stochastic resonance has been suggested as a
mechanism for the Dansgaard-Oeschger events, but many questions/doubts remain:

• Did multiple states of the Meridional Overturning Circulation exist during glacial
times?

• What is the origin of the 1500 years period in the freshwater forcing?

2 Ocean Western Boundary Current Variability

2.1 Chaotic behavior of the Kuroshio current

We are now interested in systems that exhibit chaotic behaviors, and ask ourselves what to
do when the circulation is so hard to model directly? Looking at the Sea Surface Height
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(SSH) variability, we can see that it is predominant in the Western boundaries of the
basins. In this lecture, we will focus on the Kuroshio current in Japan. Qiu et al. (2005)
have observed a strong interannual-decadal time scale transitions between different Kuroshio
paths (which look like spaghetti on the SSH contours), referred as path transitions. Looking
at the variation of the path length in time, you have a strong variability: we start with
a low path length, and then suddenly see a much bigger path lengths, corresponding to
a meandric current. In this case, due to the lack of data, it is hard to test for red noise;
instead they use a very simple reduced gravity shallow-water model for the wind:

∂u

∂t
+ (u · ∇)u+ fk ∧ u = −g′∇η +AH∇2u+

τ

ρh
− γ|u|u

∂h

∂t
+∇ · (hu) = 0

Taking a few points along the coast line, the wind profile τ is mimicked. As it is very
difficult to measure/determine the lateral friction AH , it is taken as a control parameter.
For AH = 220m2.s−1, Pierini et al. (2009) notice a strong transition in the behavior of the
model, which does not correspond to the observations anymore, if metrics such as SSH are
considered. The strong transition in the behavior of the system leads us to think that a
nonlinear transition occurs when AH becomes large enough.

2.2 Deterministic quasi-geostrophic barotropic model

To model this transition, we adopt a Quasi-geostrophic barotropic model, giving us an
evolution equation for the streamfunction ψ:

∂ζ

∂t
+ u · ∇ζ + β

∂ψ

∂x
=
∇2ζ

Re
+ αk · (∇∧ τ)

where the horizontal velocity u and the relative vorticity ζ are related to the streamfunction
ψ by:

u = k ∧∇ψ

ζ = ∇2ψ

We choose a double-gyre wind stress:

τ = − cos(2πy)i

so that we have eastwards wind in the Northern part of the domain and westwards wind in
the Southern part of the domain. The control parameters is now the Reynolds number of
the flow:

Re =
UL

AH
∝ A−1

H

Note that we have chosen the wind field to be symmetrical about the mean axis of the
domain, which implies meridional symmetry of the equations of motion about this axis.
We thus observe a Pitchfork bifurcation as the Reynolds number exceeds its critical value,
which is the only co-dim 1 bifurcation leading to symmetry breaking. The flow can indeed
break from a double-gyre configuration to:

79



• Steady-state streamfunction patterns.

• A jet-down configuration.

• A jet-up configuration.

At low-frequency, the two eigenmodes of the system (P and L) can merge to give interesting
periods depending on the choice of the parameters in the model; for instance, the period of
the gyre mode at Hopf bifurcation (Re ∼ 80) is approximately 1.5y whereas the period of
other Rossby-basin modes is much shorter, of order 2-4 months. Increasing Re and looking
at the bifurcation diagram in (Re, ψmin+ψmax

|ψmaix| ) space, the deterministic system undergoes in
this order:

• A Pitchfork bifurcation.

• A Hopf bifurcation.

• Gyre modes then appear.

• A homoclinic orbit then appears, connecting back the system to its initial fixed point.

Figure 3: Schematic bifurcation diagram for the double-gyre model

The central question of this lecture is then: What happens if noise is added to the
system? In the case of a chaotic system, such as the previous one, the PDEs are too hard
to tackle directly, and we thus need to derive a low-order model. We:

• Neglect the diffusive term 1
Re∇

2ζ and replace it with a Rayleigh drag −µζ.

• Choose the wind-stress strength as the control parameter.
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We then truncate the system by focusing on the 4 first modes of the basin in the meridional
direction:

ψ(x, y, t) =
4∑

k=1

Ak(t)G(x) sin(ky)

where:
Gs(x) = exp(−sx) · sinx

and (x, y) ∈ [0, π]2. If we Galerkin project the equations for ψ, we obtain a low-order model,
consisting of 4 ODEs for the amplitudes Ak(t):

dA1

dt
= c1(A1A2 +A2A3 +A3A4)−A1

dA2

dt
= 2c2(A1A3 +A2A4)− c2A

2
1 −A2 + c5α

dA3

dt
= c3A1(A4 −A2)−A3

dA4

dt
= −c4A

2
2 − 2c4A1A3 −A4

A wind-stress amplitude τ0 = 0.1Pa gives α = 20. It is possible to prove that this low-order
model exhibits a transition sequence as α increases:

• First, we have a Pitchfork bifurcation.

• Then, we have a Hopf bifurcation.

• Finally, a homoclinic orbit appears.

Numerically, we show that the previous system has a steady attractive set with a first
Lyapunov exponent λ1 > 0.

2.3 Stochastic low-order models for chaotic systems

We are now able to add noise in the system, by transforming the previous system of ODEs
in a system of SDEs:

dA1 = [c1(A1A2 +A2A3 +A3A4)−A1]dt

dA2 = [2c2(A1A3 +A2A4)− c2A
2
1 −A2]dt+ c5α(dt+ σ ◦ dW )

dA3 = [c3A1(A4 −A2)−A3]dt

dA4 = [−c4A
2
2 − 2c4A1A3 −A4]dt

Note that adding noise to a dynamical system changes the definition of what we call an
attractor. We study the very simple 1D example:{

ẋ = −x+ t

x(s) = x0
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Figure 4: Numerical simulation of the low-order dynamical system with N = 106 initial
conditions for a wind-stress τ = 0.1hPa

Adding noise to this equation will not change its monotony. The solution of this system is
given by:

x(t) = exp(s− t) · [x0 − s+ 1] + t− 1

If we wanna look at the attractor in terms of asymptotic limit, we start by noticing that all
the trajectories eventually go to t− 1. If you consider the following flow:

ϕ(t, s)[x] = exp(s− t) · [x− s+ 1] + t− 1

you are forced to go backwards in time and define an attractor differently.

lim
s→−∞

|ϕ(t, s)[x]−A(t)| → 0

where:
A(t) = t− 1

Indeed, the noise might make the system change attractor, which prevents us of going
forward in time to define the attractor. Similarly to what we did for the previously derived
low-order model, we can add noise to the Lorenz model:

dX = s(Y −X)dt+ σXdW

dY = (rX − Y −XZ)dt+ σY dW

dZ = (−bZ +XY )dt+ σZdW
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Numerically, we initiate the system with many initial conditions (typically N ∼ 106 − 109)
and perturb each initial condition with a single noise realization. We then look at the density
of trajectories in phase space. To study the effects of noise in the wind-stress forcing on the
intrinsic variability in this PDE model, three methods exist:

1. Study the local PDF through linearized dynamics (cf Kuehn et al. 2012)

2. Use dynamical orthogonal field theory (cf Sapsis et al. 2009 and Sapsis et al. 2013)

3. Use non-Markovian model reduction techniques (cf Chekroun et al. 2015)

We will study the second method and apply it to our stochastic barotropic QG model:

∂u

∂t
= −∇p+

∇2u

Re
− (u · ∇)u− fk ∧ u+ τW (x, t)

∇ · u− 0

where we separate the wind in its deterministic double-gyre part and a stochastic part:

τW = τDG(y)i+ στstochastic(x, y, t)i

2.4 The dynamical orthogonal field method

They dynamical orthogonal field equation can be derived following Sapsis and Lermusiaux
(2009). Starting from a general SDE of the form:

∂u(x, t, ω)

∂t
= L[u(x, t, ω), ω]

where:
(x, t, ω) ∈ D × T × Ω

We define the mean of the field u as:

u(x, t) = Eω[u(x, t, ω)] =

∫
(Ω)

u(x, t, ω)dP(ω)

where P is a probability measure on ω. From the covariance matrix:

Cu(·,t)u(·,t)(x, y) = Eω[(u(x, t, ω)− u(x, t))(u(y, t, ω)− u(y, t))T ]

we can define the integral operator:

T C(ϕ) =

∫
(D)

Cu(·,t)u(·,t)(x, y) · ϕ(x, t)dx

and prove that it is compact, self-adjoint and positive. It follows that any random field
u has a Karhuven-Loeve expansion at a given time t:

u(x, t, ω) = u(x, t) +
+∞∑
i=1

Yi(t, ω)ui(x, t)

where:
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• ui(x, t) are the eigenfunctions of T C

• Yi(t, ω) are zero-mean stochastic processes with variance Eω[Y 2
i (t, ω)] which are eigen-

values of the following eigenvalue problem:

T C [ui(x, t)] = Eω[Y 2
i (t, ω)]ui(y, t)

In many physical problems of interest (including ours), Eω[Y 2
i (t, ω)] ∼ exp(−ci) where

c > 0, so that to a good approximation, we can truncate the Karhuven-Loeve expansion to
a finite number of terms:

u(x, t, ω) = u(x, t) +

s∑
i=1

Yi(t, ω)ui(x, t)

We can see that the variation of the stochastic coefficients Yi can express exclusively the
evolution of the uncertainty within the stochastic space VS = span(ui|i ∈ [1, s]). However,
the evolution of the stochastic basis ui itself allows the uncertainty to cover VS and V ⊥S . To
avoid redundancy in the evolution of the uncertainty, we impose that the evolution of the
basis ui stays in V ⊥S , ie:

dVS
dt
⊥ VS ⇔ <

∂

∂t
ui|uj >= 0

This is the dynamically orthogonal condition (DO condition). We can now derive the DO
field equations by inserting the DO representation in the initial evolution equation:

∂

∂t
u+

dYi
dt
ui + Yi

∂

∂t
ui = L[u(x, t, ω), ω]

Applying Eω to the previous equation, we obtain an evolution equation for the mean part
of the representation:

∂

∂t
u = Eω{L[u(x, t, ω), ω]}

Taking the inner product of the evolution equation with uj , applying the orthonormality
condition of the ui, and the DO condition, we obtain:

dYj
dt

=<
∂

∂t
u|uj >=< L(u)|uj >

Applying Eω to the previous equation and using the evolution equation for the mean part of
the representation, it is possible do derive an equation for the zero-mean stochastic processes
Yi:

dYi
dt

=< L[u, ω]− Eω{L[u, ω]}|ui >

Finally, it is also possible to derive an equation for the basis vectors:

∂

∂t
ui = ΠV ⊥

S
[Eω{L[u, ω]Yj}] · C−1

Yi(t)Yj(t)

where the operator ΠV ⊥
S

is defined as:

ΠV ⊥
S

[F (x)] = F (x)− < F (x)|uk(x, t) > uk(x, t)
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2.5 Application to the quasi-geostrophic barotropic model

We come back to our BT QG model and apply the DO analysis following Sapsis and Dijkstra
(2013). We first expand the horizontal velocity and the pressure:

u(x, t, ω) = u(x, t) +
s∑
i=1

Yi(t, ω)ui(x, t)

p = p0 + Yipi − YiYjpij + Zrbr

where Zr are the coefficients of the noisy part of the wind:

στa(x, y, t) =
s∑

k=1

Zk(t, ω)σk(x, t)

The DO mean equations can be written:

∂u

∂t
= −∇p0 +

∇2u

Re
− (u · ∇)u− fk ∧ u+ τd(x, t)− CYiYj · [−∇pij +

1

2
(ui · ∇)uj +

1

2
(uj · ∇)ui]

0 = ∇ · u

Projecting on the DO modes, it is possible to obtain a solvable system of (s+1) PDEs. The
stochastic wind stress forcing follows the bulk formula for the momentum flux:

τstochastic = ρairCD|u′|u′

where ρair is the air density, u′ the near-surface wind’s velocity and CD the drag coefficient.
The near-surface wind is taken to be stochastic:

u′ = f(x, y)η(t)

where η(t) is a white/colored noise vector depending on the experiment, with mean 0 and
variance σ. The weight function f parametrizes the spatial structure of the atmospheric
variability with a Gaussian shape, whose origin is placed at the center of the basin:

f(x, y) = α[πλxλyerf(
Lx
2λx

)erf(
Ly
2λy

)]−
1
2 exp(

x2

2λ2
x

+
y2

2λ2
y

)

Looking at the resulting 3D contours of the PDF, we can see that the main effect of the
noise is to allow for multiple equillibria of the system. Looking at the effect of the noise in
more detail, we can see significant differences if the noise is chosen to be white or colored:

• If we choose a white-noise excitation η(t) ∝ dW (t) where W is a vectorial Wiener
process, then the stochastic excitation has zero effect on the instantaneous evolution
of the mean field, and the shape of the stochastic subspace VS . As a consequence, it
will not influence the general statistics of the double-gyre flow.
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• More generally, we can choose a colored noise excitation, for instance through the
Ornstein-Uhlenbeck process:

τdη(t) = −η(t) +
√

2τdW (t)

where τ is the decorrelation time scale (τ � 1 corresponds to the deterministic case
and τ � 1 to the white-noise case). This does not only allow to internally transfer
energy between the DO modes, but it also allows the stochastic modes to directly
absorb energy from the stochastic forcing. Depending on the value of τ , colored noise
can either destabilize some DO modes and push the system in a statistically steady
regime (small memory⇔ small τ), or reduce the complexity of the system by bringing
it to a single unstable mode (long memory ⇔ large τ).

3 Conclusion

Is summary, it is possible to add noise to a chaotic system and still solve for a low order
equivalent system. We can see that the noise adds a lot of variability, helping us explore new
flavors of the climatic system. To study the effect of the noise on a PDE system with more
precision, we have introduced the method of the dynamical-orthogonal field. Under certain
condition, this method reduces the analysis of a general continuous stochastic field to a
finite number of orthonormal mode, which define a stochastic subspace where the solution
lives. In the special case of the BT QG model , we have seen that white-noise has a minimal
effect on the reduced dynamics, whereas colored noise can significantly change the behavior
of the system.
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The Diffusion Fish

Gunnar Peng

October 15, 2015

1 Introduction

The study of stratified fluids, i.e. bodies of e.g. water or air in which density varies with
height, is of great importance for the understanding of the oceans and the atmosphere.
As is well known, a system with dense fluid overlying light fluid is unstable, and if left
to evolve will spontaneously generate a flow that interchanges and mixes the fluids until a
stable stratification is reached, where the density decreases with increasing height. A less
well-known fact is that flow can also be spontaneously generated in a stably stratified fluid,
and that is the focus of this report. The spontaneous flow is called diffusion-driven flow,
and is due to a combination of diffusion and buoyancy effects.

For simplicity, in this report we consider a liquid whose density varies due to a varying
concentration of salt, although the discussion applies to thermal stratifications as well. (If
the stratification is due to a combination of multiple salts and/or heat with different diffusive
properties, then double-diffusive effects may come into play and we do not consider this case
here.) In a stable stratification, salt will spontaneously diffuse up from the salty and dense
fluid below to the fresh and light fluid above. This raises the centre of gravity of the fluid,
and hence increases the potential energy of the system (at the expense of thermodynamic
free energy), which can then be harnessed to drive a flow.

The classical example of diffusion-driven flow due to the presence of sloping insulating
boundaries was described by Phillips [13] and Wunsch [18] in 1970 (see figure 1(a)). We
assume that the stable background stratification is uniform, so that salt diffuses upward at
a constant rate. Thus, away from the wall, at each point (e.g. A in the figure) the amount
of salt leaving upward due to diffusion equals the amount of salt arriving from below, and
hence the concentration does not change. Just above the wall (e.g. B in the figure), however,
the salt that diffuses up and away is not replenished from below due to the presence of the
insulating wall, and hence (in the absence of flow) the fluid near the wall becomes lighter.
Put another way, the pycnoclines (surfaces of constant density) must meet the insulating
wall at right angles, and do so by bending down, as shown in the figure, resulting in the
fluid near the wall becoming lighter.

The lighter fluid wants to rise (relative to the ambient fluid away from the wall), and
hence flows up along the boundary in a “buoyancy layer”. A steady flow is achieved with the
velocity profile shown, and the salt leaving point B by diffusion is continually replenished
by advection from below (the dashed arrow). Similarly, fluid near a sloping upper boundary
becomes heavy, and hence flows down the slope. This buoyancy-layer flow is called Phillips–
Wunsch flow, and will be discussed more quantitatively in §2.2.
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Figure 1: (a) Schematic of diffusion-driven (Phillips–Wunsch) flow near a sloping insulating
boundary in stably stratified fluid (adapted from [13, 12]). (b) Schematic of diffusion-driven
propulsion. The Phillips–Wunsch flow (dashed arrows) along the sloping surfaces propels
the wedge in the opposite direction.

More recent studies of Phillips–Wunsch flow include an experimental verification by
Peacock, Stocker and Aristoff in 2004 [12] and a few years later theoretical and numerical
studies of the diffusion-driven flow inside containers with sloping walls by Page & Johnson
[10, 11] and Page [8, 9].

Around the same time as the original papers by Phillips and Wunsch, the motion of
bodies through stably stratified fluids was extensively studied. The existence of an exact
analogy between the governing equations for two-dimensional viscous stratified flow and two-
dimensional viscous rotating flow (see e.g. Veronis [15, 16, 17]) led to parallel developments
in both fields, such as the calculation of the drag on a body moving horizontally in stratified
fluid (Foster & Saffman [2]) and axially in a rotating fluid (Moore & Saffman [6, 7]).

Although the Phillips–Wunsch flow on sloping boundaries and the motion of insulating
bodies through stratified fluid were thoroughly studied around 1970, these two ideas where
not combined until 2010, when Allshouse, Barad and Peacock [1] showed that the Phillips–
Wunsch flow could be harnessed by asymmetric bodies for horizontal propulsion. They
placed a wedge in stably stratified fluid and found that it moves (see figure 1(b)) at a
constant speed c which depends on the parameters of the problem. No studies so far have
given a theoretical explanation for the propulsion or prediction for the propulsion speed.
We will do so for a variety of two-dimensional cases in this report.

In §2, we describe the assumptions and approximations made and derive the main
governing equations. We then investigate three main cases, where the wedge is placed in
either a box with insulating walls (§3), a box with fixed-buoyancy walls (§4), or a large or
infinite box (§5). Finally, we summarize our results in §6 and discuss possible extensions to
this work.
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2 Problem Setup

We consider a fluid with constant dynamic viscosity µ, whose density ρ depends on the
salinity S(x, t). We assume that the variations in S about a constant reference value S0 are
sufficiently small that the equation of state can be linearized, i.e.

ρ = ρ0(1 + βS(S − S0)), (2.1)

where βS is the coefficient of saline contraction and ρ0 is the reference value for ρ. The
(upward) buoyancy force can then be written as

−ρg = ρ0(−g +B), (2.2)

where g is the gravitational acceleration and we have defined the buoyancy (or reduced
gravity) by

B = g
ρ− ρ0
ρ0

= gβS(S0 − S). (2.3)

The salt is advected by the velocity field u(x, t) and diffuses with diffusivity κ, leading to
the equation

Ṡ + u · ∇S = κ∇2S ⇒ Ḃ + u · ∇B = κ∇2B, (2.4a,b)

where overdot denotes the time derivative and ∇ is the gradient operator.
We further assume that the Boussinesq approximation holds, so we can ignore any effects

due to density variations, apart from the buoyancy force. We thus obtain the incompressible
Navier–Stokes equations

ρ0 (u̇ + u · ∇u) = −∇P + µ∇2u + ρ0(−g +B) ez, ∇ · u = 0, (2.5a,b)

where P (x, t) is the pressure and ez is the unit vector in the vertical direction. As the
kinematic viscosity ν = µ/ρ0 of the salt solution is much larger than the diffusivity κ of
the salt (the Schmidt number is typically ν/κ ∼ 103), the inertial terms (left-hand side) of
equation (2.5a) can be neglected for diffusion-driven flow. (We confirm this claim in §2.2.)
We are left with the Stokes equations

0 = −∇(P/ρ0 + gz) + ν∇2u +B ez, ∇ · u = 0. (2.6a,b)

We will solve the main governing equations (2.4b, 2.6) in a domain between the wedge
and an outer bounding box, and require boundary conditions on u and B. As the boundaries
are rigid, the fluid satisfies the no-slip condition

u = U b, (2.7)

where U b is the velocity of the boundary. For the buoyancy, we consider either insulating
conditions or fixed-buoyancy conditions

Bn = 0 or B = Bb, (2.8)

where the subscript n denotes the derivative in the normal direction pointing into the fluid
and Bb is the prescribed value. We specify the detailed geometry and choice of condition
(2.8) in each separate section.
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2.1 Two-dimensional governing equations

We consider the case when the wedge is sufficiently wide (in the y-direction) that the
flow can be approximated as being two-dimensional in the x- and z-directions with no
variation in the y-direction. This allows introduction of the stream function ψ(x, z, t),
defined by u = (u,w) = (ψz,−ψx), where subscripts denote differentiation and we omit the
y-component of any vector. Incompressibility (2.6b) is then automatically satisfied, while
taking the curl of the momentum equation (2.6a) yields the vorticity equation

Bx = ν∇4ψ, (2.9a)

which describes a balance between the generation of vorticity ∇2ψ by horizontal variations
in buoyancy and the dissipation of vorticity by viscous effects. The advection–diffusion
equation takes the form

Ḃ + ψzBx − ψxBz = κ∇2B. (2.9b)

We consider mainly the case when the buoyancy field has a uniform background strati-
fication N2z, and the perturbations b = B−N2z to the buoyancy field are small compared
with the background. The gradient N2 of the background field is the square of the Brunt–
Väisälä (buoyancy) frequency. After the change of variables from B to b, the governing
equations (2.9) become

bx = ν∇4ψ, ḃ+ ψzbx − ψxbz −N2ψx = κ∇2b. (2.10a,b)

Typically, the term −N2ψx in (2.10b), which expresses advection of the background strat-
ification N2 by the vertical velocity −ψx, dominates the remaining terms on the left-hand
side. In this case, we can eliminate either ψ or b from (2.10) to obtain

bxx +
κν

N2
∇6b = 0 or ψxx +

κν

N2
∇6ψ = 0. (2.11)

This reveals an inherent length scale

L0 =
( κν
N2

)1/4
(2.12)

of the governing equations. The equations (2.10) or (2.11) are typically too complicated
to solve exactly, so we will restrict ourselves to cases where the other length scales of the
problem (such as the size of the wedge and the size of the domain) are much larger than L0,
and use the method of matched asymptotic expansions to obtain approximate analytical
solutions.

Although equations (2.10) suffice to describe the flow and buoyancy fields, we will need
the pressure in order to calculate the force on the wedge. Hence, we retain the momentum
equation (2.6a) as well, in the form

px = ν(ψzxx + ψzzz), pz = −ν(ψxxx + ψxzz) + b, (2.13)

where have defined the rescaled pressure perturbation p = P/ρ0 + gz −N2z2/2.
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2.2 Solutions near non-horizontal walls

As discussed in the introduction, diffusion-driven flow is generated by the interaction of
stratified fluid with sloping boundaries. We investigate the details of this in more detail, by
considering an infinite wall with angle α to the horizontal placed in a stratified fluid with
linear ambient stratification B = N2z and no ambient flow (see figure 1(a)). The solutions
obtained here will serve as boundary-layer solutions for later calculations, and so the aim
in particular is to understand the far-field behaviour of these solutions.

We seek steady solutions for the buoyancy perturbation b and the stream function ψ
which depend only on the distance η from the wall, and hence are independent of the
distance along the wall. The governing equations (2.10) reduce to

− sinα bη = ν ψηηηη, N2 sinαψη = κbηη. (2.14)

As the wall is stationary, the no-slip condition (2.7) yields

ψ = 0, ψη = 0 at η = 0, (2.15)

where we have chosen the arbitrary additive constant for the stream function such that
ψ = 0 on the wall.

If the wall is insulating (which is the case for Phillips–Wunsch flow), then the condition
(2.8) for no perpendicular gradient of total buoyancy B = N2z + b yields

bη = −N2 cosα at η = 0. (2.16)

The solution to equations (2.14, 2.15, 2.16) that does not grow exponentially as η →∞ is

ψ = κ cotα
[
1− (cos γη + sin γη) e−γη

]
, b = N2 cosα

γ
cos γη e−γη + b∞, (2.17)

where b∞ is a constant of integration and

γ−1 =

(
4κν

N2 sin2 α

)1/4

=

√
2

sinα
L0 (2.18)

is the length scale on which the flow decays away from the wall. We conclude that there
is a flow confined to a boundary layer of thickness O(L0) near the wall, and the net flux
of fluid up the slope is the far-field value κ cotα of the stream function ψ. Although in
this case we would set the constant of integration b∞ to be zero, to recover the ambient
stratification with b → 0 as η → ∞, we note that this is in general not necessary and the
far-field buoyancy perturbation could have a non-zero value.

We note that the Phillips–Wunsch flux κ cotα is zero for vertical walls (α = π/2). In this
case, the solution is in fact trivial (ψ = 0, b = b∞) and there is no boundary-layer flow. As
the slope α decreases, the flux increases and eventually diverges to infinity as α approaches
zero and the wall becomes horizontal. We thus assume for the rest of this report that α is
not too small, so that cotα = O(1). In our analyses that follow, the velocity is largest in
the Phillips–Wunsch boundary layer, so the Reynolds number is everywhere smaller than
the local estimate κ cotα/ν. Since ν � κ, the use of the Stokes equations (2.6) is indeed
appropriate.
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If instead the wall has prescribed buoyancy (i.e. salinity) B = N2z, then

b = 0 at η = 0, (2.19)

and the solution to (2.14, 2.15, 2.19) that does not grow exponentially as η →∞ is

ψ = −κb∞
N2

γ

sinα

[
1− (cos γη + sin γη) e−γη

]
, b = b∞

[
1− cos γη e−γη

]
(2.20)

This result states that the difference b∞ in buoyancy between the far field and the wall
drives a flux proportional to b∞ in an O(L0) boundary layer near the wall.

3 Wedge in a Box with Insulating Walls

We first consider the case when the wedge is placed in a box with insulating walls. On
the top and bottom of the box, we assume that the buoyancy is held fixed at two different
constant values, which would generate a uniform stable stratification B = N2z in the
absence of a wedge.

Figure 2: Schematic geometry for a wedge placed inside a box.

The wedge is placed with its apex pointing to the left (see figure 2), which turns out to
be its direction of motion. We work in the frame of reference moving with the wedge, with
the origin (0, 0) at the midpoint of the back of the wedge at all times. We assume that the
level of neutral buoyancy of the wedge is vertically centred in the box, and that the initial
conditions are symmetric about z = 0. Hence, the top-down symmetry will be preserved
throughout the evolution, and we need only consider the upper half z ≥ 0 of the system.

The wedge has length l and (half-)height h, so that its corners are at (−l, 0) and (0, h).
Its apex half-angle is α, so that

cotα =
l

h
. (3.1)

The box has length L = LF + LR, where LF (t) and LR(t) are the distances from the front
(left) wall and the rear (right) wall to the base of the wedge and evolve according to

c = −L̇F = L̇R, (3.2)

where c(t) is the leftward speed of the wedge (and hence, in this reference frame, the
rightward speed of the bounding box). The height of (the upper half of) the box is h+HT .
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We assume that the wedge has a length scale L1 which is much greater than the natural
scale L0 of the flow given in (2.12). (In the experiments [1], typically L1 = O(10 mm) and
L0 = O(0.1 mm).) We thus obtain a small parameter

ε = L0/L1 (3.3)

that we can exploit using the method of matched asymptotic expansions. We also take
the height HT of the box to be O(L1), but in this section we assume that the horizontal
dimensions LF and LR of the box are O(ε−1L1), i.e. much larger than the dimensions of
the wedge.

At every instant in time, we seek to calculate the flow field (via the stream function
ψ(x, z, t)), the buoyancy distribution b(x, z, t), and the net “propulsive” left-ward force
F (t) on (the upper half of) the wedge as a function of the unknown speed c(t) of the wedge.
Requiring that F = 0 then determines the actual value c(t).

We non-dimensionalize the variables as follows. Length is scaled by L1, except for LF
and LR which are scaled by ε−1L1. Given that the flow is driven by the Phillips–Wunsch flux
κ cotα (see §2.2), we scale the stream function by κ and velocity by κ/L1. We scale time by
by ε−1L2

1/κ, as this is the time scale of the overall evolution due to the horizontal motion of
the wedge. (We neglect the fast initial adjustment at the start of the experiment.) Buoyancy
perturbations are scaled by εN2L1, for reasons which will become clear later (and thus we
scale the pressure and force by εN2L2

1 and εN2L3
1 respectively). The rescaled governing

equations (2.10) are thus

bx = ε3∇4ψ, ε2ḃ+ ε(ψzbx − ψxbz)− ψx = ε∇2b. (3.4a,b)

We choose the stream function ψ to be zero on the centreline z = 0. Hence, ψ (as well
as b) are odd functions of z, and we obtain the symmetry conditions

ψ = ψzz = 0, b = 0 on symmetry axis z = 0. (3.5a)

The boundary conditions on the insulating wedge (analogous to (2.16)) are

ψ = ψn = 0, bn = −1
ε cosα on wedge front x = −l + z cotα, (3.5b)

ψ = ψn = 0, bn = 0 on wedge rear x = 0. (3.5c)

On the bounding box, which moves to the right at speed c(t), we have the no-slip condition
and insulating or prescribed-buoyancy conditions:

ψ = cz, ψx = 0, bx = 0 on walls x = −ε−1LF , ε−1LR, (3.5d)

ψ = cz, ψz = c, b = 0 on ceiling z = h+HT . (3.5e)

For a given value of c(t), ψ and b are determined uniquely by the equations (3.4) and
boundary conditions (3.5). Equation (2.13), which in non-dimensional form is

px = ε3(ψzxx + ψzzz), pz = −ε3(ψxxx + ψxzz) + b, (3.6a,b)
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then determines the pressure up to an arbitrary additive constant, which we can choose
without loss of generality such that p = 0 at (x, z) = (0, h+HT ). The horizontal leftward
force on the wedge is given by

F (t) =

∫ h

0

[
(−p+ ε3 2ψxz) + ε3(ψxx − ψzz) cotα)

]
x=−l+z cotα+

[
p− ε3 2ψxz

]
x=0

dz, (3.7)

and the correct value of c(t) is the one that makes F (t) vanish.

3.1 Numerical results using the finite-element method

In order to inform, and later validate, our asymptotic analysis, we developed a simple code
in FreeFem++ [4] that solves the governing equations (3.4, 3.5). However, for simplicity
we do not simulate the full time-evolution of the system with moving boundaries. Instead,
we neglect the time derivative ḃ in (3.4b), as it is of higher order than the other terms.
This quasi-static approximation leaves us with an instantaneous problem with no time
derivatives, that is readily solved by our program.

For our numerical calculations, we use the following parameters:

ε =
L0

L1
=

1

100
, h = HT = 1, L = 1, (LF , LR) =

(
1

4
,
3

4

)
,

(
1

2
,
1

2

)
,

(
3

4
,
1

4

)
, (3.8)

with a focus on the symmetric case LF = LR = 1/2 with α = 45◦. Figure 3 shows results
for this particular case.

We observe that a Phillips–Wunsch boundary layer develops on the sloping surface of
the wedge, and that fluid arrives in a boundary layer near z = 0 in front of the wedge (to
the left), and leaves in a boundary layer near z = h behind the wedge (to the right). The
buoyancy perturbations are approximately uniform in x both in front of, behind and above
the wedge. As we shall see, the buoyancy field is key to calculating the force on the wedge,
and we will show more detailed results later in §3.3.

3.2 Asymptotic calculation

We divide the domain into the regions shown schematically in figure 4(b). The bulk of the
fluid is divided into three “outer” regions which we call the front region, the rear region,
and the top region. These regions are joined by horizontal boundary layers at z = h, and
in addition there are boundary layers at z = 0.

3.2.1 Boundary layers on the insulating surfaces

Near the sloping surface of the wedge (but away from the corners), we expect to find a
boundary layer with the Phillips–Wunsch solution discussed in §2.2. Indeed, if we define
rescaled coordinates (η, χ) perpendicular and parallel to the slope by

x = −l + χ cosα− εη sinα, z = χ sinα+ εη cosα, (3.9)

then the governing equations (3.4) and boundary conditions (3.5b) on the wedge become

− sinα bη + ε cosα bχ = bηηηη + ε2 2bηηχχ + ε4 bχχχχ, (3.10a)

ε3ḃ+ ε(ψηbχ − ψχbη) + sinαψη − ε cosαψχ = bηη + ε2bχχ, (3.10b)
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Figure 3: Contour plots of buoyancy perturbation b (top row) and stream function ψ
(bottom row, flow from left to right in the frame of reference of the wedge) showing the
whole box with stretched coordinates (left) and a close-up of the wedge (right), for the
parameters (3.8), LF = LR = 1/2, α = 45◦. The contour spacing is 0.05. (The irregularities
in the contours are artefacts of the plotting tool and are not present in the original data.)

Figure 4: Schematic of asymptotic regions for a wedge in a box with insulating walls.

ψ = ψη = 0, bη = − cosα on the wedge η = 0. (3.10c)
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These equations are analogous to the equations (2.14, 2.15, 2.16) for Phillips–Wusch flow
at leading order, and hence the solution (which does not grow exponentially as η →∞) is

ψ = cotα
[
1− (cos γη + sin γη)e−γη

]
+O(ε), (3.11a)

b = cotα
√

2 sinα cos γη e−γη + b∞(χ) +O(ε), (3.11b)

where γ =
√

sinα/2, analogously to (2.17).
The far-field behaviour of the solution (3.11) is to be matched to the outer solution for

the front region. We find that

ψ → cotα+O(ε), b→ b∞(χ) +O(ε) as η →∞. (3.12)

For the buoyancy field, the matching determines the constant of integration b∞(χ) to be
the effective value bF (−l+χ cosα, χ sinα) of the outer buoyancy field bF on the wedge, but
imposes no constraint on bF . However, the outer stream function ψF ahead of the wedge
must satisfy the effective condition

ψF = cotα+O(ε) on the wedge x = −l + z cotα. (3.13a)

Since the back of the wedge is vertical, the corresponding boundary layer there is trivial
at leading order (as discussed in §2.2). Hence the boundary condition (3.5c) for the stream
function on the rear of the wedge becomes the effective condition on the leading-order
stream function ψR0 in the rear region:

ψR = 0 +O(ε) on the wedge x = 0. (3.13b)

The insulating front and rear wall behave like the insulating back of the wedge, and
hence also have trivial boundary layers. The conditions (3.5d) on the stream function then
translate to effective conditions on the outer solutions, including ψT for the top region:

ψF = cz +O(ε) at x = −ε−1LF , ψR = cz +O(ε) at x = ε−1LR, (3.13c)

ψT = cz +O(ε) at x = −ε−1LF , ψT = cz +O(ε) at x = ε−1LR. (3.13d)

3.2.2 Outer solution

Using the conditions (3.13), we can now start obtaining solutions for the outer regions. As
these regions have length O(ε−1), we introduce a scaled horizontal coordinate X = εx. The
governing equations (3.4) become

bX = ε2(ψzzzz + ε2ψXXzz + ε4ψXXXX), (3.14a)

ε(ḃ+ ψzbX − ψXbz)− ψX = bzz + ε2bXX . (3.14b)

At leading order, these equations simplify to

bX = 0 +O(ε), −ψX = bzz +O(ε). (3.15a,b)

Equation (3.15a) describes how the flow is too weak to sustain horizontal variations in
buoyancy, and thus we obtain b = b(z, t) + O(ε) in every outer region. Equation (3.15b)
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describes how the vertical diffusion of buoyancy is balanced by advection of the background
buoyancy field by the vertical velocity−ψX . By integrating this equation inX, and applying
the conditions (3.13), we obtain equations describing the balance of vertical flux in each
outer region:

LF b
F
zz = ψF |X=−LF

− ψF |X=O(ε) +O(ε) = cz − cotα+O(ε), (3.16a)

LRb
R
zz = ψR|X=0 − ψR|X=LR

+O(ε) = −cz +O(ε), (3.16b)

LbTzz = ψT |X=−LF
− ψT |X=LR

+O(ε) = 0 +O(ε). (3.16c)

We also obtain the stream function directly as

ψF = −X cz

LF
+ cotα

LF +X

LF
+O(ε), (3.17a)

ψR = X
cz

LR
+O(ε), (3.17b)

ψT = 0 +O(ε). (3.17c)

The equations (3.16) are ordinary differential equations for bF,R,T depending on the
variable z, and require boundary and matching conditions at z = 0, h, h + HT . At the
ceiling z = h + HT , the condition (3.5e) that b vanishes applies directly. However, the
conditions at z = 0 and z = h are obtained from consideration of horizontal boundary
layers. These calculations are quite complicated and not very enlightening, so we will deal
with them later in §3.4.

We assert for now that b is continuous to leading order at the symmetry axis, and in
fact

bF,R = 0 +O(ε2/3) on symmetry axis z = 0. (3.18)

Applying this condition and the ceiling condition yields the results

bF = c
z3 − h2z

6LF
− cotα

z2 − hz
2LF

+AF
z

h
+O(ε2/3), (3.19a)

bR =− cz
3 − h2z
6LR

+AR
z

h
+O(ε2/3), (3.19b)

bT = AT
h+HT − z

HT
+O(ε2/3), (3.19c)

where AF,R,T are constants of integration to be determined by matching at z = h.
At z = h, the boundary-layer solutions from §3.4 yield continuity of b at leading order

and continuity of the total vertical diffusive buoyancy flux (with O(ε1/3) errors),

bF = bR = bT , LF b
F
z + LRb

R
z = LbTz at z = h. (3.20a,b)

(We note that full continuity of bz would be two conditions rather than one, and hence too
many conditions to impose.) Applying these conditions to the solutions (3.19) determines
the constants

AF , AR, AT = cotα
h2

2L(1 + h/HT )
+O(ε1/3), (3.21)

which are substituted back into (3.19) to yield the solution.
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3.2.3 Force calculation

Having calculated the stream function and buoyancy field in the main outer regions, we now
have sufficient information to determine the leading-order force F on (the upper half of)
the wedge. Since forces balance for Stokes flow and no horizontal body forces are present,
the net horizontal force from the fluid on the wedge is equal and opposite to the horizontal
force from the fluid on the bounding box, which is simpler to calculate.

As we can see from (3.6b), the pressure is approximately hydrostatic, pz ≈ b, in the
outer region (and it is straightforward to check that this also holds true in the horizontal
boundary layers). In addition, the forces on the bounding box are due to pressure only at
leading order. Hence, the leading-order force is given by the difference in pressure on the
front and rear walls.

As pressure is only defined up to an additive constant, we are free to choose the pressure
to be zero at the point (0, h+HT ) on the ceiling directly above the base of the wedge. From
(3.6a), we thus find that p = 0+O(ε3) along the top wall. Instead of obtaining the pressure
field from separate asymptotic expansions in each region, we make use of the approximate
hydrostatic relationship to write

p = −
∫ h+HT

z
b dz +O(ε), (3.22)

and hence the force on either wall is

F̃ =

∫ h+HT

0
p dz +O(ε) = −

∫ h+HT

0
b z dz +O(ε), (3.23)

where the latter expression is obtained by using (3.22) and interchanging the order of the
two integrals.

The net force is the difference between (3.23) for the front and rear walls. In the top
region, the outer solution (3.19c) is independent of X, and hence contributes equally to
both integrals and has no effect. The leading-order leftward force on the wedge (rightward
force on the wall), obtained from the outer solutions (3.19a,b), is thus

F =

∫ h

0
(bF − bR)z dz = cotα

h4

24LF
− ch

5

45

(
1

LF
+

1

LR

)
+O(ε1/3). (3.24)

The first term, which is proportional to cotα, describes the propulsive force on the wedge
due to the diffusion-driven flow. The second term, which is proportional to c, describes the
drag on the wedge and was originally calculated by Foster & Saffman [2]. For a free wedge,
the two forces balance, and hence the wedge moves at speed

c =
cotα

h

15LR
8L

+O(ε1/3). (3.25)

(The dimensional version of this result simply has an additional factor κ on the right-hand
side.)

Finally, we note that the leading-order result for the speed (3.25) does not depend
on the height of the bounding box. In fact, this result also applies for other types of
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boundary conditions on the top and bottom surfaces, such as a fixed-flux condition. This
is because, although such changes would affect the resulting values of the constants AF,R,T ,
the expression (3.24) for the forces depends on these only through the difference (AF −AR),
which is always prescribed by the matching condition (3.20) to be zero at leading order.

3.3 Summary and comparison between asymptotic and numerical results

Our asymptotic analysis has revealed the physical mechanisms behind diffusion-driven
propulsion: The sloping surface of the wedge induces a Phillips–Wunsch flow up the slope.
For a stationary wedge, this flux is balanced by a uniform downwelling in the front region
with the same flux, which advects buoyant liquid downward and hence reduces the hydro-
static pressure in front of the wedge. The pressure difference between the front and the
rear regions results in a leftward propulsive force. When the wedge moves forward, the
downwelling is reduced since part of the fluid volume removed by the Phillips–Wunsch flux
is balanced by the front region shrinking instead. A force-free wedge moves at the speed
(3.25), for which the net force is zero.

Figure 5(a) shows a comparison between the asymptotically predicted and numerically
calculated buoyancy profiles (using the same parameters as in §3.1). We find that there
is good agreement between the two, confirming the validity of the asymptotic analysis.
Figure 5(b) shows the dependence of the propulsion speed c on the slope of the wedge and
the distances LF and LR to the front and rear walls. Again, a good agreement is achieved
between the asymptotic and numerical results. (Also shown are a set of results calculated
in §3.4, which include O(ε1/3) corrections to the leading-order result calculated so far.)
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Figure 5: Comparison between asymptotic and numerical results. (a) Buoyancy distribution
b as a function of vertical position z for the case shown in figure 3. The thin black curves
are numerical data from vertical slices X = ±0.1,±0.2,±0.3,±0.4 in the forward and rear
regions. The thick curves are asymptotic results (3.19), with the leading-order coefficients
(3.21, 3.25) (solid red curves) or the corrected ones (3.41, 3.43) below (dashed blue curves).
(b) Propulsion speed c as a function of wedge slope α for the parameters (3.8), showing
numerical results (circles), leading-order asymptotic results (3.25) (solid lines) and corrected
asymptotic results (3.43) below (dashed lines). The values of (LF , LR) are (1/4, 3/4) (top
red series), (1/2, 1/2) (middle green series) and (3/4, 1/4) (bottom blue series).

The reason for choosing to work with a large, i.e. O(ε−1L1), bounding box is now clear:
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The upward Phillips–Wunsch flux, which in dimensional terms is O(κ), is balanced by a
downwelling with velocity O(κ/LF ) in the forward region. The resulting advective flux of
buoyancy O(N2L1κ/LF ) is in turn balanced by diffusion of the buoyancy perturbations,
which must be b = O(N2L2

1/LF ). For LF � L1, the buoyancy perturbation is small
compared with the background buoyancy B = O(N2L1), and hence the non-linear advective
terms and time derivative in the governing equation (2.10b) could be neglected.

If the dimensions of the box are O(L1), then the buoyancy perturbations are of the same
order as the background stratification. In addition, the change in geometry of the system
due to the motion of the wedge occurs on a faster time scale L2

1/κ due to the reduced length
of the box. Thus, both the time derivative and the non-linear terms become important,
and the problem becomes more complicated. However, the mechanism of propulsion and
the qualitative flow structure can be expected to remain the same.

3.4 The ε1/3 layers and O(ε1/3) corrections

We complete our analysis by calculating the boundary-layer solutions near z = 0 and z = h
that will yield the conditions, such as (3.20), asserted earlier in §3.2.2. These calculations
are mostly a technicality, which is why we have left them to this separate subsection.

We first deal with the boundary layer near z = 0 in the forward region −LF < X < O(ε).
The scaling z ∼ ε1/3 yields a new balance in the governing equations (3.14), so we define
the rescaled vertical coordinate ζ = z/ε1/3. The governing equations (3.14) then become

bX = ε2/3ψζζζζ +O(ε3), −ε2/3ψX = bζζ +O(ε). (3.26)

The domain under consideration is (up to O(ε)) an infinite strip −LF < X < 0, −∞ <
ζ < ∞. The appropriate effective boundary conditions in the X-direction are obtained by
revisiting the calculations for the Phillips–Wunsch boundary-layer solution with a rescaled
vertical coordinate ζ:

ψ = ε1/3ζ +O(ε2/3) at X = −LF , ψ = cotα+O(ε2/3) at X = 0. (3.27)

In the ζ-direction, we have the symmetry-axis conditions (3.5a) at ζ = 0, and must also
match to the outer solution as ζ →∞.

We assume that the outer solution has an expansion

bF = bF0 + ε1/3bF1 + ε2/3bF2 +O(ε) (3.28a)

with the generic behaviour (for i = 0, 1, 2)

bFi = CFi +DF
i z + EFi z

2 +O(z3) as z → 0. (3.28b)

We expand the boundary-layer solution as

b = b0 + ε1/3b1 + ε2/3b2 +O(ε), ψ = ψ2 +O(ε1/3), (3.29a)

and find that matching to the outer solutions (3.28b) requires

b0 ∼ CF0 , b1 ∼ CF1 +D0ζ, b2 ∼ CF2 +D1ζ + E0ζ
2 as ζ →∞. (3.29b)
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(It is straightforward to verify a posteriori that a correct matching of b also yields the correct
matching of ψ, so we do not consider the latter here.)

At O(1) and O(ε1/3), the governing equations (3.26) yield that b0 and b1 are linear
functions of ζ. Imposing the matching conditions (3.29b) and symmetry-axis conditions
(3.5a) yields

b0 = 0, b1 = D0ζ, CF0 = CF1 = 0. (3.30)

This confirms the condition (3.18) for the forward region, and the same analysis applies to
the rear region as well.

The adjustment of ψ from a non-zero value (3.17a) in the outer solution to zero on the
symmetry axis (3.5a) occurs here at O(ε2/3). The equations

b2X = ψ2ζζζζ , −ψ2X = b2ζζ , (3.31a,b)

are to be solved with boundary conditions (3.5a), (3.27) and (3.29b). A solution can be
found using e.g. Fourier transforms and yields a condition on C2 (i.e. the value of the outer
solution bF on the symmetry axis at O(ε2/3)), but we do not present this here.

Instead, we turn to the boundary layer near z = h, for which we define the rescaled
coordinate ζ = (z − h)/ε1/3. In addition, it turns out that the stream function must be
O(ε−1/3) to deal with leading-order differences in bz, so we define a rescaled stream function
Ψ = ε1/3ψ = O(1). We follow the same steps as for the boundary layer at z = 0, but the
analysis is more complicated.

The rescaled governing equations are

bX = ε1/3Ψζζζζ +O(ε3), −ε1/3ΨX = bζζ +O(ε), (3.32)

and the domain is again an infinite strip −LF < X < LR, −∞ < ζ <∞ but with a cut at
X = 0, −∞ < ζ ≤ 0 representing the wedge whose thickness X = O(ε4/3) can be neglected
at leading order. The appropriate boundary conditions in the X-direction are

Ψ = ε1/3ch +O(ε2/3) on walls X = −LF , LR, −∞ < ζ <∞ (3.33a)

Ψ = ε1/3 cotα+O(ε2/3) on wedge X = 0−, ζ < 0 (3.33b)

Ψ = 0 +O(ε2/3) on wedge X = 0+, ζ < 0. (3.33c)

We expand the outer solutions as

bF,R,T = bF,R,T0 + ε1/3bF,R,T1 + ε2/3bF,R,T2 +O(ε), (3.34a)

bF,R,Ti = CF,R,Ti +DF,R,T
i (z − h) + EF,R,Ti (z − h)2 +O(z − h)3 as z → h, (3.34b)

and expand the boundary-layer solution as

b = b0 + ε1/3b1 + ε2/3b2 +O(ε), Ψ = Ψ1 + ε1/3Ψ2 +O(ε). (3.35a)

The resulting matching conditions are

b0 ∼ CF,R,T0 , (3.35b)

b1 ∼ CF,R,T1 +DF,R,T
0 ζ, (3.35c)

b2 ∼ CF,R,T2 +DF,R,T
1 ζ + EF,R,T0 ζ2, (3.35d)
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as |ζ| → ∞ in each corresponding region.
At leading order, the governing equations (3.32) reveal that b0 is a linear function of ζ,

but the matching conditions (3.35b) prevent b0 from growing linearly with ζ, so

b0 = constant = CF0 = CR0 = CT0 . (3.36)

This yields the result (3.20a) stated above.
At O(ε1/3), the governing equations (3.32) take the form (3.31), which together with

the boundary conditions (3.33) and (3.35c) can be solved using the Wiener–Hopf method.
The calculations and explicit solution are given in Appendix A of Moore and Saffman [7],
and we do not repeat them here. The result is

LFD
F
0 + LRD

R
0 = LDT

0 , (3.37)

from which we obtain the matching condition (3.20b) stated above. However, further in-
spection of the solution reveals that

CF1 − CT1 = ∆
LR
L

(DR
0 −DF

0 ), CR1 − CT1 = ∆
LF
L

(DF
0 −DR

0 ), (3.38a)

where ∆ = −2 ζ(1/3)

π1/3
(L

1/3
F + L

1/3
R − L1/3) > 0 (3.38b)

and ζ(·) denotes the Riemann ζ-function. We will use this result to get O(ε1/3) corrections
to the leading-order results calculated in §3.2.

At O(ε2/3), the governing equations (3.32) again take the form (3.31b). This can again
be solved using the Wiener–Hopf method, but the analysis would be very complicated.
Instead, we integrate the analogue of equation (3.31b) over the region −LF < X < LR,
|ζ| < M for some large constant M . We simplify the resulting left-hand side using the
conditions (3.33) and the right-hand side using the conditions (3.35d), and obtain

−M cotα = 2M(LET0 + LFE
F
0 + LRE

R
0 ) + LDT

1 − LFDF
1 − LRDR

1 . (3.39)

The terms involving M cancel (by virtue of (3.19)), and we are left with a condition anal-
ogous to (3.37).

Thus, the matching conditions (3.20) at z = h can be extended by (3.38, 3.39) to

bF − bT = 0 + ε1/3∆
LR
L

(bRz − bFz ) +O(ε2/3), (3.40a)

bR − bT = 0 + ε1/3∆
LF
L

(bFz − bRz ) +O(ε2/3), (3.40b)

LF b
F
z + LRb

R
z − LbTz = 0 +O(ε2/3). (3.40c)

and we obtain adjusted values of the constants:

AF = cotα
h2

2L(1 + h/HT )
+ ε1/3∆

[
cotα

hLR
2LFL

− c h
2

3LF

]
+O(ε2/3), (3.41a)

AR = cotα
h2

2L(1 + h/HT )
+ ε1/3∆

[
− cotα

h

2L
+ c

h2

3LR

]
+O(ε2/3), (3.41b)

AT = cotα
h2

2L(1 + h/HT )
+O(ε2/3). (3.41c)
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These can be directly substituted into the solutions (3.19) to yield the corrected results
shown in figure 5(a), which do indeed agree better with the numerical results than the
leading-order asymptotic results. The corrected force is

F = cotα
h4

24LF

(
1 + ε1/3

4∆

h

)
− ch

5

45

(
1

LF
+

1

LR

)(
1 + ε1/3

5∆

h

)
+O(ε2/3), (3.42)

and the resulting corrected speed

c =
cotα

h

15LR
8L

(
1− ε1/3∆

h

)
+O(ε2/3), (3.43)

(where ∆ is given in (3.38b)) also agrees well with the numerical results (see figure 5(b)).

4 Wedge in a Box with Fixed-buoyancy Walls

We now consider the case when the buoyancy B is prescribed to be equal to the background
stratification N2z on the walls of the bounding box, rather than the walls being insulating
with no buoyancy flux through them. We focus on the case when the dimensions of the box
and the wedge both have the same scale O(L1).

We non-dimensionalize lengths using the scale L1, stream function using κ, velocity using
κ/L1, time using L2

1/κ, and buoyancy perturbation using εN2L1. The resulting governing
equations are

bx = ε3∇4ψ, ε(ḃ+ ψxbz − ψzbx)− ψx = ε∇2b, (4.1a,b)

and the boundary conditions are

ψ = ψzz = 0, b = 0 on symmetry axis z = 0. (4.2a)

ψ = ψn = 0, bn = −1
ε cosα on wedge front x = −l + z cotα, (4.2b)

ψ = ψn = 0, bn = 0 on wedge rear x = 0, (4.2c)

ψ = cz, ψx = 0, b = 0 on walls x = −LF , LR, (4.2d)

ψ = cz, ψz = c, b = 0 on ceiling z = h+HT . (4.2e)

4.1 Numerical results

In this section, we use the parameters

ε =
L0

L1
=

1

100
, h = HT = 1, (LF , LR) = (2, 1), (2, 2), (2, 3), (4.3)

and focus on the particular case (LF , LR) = (2, 1) and α = 45◦. Figure 6 shows numerical
results obtained using the finite-element method as described in §3.1.

We again find that a Phillips–Wunsch boundary-layer flow develops on the sloping sur-
face of the wedge, and that there are horizontal boundary layers at z = 0 and z = h.
However, in addition there are also boundary layers on the front and back walls. The
buoyancy perturbations remain mainly independent of x as before.
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Figure 6: Contour plots of buoyancy perturbation b (left) and stream function ψ (right,
flow from left to right in the frame of reference of the wedge) for the parameters (4.3),
(LF , LR) = (2, 1), α = 45◦. The contour spacing is 0.05.

4.2 Asymptotic calculation

The asymptotic calculation is again similar to the one in §3.2, although there are more
boundary layers involved. The structure of these boundary layers is shown in figure 7, and
their relevance will become clear as we proceed with the calculations.

Figure 7: Schematic of asymptotic regions for a wedge in a box with fixed-buoyancy walls.
We calculate the force on the dotted box.
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4.2.1 Boundary layers on the wedge and walls

We again begin by seeking effective boundary conditions for the outer solutions ψF,R,T in
the x-direction. On the wedge, the calculations from §3.2.1 apply, and we obtain

ψF = cotα+O(ε) at wedge x = −l + z cotα, ψR = 0 +O(ε) at wedge x = 0, (4.4)

describing how a Phillips–Wunsch flux of magnitude cotα is driven up the slope.
For the front wall, we obtain a boundary-layer solution analogous to (2.20) by defining

a rescaled variable ξ = (x+ LF (t))/ε and solving the resulting equations

bξ = ψξξξξ + ε2ψξξzz + ε4ψzzzz, ε2ḃ+ ε(−cbξ + ψzbξ − ψξbx)− ψξ = bξξ + ε2bzz, (4.5a)

ψ = cz, ψξ = 0, b = 0 at the wall ξ = 0. (4.5b)

The result is

ψ = cz +
b∞(z)√

2

[
1− (cos η√

2
+ sin η√

2
)e−η/

√
2
]

+O(ε), (4.6a)

b = b∞(z)
[
1− cos η√

2
e−η/

√
2
]

+O(ε). (4.6b)

Again, matching the far-field behaviour to the outer solution determines the constant of
integration b∞(z), and yields an effective condition on the outer stream function in terms
of the outer buoyancy

ψF = cz + 1√
2
bF +O(ε) on the front wall x = −LF , (4.7a)

A similar analysis of the rear wall yields

ψR = cz − 1√
2
bR +O(ε) on the rear wall x = LR. (4.7b)

As for the solution (ψT , bT ) in the top region z ≥ h, we similarly find

ψT = cz + 1√
2
bT +O(ε) on the front wall x = −LF , (4.7c)

ψT = cz − 1√
2
bT +O(ε) on the rear wall x = LR. (4.7d)

4.2.2 Leading-order outer solution

We now have sufficient information to calculate the leading-order outer solutions. The
governing equations (4.1) yield

ψFx , b
F
x , ψ

R
x , b

R
x , ψ

T
x , b

T
x = 0 +O(ε). (4.8)

These equations describe, as before, how the flow is too weak to sustain horizontal gradi-
ents in buoyancy. In addition, a vertical downwelling is suppressed because the buoyancy
perturbation is too weak for its diffusion to balance the resulting advection. Thus, ψ and b
are functions of z only and we immediately find, from the effective conditions (4.4, 4.7),

ψF = cotα+O(ε), bF =
√

2 (cotα− cz) +O(ε), (4.9a)

ψR = 0 +O(ε), bR =
√

2 cz +O(ε), (4.9b)

ψT = cz +O(ε), bT = 0 +O(ε). (4.9c)
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4.2.3 Horizontal ε1/2 boundary layers

We expect, as before, to find boundary layers near z = 0 and z = h. Assuming that x
remains O(1) while z scales with some positive power of ε, two possible balances are found
in the governing equations (4.1), corresponding to two boundary-layer thicknesses ε1/2 and
ε2/3. These boundary layers are analogous to the outer region (§3.2.2) and ε1/3 boundary
layers (§3.4) from the insulating case, respectively. We calculate the solutions for the ε1/2

layer here, while the calculations for the ε1/3 layer are exactly identical to those in §3.4
(apart from a change X → x and ε→ ε1/2) so we will use those results directly here.

Near z = 0, in the front region, we define a rescaled coordinate ζ = z/ε1/2, and obtain
the governing equations

bFx = 0 +O(ε), −ψFx = bFζζ +O(ε1/2), (4.10a,b)

whose form we recognize from equation (3.15) for the outer region in the insulating-wall
case.

At the left end of this ε1/2 boundary layer, i.e. where it meets the wall, we must seek a
corner solution with x+LF ∼ ε and z ∼ ε1/2. The analysis of this region is identical to the
wall analysis from §4.2.1, except that the vertical length scale is O(ε1/2) rather than O(1).
The resulting effective condition, analogous to (4.7a), is

ψF = 1√
2
b+O(ε1/2) on the front wall x = −LF . (4.11a)

Similarly, at the right end of the ε1/2 boundary layer, i.e. where it meets the wedge, it is
straightforward to verify that the Phillips–Wunsch solution from §3.2.1 is recovered, with
result

ψF = cotα+O(ε1/2) on the wedge x = −l + ε1/2ζ cotα. (4.11b)

We proceed, as in §3.2.2, by integrating (4.10b) in x (using the fact that b is independent
of x to leading order) and obtain

L̂F b
F
ζζ = 1√

2
bF − cotα+O(ε1/2), where L̂F = LF − l. (4.12)

In matching with the outer layer, i.e. ζ →∞, we require that b does not grow exponentially.
At ζ = 0, matching with the ε2/3 layer (cf. §3.4) yields bF = 0 +O(ε1/3). The solution is

bF =
√

2 cotα

[
1− e−ζ/

√√
2L̂F

]
+O(ε1/3), (4.13a)

ψF = cotα

[
1 +

x+ l

L̂F
e−ζ/
√√

2L̂F

]
+O(ε1/3). (4.13b)

Similarly to in §3.4, the nested O(ε2/3) boundary layer ensures that ψ satisfies the condition
ψ = 0 from (4.2a) on the symmetry axis.

A similar analysis applies near the symmetry axis in the rear region, but in this case
the resulting boundary-layer solutions are trivial since the outer solution (4.9b) satisfies the
symmetry-axis conditions (4.2a).
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Near z = h, we instead define the rescaled coordinate ζ = (z − h)/ε1/2. The rescaled
leading-order governing equations (4.10) remain the same, but the conditions (4.4, 4.7) on
the wedge and walls become

ψF = ch+ 1√
2
bF at x = −LF , ψF = cotα at x = ε1/2ζ cotα, (4.14a)

ψR = 0 at x = 0, ψR = ch− 1√
2
bR at x = LR, (4.14b)

ψT = ch+ 1√
2
bT at x = −LF , ψT = ch− 1√

2
bT at x = LR, (4.14c)

with errors O(ε1/2). Integration of (4.10b) yields

LF b
F
ζζ = 1√

2
bF + ch− cotα+O(ε1/2), (4.15a)

LRb
R
ζζ = 1√

2
bR − ch +O(ε1/2), (4.15b)

LAb
T
ζζ = 1√

2
bT +O(ε1/2), (4.15c)

where we have defined the average

LA =
LF + LR

2
=
L

2
. (4.16)

Requiring that the solutions b do not grow exponentially in the matching with the outer
solutions (i.e. as ζ → −∞ for the front and rear regions and ζ → +∞ for the top region)
yields

bF =
√

2

[
cotα− ch+AF eζ/

√√
2LF

]
+O(ε1/2), (4.17a)

bR =
√

2

[
ch+AReζ/

√√
2LR

]
+O(ε1/2), (4.17b)

bT =
√

2

[
AT e−ζ/

√√
2LA

]
+O(ε1/2), (4.17c)

where the three constants of integration AF,R,T will be determined by matching to the ε2/3

layer. (The corresponding solutions for ψ are easily obtained from (4.10b).)
The nested ε2/3 layer yields the following matching conditions, analogous to (3.40),

bF − bT = 0 + ε1/6∆
LR
L

(bRζ − bFζ ) +O(ε1/3), (4.18a)

bR − bT = 0 + ε1/6∆
LF
L

(bFζ − bRζ ) +O(ε1/3), (4.18b)

LF b
F
ζ + LRb

R
ζ − LbTζ = 0 +O(ε1/3), (4.18c)

where ∆ is given by (3.38b). Applying these conditions to the solutions (4.17) determines
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the constants

AF =
1

D

[
− cotα

(√
LR + 2

√
LA

)
+ 2ch

(√
LR +

√
LA

)]
+

− ε1/6E√√
2LF

[√
LA +

√
LR

]
+O(ε1/3), (4.19a)

AR =
1

D

[
cotα

√
LF − 2ch

(√
LF +

√
LA

)]
+

+
ε1/6E√√

2LR

[√
LA +

√
LF

]
+O(ε1/3), (4.19b)

AT =
1

D

[
− cotα

√
LF + ch

(√
LF −

√
LR

)]
+

+
ε1/6E√√

2LA

[√
LR −

√
LF

2

]
+O(ε1/3), (4.19c)

where

D = 2
√
LA +

√
LF +

√
LR, E =

2∆

D

[
− cotα

√
LA +

√
LR

D
+ ch

]
. (4.20)

We can combine the solutions (4.9, 4.13, 4.17) to form the following composite solutions,
which are valid in both the outer regions and the ε1/2 boundary layers:

bF =
√

2

[
cotα

(
1− exp

−z√√
2εL̂F

)
− cz +AF exp

−(h− z)√√
2εLF

]
+O(ε1/3), (4.21a)

bR =
√

2

[
cz +AR exp

−(h− z)√√
2εLR

]
+O(ε1/3), (4.21b)

bT =
√

2

[
AT exp

−(z − h)√√
2εLA

]
+O(ε1/3). (4.21c)

4.2.4 Force calculation

As in 3.2.3, the pressure is approximately hydrostatic in the outer regions. Rather than
calculating the net force on either the wedge or the bounding box (which are now both lined
with boundary layers), we use an intermediate surface (shown in figure 7) which intersects
the outer regions away from any boundary layers (apart from the ones at z = h which
cannot be avoided). The net force on (the top half of) the wedge is then given by a formula
similar to (3.24), and we use the composite solution (4.21) to obtain

F =

∫ h

0
(bF − bR)z dz +O(ε5/6) = (4.22a)

=
√

2

[
cotα

h2

2
− 2ch3

3
+ ε1/221/4h

(√
LFAF −

√
LRAR

)]
+O(ε5/6), (4.22b)
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where the main error is due to the O(ε1/3) corrections in the ε1/2 layer and the neglect of
O(ε1/6) variations in the ε2/3 layer near z = h. Hence the speed of the wedge is

c(t) =
3

4

cotα

h

[
1 +

ε1/225/4

Dh

(√
LFLR − 1

2

√
LFLA + 3

2

√
LRLA

)
+

+
ε2/32∆

Dh

(
−3

2

√
LF + 1

2

√
LR −

√
LA

)]
+O(ε5/6), (4.23)

as this is the value for which F = 0.

4.3 Summary and comparison with numerical results

Our analysis of this case with fixed-buoyancy conditions on the bounding walls bears many
similarities to the previous analysis with insulating walls (see §3.3). The main difference is
the appearance of front and rear outer regions with new behaviour (4.9), namely no leading-
order flow (ψx = ψz = 0) relative to the wedge. This phenomenon is called “blocking” and
is the stratified analogue of Taylor columns in rotating systems. The Phillips–Wunsch flux
up the slope is then not supplied from a uniform downwelling in the front region, but
rather from a strong downward current confined to the front wall (and via a symmetry-axis
boundary-layer jet).

Near z = 0 and z = h, there are ε1/2 boundary layers which behave like the outer regions
in §3.2.2, and nested inside these are ε2/3 boundary layers which are identical to the ε1/3

layers in §3.4. These two types of boundary layer are the stratified analogues of Stewartson
E1/4 and E1/3 layers for rotating flows.

We compare our composite (outer and ε1/2-layer) solutions (4.21) with numerical results
in figure 8a, and find that they agree well. However, the results for the propulsion speed c
are less convincing in the case ε = 1/100 (see figure 8b), and so we have included the case
ε = 1/400 as well (figure 8c). In the latter case, we can see a clear improvement between
the leading-order result, the O(ε1/2) correction, and finally the O(ε2/3) correction.

5 Wedge in a Very Large or Infinite Domain

Having investigated the cases with a wedge placed in boxes whose size are comparable to
or slightly larger than the size of the wedge, we finally consider the case when the box is
very much larger than the size of the wedge. We approach this case by considering what
happens as the horizontal dimensions of the fixed-buoyancy box in §subsec are increased.

As we can see from e.g. (4.21), the dimensional thickness of the ε1/2 boundary layers is
O((L0L)1/2), while the ε2/3 boundary layers can be seen to have thickness O((L2

0L)1/3) from
e.g. (2.11). As L grows to O(ε−1L1), the ε1/2 boundary layers near z = 0 and z = h invade
and replace the outer region. (Explicit asymptotic solutions can be found in this case, but
end up being complicated expressions involving hyperbolic trigonometric functions from the
solution of equations similar to (4.15), so we do not report them here.) As L grows further
to O(ε−2), the ε2/3 boundary layers fill the domain, and equations like (3.26) need to be
solved.
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Figure 8: Comparison between asymptotic and numerical results. (a) Buoyancy distribution
b as a function of vertical position z for the case shown in figure 6. The thin black curves are
numerical data from vertical slices at −1.9 ≤ x ≤ −1.1 and 0.1 ≤ x ≤ 0.9 with spacing 0.1
in the forward and rear regions. The thick curves are asymptotic composite solutions (4.21),
with the leading-order (solid red curves) or corrected (dashed blue curves) coefficients (4.19,
4.23). (b,c) Propulsion speed c as a function of wedge slope α for the parameters (3.8),
showing numerical results (circles) and asymptotic results (4.23) with the leading-order term
only (black dotted line), O(ε1/2) corrections (solid lines) and O(ε2/3) corrections (dashed
lines). The values of (LF , LR) are (2, 3) (top red series), (2, 2) (middle green series) and
(2, 1) (bottom blue series).

Finally, for L � ε−2L1 (and HT � L1), we still have to solve the ε2/3-layer equations,
but since the box is much larger than the natural length scales

z ∼ L1, x ∼ ε−2L1, (5.1)

we can treat the domain as being infinite, which simplifies the analysis greatly.

5.1 Asymptotic analysis

Based on the scaling (5.1), we non-dimensionalize lengths by L1 and introduce a stretched
horizontal coordinate X = ε2x. We scale the stream function by κ, velocity by κ/L1,
buoyancy by ε2N2L1, pressure by ε2N2L2

1 and force by ε2N2L3
1. We proceed immediately
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with calculating the outer solution, valid throughout the domain away from any boundaries.
Unlike in §3 and §4, we consider the whole domain rather than just the upper half z ≥ 0.
Also, we work with the stream function Ψ = ψ − cz in the reference frame of the ambient
fluid to simplify the decay conditions (but retain the use of a coordinate system moving
with the wedge so that the geometry does not evolve with time).

The governing equations (2.9) simplify to

bX = Ψzzzz, −ΨX = bzz, (5.2)

with errors of size O(ε2) or smaller. As we treat the domain as being infinite, we impose
decay conditions in the far field,

Ψ, b→ 0 as X, z → ±∞, (5.3a)

and the conditions on the bounding box, whether they have fixed buoyancy or no buoyancy
flux, have no effect at leading order.

In the horizontally stretched coordinate system, the width of the wedge is O(ε2) and
hence negligible at leading order. Thus, we can treat it as a cut at X = 0, |z| ≤ h. The
Phillips–Wunsch flow on the wedge yields the effective conditions

Ψ = cotα− cz at X = 0−, Ψ = −cz at X = 0+ for 0 < z < h (5.3b)

on the upper portion of the wedge, and the corresponding antisymmetric conditions (Ψ =
− cotα+ cz and Ψ = cz) on the lower portion −h < z < 0, with errors of size O(ε).

We exploit the linearity of the leading-order equations (5.2) to decompose the boundary
conditions (5.3b), which describe the redistribution of fluid due to Phillips–Wunsch flow,
into two parts. The first part, with Ψ anti-symmetric in X,

Ψ = 1
2 cotα at X = 0−, Ψ = −1

2 cotα at X = 0+ for 0 < z < h, (5.4a)

describes the effect of moving fluid from the centreline z = 0 to the heights z = ±h, and
will be solved by a distribution of sources and sinks on the wedge. However, this gives rise
to a pressure distribution that is symmetric in X, and hence yields no net horizontal force.
The second part, with Ψ symmetric in X,

Ψ = 1
2 cotα− cz at X = 0− and X = 0+ for 0 < z < h, (5.4b)

describes the effect of moving fluid from one side of the wedge to the other, and will be
solved by a distribution of force singularities on the wedge. The sum of the two solutions
form the solution to the original boundary conditions.

Although the point source and point force solutions have been described many times
before (see e.g. [5, 7, 3]), we rederive them briefly here for completeness.

5.1.1 Antisymmetric part

We first consider the flow due to a unit point source at the origin. The flow can not be
described by a continuous stream function, as it does not satisfy the continuity equation
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(2.6b) at the origin (and indeed the conditions (5.4a) are discontinuous on the wedge).
However, we can still define

Ψs(X, z) =

∫ z

0
u(X, z′) dz′ ⇒ u = Ψs

z, (5.5)

and the continuity equation (2.6b) with a point source yields

uX + wz = δ(X)δ(z) ⇒ w = −Ψs
X + δ(X)

sgn(z)

2
, (5.6)

where δ is the Dirac δ-function and sgn is the signum function. Including the point source
in the governing equations (5.2) and eliminating b yields

Ψs
XX + Ψs

zzzzzz = δ′(X)
sgn(z)

2
. (5.7)

We take a Fourier transform in the z-direction and obtain

Ψ̃s
XX = k6Ψ̃s +

1

ik
δ′(X) ⇒ Ψ̃s = sgn(X)

1

2ik
e−|k

3X|, (5.8)

after application of the decay boundary conditions in the X-direction. We only require the
solution on the z-axis, so we set X = 0± and invert the Fourier transform to find

Ψs(0±, z) = ±sgn(z)

4
. (5.9)

Hence, as may be expected, the original antisymmetric conditions (5.4a) are satisfied by
the distribution

Ψ(X, z) = cotα [Ψs(X, z − h)− 2Ψs(X, z) + Ψs(X, z + h)] (5.10)

of two point sources of strength cotα at z = ±h and a point sink of double the strength at
z = 0.

5.1.2 Symmetric part

We now consider the flow due to a horizontal rightward unit point force at the origin (cor-
responding to the fluid imparting a unit leftward force on the wedge). This introduces the
term δ(X)δ(z), on the right-hand side of the approximate horizontal momentum equation
pX = Ψzzz. Modifying the governing equation (5.2) yields

Ψf
XX + Ψf

zzzzzz = −δ(X)δzzz(z). (5.11)

As in §5.1.1, it is straightforward to solve the equation using a Fourier transform,

Ψ̃f
XX = k6Ψ̃f + ik3δ(X) ⇒ Ψ̃f = − i sgn(k)

2
e−|k

3X|, (5.12)

and inverting the transform at X = 0 yields

Ψf (0, z) =
1

2πz
. (5.13)
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An unknown force distribution f(z) (symmetric in z) located on the wedge −h < z < h
gives rise to the flow

Ψ(X, z) =

∫ h

−h
f(z′)Ψf (X, z − z′) dz′, (5.14)

so the condition (5.4b) yields

1

2π
−
∫ h

−h

f(z′)

z − z′
dz′ = sgn(z)12 cotα− cz, (5.15)

where the horizontal bar indicates that the Cauchy principal value is taken for the integral.
The inversion formula for finite-range Hilbert transforms is given by [14] as

g(z) =
1

2π
−
∫ h

−h

f(z′)

z − z′
dz′ ⇒ π

√
h2 − z2f(z) = F − 2−

∫ h

−h

g(z′)
√
h2 − z′2

z − z′
dz′, (5.16)

where F =
∫ h
−h f(z′) dz′. Hence, consideration of z = h yields the net force as

F = 2

∫ h

−h

[
sgn(z)12 cotα− cz

] √h2 − z2
h− z

dz = 2h cotα− ch2π, (5.17a)

and the force distribution is given by

f(z) =
2

π
cotα ln

h+
√
h2 − z2
|z|

− 2c
√
h2 − z2. (5.17b)

The flow field is then determined by (5.14).
As the antisymmetric solution in §5.1.1 has no net force. Hence, we deduce that the

net leftward force on the wedge in the original problem is also given by (5.17a), and the
propulsion speed is thus

c =
2

π

cotα

h
+O(ε). (5.18)

6 Summary and Discussion

We have investigated the two-dimensional diffusion-driven flow that gives rise to propulsion
of an insulating wedge in a stably stratified fluid. Using the method of matched asymptotic
expansions, we have calculated the flow field, the buoyancy distribution and the propulsion
speed in the case when the dimensions of the wedge are much larger than the natural length
scale L0 = (κν/N2)1/4 of the flow.

Whether the outer boundaries are insulating (§3), have prescribed buoyancy (§4), or are
very far away (§5), we find that the root cause of the propulsion is the Phillips–Wunsch flux
of magnitude κ cotα up the sloping upper surface of the wedge (and down the sloping lower
surface, by symmetry). This removal of fluid at the apex of the wedge is balanced by vertical
flow towards the symmetry axis ahead of the wedge, either throughout the forward region
(§3, §5) or along a boundary layer on the front wall (§4). The resulting vertical advection
of buoyancy lowers the hydrostatic pressure ahead of the wedge, resulting in a propulsive
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force. When the wedge moves at speed c, the O(ch) redistribution of fluid generates a drag
force by the same mechanism.

Since the forces on the wedge must balance, we can expect the scaling

c ∼ κ cotα

h
(6.1)

to hold. Our calculations confirm this result, with various O(1) numerical prefactors, for
all three types of outer boundary condition (3.43, 4.23, 5.18). Somewhat surprisingly, the
scaling (6.1) depends on neither the the strength N2 of the background stratification nor
the viscosity ν of the fluid. (However, N2 and ν do affect ε and hence the thicknesses of
the various boundary layers and the corrections to the leading-order velocity.)

6.1 Comparison with experiments

We compare our theoretical results to the experimental results by Allshouse et al. [1]. In
their experiments, the natural length scale was typically L0 = O(0.1 mm) while the wedge
had size L1 ∼ h = O(10 mm), so there was indeed a reasonable separation of scales with
ε = L0/L1 � 1.

However, since they used wedges whose width-to-length ratio was typically 1/4 (and
never larger than 2), our two-dimensional analysis which requires the wedges to be much
wider than they are long does not apply. Also, many of their results are for a wedge with
slope α = 5◦, which is very close to horizontal and again excluded by our analysis. Hence,
we can only make a qualitative comparison with their results.

Overall, the experimental results indicate that the velocity c scales with the boundary-
layer velocity c0 = κ cotα/L0, which is 1/ε times our scaling (6.1). This is evidenced by
figures 3(a,b) in [1], which show that c does depends on the strength of the stratification,
closely following the power law c ∝ N1/2, and that c/c0 does not vary with the Schmidt
number κ/ν. However, we note that the latter figure indicates that the numerical prefactor
of the scaling is very small. In addition, the range of velocities in the former figure is limited
to 1–4 µm/s, so the scaling result is not conclusive. We note that this range is comparable
to the values 0.8–2.5 µm/s given by our scaling (6.1). Hence, further study of the three-
dimensional case and the near-horizontal case is needed to conclusively decide which scaling
is correct.

6.2 Extensions

Our analyses extend relatively easily to two-dimensional objects of other shapes. If the
shape of the object is described by S−(z) < x < S+(z), then the effective leading-order
conditions ψ = cotα on the wedge slope and ψ = 0 on the wedge back are replaced by
ψ = S′±(z) at x = S±(z). The variation in slope allows fluid to be entrained or expelled
continually along the surface of the object, rather than only at the corners of the wedge,
but this is not a problem for the analyses in §3, §4 or §5.

If the object is not top-down symmetric, then the boundary conditions for the stream
function will involve an unknown constant corresponding to the unknown circulation around
the object. However, this constant is straightforwardly determined by requiring that the
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hydrostatic pressure is continuous on both sides of the object. There may also be issues
with rotation due to non-zero torque.

A more serious problem with objects of arbitrary shape is that they may have near-
horizontal surfaces. In particular, a smooth object which does not have corners at the top
and bottom will have horizontal surfaces there. As stated in §2.2, Phillips–Wunsch flow
breaks down on surfaces that are too close to horizontal. Whether such top and bottom
regions can be ignored for rounded shapes, just like we could ignore the corners of the wedge
a leading order, remains to be seen.

As for extensions into the third dimension, a radically different theoretical approach
would be required. This is because we have been relying on calculating the force on the
wedge using the hydrostatic pressure, which is only possible due to the two-dimensional
wedge acting as a dam between the front and rear regions. When fluid is allowed to flow
around the wedge in the third dimension, a large pressure difference between the front and
back wedge would simply drive such a flow around the wedge until the pressure force is
balanced by viscous drag. Hence, the forces on the wedge are due to both pressure forces
and viscous forces at the same order. Thus, it seems that a solution would have to involve
solving a complicated equation in a complicated domain.

Nevertheless, based on our two-dimensional analysis we can hypothesize that the three-
dimensional system is amenable to simplification by asymptotic decomposition. The Phillips–
Wunsch boundary layer would be replaced by a line of sinks at the front of the wedge and
two lines of sources at the back, and even though the outer equations have a complicated
geometry and require numerical solution the computational cost would be greatly reduced
due to the boundary layers not needing to be resolved.
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Noisy Homoclinic Pulse Dynamics

Tom Eaves

October 15, 2015

1 Near-homoclinic Pulse Dynamics

Near-homoclinic dynamics arise in a number of physically relevant problems in fluid dy-
namics, forexample, wherever there are coherent solitary waves, pulses in the signal of some
important system variable, or bursts of turbulence in boundary layers. Near-homoclinic
dynamics involve trajectories through phase space of a given dynamical system at param-
eter values close to a bifurcation at which there exits a homoclinic orbit, that repeatedly
visit the vicinity of an unstable saddle point, at the origin say, followed by large excursions
through the space, closely shadowing the saddle point’s homoclinic orbit. If some variable
like the energy or the distance from the saddle point is plotted against time, the resulting
time series appears as a sequence of widely separated pulses.
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Figure 1: A deterministic two-dimensional system with a homoclinic orbit and its symmetric
solution x 7→ −x (left) and a trajectory at nearby parameters (right). Top, trajectory in
state space (x(t), ẋ(t)). Bottom, the homoclinic solution x(t) and a sample train of pulses
x(t).

The exact form of such a ‘pulse train’ depends heavily on the type of saddle point
that forms the start and end points of the homoclinic trajectory. In two dimensions, such
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as the system plotted in Figure 1, both eigenvalues of the saddle point are real, and the
time interval between pulses for the long-time asymptotic solution is constant. For a three-
dimensional system like the Shimizu–Morioka system [14], which is a Lorenz-like system, for
which the saddle point has three real eigenvalues λ2 < λ1 < 0 < λ3, the strong contraction
due to λ2 can be ignored at leading order, and the dynamics appear at first sight to be
similar to the two-dimensional case. However, the influence of the third stable direct acts
to ‘fold’ trajectories together during their evolution through the vicinity of the origin, and
chaotically distributed time intervals between pulses arises. The Shimizu–Morioka system
is plotted in Figure 2.
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Figure 2: A deterministic three-dimensional Shimizu–Morioka system with a homoclinic
orbit and its symmetric solution (x, y) 7→ (−x,−y) (left) and a trajectory at nearby pa-
rameters (right). Top, two-dimensional projection of trajectory in state space (x(t), y(t)).
Bottom,the homoclinic solution x(t) and a sample train of pulses x(t)..

Another canonical type of saddle point found in such systems is one for which the un-
stable direction has dimension one, and hence a single real positive eigenvalue, whilst the
stable direction consists of a complex pair of eigenvalues. Their dynamics consist of trajec-
tories spiraling into the saddle point before diverging away from the saddle point around
its unstable direction. If this is combined with a strong contraction in one direction whilst
following the homoclinic trajectory through state space, we call such systems ‘Shilnikov’
systems. These systems also display chaotically distributed time intervals between pulses,
but in this case the chaos arises through the dynamics near the origin ‘mixing up’ trajec-
tories that approach the origin through different locations, and thus completing a different
number of spirals before leaving the vicinity of the saddle point. One such system is plotted
in Figure 3.

Both Lorenz and Shilnikov type behaviour are observed in many physical systems. As
was discussed in this year’s GFD lectures by H. Dijkstra, the quasi-geostrophic double-gyre
circulation undergoes bifurcations in an asymmetry variable, which measures the relative
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occurrence of coherent structures above and below the symmetry line of forcing, to either
Lorenz or Shilnikov phenomena, depending upon the parameters in the problem [9, 15].
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Figure 3: A deterministic three-dimensional Shilnikov system with a homoclinic orbit and
its symmetric solution x 7→ −x (left) and a trajectory at nearby parameters (right). Top,
two-dimensional projection of trajectory in state space (x(t), ẋ(t)). Bottom, the homoclinic
solution x(t) and a sample train of pulses x(t).

The time intervals between pulses in all such systems depend most sensitively on how
the trajectories evolve through the origin, as the closer a trajectory is to the stable manifold
when approaching the origin, the longer it takes to leave the origin, and this time increases
exponentially as the distance to the stable manifold decreases. In contrast, the ‘outer’ flow
away from the origin takes an approximately constant time for all trajectories. The time
intervals are therefore controlled by the position at which trajectories enter the vicinity of
the origin.

Two successful approaches have been suggested to estimate the distribution of time
intervals between pulses, or equivalently the mapping between trajectories leaving the origin
and re-entering the origin. The approach taken by Shilnikov [13], after whom Shilnikov
systems are named, is to solve the linearised system near the origin exactly, and to assume
a linear mapping between points on a Poincaré section of trajectories leaving the origin to
points on a Poincaré section of trajectories returning to the origin. This represents stong
contraction in one of the spatial dimensions during the outer flow, and an outer flow that
closely follows the homoclinic orbit, and is explained in more intuitive detail by Glendinning
and Sparrow [7]. This can then be written as a single map between points on the entrance
Poinaré section as

Zn+1 = C +BZδn cos

(
Ω log

(
Z0

Zn

)
+ Φ

)
, (1)

for some constant B, and C is a constant that measures the distance from a bifurcation
point at which the homoclinic orbit exists, Φ is a constant phase, Ω is related to the unstable
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eigenvalue and the imaginary part of the stable eigenvalue, and δ is the ratio of the real part
of the stable eigenvalue to the unstable eigenvalue. When C = 0 and δ < 1 this map has
an infinite number of unstable fixed points, and exhibits chaos for most parameter values.

The approach taken by Balmforth et al. [4] and summarised a review paper [3], is to
suppose that a solution to the equations in near homoclinic conditions can be written as a
sum of homoclinic trajectories with an error term of O(ε), where ε measures the distance
from homoclinicity. These homoclinic trajectories must then be sufficiently widely separated
in time so that the interaction of adjacent homoclinic orbits is of size O(ε). An equation for
the error term is derived, and a secularity condition deduced from the requirement that the
error term is small. This secularity condition involves interactions of adjacent homoclinic
trajectories, and hence can be interpreted as a mapping between successive spacings in time
of the homoclinic trajectories. Under further approximation, this map can be reduced to
the Shilnikov Zn map. This method is the primary method generalised here to stochastic
systems, and its details are left until later in the text.

Stochastic near-homoclinic systems have been considered in a variety of contexts, from
noise-driven excitable systems [11, 5], to exponential tails in the timing of turbulence burst-
ing events [18] and intermittent switching between cycles in a heteroclinic network [1]. The
only major theoretical work comes from Stone and Holmes [17] and extensions [18, 16].
This work deals with the stochastic dynamics near the origin only, and solves the Ornstein–
Uhlenbeck processes there, followed by assumptions of long residency time near the origin
and small amplitude noise to find simple expressions for the density of points leaving and
arriving at the origin, along with expected residency times. The key assumption in all of
this work is that since the noise amplitude is small, its only significant effect is near to
the origin, and that once a trajectory is closely following the homoclinic orbit away from
the origin, the effects of noise can be neglected, and the distribution of points leaving the
origin may be linearly mapped to a distribution of points arriving at the origin via the
deterministic linear mapping, as in Shilnikov’s approach for deterministic systems.

The work presented here demonstrates that this assumption is in fact unfounded, and
we show that for the three different homoclinic systems discussed above, the primary ef-
fect of noise on a homoclinic trajectory is the influence during the orbit away from the
origin producing a significant difference in the distribution of points arriving at the ori-
gin, and that this effect produces variances in the position and timing of trajectories that
are at least an order of magnitude larger than the effects near the origin. Section 2 deals
with the two-dimensional Duffing system originally considered in the theoretical paper of
Stone and Holmes [17]. Section 3 deals with the three-dimensional Shimizu–Morioka system
[14], which can be interpreted as the Lorenz system at high Rayleigh number and exhibits
Lorenz-like behaviour. Section 4 deals with a three-dimensional equation that arises as the
normal form of a co-dimension three bifurcation with a reflection symmetry [2] in which
three eigenvalues of an equilibrium point simultaneously have zero real part, and exhibits
Shilnikov-like behaviour. We draw our conclusions in Section 5.
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2 A Stochastic Duffing Equation

Consider the following deterministic Duffing equation for x(t)

ẍ = x− x3 − εγẋ+ εβx2ẋ. (2)

A sample trajectory with γ = 0.08 and β = 0.1 is shown in Figure 1, along with the nearby
homoclinic trajectory at γ ≈ 0.080012.

This equation has a fixed point at the origin, which is a saddle, with eigenvalues

λ =
1

2
(−εγ ±

√
ε2γ2 + 4) = ±1− εγ

2
+ O(ε2), (3)

with corresponding eigenvectors

v± =

(
±1− εγ

2 + O(ε2)
1

)
. (4)

The system also has two addition fixed points at (x, ẋ) = (±
√

1− εγ, 0), which are unsta-
ble/stable sinks if β ≷ 0.

Consider the addition of a white noise process to this equation, namely

ẋ = y + εξx, (5)

ẏ = x− x3 − εγy + εβx2y + εξy, (6)

where

E(ξx,y(t)) = 0, (7)

E(ξx,y(t)ξx,y(s)) = δ(t− s), (8)

and ξx and ξy are independent.
Let δ be such that ε � δ � 1 and consider the small domain about the origin D =

{(x, ẋ) · v̂± ≤ δ} where v̂± are the normalised eigenvectors of the saddle point at the origin.
Within D we can approximate the dynamics, in local saddle coordinates, as

ẋ1 = −µx1 + εξx1 , (9)

ẋ2 = λx2 + εξx2 , (10)

where −µ and λ are respectively the stable and unstable eigenvalues of the saddle point at
the origin.

We can then consider three cases for the action of noise, namely

1. ξx1 6= 0, ξx2 6= 0 and ξ = 0 outside of D (noisy origin)

2. ξx1 = 0, ξx2 = 0 and ξ 6= 0 outside of D (deterministic origin)

3. ξx1 6= 0, ξx2 6= 0 and ξ 6= 0 outside of D (noise everywhere)

In addition, we may split case (1.) into two, namely ξx1 6= 0 and ξx2 = 0 (noisy stable
direction) and ξx1 = 0 and ξx2 6= 0 (noisy unstable direction). This is done in Appendix A.

Before considering each of the three cases in turn, we first solve the deterministic be-
haviour within D.
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Figure 4: Sketch of the dynamics through the domain D about the origin with entry point
zk and leaving point wk.

2.1 Deterministic origin dynamics

When a trajectory enters D for the kth occasion, at time t = t0, we have (x1, x2) = (δ, zk),
see Figure 4. The trajectory then satisfies

x1 = δe−µ(t−t0), (11)

x2 = zke
λ(t−t0). (12)

The trajectory then leaves D when (x1, x2) = (wk, δ), which occurs after a time interval

tk ≡ tleave − t0 =
1

λ
log

(
δ

zk

)
, (13)

from which we can obtain wn, the x1 position at time of exit,

wk = δ1−µ/λz
µ/λ
k . (14)

We then make the assumption that the dynamics outside of D act as a linear mapping
between the point at which D is left for the kth time to the point at which D is entered for
the (k + 1)th time, as did Shilnikov [13], i.e. that

zk+1 = αwk + c = αδ1−µ/λz
µ/λ
k + c, (15)

where c = 0 when there exists a homoclinic orbit.
Since zk < δ < 1, we see that when µ/λ > 1, we have the limit zk → c as k → ∞. We

can also solve for the time intervals between entering events. First note that

tk+1 = − 1

λ
log
(zk+1

δ

)
= − 1

λ
log(αδ−µ/λz

µ/λ
k + c/δ) = − 1

λ
log(αe−µtk + c/δ). (16)
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Assuming that the time between exit and re-entrance of D is T , the time interval between
entering events ∆k = T + tk satisfies

∆k+1 = T − 1

λ
log(αe−µ∆keµT + c/δ). (17)

When there exists a homoclinic orbit, c = 0, and so

∆k+1 = T − log(α)

λ
− µT

λ
+
µ

λ
∆k, (18)

and so if µ/λ > 1, we have the limit ∆k → ∞ as n → ∞, and so the homoclinic orbit is
attracting.

2.2 Noisy origin, ξ = 0 outside D

The analysis in this section is a summary of the work of Stone and Holmes [17] and their
approach to determining the dynamics for noise near the origin. In Appendix A we adopt
the same approach as Stone and Holmes to investigate the effect of noise near the origin
only in either the stable or unstable direction of the saddle. We wish to solve the stochastic
differential equations

ẋ1 = −µx1 + εξx1 , (19)

ẋ2 = λx2 + εξx2 , (20)

where λ and −µ are the unstable and stable eigenvalues at the origin.
First, we define the Gaussian function for the normal probability density function

Nx(a, σ2) ≡ 1√
2πσ2

exp

[
−(x− a)2

2σ2

]
. (21)

Then, the known solutions to the Ornstein–Uhlenbeck processes (19-20), given an initial
known position are

ρ(x1, t|δ, 0) = Nx1
(
δe−µt,

ε2

2µ
(1− e−2µt)

)
(22)

ρ(x2, t|zn, 0) = Nx2
(
zke

λt,
ε2

2λ
(e2λt − 1)

)
(23)

Observe that the means satisfy the equations

d

dt
〈x1〉 = −µ〈x1〉 (24)

d

dt
〈x2〉 = λ〈x2〉, (25)

and so we might expect that if the deterministic system spends a large amount of time in
D, then so will the stochastic system. This allows us to make the approximation that the
x1-process becomes stationary before exiting D, i.e. that e−µt � 1, and so we have

ρ(x1, t|δ, 0) ∼ N
(

0,
ε2

2µ

)
as t→∞, (26)
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and so the leaving point wk has a distribution independent of zk,

ρ(wk) = N
(

0,
ε2

2µ

)
. (27)

After leaving D, the motion is deterministic, and so we recall the linear mapping

zk+1 = αwk + c, (28)

giving the density of return points zk+1,

ρ(zk+1|zk) = ρ(zk+1) = N
(
c,
ε2α2

2µ

)
, (29)

using standard results for linear combinations of normally distributed random variables.
To find the timings tk, we need to solve the unstable Y process. It is also known that the

solution to the Ornstein–Uhlenbeck process (20) given an initial known normal distribution
is

ρ(x2, t|N (x0
2, σ

2), 0) = N
(
x0

2e
λt, σ2e2λt +

ε2

2λ
(e2λt − 1)

)
, (30)

and so, we see that

ρ

(
x2, t

∣∣∣∣N (ceλt, ε2α2

2µ

)
, 0

)
= N

(
ceλt,

ε2α2

2µ
e2λt +

ε2

2λ
(e2λt − 1)

)
(31)

= N
(
ceλt,

ε2

2λ
(e2λs − 1)

)
(32)

≡ ρ(x2, s|s = 0), (33)

where s = t+ t′ and

t′ =
1

2λ
log

(
1 +

α2λ

µ

)
. (34)

Then, the mean passage time E(tk) satisfies

E(tk) =

∫ ∞
0

P(tk > t) dt (35)

=

∫ ∞
t′

P(tk > s) ds (36)

=

∫ ∞
t′

∫ δ

−δ
ρ(x2, s|s = 0) dx2 ds (37)

∼

{
1
λ log

(
δ
ε

)
for c� ε� δ � 1,

1
λ log

(
δ
c

)
for ε� c� δ � 1.

(38)

The main result here is that for nearly homoclinic conditions in which c� ε, noise acts
to effectively push a trajectory away from the stable axis to a distance ε, after which the
mean trajectory is essentially deterministic, whereas far from homoclinicity in which ε� c,
noise is unimportant, and the mean trajectory is identical to its deterministic version. The
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extra condition that ε, c � δ ensures that trajectories remain in D for a long time, and so
the assumption e−µtk � 1 is valid.

Parameter values considered by Stone and Holmes [17] are γ = 0.08, β = 0.1 and
ε = 0.0006. Using these values, we can compare the results above to a numerical solution
of the stochastic differential equations with ξ = 0 outside of D, defined by δ = 0.1. Figure
5 shows a comparison of the distributions for ρ(wk) and the distributions for ρ(zk) for both
a numerical integration of the SDEs and the derived results (27,29) given by Stone and
Holmes [17] with c = 0. There is a clear discrepancy in these results, and so we also plot
the sum of two normal distributions with means ±δ exp(−µE(tk)) for wn where E(tn) is
taken from the numerical integration, and an approximate offset c = ±2.763× 10−4 for zn
taken from the numerical integration. The mean time through D for the numerical solution
is 5.767 and the mean time according to (38) with c � ε is 5.325. There remains an error
in the comparison of the results for ρ(wk), likely due to the fact that the approximation for
ρ(wk) is independent of zk.

We note that we can break from the approach of Stone and Holmes in this section and
Appendix A. Rather than making approximation about long residency times to simplify
the relevant probability densities, we can instead keep the exact solutions to the Ornstein–
Uhlenbeck processes and iteratively produce a sample trajectory. To obtain zk+1 from zk,
we choose a tk and wk from the relevant densities, and then map wk to zk+1 using the linear
mapping assumption. This would give a reliable, if low-tech way of producing the correct
comparisons to the SDEs.
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Figure 5: Probability density of leave points wn (left) and return (right) points zn to D
with δ = 0.1 and noise strength ε = 0.0006 acting only outside D, for parameters γ = 0.08
and β = 0.1 for a direct numerical simulation with 7500 returns to D (blue histogram), the
approximate solution (27,29) from Stone and Holmes [17] (red line), and the sum of two
normal distributions with means ±δ exp(−µE(tn)) for wn and ±2.763×10−4 for zn (orange
line).
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2.3 Deterministic origin, ξ 6= 0 outside D

Consider the equation
ẍ = x− x3 − εγẋ+ εβx2ẋ+ εξ(t) (39)

outside the domain D ≈ {|ẋ+x| ≤ δ, |ẋ−x| ≤ δ}. Write the solution as x = x0+εx1+O(ε2).
Then, at O(1) we have

ẍ0 = x0 − x3
0, (40)

which has first integral
1

2
ẋ2

0 =
1

2
x2

0 −
1

4
x4

0 + E, (41)

where we can interpret the constant of integration E as an energy parameter. The case
E = 0 gives the homoclinic orbits

x0 = ±
√

2sech(t− t0) (42)

for some t0. We will concentrate on the positive solution, x0 =
√

2sech(t− t0).
Next, at O(ε) we obtain

ẍ1 − x1 + 3x2
0x1 = −γẋ0 + βx2

0ẋ0 + ξ(t). (43)

Multiply through by ẋ0 and integrate to get

[
ẋ0ẋ1 − x0x1 + x3

0x1

]tb
ta

= −γ
∫ tb

ta

ẋ2
0 dt+ β

∫ tb

ta

x2
0ẋ

2
0 dt+

∫ tb

ta

ξ(t)ẋ0 dt, (44)

where ta and tb are defined respectively by

ẋ+ x =
√

2δ, (45)

ẋ− x = −
√

2δ. (46)

For ε � δ � 1, we have x0 ≈ 2
√

2e−|t̂|, where t̂ = t − t0. This then gives ẋ0 ≈
−2
√

2 sgn(t̂)e−|t̂|, and so the leading order condition on ∂D determines ta and tb, namely

ẋ0(ta) = x0(ta) =

√
2δ

2
, (47)

ẋ0(tb) = −x0(tb) = −
√

2δ

2
, (48)

tb = −ta = log

(
4

δ

)
. (49)

At second order we obtain

ẋ1(ta) = −x1(ta), (50)

ẋ1(tb) = x1(tb), (51)

and so [
ẋ0ẋ1 − x0x1 + x3

0x1

]tb
ta

=
√

2δ(x1(ta)− x1(tb)) + O(δ3). (52)
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We also have the exact relations

−γ
∫ ∞
−∞

ẋ2
0 = −4γ

3
, (53)

β

∫ ∞
−∞

x2
0ẋ

2
0 dt =

16β

15
, (54)

and so, given that −ta, tb � 1, the deterministic orbit is homoclinic at leading order if these
two integrals are equal, i.e. β = 5γ/4. Assuming homoclinic conditions, we obtain

√
2δ(x1(ta)− x1(tb)) =

∫ ∞
−∞

ξ(t)ẋ0 dt. (55)

It is a known result [6] that for deterministic functions of time f(t),∫ b

a
f(t)ξ(t) dt ∼ N

(
0,

∫ b

a
f(t)2 dt

)
. (56)

We can use this result to deduce that

x1(tb) ∼ N
(
x1(ta),

1

2δ2

∫ ∞
−∞

ẋ2
0 dt

)
(57)

= N
(
x1(ta),

2

3δ2

)
. (58)

The leading order return map to D for this stochastic Duffing equation in homoclinic
conditions is then,

zk+1 =
ẋ+ x√

2

∣∣∣∣
tb

(59)

=
√

2εx1(tb) (60)

= N
(√

2εx1(ta),
4ε2

3δ2

)
(61)

= N
(
wk,

4ε2

3δ2

)
(62)

= sgn(zk)δ
1−µ/λ|zk|µ/λ +

ε

δ

√
4

3
ηk, (63)

where ηk ∼ N (0, 1) is a zero mean, unit variance, Gaussian random variable. Hence,

m = E(zk+1|zk) = sgn(zk)δ
1−µ/λ|zn|µ/λ (64)

E((zk+1 −m)2|zk) =
4ε2

3δ2
. (65)

Recall that the variance in the re-entry point for noise only within D scaled as ε2. Given
ε� δ � 1, we see that the variance associated with this outer flow is much larger.
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We then have the transition density

ρ(zk+1|zk) = N
(

sgn(zk)δ
1−µ/λ|zk|µ/λ,

4ε2

3δ2

)
, (66)

and so

ρ(zk+1) =

∫ ∞
−∞

ρ(zk+1|zk)ρ(zk)dzk. (67)

We can look for the stationary distribution ρ(zk) = ρs(z) that the mapping approaches
as n→∞. This is given by the integral equation

ρs(z) =

∫ ∞
−∞

δ

ε

√
3

8π
exp

[
−3δ2(z − sgn(s)δ1−µ/λ|s|µ/λ)2

8ε2

]
ρs(s) ds. (68)

Figure 6 shows the return distribution for noise outside of D only and noise uniformly
everywhere in the system respectively. Also shown is the mapping (63). For noise outside
of D we also plot the estimated stationary distribution via the method described below,
and for the ‘noise everywhere’ calculation we also plot the result from Stone and Holmes.
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Figure 6: Left: Probability density of return points to D with δ = 0.1 and noise strength
ε = 0.0006 acting only outside D, for parameters γ = 0.08 and β = 0.1 for a direct numerical
simulation with 3000 returns to D (blue histogram), the return map (63) iterated 105 times
(red line) and the asymptotic approximation to the stationary distribution of the return
map (63) (black line). Right: Noise strength ε = 0.0006 acting everywhere, and the result
of Stone and Holmes [17] (black line).

Before computing additional properties of this solution, we need some results about
stationary distributions about stable fixed points of maps.
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2.4 Weak noise estimation of stationary distributions

We can estimate stationary distributions for stochastic mappings with stable deterministic
fixed points or periodic orbits [10]. Suppose that we have the stochatic mapping

zn+1 = f(zn) + εηn, (69)

where ηn ∼ N (0, 1). Then we know that

ρ(zn+1|zn) = N (f(zn), ε2), (70)

and so the stationary distribution statisfies

ρs(z) =

∫
ρ(z|s)ρs(s) ds. (71)

Suppose in addition that (for the simplest possible case) the deterministic part of the
mapping has a singe stable fixed point, f(z∗) = z∗ with |f ′∗| ≡ |f ′(z∗)| < 1. Then we might
suppose that for small noise strength ε, the stationary distribution is centred about z∗ with
some variance σ2 which in general is different from, but related to, ε, and should depend
on the local rate of contraction of f(z) about the fixed point.

To this end, try the ansatz

ρs(z) =
1√

2πσ2
exp

[
−(z − z∗)2

2σ2

]
(72)

=

∫
1

2πεσ
exp

[
−(z − f(s))2

2ε2
− (s− z∗)2

2σ2

]
ds (73)

Now let s = z∗ + εS and z = z∗ + εZ = f(z∗) + εZ. Then, defining α2 = ε2/σ2, we obtain

ρs(z) =

∫
1

2πσ
exp

[
−(Z − f ′∗S)2

2
− α2S2

2

]
dS (74)

≡
∫

1

2πσ
exp(φ(S)) dS. (75)

Now, the function φ(S) has a minima at

S = S0 =
f ′∗

α2 + f ′2∗
Z, (76)

and we may approximate

φ(S) = φ(S0) +
(S − S0)2

2
φ′′(S) (77)

= − α2

α2 + f ′2∗

Z2

2
− (f ′2∗ + α2)

(S − S0)2

2
. (78)
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Substituting this back into the integral and evaluating the resulting Gaussian, we obtain

ρs(z) =
1

2πσ

√
2π

f ′2∗ + α2
exp

[
− α2

α2 + f ′2∗

Z2

2

]
(79)

=
1√

2πσ2(f ′2∗ + α2)
exp

[
− α2

α2 + f ′2∗

(z − z∗)2

2ε2

]
, (80)

which is consistent with the original ansatz if σ2 = ε2/(1− f ′2∗ ), and this modified variance
σ2 is positive provided that the fixed point is stable. Hence, an approximate solution is

ρs(z) =
1√

2πε2/(1− f ′2∗ )
exp

[
− (z − z∗)2

2ε2/(1− f ′2∗ )

]
. (81)

Now consider a stable N -cycle {zi}Ni=1 distinct points with f(zi) = zi+1. Define f ′i =
f ′(zi). Then, we pose the ansatz for the stationary distribution

ρs(z) =
N∑
i=1

ai√
2πσ2

i

exp

[
−(z − zi)2

2σ2
i

]
, (82)

with ai > 0 and
∑
ai = 1 so that this represents a probability distribution. An analogous

calculation to the one above gives

ρs(z) =
N∑
i=1

ai√
2πσ2

i (f
′2
i + α2)

exp

[
− α2

i

α2
i + f ′2i

(z − zi)2

2ε2

]
, (83)

where α2
i = ε2/σ2

i .
One of the compatibility conditions gives ai = ai+1, and so ai = 1/N . The other

compatibility condition gives

σ2
i = ε2

1 +
∑N−1

k=1

∏k
j=1 f

′2
i−j

1−
∏N
j=1 f

′2
j

, (84)

where the subscripts are taken modulo N , which reduces to the fixed point case if N = 1.
For the Duffing equation considered above in homoclinic conditions, we have z∗ = 0

and f ′∗ = 0, and so the estimated variance of the stationary distribution is the same as
that for the noise term in the equation. This estimate is plotted in Figure 6 along with
the numerical simulation of the full system, and the map iterated a large number of times
(105). The agreement is not particularly good, but this is due to the fact that z∗ 6= 0 for
the parameter values chosen by Stone and Holmes [17]. We fix this later.

2.5 Timing map for deterministic origin, ξ 6= 0 outside D

We can also compute the time between pulses, or equivalently the time between re-entries
of D. The total flight time is the sum of the time taken to pass through the origin plus the
time taken between leaving and returning to D,

∆n = Torigin + Tflight =
1

λ
log

(
δ

|zn|

)
+ 2tb =

1

λ
log

(
δ

|zn|

)
+ 2 log

(
4

δ

)
. (85)
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The timing map should then be independent of δ. Substituting ∆n into the return map
(63) we obtain

e−λ∆n+1 = δ2(λ−µ)16µ−λe−µ∆n +
δ2λ−2ε

16λ

√
4

3
ηn (86)

= e−µ∆n +
ε

16

√
4

3
ηn, (87)

at leading order, since λ, µ = 1 ± εγ/2, and so δ drops out. Note however that we must
keep λ and µ different from one in the exponentials as contraction is necessary for bounded
solutions. This can be seen be noting that if λ = µ = 1 in the return map (63), then zn
satisfies a Wiener process with variance growing linearly with the number of iterations.

We can also demonstrate that the timing map has exponential tails. To see this, recall
that the return map (63) has a stable fixed point at zn = 0 and so the approximations of
the previous section imply that we have the stationary distribution

ρz(z) ≈ N
(

0,
4ε2

3δ2

)
. (88)

Then, the change of variables to ∆ gives

ρ∆(∆) ≈ 16λ

√
3

2π

δ2−2λe−λ∆

ε
exp

[
−δ4−4λ 96

ε2
e−2λ∆

]
(89)

≈ 16λ

√
3

2π

e−λ∆

ε
exp

[
−96

ε2
e−2λ∆

]
(90)

∼ 16λ

√
3

2π

e−λ∆

ε
as ∆→∞ (91)

In Figure 7 we plot the distribution of the times between maxima for the same numerical
simulation as for the return points plotted in 6 along with the estimate above, both with
and without making the approximation δ1−λ = 1. In each case the exponential decay is
correct, but the density without the assumption is more accurate. This is likely due to the
fact that for these parameter values, λ and µ are in fact significantly different from one.
Additionally, for this range of λ and µ, the excursion time away from the origin is not quite
2 log(4/δ), providing an additional source of error. All of these approximation are fixed in
the next section, where we generalise the homoclinic pulse expansion technique of ODE of
Balmforth et al. [4] to stochastic systems.

In addition, we can estimate the expected time between maxima as

E(∆) ≈
∫ ∞

0
16λ

√
3

2π

∆e−λ∆

ε
exp

[
−96

ε2
e−2λ∆

]
d∆ (92)

=

∫ √96/ε

0
16

√
3

2π

1√
96λ

log

(√
96

εs

)
e−s

2
ds (93)

∼ 1

λ
log

(√
96

ε

)
as ε→ 0. (94)
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Figure 7: Probability density of times between maxima to with noise strength ε = 0.0006
acting only outside D, for parameters γ = 0.08 and β = 0.1 for a direct numerical simulation
with 3000 returns to D (blue histogram), the estimated solution with δ1−λ = 1 (red line)
and the estimated solution with δ1−λ 6= 1 (black line).

For the numerical data shown in Figure 7 we have E(∆) = 10.695, and the formula
above with ε = 0.0006 gives E(∆) = 10.097. To compare to the work of Stone and Holmes,
recall that the mean time through the origin was

E(tn) =
1

λ
log

(
δ

ε

)
, (95)

and so the mean flight time is

τ = E(tn) + 2tb (96)

=
1

λ
log

(
δ

ε

)
+ 2 log

(
4

δ

)
(97)

=
1

λ
log

(
δ1−2λ42λ

ε

)
(98)

≈ 1

λ
log

(
16

εδ

)
, (99)

which, in addition to depending explicitly on δ, takes the value 13.003 for the parameters
used here, which is clearly not a good approximation.

2.6 Homoclinic pulse expansion for the stochastic Duffing system

To move away from the assumption that γ, β = O(ε), and to correct the discrepancy with
the timing map distribution requiring δ1−λ = 1, consider the equation

ẍ− x+ x3 + γẋ− βx2ẋ = εσξ(t). (100)
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Let γ = γ0(β) be the parameter set for which there exists a homoclinic orbit, and write
γ = γ0 + εγ1. To consider ξ 6= 0 everywhere, we instead make the ansatz for the full solution
as

x(t) =
∑
k

θkH(t− tk) + εR ≡
∑

θkHk + εR, (101)

where H(t) is the homoclinic solution, the sequence of times {tk} are sufficiently widely
seperated so that HkHk±1 = O(ε), the polarity θk = ±1 accounts for the symmetry x 7→ −x,
and εR is the error made in making this assumption. This is the singular perturbation
method for finding timing between homoclinic pulses of ODEs of Balmforth et al. [4], but
here we can generalise it to stochastic systems.

In order to begin the asymptotic expansion, we need to explain what is meant by O(ε)
interaction of neighbouring homoclinic orbits. Most importantly, we need to have an ex-
pansion for the nonlinear terms in (100). For correctly chosen times {tk} we have(∑

k

θkHk

)3

=
∑
k

θkH
3
k + 3

∑
k

H2
k(θk+1Hk+1 + θk−1Hk−1) + O(ε2), (102)

for the cubic term, where the second term is O(ε). The term βx2ẋ may be treated similarly.
The O(ε0) equation is satisfied automatically, and the O(ε) equation in the vicinity of

tk gives

JkR = −3

ε
H2
k(θk+1Hk+1 + θk−1Hk−1) +

β

ε

d

dt
[H2

k(θk+1Hk+1 + θk−1Hk−1)] + σξ − γ1θkḢk

(103)
for each k, where

Jk = L+ 3H2
k − β

d

dt
H2
k . (104)

We note that the correct operator acting on R should involved the sum over all k to include
all pulses, but we note that this sum is highly peaked about each homlinic trajectory, and so
we may approximate by splitting the sum up, and requiring R to satisfy a simpler equation
for each k. The error made in this approximation is of higher order in ε and so we employ
it here [4].

Next, define Nk 6= 0 by
J †kNk = 0. (105)

Then, multiply through by Nk and integrate to obtain

0 =

∫ ∞
−∞

Nk

[
− 3

ε
H2
k(θk+1Hk+1 + θk−1Hk−1)

+
β

ε

d

dt
[H2

k(θk+1Hk+1 + θk−1Hk−1)] + σξ − γ1θkHk

]
dt (106)

=

∫ ∞
−∞

[
− 3Nk + βṄk

ε
H2
k(θk+1Hk+1 + θk−1Hk−1) +Nk(σξ − γ1θkḢk)

]
dt (107)

We have that

Hk−1 ∼ h∞eµ(t−tk−1) as t− tk−1 →∞ (108)

Hk+1 ∼ h0e
λ(t−tk+1) as t− tk+1 → −∞, (109)
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and so although strictly speaking we should only integrate the equations over the k-th pulse,
we can approximate the neighbouring pulses in the integral, and integrate over the whole
real line and obtain∫ ∞

−∞
(3Nk + βṄk)H

2
kHk+1 dt ≈

∫ ∞
−∞

(3Nk + βṄk)H
2
kh0e

λ(t−tk+1) dt (110)

= h0e
−λ(tk+1−tk)

∫ ∞
−∞

(3Nk + βṄk)H
2
ke
λ(t−tk) dt (111)

= h0e
−λ(tk+1−tk)

∫ ∞
−∞

(3N + βṄ)H2eλt dt (112)

≡ Ae−λ∆k+1 , (113)

where ∆k = tk − tk−1, and similarly,∫ ∞
−∞

(3Nk+βṄk)H
2
kHk−1 dt ≈ h∞e−µ(tk−tk−1)

∫ ∞
−∞

(3N+βṄ)H2e−µt dt ≡ Be−µ∆k . (114)

We are then left with the timing map

θk+1e
−λ∆k+1 = θkεC + θk−1De

−µ∆k + εσMηk, (115)

where ηk ∼ N (0, 1), C = −C0/A, D = −B/A, M = −M0/A, and

C0 =

∫ ∞
−∞

γ1NḢ dt (116)

M2
0 =

∫ ∞
−∞

N2dt. (117)

We can convert the timing map (115) into a return-like map through the change of
variables zk = θkθk−1 exp(−λ∆k), which gives

zk+1 = εC + sgn(zk)D|zk|µ/λ + εσMηk. (118)

For small ε this equation has a deterministic fixed point z = z∗ = O(ε) with 0 < |f ′∗| . O(1)
when λ and µ are not far from one. Hence, we can approximate the stationary distribution
for zk by

ρzk(z) =
1√

2πε2σ2M2/(1− f ′2∗ )
exp

[
− (z − z∗)2

2ε2σ2M2/(1− f ′2∗ )

]
, (119)

and so the stationary distribution for the timings ∆k is given approximately by

ρ∆k
(∆) =

λe−λ∆√
2πε2σ2M2/(1− f ′2∗ )

(
exp

[
− (e−λ∆ − z∗)2

2ε2σ2M2/(1− f ′2∗ )

]
+ exp

[
− (e−λ∆ + z∗)

2

2ε2σ2M2/(1− f ′2∗ )

])
(120)

∼ 2λe−λ∆√
2πε2σ2M2/(1− f ′2∗ )

exp

[
− z2

∗
2ε2σ2M2/(1− f ′2∗ )

]
as ∆→∞, (121)
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and so we obtain an exponential decay of the timing probability density function.
For the parameters γ = 0.08 and β = 0.01 with noise strength εσ = 0.0006, as used by

Stone and Holmes [17], we have εC = −1.362 × 10−6 with fixed point z∗ = −2.576 × 10−6

and f ′∗ = 0.511. Figure 8 shows the estimated densities ρz(z) and ρ∆(∆) respectively, along
with a numerical iteration of the timing map (115).
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Figure 8: Left: Probability density of zk, for parameters γ = 0.08 and β = 0.1 with noise
strength εσ = 0.0006 for the derived asymptotic map (blue histogram), and the estimated
solution with (red line). Right: Probability density of ∆n, for parameters γ = 0.08 and
β = 0.1 with noise strength εσ = 0.0006 for the derived asymptotic map (blue histogram),
the estimated solution with (red line), and its large ∆ exponential decay (black line).

We can also approximate the mean spacing E(∆) from

E(∆) =

∫ ∞
0

∆ρ∆k
(∆) d∆, (122)

which takes different forms in the two cases |z∗| � a� 1 and a� |z∗| � 1, where

a2 = ε2σ2M2/(1− f ′2∗ ), (123)

which is the effective variance of the zn stationary distribution.
First, we look at a� |z∗| � 1, which we would expect to correspond to the case where

noise is not strong enough to change E(∆) from its deterministic value. We have that the
first exponential in the integral for E(∆) takes its maximum at y = e−λ∆ = z∗, which is well
separated from the lower limit of integration, and the second exponential is asymptotically
small. Hence,

E(∆) ∼ 1√
2πa2

1

λ
log

(
1

z∗

)∫ ∞
−∞

e−(y−z∗)2/2a2 dy (124)

=
1

λ
log

(
1

z∗

)
, (125)
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which is the deterministic value, as expected.
Next, for |z∗| � a� 1, we expect that the fixed point z∗ does not greatly influence E(∆),

and that the mean spacing should depend instead on a. In this limit, the two exponentials
are comparible, and we may set z∗ = 0 (though not f ′2∗ = f ′20 = 0), so that a remains
unchanged. We then obtain

E(∆) ∼ 2√
2πa2

∫ 1

0

1

λ
log

(
1

y

)
e−y

2/2a2 dy (126)

∼ 2√
π

∫ ∞
0

1

λ
log

(
1

as
√

2

)
e−s

2
ds (127)

=
1

λ
log

(
1

a

)
+

1

2λ
(γe + log 2) (128)

∼ 1

λ
log

(
1

a

)
, (129)

where γe is Euler’s gamma constant.
Figure 9 shows the mean spacing E(∆) as a function of noise strength εσ for the param-

eters γ = 0.08 and β = 0.1, for the timing map (115) and the original stochastic differential
equation. Also plotted are the two asymptotic estimates above, for a � |z∗| � 1 and
|z∗| � a. For the second case, |z∗| � a, we have (γe + log(2))/2λ ≈ 0.661, which is around
5% of the typical mean spacing in this range. For this reason, we plot both the leading order
asymptotic result, and its correction. It is clear that the first correction is needed in this
case. There are also plotted dashed lines at the two locations σε = z∗ and a = a(εσ) = z∗.
A first guess might be that the transition in behaviour occurs when the strength of the
noise εσ is comparable with z∗, but we have shown above that it is in fact the effective noise
strength a that controls the change in behaviour. The figure clearly shows this.

We see also in Figure 9 that the asymptotic approximation (129) begins to break down
as εσ increases from 10−3. This is to be expected eventually since we require a(ε) � 1
for the Laplace approximation of the integral for E(∆) to be valid. Additionally, as E(∆)
decreases, it eventually approaches the flight time taken along the homoclinic orbit, and so
the assumption of well spaced pulses breaks down.

This generalised homoclinic pulse expansion technique has is clearly able to accurately
reproduce the results of the full stochastic differential equations. In stark contrast to the
results of Stone and Holmes [17], we have been able to fully characterise the effect of noise
on the system. It is clear that the results for the noise away from the origin problem and
the noise everywhere case are essentially the same and the the noise near the origin case
of Stone and Holmes is significantly different (see Figures 6 and 8). The dynamics can
be reduced to a simple stochastic one dimensional map of the form zk+1 = f(zk) + σηk
which can be interpreted as the system obeying the deterministic dynamics f(zk) except
for a random ‘kick’ upon re-entry to the origin, which depends on the sensitivity of the
homoclinic solution to noise perturbations along its whole length. The system is controlled
most closely by this kick upon re-entry, and is a fully nonlinear phenomena of the coupling
between noise and nonlinear dynamics.

In the following sections we use the same technique to investigate the two other homo-
clinic systems, and find in each case the simple reduction to a stochastic mapping of the
same form.

136



ǫσ

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

E
(∆

)

7

8

9

10

11

12

13

14

Figure 9: Mean spacing E(∆) as a function of noise strength εσ, for parameters γ = 0.08 and
β = 0.1 for the derived asymptotic map (blue line), and the original stochastic differential
equation (blue dots). Also plotted is the asymptotic result for a� |z∗| � 1 (red line), the
leading asymptotic result for |z∗| � a (orange line) and its correction (solid black line). The
leftmost dashed line shows εσ = z∗ and the rightmost dashed line shows a = a(εσ) = z∗.

3 Stochastic Shimizu–Murayama Model

The deterministic Shimizu–Murayama system [14] models the Lorenz equations at high
Rayleigh number, and for a range of parameters exhibits near homoclinic behaviour [12].
The three-dimensional stochastic system is

ẋ = y + εσξx (130)

ẏ = x(1− z)− λy + εσξy (131)

ż = −α(z − x2) + εσξz, (132)

or equivalently,
d

dt
x = Ax+ f(x) + εσξ, (133)

where x = (x, y, z), ξ = (ξx, ξy, ξz), the matrix A is

A =

0 1 0
1 −λ 0
0 0 −α

 =

0 1 0
1 −λ0 0
0 0 −α

+ ε

0 0 0
0 −λ1 0
0 0 0

 ≡ A0 + εA1, (134)

where λ = λ0 +ελ1 and λ0(α) are the parameter values at which there is a homoclinic orbit,
and the vector f(x) is

f(x) =

 0
−xz
αx2

 . (135)
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We will consider cases with α, λ > 0. A sample trajectory with α = 0.4 and λ = 1.1954 is
shown in Figure 2 along with its nearby homoclinic orbit at λ ≈ 1.2054.

This system has fixed points at (0, 0, 0) and (±1, 0, 1). The second of these is either a
stable sink or unstable source. We are interested in the cases for which the origin is a saddle
with two stable directions and one unstable directions. The eigenvalues and eigenvectors at
the origin are

−α :

0
0
1

 stable, (136)

−µ− = (−λ−
√

4 + λ2)/2 :

(λ−
√

4 + λ2)/2
1
0

 stable, (137)

µ+ = (−λ+
√

4 + λ2)/2 :

(λ+
√

4 + λ2)/2
1
0

 unstable. (138)

Let H = (Hx, Hy, Hz) be the homoclinic orbit that leaves the origin with x > 0. This
system has the symmetry (x, y, z) 7→ (−x,−y, z), and so define φH = (θHx, θHy, Hz) for
the polarity θ = ±1. We then pose a solution of the form

x =
∑
k

φkHk + εR, (139)

where Hk = H(t − tk) and the times tk are well-separated so that Hk ·Hk±1 = O(ε).
Then, at O(ε0) we find the homoclinic solution, and at O(ε) we obtain

LφkR =
1

ε
f ′(φkHk) · (φk+1Hk+1 + φk−1Hk−1) +A1Hk + σξ, (140)

where

Lφk =
d

dt
−A0 − f ′(φkHk), (141)

and

f ′(φH) =

 0 0 0
−Hz 0 −θHx

2αθHx 0 0

 (142)

is the Jacobian matrix of the nonlinear part of the differential equations.
Now define L†φk by

L†φk = − d

dt
−A†0 − f

′(φkHk)
†, (143)

and define Nφk 6= 0 by

L†φkNφk = 0. (144)

Note that the equation satisfied by N− is related to that satisfied by N+ through a symme-
try, so that if N+ = (Nx, Ny, N z), then N− = (Nx, Ny,−N z). To this end, write instead
Nφk = ψkNk = (Nx

k , N
y
k , θkN

z
k ) and Nk satisfies

L†+(k)Nk = 0. (145)
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Now we may take the dot product of the equation satisfied by R with ψkNk and
integrate to obtain

0 =

∫ [
1

ε
ψkNk · f ′(φkHk) · (φk+1Hk+1 + φk−1Hk−1) + ψkNk · (A1φkHk + σξ)

]
dt.

(146)
In order to estimate the interaction integrals, we note that

H ∼

hx0hy0
0

 eµ+t as t→ −∞ (147)

H ∼

hx∞hy∞
0

 e−µ−t +

 0
0
hz∞

 e−αt as t→∞, (148)

but µ− > α and so we may approximate

H ∼

 0
0
hz∞

 e−αt as t→∞, (149)

which is equivalent to assuming a strong contraction in one of the stable directions, and so
trajectories essentially become two-dimensional when passing nearby to the origin.

We may now approximate each of the interaction integrals to obtain∫
ψkNk·f ′(φkHk) · φk+1Hk+1 dt (150)

=

∫  Nx
k

Ny
k

θkN
z
k

 ·

 0 0 0
−Hz

k 0 −θkHx
k

2αθkH
x
k 0 0

 ·

θk+1h
x
0

θk+1h
y
0

0

 eµ+(t−tk+1) dt (151)

= hx0e
−µ+(tk+1−tk)θk+1

∫
(2αHxN z −HzNy)eµ+t dt (152)

≡ θk+1e
−µ+∆k+1A, (153)

where ∆k = tk − tk−1, and similarly,∫
ψkNk·f ′(φkHk) · φk−1Hk−1 dt (154)

= −hz∞e−α(tk−tk−1)θk

∫
HxNye−αt dt (155)

≡ −θke−α∆kB0. (156)

Putting this together, we obtain the timing map

θk+1e
−µ+∆k+1 = εθkC + θkBe

−α∆k + εσMηk, (157)
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where ηk ∼ N (0, 1) and B = B0/A, C = C0/A and M = M0/A, where

C0 =

∫
λ1N

yHy dt, (158)

M2
0 =

∫
N ·N dt. (159)

Figure 10: Timings for the Shimizu–Morioka system with no noise, σ = 0, and parameters
α = 0.4 and λ = 1.1954. Numerical simulation (red), and iterates of the derived timing
map (blue).

Figure 10 shows a comparison between the above timing map and a numerical simulation
of the system for no noise, σ = 0, α = 0.4 and λ = 1.1954. The agreement is very good,
and so we now concentrate only on the map, rather than the numerical simulations.

Figure 11 shows iterations of the derived timing map for noise strengths εσ = 0, 10−4,
10−3 and 4 × 10−3 with α = 0.4 and λ = 1.1954. We see that as the noise strength is
increased, the deterministic structure is gradually broadened and smoothed out, before
eventually being destroyed altogether. However, the shape of the probability distributions
is largely unchanged, and are similar to the Duffing distributions for all noise strengths, as
shown in Figure 12. Only at large noise strengths is there an appreciable shift in the peak
of the distribution and a broadening of the tails.

4 A Stochastic Shilnikov System

Consider the ODE
...
x + γẍ+ ẋ− cx+ x3 = 0, (160)

which is the normal form of a co-dimension three bifurcation [2] with the symmetry x 7→ −x.
Consider a stochastic equivalent of this equation

...
x + γẍ+ ẋ− cx+ x3 + εσξ(t) = 0, (161)
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Figure 11: Timings for the Shimizu–Morioka system calculated from the derived map with
noise strengths εσ = 0, 10−4, 10−3 and 4× 10−3 for parameters α = 0.4 and λ = 1.1954.
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Figure 12: Probability density ρ∆(∆) of timings for the Shimizu–Morioka system calculated
from the iterates derived map with noise strengths εσ = 0, 10−4, 10−3 and 4 × 10−3 for
parameters α = 0.4 and λ = 1.1954.

where ξ(t) is a white noise forcing, and σ is an O(1) constant.
When σ = 0, this system has an unstable saddle at the origin, with a one-dimensional

unstable direction and a two-dimensional unstable direction in which the dynamics are a
focus. A sample trajectory for γ = 0.7 and c = 1.108 is shown in Figure 3 along with the
nearby homoclinic orbit with c ≈ 1.107887 which we label H(t), and the time origin is such
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that H(t) takes its maxima at t = 0. We label the parameter values at which there exits a
homoclinic orbit as c = c0(γ).

We again make the ansatz

x =
∑
k

θkH(t− tk) + εR, (162)

along with c = c0(γ) + εc1, for some sequence of widely separated times {tk} so that
HkHk±1 = O(ε) and the polarity θk = ±1 accounts for the symmetry x 7→ −x.

The O(ε0) equation is satisfied automatically, and the O(ε) equation is

LkR = c1θkHk −
3

ε
H2
k(θk+1Hk+1 + θk−1Hk−1)− σξ(t), (163)

where

Lk =
d3

dt3
+ γ

d2

dt2
+

d

dt
− c0 + 3H2

k . (164)

Now define the adjoint operator to Lk,

L†k = − d3

dt3
+ γ

d2

dt2
− d

dt
− c0 + 3H2

k , (165)

and the null adjoint solution Nk(t) 6= 0 by

L†kNk = 0. (166)

Multiply the equation for R through by Nk(t) and integrate to obtain

0 = c1θkA−
3

ε

∫ ∞
−∞

NkH
2
k(θk+1Hk+1 + θk−1Hk−1) dt− σ

∫ ∞
−∞

Nkξ dt, (167)

where

A =

∫ ∞
−∞

c1NkHk dt. (168)

We know that

H ∼

{
h0e

λt as t→ −∞,
h∞e

−µt cos(ωt+ φ) as t→∞,
(169)

where λ is the unstable eigenvalue of the origin, and −µ ± iω is the stable eigenvalue, for
some h0, h∞ and φ.

Since the pulse train of homoclinic orbits are widely separated, we have that

3

∫ ∞
−∞

NkH
2
kHk+1 dt ∼

∫ ∞
−∞

NkH
2
kh0e

λ(t−tk+1) dt (170)

= 3h0e
λ(tk−tk+1)

∫ ∞
−∞

NkH
2
ke
λ(t−tk) dt (171)

= 3h0e
−λ(tk+1−tk)

∫ ∞
−∞

NH2eλt dt (172)

≡ e−λ(tk+1−tk)D (173)
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and also

3

∫ ∞
−∞

NkH
2
kHk−1 dt ∼

∫ ∞
−∞

NkH
2
kh∞e

−µ(t−tk−1) cos(ω(t− tk−1) + φ) dt (174)

= 3h∞e
−µ(tk−tk−1)

[
cos(ω(tk − tk−1) + φ)

∫ ∞
−∞

NH2e−µt cos(ωt) dt

− sin(ω(tk − tk−1) + φ)

∫ ∞
−∞

NH2e−µt sin(ωt) dt

]
(175)

≡ e−µ(tk−tk−1) cos(ω(tk − tk−1) + Φ)B (176)

Defining the time interval between pulses ∆k ≡ tk − tk−1, we obtain

θk+1e
−λ∆k+1 = εθkC + θk−1Ee

−µ∆k cos(ω∆k + Φ) + εσMηk, (177)

where ηk ∼ N (0, 1), and

C =
A

D
, (178)

E = −B
D
, (179)

M2 =

(
1

D

)2 ∫ ∞
−∞

N2 dt. (180)

Figure 13: Times between pulses for the deterministic timing map (177) iterated 106 times
(blue) and a full numerical simulation with 5500 pulses (red) for c = 1.108 and γ = 0.7.

To verify that we have obtained the correct timing map, we first remove the noise term,
setting σ = 0. Figure 13 shows a comparison of the times between pulses for a full numerical
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Figure 14: Probability density of times between pulses for the timing map (177) iterated
106 times (blue) and a full numerical simulation with 560 000 pulses (red) for c = 1.108 and
γ = 0.7 with noise strength εσ = 10−6.
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Figure 15: The pdf for the timing map (177) for noise strengths εσ = 0 (dark blue), 10−6

(purple), 10−5 (orange), 2 × 10−5 (light blue), 5 × 10−5 (green), 10−4 (red) and 2 × 10−4

(magenta).

simulation of (161) and the derived timing map (177) iterated 106 times for c = 1.108 and
γ = 0.7. The agreement is excellent.

Figure 14 shows a comparison of the probability density of timings ρ(∆) for noise
strength εσ = 10−6 for the timing map (177) iterated 106 times and a direct numerical
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computation of (161) for 560 000 pulses. The agreement is excellent, and so we now deal
only with the map.

Figure 15 shows the probability density of timings ρ(∆) for a range of noise strengths,
as well as the deterministic invariant measure normalised to be a probability density. For
very small noise strengths, the peaks of the invariant measure are simply rounded off. For
larger noise strengths, the peaks in the invariant measure are fully homogenised, and a new
smooth peak begins to arise at smaller ∆. Appendix B shows images of the stationary
distribution for a large range of εc1 and εσ. The main features are that as noise strength is
increased, it affects large ∆ and small c1 first. We see clearly that attractors with high ∆
are rapidly smoothed out, and the densities begin to be centered around attractors at lower
∆. There is also evidence of exponential tails at large ∆. This is to be expected, since

ρ∆(∆) = λe−λ∆ρz(e
−λ∆) ∼ λe−λ∆ρz(0) as ∆→∞, (181)

and so we obtain exponential tails provided that ρz(0) is bounded. We can demonstrate
this by observing that

ρz(0) =
1√

2πa2

∫
e−[f(s)]2/2a2ρz(s) ds ≤ 1√

2πa2

∫
ρz(s) ds =

1√
2πa2

. (182)

Figure 16: Times between pulses for the timing map (177) iterated 106 times for noise
strength εσ = 10−6 (purple), 10−5 (yellow), 10−4 (red) and 4× 10−4 (blue) and the deter-
ministic timing map (177) (black lines).

To investigate the emergence of the new peak in the probability density ρ(∆), in Figure
16 we plot iterates of the timing map (177) for various noise strengths εσ along with the full
deterministic map. For the deterministic case, iterates of this map reside in the attracting
set which has ∆ & 15, see Figure 13. For very weak noise, the attracting set remains much
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the same, but is simply smoothed out a little. Larger noise strengths blur the deterministic
attracting set completely, but in addition begin to realise, and are attracted to, parts of
the deterministic map at smaller ∆. Such phenomena have been observed by numerous
authors, and are often referred to as ‘noise induced boundary crises’ [11, 8].

There is also a noise threshold beyond which a significant number of trajectories are
attracted to the peak in the deterministic map just to the left of ∆ = 10 beyond which the
map breaks down, and iterates diverge to −∞. This can be rationalised by noticing that
the time of flight for H(t) is approximately 10, and so ∆ < 10 represents solutions that do
not visit the origin at all, and the assumption of widely spaced pulses is no longer valid.

5 Conclusions

Through generalising the singular perturbation analysis of homoclinic pulse dynamics in
ODEs [4] to stochastic systems, we have demonstrated that for a large class of near-
homoclinic dynamical systems, the most significant effect of noise on the timing between
homoclinic pulses and on the position of return of trajectories to the origin is due to a
cumulative effect of noise on the trajectory away from the origin, rather than the details of
the dynamics near to the origin as originally conjectured by Stone and Holmes [17]. This cu-
mulative effect may be interpreted as providing a random kick sampled from a well-defined
normal distribution to a deterministic trajectory just as it enters any domain of interest
centred around and close to the origin, and that this kick is asymptotically large when
compared to the effect of noise within this domain, in which its role is simply to provide a
buffer region of size O(ε) about the stable manifold from which the stochastic trajectory is
ejected, preventing trajectories from remaining within the domain.

We are able to make good analytical progress in the two-dimensional Duffing system
since the resulting return map has a stable fixed point that we can expand around. For
sufficiently small amplitude noise, the dynamics are controlled by the distance from ho-
moclinicity, whilst for sufficiently large amplitude noise, the dynamics is controlled by the
noise by creating an effective distance from homoclinicity based on the standard deviation
of the resulting stationary distribution of the return map.

The derived maps for the Shimizu–Morioka model have nearly the same functional form
as the Duffing system, but the parameter values here allow chaotic solutions. In this system
we demonstrated that the singular perturbation analysis is easily generalisable to inherently
multidimensional dynamics.

The derived maps for Shilnikov system have a rich and varied behaviour, as shown in
Appendix B. Noise acts to smooth out the deterministic system, first at small deviations
from homoclinicity and large spacings, and eventually at all parameter values as the noise
amplitude is increased from zero. We also see noise induced boundary crises [11, 8] in which
the presence of noise causes the stationary distribution to no longer be centered around
the large spacing deterministic attractor, but to swap to another deterministic attractor at
smaller spacing.

In all systems we observe exponential tails in the distribution of timing spacings as in
Stone and Holmes [18], but note that this phenomenon is simply a manifestation of a change
of variables from return points to timings.
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We have developed a toolbox for investigating the effects of noise on homoclinic trajec-
tories and have applied it to the two canonical homoclinic bifurcation scenarios, Lorenz and
Shilnikov. Looking forward, we are now in a position to investigate more exotic systems
like heteroclinic networks, bifocal orbits and excitable systems.

We also wish to apply the ideas contained withing this report to PDEs that contain
traveling wave solutions that are of homoclinic or heteroclinic type. Near-homoclinic pulses
can be interpreted as coherent structures in a number of physically relevant PDEs with
traveling wave solutions [3]. A canonical example would be the real Ginzburg–Landau
equation which has ‘kink’ solutions that connect two equilibria. It is know that an initial
distribution of kinks that connect back and forth between the two equilibria will evolve in
time to collide and annihilate each other in finite exponential time [3]. Given the results
presented here, it seems likely that for stochastic dynamics, these annihilations will still
occur, but instead because the kinks will begin to behave like Brownian random walkers.
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A Separating the directions of noise near the Duffing saddle

A.1 Noisy stable direction, ξx1 6= 0 in D

In this case, the deterministic results for x2 still hold, and so the nth residence time tn still
satisfies

tn =
1

λ
log

(
δ

zn

)
, (183)

provided that zn is known. Since we know that upon entrance we have x1 = δ, we wish to
solve the Ornstein-Uhlenbeck process for x1 for the transition probability density

ρ(x1, tn|δ, 0). (184)

The known solution to for x1 is

ρ(x1, tn|δ, 0) = Nx1
(
δe−µtn ,

ε2

2µ
(1− e−2µtn)

)
(185)

= Nx1
(
δ1−µ/λzµ/λn ,

ε2

2µ
(1− δ−2µ/λz2µ/λ

n )

)
(186)

This transition probability density is the the probability density of the exit points wn.
Recalling the linear mapping

zn+1 = αwn + c, (187)

along with standard results for linear combinations of normally distributed random vari-
ables, we see that

ρ(zn+1|zn) = Nz
(
αδ1−µ/λzµ/λn + c,

α2ε2

2µ
(1− δ−2µ/λz2µ/λ

n )

)
. (188)

Finally, since tn = − log(zn/δ)/λ, we have

ρ(tn+1|tn) ≈

λe
−λtNe−λt

(
αe−µtn + c/δ, α

2ε2

2µδ2
(1− e−2µtn)

)
for δ � c� ε,

2λe−λtNe−λt
(
αe−µtn , α

2ε2

2µδ2
(1− e−2µtn)

)
for c� ε.

(189)

For long residency times with µtn � 1, which is valid for δ small enough such that the
deterministic trajectories are very close to the homoclinic orbit, we can make the approx-
imation e−µtn ≈ 0. This is formally equivalent to assuming that trajectories through D
attain a statistically steady state before leaving D. In this case, we obtain

ρs(wn) = Nw
(

0,
ε2

2µ

)
, (190)

ρs(zn) = Nz
(
c,
α2ε2

2µ

)
, (191)

ρs(tn) =

λe
−λtNe−λt

(
c
δ ,

α2ε2

2µδ2

)
for δ � c� ε,

2λe−λtNe−λt
(

0, α
2ε2

2µδ2

)
for c� ε.

(192)
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In particular, Es(wn) and Es(zn) are the same as the deterministic result either under the
assumption that µtn � 1 or in the limit n→∞.

Also, for ε� c� δ � 1 we have

Es(tn) =

∫ ∞
0

λte−λt√
πα2ε2/µδ2

exp

[
−(e−λt − c/δ)2

α2ε2/µδ2

]
dt (193)

∼ 1√
πα2ε2/µδ2

∫ ∞
−∞

λt∗e
−λt∗e−λ

2c2µ(t−t∗)2/α2ε2dt (194)

∼ αε
√
πt∗e

−λt∗

c
√
µπα2ε2/µδ2

(195)

∼ 1

λ
log

(
δ

c

)
, (196)

which matches the deterministic result for c 6= 0, where t∗ = log(δ/c)/λ is the stationary
point of the term in the second exponential, and we have employed Laplace’s method for
approximating integrals, with large parameter δ2/ε2.

For c� ε we have

Es(tn) =

∫ ∞
0

2λte−λt√
πα2ε2/µδ2

exp

[
− e−2λt

α2ε2/µδ2

]
dt (197)

=

∫ 1

0

2

λ
√
πα2ε2/µδ2

log

(
1

y

)
exp

[
− y2

α2ε2/µδ2

]
dy (198)

=

∫ δ
√
µ/αε

0

2

λ
√
π

log

(
δ
√
µ

αεs

)
e−s

2
ds (199)

∼
∫ ∞

0

2

λ
√
π

log

(
δ
√
µ

αεs

)
e−s

2
ds (200)

=

∫ ∞
0

2

λ
√
π

log

(
δ

ε

)
e−s

2
ds+

∫ ∞
0

2

λ
√
π

log

(√
µ

αs

)
e−s

2
ds (201)

∼ 1

λ
log

(
δ

ε

)
, (202)

since the second integral in (201) is just some O(1) number. This is the same result as for
noise uniformly every within D.

Figure 17 shows a comparison between a direct numerical simulation for the return
and leave probability densities ρ(zn) and ρ(wn) respectively, and their long residency time
asymptotic stationary limit for γ = 0.08, β = 0.01, δ = 0.1, ε = 0.0006, α = 1 and c = 0.
There is clearly a very good match. The mean of tn = log(δ/|zn|)/λ is 6.264, and the value
of its asymptotic result log(δ/ε)/λ is 5.325.

A.2 Noisy unstable direction, ξx2 6= 0 in D

In this case we have x1 = δe−µt and x2 satisfies the unstable Ornstein-Uhlenbeck process
with transition density

ρ(x2, t|zn, 0) = Nx2
(
zne

λt,
ε2

2λ
(e2λt − 1)

)
(203)
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Figure 17: Left: Probability density of return points zk to D with δ = 0.1 and noise strength
ε = 0.0006 acting only in the stable direction of the saddle, for parameters γ = 0.08 and
β = 0.1 for a direct numerical simulation with 2250 returns to D (blue histogram) and the
long residency time asymptotic stationary distribution (191) with α = 1 and c = 0 (red
line). Right: Leave points wk.

In the case of large times, λt� 1 we get

ρ(x2, t|zn, 0) ∼ N
(
zne

λt,
ε2

2λ
e2λt

)
(204)

In this limit we also have wn ≈ 0, and so zn+1 ∼ c provided that c is not too small.
In order to find the exit point wn we need a distribution for the time taken for x2 to

leave D. We have by definition

P(tn > t) =

∫ δ

−δ
ρ(x2, t|zn, 0) dx2 (205)

=

∫ δ

−δ

√
λ

πε2(e2λt − 1)
exp

[
−λ(z − zneλt)2

ε2(e2λt − 1)

]
dz (206)

=
1

2

[
erf

(
δ − zneλt

σ(t)

)
+ erf

(
δ + zne

λt

σ(t)

)]
, (207)

where σ(t)2 = ε2(e2λt − 1)/λ ∼ ε2e2λt/λ. Note that under the assumption that zn ∼ c, the
error functions have widely different expansions in all the cases c � ε � δ, ε � c � δ,
ε � δe−λt and c � δe−λt, due to the exponential expansion casing rapid reordering of
terms.
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Define b±(t) = (δ ± zneλt)/σ(t). Then,

ρ(tn|zn) =
d

dt
(1− P(tn > t)) (208)

= − 1√
π

[
b′+e
−b2+ + b′−e

−b2−
]

(209)

=

√
λ3

πε2(e2λt − 1)3

[
(δe2λt + zne

λt) exp

(
−λ(δ + zne

λt)2

ε2(e2λt − 1)

)
+ (δe2λt − zneλt) exp

(
−λ(δ − zneλt)2

ε2(e2λt − 1)

)]
(210)

=

√
λ3

πε2(1− e−2λt)3

[
(δe−λt + zne

−2λt) exp

(
−λ(δe−λt + zn)2

ε2(1− e−2λt)

)
+ (δe−λt − zne−2λt) exp

(
−λ(δe−λt − zn)2

ε2(1− e−2λt)

)]
(211)

Then, since wn = δe−µtn , we have

ρ(wn|zn) =
1

2µwn

√
λ3

πε2(1− (wn/δ)2λ/µ)3[
(δ(wn/δ)

λ/µ + zn(wn/δ)
2λ/µ) exp

(
−λ(δ(wn/δ)

λ/µ + zn)2

ε2(1− (wn/δ)2λ/µ)

)

+ (δ(wn/δ)
λ/µ − zn(wn/δ)

2λ/µ) exp

(
−λ(δ(wn/δ)

λ/µ − zn)2

ε2(1− (wn/δ)2λ/µ)

)]
. (212)

Finally, since zn+1 = αwn + c, we obtain the transtion density

ρ(zn+1|zn) =
1

2µ(zn+1 − c)

√
λ3

πε2(1− ((zn+1 − c)/αδ)2λ/µ)3[
(δ((zn+1 − c)/αδ)λ/µ + zn((zn+1 − c)/αδ)2λ/µ)

exp

(
−λ(δ((zn+1 − c)/αδ)λ/µ + zn)2

ε2(1− ((zn+1 − c)/αδ)2λ/µ)

)
+ (δ((zn+1 − c)/αδ)λ/µ − zn(zn+1 − c)/αδ)2λ/µ)

exp

(
−λ(δ((zn+1 − c)/αδ)λ/µ − zn)2

ε2(1− ((zn+1 − c)/αδ)2λ/µ)

)]
. (213)

Note that unless λ/µ = 1, these distributions are not Gaussian, since for example,
ρ(wn = 0|zn) =∞. In general, we have λ/µ = 1− εγ + O(ε2).

We can approximately find stationary by the relation

ρs(z) =

∫ ∞
−∞

ρ(z|s)ρs(s) ds = limn→∞
1

n

n∑
i=1

ρ(z|zi), (214)

distributions
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where zi is some predetermined sequence of known values of the stochastic process. For
this, we can use DNS of the equations of motion to produce a sequence {zi}n1 for some large
n, and estimate ρs.
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Figure 18: Probability density of return points zk to D with δ = 0.1 and noise strength
ε = 0.0006 acting only in the unstable direction of the saddle, for parameters γ = 0.08 and
β = 0.1 for a direct numerical simulation with 2250 returns to D (blue histogram) and the
long residency time asymptotic stationary distribution approximation (214) with α = 1 and
c = 0 (red line). Right: leave points wk.

Figure 18 shows a comparison between a direct numerical simulation for the return and
leave probability densities ρ(zn) and ρ(wn) respectively, and their stationary approximations
using (214) for γ = 0.08, β = 0.01, δ = 0.1, ε = 0.0006, α = 1 and c = 0. Plotted also is the
Gaussian distribution for noise in the stable direction only. The leaving distribution ρ(wn) is
well approximated by the result here, and is clearly non-Gaussian. The return distribution
ρ(zn) is more closely Gaussian, and suggests that the linear approximation zn+1 = αzn + c
is not completely valid.
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B Stationary probability densities ρ∆(∆) for the Shilnikov
system

B.1 εσ = 0

Figure 19: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 0. Color from blue to yellow represents low to high values.
Scale is arbitrary. White lines show regions plotted in Figures 20 and 21.

Figure 20: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 0. Color from blue to yellow represents low to high values.
Scale is arbitrary. White lines show region plotted in Figure 21.
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Figure 21: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 0. Color from blue to yellow represents low to high values.
Scale is arbitrary.

B.2 εσ = 10−8

Figure 22: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−8. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show regions plotted in Figures 23 and 24.
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Figure 23: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−8. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show region plotted in Figure 24.

Figure 24: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−8. Color from blue to yellow represents low to high
values. Scale is arbitrary.
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B.3 εσ = 10−7

Figure 25: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−7. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show regions plotted in Figures 26 and 27.

Figure 26: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−7. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show region plotted in Figure 27.
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Figure 27: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−7. Color from blue to yellow represents low to high
values. Scale is arbitrary.

B.4 εσ = 10−6

Figure 28: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−6. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show regions plotted in Figures 29 and 30.
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Figure 29: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−6. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show region plotted in Figure 30.

Figure 30: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−6. Color from blue to yellow represents low to high
values. Scale is arbitrary.
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B.5 εσ = 10−5

Figure 31: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−5. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show regions plotted in Figures 32 and 33.

Figure 32: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−5. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show region plotted in Figure 33.
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Figure 33: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−5. Color from blue to yellow represents low to high
values. Scale is arbitrary.

B.6 εσ = 10−4

Figure 34: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−4. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show regions plotted in Figures 35 and 36.
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Figure 35: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−4. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show region plotted in Figure 36.

Figure 36: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−4. Color from blue to yellow represents low to high
values. Scale is arbitrary.
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Instantons as a Means to Probe Chaotic Attractors

Andre Souza

October 15, 2015

1 Introduction

In systems with chaos one is often left bewildered on how to make sense of its dynamics.
The extreme sensitivity to initial conditions renders our quantitative predictions useless,
and yet there are often qualitative features that are robust to our ignorance. Even though
chaotic dynamics are described by deterministic procedures, its unpredictability in the long
run forces us to look at statistical quantities of interest; means, variances, correlations, or
even the distribution of the state variables.

Normally one calculates these chaotic statistics by running long simulations, a brute
force approach. Ideally one would like a faster method of obtaining statistics and, more
ambitiously, understanding the structures that lead to the observed chaotic statistics.

Lately there are programs that try to exploit small noise limits and large deviation
theory in order to provide insight into the equations of motion [4]. Here one first formulates
a stochastic version of the state equations of interest, thus recasting the problem as one
of stochastic differential equations. Fokker-Planck equations and path integrals now come
into play as tools of investigation.

The goal of this WHOI: GFD 2015 project is to examine the stochastic version of chaotic
deterministic systems in order to see whether or not the noiseless limit may be exploited to
further understand the underlying deterministic dynamics. We will look at chaotic systems
and present instanton calculations as well as their interpretation. In light of the results we
comment on the applicability of the instanton formulation to turbulent flows.

2 Background

The necessary background to understand the instanton approach requires an understand-
ing of random variables, multivariable calculus, recurrence relations, differential equations,
asymptotics, and calculus of variations. The details are technical, but absolutely neces-
sary to grasp the instanton formulation and interpretation. The excellent review article by
Grafke et al. [3] covers the basics, but we shall go over them in more detail.
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2.1 Path integrals

During the 2015 summer at the WHOI: GFD program we learned how to make sense of
stochastic differential equations with delta correlated Gaussian white noise,

ẋ = f(x) + εξ,

where ε ∈ R is the noise strength, by considering it as the N → ∞ limit of the Euler
recursion relation

Xn = Xn−1 + ∆tf(Xn−1) + ε
√

∆tGn.

Here ∆t = T/N , T is the “endtime”, and each Gn for n = 1, 2, ..., N is a normally identically
distributed Gaussian random variable with mean zero and variance one. We think of ~X =
(X1, ..., XN ) as the path, an element Xn as a position, and X0 specifically as the starting
position. Although each step of our recursion relation is a Gaussian random variable with
a mean (or drift) given by the deterministic trajectory Xn−1 + ∆tf(Xn−1) and variance
ε
√

∆t, the statistics of Xn are highly influenced by its history and the form of f , possibly
leading to deviations from Gaussian statistics.

For a given stochastic process we are generally interested in observables that depend in
some way on the “path” ~X, for example, the distribution of the position at the endtime
XN . We would like an expression for the density of ~X in order to more conveniently
calculate such quantities. This may be done by observing that the recursion relation is
a change of variables from Gaussian random variables ~G = (G1, G2, ..., GN ) to the path
~X = (X1, X2, ..., XN ) given by

Gn =

(
Xn −Xn−1

∆t
− f(Xn−1)

) √
∆t

ε

The Jacobian of the transformation is a lower triangular matrix[
∂ ~G

∂ ~X

]
ij

=


1

ε
√

∆t
if i = j

− 1
∆t − ∂xi−1f if i− 1 = j

0 otherwise

from whence we can calculate the determinant as the product of the diagonals

det

[
∂ ~G

∂ ~X

]
=

(
1

ε
√

∆t

)N
.

We can now leverage our knowledge of Gaussian distributions and use our change of
variables calculation to give an expression for the probability density ρ in terms of the
path,

ρ(~g)dV = e−
1
2

∑N
n=1(gn)2

N∏
n=1

[√
1

2π
dgn

]
⇔

ρ(~g(~x))dV = e
− 1

2ε2

∑N
n=1

(
xn−xn−1

∆t
−f(xn−1)

)2
∆t

N∏
n=1

[√
1

2π∆tε2
dxn

]
.
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We use the lower case to denote a specific realization of the random variable. An inter-
esting feature of this reformulation is that the deterministic trajectory, given by xn+1 =
xn + ∆tf(xn) is the path that is given the most amount of weight and where the devia-
tions from determinism are penalized by an exponentially weighted factor that is inversely
proportional to the square of the noise strength ε. In the small noise limit this implies that
nondeterministic paths are highly unlikely.

The path integral is the “N →∞” limit of our finite path space integral, leading to the
density

e
− 1

2ε2

∑N
n=1

(
xn−xn−1

∆t
−f(xn−1)

)2
∆t

N∏
n=1

[√
1

2π∆tε2
dxn

]
“

limN→∞= ”e−
1

2ε2

∫ T
0 (ẋ−f(x))2dtD[x(t)]

where the differential element D[x(t)] has the normalization factor buried in it. The action
in the argument of the exponential is known as the Friedlen-Wentzell action and will be the
central object of concern for the calculations in this document. This will be expanded upon
later.

If we are only interested in the distribution of our path at the endtime x(T ), we may
formally obtain it by considering

ρ(x(T ))dx(T ) = lim
N→∞

[
ρ(xN , T,N)

√
1

2πε2∆t
dxN

]

ρ(xN , T,N) =

N−1∏
n=1

[√
1

2π∆tε2

∫
R
dxn

]
e
− 1

2ε2

∑N
n=1

(
xn−xn−1

∆t
−f(xn−1)

)2
∆t
.

We shall see that we can sometimes get away with performing a simpler calculation but
at the cost losing the normalization factor. This formulation for the distribution at the
endtime can be directly compared to the usual Fokker-Planck evolution for the density,

∂tρ = −∂x(fρ) +
ε2

2
∂xxρ.

The Fokker-Panck equation states that the evolution of the density is one that is advected
by the determistic equations of motion and diffused due to the noise, whereas the path
integral states that the distribution at the endtime comes from an exploration of all possible
paths weighted most heavily be the deterministic trajectories. These are two different but
complementary interpretations for the evolution of the density.

We will never make use of the limit definition in order to calculate the endtime density,
but it is illuminating to see what such a calculation would entail. If one attempts to calculate
the density at the endtime using the limit definition of the path integral formulation, the
following integral for the first time-step arises∫ ∞

−∞
exp

[
− 1

2ε2

(
x1 − x0

∆t
− f(x0)

)2

− 1

2ε2

(
x2 − x1

∆t
− f(x1)

)2
]
dx1.

The role of f manifests itself in this case. Although we are interested in the ∆t→ 0 limit,
nonlinearity in f may dominate the integral, changing the Gaussian statistics. Depending
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on the system of interest this may or may not be an impediment to progress for analytic
calculations. This is an explicit manifestation of how a path is dependent on its history.
Thus we are led to different ways of calculating or estimating the integral.

2.2 Large deviation theory

Traditional large deviation theory concerns itself with the probability that sums of inde-
pendent identically distributed random variables deviate from the mean by a large value.
Namely, let X1, ..., XN be independent identically distributed random variables and let SN
denote their sum. If the moment generating function M(t) = EetX is finite within some
neighborhood of t = 0 and 0 < var(X), then for a > EX

1

N
logP(SN > Na)→ −I(a) as N →∞

where I(a) = sups [sa− log(M(t))]. The I(a) object is called the rate function.The log of
the moment generating function is called the cumulant generating function.

In stochastic differential equations our random variables are no longer independent since
they satisfy a Markov property; however, it is still possible that a large deviation principle
may be satisfied. We say that a density satisfies a large deviation principle if

ρ(a) ∼ exp

(
− 1

ε2
I(a)

)
for some rate function I(a) in the limit ε→ 0. Similar to what happens in the independent
identically distributed case the cumulant generating function may be related to the rate
function. In the ε→ 0 limit the calculation goes as follows

ε2 log
〈
e
λ
ε2
X(T )

〉
∼ ε2 log

[∫ ∞
−∞

da exp

(
λ

ε2
a+ ln ρ(a)

)]
= ε2 log

[∫ ∞
−∞

da exp

(
λ

ε2
a− 1

ε2
I(a)

)]
≈ ε2 log

(
D exp

[
1

ε2

(
sup
a

[λa− I(a)]

)])
= ε2 log(D) + sup

a
[λa− I(a)]

≈ sup
a

[λa− I(a)]

where in the first approximation we used Laplace’s method to estimate the integral and
picked up an extra constant D, and in the second approximation we assumed that ε2 log(D)
goes to zero in the limit. As is usual in the case of asymptotics we expect the formula
to be very good for small but finite ε, even though we formally did the calculation for
the limit. Succinctly we may say that the log of the moment generating function is the
Fenchel-Legendre Transform of the rate function.
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On the other hand we can repeat the same calculation with the path integral formulation.
In this case we have that

ε2 log
〈
e
λ
ε2
x(T )

〉
= ε2 log

[∫
D[x(t)] exp

(
1

ε2
[λx(T )−A[x]]

)]
≈ ε2 log

[
D1 exp

(
1

ε2
sup
x(t)

[λx(T )−A[x]]

)]
≈ sup

x(t)
[λx(T )−A[x]]

whereA[x] = 1
2

∫ T
0 (ẋ− f(x))2 dt, the first approximation came from using Laplace’s method

on the functional, D1 is the constant that comes from our cavalier use of path integrals and
Laplace’s method, and the last approximation comes from assuming that ε2 log (D1) → 0
as ε→ 0.

Assuming that all the approximations are valid, we may put our two calculations to-
gether to arrive at the following relation

sup
a

[λa− I(a)] = sup
x(t)

[λx(T )−A[x]]

when ε→ 0. Again we do not expect exact equality for non-zero epsilon but we do expect
this expression to be approximately valid.

We now further make the claim that the rate function I is directly related to the action.
Justifying that it is the case follows under the assumptions of Friedlen-Wentzell theory, but
here we will give a heuristic argument. Suppose that both sides admit a unique minimizer
for some number a∗ and some path x∗, then we have that

λ(x∗(T )− a∗) + I(a∗) = A[x∗].

Furthermore, if x∗(T ) = a∗, then

I(a∗) = A[x∗].

It may be possible for this to occur if A[x∗] is convex and the rate function I(a) is convex
in which case the Fenchel-Legendre Transforms are invertible. From whence we see that it
must be the case that I(a∗) = A[x∗], that is, x∗(T ) = a∗. If neither are convex then the
most we can say is that their convex envelopes are equivalent to one another.

Although here we focused on the distribution at the endtime x(T ) we may choose any
other observable and follow the same procedure to get a relation between an observable
and the minimizer of an action. For example we could choose x(T )2 or the average value

of the trajectory T−1
∫ T

0 x(t)dt in the time interval as our observable. Regardless of the
exact choice, the rate function would be related to the minimizer of a functional subject to
a constraint.

2.3 Instantons

In the previous section we saw that the minimizers of the Friedlen-Wentzell action play a
direct role in determining the probability distribution function of a random variable under
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a large deviation assumption. We call the minimizer of this action the instanton. It has the
interpretation of being the “most likely path” of a stochastic trajectory conditioned on the
starting and ending value.

Although a given realization of a stochastic process bears no resemblance to the instan-
ton, it is still the most likely path in the following sense: If one generates a large ensemble
of stochastic trajectories and filters out all the ones that reach within an epsilon window of
the target value of an observable (for example all trajectories such that x(T ) ∈ [a− ε, a+ ε]
for some number a and positive number epsilon), then the instanton trajectory corresponds
to the locations in space (for each time) in which the most number of trajectories pass
through. Said differently, we divide up space and time into a bunch of little squares and
we tally the number of times a square has a trajectory that passes through it. The squares
with the most number of tallies is the instanton trajectory, the most likely path.

However we do not (in this document) use this stochastic formulation to calculate in-
stantons, rather, we concentrate purely on finding the infimum of the Friedlen-Wentzell
action. To find the infimum of the functional we employ calculus of variations machinery.
Although setting a derivative equal to zero only yields a local minimizer, it is often the
only way we can make progress in obtaining potential global minimizers. We will impose
constraints into the minimization procedure, things like demanding that the final value of
our trajectory attains a certain value or perhaps the average value. Both the Lagrangian
and Hamiltonian formulations have their uses and in this document we will employ both.

We will now concentrate our efforts on determining trajectories that minimize the action

A[x] =
1

2

∫ T

0
‖ẋ− f(x)‖2 dt

subject to x(0) = a and x(T ) = b, where x : R → Rn, f : Rn → Rn, and ‖ · ‖ is the usual
Euclidean norm. This is the multidimensional form of the action in the path integral that
was derived in the last section. It is straightforward albeit somewhat tedious to arrive at
this expression from first principles.

As per usual we try to minimize our actions by calculating derivatives and setting it
equal to zero. Variations of the action A with respect to the path x yield

δA

δx
= − d

dt
(ẋ− f(x))− [∇f ]T (ẋ− f(x))

= −ẍ+
(
∇f − [∇f ]T

)
ẋ+ [∇f ]T f(x).

Upon setting the variation equal to zero we derive the Lagrangian form of the equations

ẍ =
(
∇f − [∇f ]T

)
ẋ+ [∇f ]T f(x).

A solution to this set of equations with the given boundary conditions is our instanton. We
have not yet mentioned how to solve such an equation, but this will come shortly.

We may also solve the Hamiltonian form of the equations of motion

ẋ = f + p

ṗ = −[∇f ]T p.
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These will be what we will refer to as the instanton equations. The conjugate momenta p
can be thought of as the necessary stochastic forcing to drive the state variables away from
deterministic trajectories. Note that p = 0 corresponds to the deterministic trajectory.

The Hamiltonian form of the equations can be thought of as directly coming from the
action

B[x, p] =

∫ T

0
〈p, ẋ− f(x)〉 − 1

2
‖p‖2.

Going from the A action to the B action is called the Hubbard-Stratonovich transformation.
This can be derived directly from the path integral representation. The one dimensional
equivalent of this transformation is the identity

1√
2π

∫ ∞
−∞

e−
1
2
y2
dy =

1

2π

∫ ∞
−∞

dy

∫ ∞
−∞

dxe−
1
2
x2+ixy.

If we want to build in constraints we can introduce Lagrange multipliers to again reduce
the problem to one of unconstrained optimization. For example, suppose that we would like
to enforce the endpoint condition that x(T ) = b. Although we typically set up the calculus
of variations problem with this kind of constraint built in, we can also think of it in terms
of finding the critical points of the augmented actions

A[λ, x] = −〈λ, x(T )− b〉+A[x]

B[λ, x, p] = −〈λ, x(T )− b〉+B[x, p]

For our purposes here we will concentrate on the latter action. If one performs the usual
calculation1 on this object one sees that the conjugate momenta come equipped with an
endpoint condition of the from p(T ) = −λ. This may be derived several ways. One way
is to consider variations of x and p that don’t vanish at the endpoints in which case, for
integration by parts to hold, it must be that p(T ) = −λ. The conjugate momenta equations
(as we shall see) are naturally evolved backwards, thus letting us avoid the awkwardness
associated with solving boundary value problem via a shooting method or higher order
method such as Newton-Kantorovich iteration.

Suppose that we, instead would like to consider a constraint on the average value of our
state. Then the augmented actions look like

A[λ, x] = −λ
(

1

T

∫ T

0
x(t)dt− b

)
+A[x]

B[λ, x, p] = −λ
(

1

T

∫ T

0
x(t)dt− b

)
+B[x, p].

From whence the Hamiltonian form of the instanton equations get modified to

ẋ = f + p

ṗ = −[∇f ]T p− λ

T
.

1Calculating the derivative by considering variations of trajectories and using integration by parts when
necessary.
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Hence we see that constraints on the state variables manifest themselves as conditions on
the conjugate momenta. Here p(T ) = 0 at the endtime is the natural boundary condition.
This natural boundary condition can be derived in two ways. The first is by requiring
integration by parts to hold and treating the endpoint variations as nonvanishing. The
other derivation assumes that the endpoint variations vanish and then maximizes over all
endpoint conditions for p. In the case that we are enforcing a bulk integral constraint we
add an inhomogenous term to the p equation and in the case of an endpoint condition we
gain endpoint conditions for p.

In the sections that follow we will show how to use the instanton equations to solve for
the probability densities of observables. Finally, we comment that is not necessarily the
case that the instanton equations offer a unique solution. With multiple solutions to choose
from we must pick out the one that minimizes the action as corresponding to the “true”
instanton.

2.4 Example 1: Brownian motion

We will now put together all the theory and perform a few calculations. The simplest one
is finding the probability distribution of Brownian motion in one dimension. Specifically
the system that we will be looking at is

ẋ = εξ

where ξ is delta correlated Gaussian white noise and ε 6= 0 is our “noise strength”. Our
observable of interest will be x(T ), the distribution of x at the final time T .

We can readily obtain this distribution by solving The Fokker-Planck equation

∂tρ = −ε
2

2
∂xxρ.

We will assume that the trajectory starts at x(0) = 0, meaning that the initial density is
ρ(b, 0) = δ(b). Given this initial condition the probability distribution for a later time T is
calculated to be

ρ(b, T ) =
1√

2πε2
e−

1
2ε2

b2

T .

We will now arrive at the same probability distribution via the instanton approach.
First note that the probability distribution for the position at the final time satisfies a large
deviation principle. Furthermore, Laplace’s method is exact for Gaussian distributions,
hence we expect the instanton approach to yield very good answers.

Given that our observable is the trajectory at the final time x(T ) = b the Hamiltonian
form of the instanton equations are

ẋ = p

ṗ = 0
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with x(0) = 0, p(T ) = −λ, and x(T ) = b, which can be readily solved to yield

x∗(t) = −λt
p∗(t) = −λ

λ = − b
T
.

To solve this system of equations we do not necessarily need to specify where the trajectory
ends up beforehand (the x(T ) = b condition). Indeed if we specified λ at the outset, this
would have implicitly defined an endpoint x(T ). The Lagrange multiplier λ implicitly en-
forces this constraint. In nonlinear systems a choice of λ will often not lead to a unique final
value for x(T ), but for nondegenerate linear systems we expect uniqueness. Furthermore,
we expect that for a given final value there always exists a λ such that x(T ) = b for an
arbitrary b. Heuristically, this comes from the fact that we can imagine noise driving our
system to any point in phase space. This is not true if there are regions where the noise is
zero.

The solution x∗(t) = b
T t is the instanton for the Brownian motion system and it also

happens to be the global minimizer of the action. It says that the most likely path of an
observable that starts at x(0) = 0 and reaches x(T ) = b is a straight line. Again, this does
not mean that a Langevin trajectory will look like this, but rather that an ensemble of
paths pass through this straight line with more likelihood than other points in spacetime.
Now that we have our instanton we can calculate the probability distribution via the large
deviation assumption

ρ(b, T ) ∼ exp

(
− 1

2ε2
A[x∗]

)
= exp

(
− b2

2ε2T

)
which is proportional to the exact probability distribution obtained from the Fokker-Planck
equation. The reason that the normalization factor is lost is a consequence of the path
integral formulation and Laplace’s method. Recapitulating, we have solved a continuum of
ODE’s to arrive at the same density as the solution to the Fokker-Planck PDE.

We chose our observable to be the state of the system at the final time, but there is no
reason why we cannot consider different objects, for example the average value of the path
1
T

∫ T
0 x(t)dt, or even the square of the state at the final time 1

2x(T )2. The former presents
no difficulties, but the latter brings up some interesting issues. There the final condition
of p is p(T ) = −λx(T ) and when one solves the equations one see that λ = −T−1, it is
independent of b. Furthermore the instanton is exactly the same as was the case for the
observable at the final value case. First of all this cannot be correct because x(T )2 cannot
take negative values, thus these equations can break down and it pays to be wary of their
limit.

2.5 Example 2: Ornstein-Uhlenbeck process

A slightly more complicated example of using the instanton equations to obtain the proba-
bility distribution comes from examining Ornstein-Uhlenbeck processes. We will repeat the
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same calculation as the previous section for this system. The stochastic ode is of the form

ẋ = −γx+ εξ

where ξ is again taken to be Gaussian delta correlated white noise and γ > 0. The Fokker-
Planck equation in this case is

∂tρ = −γ∂x (xρ) +
ε2

2
∂xxρ

whose solution for ρ(b, 0) = δ(b− a) is

ρ(b, t) =

√
γ

πε2 (1− e−2γt)
exp

(
− γ
ε2

[(
b− ae−γt

)2
1− e−2γt

])
.

Again a large deviation principle is satisfied, and the solution is a Gaussian, hence we expect
that the instanton equation will yield the exact answer in this case. Choosing our observable
to x(T ) we get the instanton equations

ẋ = −γx+ p

ṗ = γp

with x(0) = a, p(T ) = −λ, and x(T ) = b. The solution to these equations are

x(t) = ae−γt − e−γT λ

2γ

(
eγt − e−γt

)
p(t) = −λeγ(t−T )

b = ae−γT − λ

2γ

(
1− e−2γT

)
Plugging the instanton into to the action yields

ρ(b, T ) ∼ exp

(
− 1

2ε2
A[x]

)
= exp

(
− 1

2ε2

∫ T

0
p(t)2dt

)
= exp

(
− γ
ε2

[(
b− ae−γt

)2
1− e−2γT

])
.

Again we see that we get the same result as before, but without the normalization factor.

2.6 Numerically solving the instanton equations

Although there are more cases that can be handled analytically for more complicated sys-
tems we must fall back on computing the solutions numerically. To do so we find the
Hamiltonian formulation the easiest “deterministic” way to compute the instantons. In the
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multidimensional setting the equations of motion for the distribution of a state variable at
the endtime is

ẋ = f(x) + p

ṗ = −[∇f ]T p

with boundary conditions x(0) = a, p(T ) = λ, x(T ) = b. If our interest is in, let’s say, just
the i′th component of the vector xi, then λj = 0 for j 6= i. This is equivalent to computing
the probability distribution of xi with all the other variables integrated out. The adjoint
operator −[∇f ]T may be calculated by hand.

The algorithm to solve the instanton equations goes as follows:

1. Given the conjugate momenta p(n), evolve the state equation equation forward in time
using the initial condition x(0) = a to generate a new state x̃(n).

2. Evolve the adjoint equation backwards using p(T ) = −λ and x̃(n) to generate a new
momenta p̃(n).

3. Update x and p via

x(n+1) = (1− s)x(n) + sx̃(n)

p(n+1) = (1− s)p(n) + sp̃(n)

for some s ∈ (0, 1]. This is the relaxation step.

4. Repeat until both x and p stop changing.

To initialize the procedure one may take p(0) = 0 for small λ. Once small λ solutions
are calculated one may proceed to the large λ case by numerically continuing, using the
p solution from the smaller λ as an initial guess for the higher λ. The case s = 1 in
the algorithm corresponds to a fixed point iteration and s ∈ (0, 1) may be though of as
a relaxation type procedure. One may attempt to choose s such that the residual of the
equations are lower at each iteration. There is no guarantee that the algorithm will converge,
but it has been seen to work for a lot of cases considered for this work. It has however, also
failed. Numerically this would correspond to the new search direction given by x(n) − x̃(n)

as being inadequate, leading to s→ 0 as n gets larger.
To evolve the equations forward in time is a problem of numerical integration, of which

there are a large variety of choices; however, one must be careful in choosing a method.
Since both the instanton and the momenta must be known at each point in time to solve
the equations of motion, using a Runge-Kutta scheme necessitates the use of interpolation
to get intermediate values. This added complexity is why we opted for the simpler multi-
step schemes. Heun’s method, followed by third order Adam’s Bashforth is a perfectly
adequate globally third order scheme. Furthermore one must be careful in starting the time
integration scheme. There is no point in using a higher order scheme if the first few time
steps don’t have the same local order as the global order. Hence why we start off with two
steps of Heun’s method and then use Third Order Adam’s Bashforth on the rest.

But how does one verify that one indeed has the solution to the instanton equations?
Doing one fixed point iteration and checking that the answer has not changed is one method.
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A method that corresponds to checking how close our discrete numerical solution is to the
continuum is to check to see that the Hamiltonian is conserved at each point in time. This
is a completely separate check than the one to verify that the discrete equation are satisfied.
Although the continuous system has a Hamiltonian that is conserved at each point in time,
the discrete system need not conserve the discrete Hamiltonian. Generally the Hamiltonian
will not be conserved, but will have slight variations in it that get smaller as one decreases
the time-step. It is very important to check to see that the answer does not change as ∆t
gets smaller.

For systems with a large number of state variables memory requirements start to be
a rate limiting factor. Depending on the choice of noise one can reduce the requirements
by only storing a few states of p and setting the rest to zero. Thus the only thing that
needs to be stored is the state at the beginning time, and the value of p at all times. This
is the algorithm that has been developed by Grafke et al. [3]. However, there is a third
option that eliminates the need of storing x and p at all points in time. Here one uses
both the Lagrangian and Hamiltonian formulation. In this document this method was not
implemented, but was developed just in case it was necessary. The checkpointing method
cannot be used on the Hamiltonian form of the instanton equations, but using both the
Hamiltonian and the Lagrangian formulation, one may employ the checkpoint method from
optimal control theory.

There are other algorithms that could be used as well: for example second order methods
(Newton-Kantorovich iteration), a spectral discretization, Heun’s method, etc. This is in
addition to the direct method, which is done by running the stochastic system directly. We
opted for the simplest (and most standard) method to solve the equations. Although we
did run into difficulty with this simple method, we do not think that this is a consequence
of the method, as will be explained later.

3 Instantons in Chaotic Systems

All the examples that we have talked about so far have been for linear systems that satisfy a
large deviation principle. We would now like to carry this program into the nonlinear regime.
We have seen that instantons can tell us about deviations from deterministic dynamics, but
can it tell us anything about a chaotic attractor itself? The initial motivation for this project
was a paper by Grafke et al. in which they calculated the probability distribution for the
velocity gradient in Burger’s turbulence [4]. In that work the initial condition was taken
to be the origin and the final time T was taken to be infinity. At the end they were able
to show excellent agreement with the calculated probability distribution via the instanton
approach and the one obtained from Monte Carlo simulations of the stochastic system. The
authors then conjectured that the instanton approach should be a viable approach towards
the study of the Navier-Stokes equation.

One of the important things to note is that the deterministic dynamics of Burger’s
equation has no chaos. What is known as Burger’s Turbulence is the stochastically forced
Burger’s equation. Furthermore Burger’s equation is integrable via the Cole-Hopf transfor-
mation in which it can be related to the heat equation. This by no means says that the
stochastically forced Burger’s equation is similar to the stochastically forced heat equation,
but rather says that the underlying deterministic dynamics are non-chaotic.
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This observation prompts one to look at the use of instantons in chaotic systems, in
hopes of calculating similar objects. In Navier-Stokes the dream would be to calculate
the probability distribution of the dissipation ‖∇~u‖2 on the chaotic attractor or perhaps
of a component of the velocity field ~u at a choice point in space. There is an important
caveat here. The probability distribution is constructed from a histogram of the signal
d(t) = ‖∇~u‖2 in the long time limit. This is a deterministic object, completely independent
of noise but hopefully related to the noiseless limit of a stochastic forced Navier-Stokes
system. Hence again we want to understand objects in the noiseless limit, exactly where
the large deviation theory and instanton approach shines the most.

Just because we would like to understand objects in the noiseless limit does not mean
that the instanton is a viable method to understand the invariant measure. The main issue
here is that the invariant measure comes from a long time limit. It is not necessarily the case
that the εrightarrow0 and T →∞ limits commute. This is relevant because the instanton
equations make use of the ε→ 0 limit first.

On the other hand adding noise to the system allows one to explore the entirety of state
space in a finite amount of time via sufficiently large noises. Since deviations away from
deterministic dynamics cost more noise it may be the case that one can explore the invariant
measure. Said differently perhaps the noise makes it easier to access regions of state space
corresponding to the invariant set while penalizing deviations away from the invariant set.
We would want the end result to be independent of what starting point we chose on the
attractor and ideally we would like like to take a long time limit. Unfortunately as we will
see and explain (later), both will be impossible on a chaotic attractor.

However, there is another feature of instantons that make it an interesting tool to use on
chaotic systems: its ability to find “most likely” paths from one point to another. Although
typically this is done in the context of transitions from one stable point to another in systems
that admit a potential function for the forcing term, it may be possible for the instanton
to find “minimal paths” from one exceptional state of the system to another: for example
transitions from one unstable fixed point to another. If this is applicable in simple chaotic
systems it may be the case that new fixed points (coherent structures) may be discovered
in Navier-Stokes equation using the instanton approach.

3.1 Lorenz

The first chaotic system that we will look at are the celebrated Lorenz equations,

ẋ = σ(−x+ y)

ẏ = −y + (r − z)x
ż = −bz + xy,

where σ ∈ (0,∞), r ∈ (0,∞) and b ∈ (0, 4) [6]. The canonical parameter values for the
chaotic regime are (σ, r, b) =

(
10, 28, 8

3

)
. These equations are a prototypical model of

continuous time dynamical systems that exhibit chaos. They were originally derived as a
truncation of Rayleigh’s problem, which is itself a model of thermal convection [5].

Figure 1 shows the trajectory in phase space for a typical initial condition on the at-
tractor. Here one can see the delicate spirals and and low dimensionality of the attracting
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Figure 1: The phase plot of the Lorenz attractor at r = 28, σ = 10, and b = 8/3. The
colors indicate the relative speed of a particle on the trajectory, where red is “fast” and
blue is “slow”.

set2. The holes in the wings are where the fixed points of the systems are located and the
colors represent the relative speed on the attractor where red is fast and blue is slow.

There are several reasons why the Lorenz equations are an attractive testing ground
for the instanton approach. One is that the deterministic dynamics remain bounded for all
time. Secondly the Lorenz equations exhibit chaos, and this is exactly the regime in which
we would like to test some of the instanton ideas. Third there are well defined quantities of
interest that we would like to understand. The observable that we will concentrate on here
is the long time average of the state variables, for example

〈xy〉 = lim sup
T→∞

1

T

∫ T

0
xydt

= b〈z〉

where the last line come from integrating the z equation for a long time, making use of the
fact that the system is bounded for all time. The long time correlation of the x and y state
variables are related to “heat transport” (the Nusselt number) in Rayleigh’s original model.

2Using periodic orbit theory Viswanath estimated the Hausdorff dimension of the set to be approximately
2.06 [8]
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Figure 2: Histogram of Lorenz state variable z on the chaotic attractor for parameter
values r = 28, σ = 10, and b = 8/3.

This quantity has gained some recent attention where one can prove upper bounds in both
the deterministic case and as well as the noisy case [7] [1].

In figure 2 the histogram of z(t) on the chaotic attractor is shown. The average value
of z for parameter values (r, σ, b) appears to be about z(t) ≈ 23.5 ± 0.1. One can see that
this distribution has compact support (as it must be since z is bounded on the attractor),
is highly non-Gaussian, and is strictly positive. If one refines the partition of bins it seems
that the distribution becomes more and more complex, leading to the conjecture that it is
probably fractal.

One expects that this distribution is related to the Lorenz system with a small amount
of noise in the steady state limit. For any amount of noise (however small), we also expect
that the distribution of z becomes infinitely smooth and extends to ±∞ (in contrast to
our compact support for the noiseless case). This conjecture is supported by numerical
evidence by B. Marston et al. in an unpublished (as of October 2015) work. In that study
the steady state Fokker-Planck equation for the Lorenz system was solved numerically and
then directly compared to the long time statistics, albeit for different parameter values than
the canonical ones. Very good agreement was found for a range of “small” noise strength
values.

One of our goals with the instanton formulation is to check whether or not it is possible
to replicate some features of the histogram in 2. For example we would like to test whether
or not the instanton equations are able to pick out the mean value, higher order statistics
such as the variance, or in what way the compact support of the distribution manifests
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itself. We know that the instanton equations keep track of a single trajectory and tells
us deviations away from the determinism whereas the statistics of a chaotic trajectory
only manifest themselves in the infinite time limit. Solving the instanton equations in the
infinite time limit for a point that starts off on the chaotic attractor is not feasible, but
it is possible to solve a finite time computation. Thus we will check these questions for
finite time intervals. Since noise allows one to explore all of phase space in a finite amount
of time3 and typically don’t have distributions with compact support, one may wonder if
adding noise accelerates convergence to steady state distribution. Said differently perhaps
noise lets one peek farther into the future than the deterministic equations.

To this end we will obtain the instanton equations

ẋ = x+ p

ṗ = −[∇f ]T p

for the stochastic Lorenz system with isotropic Gaussian white noise

ẋ = σ(−x+ y) + εξ1

ẏ = −y + (r − z)x+ εξ2

ż = −bz + xy + εξ3.

To get the instanton equations we must first calculate ∇f , which is

∇f =

 −σ σ 0
r − z −1 −x
y x −b


⇒

−[∇f ]T =

 σ −(r − z) −y
−σ 1 −x
0 x b

 .
From this we obtain the following set of coupled nonlinear differential equations,

ẋ = σ(−x+ y) + px

ẏ = −y + (r − z)x+ py

ż = −bz + xy + pz

ṗx = σpx − py(r − z)− pzy
ṗy = py − σpx − pzx
ṗz = bpz + pyx.

As was stated previously the px(t) = py(t) = pz(t) = 0 at each time t case corresponds to
the deterministic evolution. The end condition here is naturally px(T ) = py(T ) = pz(T ) = 0.
There is one nontrivial stochastic solution4 that we can determine exactly from these set

3This is a consequence of distributions coming from stochastic ode’s with Gaussian white noise.
4We can also calculate the fixed points of the deterministic system, but this is not a solution that has

nonzero values for the conjugate momenta.
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of equations which corresponds to the initial condition x(0) = y(0) = px(T ) = py(T ) = 0
and z(0) = a and pz(T ) = b. These final conditions correspond to choosing z(t) as the
observable of interest. The solution is an Ornstein-Uhlenbeck process along the z-axis with
z = 0 being the “stable point”. Experience tells us that this cannot be the solution that we
are looking for though. Since we added isotropic Gaussian white noise we expect probability
to leak from the sides and get wrapped up in the attractor for any finite amount of time.

This brings us to our first departure from the examples that were considered earlier:
we expect multiple solutions to the instanton equations. Given that we are dealing with
nonlinear equations this is perhaps not unexpected, but it is surprising since there is no
mention of it in the literature. An example of this phenomena is summarized by the phase
space plot in 3. Here the initial condition was taken to be the origin and the final condition5

for the conjugate momenta was taken to be px(T ) = py(T ) = 0 and pz(T ) = λ. The figure
displays three solutions corresponding to the same final condition for z. The red straight
line is the Ornstein-Uhlenbeck process solution, while the blue and green curves are two
alternative solutions that achieve the same final value of z. The dots in the figure represent
the fixed points of the Lorenz attractor.

One can see from the figure that the blue and green solutions seem to be converging
to the unstable fixed points of the attractor. Both of the solutions taken together wrap
around the outside of the attractor and appear to be related to the heteroclinic connections
between the origin and the fixed points. The oscillatory nature of the convergence to the
fixed point made taking the long time limit numerically intractable. Furthermore solutions
for larger as well as smaller values of |λ| were found to be very difficult to compute given the
procedure outlined in section 2.6, thus the rate function corresponding to these solutions
were not computed. However, given that the infinite time limit seems to be evolving towards
the fixed point one would not expect the corresponding probability distribution to resemble
that of Figure 2.

To calculate the different numerical solutions one had to generate different initial guesses
for the starting conjugate momenta px, py, pz. For the Ornstein-Uhlenbeck process it was
sufficient to choose px(t) = py(t) = pz(t) = 0 as the initial guess and use the procedure
described in Section 2.6. For the other two solutions we used a numerical continuation
procedure. First the problem with the final condition px(T ) = py(T ) = δ and pz(T ) = λ
was solved for a small δ (again using the zero solution for p as an initial guess) and then
this solution was fed into the algorithm as the starting guess for the solution to the px(T ) =
py(T ) = 0 and pz(T ) = λ boundary conditions. Attempts were made to find more solutions,
but none were found.

So far we have only talked about an initial condition that starts on the origin, which
also happens to be a fixed point for the Lorenz system. We also looked at other initial
values, for example

1. random points on the chaotic attractor,

5Since in the figure we chose a fixed final z(t) this means that λ was different depending on which solution
was being computed, the green and the blue curves had the same λ ≈ 10−5 while the red line had a much
higher λ chosen so that the final value of z was the same. We could have chosen the same boundary condition
λ ≈ 10−5 for the red curve but this would not appear on the graph since it would be absorbed in the red
dot.
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Figure 3: Multiple solutions for Lorenz system instanton trajectories with an initial condi-
tion starting at the origin. The blue and green curves appear to be related to heteroclinic
connection from the origin (the red dot) to the two fixed points (blue and green dots). The
red line is the Ornstein-Uhlenbeck solution to the Lorenz instanton equations corresponding
to the same final value of z as the green and blue curves.
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Figure 4: Cost versus final value of z for an initial condition on the attractor and time
T = 1.5. The observable is taken to be z at the final time.

2. initial condition leading to a periodic orbit,

3. and other fixed points.

for different time periods. In all cases it was found that calculating trajectories for long time
periods was not possible due to extreme ill-conditioning. However, modest values for time
T ≈ 5 were possible to compute, but finding the global minimum tended to be a challenge.

A representative result is summarized by figure 4. This shows the value of the action
for an initial point on the attractor with a time T = 1.5. Here the observable was the
final value of z. The minimum of the action is 0, which corresponds to the deterministic
trajectory. Each dot is a different instanton solution. The solutions were obtained by
starting with the deterministic trajectory λ = 0 and numerically continuing to higher λ.
Attempts were made to go further but a few numerical issues prevented this. One can see
that the quadratic behavior of the left and the right are different. Numerically continuing
to smaller values of z(T ) were not a problem but when attempting to continue to higher
values one starting finding different branches of solutions corresponding to the same final
value for the conjugate momenta.

Similar computations were performed for a variety of different initial points, time peri-
ods, and observables, but all of them had the same parabolic structure. This means that
all probability densities that were computed were essentially similar to Gaussian distribu-
tions and had a dependence on ε. This is in stark contrast to Figure 2 where there is no ε
dependence. However it was observed that larger times required smaller values of cost to
reach a larger final value of z. Hence it is suspected in the infinite time limit the cost for
reaching any point of the attractor goes to zero.

Furthermore no hint to the compact support of the distribution was found, that is to
say, the probability density computed from instanton solutions did not decay faster for
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trajectories outside of the attractor. In light of these results it does not seem that we can
interpret the instanton calculations as telling us more than the probability of deviating
away from determinism. However, the calculation represented in Figure 3 gives hope of the
instanton formulation being used to calculate both heteroclinic connections and perhaps
being used to find unsteady fixed points.

3.2 Kuramoto-Sivashinsky

The second chaotic system that we will examine in this document is the Kuramoto-Sivashinksy
equations KS equations)

∂tu+ ∂xxxxu+ ∂xxu+ u∂xu = 0

which is periodic x ∈ [0,Γ]. This system is a hallmark of spatio-temporal chaos, and its
dynamics are essentially confined to a finite dimensional dynamical system, even though it
is ostensibly an infinite dimensional system. The ∂xxxx term introduces dissipation into the
system while the ∂xx injects energy and in the long time limit these terms balance. The
advective term transfers energy from the injective scale to the dissipative scale, guaranteeing
that the solutions remain bounded. In this system the aspect ratio Γ serves as a measure
of the possible complexity of the flow, where larger Γ implies more complexity.

The interpretation of the fourth and second derivative terms is most easily seen by
multiplying the KS equations by u, integrating over space, and making use of periodicity
to arrive at

1

2
∂t

∫ Γ

0
u2dx =

∫ Γ

0
(∂xu)2 dx−

∫ Γ

0
(∂xxu)2 dx.

In the long time limit, since u is bounded, we have a balance between the average rate of
injection and average rate of dissipation

lim sup
T→∞

1

T

∫ T

0

∫ Γ

0
(∂xxu)2 dxdt = lim sup

T→∞

1

T

∫ T

0

∫ Γ

0
(∂xu)2 dxdt.

The advective term interpretation may be seen by taking the spatial Fourier transform of
the equations to get

∂tûn + (k4
n − k2

n)ûn + û∂xun = 0,

where kn = n2π
Γ . The advective term is a convolution in Fourier space, meaning that each

Fourier mode is intimately coupled to one another. Furthermore in this formulation it is
much easier to see why Γ is a measure of the complexity. If one looks at the k4

n − k2
n term

one can see that larger Γ allows more modes to be excited by the k2
n term.

We will be applying the instanton formalism to the KS equations and look at many of
the same things that were done for the Lorenz equations. Before embarking on this journey
we will take a brief moment to discuss what it means to add noise to a PDE and what
kind of information we would like to extract. In the ODE case when we add noise to the
system we wanted to understand the probability distribution of the state at each point in
time. To this end a Fokker-Plank equation or Path Integral was employed to calculate such
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a quantity. Since PDE’s can be thought of as infinite dimensional ODE’s it seems that the
Fokker-Plank approach is out of the question since it would be a PDE with infinitely many
“spatial” derivatives. This does not mean that the problem is completely intractable. If we
add noise to a PDE we can still ask questions such as “What is the probability distribution
of u at the origin?” or “What is the probability distribution of the first Fourier mode u1?”.
In contrast to the ODE case in PDEs one must be very careful how noise is added to the
system.

This is perhaps easiest to understand if we look at the KS equations in the Fourier mode
representation. We cannot add uniform Gaussian white noise to each Fourier mode. The
heuristic reasoning for this is that all scales will be excited by uniform Gaussian white noise,
thus the connection with the deterministic equation is lost. The“energy” in some sense will
be infinite. The typical way around this is to consider spatially correlated noise and leave
it white in time. In Fourier space the equations of motion for the noisy KS equations could
be chosen to be as follows

∂tûn + (k4
n − k2

n)ûn + û∂xun = εwnξn

wn = kne
− 1

2
k2
n

where ξn is white noise in time. The wn term is chosen so that the mean frequency is
not excited and the decay term is chosen so that the smallest amplitudes are not “overly
excited” by the noise.

We may go through the same path integral discretization procedure as before to arrive
at the Friedlen-Wentzell action

A[u] =
∑
n

[
(wn)−2

∫ T

0

(
∂tûn + (k4

n − k2
n)ûk + û∂xun

)2
dt

]
=

∫ T

0
dt ‖∂tu+ ∂xxxxu+ ∂xxu+ u∂xu‖χ

where the ‖·‖χ norm is the norm associated with the first line and χ denotes the spatial cor-
relation. Note that the higher Fourier modes have a much higher stochastic cost associated
with them. The n = 0 mode will be taken to be zero throughout this work.

The instanton equations for Kuramoto-Sivashinsky are

∂tu+ ∂xxxxu+ ∂xxu+ u∂xu = χ ∗ p
−∂tp+ ∂xxxxp+ ∂xxp− u∂xp = 0

where χ ∗ p is a convolution of the conjugate momenta p with the spatial correlation χ. We
may formally obtain it by simply observing that the operator that governs the backwards
evolution for p will always be the adjoint operator and that the stochastic forcing term is
modified by the correlation function. If we wish to consider averaged quantities, i.e. the
average let’s say, energy of the system

1

LT

∫ T

0

∫ L

0
u2dxdt
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the the instanton equations get modified as before with an inhomogenous term for the
conjugate momenta p. In Fourier space the instanton equations are

∂tûn + (k4
n − k2

n)ûn + û∂xun = (wn)2pn

−∂tp̂n + (k4
n − k2

n)p̂n − û∂xpn = 0

Here the aspect ratio Γ is taken to be 22. At this aspect ratio it suffices to have N = 128
modes to represent the flow in the chaotic regime.

Many of the difficulties and insights from the Lorenz system carried over to the KS
equations. Again it was found that taking the long time limit was intractable and lead to
problems with convergence. Furthermore it seems that they can only tell us about deviations
away from determinism. A sample result is displayed in Figure 5. Here the KS instanton
equations6 were taken from two initial conditions: the one on the left was from the initial
condition u = 0 while the one on the right is a random initial point on the attractor. The
horizontal axis is space, the vertical axis is time, and the colors represent whether or not the
flow field is positive or negative. The final state of the evolution from zero is distinct from
the evolution on the chaotic attractor and has a much simpler evolution. This calculation
shows that the initial condition plays a huge role in the evolution.

A hypothesis that has not been tested yet is to check whether or not the instanton
equations may be used to easily calculate unstable fixed points of the system. If this
is possible the instanton equations offer an exciting alternative to the usual methods for
calculating fixed points for PDEs that allow for convergence from much farther away than
usual since it is related to a gradient ascent type of procedure. This will be tested in future
work.

3.3 Generic insights and speculation

Many of the numerical difficulties are perhaps insurmountable in this project. The instanton
equations are inherently nonlinear boundary value problem in the case that f is a nonlinear
function. Although in previous studies one was able to take the long time limit, in the case
of trajectories on a chaotic attractor this not possible. Typically one expects that chaotic
trajectories are not entire functions (in the complex variable sense) of time, meaning that
a rescaling of time would not ameliorate any problems. The extreme sensitivity to initial
conditions renders the last state of a time integration meaningless in the long time limit.
This manifests itself numerically as an ill-conditioning of the boundary value problem. For
longer times things get exponentially worse, eventually rendering any amount of careful
integration meaningless.

Another problem arose as well. The Lagrange multiplier λ became increasingly smaller
as time got larger to reach the same point in state space. The heuristic reason for this goes
as follows: In the long time limit there are many ways for a trajectory to get on one point
of the attractor to another. The extreme sensitivity to initial conditions allows one to jump

6The spatial correlation was chosen to be χn = kne
−k2n and the observable was chosen to be the value

of the velocity field at the origin. In Fourier space this means that λn = 1 for all conjugate momenta final
conditions.
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Figure 5: A contour plot of the instanton trajectories for the KS equations. The horizontal
axis is the physical spatial coordinate, x, and the vertical axis is time. The color represents
the value of the instanton solution u. In both cases the observable at the final time is taken
to be ∂xxu(0, 0) but the initial condition for the left is starting from the origin and the
initial condition on the right starts from a point on the chaotic attractor.

onto a deterministic trajectory that gets to the endpoint just as easy. The longer the time
we wait the more candidates there are for reaching a given final state, all of which may look
completely different.

This same “problem” may also explain what leads to multiple solutions in the instanton
equations. One way of organizing the framework is by thinking of things in the context
of periodic orbit theory. For Lorenz the smallest period is of the order T ≈ 1.6 and, as
time increases, exponentially more periodic orbits come into existence. Each are embedded
within the attractor and offer a viable candidate to get from one point in state space to
another for a given λ. Hence as time grows we expect more and more solutions to the
instanton equations. Once one has multiple solutions pruning which ones matter and which
ones don’t becomes more of an art and increasingly less quantitative. The infimum becomes
essentially hopeless to calculate and unless one already knows the answer, it is relegated
merely to a matter of guesswork. There could always be some solution lurking out in
function space that is missed.

As we saw for the Lorenz example, three solutions to the instanton equations could be
calculated for the initial condition that started at the origin. No solutions seemed to sweep
itself up into the attractor, meaning that a lot of solutions could have been possibly missed.
This poses a danger when trying to calculate the probability distribution at the end since
the global infimum is the only critical point that matters in the ε→ 0 limit.

Normally the instanton equations are calculated in the long time limit. If the instanton
trajectory is simple then such a calculation can be rendered tractable. However, if the
evolution has, for example, oscillations towards a final state then such a limit may be
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rendered computationally infeasible. There are perhaps ways to get around this difficulty
for particular systems, but these infinite horizon problems can be notoriously difficult to
deal with.

There is an additional numerical issue that arose in attempting to solve the instanton
equations. If the deterministic dynamics of the system allow for solution to blow up, so do
the instanton equations. Such a scenario occurs with the Rössler system. Even though the
Rössler system has a chaotic attractor (for the right choice of parameters) this does little
good if enough noise can knock a trajectory off of the attractor and into a “blow up region”
where all solutions quickly run away. This will manifest itself in the instanton equations by
choosing a large enough end condition (λ in this document). This is not necessarily a bad
feature if we would like to probe whether or not a system, i.e. Navier-Stokes, does exhibit
blow up.

With regards to the applicability of the instanton formulation to Navier-Stokes, it seems
likely that it may be able to find new fixed points as long as there are heteroclinic connec-
tions between the fixed points and the initial condition. If the initial condition is chosen
“poorly” it may result in one being on the chaotic attractor which would lead to hopeless
numerical difficulties. It seems, however, extremely unlikely that one could calculate the tail
ends of probability distributions in turbulence given this method. As we saw with Lorenz
and Kuramoto-Sivashinsky the tale end of the distribution is completely unrelated to the
instanton equations. As long as the deterministic dynamics is dominant, as it seems to be
the case in the turbulent regime, the role of noise is secondary and cannot be exploited in
the context of instantons.

It is possible that the inability of the instanton equations to capture the distribution
associated with the chaotic regime comes from an incompatibility between the T →∞ and
ε → 0 limits. If one solves the steady state Fokker-Plank equation what one is doing is
calculating T → ∞ first for a fixed ε. One can then study ε → 0 limit of the distribution.
It is this order that the limits must be taken in order to have a correspondence with the
chaotic attractor. With the instanton equations one focuses on the ε → 0 limit first and
then takes the T → ∞ limit afterwards. Hence it seems like the instanton equations are
fundamentally incompatible with calculating chaotic properties. This observation has been
pointed out before [2].

4 Summary and Conclusions

The instanton equations come from the minimization of an action occurring in the path
integral. Under a large deviation assumption they allow one to calculate the tail of proba-
bility distributions and even obtain the most likely trajectories that lead to such an extreme
state. Although instantons can say a lot about deviations away from determinism this does
little good if the deterministic part is the majority of the information as is the case with
chaos.

The instanton equations were implemented in systems with chaotic dynamics of which
this document focused on two: the Lorenz equations and Kuramoto-Sivashinsky equations.
The instanton equations where solved for various initial conditions and lengths of time and
the resulting probability densities were calculated. The instanton densities were found to
be completely unrelated to those of the deterministic dynamics and it seems to be the case
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that they have to be unrelated.
However, it seems plausible for the instanton equations to find new coherent structures

that may be missed by conventional approaches. This was seen in the Lorenz equations
where an initial condition starting at the origin was able to evolve towards the unstable
fixed points. This leads to the belief that the instanton method may be a viable approach
to finding unstable fixed points of a dynamical system as long as there exists a heteroclinic
connection between them.
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1 Introduction

One of the challenges in studying physical systems that exhibit complex temporal (or spatio-
temporal) dynamics is to obtain rigorous quantitative predictions of the system’s behaviour.
Given that rigorous, closed-form solution of the governing equations are not generally avail-
able, an interesting problem is to quantify the average properties of the system, described by
an observable function ϕ of the system’s state x. Note that x may be infinite-dimensional
and depend on position s and time t. Specifically, one is interested in estimating the value
of

〈ϕ(x)〉 = lim
T→∞

1

T

∫ T

0
ϕ[x(t)] dt (1)

or, for spatially-extended systems over a domain Ω with measure µ(Ω),

〈ϕ(x)〉 = lim
T→∞

1

T

1

µ(Ω)

∫ T

0

∫
Ω
ϕ[x(s, t)] dsdt, (2)

where we assume that the long-time limits exist. Assuming that the system has only one
attracting set of dynamical interest (either a stable equilibrium, a periodic orbit or a strange
attractor), this amounts to computing the time-average of ϕ as the system evolves on the
attractor, irrespective of the specific initial condition.

Problems of this type have received increasing interest in recent years, focussing mainly
on spatially extended systems described by partial differential equations (PDEs) and leading
to the development of a variational technique known as the “background method” [4]. The
method is based on the optimisation of a quadratic functional of the state variable, denoted
by V (x), that allows the derivation of rigorous bounds for 〈ϕ〉 (either upper or lower); in
some cases, V can be interpreted as a Lyapunov function [2]. Classical applications of the
background method include the estimation of the net turbulent heat transport in Rayleigh-
Bénard convection [6, 7] and the computation of rigorous bounds on the energy dissipation
in shear flows [5, 9]. Similar techniques can also be applied to finite-dimensional systems
exhibiting chaotic behaviour, such as truncated low-order models of Rayleigh-Bénard con-
vection including the well-known Lorenz system [14, 15].

An alternative approach to derive rigorous bounds for finite-dimensional systems with
polynomial dynamics has been proposed recently [3]. The method, introduced in the con-
text of fluid flows [3], is based on Sum-of-Squares (SOS) polynomial optimisation and allows
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the construction of higher-than-quadratic Lyapunov-type functionals, generalising the back-
ground method.

Whilst the bounds obtained by these methods are rigorous and hold irrespectively of
the system’s initial condition, they do not generally represent the time averages observed
in experiments or numerical simulations accurately. This is usually because the system
possesses at least one unstable solution xu(t)— a fixed point or a periodic orbit — for
which the rigorous bounds obtained with the aforementioned techniques are sharp; yet, xu
is never observed in practice since the real system is always subject to small perturbations.
If a neighbourhood U of xu is known to not belong to the system’s attractor, a possible
solution to this problem is to directly remove U from the analysis. Another solution, that in
principle does not require any a priori knowledge of xu, is to model the physical disturbances
by adding a stochastic forcing term of strength ε to the dynamical system [3].

In this work, we first review some of the ideas introduced in [3] in the context of a general
dynamical system with polynomial dynamics. We then investigate how the influence of an
unstable solution on the estimates of 〈ϕ〉 obtained with SOS optimisation can be removed.
We will limit ourselves to unstable fixed points and develop the two approaches outlined
above for systems with a repelling fixed point; we will not consider the case of saddle points
or unstable limit cycles. We will also illustrate how these ideas work in practice by applying
them to the well known Van der Pol oscillator.

2 Bounds Using SOS Optimisation: A Review

To make this work self-contained, we start by reviewing the ideas presented in [3]. Consider
the dynamical system

ẋ = f(x), x ∈ Rn (3)

and assume that the trajectories x(t) are uniformly bounded as t → ∞ regardless of the
initial condition x0. Suppose there exists a function V [x(t)], continuous in x, and a constant
L such that

V̇ + ϕ− L ≥ 0 (4)

for all possible values of the state x. Since any trajectory x(t) is uniformly bounded as
t→∞, so is V ; hence, time averaging the last expression we obtain

〈ϕ〉 ≥ L. (5)

An upper bound U can be found in a similar way by reversing the inequality sign, and we
summarise the above in the following:

Proposition 2.1. Let ẋ = f(x) be a dynamical system whose trajectories are bounded at
all times and let ϕ(x) be an observable. If there exist continuous functions Vu(x), Vl(x),
and constants U , L such that

Du(x) := f · ∇Vu + ϕ− U ≤ 0, ∀x ∈ Rn, (6a)

Dl(x) := f · ∇Vl + ϕ− L ≥ 0, ∀x ∈ Rn, (6b)

then
L ≤ 〈ϕ〉 ≤ U. (7)
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The functions Vu and Vl (which we will occasionally refer to as storage functions) that
achieve given bounds U and L may not be unique; yet, as one could expect, constructing
them is generally a challenging task. However the problem is greatly simplified when f
and ϕ are polynomials of the states xi, i ∈ {1, ..., n}. In fact, if Vu and Vl are chosen to be
polynomials, so areDu andDl, hence (6a) and (6b) amount to verifying the non-negativity of
a polynomial expression. Whilst this is an NP-hard problem, the computational complexity
can be significantly reduced by replacing the conditions Dl(x) ≥ 0 and −Du(x) ≥ 0 (note
the minus sign) with the stronger conditions that Dl and −Du admit a SOS decomposition,
i.e. that there exists families of polynomials {pi(x)}Mi=1 and {qi(x)}Ni=1 such that

Du(x) =

M∑
i=1

pi(x)2,

Dl(x) =
N∑
i=1

qi(x)2.

(8)

These conditions can be formulated in terms of linear matrix inequality (LMI) constraints,
a particular type of convex constraint; a brief explanation is given in Appendix A. Optimi-
sation problems with LMI constraints, known as semidefinite programmes (SDPs), can in
turn be solved efficiently with a number of software packages, e.g. YALMIP [10] and SOS-
TOOLS [12]. Consequently, polynomial storage functions and the corresponding bounds U
and L may be constructed systematically by solving the SoS optimisation problems

min
Vu,U

U

such that U − f · ∇Vu − ϕ ∈ Σ
(9)

and
max
Vl,L

L

such that f · ∇Vl + ϕ− L ∈ Σ
(10)

where Σ denotes the set of SOS polynomials and the optimisation is over the coefficients of
the polynomials Vu and Vl.

3 Improved Bounds for Deterministic Systems

As mentioned in the introduction and as noted in [3], the existence of unstable invariant
trajectories xu(t) (equilibria and/or limit cycles) poses a problem if one is interested in
bounds that accurately describe the time averages measured in experiments. This is because
the bounds U and L obtained from Proposition 2.1 must hold for any possible trajectory
of the system, including unstable invariant solutions. To illustrate the idea, let xu be an
unstable equilibrium, such that f(xu) = 0; for definiteness, assume that ϕ(xu) is much lower
than the observed time average 〈ϕ〉. Then, any lower bound L cannot coincide with 〈ϕ〉
since evaluating (6b) at xu yields

Dl(xu) = ϕ(xu)− L ≥ 0, (11)
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implying that L ≤ 〈ϕ(xu)〉 = ϕ(xu) < 〈ϕ〉. Similarly, integrating both sides of the inequality
Dl(xu) ≥ 0 along an unstable limit cycle xu(t), the term f ·∇Vl vanishes by periodicity and
one obtains

L ≤ 〈ϕ[xu(t)]〉 (12)

i.e. the bound is constrained by the time average of ϕ over the periodic orbit. The same
problem arises for any upper bound U if ϕ(xu) > 〈ϕ〉.

One possible solution is to enforce (6a) and (6b) everywhere except for a neighbourhood
U of an unstable invariant solution xu. This relaxation can indeed be carried out rigorously
and implemented if xu is known and if all trajectories starting at the perturbed position
x0 = xu + δx permanently leave U after a finite time τ = τ(x0).

Let us proceed formally, and assume that the dynamical system (3) has global attractor
A and an unstable solution xu. Then, B = Rnr {xu} is the basin of attraction of A. Since
all trajectories leave U , moreover, T = RnrU is an absorbing domain. Clearly, A ⊆ T ⊆ B
and for any trajectory starting inside B one has

〈ϕ〉 = lim
T→∞

1

T

∫ T

0
ϕ[x(t)] dt = lim

T→∞

1

T

∫ T

τ
ϕ[x(t)] dt (13)

i.e. the time average of ϕ is completely determined by the dynamics inside T . The same
result applies if xu is a saddle by letting U be a neighbourhood of the entire stable manifold
Ws and B = Rn rWs. A trivial extension of Proposition 2.1 is therefore

Proposition 3.1. Let ẋ = f(x) be a dynamical system in Rn, let T be a bounded absorbing
domain containing an attractor A and let B be the basin of attraction of A. If there exist
continuous functions Vu(x), Vl(x), and constants U , L such that

Du(x) = f · ∇Vu + ϕ− U ≤ 0, ∀x ∈ T , (14a)

Dl(x) = f · ∇Vl + ϕ− L ≥ 0, ∀x ∈ T , (14b)

then for any initial condition x0 ∈ B

L ≤ 〈ϕ〉 ≤ U. (15)

The problem of eliminating the influence of xu on the bounds therefore reduces to that
of finding a suitable absorbing domain for the attracting set. This is generally not a trivial
task; however, when f(x) is polynomial an absorbing domain T may be constructed using
SOS techniques [16]. Moreover, T is generally a semi-algebraic set; for clarity, let us assume
that T = {x | g(x) ≥ 0} for some polynomial g.

Equation (14b) then requires that Dl(x) ≥ 0 when g(x) ≥ 0 (a similar argument holds
for (14a) and will not be considered for brevity). It is easy to see that this condition is sat-
isfied if there exists a non-negative polynomial s(x) such that Dl(x)−s(x)g(x) ≥ 0. Whilst
not necessary, this approximation — known as the generalised S-procedure [16, Lemma 2.1]
— allows the formulation of two SOS optimisation problems from Proposition 3.1 as

min
Vu,U,s

U

such that U − f · ∇Vu − ϕ− s g ∈ Σ

s ∈ Σ

(16)
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and
max
Vl,L,s

L

such that f · ∇Vl + ϕ− L− s g ∈ Σ

s ∈ Σ

(17)

The S-procedure generalises to more complicated semi-algebraic absorbing domains; more
details and examples can be found in [16]. However, its applicability relies on the knowledge
of an absorbing domain that does not contain unstable solutions and that is tractable using
SOS techniques. This may not be the case for saddle point with a complicated stable
manifold, or if the unstable trajectory cannot be separated from the attractor; an example
combining both issues is the unstable saddle equilibrium at the origin in the well-known
Lorenz system [17].

4 Bounds for Stochastically-Driven Systems

An alternative approach to eliminate the influence of unstable point on the bounds, proposed
by Chernyshenko et al. [3], is to model the external disturbances that affect any real system
with a small-amplitude stochastic forcing term. If the system is stochastically stable (in
the sense of [18]), in fact, one can infer bounds for the original, unperturbed system by
studying the vanishing-noise limit.

In Section 4.1, we extend the initial ideas of [3] by considering a stochastic dynamical
system forced by finite-amplitude noise, and show how to determine bounds on its statistical
properties using SOS programming. Our analysis applies not only in the small-noise limit,
but to system which are inherently stochastic. In Section 4.2, we will then study the problem
of computing rigorous bounds in the specific case of vanishing noise strength.

4.1 Bounds for system with finite noise

Consider the stochastic dynamical system driven by additive white noise

ẋ = f(x) +
√

2εσξ, (18)

where ξ is a standard Wiener process and x, ξ ∈ Rn. The constant matrix σ ∈ Rn×n
describes the relative effect of each ξi on each state xi, while the overall noise strength ε
represents the balance between the deterministic and the stochastic dynamics.

This system can be interpreted as a stochastic perturbation of (3), and its state x (now
a random variable) is described by the system’s probability density function (PDF) ρ. We
remind the reader that ρ must be a non-negative distribution such that ‖ρ‖L1 = 1. We
assume that the system’s trajectories remain bounded at all times, and that a statistical
equilibrium is reached so the PDF satisfies the steady Fokker-Planck equation

∇ · (εD∇ρ− fρ) = 0, (19)

where D = σTσ. The stationary expectation of an observable ϕ(x) can be computed as

〈ϕ〉ε =

∫
Rn

ρ(x)ϕ(x)dx (20)
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where we have introduced a subscript ε to indicate that the expectation depends on the
overall noise strength. Clearly, L is a lower bound for 〈ϕ〉ε if∫

Rn

ρ (ϕ− L) dx ≥ 0 (21)

Enforcing (19) explicitly with a Lagrange multiplier function Vl(x) and integrating by parts
we obtain ∫

Rn

ρ [∇ · (εD∇Vl) + f · ∇Vl + ϕ− L] dx

+ lim
R→∞

∫
‖x‖=R

(ε Vl D∇ρ− ε ρD∇Vl − ρ Vl f) · ν(x) dS ≥ 0
(22)

where ν(x) is the outwards unit normal to the sphere ‖x‖ = R and dS is the surface
element. Since we have assumed that the system’s trajectories are bounded when ε = 0, it
is reasonable to expect that ρ decays exponentially at infinity, so that the boundary term
vanishes if Vl does not grow too quickly. Thus, one is left with the condition∫

Rn

ρ [∇ · (εD∇Vl) + f · ∇Vl + ϕ− L] dx ≥ 0. (23)

Since ρ is non-negative and Vl is arbitrary (up to some controlled-growth conditions at
infinity), one could prove that L is a lower bound for 〈ϕ〉ε if there exists Vl such that the
term in brackets is everywhere non-negative. Applying the same argument after reversing
the inequality sign gives sufficient conditions for an upper bound U on 〈ϕ〉ε, and we conclude
the following:

Proposition 4.1. Let ẋ = f(x) +
√

2εσξ, with x, ξ ∈ Rn and σ ∈ Rn×n, be a stochastic
system for which a steady PDF exists and let D = σTσ. If there exist functions Vu and Vl
such that

lim
R→∞

∫
‖x‖=R

(εVuD∇ρ− ερD∇Vu − fρVu) · ν(x) dS(x) = 0 (24a)

lim
R→∞

∫
‖x‖=R

(εVlD∇ρ− ερD∇Vl − fρVl) · ν(x) dS(x) = 0 (24b)

and

ε∇ · (D∇Vu) + f · ∇Vu + ϕ− U ≤ 0 ∀x ∈ Rn, (25a)

ε∇ · (D∇Vl) + f · ∇Vl + ϕ− L ≥ 0 ∀x ∈ Rn, (25b)

then the stationary expectation of the random variable ϕ(x) is bounded by

L ≤ 〈ϕ〉ε ≤ U. (26)

Note that the same result was derived in [3] using an alternative approach and fixing σ to
be the identity matrix. For a given noise amplitude ε, a SOS relaxation of inequalities (25a)
and (25b) yields the optimisation problems for the bounds

min
Vu,U

U

such that U − ε∇ · (D∇Vu)− f · ∇Vu − ϕ ∈ Σ
(27)
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and
max
Vl,L

L

such that ε∇ · (D∇Vl) + f · ∇Vl + ϕ− L ∈ Σ
(28)

Note that we have assumed that the boundary terms vanish when Vu and Vl are polynomials,
which is equivalent to the statement that all moments of the distribution ρ order up to the
degree of the storage functions exist.

Furthermore, note that inequalities (25a) and (25b) are the same as (6a) and (6b),
respectively, with the addition of a second order diffusive term. Consequently, a point xu
such that f(xu) = 0 — corresponding to a fixed point of the deterministic system obtained
for ε = 0 — does not constrain the bounds on 〈ϕ〉ε if Vu and Vl have large enough gradients.

4.2 Bounds for system with vanishing noise

Let us assume that a stochastic system is stable in the sense of [18]. Since stochastic bounds
are not constrained by fixed points of the corresponding deterministic system (i.e.for ε = 0),
the limit ε → 0 can be studied to infer bounds on the corresponding deterministic system
that are not affected by unstable equilibria.

Unfortunately, in practice polynomial storage functions and the SoS optimisation prob-
lems (27) and (28) give tight bounds only when the noise strength ε is relatively large. To
illustrate the reason of this limitation, let us assume without loss of generality that xu = 0
and, for definiteness, consider ϕ = ‖x‖2. To achieve a lower bound greater than the trivial
result L = 0, say L ∼ O(1), one needs

ε∇ · (D∇Vl) ∼ O(1) (29)

at least in a region near the origin, where f(x) and ϕ(x) are almost negligible. Similar
considerations can be made for Vu. When ε is small, large enough gradients can only
be achieved if Vu and Vl are polynomials of very high degree, making the SOS problem
numerically intractable.

One would therefore like a parametrisation of Vu and Vl with ε that satisfies (29) in a
neighbourhood of the unstable states, and that is suitable for polynomial optimisation.

It turns out that an appropriate functional form to study the case ε→ 0 can be derived
if the unstable solution is a repelling equilibrium. Henceforth, we will assume that the
deterministic system ẋ = f(x) has a repelling (focus or node) fixed point at x = 0, i.e. all
eigenvalues of the Jacobian J0 ∈ Rn×n of f at the origin have positive real part. Without
loss of generality, we will also assume that ϕ(0) = 0; this can always be achieved with
an appropriate shift in ϕ. For definiteness, we will consider the problem of finding a lower
bound when 〈ϕ〉 > 0 and the bound is constrained by the unstable equilibrium at the origin;
the analysis can be trivially extended to upper bounds.

Let us start by assuming that Vl is chosen so that L = 〈ϕ〉ε exactly. Repeating the
derivation of Proposition 4.1 with an equality sign, we see that Vl satisfies

ε∇ · (D∇Vl) + f · ∇Vl + ϕ− 〈ϕ〉ε = 0, (30)

with boundary conditions described by (24b). When ε → 0, this is a singularly perturbed
boundary value problem, and the method of matched asymptotic expansions can be used
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to study the behaviour of Vl. Rather than determining the solution Vl, however, we are
interested in determining its scaling with ε and its approximate functional form near the
origin, where we expect large gradients.

The appropriate “inner layer” coordinate stretching is x = ε1/2x̂, where x̂ ∼ O(1) as
ε→ 0. We therefore expect that, near the origin, we can approximate Vl = Vl(ε

−1/2x).
To determine a suitable functional form, instead, let us consider the intermediate region

ε1/2 � xi � 1, i ∈ {1, ..., n}, where, to leading order, equation (30) reduces to

xT JT0 ∇Vl = 〈ϕ〉ε. (31)

Introducing a characteristic coordinate s such that

dx

ds
= J0 x, (32)

one has
Vl = 〈ϕ〉ε s+ const. (33)

Moreover, if vi and λi denote each of the n eigenvectors and eigenvalues of J0 (with <{λi} >
0 since the origin is a repellor), the solution of (32) can be written as

x =
n∑
i=1

Aivie
λi s (34)

for some constants Ai, suggesting that s should be some logarithmic function of x.
Finally, since x = 0 is a repelling point, it is not unreasonable to expect that there

exists a linear coordinate transformation x → u(x) that makes the dynamics near the
origin rotationally invariant; this situation is sketched in Figure 4.2 for a 2D system. In
this case, one expects Vl to depend only on the (squared) radius ζ(x) = ‖u(x)‖2. Note that
ζ is a homogeneous, positive definite quadratic form of x, i.e.

ζ(x) = xTZx, Z � 0 (35)

for a symmetric matrix Z to be chosen appropriately.

x
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

y

-0.3
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-0.1

0

0.1

0.2
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u
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

v

-0.3

-0.2

-0.1

0

0.1

0.2
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Figure 1: Sketch of trajectories for a 2D system in the original x = (x, y) coordinates (left)
and the transformed u(x) = (u(x), v(x)) coordinates.
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Combining these heuristic arguments, we suggest that

Vl(x) ≈ α log[ζ(x)] (36)

in the intermediate layer, for some constant α. Consequently, we argue that an appropriate
form for Vl is

Vl(x) = α log[ε+ ζ(x)] + Pd(x) (37)

Here, ε has been added to the argument of the logarithm to regularise Vl at x = 0 and
maintain the correct balance of ε and x in the inner layer, while Pd is a polynomial of
degree d that approximates the outer solution of (30). Moreover, this ansatz could be seen
as the generalisation to multiple dimensions of the asymptotic results for one-dimensional
systems, presented in Appendix B.

Despite not being polynomial, ansatz (37) is suitable for a SOS formulation. In fact we
can substitute

∇V =
α∇ζ
ε+ ζ

+∇Pd

∇ · (D∇V ) = α
∇ · (D∇ζ)

ε+ ζ
− α∇ζ · (D∇ζ)

(ε+ ζ)2
+∇ · (D∇Pd)

(38)

into (30), multiply by (ε+ ζ)2 and gather terms to obtain the polynomial inequality

L(x) := L0(x) + εL1(x) + ε2L2(x) + ε3L3(x) ≥ 0, (39)

where

L0 = αζ (f · ∇ζ) + ζ2 (f · ∇Pd + ϕ− L) ,

L1 = αζ∇ · (D∇ζ)− α∇ζ · (D∇ζ) + ζ2∇ · (D∇Pd) + αf · ∇ζ + 2ζ (f · ∇Pd + ϕ− L) ,

L2 = α∇ · (D∇ζ) + 2ζ∇ · (D∇Pd) + f · ∇Pd + ϕ− L, (40)

L3 = ∇ · (D∇Pd).

Consequently, a lower bound L on 〈ϕ〉ε can be calculated at a fixed, small ε by solving the
optimisation problem

max
Pd,α,L,Z

L

such that L(x) ∈ Σ,

ζ(x) = xTZx, Z � 0.

(41)

Note that when ε becomes small, the terms L1, L2 and L3 represent small perturbations
of L0, which is an augmented version of the inequality constraint (25b) for the ε = 0 case.
In particular, the term αζ (f · ∇ζ) represents the contribution of the large gradients and
allows us to improve the bounds as ε→ 0.

In fact, we can further develop this idea and derive an optimisation problem which is
rigorous in the limit ε→ 0, i.e. such that the computed L is a lower bound for limε→0〈ϕ〉ε.
To show this, let us prove that in this limit (23) holds if L0 ≥ γζ2 for any strictly positive
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and arbitrarily small constant γ. In fact, since ζ is quadratic in x, it can be verified that
L0 is the dominant term in L for any fixed x 6= 0. Moreover,

lim
ε→0

εn
∫
‖x‖≥r

ρ(x)
Ln(x)

(ε+ ζ)2
dx = 0, n ∈ {1, 2, 3} (42)

for any finite radius r since we have assumed that ρ decays faster than any polynomial.
Consequently, if L0 ≥ γζ2 then L(x) is positive when ε → 0 at least outside a ball BR of
radius R ∼ ε1/2−η with 0 < η < 1/2. We conclude that∫

RnrBR

ρ [ε∇ · (D∇Vl) + f · ∇Vl + ϕ− L] dx =

∫
RnrBR

ρL
(ε+ ζ)2

dx ≥ 0 (43)

as ε→ 0. Moreover, although the integrand develops a singularity at x = 0 when ε→ 0 it
is possible to show (see Appendix C) that∫

BR

ρ [ε∇ · (D∇Vl) + f · ∇Vl + ϕ− L] dx→ 0 as ε→ 0 (44)

if ρ is bounded on BR as ε → 0 (a reasonable assumption since x = 0 is an unstable
equilibrium of the deterministic system). Therefore, a sufficient condition for L to be a
valid lower bound on 〈ϕ〉ε in the limit of vanishing noise is that L0 ≥ γζ2, i.e. (dropping a
factor of ζ and rearranging)

αf · ∇ζ + ζ (f · ∇Pd + ϕ) ≥ (L+ γ)ζ. (45)

Note that the role of γ is simply to decrease the tightest possible L by an arbitrarily small
constant; consequently, we can drop it from the analysis and determine a rigorous bound L
with the optimisation problem

max
Pd,α,L,Z

L

such that αf · ∇ζ + ζ (f · ∇Pd + ϕ− L) ∈ Σ,

ζ(x) = xTZx, Z � 0.

(46)

Finally, note that ζ is an unknown quadratic form, so the optimisation problem is
bilinear. An optimal ζ (denoted by ζ∗) could be determined using a bilinear SDP solver.
However, since the SOS constraint is homogeneous in ζ, any choice of ζ = βζ∗ for β > 0 is
optimal; this issue may be resolved by adding a constraint on the coefficients of ζ. A simpler
solution is to fix ζ a priori according to the following observation. In a neighbourhood of
the origin where x, y � 1, the SOS constraint becomes, to leading order in x,

αf̃ · ∇ζ − Lζ ≥ 0 (47)

where f̃ = J0 x denotes the linearised dynamics near the origin. Therefore, if L is to be
positive we require

αf̃ · ∇ζ > 0, (48)

i.e. that αζ̇ is positive near the unstable point.
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A suitable ζ can be constructed if J0 can be diagonalised. Specifically, let U denote the
matrix of eigenvectors of J0 and Λ be the usual diagonal matrix of eigenvalues, such that

U−1J0U = Λ, (49)

and let w = U−1x. Then, an appropriate choice is

ζ = wTw = xT [U−1]TU−1x, (50)

since near the origin we have

ζ̇ = 2ẋT [U−1]TU−1x

= 2xTJT0 [U−1]TU−1x + h.o.t.

= 2xT [UU−1]T JT0 [U−1]TU−1x + h.o.t.

= 2wT [U−1J0 U]Tw + h.o.t.

= 2wTΛw + h.o.t.,

(51)

Neglecting the higher order terms near x = 0 and recalling that Λ is positive definite since
we are considering a repelling fixed point, we conclude that ζ̇ > 0 and so (48) holds for
α > 0. Note, however, that this is not the only possible choice of ζ; see Appendix E for
more examples.

4.3 Equivalence with the S-procedure

Whilst the vanishing-noise formulation presented above and the S-procedure of Section 3
have been obtained in completely separate ways, they are in fact related. To see this,
consider the inequality

α (f · ∇ζ) + ζ (f · ∇Pd + ϕ− L) ≥ 0 (52)

more carefully. The inequality is satisfied at x = 0; for x 6= 0, divide by ζ, rewrite the first
term as a time-derivative and rearrange the terms to obtain

(f · ∇Pd + ϕ− L) +

(
α

ζ

)
ζ̇ ≥ 0. (53)

Having already noted that α > 0 when ζ is as in (50), we recognise that this is a particular
form of the more general S-procedure

(f · ∇Pd + ϕ− L) + s(x)ζ̇ ≥ 0, (54)

i.e. we are imposing the inequality

f · ∇Pd + ϕ− L ≥ 0 (55)

obtained from Proposition 2.1 outside a region R where ζ̇ > 0. This represents a region of
repulsion for the unstable fixed point, in which ζ acts as an “inverse” Lyapunov function.
Consequently, (52) can be viewed as an application of Proposition 3.1 with T = Rn rR.
Adding noise to a dynamical system with a repelling fixed point and using the logarithmic
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ansatz (37) for the storage function Vl is therefore equivalent to carrying out an S-procedure.
Consequently, we expect that the larger the region of repulsion defined by the level sets of
ζ, the better the lower bound L for a given degree of Pd in (37) — an observation that may
assist the construction of a good ζ.

This equivalence could be expected since L0 in (39) does not inherit any noise-related
terms from the full formulation. This is the result of the particular choice (37) of the form
of Vl. If ε is taken as a small but finite value, however, the addition of noise is not equivalent
to the S-procedure. In this case, an alternative form of Vl has to be considered to keep the
influence of noise when ε→ 0.

5 Application to the Van der Pol Oscillator

Let us illustrate how the ideas presented so far can be applied in practice by considering
the Van der Pol oscillator

ẍ− µ(1− x2)ẋ+ x = 0, (56)

or, in state-space representation,

ẋ = f(x), x :=

(
x
y

)
, f(x) :=

(
y

µ(1− x2)y − x

)
. (57)

Here, µ > 0 represents the strength of the nonlinear damping force. We are interested
in finding upper and lower bounds for ϕ = x2 + ẋ2 = x2 + y2 = ‖x‖2, a measure of the total
(potential plus kinetic) energy in the system. As is well known, for any µ the equilibrium
position x = 0 is unstable, and the system settles into periodic oscillations for any initial
perturbation (Figure 2).

5.1 Upper Bound for the deterministic oscillator

Upper bounds on 〈ϕ〉 were computed by solving the optimisation problem (9) for 0.1 ≤ µ ≤ 5
and for a range of polynomial degrees d. We used the SOS module of YALMIP [10] to
transform (9) into a semidefinite program (SDP). Initial numerical experiments showed
that the resulting SDP is ill-conditioned even for modest polynomial degrees, and cannot

x
-3 -2 -1 0 1 2 3

y

-3

-2

-1

0

1

2

3

Figure 2: Sample state-space orbit of the Van der Pol oscillator for µ = 1, starting near the
unstable origin and converging to the periodic orbit.
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be solved reliably by standard double-precision SDP solvers. We therefore resorted to
the high-precision solver SDPA-GMP [8]; more details and comments on the numerical
implementation can be found in Appendix D.

The upper bounds computed for d = 6, d = 8, d = 10 and d = 12 are shown in Figure 3,
alongside the values of 〈ϕ〉 obtained by direct numerical integration of (56). As one would
expect, the quality of the bound increases with d; the bounds are within approximately
5% of the simulated value for all values µ considered when d = 10, and almost sharp for
d = 12. The contours of Vu, shown in Figure 4, suggest that better bounds are achieved
when the storage function has negative peaks concentrated near the corners of the periodic
orbit, where the system evolves slowly. This explains why higher polynomial degrees are
necessary to achieve sharp bounds at large values µ, for which the periodic orbit becomes
more elongated.

5.2 Lower bound for the deterministic oscillator

For the deterministic system, the trivial lower bound 〈ϕ〉 ≥ 0 cannot be improved using
Proposition 2.1, since it is saturated by the equilibrium at the origin. In order to apply
Proposition 3.1 and the S-procedure to find a tight lower bound for trajectories attracted
to the periodic orbit, we need to construct an absorbing domain that does not contain
x = 0. As already mentioned in Section 3, SOS optimisation can be used to construct
absorbing domains that well approximate the periodic orbit [16]; however, this involves
further complication and is beyond the scope of the present investigation. Instead, we will
only consider the simple family of domains Tr = {(x, y) | g(x, y) = x2 + y2 − r2 ≥ 0} for
r ≤ 1. To show that these are indeed absorbing domains, let us reverse the direction of
time in (57) and consider the energy E = x2 + y2. One has

Ė = 2xẋ+ yẏ

= −2xy − 2µy2(1− x2) + 2xy

= 2µy2(x2 − 1)

(58)

µ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

U

3.5

4

4.5

5

5.5

6

Simulation
± 5% interval
Degree 6
Degree 8
Degree 10
Degree 12

Figure 3: Upper bound for polynomial Vu of varying degree as a function of µ vs. the exact
value of 〈ϕ〉 and the ±5% accuracy intervals.
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Figure 4: Contours of the optimal Vu for varying polynomial degree. Top: µ = 1. Bottom:
µ = 3. The system’s periodic orbit (thick black line) is also shown.

meaning that E ≤ 0 when |x| ≤ 1. Therefore, any contour of E which is contained in the
strip |x| ≤ 1 defines the boundary of a region of attraction of the origin for the time-reversed
oscillator. One concludes that in the original system all orbits will leave the ball x2+y2 < r2

if r ≤ 1, i.e. Tr is an absorbing domain.
An immediate corollary of this simple proof is the lower bound 〈ϕ〉 ≥ 1. While this is

already a step forward, more significant improvements and even sharp bounds on 〈ϕ〉 can
be obtained by solving (17).

Initial numerical experiments revealed that it is sufficient to define Vl using monomials
of even order only; this is a useful simplification, as it reduces the computational effort
and improves the numerical conditioning of the SDP. In all cases, the degree of the S-
procedure multiplier s was fixed to be the same as Vl for simplicity.

Figure 5 illustrates the lower bounds computed for storage functions Vl of degree 8,
10 and 12 using the two different absorbing domains T0.5 and T1. Because T1 is a better
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Figure 5: Lower bound computed with the S-procedure for d = 8, 10, 12 using the absorbing
domains T0.5 (left) T1 (right).

approximation to the periodic orbit than T0.5, it is not surprising that better bounds are
obtained using the former for a given polynomial degree. For the same reason, the bounds
worsen as µ increases since the periodic orbit becomes more elongated. We expect that
if more sophisticated domain of attractions were computed, for example using the SOS
techniques in [16], sharper bounds could be obtained for large µ. Alternatively, bounds of
comparable accuracy could be obtained with a lower polynomial degree, reducing the cost
of the optimisation.

5.3 Bounds for a stochastic Van der Pol oscillator

Let us now add a stochastic forcing term of strength
√

2ε to the deterministic Van der Pol
differential equation, i.e. consider

ẍ− µ(1− x2)ẋ+ x =
√

2ε ξ. (59)

where ξ denotes white noise. In state-space formulation, this becomes

ẋ = f(x) +
√

2ε

(
0
ξ

)
(60)

Using the notation of Section 4, this corresponds to considering

σ =

(
0 0
0 1

)
. (61)

First, let us try to compute upper and lower bounds assuming that Vu and Vl are
polynomials. Figure 6 shows the results obtained after solving (27) and (28) for values of
ε ranging from 10−6 to 1 and polynomial degrees 8, 10 and 12. All results were obtained
for µ = 1 and defining Vu and Vl using monomials of even order only. The Figure also
shows some preliminary values for exact expectation, computed after solving the stationary
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Figure 6: Bounds for the stochastic Van der Pol oscillator for fixed finite noise amplitude.
The deterministic (ε = 0) value of 〈ϕ〉 is shown by the dashed line. Left: upper bound.
Right: lower bound.

Fokker-Planck equation (19) using a low-order finite difference method; the steady state is
achieved by time-stepping an initial distribution using an implicit Euler scheme, employing
operator splitting between x and y derivatives (that is, half a time-step is taken ignoring
any derivative in y, then another half time-step ignoring any derivative in x).

As far as the upper bounds are concerned, they are effectively indistinguishable from
the value obtained for the deterministic oscillator in Section 5.1 for ε < 10−3 approximately
and for polynomial degrees larger than 8. This is not surprising, since (27) reduces to (9)
as ε → 0 when Vu is a polynomial. At larger ε, the bounds are reasonably accurate and
capture the increase in 〈ϕ〉ε. Such an increase is indeed consistent with the stronger effect
the stochastic forcing has on the deterministic dynamics, suggesting that the well-defined,
localised periodic orbit is “smeared” by the noise.

Regarding the lower bound, instead, the addition of noise is effective only when ε is
relatively large; for all polynomial degrees, the bound L decreases to 0 as ε → 0. This
is consistent with the observation made in Section 4 that a polynomial Vl of fixed degree
cannot have large enough gradients at x = 0 to overcome the decrease in ε.

The numerical difficulties at small ε can be resolved if, instead of a polynomial, Vl is
as in (37). For simplicity, rather than trying to determine an optimal ζ, we prescribed
ζ = x2 − xy + y2 so that the optimisation problem (41) is convex and can be solved using
standard SDP solvers. It can be verified that this choice of ζ satisfies (48) for µ = 1; more
details can be found in Appendix E. Figure 7 shows the lower bounds computed using (41)
for this choice of ζ, µ = 1 and polynomials Pd of degree d = 8, d = 10 and d = 12.
The improvement compared to the results obtained with a polynomial storage function
are significant, and, for d = 12, L is indistinguishable from the deterministic bound when
ε < 10−3 approximately. Moreover, we expect that more accurate bounds could be obtained
at large ε by increasing the degree of Pd.

Finally, we can compute lower bounds in the limit ε→ 0 by solving optimisation prob-
lem (46). We fixed the degree of Pd to 12, and considered different quadratic forms ζ, shown
in Table 1. The quadratic forms ζ2 and ζ3 were constructed using the eigenvectors of the
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Figure 7: Lower bounds for the stochastic Van der Pol oscillator for fixed finite noise
amplitude. Left: bounds for different degrees of Pd. Right: Comparison between the
bounds computed from (28) and with (41) for d = 12.

Jacobian J0 (Appendix E); the different formulae for µ ≤ 2 and µ > 2 are due to a change
from complex to real eigenvectors. Instead, ζ1 was obtained by arbitrarily fixing µ = 1 in
ζ2. It can be verified that ζ2 and ζ3 satisfy (48) near the origin except when µ = 2 (the
“critical damping” condition), while ζ1 satisfies (48) only for 4 − 2

√
3 < µ < 4 + 2

√
3; see

Appendix E for more details.
The lower bounds on 〈ϕ〉, computed as a function of µ, are shown in Figure 8. Overall,

Table 1: Choices of ζ for the Van der Pol oscillator.

µ ≤ 2 µ > 2

ζ1 x2 − xy + y2 x2 − xy + y2

ζ2 x2 − µxy + y2 µx2 − 4xy + µy2

ζ3 x2 − µxy + y2 (µ2 − 2)x2 − 2µxy + 2y2

µ
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Figure 8: Left: lower bounds computed from (46) for the choices of ζ shown in Table 1 and
deg(Pd) = 12. Right: best lower bound compared to numerical integration of (57).
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Figure 9: Contours of ζ1 (left), ζ2 (centre) and ζ3 (right) for µ = 5. The system’s periodic
orbit is also shown (thick black line).

our bounds are well within ±5% of the exact value of 〈ϕ〉; the poor performance of ζ1 for
µ ≤ 4−2

√
3 ≈ 0.54 and of ζ2, ζ3 near µ = 2 was expected based on our previous comments.

Moreover, ζ3 significantly outperforms the other choices for µ > 3 approximately. This can
be understood by recalling the equivalence of the logarithmic ansatz and the S-procedure:
as shown in Figure 9, the contours of ζ3 define a better region of attraction for the periodic
orbit. Finally, the bounds worsen as µ increases for a fixed polynomial degree and for a
fixed ζ, similarly to what was observed for the upper bounds of Section 5.1 and for the lower
bounds obtained with the S-procedure in Section 5.2. This could be resolved by increasing
the degree of the polynomial Pn in (37) or by a more careful choice of ζ.

6 Further Comments

Although we have tried to keep our work as general as possible, we remark that the analysis
of Section 4.2 is only appropriate to eliminate the influence of repelling fixed points; we
have not considered the more common cases in which the bounds are constrained by saddle
points or unstable limit cycles.

Unfortunately, many systems exhibiting interesting dynamics (such as the Lorenz sys-
tem) possess unstable saddle points, and one cannot generally expect to successfully apply
the techniques we have presented. For example, we expect that the logarithmic functional
form we have proposed in Section 4 will not generally be suitable for systems with an
unstable saddle point. The reason is that using the logarithmic ansatz is equivalent to im-
plementing an S-procedure, but a region of repulsion around a saddle point cannot generally
be defined without including in it the entire stable manifold — normally, a convoluted set
that cannot be easily approximated by polynomials. This was confirmed by a brief numerical
investigation on the simple system

ẋ = (x+ y)(4− x2 − y2)

ẏ = y(2− x2 − y2)
(62)
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Figure 10: Fixed points of system (62) with their stable and unstable manifolds.

which has a repelling fixed point at the origin, two saddle points at (±1,∓1) and two stable
equilibria at (±2, 0) as shown in Figure (10); tight bounds on ϕ = y could not be obtained
after adding noise to the system even with a logarithmic storage function.

Moreover, we expect that storage functions of impractically high degree will be needed
even for noise of relatively large amplitude, making the SOS optimisation problem in-
tractable. This is because the trajectories in the stable manifold will still try to approach
the saddle point, forced by the deterministic component of the flow. Then, one expects that
each of f ·∇Vu and f ·∇Vl in inequalities (25a) and (25b) will have opposite signs along the
stable and unstable manifolds near the saddle point, unless ∇Vu and ∇Vl can change sign
rapidly. This would require polynomial approximations of large degree.

Future work should therefore concentrate on determining an appropriate scaling and
functional form for Vu and Vl for systems with saddle points and unstable periodic orbits.

Finally, we remark that the practical implementation of the SOS problems obtained
throughout this work poses some technical challenges. Specifically, polynomials of high
degree are required to compute relatively sharp bounds, significantly increasing the size
of the SDP problems to be solved. This poses a limit on the dimension of the dynamical
systems that one can study at a reasonable computational cost and time. Moreover, all SDP
problems considered in this work were ill-conditioned, and the results we have presented
could only be obtained using computationally expensive high-precision algorithms. Such
numerical difficulties should be addressed more systematically in the future if, as it seems
inevitable, the theoretical development of appropriate scaling arguments for the storage
functions is to be reliably assisted by numerical investigations.

7 Conclusion

To summarise, we have demonstrated that bounds for long-time-averaged properties of sys-
tems with polynomial dynamics can be obtained by constructing suitable storage functions
using SOS optimisation. Moreover, we have shown that the influence of unstable equilibria
on the bounds can be removed via the S-procedure (if a suitable absorbing domain can be
defined), or, extending the ideas of [3], by adding noise to a system.
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In particular, whilst the formulation of Section 4 holds for a general stochastic system
with finite noise strength, a key development is the rigorous formulation of the optimisation
problem in the vanishing noise limit for repelling fixed points. If the system is stochastically
stable, rigorous bounds for a deterministic system can be inferred when Proposition 3.1
and/or the S-procedure cannot be applied. In this context, we have demonstrated that
simple polynomial storage functions are not appropriate to prove bounds that are insensitive
to unstable solutions as ε→ 0, and a suitable asymptotic scaling of Vu and Vl with ε should
be used.

Despite our successful application of the ideas we have presented to a simple example
(the Van der Pol oscillator), some theoretical questions — such as whether it is possible to
remove the influence of saddle points on the bounds — and some practical challenges in
the implementation of the SOS optimisation remain unresolved. We anticipate that these
issues will be the subject of future work, if rigorous bounds are to be obtained for physical
systems of practical interest.
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A Introduction to SOS Optimisation

For simplicity, let us consider the problem of determining whether a polynomial p(x) of
degree 2N , i.e.

p(x) =
2N∑
n=0

cn x
n (63)

is positive for any x ∈ R (the same argument can be generalised to multiple dimensions; for
more details, see [13, 11, 1] and references therein). Clearly, a sufficient condition is that p
admits a SOS decomposition, i.e. there exists a family of polynomials {gi(x)}Mi=0 such that

p(x) = g0(x)2 + g1(x)2 + . . .+ gM (x)2. (64)

It can be shown that this is equivalent to the existence of a positive definite matrix Q
(written as Q � 0) and a vector z(x) of monomials of x such that

p(x) = z(x)T Q z(x). (65)

For example, if p(x) has degree 2N one can take z(x)T = (1, x, x2, ..., xN ). Note that the
matrix Q is generally not unique.

The problem of whether p(x) admits a SOS decomposition can therefore be rewritten
as the feasibility semidefinite problem

find Q

such that p(x)− z(x)T Q z(x) = 0,

Q � 0,

(66)

where the equality constraint p(x) − z(x)T Q z(x) = 0 is interpreted as a set of equality
constraints obtained by setting all coefficients of the difference p(x)− z(x)T Q z(x) to zero.
Note that these equality constraints are linear with respect to the coefficients cn of p(x), as
well as with respect to the entries of Q. Consequently, semidefinite programming can be used
to find values of any unknown coefficients cn such that p(x) admits a SOS decomposition,
or that minimise a linear function f(c0, c1, . . . , cN ) subject to p(x) being a SOS polynomial.
Again, more details can be found in [13, 11, 1].
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B Asymptotic Analysis for 1D systems

Let us consider the one-dimensional dynamical system ẋ = f(x) +
√

2εξ, where f(x) is a
polynomial and ξ is a white noise process. Let ρε(x) be the stationary probability density
function of the system, satisfying

∂(fρε)

∂x
= ε

∂2ρε
∂x2

. (67)

Integrating once we obtain

f ρε = ε
∂ρε
∂x

, (68)

where the constant of integration has been set to zero since we must have ρ→ 0 as |x| → ∞.
This equation can be solved after letting

F (x) =

∫
f(x) dx (69)

to find

ρε(x) = N e
1
ε
F (x), N =

[∫ +∞

−∞
e

1
ε
F (x) dx

]−1

. (70)

Consequently, the expectation of an observable ϕ can be computed as

〈ϕ〉ε =

∫ +∞

−∞
ϕ(x) ρε(x) dx = N

∫ +∞

−∞
ϕ(x) e

1
ε
F (x) dx. (71)

However, we are interested in computing 〈ϕ〉ε within the framework of Proposition 4.1, in
the hope that we can gain some insight to tackle more complicated cases for which the
Fokker-Planck equation cannot be solved as easily.

According to Proposition 4.1, 〈ϕ〉ε can be calculated by finding a function V what
satisfies

ε V ′′ + f V ′ + ϕ− Lε = 0,

lim
|x|→∞

(
ρε V

′) = 0, (72)

where (·)′ denotes differentiation with respect to x and the boundary term has been simpli-
fied using (68). As we will see in the following, a solution to this problem can only be found
when Lε = 〈ϕ〉ε. Changing variable to W = V ′, we can write an exact general solution
to (72) for any value of ε as

W (x) = W0e
− 1

ε
F (x) +

1

ε
e−

1
ε
F (x)

∫ x

0
[Lε − ϕ(s)] e

1
ε
F (s) ds. (73)

The integration constant W0 is determined by the boundary conditions, which using the
expression for ρε in (70) reduce to

W0 +
1

ε

∫ +∞

0
[Lε − ϕ(s)] e

1
ε
F (s) ds = 0, (74a)

W0 −
1

ε

∫ 0

−∞
[Lε − ϕ(s)] e

1
ε
F (s) ds = 0. (74b)
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Note that we have two boundary conditions for a first-order differential equation. In order
to satisfy both, we let

Lε = 〈ϕ〉ε (75)

such that, by definition of 〈ϕ〉ε,∫ +∞

−∞
[Lε − ϕ(x)] e

1
ε
F (x) dx = 0. (76)

Except from Section B.1 below, we will use (74a) and let

W0 =
1

ε

∫ 0

−∞
[Lε − ϕ(s)] e

1
ε
F (s) ds (77)

so that W becomes

W (x) =
1

ε
e−

1
ε
F (x)

∫ x

−∞

(
Lε − s2

)
e

1
ε
F (s) ds. (78)

Note that the second boundary condition (74b) is also satisfied by virtue of (76). Alterna-
tively, using (74b) to define W0 one obtains the equivalent expression

W (x) = −1

ε
e−

1
ε
F (x)

∫ +∞

x

(
Lε − s2

)
e

1
ε
F (s) ds. (79)

Unfortunately, neither (78) nor (79) give much information about the behaviour and
scaling of W for a general dynamical system. We will therefore proceed by discussing
some illustrative examples which allow us to draw some important conclusions about the
applicability of SOS optimisation to determine sharp bounds for 〈ϕ〉ε.

B.1 Case 1: f(x) = x− x3, ϕ(x) = x2

Let f(x) = x− x3 and ϕ(x) = x2 so that F (x) = x2

2 −
x4

4 is an even function with maxima
at x = ±1 and a local minimum at x = 0, as shown in Figure 11. In this case, equation (72)
can be solved using the method of matched asymptotic expansions (not show here) to find

W (x) ≈ 1

x︸︷︷︸
outer sol.

+
1√
ε
e−

x2

2ε

∫ x√
ε

0
e

s2

2 ds︸ ︷︷ ︸
inner sol.

− 1

x︸︷︷︸
common part

, (80)

x
-1.5 -1 -0.5 0 0.5 1 1.5

F
(x

)
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Figure 11: F (x) = x2

2 −
x4

4
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where the inner solution is valid when x ∼
√
εx̂. In the intermediate layer

√
ε� x� 1 the

solution reduces to the common part and one has

W (x) ∼ 1

x
⇒ V (x) =

∫
W (x)dx ∼ log |x| = 1

2
log x2. (81)

This fact was used in Section 4 to justify the use of logarithmic ansatz for V in higher-
dimensional systems.

The behaviour of W in the outer and inner regions could also be inferred from the
expression for the exact solution. Rather than using (78) or (79), we note that ϕ is even
and add the two conditions in (74) to deduce that W0 = 0 is an appropriate choice for the
integration constant in (73). Hence, we have

W (x) =
1

ε
e−

1
ε
F (x)

∫ x

0

(
Lε − s2

)
e

1
ε
F (s) ds. (82)

Moreover, subtracting (74b) with W0 = 0 from this equation we find

W (x) = −1

ε
e−

1
ε
F (x)

∫ +∞

x

(
Lε − s2

)
e

1
ε
F (s) ds, (83)

which is the same as (79).
To study the asymptotic behaviour of W as ε→ 0, we note that W is an odd function

so we restrict the attention to x > 0. First, we use Laplace’s method to estimate

Lε =

∫ +∞

−∞
x2 ρε dx ∼ 1− ε+O(ε2). (84)

When x is small, precisely x = ε1/2x̂ (where x̂ ∼ O(1) and the scaling of ε is suggested by

the term 1
εF (x) ∼ x2

2ε when x is small) the leading order behaviour of Lε can be used to
estimate

W (x) ∼ 1√
ε
e−

x2

2ε

∫ x√
ε

0
e

s2

2 ds. (85)

This is the same as the inner solution in (80).
When x ∼ O(1) but x < 1, we can use Laplace’s method to estimate the integral term in

W , where the dominant contribution is given by the end-point x of the integration domain,
since F is monotonically increasing over the interval (0, 1) (cf. Figure 11). Recalling that
F ′ = f > 0 for x < 1, we can show that

W (x) ∼ 1− x2

x− x3
=

1

x
, (86)

which corresponds to the outer solution in (80). The same behaviour is found for x > 1
using (83).

Finally, we can estimate the behaviour at x = 1 to the leading order in ε as

W (1) ∼ 1

ε
e−

1
4ε

∫ 1

−∞
[1− ε− 1− 2(s− 1)] e[

1
4ε
− 1

ε
(s−1)2+...] ds

∼ 1 +O(
√
ε),

(87)

which is consistent with (86). A comparison between a direct numerical integration of (82)
and its asymptotic expansion for ε = 0.01 is shown in Figure 12.
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Figure 12: Comparison between the numerical integration and the asymptotic approxima-
tion of W , ε = 0.01.

B.2 Case 2: f(x) = x− x3, ϕ(x) = x

A simple change from ϕ = x2 to ϕ = x implies a dramatic change in the behaviour of
W . The functions F (x) and ρε(x) are as in the previous example, and the symmetry of ρε
implies that

Lε =

∫ +∞

−∞
x ρε(x)dx = 0. (88)

Equation (72) then becomes

εW ′(x) + f(x)W (x) + x = 0. (89)

The method of matched asymptotic expansions fails in this case to produce an approxima-
tion to W if one assumes the usual outer solution

Wouter =
Lε − x
x− x3

=
1

x2 − 1
, (90)

since one cannot construct inner solutions at x = ±1 that satisfy the matching condition.
Let us show this by trying to construct an inner solution at x = 1. The appropriate scaling
for the inner variables is x = 1 + ε1/2 ŷ and W = ε−1/2Ŵ , so the leading-order equation for
Ŵ becomes

Ŵ ′ − 2ŷŴ + 1 = 0, ŷ =
x− 1√

ε
. (91)

Thus, we have

W =
1√
ε
Ŵ =

√
π

2
√
ε
eŷ

2
[A− erf(ŷ)] , ŷ =

x− 1√
ε
. (92)

where erf is the standard error function and A is a constant of integration to be determined
so as to match the assumed outer solution (90). Specifically, shifting coordinates x = 1+

√
εŷ

in (90), we require

lim
ŷ→+∞

√
π

2
√
ε
eŷ

2
[A− erf(ŷ)] ∼ 1

2
√
εŷ
, (93a)

lim
ŷ→−∞

√
π

2
√
ε
eŷ

2
[A− erf(ŷ)] ∼ 1

2
√
εŷ
. (93b)
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These conditions cannot be satisfied simultaneously, since the first one requires A = 1, while
the second requires A = −1. Hence, matching is impossible.

This can be explained by considering the exact solution W , which according (78)
and (79) can be written as

W (x) =
1

ε
e−

1
ε
F (x)

∫ x

−∞
s e

1
ε
F (s) ds (94a)

= −1

ε
e−

1
ε
F (x)

∫ +∞

x
s e

1
ε
F (s) ds. (94b)

Note that this solution is even, so we only need to study its behaviour for x > 0.
When x > 1, W can be estimated from (94b) using Laplace’s method, where the domi-

nant contribution to the integral come from the end-point x of the domain of integration.
We obtain

W (x) ∼ 1

x2 − 1
, (95)

which corresponds to the usual outer solution (90). This, however, is not the appropriate
outer solution when 0 < x < 1; to show this, we again use Laplace’s method on (94b), but
this time the dominant contribution comes from x = 1. We obtain

W (x) ∼
√
π

ε
e

1
4ε
− 1

ε
F (x), (96)

and since F (x) < 1
4 when 0 < x < 1 (cf. Figure 11), this means that W behaves like a

gaussian (cf. Figure 13).
This behaviour could have been derived from an asymptotic analysis of the original

equation by applying the WKB method. If we assume that

W (x) = e
1
ε
ψ(x) [W0(x) + εW1(x) + ...] , (97)

equation (89) becomes[
ψ′W0 + εψ′W1 + εW ′0 + f W0 + εf W1 +O(ε2)

]
e

1
ε
ψ + x = 0. (98)

Assuming that ψ(x) ≥ 0, we can neglect the last term and impose

O(ε0) : ψ′W0 + f W0 = 0 (99)

O(ε1) : ψ′W1 +W ′0 + f W1 = 0 (100)

In order to have a non-zero W0, we must impose

ψ′(x) = −f(x) =⇒ ψ(x) = K − F (x). (101)

Since −F is bounded from below (cf. Figure 11), the integration constant K can indeed
be chosen to satisfy ψ ≥ 0 as originally assumed. It then follows from that (100) that
W0 =constant, and so

W (x) = W0e
K
ε e−

F (x)
e + . . . . (102)
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Incorporating the constant term e
K
ε into W0, the WKB outer solution for 0 < x < 1 can be

written to leading order as

Wouter(x) = W0e
− 1

ε
F (x), (103)

where W0 has yet to be determined; note that we recover (96) if we choose

W0 =

√
π

ε
e

1
4ε . (104)

This choice can indeed be motivated by matching the outer solution

Wouter =


W0e

− 1
ε
F (x), 0 < x < 1,

1

x2 − 1
, x > 1.

(105)

with the inner solution near x = 1 given by (92). In particular, we choose A = 1 so that

Winner(x) =

√
π

2
√
ε
e

(x−1)2

ε

[
1− erf

(
x− 1√

ε

)]
. (106)

It is easy to verify that the inner and outer solution match for x > 1, while matching is
achieved for x < 1 if W0 is as in (104). A comparison between the exact solution and its
composite asymptotic expansion derived combining (105) and (106) is shown in Figure 13
for ε = 0.02 (the two curves are graphically indistinguishable).

B.3 General Third-Order Systems

From the examples above, we may conclude that an asymptotic solution of the equation

εW ′(x) + f(x)W (x) + ϕ(x)− Lε = 0 (107)

can only be achieved if one consider a more general outer solution than the“normal” outer
solution

Wouter =
Lε − ϕ(x)

f(x)
. (108)

x
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

W
(x

)

×10
6

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Exact - numerical integration
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Figure 13: Comparison between the numerical integration and the asymptotic approxima-
tion of W , ε = 0.02 (the two curves are graphically indistinguishable).
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To illustrate this concept, let us assume that f is a cubic polynomial with zeros at
xs,1 < xu < xs,2 such that xs,1 is the most stable fixed point of the deterministic system
ẋ = f(x). This means that F has a global maximum at xs,1, a local minimum at xu and
a local maximum at xs,2 (cf. Figure 14). In general, ϕ assumes different values at the
fixed points and therefore one finds Lε = ϕ(xs,1) + O(ε). For example, one may consider
f(x) = 2x− x2 − x3, xs,1 = −2 and ϕ(x) = x2, in which case Lε = 4 +O(ε).

Recall from (78) and (79) that if Lε = 〈ϕ〉ε the solution of (107) can be written as

W (x) =
1

ε
e−

1
ε
F (x)

∫ x

−∞
[Lε − ϕ(s)] e

1
ε
F (s) ds

= −1

ε
e−

1
ε
F (x)

∫ +∞

x
[Lε − ϕ(s)] e

1
ε
F (s) ds.

(109)

Let us now study the behaviour of W for a different values of x. When x � xs,2 an
asymptotic analysis using Laplace’s method shows that the “normal” outer solution (108) is
an appropriate approximation to W (this is similar to our discussion in Section B.2). This
approximation is valid as x decreases towards xs,2.

Since F has a local maximum at xs,2, when x is decreased past xs,2 the behaviour of W
changes; Laplace’s method shows that

W (x) ∼

√
2π

|F ′′(xs,2)|ε
[Lε − ϕ(xs,2)] e

1
ε

[F (xs,2)−F (x)], (110)

i.e. W has an exponential behaviour. In particular, W reaches a maximum at xu, when the
difference F (xs,2)− F (x) is at its maximum (cf. Figure 14).

As x is decreased even further, one reaches a point x0 at which F (x0) = F (xs,2). When
x < x0, the asymptotic behaviour changes again; one can show that, for x < x0, W scales
as in (108). This behaviour is maintained until x = xs,1. Finally, under our assumption
that Lε = ϕ(xs,1) +O(ε) it is can be shown that (108) holds for x < xs,1 and, in fact, for
x = xs,1 (the analysis is analogous to that of Section B.1).

This analysis allows us to conclude that an asymptotic analysis of (107) should con-
sider (108) as the outer solution for x < x0 and x > xs,2, while (110) should hold when

x
s,1

x
0

x
u

x
s,2

F
(x

)

Inner
Layer

Exponential Outer
Solution

Inner
Layer

Normal Outer
Solution

Normal Outer
Solution

Figure 14: Validity region for different types of outer solutions for W . A typical profile for
F satisfying our assumptions is shown. The location of inner layers where the behaviour
transition smoothly is also sketched.
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x0 < x < xs,2. Inner layers are required when x → x0 and x → xs,2 for a smooth transi-
tion between the different behaviours. The validity regions for each type of outer solutions
are illustrated in Figure 14; the location of inner layers, where the behaviour smoothly
transitions from one outer solution type to another, is also sketched.

The analysis for the inner layer near xs,2 is identical to that carried out in Section B.2
for x = xs,2 = 1, so we will only consider the inner solution near x→ x0. Letting y = x−x0

and recalling our assumption that f is cubic, we may rewrite

f(x) = f(y + x0) = −(a0 + b0y + c0y
2 + d0y

3) (111)

where the constants a0, ..., d0 depend on the value of x0. In particular, a0 = −f(x0) =
−F ′(x0), and since we have assumed that xs,1 < x0 < xu, we conclude that a0 > 0 (this
can be seen from Figure 14). Equation (107) then becomes

εW ′(y)−
(
a0 + b0y + c0y

2 + d0y
3
)
W (y) + ϕ(y + x0)− Lε = 0, (112)

The appropriate coordinate stretching for this equation is y = εŷ , Winner = Ŵ ; then, the
inner solution satisfies the equation

εW ′inner − a0Winner + ϕ(x0)− Lε = 0 (113)

and can be written explicitly as

Winner(ŷ) = Aea0ŷ − Lε − ϕ(x0)

a0
. (114)

Recalling that a0 > 0, it can be verified that this expression matches with (108) as ŷ → −∞
and with (110) as ŷ → +∞ if

A =

√
2π

|F ′′(xs,2)|ε
[Lε − ϕ(xs,2)] e−

1
ε
F (xs,2), (115)

which is the required asymptotic behaviour (as illustrated in Figure 14).

B.4 Remarks & Implication for SOS Optimisation

In light of the examples discussed in the previous sections, we conclude that the appropriate
form for the function W is highly dependent on both the system’s dynamics f(x) and the
observable ϕ(x). In general, there exist intervals in which W has an exponential growth

of type e
1
ε

(·). This behaviour is due to the existence of a stable fixed point xs at which
Lε − ϕ(xs) 6= 0 (to leading order in ε) such that standard outer solution (108) cannot be
matched asymptotically to any appropriate inner solution. These considerations can be
generalised to system with polynomial flows f(x) of degree larger than 3.

The regions where W behaves exponentially, however, disappear when ϕ assumes the
same value at all stable points (such as the example studied in Section B.1). In this special
case, in fact, the “normal” outer solution does not become singular at any of the stable
points, and no inner layers are required. An asymptotic solution similar to that proposed
in Section B.1 can then be constructed.
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For 1D system with bounded trajectories, one always has multiple stable points, hence
these regions of exponential behaviour are generally unavoidable. Thus, one cannot usually
approximate W with polynomials or rational functions that capture the correct scaling in
the inner layers for arbitrary ε, as the degree of such polynomial approximations would have
to be infinite.

The implication of these results is that, in general, one cannot hope to derive sharp
lower bounds on 〈ϕ〉ε using SOS techniques that hold analytically as ε → 0. Indeed, the
computational effort and the order of polynomial approximations to the exact W increase
so rapidly that SOS optimisation becomes impractical even when ε is fixed to a small value
and not treated analytically.
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C Vanishing Noise Limit: Proof of Negligible Contributions

In Section 4.2 we have let

Vl(x) = α log[ε+ ζ(x)] + Pn(x)

and we have found a polynomial Pn such that∫
ρ [ε∇ · (D∇Vl) + f · ∇Vl + ϕ− L] dx ≥ 0

everywhere except from a ball BR of radius R ∼ ε1/2−η with 0 < η < 1/2; for definiteness,
let us write R = Cε1/2−η for some constant C. To complete the argument, we need to show
that ∫

BR

ρ [ε∇ · (D∇Vl) + f · ∇Vl + ϕ− L] dx→ 0 as ε→ 0. (116)

Upon substitution of the ansatz, the integral becomes∫
BR

ρ

[
ε
α∇ · (D∇ζ)

ε+ ζ
− ε α∇ζ · (D∇ζ)

(ε+ ζ)2
+ ε∇ · (D∇Pn) +

αf · ∇ζ
ε+ ζ

+ f · ∇Pn + ϕ− L
]
dx.

Let us proceed term by term and let us assume that ρ is bounded in BR uniformly as ε→ 0.
Since P and ϕ are continuous,∣∣∣∣ ∫

BR

ρ [ε∇ · (D∇Pn) + f · ∇Pn + ϕ− L] dx

∣∣∣∣ ≤ 4π

3
R3 max

BR

{
ρ|ε∇·(D∇Pn)+f ·∇P+ϕ−L|

}
so ∫

BR

ρ [ε∇ · (D∇Pn) + f · ∇P + ϕ− L] dx→ 0 as ε→ 0 (117)

To study the other terms, we switch to polar coordinates, (x1, ..., xn)→ (r, θ1, ..., θn−1)
where r ∈ [0, R], θ1, ..., θn−2 ∈ [0, π], θn−1 ∈ [0, 2π] and

dx = rn−1 sinn−2(θ1)... sin(θn−2) drdθ1...dθn−1.

Since ζ is a homogeneous, positive definite quadratic form of x and D is positive semi-
definite (recall that D = σTσ) we can write

ζ(x) = r2F (θ1, ..., θn−1)

∇ζ · (D∇ζ) = r2G(θ1, ..., θn−1)

for some strictly positive function F and non-negative function G, while ∇· (D∇ζ) is a real
number. Moreover, let

F ∗ = min
θ1,...,θn−1

F (θ1, ..., θn−1),

G∗ = max
θ1,...,θn−1

G(θ1, ..., θn−1)
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and

I =

∫ R

r=0

∫ 2π

θn−1=0

∫ π

θn−2=0
...

∫ π

θ1=0

rn−1 sinn−2(θ1)... sin(θn−2)

ε+ r2F (θ1, ..., θn−1)
drdθ1...dθn−1.

Then, we have∣∣∣∣ ∫
BR

αε ρ∇ · (D∇ζ)

ε+ ζ
dx

∣∣∣∣ ≤ ε |α∇ · (D∇ζ)| max
BR

(ρ) I

≤ ε |α∇ · (D∇ζ)| max
BR

(ρ) 2πn−1

∫ R

r=0

rn−1

ε+ r2F ∗
dr

If n = 2, the last term can be integrated to give∣∣∣∣ ∫
BR

αε ρ∇ · (D∇ζ)

ε+ ζ
dx

∣∣∣∣ ≤ ε{|α∇ · (D∇ζ)| max
BR

(ρ)
πn−1

F ∗
log
(
1 + C2 F ∗ε−2η

)}
while when n ≥ 3 we can estimate∣∣∣∣ ∫

BR

αε ρ∇ · (D∇ζ)

ε+ ζ
dx

∣∣∣∣ ≤ ε3/2−η
{

2Cπn−1|α∇ · (D∇ζ)|max
BR

(ρ) max
r∈[0,R]

(
rn−1

ε+ r2F ∗

)}
.

It can be verified that the maximum of the last term is achieved at the endpoint r = R =
Cε1/2−η. Taking the limit shows that for all n ≥ 2∫

BR

αε ρ∇ · (D∇ζ)

ε+ ζ
dx→ 0 as ε→ 0 (119)

Similarly, we can show∣∣∣∣ ∫
BR

αερ∇ζ · (D∇ζ)

(ε+ ζ)2
dx

∣∣∣∣ ≤ ε |α|2πn−1 max
BR

(ρ)

∫ R

r=0

rn+1G∗

ε2 + r4F ∗2
dr

≤


ε

{
|α|πn−1G∗)

2F ∗2
max
BR

(ρ) log(1 + C4 F ∗2ε−4η)

}
, n = 2

ε3/2−η
{

2C|α|πn−1G∗ max
BR

(ρ) max
r∈[0,R]

(
rn+1

ε2 + r4F ∗2

)}
, n ≥ 3

where, again, the last maximum is achieved at r = R = Cε1/2−η. Hence we deduce∫
BR

αερ∇ζ · (D∇ζ)

(ε+ ζ)2
dx→ 0 as ε→ 0 (120)

Finally, since f(0) = 0 and ∇ζ is linear, the term f · ∇ζ is a polynomial of x that only
contains monomials of degree 2 and higher. Consequently, we can write

f · ∇ζ =

deg f∑
m=1

r1+mHm(θ)
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for some continuous functions Hm such that their standard L∞ norm ‖Hm‖∞ is finite. Each
term in this series can be considered separately; for each m we have∣∣∣∣ ∫

BR

ρ
αr1+mHm(θ)

ε+ ζ
dx

∣∣∣∣ ≤ 2πn−1|α| ‖Hm‖∞ max
BR

(ρ)

∫ R

0

rn+m

ε+ r2F ∗
dr

≤ ε1/2−η
{

2Cπn−1|α| ‖Hm‖∞ max
BR

(ρ) max
r∈[0,R]

(
rn+m

ε+ r2F ∗

)}
,

which tends to 0 as ε → 0 (since n ≥ 2, m ≥ 1, and the last maximum is obtained at
r = R = Cε1/2−η). We therefore conclude that∫

BR

ρ
αf · ∇ζ
ε+ ζ

dx→ 0 as ε→ 0 (121)

Combining (117)-(121) proves (116). Note that the proof presented for estimates (119)
and (120) is valid for systems of dimension n ≥ 2 or higher. For one-dimensional systems,
instead, one needs to consider the behaviour of ρ explicitly (cf. Appendix B).
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D Remarks on Technical Implementation of SOS Problems

Initial numerical experiments revealed that the SOS problems used to compute upper and
lower bounds are particularly ill-conditioned and cannot generally be solved by standard
double-precision SDP solvers. From experience, this seems especially true for lower bound
problems, and in general for polynomial degrees higher than approximately 4 or 6. The
results presented in this work were obtained by pre-processing the SOS problem using the
MATLAB toolbox YALMIP [10], and solving the resulting SDP with SDPA-GMP [8] with
the parameter precision set to 200. The procedure outlined below was followed for each
individual optimisation (we assume the reader is familiar with at least the basic commands
of the SOS optimisation module in YALMIP, such as sossolve):

1. Set up the SOS problem in YALMIP using sdpvar variables and YALMIP’s command
sos to create SOS constraints. For example, a polynomial storage function V and the
vector of its coefficients Vcoeffs are defined with the commands

>> [V,Vcoeffs] = polynomial(x,degreeV);

In an attempt to reduce the problem size, all SOS polynomials required by the S-
procedure were defined using the commands

>> z = monolist(x,degreeS);

>> Sm = sdpvar(size(z,1));

>> S = z’*Sm*z;

>> Constraints = [Sm>=0];

rather that by using YALMIP’s polynomial and sos commands. This was recom-
mended in [16].

2. Export the SDP to SDPA-GMP using a modified version of YALMIP’s solvesos

function combined with the export command. This was done in order to exploit
YALMIP’s pre-processing capabilities (e.g. Newton polytope and symmetry reduc-
tions, [11]).

3. Solve the SDP problem with SDPA-GMP and import the solution back into MAT-
LAB/YALMIP. This is necessary because the output from the solver cannot be easily
interpreted in terms of the polynomials and sdpvar objects defined by the user in
Step 1 above. We remark here that this is likely to introduce numerical errors, due
to the different numerical precision used by the solver and by MATLAB.

4. Re-define the problem using a reduced monomial basis, then repeat Steps 1-3. The
reduced monomial basis can be obtained after removing unused or zero coefficients
from Vcoeffs. This is a basic attempt to reproduce YALMIP’s post-processing rou-
tines [11] and should improve the numerical conditioning. Note that this should not
change the problem’s solution, simply improve the numerical conditioning and make
any computation more reliable. Any significant change in the solution should be
interpreted as a warning for numerical problems.
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5. Repeat steps 1-4 until the monomial basis cannot be reduced any further.

6. Check the feasibility of the solution by fixing all variables to their optimal value and
calling solvesos again.

7. [Optional] Check if a certificate of strict positivity exists using Theorem 4 in [11].

This procedure was implemented successfully for most SDPs related to upper bound
problems. For lower bound prolems, instead, the numerical solution obtained with SDPA-
GMP could not be post-processed reliably with YALMIP, and the feasibility test in step
6 above was almost never successful. However SDPA-GMP never reported infeasibility or
numerical problems when solving the original SOS optimisation; in fact, it terminated with
the optimal flag pdOPT, indicating that an optimal solution could be found. Consequently,
the upper and lower bounds computed by SDPA-GMP were considered acceptable.

Further tests were carried out by disabling YALMIP’s pre-processing routines; the re-
sults were unchanged but the computation time increased significantly. This suggests that
the preliminary problem manipulation carried out by YALMIP is beneficial and does not
constitute a large source of error. Yet, the solution of the SDP produced by YALMIP
requires high-precision. Clearly, one would need to maintain high numerical precision to
correctly interpret the data returned by the solver and recover the coefficients of the poly-
nomials as defined originally by the user. Unfortunately, the “dictionary” used by YALMIP
to operate this “translation” is not immediately available to the user, and the solver data
must be returned to the SOS module in YALMIP if further processing/checking is needed.
This, in our opinion, is the main source of numerical errors that prevented us to successfully
carry out a feasibility test as in step 6 above.

Finally, a comment on the solver. Whilst SDPA-GMP allowed us to compute the results
presented in this report, it does not allow multi-threading and, consequently, we expect that
larger SDPs cannot be solved in a reasonable computation time. This is a fundamental issue
if higher-dimensional systems are to be studied, as the SDP associated with the SOS formu-
lation of the upper/lower bound problems become very large even for modest polynomial
degrees.

Clearly, future work should address these issues more carefully, especially if further
analysis of the optimal solution and certificates of true positivity are needed. As a first
step, a high-precision parser for SOS problems should be implemented to carry out the
necessary pre-processing and to interpret the solution from SDPA-GMP in a user-friendly
format. As a long-term suggestion, however, we recommend the development of a high-
precision SOS parser with pre- and post-processing capabilities similar to those of YALMIP
and of a multi-threaded high-precision SDP solver.
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E Constructing ζ from Eigenvector Analysis

Remark: we construct suitable quadratic forms ζ in the context of the Van der Pol Oscil-
lator. However, the same ideas and derivations apply to a general system with a repelling
fixed point.

In the vicinity of the origin, the Van der Pol oscillator

ẋ = y

ẏ = µ(1− x2)y − x
(122)

can be expanded as

ẋ = J0x + h.o.t., J0 =

(
0 1
−1 µ

)
. (123)

Letting µ = 2ν, the eigenvalues of J0 can be written as

λ1,2 = ν ±
√
ν2 − 1 (124)

and the matrix of normalised (i.e. unit norm) eigenvectors is

U =

(
A B

Aν +A
√
ν2 − 1 Bν −B

√
ν2 − 1

)
(125)

with

A =
[
2ν2 + 2ν

√
ν2 − 1

]−1/2
, B =

[
2ν2 − 2ν

√
ν2 − 1

]−1/2
. (126)

When µ = 2 (i.e. ν = 1), the two eigenvalues and eigenvectors coincide and J0 cannot be
diagonalised; otherwise, we have

Λ :=

(
λ1 0
0 λ2

)
= U−1 J0 U. (127)

Note that Λ is a positive definite matrix.

E.1 Construction of ζ1

We arbitrarily fix ζ1 = x2 − xy − y2, which is clearly positive definite. Moreover,

ζ̇1 = 2xẋ− ẋy − xẏ + 2yẏ

= x2 − µxy + (2µ− 1)y2 + h.o.t.
(128)

Neglecting the higher-order terms, the right hand side is positive in the vicinity of the origin
if

∆ = µ2y2 − 4(2µ− 1)y2 < 0, (129)

which is satisfied for 4−2
√

3 < µ < 4+2
√

3. Thus, ζ1 satisfies the necessary condition (48)
for α > 0 if µ is in this range.
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E.2 Construction of ζ2

Let w = U−1x and consider ζ2 as

ζ2 ∝ ‖w‖2 = xT [U−1]TU−1x. (130)

The (positive) proportionality constant can be chosen arbitrarily, since the constraint in (46)
is homogeneous in ζ. In particular, one can chose such constants to write

ζ2 =

{
x2 − µxy + y2, µ < 2

µx2 − 4xy + µy2, µ > 2
(131)

Clearly, ζ2 is positive definite. Moreover, it satisfies the necessary condition (48) near the
origin. In fact,

ζ̇2 ∝ 2xTJT0 [U−1]TU−1x + h.o.t.

= 2wTUTJT0 [U−1]Tw + h.o.t.

= 2wT [U−1J0 U]Tw + h.o.t.

= 2wTΛw + h.o.t..

(132)

Neglecting the higher order terms in a neighbourhood of the origin and recalling that the
matrix of eigenvalues is positive definite, we conclude that the last expression is positive.
However, this expression cannot be used for µ = 2, since U cannot be inverted.

E.3 Construction of ζ3

In order to take into account the dynamics near the origin, and not only the geometric
information contained in the eigenvectors, let

ζ3 ∝ wTΛwT = xT [U−1]TΛU−1x. (133)

Choosing appropriate proportionality constants to simplify the form of ζ3, we can write

ζ3 =

{
x2 − µxy + y2, µ < 2,(
µ2 − 2

)
x2 − 2xy + 2y2, µ > 2.

(134)

Clearly, ζ3 is positive definite. Moreover,

ζ̇3 ∝ 2xTJT0 [U−1]TΛU−1x + h.o.t.

= 2wTUTJT0 [U−1]TΛw + h.o.t.

= 2wT [U−1J0 U]TΛw + h.o.t.

= 2wTΛTΛw + h.o.t.

= 2wT

(
|λ1|2 0

0 |λ2|2
)

w + h.o.t.

(135)

Neglecting the higher order terms in a neighbourhood of the origin, we conclude that the
last expression is positive and therefore (48) is satisfied. However, this expression cannot
be used for µ = 2, since U cannot be inverted.
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A Correlated Stochastic Model for the Large-scale Advection,
Condensation and Diffusion of a Passive Scalar

Tom Beucler

October 15, 2015

1 Introduction

1.1 Distribution of moisture in the atmosphere

At first glance, the distribution of atmospheric water vapor is highly inhomogeneous and
varies significantly on very short distances. Lagrangian trajectories of each individual moist
parcels in the Tropics strongly depend on the wind field and the intensity of tropical con-
vection, and cloud microphysical processes will have a big influence on the parcel’s water
content [7]. However understanding the distribution of water vapor in the atmosphere is
crucial for several reasons:

• Its climatic importance: Water vapor is the main greenhouse gas in the atmo-
sphere, because of its molecular characteristics (eg a permanent dipole moment) and
its abundance. Furthermore, the condensation of water produces clouds, which re-
flect, scatter and absorb solar and terrestrial radiation. Finally, the condensation of
water produces latent heat which affects the global atmospheric circulation. Thus, it
is impossible to quantitatively study the distribution of clouds [3, 11] or even climate
change [19, 21] without understanding the atmospheric water content.

• Its central meteorological role: It is impossible to understand weather without
knowing the distribution of water vapor and liquid water in the atmosphere. Impor-
tant weather systems, such as cloud clusters, cyclones, or the Madden-Julian oscilla-
tion, are all examples of aggregates of water in the atmosphere. Understanding the
self-aggregation of water vapor is a significant research challenge [25, 28], and knowl-
edge of the large-scale advection/distribution of water vapor is required to understand
the evolution of moist clusters in time.

The comparison of observations with simple numerical models gives us insights in how
atmospheric water vapor is distributed:

• Understanding the mixing occurring on dry/moist isentropic surfaces between the
moist Tropics, the dry subtropics, and the sub-saturated mid-latitudes is central to
understanding the distribution of water vapor [4, 2, 1, 10, 16].

• The Probability Density Function (PDF) of water vapor is bimodal with a dry and a
moist spike [15].
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• There is a consensus that microphysical processes do not need to be known precisely
to understand the distribution of water vapor, at least outside of the Tropics, and
that focusing on computing the advecting wind with precision is more relevant in
most cases [5, 20].

The last point justifies the advection-condensation paradigm, which assumes that the dis-
tribution of water vapor can be deduced from the velocities in the atmosphere and the
saturation specific humidity profile, without a precise knowledge of the microphysical and
convective processes producing this profile. It is an interesting alternative to models that
need a precise knowledge of the atmospheric properties at each location [17], and was
initially used to compute the short term evolution of a given water vapor field in the at-
mosphere using the observed wind field data. Pierrehumbert et al. [15] started using a
stochastic advection-condensation model to understand the fundamentals of water vapor
distribution. Assuming a one-dimensional Brownian motion for the air parcels and an ex-
ponentially decreasing saturation specific humidity profile, they were able to solve initial
value problems and obtain the PDF of moisture numerically. O’Gorman and Schneider
[12, 13] added correlation to the stochastic velocity field by assuming that it was governed
by an Ornstein-Uhlenbeck process (Gaussian colored noise). They were able to analytically
compute the moisture flux and the condensation rate in the Ballistic and Brownian limits;
they computed the same quantities numerically in the 1D/2D case. Sukhatme and Young
[23] were able to solve for the PDF, the moisture flux and the condensation rate in the
general case (giving significant insight in the physics of the process), but they had to come
back to a white noise process for the velocity field.

Thus, our first motivating questions are: What are the physics of the advection-
condensation model in the case where the velocity process has a finite time-
correlation? Is it possible to analytically approximate:

• The bimodal PDF of specific humidity?

• The moisture flux?

Understanding how the flux of a condensing scalar behaves in the case of a stochastic process
correlated in time has broader applications and leads to new motivations, as we show in
paragraph 1.2.

1.2 Diffusivity of a passive scalar

A passive scalar is a diffusive substance with no dynamical effect (such as a change in buoy-
ancy) on the fluid flow that contains it [27]. Under certain conditions, anthropogenically
introduced dyes, biological nutrients, and of course water vapor can be approximated as
passive scalars. Here, we show how the Lagrangian evolution equation of a passive scalar
q influences its diffusion, ie its movement down a given concentration gradient G (in m−1).
If the scalar has no sources nor sinks, it can be shown [24] that in a statistically steady
state, its flux Fq verifies Fick’s law:

Fq
def= v′q′ = −DG (1)
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where (X) is an appropriate ensemble average on the fluid’s parcels, and the deviations from
this average are denoted with a prime. v is the parcel’s velocity, defined as the Lagrangian
time-derivative of its displacement, and assumed to have a mean value equal to zero without
loss of generality. In Fick’s law, we define the coefficient D (in m2.s−1) to be the diffusivity
of any passive scalar q. In the absence of sources and sinks:

D =
ˆ +∞

0
C(τ)dτ (2)

where C is the steady covariance of the velocity process v:

C(τ) def= v(t = τ)v(t = 0) (3)

and t (in s) is a measure of the time. This simple result shows that the sole understanding
of C can fully describe the diffusion of q. Now, let us consider the case where q is linearly
damped at a frequency λ. The evolution of the perturbation of q from its gradient G is
given by:

dq′

dt
+ λq′ +Gv = 0 (4)

Integrating this equation in time, applying a proper ensemble average, and assuming that
the statistically steady state has been reached, we find that Fq follows an adapted Fick’s
law, with a special diffusivity that depends on the damping rate λ:

Dλ =
ˆ +∞

0
exp(−λτ)C(τ)dτ (5)

In the limit of a null damping (λ = 0), or a white noise velocity process (C(τ) = Dqδ
+(τ)),

we recover the case without sources or sinks. In general, linear damping decreases Fq while
keeping it proportional to G (ie Fickian), since the rate of damping λ is the same everywhere
in the fluid. The previous generalization of Taylor’s diffusivity has applications in biology,
where biological properties can be advected by the the flow as well as consumed at a linear
rate, and allows to compute the eddy fluxes of the biological properties at all time [9]. If we
try to apply the same reasoning to a condensing scalar q, the evolution of the perturbation
q′ is given by:

dq′

dt
+Gv + λ[q − q∗(y)]H[q − q∗(y)] = 0 (6)

where condensation brings back linearly the scalar q to its saturation value q∗ when q >
q∗. We have defined the Heaviside function H and the condensation time λ−1. A key
motivation of this work is to find how Fq deviates from its Fickian upper bound
−DG in the case of a condensing scalar. We immediately see that we need a positive
damping (λ > 0) and a correlated process (C(τ > 0) 6= 0), to avoid the case Dλ = D which
would not provide any insight on Fq.
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2 The Advection-Condensation Model for Specific Humidity

2.1 Specific humidity

We begin by defining the specific humidity q of a parcel as:

q
def= mv

mt
(7)

where mv is the mass of water vapor in the parcel and mt is the total mass of the parcel.
We assume that q is governed by the following advection-condensation equation:

Dq

Dt
= S − C (8)

which involves:

• The material derivative on an isentropic surface:

D

Dt
def= ∂

∂t
+−→u · −→∇ (9)

where if we define the position vector on the isentropic surface −→x , the velocity on the
isentropic surface is defined to be:

−→u def= ∂−→x
∂t

(10)

and the gradient is defined to be:

−→
∇ def= ∂

∂−→x
(11)

• A condensation sink C that instantly brings back the specific humidity q to its satu-
ration value q∗:

C = lim
λ→+∞

λ(q − q∗)H(q − q∗) ⇒ ∀t, q = min(q, q∗) (12)

• A source term S, which we will model in different ways throughout this report.

2.2 An example of saturation specific humidity profile

2.2.1 Saturation specific humidity

The saturation specific humidity q∗ can be expressed as a function of the saturation water
vapor partial pressure e∗ and the environmental pressure p using the ideal gas law (eg [6]):

q∗ = εe∗

p− (1− ε)e∗ (13)
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where ε is the ratio of the specific gas constant of dry air rd and water vapor rv:

ε
def= rd

rv
≈ 287J.K−1.kg−1

461J.K−1.kg−1 ≈ 0.621 (14)

We can then use an integral version of the Clausius-Clapeyron equation if we want to
express the saturation water vapor partial pressure e∗ as a function of the environmental
temperature T . Clausius-Clapeyron relation, valid for an ideal gas undergoing a phase
change in thermodynamic equilibrium, can be written:

de∗

dT
= Lve

∗

rvT 2 (15)

where Lv(T ) is the latent heat of vaporization of water vapor. An approximate integral of
the previous relation is given by Bolton’s formula:

e∗(p, T ) ≈ 6.112 · exp( 17.67T [°C]
T [°C] + 243.5) (16)

2.2.2 Exponentially decreasing profile

Let’s assume that the temperature only varies with latitude, and that its meridional gradient
is constant:

T ≈ T0 −
∆T
∆y · y (17)

where (T0,∆T,∆y) are known parameters. Integrating Clausius-Clapeyron’s 15 relation
keeping e∗’s prefactor constant, we obtain:

e∗ = e∗(T0) exp[Lv(T0)
rvT 2

0
(T − T0)] = e∗(T0) exp[−Lv(T0)

rvT 2
0

∆T
∆y · y] (18)

We then neglect the reduced saturation water vapor pressure (1 − ε)e∗, compared to the
total pressure p that we assume to be approximately constant p ≈ p0, so that the saturation
specific humidity 13 can be written:

q∗ = εe∗

p− (1− ε)e∗ ≈
ε

p0
e∗ ≈ εe∗(T0)

p0
exp[−Lv(T0)

rvT 2
0

∆T
∆y · y] (19)

The previous relation 19 gives us a saturation specific humidity profile that exponentially
decreases with latitude:

q∗(y) ≈ qmax exp(−αy) ⇔ y∗(q) ≈ − 1
α

ln( q

qmax
) (20)

where we have introduced the following physical parameters:

qmax
def= εe∗(T0)

p0
≈ 2.5% (21)

α
def= Lv(T0)

rvT 2
0

∆T
∆y ≈ 4.10−7m−1 ≈ 1

2500km (22)

where the following orders of magnitude have been used:
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• For the planet Earth, the Equator’s temperature annually averages at T0 ≈ 30°C and
the North Pole’s temperature has an average around T0 − ∆T

∆y (aπ2 ) ≈ −20°C, leading
to a global temperature gradient of ∆T

∆y ≈ 5.10−3°C.km−1.

• The latent heat of vaporization of water: Lv ≈ 2.106J.kg−1.

• We can estimate the saturation water vapor pressure at T0 using Bolton’s formula:
e∗(T0) ≈ 42hPa ≈ (4%)p0.

Figure 1: Approximate profile of q∗ vs y for the Earth’s atmosphere

2.3 Global distributions in the advection-condensation model

Under certain conditions, the global distributions of displacement and specific humidity
have universal forms. Let’s consider the following set of assumptions for an advection-
condensation model defined by equation 8:

• We work on a latitudinal domain, extending from y = 0 to y = L.

• We assume that the saturation specific humidity is strictly decreasing from from y =
0 where q∗(0) = qmax to y = L where q∗(L) = qmin. We represent the domain in
(q, y) space on figure 2 to make its boundaries more concrete to the reader.

• We assume that the system has reached a steady state so that its Probability Density
function (PDF) ρ(q, y, v) satisfies:

∂ρ

∂t
= 0 (23)

• We assume that the velocity v of the system is governed by an isotropic and homoge-
neous stochastic process.
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Figure 2: Domain in (q, y) space

Under the previous assumptions, we expect the global distribution of displacement:

PY (y) def=
ˆ
R
dv

ˆ q∗(y)

qmin

dqρ(q, y, v) (24)

to have no gradients in y, ie:
dPY
dy

= 0 (25)

It is then possible to compute the constant PY from the normalization condition on the
steady PDF ρ:

1 =
ˆ L

0
dy

ˆ
R
dv

ˆ q∗(y)

qmin

dqρ(q, y, v) =
ˆ L

0
dyPY = LPY (26)

From the knowledge of PY , we can rewrite the normalization condition on ρ in a way that
does not involve any integral in y:

ˆ
R
dv

ˆ q∗(y)

qmin

dqρ(q, y, v) = 1
L

(27)

This very powerful constraint will allow us to compute exact analytical solutions for the
PDF in special cases. Furthermore, it determines the form of the global distribution of
specific humidity, as we will show now. To simplify the proof, the marginalization over the
variable v is always implied. From the fact that PY is constant (equation 26):

∀y, PY (y) = PY (0) + PY (L)
2 (28)

Integrating 28 from y′ = 0 to y′ = y yields:
ˆ q∗(y)

qmin

dq

ˆ y

0
dy′ρ(q, y′)dq =

ˆ y

0
dy′PY (y′) = y

2 [PY (0) + PY (L)] (29)

where we have used Fubini’s theorem to exchange integrals. As ρ∞[q > q∗(y)] = 0, we can
prove from 29 that: ˆ qmax

q∗(y)
dq

ˆ y

0
dy′ρ(q, y′)dq = y

2 [PY (0) + PY (L)] (30)
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We change the independent variable from y to q in equation 30, and carefully adapt the
bounds of the integrals using figure 2:

ˆ qmax

q

ˆ y∗(q′)

0
ρ(q′, y′)dq′dy′ = y∗(q)

2

ˆ qmax

q
[ρ(q′, 0) + ρ(q′, L)]dq′ (31)

Differentiating equation 31 with respect to q gives:

PQ(q) = 1
2
d

dq
{y∗(q)

ˆ qmax

q
[ρ(q′, 0) + ρ(q′, L)]dq′} (32)

where we have defined the global distribution of specific humidity:

PQ(q) def=
ˆ
R
dv

ˆ y∗(q)

0
ρ∞(q, y′, v)dy′ (33)

Because of the condensation rule 12, there can only be parcels of specific humidity q = qmin
at y = L. Adding the normalization condition 27, it means that:

ρ(q′, L) = δ+(q − qmin)
L

(34)

Using 34 in equation 32 gives:

d

dq
{y∗(q)

ˆ qmax

q
ρ∞(q′, L)dq′} = d

dq
{y
∗(q)
L

ˆ qmax

q
δ+(q′−qmin)dq′} = 1

L

dy∗

dq
δqqmin+δ+(q−qmin)

where δqqmin is the Kronecker symbol for q = qmin. The first term is only nonzero when
q = qmin, and is finite, which means it will be negligible compared to the second term
in practice. As a consequence, we obtain the following general expression for the global
distribution of specific humidity:

PQ(q) = δ+(q − qmin)
2 + 1

2
d

dq
[y∗(q)

ˆ qmax

q
ρ(q′, 0)dq′] (35)

Not only does this distribution show the presence of a dry peak in the PDF, but it also
states something very fundamental about the parcel’s history. Indeed, since the velocity
process is isotropic and homogeneous:

• Half of the parcels have last hit the dry Northern boundary, and have been dried to
q = qmin. They constitute the dry peak of PQ(q) which has a 1

2 amplitude.

• Half of the parcels have last hit the moist Southern boundary, and have been re-
moistened by the Southern boundary condition coming through ρ(q′, 0)dq′ as well as
condensed because of the saturation specific humidity profile, explaining the presence
of y∗(q).

We will see in section 4 where the advection-condensation model is solved for many different
cases, that the form 35 of the global distribution of specific humidity universally applies as
long as the assumptions stated at the beginning of this paragraph 2.3 apply.
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3 Brownian Linearly Damped Motion on an Isentropic Sur-
face

3.1 Preliminary assumptions

Before dealing with the complexity of condensation, we begin with a simple linear damping
model for moisture, similarly to what has been tackled in the introduction (cf equation 4).
We make the following simplifying assumptions:

1. We reduce our problem to a 1D Cartesian process on a line, parametrized by its
ordinate y.

2. The domain we work on extends from the Equator (y = 0) to a given latitude L > 0.

3. We model the source term S following [23]. The model "resets" the specific humidity
q to a random value chosen from a specified distribution Φ(q) when it encounters
the Southern boundary of the domain (y = 0). Physically, we could think of the
fictive domain y ≤ 0 as the Tropics, that remoisten the dry parcels that are advected
southward by the mid-latitude eddies. The normalization condition on Φ yields:

ˆ qmax

qmin

Φ = 1 (36)

4. The sink term is a linear damping with a typical decay frequency λ:

C(q) = λq (37)

3.2 Stochastic differential equation and Fokker-Planck equation for the
PDF

For simplicity sake, we assume that the moist parcels have a Brownian motion of diffusivity
κ, leading to the following stochastic differential equation (SDE) for the position Y (t) and
the moisture Q(t) of the moist parcels:

{
dY (t) =

√
2κdW (t)

dQ(t) = {S[Y (t)]− C[Q(t)]}dt
(38)

where W (t) is a Wiener process. The corresponding steady Fokker-Planck equation (FPE)
for the PDF ρ can be written by identifying the drift and the diffusion terms in the previous
SDE 38:

∂

∂q
[(S − C)ρ] = κ

∂2ρ

∂y2 (39)

Note that integrating this equation from q′ = 0 to q′ = qmax and using the normalization
27 gives:

−λqmaxρ(qmax, y) = κ

ˆ qmax

0

∂2ρ

∂y2dq
′ = κ

∂2

∂y2

ˆ qmax

0
ρ(q′, y)dq′ = κ

∂2

∂y2L
−1 = 0
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∀y, ρ(qmax, y) = 0 (40)

In order to solve the FPE, we change variables:y 7→
√

λ
κy

q 7→ ln( qmaxq )
(41)

We are then left with a diffusion-amplified equation in our new (q, y) space:

( ∂
∂q
− 1− ∂2

∂y2 )ρ = 0 (42)

Note that the normalization condition 27 in the new(q, y) space yields:

1 = Lqmax

ˆ +∞

0
exp(−q) · ρ(q, y)dq (43)

3.3 Solution to the steady FPE 42

First, we need to define 3 boundary conditions:

1. The resetting at the Southern boundary along with the normalization condition im-
pose:

ρ(y = 0) = Φ(qdim)
L

= Φ[qmax exp(−q)]
L

= Φ̃(q) (44)

2. We impose a no-flux boundary conditions at the Northern boundary:

∂ρ

∂y
(y = L) = 0 (45)

where we have introduced the dimensionless extent of the domain:

L
def= Ldim

√
λ

κ
(46)

3. With the new variables 41, equation 40 can be written:

ρ(q = 0) = 0 (47)

The mixed boundary value problem on a finite domain has an exact analytic solution, given
by:

ρ(q, y) = π

L2

ˆ q

0
dq′Φ̃(q′) exp(q − q′)

∑
n∈N

(2n+ 1) sin[π(2n+ 1)y
2L ] exp[−π

2(2n+ 1)2(q − q′)
4L2 ]

(48)
We now focus on given remoistening profiles Φ(q) in two specific cases:
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1. In case I, we consider a complete remoistening at the Equator:

ΦI(qdim) def= δ−(qdim − qmax) (49)

corresponding to Φ̃I(q) = δ−(q)
Ldim

. Coming back to the dimensional variables (ρ, q, y),
the PDF in case I can be written:

ρI(q, y) = πκ

λL3

∑
n∈N

(2n+ 1) sin[π(2n+ 1)y
2L ]( q

qmax
)
π2κ(2n+1)2

4λL2 −1 (50)

2. In case II, we consider a uniform remoistening at the Equator:

ΦII(qdim) = 1
qmax − qmin

(51)

corresponding to Φ̃II(q) = 1
Ldim(qmax−qmin) . Coming back to the original variables

(q, y), the PDF in case II can be written:

ρII(q, y) = πκ

λL3(qmax − qmin)
∑
n∈N

(2n+ 1)4λκL
2

π2(2n+ 1)2 − 4λκL2 sin[π(2n+ 1)y
2L ][1−( q

qmax
)1−π

2κ(2n+1)2

4λL2 ]

(52)

3.4 Global steady PDF

From now on, we come back to dimensional variables. By definition, the global steady PDF
is:

PQ(q) =
ˆ L

0
dyρ(q, y)

1. In case I:

PQ(q) = 2κ
λL2

∑
n∈N

( q

qmax
)
π2κ(2n+1)2

4λL2 −1 (53)

Note that PQ can be expressed using an elliptic function:

PQ(q) = 2κ
λL2

qmax
q
· θ2[0, ( q

qmax
)
κ
λ

( π
L

)2 ]

where θ2 is the Jacobi theta function of second type, defined by:

θ2[z, q] =
∑
n∈Z

q(n+ 1
2 )2 · exp[(2n+ 1)iz]

2. In case II:

PQ(q) = 2κ
λL2(qmax − qmin)

∑
n∈N

(2n+ 1)4λκL
2

π2(2n+ 1)2 − 4λκL2 [1− ( q

qmax
)1−π

2κ(2n+1)2

4λL2 ] (54)
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3.5 Averages and moments of the distribution

By definition, the average of a function f(q) is:

f(y) def= L

ˆ qmax

0
f(q)ρ(q, y)dq (55)

Using the expression computed for ρ, it is possible (but tedious) to estimate < f > for
any well-behaved function. For our problem, the moments of the distribution < qn > are
particularly interesting as they correspond to the average moisture (n = 1), the average
square moisture (n = 2)... To compute the average moisture, we multiply the steady FPE
39 by q and integrate the result from q = 0 to q = qmax:

ˆ qmax

0
qdq

∂

∂q
(λqρ∞) + κ

ˆ qmax

0
q
∂2ρ∞
∂y2 = 0 (56)

Integrating 56 by parts, noting that the boundary term is zero, and using the definition of
< q >, we find a very simple equation for < q >:

λq = κ
∂2q

∂y2 (57)

More generally, for < qn >, multiplying the FPE 39 by qn and integrating by parts gives:

nλqn = κ
∂2qn

∂y2 ⇔ nqn = ∂2qn

∂y2 (58)

We are thus left with a simple second order differential equation with constant coefficients
to solve, where the two boundary conditions are given by:

1. The resetting condition at the Southern boundary:

qn(y = 0) =
ˆ qmax

0
qnΦ(q)dq = Φn ≤ qnmax

2. The no-flux condition at the Northern boundary:

∂

∂y
qn(y = L) = 0

leading to the following solution:

qn(y) = Φn[cosh(
√
ny)− tanh(

√
nL) sinh(

√
ny)] (59)

Note that in the specific case of a complete remoistening at the Equator 49, we obtain
Φn = qnmax.
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Figure 3: <qn>
Φn for n = 1 (red) n = 2 (green) and n = 3 (blue) vs y for L = 1 (left) and

L = 10 (right)

We can see that:

• The moments of q are damped faster throughout the domain as the dimensionless
extent of the domain 46 (which varies proportionally to the damping frequency λ)
increases.

• The higher moments of q are damped faster than the lower moments of q, which was
to be expected with a linear damping, which effect is amplified when multiplied by
qn.

3.6 Diffusion in the linearly damped case

Let y0 ∈]0, L[: if we integrate the dimensional equation for q 57 from y = y0 to y = L, we
obtain:

λ

ˆ L

y1

qdy = −κ(∂q
∂y

)y0 = F(y0) (60)

This indicates that in steady state, the linear damping of moisture in the Northern part of
the domain y > y0is compensated by the Fickian diffusive flux of moisture F(y0) from the
Southern part of the domain y < y0 to the Northern part. As shown in the more general
case, we obtain that the diffusivity of the linearly damped moisture q is equal to κ in the
case of a white noise velocity field.

3.7 Numerical experiments in the complete remoistening case ΦI(q) =
δ+(q − qmin)

To check the validity of our general solution in this specific case, we numerically simulate
the SDE with the following dimensional values:

239




Ntot = 3.104

L = 1
qmax = 1
κ = 1

and compare the numerical PDF to the marginal distributions PY (y)and PQ(q) for different
values of the damping frequency λ:

Figure 4: PY (y) (left) and PQ(q) (right) for a square dimensionless length L2 ∈
{1, 5, 10} (top, middle, bottom)
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To interpret the previous results, it is useful to remember that our system is governed
by the dimensionless extent of the domain defined in 46:

• For small damping L2 ≤ 1:

PQ(q) ∝
∑
n∈N∗

q(2n+1)2L−2 →
(L→0)

δ−(q − qmax)

and the moist peak of the distribution near q = qmax dominates. Physically, the
moisture of the parcels do not have time to damp before the parcels encounters the
Southern boundary and is completely remoistened again.

• For large damping L2 ≥ 10:

PQ(q) ∝ q−1 →
(L→+∞)

δ+(q)

and the dry peak of the distribution near q = 0 dominates. Physically, the moisture of
the parcels damps out very fast after the parcels have been remoistened, and it takes
them a long time before they re-encounter the moistening Southern boundary of the
domain.

• For intermediate L2 ∈ [1, 10], the distribution of the parcels is bimodal, with a moist
and a dry peak.

4 Time-correlated Velocities
White noise does not exist in nature, and atmospheric data indeed show that velocities are
correlated in time, the correlation time usually being the typical eddy turnover time.

4.1 The Ornstein-Uhlenbeck model

4.1.1 Gaussian colored noise

We replace the white noise in the previous part by Gaussian colored noise for the Lagrangian
velocities. According to Doob’s theorem, this noise can be obtained through an Ornstein-
Uhlenbeck process for the velocities. If we consider 1D meridional motion, our new system
of SDEs can be written: 

dY (t) = V (t)dt
τdV (t) = −V (t)dt+

√
2κdW (t)

dQ(t) = {S[Y (t)]− C[Y (t), Q(t)]}dt
(61)

where V (t) = dY
dt is the meridional Lagrangian velocity of the process, and κ its associated

diffusivity. The Ornstein-Uhlenbeck process is a standard model of turbulent dispersion
[26, 14, 18], and the novelty of the stochastic advection-condensation model is to introduce
the condensing variable Q. The corresponding FPE for the PDF ρ(t, q, y, v) can be written:

∂ρ

∂t
+ ∂

∂q
[(S − C)ρ] + ∂

∂y
(ρv) = 1

τ

∂

∂v
(ρv) + κ

τ2
∂2ρ

∂v2 (62)
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It can be proven that the auto-correlation function for the Ornstein-Uhlenbeck process can
be written:

E[V (t1)V (t2)] = κ

τ
exp(−|t2 − t1|

τ
) 6= 0 (63)

which is what makes this noise "colored" in contrast to white.

4.1.2 Marginalized distribution

We make the Fokker-Planck equation non-dimensional by rescaling:

y 7→ y√
τκ

(64)

v 7→
√
τ

κ
v (65)

If we marginalize the distribution over q:

p(y, v) def=
ˆ q∗(y)

qmin

ρ(t, q, y, v)dq (66)

we recover the well-known FPE for the OU process from the FPE 62:

∂p

∂t
+ ∂

∂y
(vp) = ∂

∂v
(vp+ ∂p

∂v
) (67)

The solution of equation 67 along with the full normalization condition for the PDF ρ 26
is the well-known Maxwellian distribution:

p(y, v) = 1√
2πL

exp(−v
2

2 ) (68)

We have introduced the sole dimensionless parameter of our model, ie the dimensionless
domain’s extension:

L
def= Ldim√

κτ
(69)

In the ballistic limit L � 1, the domain is so small that the velocity of a given parcel is
constant in time. In the Brownian limit L� 1, the domain is so large that the displacement
of a given parcel is a white noise process. Both cases are studied in A.

4.1.3 Steady PDF in the general case

We transform the steady version of the FPE 67 by changing variable for the density ρ, using
the solution 68:

ρ 7→ p(y, v)
κ

ρ (70)

giving:

v
∂ρ

∂y
= Dρ def= ∂2ρ

∂v2 − v
∂ρ

∂v
(71)
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Note that the normalization condition for ρ is now simply:

∀(y, v)
ˆ q∗(y)

qmin

ρ(q, y, v)dq = 1 (72)

In order to solve 72, we first look for exponential solutions in y (or more rigorously we
Laplace-transform the previous differential equation in y):

ρ(q, y, v) ∝ exp(αy)ϕα(v)

where the functions ϕα are the eigenfunctions of the following eigenvalue problem:

Dϕα = αvϕα (73)

It is shown in the appendix B that the functions ϕα for α2 ∈ N, along with the generalized
eigenfunction v 7→ v, constitute an orthogonal basis in which we can expand any well-
behaved function which verifies the initial differential equation. Solving a half-range problem
is a hard mathematical problem, and adding the specific boundaries of our problem in
(q, y) space makes the analytical solution too complicated to be tractable in a useful way.
We will thus describe the four steps to solve this problem in the general case without doing
the algebra, based on the fact that the PDF comprises a dry spike, a saturated spike, and
a smooth part (cf appendix C):

1. First, we write ρ as a combination of the solutions to the differential equation:

ρ(q, y, v) = B(q)[y − v] +
∑
α2∈N

Aα(q)ϕα(v) exp(αy)

where ϕ0(v) = 1. The remoistening condition at the Equator can be written:

ρ(q, y = 0, v > 0) = Φ(q)

giving a first relation between all the coefficients:

∀v > 0, −B(q)v +
∑
α2∈N

Aα(q)ϕα(v) = Φ(q) (74)

From this relation 74, it is possible to express the function B and half of the functions
Aα using the function Φ and the other half of the functions Aα (we will call them
Cα to avoid confusion). If the projection is done well, Φ(q) should only appear in
A0(q) as it appears as a constant in y in the final solution.

2. Then, we decompose each function (Cα) in a dry and a smooth part:

Cα(q) = Cα,dryδ
+(q − qmin) + Cα,smooth(q)

which implies that all the functions of q : (Aα, B) have a dry and a smooth part. To
find the coefficients Cα,dry , we apply the normalization condition 72 for the southwards
moving parcels at y = L where q = q∗(y) = qmin. We can only apply it to the

243



southwards moving parcels because the northwards moving parcels have a saturated
peak, as we prove in appendix C:

∀v < 0, 1 =
ˆ qmin

qmin

ρ(q, y = L, v < 0)dq = Bdry[L− v] +
∑
α2∈N

Cα,dryϕα(v) exp(αL)

(75)

3. We then need to compute the smooth part of the functions: Cα,smooth(q). It is also a
half-range problem in v, as we can only apply the normalization condition 72 for all
y to the southwards parcels which do not have a saturated peak:

∀y,∀v < 0, 1 =
ˆ q∗(y)

qmin

ρ(q, y, v)dq

∀y,∀v < 0, 1 = [Bdry+
ˆ q∗(y)

qmin

Bsmooth(q)dq][L−y]+
∑
α2∈N

[Cα,dry+
ˆ q∗(y)

qmin

Cα,smooth(q)dq]ϕα(v) exp(αy)

Changing the independent variable from y to q and adapt the bounds of the integrals
using 2:

∀q,∀v < 0, 1 = [Bdry+
ˆ q

qmin

Bsmooth(q′)dq′][L−y∗]+
∑
α2∈N

[Cα,dry+
ˆ q

qmin

Cα,smooth(q′)dq′]ϕα(v) exp(αy∗)

(76)
and we can find the functions Cα,smooth by solving the previous equation 76 for each´ q
qmin

Cα,smooth(q′)dq′ and then differentiating with respect to q.

4. Finally, once all the coefficients have been determined, we need to add the saturated
peak to the northwards PDF (cf C):

ρ(q, y, v) = B(q)[y − v] +
∑
α2∈N

Cα(q)ϕα(v) exp(αy) +W(y, v > 0)δ−(q − q∗)

whereW(y, v) is an undetermined weight function such thatW(y, v < 0) = 0. We can
find its positive part by applying the normalization condition 72 to the northwards
PDF:

∀y,∀v > 0, W(y, v > 0) = 1−
ˆ q∗(y)

qmin

{B(q)[y−v]+
∑
α2∈N

Cα(q)ϕα(v) exp(αy)}dq (77)

4.1.4 Global distributions

For the Ornstein-Uhlenbeck process, the assumptions at the beginning of paragraph 2.3 are
verified, giving us the global PDFs in y defined in 24and the global distribution in q defined
in 33:

PY (y) = 1
L

(78)

2PQ(q) = δ+(q − qmin)− 1
L

d

dq
[Λy∗] (79)
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The global PDF in v can be found by integrating 68 in y:

PV (v) def=
ˆ L

0
dyp(y) = 1√

2π
exp(−v

2

2 ) (80)

To check the validity of the previous analytical expressions, we simulate the global PDFs
in the classical case of the complete remoistening at the Southern boundary ΦI(q) =
δ−(q−qmax) and an exponentially decreasing profile of saturation specific humidity q∗(y) =
qmax exp(−αy). We choose the following parameters:

Ntot = 106

qmax = 1
qmin = qmax exp(−αL) = 0.1
L = (Ldim=1)√

(κV =1)(τ=1)
= 1

and compare the analytical expressions found for the global distributions PY (y), PQ(q) and
PV (v) to the numerical simulation of the Ornstein-Uhlenbeck SDEs:

Figure 5: Numerical (blue) vs analytical (red) global PDFs for the Ornstein-Uhlenbeck
model in case I of a complete remoistening
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4.2 The two-stream model

4.2.1 Preliminary assumptions

A discrete version of the Ornstein-Uhlenbeck model (4.1) is the n-stream model (appendix
D), where it is easier to compute exact analytical solutions for the PDF for small n. The
simplest n−stream model is the 2−stream model, defined by the following assumptions:

1. We work on a bounded domain y ∈ [0, L], where the saturation specific humidity
q∗(y) is a strictly decreasing function of latitude.

2. The parcels are remoistened at the equator by a distribution Φ(q) normalized to 1.

3. We have two ensembles of moist parcels with an exchange frequency β
2 :

• The parcels moving Northward, which have a velocity +V , and are described by the
PDF N(q, y).

• The parcels moving Southward, which have a velocity −V , and are described by the
PDF S(q, y).

The equations for (N,S) are thus:∂N
∂t + V ∂N

∂y = β
2 (S −N)

∂S
∂t − V

∂S
∂y = β

2 (N − S)
(81)

4.2.2 Steady southwards PDF

We now assume the northwards and southwards PDF (N,S) to be steady. Their normal-
ization conditions can be deduced from 26:

∀y,
ˆ q∗(y)

qmin

N(q, y)dq =
ˆ q∗(y)

qmin

S(q, y)dq = 1
2L (82)

We change variables to make our equations dimensionless:

y 7→ βy

V
(83)

(N,S) 7→ (V
β

)(N,S) (84)

to obtain the steady dimensionless version of 81:∂N
∂y = ∂S

∂y
∂
∂y (N + S) = S −N

(85)

Note that the system is governed by a single dimensionless number, the dimensionless extent
of the domain:

L
def= βLdim

V
(86)
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The boundary condition along with the normalization condition 82 yields:

N(q, 0) = Φ(q)
ˆ qmax

qmin

S(q, 0)dq = Φ(q)
2L (87)

Integrating the previous system 85 using 87 yields:{
N(q, y) = yA(q) + Φ(q)

2L
S(q, y) = (y + 2)A(q) + Φ(q)

2L

The PDF comprises a dry peak, a smooth peak and a saturated spike (cf appendix C).
Here, we decompose A into a dry peak and a smooth part:

A(q) = Asmooth(q) +Adryδ
+(q − qmin)

The normalization condition 82 for S at y = L where q = qmin = q∗(y) yields:

Adry = 1
2L(2 + L)

The southwards PDF S satisfies the normalization condition for all y ∈ [0, L], and does not
have any saturated peak by definition (cf C):

1 = 2L
ˆ q∗(y)

qmin

S(q, y)dq = (y + 2)( 1
2 + L

+ 2L
ˆ q∗(y)

qmin

Asmooth(q)dq) +
ˆ q∗(y)

qmin

Φ(q)dq

2L
ˆ q∗(y)

qmin

Asmooth(q)dq =
´ qmax
q∗(y) Φ(q)dq
y + 2 − 1

2 + L
(88)

Switching the independent variable from y to q , changing the bounds of the integrals
following figure 2, and differentiating the previous equation 88 with respect to q, we obtain:

2LAsmooth = d

dq

Λ(q)
2 + y∗(q)

which allows us to express the PDF S as a function of (Λ, y∗):

2LS(q, y) = (y + 2)[ d
dq

Λ(q)
2 + y∗(q) + δ+(q − qmin)

2 + L
]− dΛ

dq
(89)

In the two previous equations, we have introduced the Cumulative Distribution Function
of the remoistening distribution Φ:

Λ(q) def=
ˆ qmax

q
Φ(q′)dq′ (90)
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4.2.3 Steady northwards PDF

We incorporate a saturated spike W(y)δ−[q − q∗(y)] in the total northwards PDF N :

N (q, y) = N(q, y) +W(y) · δ−[q − q∗(y)]

The total normalization condition for N (82) can now be written:

1 = 2L
ˆ q∗(y)

qmin

N (q, y)dq = 2L
ˆ q∗(y)

qmin

N(q, y)dq + 2LW(y)

which allows us to compute the weight W(y) of the saturated spike in this specific case:

1 = 1− 2
2 + y

Λ[q∗(y)] + 2LW(y) ⇒ 2LW(y) = 2
2 + y

Λ[q∗(y)]

The generalized northwards PDF is then:

2LN (q, y) = y[ d
dq

Λ(q)
2 + y∗(q) + δ+(q − qmin)

2 + L
]− dΛ

dq
+ 2Λ[q∗(y)]

2 + y
δ−[q − q∗(y)] (91)

We can verify a posteriori that the value found for W in this paragraph agrees with the
differential equation we derive for the saturated weight W in appendix 119:

2L(dW
dy

+ W2 ) = 2
2 + y

dq∗

dy

dΛ
dq

(q∗) + yΛ(q∗)
(2 + y)2

2LN(q∗, y) = −dΛ
dq

(q∗) + y[
dΛ
dq (q∗)
2 + y

−
dy∗

dq Λ(q∗)
(2 + y)2 ]

−2Ldq
∗

dy
N(q∗, y) = 2dq

∗

dy

dΛ
dq (q∗)
2 + y

+ yΛ(q∗)
(2 + y)2 = 2L(dW

dy
+ W2 ) (92)

Equation 92 is just the weight equation 119, multiplied by the dimensionless extent of
the domain L, which proves that it indeed represents the amount of supersaturated parcels.
Note that adding the saturated peak in the PDF might prevent it to satisfy the remoistening
boundary condition at y = 0 87 in the special case where:

W(0) = Λ[qmax] =
ˆ qmax

qmax

Φ(q)dq 6= 0 ⇔ Φ(q) = δ−(q − qmax)

This special case is treated in appendix F of this report. However, if we are to simulate this
special case numerically (which we will do in 4.2.8), we will have a peak of finite amplitude
ε 6= 0, which will result in Wnumerical(0) = 0.
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4.2.4 Steady global distributions of specific humidity

The global distribution of specific humidity are by definition:

• For the southwards parcels:

2Ls(q) def= 2L
ˆ y∗(q)

0
S(q, y)dy

Using equation 89:

2Ls(q) = y∗(4 + y∗)
2

δ+(q − qmin)
2 + L

+ y∗(4 + y∗)
2

d

dq

Λ(q)
2 + y∗(q) − y

∗dΛ
dq

4Ls(q) = L(L+ 4)
2 + L

δ+(q − qmin)− (y∗)2

2 + y∗
dΛ
dq
− dy∗

dq

y∗(4 + y∗)
(2 + y∗)2 Λ (93)

• For the northwards parcels:

2Ln(q) def= 2L
ˆ y∗(q)

0
N (q, y)dy

Using equation 91:

2Ln(q) = (y∗)2

2
δ+(q − qmin)

2 + L
+ (y∗)2

2
d

dq

Λ(q)
2 + y∗(q) − y

∗dΛ
dq

+ |dy
∗

dq
| 2Λ(q)
2 + y∗(q)

4Ln(q) = L2

2 + L
δ+(q − qmin)− y∗(4 + y∗)

2 + y∗
dΛ
dq
− dy∗

dq

8 + 4y∗ + (y∗)2

(2 + y∗)2 Λ (94)

• For all the parcels, following definition 33, the global distribution of specific humidity
is given by:

2LPQ(q) def= 2L(n+ s)(q)

2PQ(q) = δ+(q − qmin)− 1
L

d

dq
[Λy∗] (95)

Result 95 is equal to the universal form of PQ(q) 35 found in paragraph 2.3, as the two-
stream model verifies the assumptions listed at the beginning of this paragraph.

4.2.5 Averages

By definition the average of a function f(q) is:

f(y) def= L

ˆ q∗(y)

qmin

f(q)(N + S)dq (96)

Using the expressions 91 and 89 we computed for (N,S):

L(N + S) = [y + 1][ d
dq

Λ(q)
2 + y∗(q) + δ+(q − qmin)

2 + L
]− dΛ

dq
+ Λ[q∗(y)]

2 + y
δ−[q − q∗(y)]
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We can use integration by parts on integral 96 to obtain f as a function of (Λ, q∗(y), f, dfdq ):

f(y) = {Λf}[q∗(y)]− (y + 1)
ˆ q∗(y)

qmin

Λ(q)
2 + y∗(q)

df

dq
dq −

ˆ q∗(y)

qmin

dΛ
dq
f(q)dq (97)

The meridional gradient of average 97 can be computed using Leibniz’s formula to differ-
entiate integrals, giving a fairly simple expression once simplified:

df

dy
= dq∗

dy

{Λ df
dq}[q

∗]
2 + y

−
ˆ q∗(y)

qmin

{ Λ
2 + y∗

df

dq
}(q)dq (98)

We can use expressions 97 and 98 to compute the average moisture content and its merid-
ional gradient as functions of latitude:

q(y) = q∗Λ(q∗)− (y + 1)
ˆ q∗(y)

qmin

Λ(q)
2 + y∗(q)dq −

ˆ q∗(y)

qmin

dΛ
dq
qdq (99)

dq

dy
= dq∗

dy

Λ(q∗)
2 + y

−
ˆ q∗(y)

qmin

{ Λ
2 + y∗

}(q)dq (100)

4.2.6 Diffusivity of parcels in the two-stream model

The diffusivity of parcels in this model can be most easily computed by coming back to the
initial equations 4.2 and working with dimensional variables. We define the dimensional
northward flux of parcels as:

Fc
def= V (N − S) (101)

From the initial equations 4.2, we can relate the meridional gradient of the concentration
of parcels c to the flux Fc defined in 101:

V
∂

∂y
(N + S) = V

∂c

∂y
= β(S −N) = − β

V
Fc

giving Fick’s law for the parcel’s flux:

Fc = −κ∂c
∂y

where we have defined the dimensional diffusivity of parcels:

κ
def= V 2

β
(102)

In this case, we can prove that the diffusivity is consistent with its more fundamental
definition. First, let’s compute the correlation function for the velocities of the system in
two different ways to better understand the system. To avoid the trivial case with no/weak
exchanges of parcels, we release all the parcels at t = 0 at the Southern boundary, which
means they all initially have northwards velocities:

250



1. We can directly solve the transient regime between t′ = 0 and t′ = t:{
dN
dt = β

2 (S −N)
dS
dt = β

2 (N − S)
⇒

{
2N = 1 + exp(−βt)
2S = 1− exp(−βt)

where 1 = (N − S)(t = 0). The correlation at time t is then:

C(t) = V (0)V (t) = V 2(N − S)(0)(N − S)(t) = V 2 exp(−βt)

2. We can also note that from the exchange equations, the probability of n signs reversal
is given by the Poisson distribution of coefficient β

2 :

P(n) = exp(−βt2 )(βt)n

2nn!

The correlation at time t is the expected value of V (0)V (t):

C(t) = E[V (0)V (t)]

C(t) = V · V [P(n = 2k)− P(n = 2k + 1)] = V 2 exp(−βt2 )
∑
k∈N

(βt)2k

22k2k! −
(βt)2k+1

22k+1(2k + 1)!

C(t) = V 2 exp(−βt2 ) · [cosh(βt2 )− sinh(βt2 )] = V 2 exp(−βt)

In both cases, the diffusivity of the system is then equal to Taylor’s diffusivity defined in 2:

κ =
ˆ
R+

C(t)dt =
ˆ
R+

V 2 exp(−βt)dt = V 2

β
(103)

which is consistent with the fact that the parcels are purely passive tracers.

4.2.7 Diffusivity of moisture in the two-stream model

If we now want to look at the diffusivity of moisture, we need to compute:

1. The dimensional northward flux of moisture:

Fq
def= L

ˆ q∗(y)

qmin

q(V N − V S)(q)dq

Fq
V

=
ˆ q∗(y)

qmin

qL(N − S)(q)dq

We use the dimensionless expressions found for the PDF 91 and 89 so that integration
by parts yields:

Fq
V

=
ˆ q∗(y)

qmin

Λ(q)dq
2 + βy∗

V
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2. The dimensionless mean meridional gradient of moisture computed in 100:

V

β

dq

dy
= dq

d(βyV )
= V

β

dq∗

dy

Λ(q∗)
2 + βy

V

−
ˆ q∗(y)

qmin

Λ(q)
2 + βy∗

V

dq

leading to a dimensional moisture flux which is lower than its Fick’s value:

Fq
κ

= −dq
dy
− |dq

∗

dy
| Λ(q∗)
2 + βy

V

(104)

Fq < Fq,Fickian = −κdq
dy

The difference between Fq and Fq,Fickian increases as the saturation specific humidity profile
dq∗

dy (and thus the mean specific humidity profile dq
dy ) becomes sharper and sharper. This

difference is 0 for a flat profile dq∗

dy = 0 , and the flux is perfectly Fickian in this limit.

4.2.8 Application to an exponentially decreasing q∗(y) and a given remoistening
Φ(q)

We make the following assumptions:

1. We assume that the saturation specific humidity profile exponentially decreases with
latitude:

q∗(y) ≈ qmax exp(−αy) ⇔ y∗(q) ≈ − 1
α

ln( q

qmax
)

2. We assume that the "Southern boundary resetting" produces complete saturation at
y = 0 (case I of complete remoistening):

ΦI(q) = δ−(q − qmax)

or remoistens the parcels from a uniform distribution on [qmin, qmax] (case II of uniform
remoistening):

ΦII(q) = 1
qmax − qmin

To check the validity of our general solution in this specific case, we numerically simulate
the SDE with: 

Ntot = 106

qmin = 0.1
qmax = 1
L = (β=1)(Ldim=2)

(V=1) = 2

and compare the numerical PDF to the marginal distributions PY (y) and (PQ, n, s)(q):
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Figure 6: Numerical simulation of the SDE (blue) compared to the theoretical PDF (red) for
f(y) (top left), g(q) (top right), N(q) (bottom left) and S(q) (bottom right) for a complete
remoistening (case I)
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Figure 7: Numerical simulation of the SDE (blue) compared to the theoretical PDF (red) for
f(y) (top left), g(q) (top right), N(q) (bottom left) and S(q) (bottom right) for a uniform
remoistening (case II)

When L is increased, the SDE takes a longer time to reach a statistically steady state,
as it takes longer for the parcels to reach the Southern and the Northern boundaries,
making the numerical simulations of the steady PDF more costful. A good metric to see
if a simulation has reached the statistically steady state, based on the steady expression of
PQ(q), is based on the relative intensity of the dry peak/smooth part of PQ(q):

‖PQ,smooth(q)‖
‖PQ(q)‖ = 1− ‖PQ,dry(q)‖

‖PQ(q)‖

At the beginning of the simulation, this ratio is close to 1, as not a lot of parcels have hit
the Northern dry boundary. As the simulation reaches the steady state, we have proven in
95 that this ratio tends towards 1

2 . Using this ratio, we can see that if we want to obtain
the steady PDF in the following case:

Ntot = 104

qmin = 0.1
qmax = 1
L = (β=10)(Ldim=2)

(V=1) = 20
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we need to run the simulation at least 10 times longer than in the previous case to obtain
the steady PDF:

Figure 8: Numerical simulation of the SDE (blue) compared to the theoretical PDF (red)
for f(y) (top left), g(q) (top right), N(q) (bottom left) and S(q) (bottom right) in case I
(complete remoistening)

Figure 9: Numerical simulation of the SDE (blue) compared to the theoretical PDF (red)
for f(y) (top left), g(q) (top right), N(q) (bottom left) and S(q) (bottom right) in case II
(uniform remoistening)

255



Fortunately, in the case L→ +∞, the system reaches the white noise limit (cf 4.2.9) and
we can use the white noise SDEs (cf appendix A.2) to numerically simulate the steady PDF
rather than waiting for an infinite amount of time. The global steady PDFs are very good
quantities to check the validity of our analytical solutions because of their universal aspect,
but because of this universality, they tell us very little about the two-stream model itself.
The key quantities we are interested in are the degree of sub-saturation qsub

def= q∗ − q,
the moisture flux Fq, and the average condensation rate C = −dFq

dy . Their dimensional
analytical expression in the two-stream model are respectively:

qsub(y) = (y + 1)
ˆ q∗(y)

qmin

Λ(q)dq
2 + βy∗

V

−
ˆ q∗(y)

qmin

dΛ
dq
qsubdq (105)

Fq
κ

= −dq
dy
− |dq

∗

dy
| Λ(q∗)
2 + βy

V

(106)

C(y)
κ

= d2 < q >

dy2 − 1√
τκ

dq∗

dy

Λ(q∗)
(2 + βy

V )2
− (dq

∗

dy
)2

dΛ
dq (q∗)
2 + βy

V

− d2q∗

dy2
Λ(q∗)
2 + βy

V

(107)

We compare them in case I of a complete remoistening and for the numerical simulations
with dimensionless extents L ∈ {2, 20} studied previously:

Figure 10: < qsub > vs y for L̂ = 1 (left) and L̂ = 10 (right); the analytical expression (red)
is compared to the numerical flux (green)
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Figure 11: Fq vs y for L̂ = 1 (left) and L̂ = 10 (right); the analytical expression (red) is
compared to the numerical flux (green)

Figure 12: < C > vs y for L̂ = 1 (left) and L̂ = 10 (right); the analytical expression (red)
is compared to the numerical flux (green)

Note that the analytical and numerical expressions of C do not agree as well, as they
imply the computation of second derivatives, which is not extremely precise due to the fact
that we have only 25 discrete points to compute it in y.

4.2.9 White noise limit

The white noise limit can be obtained by keeping the diffusivity κ = V 2

β and the dimensional
length of the domain Ldim constant while letting (V, β)→ +∞. As a consequence:

L = βLdim
V

= Ldim

√
β

κ
→ +∞
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It follows that except very close to the equator (and the proportion of parcels with y close
to 0 decreases very fast as L→ +∞):

y � 1

The behavior of the PDF of the northwards and southwards parcels (91 and 89) follows:

2LS(q, y) = (y+2)[ d
dq

Λ(q)
2 + βy∗

V

+δ+(q − qmin)
2 + L

]−dΛ
dq
∼L→+∞ y[ d

dq

Λ(q)
y∗(q)+δ+(q − qmin)

L
]−dΛ
dq

2LN (q, y) = y[ d
dq

Λ(q)
2 + y∗(q) + δ+(q − qmin)

2 + L
]− dΛ

dq
+ 2Λ[q∗(y)]

2 + βy
V

δ−[q−q∗(y)] ∼L→+∞ 2LS(q, y)

The total PDF is then asymptotically given by:

L(N + S) ∼L→+∞ y[ d
dq

Λ(q)
y∗(q) + δ+(q − qmin)

L
]− dΛ

dq
(108)

which means that as expected, we recover the PDF found in the Brownian case (cf appendix
A.2) assuming a white noise behavior in this limit.

4.3 Analytical approximation to the OU model

The n-stream model is the natural generalization of the two-stream model, where we con-
sider n ensembles of parcels with n different velocities, that are exchanged at a rate pro-
portional to β

2 (cf D). As n→ +∞, the n-stream model converges to the OU model. Here,
we use the analytical expressions derived for the average sub-saturation and the moisture
flux in the case of the 2/3/4-stream model. We study how well they approximate the same
quantities in the OU model, that we obtain from running Monte-Carlo simulations. The
simulations are very similar to those described in 4.2.8 except that:

• Each parcel is advected by a velocity that follows an OU process with time-correlation
τ .

• The parcels do not need to be exchanged between different processes anymore.

We have seen in 4.2.8 that the 2-stream model exactly reproduces the OU global distribution
of moisture PQ(q). In figure 13, the average sub-saturation is very-well captured by the 2-
stream model, except for the boundary layer near y = 0 which requires higher-order models,
such as the 4-stream model. The values chosen for (κ, τ, Ldim) give L = 1, and the OU
model is quantitatively closer to the ballistic limit L� 1. As L increases, the OU average
sub-saturation approaches the Ballistic limit, and a maximum appears in the distribution,
corresponding to a zone of minimal relative humidity. In figure 14, the moisture flux is
also well-approximated by the 2/3/4-stream model, confirming the important of taking
into account the condensation in 1. Indeed, approximating the moisture flux as Fickian
overestimates it by a factor ten near y = 0 for L = 1.
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Figure 13: qsub(y) vs y for (κ, τ, Ldim) = (1, 1, 1)

Figure 14: Fq(y) vs y for (κ, τ, Ldim) = (1, 1, 1)
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5 Conclusion
In conclusion, we have studied the main physics of the time-correlated advection-condensation
model:

• The Ornstein-Uhlenbeck model for the velocity process is very well analytically ap-
proximated by the n−stream models.

• These models naturally produce a bimodal PDF of specific humidity, with a dry spike,
a saturated spike, and a smooth part that decreases with q.

• The degree of sub-saturation and the condensation rate both decrease monotonically
from the Equator to the Pole.

• In this model, time-correlation does not affect the global distribution for moisture
PQ(q).

We have also obtained new insights in the diffusivity of a condensing scalar:

• The moisture flux is smaller than if Fick’s law applied.

• The reduction of this moisture flux is proportional to the number of condensed parcels
and the saturation specific humidity gradient to first approximation.

There are two important next steps for this project. First, it would be interesting to apply
the 2/3/4-stream models to reanalysis data:

• Should latent heating be added to the model? The answer to this question would tell
us when the moist parcels evolve on a dry or a moist isentropic surface.

• It is important to identify the limiting latitudes for this model: most likely, the model
will not extend into the Tropics where microphysics and convection play a capital role
in determining the distribution of specific humidity. As a consequence, the Tropics
will most likely be taken as a Southern boundary condition for the model, producing
a given remoistening distribution Φ(q).

In order to apply the model to reanalysis data, it is important to extent the model to a
longitudinally symmetric sphere:

• An extension of the model to a longitudinally averaged sphere in the case of a white
noise velocity process can be found in appendix E.

• It will be necessary to generalize the 2/3-stream model on a symmetric sphere.

• It would be ideal to also generalize the Ornstein-Uhlenbeck process to a symmetric
sphere.

Finally, for geophysical applications, it will probably be important to generalize the model
to a molecular diffusivity coefficient κ that varies with latitude.
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A Limits of the OU model

A.1 The Ballistic limit

In the Ballistic limit L� 1, we rescale the latitude Y = Ly to resolve the boundary layer,
and obtain the following steady FPE in dimensionless form:

Lv
∂ρ

∂Y
= ∂

∂v
(vρ+ ∂ρ

∂v
) (109)

To first approximation L→ 0; using 68 and 109:

ρ(q, y, v) ≈ r(q, y, v)√
2πL

exp(−v
2

2 ) (110)

where r is a function satisfying ∂r
∂v = 0 almost everywhere. Physically, the velocity of a

parcel remains unchanged from one boundary to another, which allows us write r as a sum
of:

• A northwards part, understanding that the parcels saturate continuously as they move
northwards:

{Φ(q)H[q∗(y)− q] + δ−[q − q∗(y)]Λ(q)}H(v)

where we have used the definition 90.

• A southwards part, only constituted by a dry spike:

δ+(q − qmin)H(−v)

In this limit, the average of a function f(q) is defined by:

f(y) def= L

ˆ +∞

−∞
dv

ˆ qs(y)

qmin

f(q)ρ(q, y, v)dq (111)

From 111 and 110, we can approximate:

• The sub-saturation:

qsub(y) ≈ q∗(y)− qmin −
1
2

ˆ q∗(y)

qmin

Λ

• The moisture flux:
Fq ≈

√
2κ
πτ
q(y)
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A.2 The Brownian limit

In the Brownian limit L � 1, the stochastic differential equations for the displacement
collapses to the model developed in [23]:

dY (t) =
√

2κdW (t)

making the FPE a Laplace equation for the PDF:

∂2ρ

∂y2 = 0

The detailed solution of the Brownian problem can be found in [Sukhatme]; the main results
of interest in our case are:

• The PDF:
ρ(q, y) = 1

L
{Φ(q) + y[δ

+(q − qmin)
L

+ d

dq

Λ(q)
y∗(q) ]}

• The average sub-saturation:

qsub(y) =
ˆ q∗(y)

qmin

Φqsub + y

ˆ q∗(y)

qmin

Λ(q)dq
y∗(q)

• The Fickian moisture flux:
Fq = −κdq

dy

B The ϕα−functions

B.1 Definition from the second order differential equation

We start with the following second order differential equation, which is an eigenvalue prob-
lem in α:

αvϕα = Dϕα
def= d2ϕα

dv2 − v
dϕα
dv

(112)

Note that D is a self-adjoint operator for the scalar product defined for two well-behaved
functions (f, g) by:

< f |g >def= 1√
2π

ˆ
R

exp(−v
2

2 )f(v)g(v)dv (113)

The eigenfunctions, ie the bounded solution of this differential equation for α2 ∈ N , are a
special kind of parabolic cylinder functions, that we call the ϕα−functions, defined by:

ϕα(v) def= exp(−αv − α2)Heα2(v + 2α) (114)

where Heα2 is the α2−th "probabilistic" Hermite polynomial in v. To prove that the func-
tions 114 are solutions to the eigenvalue problem 112, we can change variables from ϕα to
ψ:

ϕα(v) = ψ(v) exp(−αv − α2)
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dϕα
dv

= [dψ
dv
− αψ] exp(−αv − α2)

d2ϕα
dv2 = [d

2ψ

dv2 − 2αdψ
dv

+ α2ψ] exp(−αv − α2)

leading to the differential equation:

d2ψ

dv2 − (v + 2α)dψ
dv

+ α2ψ = 0

An obvious change of variable is w = v + 2α, leading to:

d2ψ

dw2 − w
dψ

dw
+ α2ψ = 0

which solutions can be express using the well-known "deterministic" Hermite polynomials of
α2−order:

ψ = Heα2(w)
where the "probabilistic" Hermite polynomials are defined by:

Heα2(v) def= (−1)α2 exp(v
2

2 ) d
α2

dvα2 exp(−v
2

2 ) = (v − d

dv
)α2 · 1 (115)

ψ = Hα2( w√
2

)

It is also possible to use "deterministic" Hermite polynomials, defined by:

Hα2(v) def= (−1)α2 exp(v2) d
α2

dvα2 exp(−v2) = (2v − d

dv
)α2 · 1 (116)

The solution ψ is then given by:

ψ = 2−
α2
2 Hα2( w√

2
)

Finally, to make sure we have solved the complete eigenvalue problem, we have to check for
degenerate eigenvalues, which we do by differentiating the initial differential equation with
respect to α:

D∂ϕα
∂α

= vϕα + αv
∂ϕα
∂α

Since D is self-adjoint for < | >:

0 =< ∂ϕα
∂α
|(D − αv)ϕα >=< (D − αv)ϕα|ϕα >=< vϕα|ϕα >

This equation is only satisfied for α = 0, which means that we may take a generalized
eigenfunction at this point:

ϕg(v) def= v

Since:
∀α, < ϕα|ϕg >6= 0

by differentiating a second time with respect to α, we can show that the multiplicity of the
eigenvalue α = 0 is exactly 2. This proves that we only need ϕ0 and ϕg to construct a
general solution to the initial differential equation.

263



B.2 Orthogonality of the ϕα−functions

Let ϕα and ϕβ be 2 eigenfunctions of 112 with eigenvalues α 6= β:

(α− β) < vϕα|ϕβ >=< Dϕα|ϕβ > − < ϕα|Dϕβ >= 0

so that (ϕα, ϕβ) satisfy the orthogonality relation:

< vϕα|ϕβ >= δαβ (117)

where δαβ is the Kronecker symbol for (α, β). From the properties of Hermite polynomials,
it can be proven that:

< vϕ0|ϕg >= 1

< vϕα|ϕβ >= −2α(α2!)δαβ · 1{αβ > 0}

< vϕ0|ϕ0 >=< vϕg|ϕg >=< vϕ0|ϕα6=0 >=< vϕg|ϕα6=0 >= 0

meaning that the expansion of a well-behaved function f(v) = ov→+∞[exp(v2

2 )] satisfying
the initial differential equation can be written:

f(v) = < vϕg|f >
< vϕg|ϕ0 >

ϕ0 + < vϕ0|f >
< vϕ0|ϕg >

ϕg +
∑
α2∈N∗

< vϕα|f >
< vϕα|ϕα >

ϕα

f(v) =< v2|f > + < v|f > v +
∑
α2∈N∗

< vϕα|f >
< vϕα|ϕα >

ϕα (118)

From the properties of the Hermite polynomials, we also obtain:

< 1|ϕα>0 >= αα
2 exp(−α

2

2 )

< 1|ϕα<0 >= (−1)α2
αα

2 exp(−α
2

2 )

B.3 Characteristics of the ϕα−functions

The four lowest orders functions can be found by setting:

α ∈ ±{1,
√

2}

From definition 114, we find:

ϕ−
√

2(v) = {v2 − 4
√

2v + 7} exp(
√

2v − 2)

ϕ−1(v) = (v − 2) exp(v − 1)

ϕ1(v) = (v + 2) exp(−v − 1)

ϕ√2(v) = {v2 + 4
√

2v + 7} exp(−
√

2v − 2)
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Note that we actually only need to study α > 0 or α < 0 as from the evenness/oddness of
the Hermite polynomials:

ϕ−α(v) = (−1)α2
ϕα(v)

Figure 15: ϕα(v̂) (left) and exp(− v̂2

2 )ϕα(v̂) (right) for α ∈ {−
√

2,−1, 0, 1,
√

2}

C Dry and saturated spikes of the PDF

C.1 Definition

By construction of the n-stream (D) and OU models (4.1), the distribution comprises three
"group" of parcels:

1. The parcels moving northwards in a zone where y > y∗(q) are supersaturated and
condensate as they move Northwards, constituting the saturated spike δ−[q − q∗(y)].

2. The moisture of the parcels which have last hit the Northern boundary y = L where
q = q∗(L) = qmin cannot be changed until the parcels hit the Southern boundary
y = 0. They constitute the dry spike δ+(q − qmin).

3. The remaining part of the PDF is referred as the smooth part.

C.2 Saturated spike in the two-stream model

To understand how condensation occurs in the two-stream model, we relax the assumption
of instant condensation; in dimensionless form:

∂

∂y

(
N
−S

)
− ∂

∂q
[C(q, y)

(
N
S

)
] = 1

2

(
S −N
N − S

)

Using the notations introduced in 4, we define a dimensionless condensation time that we
assume small λ−1τ � 1, and use:

C(q, y) = λ−1τ [q − q∗(y)]H[q − q∗(y)]
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In the supersaturated region q ≥ q∗(y), the parcels condensate fast enough for their ve-
locities not to change sign, and we can assume S � N . The second equation gives
S ∼ λ−1τN making the approximation self-consistent, while integrating the first equation
in the super-saturated region gives:

dW

dy
+ W (y)

2 = −dq
∗

dy
N [q∗(y), y] (119)

where we have defined the total density of supersaturated parcels:

W (y) def= L

ˆ +∞

q∗(y)
N(q, y)dq (120)

D The n-stream model

D.1 Definition

The n-stream model is a natural discretization of the OU model and thus a generalization
of the two-stream model. It is easy to think about it as n bits which can take the value
±1. If we consider one combination of bits, the sum of the bits gives the velocity of
the corresponding parcel’s ensemble, and allows us to build the advection matrix of the
processA. The exchange of parcels between ensembles happens when one bit’s value is
modified, and the probability of switching from one velocity to another allows us to build
the exchange matrix of the process E. Finally, the normalization condition is obtained by
considering the probability of a combination of bits. Mathematically, defining the vectorial
PDF ρ(q, y):

∂

∂t
ρ+ V√

n− 1
A
∂

∂y
ρ = β

2 Eρ (121)

Aij
def= (n+ 1− 2i)δij (122)

Eij
def= −nδij + jδi+1,j + (n− j)δi−1,j (123)

where δij is the Kronecker symbol. The normalization condition for ρ(q, y) yields:
ˆ q∗(y)

qmin

ρi(q, y)dq = (n− 1)!
(i− 1)!(n− i)!

1
2n−1L

(124)

By construction of the n-stream model, the diffusivity of the parcels is given by:

κ
def= V 2

β
(125)

D.2 The three-stream model

The steady three-stream equations can be written:

V√
2
∂

∂y

 2N
0
−2S

 = β

2

 −2 1 0
2 −2 2
0 1 −2


 N
M
S
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where (N,M,S) respectively represent the northwards, motionless and southwards parcel’s
PDFs. We now work with the dimensionless variables defined in the two-stream model: 83
and 84. The normalization condition for the vectorial PDF is:

ˆ q∗(y)

qmin

 N
M
S

 dq = 1
4L

 1
2
1


Following the same steps as for the two-stream model, we find that the vectorial PDF is
the sum of:

• A smooth part:

Φ(q)
4L

 1
2
1

+ Csmooth(q)

 y

2(y +
√

2)
y + 2

√
2


• A dry spike:

Cdry

 y

2(y +
√

2)
y + 2

√
2


• A saturated spike:

W (y)
4L δ−[q − q∗(y)]

 1
1
0


where from the boundary and normalization conditions:

Cdry = 1
4L(L+ 2

√
2)

Csmooth(q) = 1
4L

d

dq

Λ(q)
y∗(q) + 2

√
2

W (y) =
√

2Λ[qs(y)]
y + 2

√
2

Defining the average of a function f(q) by:

f(y) def= L

ˆ q∗(y)

qmin

f(q)(N +M + S)(q)dq

the average sub-saturation is:

qsub =
ˆ q∗(y)

qmin

Φqsub + (y +
√

2)
ˆ q∗(y)

qmin

Λ(q)dq
y∗(q) + 2

√
2

Defining the moisture flux as:

Fq
def= Ldim

ˆ q∗(y)

qmin

√
2V q(N − S)(q)dq
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we can once again relate it to the moisture gradient in dimensional form:

Fq = −κ(dq
dy
−W |dq

∗

dy
|)

There is very little difference between the 2/3-stream models, except for the presence of
motionless parcels, which explains why the moisture flux is smaller in the three-stream case.

D.3 The four-stream model

The steady four-stream equations can be written:

V√
3
∂

∂y


3N3
N1
−S1
−3S3

 = β

2


−3 1 0 0
3 −3 2 0
0 2 −3 3
0 0 1 −3



N3
N1
S1
S3


where (N3, N1, S1, S3) respectively represent the fast northwards, slow northwards, slow
southwards and fast southwards parcel’s PDFs. We now work with the dimensionless vari-
ables defined in 83 and 84. The normalization condition for the vectorial PDF is:

ˆ q∗(y)

qmin


N3
N1
S1
S3

 dq = 1
8L


1
3
3
1


Following the same steps as for the 2/3-stream models, we find that the vectorial PDF is
the sum of:

• A smooth part:

Φ(q)
8L


1
3
3
1

+ 147
√

3Csmooth,±(q)c±(y)

• A dry spike:
147
√

3Cdry,±c±(y)

• A saturated spike:

δ−[q − q∗(y)]
8L


W3(y)
W1(y)

0
0


where a sum over ± is implied and c±(y) is given by:

(1∓ 6
√

2)±
√

6(y + 2
√

3)− exp(±
√

6y)
3(1∓ 6

√
2)±

√
6(3y + 8

√
3)− 3(1±

√
2) exp(±

√
6y)

3(1∓ 6
√

2)±
√

6(3y + 10
√

3)− 3(5± 4
√

2) exp(±
√

6y)
(1∓ 6

√
2) +±

√
6(y + 4

√
3) + (3± 2

√
2) exp(±

√
6y)
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From the boundary and normalization conditions, we can solve for the
six unknowns (Csmooth,±(q), Cdry,±,W1(y),W3(y)):

Cdry,± = − 1
8L

√
3

1764Γ(L)

Csmooth,±(q) = − 1
8L

√
3

1764
d(ΛΓ±[y∗])

dq(
W3(y)
W1(y)

)
=W(y)

(
−
√

2 + 5
√

2 cosh(
√

6y) + 8 sinh(
√

6y)
3[
√

2 + 3
√

2 cosh(
√

6y) + 4 sinh(
√

6y)]

)
where:

Γ±(y) =
√

2 + (3
√

2∓ 4) exp(∓
√

6y)
−
√

2 +
√

2(9 + 2
√

3y) cosh(
√

6y) + (14 + 3
√

3y) sinh(
√

6y)

W(y) = 2Λ[q∗(y)]
−
√

2 +
√

2(9 + 2
√

3y) cosh(
√

6y) + (14 + 3
√

3y) sinh(
√

6y)
Defining the average of a function f(q) by:

f(y) def= L

ˆ q∗(y)

qmin

f(q)(N3 +N1 + S1 + S3)(q)dq

the average sub-saturation is:

qsub =
ˆ q∗(y)

qmin

Φqsub −Q(y)

where:
Q(y) = 1±

√
6(
√

3 + y)− 2(1±
√

2) exp(±
√

6y)
4

ˆ q∗(y)

qmin

ΛΓ±[y∗]

where a sum over ± is implied. Defining the moisture flux as:

Fq
def= Ldim

ˆ q∗(y)

qmin

√
3V q(N3 + N1 − S1

3 − S3)(q)dq

we need to use the first and second meridional derivative of the average moisture to write
the gradient/flux relation:

Fq = −κ(dq
dy
−Wtot|

dq∗

dy
|)(1− 2

D
)

+κL(d
2q

dy2 −Wtot
d2q∗

dy2 )(1−
2 + (

√
2− 1) exp(−

√
6βy
V )

D
)

where Wtot = W1 +W3 is the total amount of parcels which have condensed, L = V√
6β is the

boundary layer decay-length of the 4-stream model and the denominator in dimensionless
form is:

D(y) = 2 + cosh(
√

6y) +
√

2 sinh(
√

6y)
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Qualitatively, the 4-stream model adds a boundary layer structure to the solution, which
explains the better agreement of the analytical 4-stream moisture flux with the OU flux
for small y (cf figure 14). Furthermore, the boundary layer provides a positive contribution
depending on d2q

dy2 to the moisture flux, once again decreased by the amount of condensed
parcels.

E Brownian motion with condensation a longitudinally av-
eraged sphere

E.1 Preliminary assumptions

We are now interested in the advection-condensation problem on a isentropic sphere of
radius a, parametrized by longitude λ and latitude θ. We make the following simplifying
assumptions:

1. By taking a longitudinal average of the model, we reduce our problem to a 1D process
on the surface of a sphere.

2. The domain we work on extends from the Equator (θ = 0) to a given latitude θL ∈
]0, π2 [.

3. We suppose that the saturation specific humidity monotonically decreases from the
Southern boundary of the domain (θ = 0) where q∗ = qmax to the Northern boundary
of the domain (θ = θL) where q∗ = qmin = minθ q(θ).

4. We model the source term S following Sukhatme et al.. The model "resets" the
specific humidity q to a random value chosen from a specified distribution Φ(q) when
it encounters the Southern boundary of the domain (θ = 0). Physically, we could
think of the fictive domain θ ≤ 0 as the Tropics, that remoisten the dry parcels that
are advected southward by the mid-latitude eddies. The normalization condition on
Φ yields: ˆ qmax

qmin

Φ = 1

5. We assume that the moist parcels on this sphere have a constant diffusivity coefficient
κ.

E.2 Normalization of the concentration of moist parcel

On the sphere of constant radius, we define c(λ, θ, t) [m−2] as the physical concentration of
moist parcels. It can be computed from the generalized concentration γ in (q, λ, θ, t) space
by integrating over the specific humidity q:

c(λ, θ, t) def=
ˆ q∗(θ)

qmin

γ(q, λ, θ, t)dq
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By definition, the concentration of moist parcels c verifies the following normalization con-
dition:

Ntot = a2
ˆ 2π

0
dλ

ˆ θL

0
dθ cos(θ)c(λ, θ, t) = a2

ˆ q∗(θ)

qmin

dq

ˆ 2π

0
dλ

ˆ θL

0
dθ cos(θ)γ(q, λ, θ, t)

(126)
Defining the zonally averaged generalized condensation as:

< γ > (q, θ, t) def= 1
2π

ˆ 2π

0
dλγ(q, λ, θ, t)

and introducing the distribution:

ν(q, θ, t) def= 2πa2

Ntot
< γ > (q, θ, t) = a2

Ntot

ˆ 2π

0
dλγ(q, λ, θ, t)

the previous normalization condition 126 yields:

ˆ θL

0

ˆ q∗(θ)

qmin

ν(q, θ, t) cos θdθdq = 1

Integrating ν(q, θ) over (q) produces the marginal density:

p(θ, t) def=
ˆ q∗(θ)

qmin

ν(q, θ)dq

In the stationary limit limt→+∞ p(t) = p∞ and ∇p∞ = 0, which allows us to compute
p∞ through its normalization condition:

ˆ θL

0
p∞ cos θdθ = 1 ⇒ p∞ = sin−1(θL)

As a consequence, if we seek a long-time equilibrium solution ν∞ = limt→+∞ ν, we require:

1 = sin θL ·
ˆ q∗(θ)

qmin

ν∞(q, θ)dq (127)

E.3 FPE and SDE of the PDF

The generalized concentration γ of moist parcels verifies the evolution-condensation-diffusion
equation on this sphere:

∂γ

∂t
+ ∂

∂q
[(S − C)γ] = κ∇2γ = κ

a2 {
1

cos θ
∂

∂θ
[cos θ∂γ

∂θ
] + 1

cos2 θ

∂2γ

∂λ2 }

Integrating the previous relation from λ = 0 to λ = 2π and using the fact that:

• ∂γ
∂λ(λ = 0) = ∂γ

∂λ(λ = 2π) because ∂γ
∂λ is a continuous function of longitude.
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• ∂γ
∂q (λ = 0) = ∂γ

∂q (λ = 2π) because ∂γ
∂q is a continuous function of longitude.

• ∂
∂λ(S − C) = 0, because the source and the sinks in the system are longitudinally
invariant.

we obtain:
∂ < γ >

∂t
= κ

a2 cos θ
∂

∂θ
[cos θ∂ < γ >

∂θ
]

Multiplying the previous equation by 2πa2

Ntot
, we show that ν verifies the following evolution-

diffusion equation:
∂ν

∂t
= κ

a2 cos θ
∂

∂θ
[cos θ∂ν

∂θ
] (128)

We are now interested in the PDF n(q, θ, t) of Θ, which is the random variable associated to
the latitudinal motion of the moist parcel. From the normalization condition on n(q, θ, t):

ˆ θL

0

ˆ q∗(θ)

qmin

n(q, θ, t)dθdq = 1

and the normalization condition on ν∞ (127) we can identify n as:

n(q, θ, t) = cos θ · ν(q, θ, t)

It is then immediate to derive the FPE for n from the equation that ν satisfies:

∂n

∂t
= κ

a2
∂

∂θ
[tan θ · n+ ∂n

∂θ
]

By identifying the drift and the diffusion terms, we recognize that the previous FPE corre-
sponds to the Ito’s SDE for a random walk on a sphere with diffusivity κ:

dΘ(t) = −κ tan[Θ(t)]
a2 dt+

√
2κ
a

dW (t) (129)

We can see that the random walk is biased towards small values of Θ as the surface of the
sphere decreases with the latitude θ. The SDE for the specific humidity stays the same:

dQ(t) = {S[Θ(t)]− C[Θ(t), Q(t)]}dt

E.4 Steady PDF

From equation 128, we can prove that the steady Markov diffusive process ν∞ = limt→+∞ ν verifies
Laplace’s equation:

∂

∂θ
[cos θ∂ν∞

∂θ
] = 0

Integrating this equation is immediate and gives:

ν∞(q, θ) = A(q)L(θ) +B(q)
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where we have defined the function:

L(θ) def=
ˆ θ

0

dθ′

cos(θ′) = ln[1 + sin(θ)
cos(θ) ]

and (A,B) need to be determined:
• First, we consider the origin θ = 0 where ν∞(q, 0) = B(q) = βΦ(q) where the second

equality comes from the resetting condition at (θ = 0). We combine the normalization
condition on Φ and the integral condition on ν∞ to find β:

´ qmax
qmin

βΦ(q)dq = β´ qmax
qmin

ν∞dq = sin−1 θL
⇒ β = sin−1 θL

• Because the only moistening mechanism at (θ = 0), the driest parcel q = qmin will
keep their dryness until they hit the Southern boundary. Consequently, ν∞ will be
peaked at qmin, and we need to take into account the "dry spike" δ+(q − qmin) in the
distribution:

ν∞(q, θ) = [A1 · δ(q − qmin) +A2(q)] · L(θ) + Φ(q)
sin θL

where (A1, A2) are to be determined. At θ = θL where q∗ = qmin:ˆ qmax

qmin

ν∞(q, θL)dq = A1LL = sin−1 θL ⇒ A1 = {sin θL · LL}−1

where we have defined :

LL = L(θL) = ln[1 + sin(θL)
cos(θL) ]

which verifies: {
L(θL = 0) = 0
L(θL → π

2 )→ +∞

• Finally, we substitute ν∞ in the normalization condition 127:

1 = sin θL
ˆ q∗(θ)

qmin

ν∞dq = L(θ)
LL

+ sin θLL(θ)
ˆ q∗(θ)

qmin

A2(q)dq +
ˆ q∗(θ)

qmin

Φ(q)dq

1
L(θ)

ˆ qmax

q∗(θ)
Φ(q)dq = 1

L(θ) −
1
L(θ)

ˆ q∗(θ)

qmin

Φ(q)dq = 1
LL

+ sin θL
ˆ q∗(θ)

qmin

A2(q)dq

We solve for A2 by using q rather than θ as the independent variable; defining θ∗ as
the reciprocal function of q∗, we can rewrite the previous equation as:

1
L[θ∗(q)]

ˆ qmax

q
Φ(q′)dq′ = 1

LL
+ sin θL

ˆ q

qmin

A2(q′)dq′

We obtain A2 by taking the derivative of the previous equation:

sin θL ·A2(q) = d

dq

Λ(q)
L[θ∗(q)]

where once again Λ is the CDF of Φ which is defined in 90 so that Λ(qmin) = 1.
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In conclusion, we can write ν∞ as a function of (Λ, θ∗):

sin θL · ν∞ = [δ
+(q − qmin)
LL

+ d

dq

Λ(q)
L[θ∗(q)] ]L(θ)− dΛ

dq
(130)

In the limit θL → π
2 (full Northern hemisphere), the distribution reduces to:

ν∞ = L(θ) d
dq

Λ(q)
L[θ∗(q)] −

dΛ
dq

In that limit, no parcels can reach the Northern pole (θ → π
2 ), which surface is 0, which

suppresses the dry spike in the distribution. Note that the previous expressions are only
valid for q ≤ q∗(θ):

ν∞[q > q∗(θ)] = 0

which means that we have completely solved the FPE in this particular case. The steady
PDF in spherical coordinates n∞ = limt→+∞ n can be directly computed from the previous
solution:

n∞(q, θ) = cos(θ) · ν∞(q, θ)

E.5 Global steady PDF

By definition, the global PDF of specific humidity is:

PQ(q) def=
ˆ θ∗(q)

0
n∞(q, θ)dθ =

ˆ θ∗(q)

0
cos θ · ν∞(q, θ)dθ

Using the solution computed previously for ν∞ (130), we can evaluate this integral:

sin θL · g(q) = [δ
+(q − qmin)
LL

+ d

dq

Λ(q)
L[θ∗(q)] ]K[θ∗(q)]− dΛ

dq
sin[θ∗(q)]

where we have defined the function:

K(θ) def=
ˆ θ

0
cos θ′ · L(θ′)dθ′ = ln(cos θ) + sin(θ) · L(θ)

E.6 Averages

With the knowledge of ν∞, we can compute the average of any function f(q), which we
define by:

f(θ) = sin θL
ˆ q∗(θ)

qmin

f(q)ν∞(q, θ)dq

Using the expression we computed for ν∞ (130), we can use integration by parts to obtain
f as a function of (Λ, q∗(θ), f, dfdq ):

f(θ) = {Λf}[q∗(θ)]− L(θ)
ˆ q∗(θ)

qmin

{ Λ
L[θ∗]

df

dq
}(q)dq −

ˆ q∗(θ)

qmin

{f dΛ
dq
}(q)dq (131)
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Once again, we can compute the meridional gradient using Leibniz’s formula to differentiate
integrals:

df

dθ
= − 1

cos θ

ˆ q∗(θ)

qmin

{ Λ
L[θ∗]

df

dq
}(q)dq (132)

We can use the previous expressions 131 and 132 to compute the average moisture content
q(θ) and its meridional gradient:

q(θ) = q∗Λ(q∗)− L(θ)
ˆ q∗(θ)

qmin

Λ(q)
L[θ∗(q)]dq −

ˆ q∗(θ)

qmin

q
dΛ
dq
dq

dq

dθ
= − 1

cos θ

ˆ q∗(θ)

qmin

Λ(q)
L[θ∗(q)]dq

E.7 Application to an exponentially decreasing q∗(θ) and a given remoist-
ening Φ(q)

We make the following assumptions:

1. We assume that the saturation specific humidity profile exponentially decreases with
latitude:

q∗(θ) ≈ qmax exp(−αθ) ⇔ θ∗(q) ≈ − 1
α

ln( q

qmax
)

2. We assume that the "Southern boundary resetting" produces complete saturation at
θ = 0 (case I of complete remoistening):

ΦI(q) = δ−(q − qmax)

or that it remoistens the parcels following a uniform distribution (case II of uniform
remoistening):

ΦII(q) = 1
qmax − qmin

In case I, the steady distribution ν∞ can be written:

• For θ = 0 (Southern edge):

ν∞(q, 0) = δ−(q − qmax)
sin θL

• For θ ∈]0, θL] (Interior of the domain and Northern edge):

sin θL
L(θ) ν∞(q, θ) = δ+(q − qmin)

LL
+ 1

(αq) · [L2 cos][θ∗(q)]

Similarly, the distribution g is given by:

• For q = qmax (Southern edge):
g(qmax) = 0
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• For q ∈ [qmin, qmax[ (Interior of the domain and Northern edge):

sin θL
K[θ∗(q)]g(q) = δ+(q − qmin)

LL
+ 1

(αq) · [L2 cos][θ∗(q)]

To check the validity of our general solution in this specific case, we numerically simulate
the SDE on a sphere with: 

Ntot = 3.104

qmin = 0.1
qmax = 1
κ = 1
a = 1

and compare the numerical PDF to the marginal distributions f(θ) = cos θp∞ and g(q) for
different values of the latitudinal extent of the domain θL.

Figure 16: cos θ · p∞ (left) and g(q) (right) for θL = π
3 (top) and θL = π

2 (bottom) in case I
of a complete remoistening
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In case II, we obtain:

sin θL ·ν∞ = [δ
+(q − qmin)
LL

+ qmax − q
qmax − qmin

1
αq[L2 cos][θ∗(q)] ]L(θ)+ 1

qmax − qmin
{1− L(θ)
L[θ∗(q)]}

sin θL·g(q) = [δ
+(q − qmin)
LL

+ qmax − q
qmax − qmin

1
αq[L2 cos][θ∗(q)] ]K[θ∗(q)]+ 1

qmax − qmin
{sin[θ∗(q)]−K[θ∗(q)]

L[θ∗(q)] }

Figure 17: cos θ · p∞ (left) and g(q) (right) for θL = π
3 (top) and θL = π

2 (bottom) in case
II of a uniform remoistening

F Incorporation of the saturated peak in the special case
ΦI(q) = δ−(q − qmax)

Here we will take into account the saturated peak in the initial conditions of the two-stream
model 81, and prove that only the moist peak at q = qmax is modified. The argument can
be easily generalized to the Ornstein-Uhlenbeck process 4.1. Keeping the same notations,
we add the dry peak and the saturated peak to the solution without applying any boundary
condition:{

N (q, y) = y[Asmooth(q) +Adryδ
+(q − qmin)] +B(q) +W(y)δ−(q − q∗)

S(q, y) = (y + 2)[Asmooth(q) +Adryδ
+(q − qmin)] +B(q)

The normalized boundary condition at y = 0 (87) gives:

Φ(q) = 2LN(q, 0) = 2LB(q) + 2LW(0)Φ(q) ⇒ 2LB(q) = [1− 2LW(0)]Φ(q)

where we have used the fact that Φ(q) = δ−(q − qmax) and q∗(0) = qmax. The dry peak in-
tensity doesn’t change as it is determined by the normalization condition for the southwards

277



PDF S 82 at y = L where q = q∗(L) = qmin:

2LAdry = 1
2 + L

Again, the southwards PDF S satisfies the normalization condition 82 for all y ∈ [0, L], and
does not have any saturated peak:

1 = 2L
ˆ q∗(y)

qmin

S(q, y)dq = [y+2][ 1
2 + L

+2L
ˆ q∗(y)

qmin

Asmooth(q)dq]+[1−2LW(0)]
ˆ q∗(y)

qmin

Φ(q)dq

2L
ˆ q∗(y)

qmin

Asmooth(q)dq = 1
y + 2[

ˆ qmax

q∗(y)
Φ(q)dq + 2LW(0)

ˆ q∗(y)

qmin

Φ(q)dq]− 1
2 + L

Switching the independent variable from y to q , changing the bounds of the integrals
carefully according to figure 2, and differentiating the previous equation with respect to q,
we obtain:

2LAsmooth = d

dq

1 + 2LW(0)δqqmax
2 + y∗(q)

where we have used the fact that:
´ qmax
q Φ(q′)dq′ =

´ qmax
q δ−(q′ − qmax)dq′ = 1´ q

qmin
Φ(q′)dq′ =

´ q
qmin

δ−(q′ − qmax)dq′ = δqqmax

where δqqmax is the Kronecker symbol for q = qmax. Finally, we find the weight of the
saturated parcels W by applying the normalization condition 82 for N :

1 = 2L
ˆ q∗(y)

qmin

N (q, y)dy

1 = y[1 + 2LW(0)δq∗qmax ]
2 + y

+ 2LW(y)

2LW(y) = 2
2 + y

leading to a PDF that only comprises a dry and a saturated peak in this special case:

2LS(q, y) = (2 + y)[δ
+(q − qmin)

2 + L
+ d

dq

1 + δqqmax
2 + y∗(q) ]

2LS(q, y) = (2 + y)[δ
+(q − qmin)

2 + L
+ δ−(q − qmax)

2 + y∗(q) − dy∗

dq

1 + δqqmax
(2 + y∗)2 ]

2LN (q, y) = y[δ
+(q − qmin)

2 + L
+ d

dq

1 + δqqmax
2 + y∗(q) ] + 2δ−(q − q∗)

2 + y

2LN (q, y) = y[δ
+(q − qmin)

2 + L
+ +δ−(q − qmax)

2 + y∗(q) − dy∗

dq

1 + δqqmax
(2 + y∗)2 ] + 2δ−(q − q∗)

2 + y

In conclusion, the distributions agree with the ones computed in 91 and 89 everywhere
except at q = qmax, which means that:
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• To compute the analytical solution, we can safely apply the boundary condition on
N directly without having to worry about the saturated peak.

• The limit Φ(q) → δ−(q − qmax) is singular at q = qmax, where a moist peak δ−(q −
qmax) linearly increasing with y appears.
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Coupled Reduced Equations for Strongly Stratified Flows
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Abstract

We present a set of reduced equations in the limit of strong stratification. The
asymptotics lead to the hydrostatic primitive equations for the slow/large scale flow
and non-hydrostatic, quasi-linear equations for the perturbations. There is no closure
problem and the system conserves energy. We explore the properties of this coupled
system of equations by studying solutions of a two-dimensional toy problem. This
simple problem displays interesting dynamics with O(1) feedbacks between mean and
perturbations. Even in this toy problem, the Reynolds stresses and buoyancy fluxes are
not sign-definite in most of the regions of the parameter space.

1 Introduction

Strongly stratified turbulence has been used as a paradigm to interpret observations of
strongly stratified turbulent geophysical flows [7]. Turbulence dominated by strong stable
stratification occurs at scales larger than the Ozmidov scale, lO,

lO
def
=
( ε

N3

)1/2
, (1)

where ε is the kinetic energy rate of dissipation, and N is the buoyancy frequency. The
Ozmidov scale is the horizontal scale of the largest overturns in a stratified flow. At scales
much smaller than lO, the flow is essentially unaffected by stratification, whereas at scales
larger than lO the effects of stratification dominates.

In the ocean lO is O(1) m and in the atmosphere it is O(100) km [1, 3, 7]. At O(lO)
scales, the Rossby number of the flow is large and rotation is unimportant. The most
prominent coherent structures that emerge in strongly stratified turbulence are strongly
anisotropic. Indeed, stratified turbulence is often termed “pancake” turbulence [2, 7].

In the ocean, stratified turbulence is important at scales between 100 and 1 m and in the
atmosphere at scales between 10 km and 100 m [7]. Kinetic and potential energy horizontal
wavenumber spectra calculated from observations in the atmosphere and in the ocean are
consistent with predictions of stably stratified turbulence1. These scales are barely resolved
in regional models and not resolved at all in general circulation models. Understanding
of the dynamics of strongly stratified turbulence, and in particular how the small scale
stratified turbulence interacts with large scale flows, is important for parameterizing these
effects into numerical models.

1The spectra are also consistent with predictions of other theories, e.g. [4].
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One approach towards understanding and modeling strongly stratified turbulence has
been direct numerical simulations [1, 3, 7]. Figure 1 shows different regimes of stratified
flows in the Re− 1/Fr space, where (for details and definitions see section 2).

Fr
def
=
U
NL

, (2)

is the horizontal Froude number (and 1/Fr2 is a measure of the strength of the stratification),
and

Re
def
=
U L
ν

, (3)

is the Reynolds number. Dimensional analysis suggests that strongly stratified turbulence
regime develops when ReFr2 > 1 [3].

Figure 1: The different regimes of stratified flows as a function of the Reynolds
number and the horizontal Froude number. Source: [3].

Direct numerical simulations with parameters of relevance to geophysical flows are cur-
rently unattainable through direct numerical simulations [1, 3]. Indeed, figure 1 shows that
current direct numerical simulations are decades away in parameter space from the regimes
of relevance to geophysical flows. Conclusions and extrapolations based on current low
ReFr2 simulations should be interpreted with care [1].

Here we take a different approach to study this problem. Inspired by the success of
multi-scale asymptotics to study turbulent flows with strong constraints [6], e.g rotating
convection [8], we dig deep into the scaling for strongly stratified flows and present a set
of reduced equations for its modeling (Section 2). To explore the main properties of this
system of equations and showcase its usefulness we study a toy initial value problem of
stratified shear instability (Section 3). A summary and inquiries for future research are
given in section 4.
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2 Reduced Equations for Strongly Stratified Flows

Our starting point is the familiar Boussinesq equations. The momentum and mass conser-
vation equations are reduced to

∂tu+ u ·∇u = −∇p+ ν4u− b k̂ , (4)

and
∇ · u = 0 , (5)

where b
def
= − g

ρ0
ρ is the negative of the reduced gravity, commonly referred to buoyancy in

the oceanographic community (e.g., [9]), and k̂ is the unit vector in the vertical direction.
The system is closed with the thermodynamic equation

∂t b+ u ·∇ b = κ4 b−N2(z)w , (6)

where N2(z) = ∂B
∂z is the background buoyancy frequency.

We start by nondimensionalizing the Boussinesq equations (4)-(6). Let

(x, y) = (x?, y?)L , z = z?H , (u, v) = (u?, v?)U , t = t?
L
U
, p = p? U2 .

(7)

From the vertical momentum equation we find the scale for the buoyancy is

b = b?
U2

H
. (8)

To find a scale for the vertical velocity, we insist that the horizontal advection of buoyancy
balances, to lowest order, the vertical advection of background buoyancy in (6). Hence

w = w?
Fr2

α
U , (9)

where the horizontal Froude number is

Fr
def
=
U
NL

, (10)

and the aspect ratio of the flow is

α
def
=
H
L
. (11)

Using the scaling (7) through (9) in the Boussinesq equations (4) through (6), we obtain

∂t?u
?
h + u?h ·∇?u?h +

Fr2

α2
w?∂z?u

?
h = −∇?

hp
? +

1

Re

[
4?
hu

?
h +

1

α2
∂2z?u

?
h

]
, (12)

Fr2
[
∂t?w

?
h + u?h ·∇?w?h +

Fr2

α2
∂z?w

?

]
= −∂z?p? + b? +

Fr2

Re

[
4?
hw

? +
1

α2
∂2z?w

?

]
, (13)

∇? · u?h +
Fr2

α2
∂z?w

? = 0 , (14)
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and

∂t?b
? + u?h ·∇?b? +

Fr2

α2
w?∂z?b

? = w +
1

Re Pr

[
4?
hb
? +

1

α2
∂2z?b

?

]
, (15)

where the Reynolds number is

Re
def
=
U L
ν

, (16)

and the Prandtl number is
Pr

def
=

κ

ν
. (17)

From now on, we drop the star super scripts — all variables are nondimensional unless
otherwise stated.

Note that a full quasi-two-dimensionalization of the system (to lowest order in Fr) de-

pends on the ratio Fr2

α2 [2]. If that ratio goes to zero as Fr → 0, then the system consists
of two-dimensional layers, with properties similar to two-dimensional turbulence. Alterna-
tively, a more interesting case is when the aspect ratio α adjust so that Fr

α = O(1) (see
appendix A for details). This implies that the vertical scale of the motion is

H ∼ U
N
. (18)

Notice that with this scaling, the potential energy of the flow has the same order of the
kinetic energy

b2

N2
=

Fr2

α2
U2 ∼ O(U2) , (19)

and therefore there is an approximate equipartition between kinetic energy and potential
energy.

We assume that the system evolves in two different sets of scales. That is, all fields
depend on fast/short scales (χh, τ) and slow/long (xh, t). A single vertical scale is assumed.
The fast time variable is

τ
def
= Fr−1 t , so that ∂t → ∂t + Fr−1∂τ . (20)

Similarly, the horizontal short spatial variable is

χ
def
= Fr−1 x , so that ∇x

h →∇x
h + Fr−1∇χ

h . (21)

Any field f depends on both fast/short and slow/long scales, and is decomposed into

f = f̄ + Frnf ′ + o(Frn) , (22)

where the overbar denotes the average over the slow/short scales (e.g. [6]):

f̄(x, t, z)
def
= lim

S,T→∞

1

S T

∫∫
A

∫
T
f(x, t, τ,χ, z)dτd~χ . (23)
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Note that, by definition, f̄ ′ = 0. The correct power n depends on the dynamical field, and
is chosen in order to obtain a nontrivial balance. We have

uh = ūh + Fr1/2 u′h +O(Fr3/2) ,

p = p̄+ Fr1/2 p′ +O(Fr3/2) ,

b = b̄+ Fr1/2 b′ +O(Fr3/2) ,

w = w̄ + Fr−1/2w′ +O(Fr0) . (24)

Note that, in dimensional form, the fluctuations are isotropic, i. e., (u′h, w
′) ∼ Fr1/2 U .

Reduced equations for Fr� 1 and Re� 1

We now introduce the rescaled operators (20) and (21) into the nondimensional equations
(12) through (15), and average over the fast/short scales to obtain

∂tūh + ūh ·∇x
h ūh + w̄∂zūh = −∇x

h p̄+
1

Reb
∂2z ūh − ∂z(w′u′h) , (25)

0 = −∂zp+ b , (26)

∇x
h · ūh + ∂zw = 0 , (27)

and

∂tb̄+ ūh ·∇x
h b̄+ w̄∂z b̄ = −w̄ +

1

Reb Pr
∂2z b̄− ∂z(w′b′) , (28)

where the buoyancy Reynold number is Reb
def
= Fr2 Re .

The equations for the perturbations are obtained by subtracting the mean equations
above from Boussinesq equations (with Fr� 1 and Re� 1). We obtain, to lowest order,

∂τu
′
h + ūh ·∇χ

hu
′
h + w′∂zūh = −∇χ

hp
′ +

Fr

Reb

(
4χ
h + ∂2z

)
u′h , (29)

∂τw
′ + ūh ·∇χ

hw
′ = −∂zp′ + b′ +

Fr

Reb

(
4χ
h + ∂2z

)
w′ , (30)

∂τ b
′ + ūh ·∇χ

hb
′ + w′(∂z b̄+ 1) =

Fr

Reb Pr

(
4χ
h + ∂2z

)
b′ , (31)

∇χ
h · u

′
h + ∂zw

′ = 0 . (32)

In some calculations, it is convenient to rewrite the equations for the perturbations (29)
through (32) in terms of the slow/small scale independent variables. For future reference,
these equations are:

Fr
(
∂tu
′
h + ūh ·∇x

hu
′
h

)
+ w′∂zūh = −Fr∇x

hp
′ +

Fr

Reb

(
Fr24x

h + ∂2z
)
u′h , (33)

Fr
(
∂tw

′ + ūh ·∇x
hw
′) = −∂zp′ + b′ +

Fr

Reb

(
Fr24xh + ∂2z

)
w′ , (34)
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Fr
(
∂tb
′ + ūh ·∇x

hb
′)+ w′(∂z b̄+ 1) =

Fr

Reb Pr

(
Fr24xh + ∂2z

)
b′ , (35)

Fr∇x
h · u′h + ∂zw

′ = 0 . (36)

Alternatively, the quasi-linear system above can be expressed in terms of a single variable
w′ [

Lχ − Fr

Reb Pr

(
4χ
h + ∂2z

)] [
Lχ
(
4χ
h + ∂2z

)
− ∂2z ūh · ∇

χ
h

]
w′ + (∂z b̄+ 1)4χ

hw
′

=
Fr

Reb

[
Lχ − Fr

Reb Pr

(
4χ
h + ∂2z

)] (
4χ
h + ∂2z

)2
w′ , (37)

where the quasi-linear operator is

Lχ
def
= ∂τ + ūh ·∇χ

h . (38)

The two-dimensional (x, z) version of (37) reduces to the Taylor-Goldstein equation in the
inviscid limit (see appendix B).

Conservation of energy

The coupled system (25)-(28) and (29)-(31) conserves total energy in the inviscid limit
(Re→∞)

dE

dt
= 0 , (39)

where the nondimensional total energy is

E =
1

2

∫∫∫ [(
|ūh|2 + b̄2

)
+ Fr

(
|u′h|2 + w′2 + b′2

)
+O(Fr2)

]
dV , (40)

and we assumed harmless boundary conditions such as no-flux or triple periodicity (see
appendix C for details). The dimensional potential energy has the form b2/N2. To lowest
order the kinetic energy is due to the horizontal flow. Consistent with our approximation,
the system is isotropic at O(Fr).

3 Decaying Problems

To begin exploring the reduced system, we study solutions of a very simplified problem.
We consider two-dimensional system (x− z) with solutions of the slow field independent of
the slow horizontal coordinate (x). In other words, the “pancakes” are infinitely long. A
different interpretation is that we are looking for the zeroth mode of the slow field, or the
x-average. Thus, the slow/long equations reduce to

∂tūh =
1

Reb
∂2z ūh − ∂zw′u′h , (41)

∂tb̄ =
1

Reb Pr
∂2z b̄− ∂zw′b′ . (42)
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In the absence of perturbations, these equations simply reduce to the diffusion equation.
The initial conditions for this toy problem consists of two shear layers, with a strong

stratification across the shear regions, and very low stratification between the layers. The
two shear-layer set up was chosen for numerical convenience owing to its periodicity in z.
The functional forms are

ū(z) = tanh
[
m0

(
z − π

2

)]
− tanh

[
m0

(
z − 3π

2

)]
− 1 , (43)

and
b̄(z) = A0

(
tanh[m0(z − 3π

2 )]− tanh[m0(z − π
2 ])
(
z − π). (44)

Notice that the total background stratification is B(z) = z+b̄. In the following experiments,
we fix the mean shear m0 and vary the distance between the two shear layers (Figure 2).
We also fix Fr = 0.02 and Pr = 1.

The slow equations (41) and (42) together with the fast equations are solved (29) through
(36) are sovled numerically with a standard Fourier spectral method. The whole system
is solved in a single spatial scale and a single time scale. To compute the fluxes whose
divergences force the slow equations, we only average the perturbations in space; solutions
are not very sensitive to average both in space and time (see appendix D). The system is
marched forward using a fourth order implicit-explicit Runge-Kutta time stepper.

Figure 2: The initial condition for the toy decaying problem. We use various
values of h, the distance between the two shear layers. (Left) horizontal velocity
and (right) buoyancy.
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3.1 Linear stability analysis

Using the stationary mean velocity (43) and stratification (44), we perform a linear stability
analysis of the quasilinear equations for the perturbations. Figure 3 shows the growth rates
for the base state profiles with h = 1 through h = 1/8 and various Reb. The growth rates
increase with Reb. For large h, where the two shear layers are virtually independent the
unstable modes span a wider region of the horizontal wavenumber space, whereas for small
h the unstable modes are confined to wavenumbers k < 10. The growth rate of the most
unstable mode increase with decreasing h. There is no dramatic transition of the stability
properties as a function of Reb, but the growth rates increase significantly for Reb > 10,
particularly at small h.

These modes are stratified shear instablities. Figure 4 depicts the wavestructure for the
most unstable modes in two cases: h = 1 and h = 8. The structure of the vertical velocity
clearly show the classic “tilt against the shear”. Also clearly depicted is the fact that with
h = 1 the shear layers are independent whereas with h = 1/8 they are coupled. These
modes are not classic Kelvin-Helmholtz instablities, e.g., Drazin & Reid [5]. In particular,
the vorticity structure of these instabilities are composed of opposite sign votices with a
phase shift.

3.2 Initial value problems

We now consider simulations of initial value problems. In particular, we discuss the structure
of different solutions with varying h and Reb. All simulations are initialized with the initial
conditions (Figure 2). The perturbations are initialized with a small seed (10−6) random
field.

Figure 5 shows the time series for the evolution of the kinetic energy (KE) and potential
energy (PE) of both slow/long fields and perturbations for an experiment with Reb = 10
and h = 1. With these parameters, the mean flow is signigicatlly damped by viscosity and
diffusivity. Nevertheless, even at low Reb, there is an interesting interaction between the
mean (slow/long) fields and the perturbations. Once the pertubartions pick the right phase,
they grow exponentially, with a rate consistent with the prediction of the linear stability
analysis (see dashed green line in figure 5). The perturbations peak at about t = 5, and
rapidly decay. This rapid decay is not accounted for by the viscous terms. Indeed, the
perturbations accelerate the flow in the initial phase of their decay (see snapshots of slow
velocity in the bottom panel of figure 5). For times larger than about 10, the perturbations
have decayed significantly, so that the mean flow diffusively tends towards a state of rest
with linear stratification.

Increasing Reb changed qualitatively and quantitatively that picture. For instance,
figure 11 shows the time series of the different components of energy for an experiment with
Reb = 200 and h = 1. As in the Reb = 10 case, the perturbations growth eponentially after
picking up the right phase, and the growth rate is consistent with the predictions for the
most unstable mode. However, at about t = 4, the perturbations saturate. Because there
are no non-linearities in the equatins for the perturbations, this saturation is due to a change
in the slow horizontal velocity and buoyancy profiles. The perturbations then plateau for
about 5 time units before they start decay. The initial decay is relatively fast, and it is
not accounted for by viscosity. Indeed, as the perturbations decay, they accelerate the slow
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Figure 3: Growth rates for linear unstable modes for initial conditions with h = 1,
h = 3/4, h = 1/2, h = 1/4, and h = 1/8.

flow (see lower panel of figure 11), significantly changing its shape. At about t = 60, the
perturbations start decaying very slowly, consistent with the visous and diffusive rates. The
slow buoyancy profile is also significantly changed. In particular, regions initially strongly
stratified are mixed up, and part of the region initially nearly mixed are restratified.

Reducing h allows for the two shear layers to interact. In particular, with h = 1/8, the
initial condition is essentially a jet localized in the middle of the domain. With relatively
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Figure 4: The wavestructure of the unstable modes for h = 1 (top) and h = 1/8
(bottom): (left) vertical velocity and (right) horizontal vorticity.

large Reb, the evolution of the energy is similar to the cases . The perturbations grow
exponentially, and then quickly saturate. The decay of the perturbations also occur in two
stages, first a relatively fast decay, followed by a slow viscous decay. However, in this case
the mean flow is not accelerated during the decay of the perturbations. That is, for this
particular case, the buoyancy flux and the Reynolds stress are sign-definite.

3.3 Bulk properties

To characterize the solutions of this model problem in parameter space, we calculate some
diagnostic bulk propoerties. In particular, the energy partition of the perturbations is

γ
def
=

PEfast
PEfast +KEfast

. (45)

This particular bulk property is of interest because it is a proxy of mixing efficiency. Because
we are dealing with unforced problem, this property is calculated when the perturbations
peak or saturate. Figure 11 shows the distribution of γ in the h− Reb space. Typically, γ
increases with h, with maximum values of 0.7 for h = 1 (and Reb ≥ 50); γ is about 0.35
for h = 1/8. More over, it is quite surprising that for Reb ≥ 50, γ is nearly independent of
Reb. There is no simple scaling arguments that collapse this data into a single curve. That
is, γ is not a simple function of h or the initial potential energy.
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Figure 5: Solution to the IVP with Reb = 10 and h = 1. The upper panel show
the time series for different components of energy. The bottom panels depict the
evolution of the slow flow at different stages (marked in the energy plot). The
green dashed line depicts the linear growth for the most unstable mode.
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Figure 6: Snapshot of the structure of the solution to the IVP with Reb = 10
and h = 1. The upper panel shows the horizontal vorticity field. The lower left
panel is a zoom-in of the upper panel in the region marked by the black square.
The lower right panel shows the snapshot of the slow horizontal velocity (green)
together with the initial condition.
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Figure 7: Solution to the IVP with Reb = 200 and h = 1. The upper panel show
the time series for different components of energy. The bottom panels depict the
evolution of the slow flow at different stages (marked in the energy plot). The
green dashed line depicts the linear growth for the most unstable mode.
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Figure 8: Snapshot of the structure of the solution to the IVP with Reb = 200
and h = 1. The upper panel shows the horizontal vorticity field. The lower left
panel is a zoom-in of the upper panel in the region marked by the black square.
The lower right panel shows the snapshot of the slow horizontal velocity (green)
together with the initial condition.
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Figure 9: Solution to the IVP with Reb = 100 and h = 18. The upper panel show
the time series for different components of energy. The bottom panels depict the
evolution of the slow flow at different stages (marked in the energy plot). The
green dashed line depicts the linear growth for the most unstable mode.
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Figure 10: Snapshot of the structure of the solution to the IVP with Reb = 100
and h = 1/8. The upper panel shows the horizontal vorticity field. The lower left
panel is a zoom-in of the upper panel in the region marked by the black square.
The lower right panel shows the snapshot of the slow horizontal velocity (green)
together with the initial condition.
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We also calculate the gain of the perturbations

G
def
= 2× 106 × (KEfast + PEfast) , (46)

where we remind the reader that 10−6 is the magnitude of the initial random seed. First,
we note that G is relatively large (> 107) across the parameter space (Figure 11). The
pattern of G, however, has much more structure than the pattern of γ. As expected, the
gain typically increases with Reb. Also G is minumum for h = 1/8 likely because the initial
potential energy is much smaller than with larger h. G peaks for 1/2 ≤ h ≤ 3/4.

Figure 11: Bulk properties as a function of Reb and h. (Left) Energy partition
and (right) energy gain.

4 Final Remarks

In this study we have taken advantage of the strong anisotropy driven by strong stratification
to simplify the modeling of stratified turbulent flows. In particular, the asymptotics lead
to the hydrostratic primitive equations of oceanography for the slow fields coupled by the
vertical divergence of the Reynolds stress and buoyancy flux to a quasi-linear system for the
perturbations. Because the system is quasi-linear for the perturbations, there is no closure
problem; the system is closed.

Using a simple toy problem, we have demonstred the propertities and utility of this
reduced system. This example shows that the coupled system displays interesting dynamics
with O(1) feedbacks between mean and perturbations. We emphasize that the Reynolds
stresses and buoyancy fluxes associated with the perturbations are not sign-definite in many
regions of the parameter space.

Future work include introducing back variations in slow spatial coordinate, and there-
fore assessing the importance of vertical vorticity in the slow flow; comparisons with direct
numerical simulations; and three-dimensional solutions. It is our hope that these equations
would be used to study strongly stratified turbulent flows in regions of the parameter of
geophysical relevance, which are currently unattainable through direct numerical simula-
tions.
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A The self-similarity of strongly stratified flows

This appendix justifies the scaling choice Fr ∼ α, which implies that the vertical scale is
H ∼ U/N . Following [2] we consider the dimensional inviscid Boussinesq equations in the
limit Fr→ 0

∂tuh + uh ·∇huh + w∂zuh = −∇hφ , (47)

0 = −∂zφ+ b , (48)

∇h · uh + ∂zw , (49)

and
∂tb+ uh ·∇hb+ w∂zb = w , (50)

Equations (47) through (50) are invariant under the transformations

N = N∗/A , z = Az∗ , w = Aw∗ , and b = b∗/A , (51)

where A is a constant. Thus, for constant N , the solutions to (47) through (50) can be
determined from the solutions from the same equations with N∗ = 1. With A = 1/N , we
have

uh = u∗h(x, y, zN, t) ,

w =
1

N
w∗(x, y, zN, t) ,

b = Nb∗(x, y, zN, t) . (52)

Note that the vertical length scale is inversely proportional to the buoyancy frequency; as
the stratification increases the vertical scale decreases H ∝ 1/N . Thus, on dimensional
grounds, we have H ∼ U/N . This self similarity implies that Fr ∼ α, and therefore as
Fr → 0, the aspect ratio adjusts so that the ratio Fr/α remains O(1). This has profound
consequences for the dynamics because the system does not become two-dimensional as
Fr→ 0.

B The Taylor-Goldstein equation

Consider the inviscid two-dimensional (x, z) version of equation (37).

(∂τ + ū∂χ)
[
(∂τ + ū∂χ)

(
∂2χ + ∂2z

)
− ∂2z ū∂χ

]
w′ + (∂z b̄+ 1)∂2χw

′ = 0 . (53)

Now, we assume wave-like solutions w′ = ŵ(z)eik(x−cτ), to obtain

(ū− c)2
(
ŵzz − k2ŵ

)
+
[

(b̄z + 1)︸ ︷︷ ︸
≡N2(z)

− (ū− c) ūzz
]
ŵ = 0 , (54)

which is the celebrated Taylor-Goldstein equation. In a bounded vertical domain of length
2π, we assume no-normal flow at the boundaries, which reduces to

ŵ = 0 , z = 0, 2π . (55)
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The Taylor-Goldstein equation has been significantly analyzed. Among the most important
results, the sufficient condition for stability due to John Miles and Lou Howard is that the
gradient Richardson’s number be greater than a quarter:

Ri
def
=

N2(z)

ū2z
>

1

4
. (56)

Also, again due to Lou Howard, the unstable phase speed cr
def
= Re{c} is bounded by

ūmin < cr < ūmax, and ci
def
= Im{c} is bounded by

c2i ≤
[
1
2 (ūmax − ūmin)

]2 − [cr − 1
2 (ūmax + ūmin)

]2
. (57)

An upper bound on the growth rate is

k ci ≤
k

2
(ūmax − ūmin) . (58)

C Conservation of energy

We form an equation for the kinetic energy of the slow/large flow by dotting the (25) and
adding to w̄ times (28) to obtain

Slow flow

∂t
1
2 |ūh|

2 = w̄b̄+ w′u′h · ∂zūh + ∇x
h · T x + ∂z T

z − 1

Reb
|∂zūh|2 , (59)

where
T x = −ūh

(
p̄+ 1

2 |ūh|
2
)
, (60)

T z =
1

Reb
∂z

1
2 |ūh|

2 + ūh · w′u′h − w̄p . (61)

and we used the continuity equation (27). Similarly, an equation for the potential energy
density is formed by multiplying (28) by b̄

∂t
1
2 b̄

2 = −w̄b̄+ w′b′∂z b̄+ ∇x
h ·Bx + ∂zB

z − 1

Re Pr
(∂zb)

2 , (62)

where
Bx = −ūh 1

2 b̄
2 , (63)

and

Bz =
1

Reb Pr
∂z

1
2b

2 +−w̄ 1
2 b̄

2 − b̄ w′b′ . (64)

The equation for the slow/large scale total energy is then

∂t
1
2

(
|ūh|2 + b̄2

)
= w′u′h · ∂zūh + w′b′∂z b̄+ ∇x

h · (T x +Bx) + ∂z (T z +Bz) . (65)
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Fast flow

To obtain an equation for the energy density of the fast flow, we dot (33) with u′h, add to
w′ times (34), and average over the fast time to obtain

Fr ∂t
1
2

(
u′2h + w′2

)
= w′b′ − u′hw′∂zū

′
h + ∇x

h · T x2 + ∂z T
z
2 −

Fr

Reb

(
Fr2
∣∣∇x

hu
′
h

∣∣2 +
∣∣∂zu′h∣∣2) ,

(66)
where

T x2 = −Frūh

(
p′ + 1

2 |u
′
h|

2
+ 1

2w
′2
)

+
Fr3

Reb
∇x
h
1
2 |u
′
h|2 , (67)

T z2 = ūh · w′u′h − w̄p+
Fr

Reb
∂z

1
2 |u
′
h|2 . (68)

Similarly, we obtain an equation for the potential energy density of the perturbation

Fr ∂t
1
2b
′2 = −w′b′ − w′b′∂z b̄+ ∇x

h ·B2 + ∂zBz −
1

RebFr

(
Fr2|∇x

hb
′|2 + (∂zb

′)2
)
. (69)

where

Bx2 = −Fr12∇
x
h · ūhb′2 +

Fr3

Reb Pr
∇x
h
1
2b
′2 , (70)

Bz
2 =

Fr

Reb Pr
∂zb′2 . (71)

The equation for the total energy for the leading order perturbations is

Fr ∂t
1
2

(
|u′h|

2 + w′2 + b′2
)

= −w′u′h ·∂zūh−w′b′∂z b̄+∇x
h ·(T x2 +Bx2 )+∂z (T z2 +Bz

2) . (72)

D Sensitivity of numerical solutions to time averaging

Formally, the averaging over the small scales is defined over time and space (23). For
computational convenience, however, it is convenient to march coupled system of PDEs
without with a single time-scale without time-averaging. To test the sensitivity of the
evolution to the system to time-averaging, we perform two numerical simulations with the
same parameters (Fr = 0.1, Reb = 80, k0 = 4.5, m0 = 10). Time-averaging the small/fast
flow over 1/Fr has insignificant effect on the initial evolution of the slow flow (figure 12).
The secondary stage stage of evolution of the flow has quantitative differences, but overall no
dramatic qualitative differences. We therefore conclude that, for this set of parameters, not
averaging on time is not qualitatively misleading. It is not obvious whether such results hold
at smaller Froude numbers, but we nevertheless make this assumption for computational
feasibility.
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Figure 12: Kinetic energy of the slow flow for experiments with (red) and without
(green) averaging. The results are very similar in the initial stages, but differ
quantitatively in the secondary, oscillatory state.
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Population Dynamics Forced by Stochastic Catastrophic

Events
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1 Introduction

In the modern world, population extinctions are often seen in somewhat of a negative light.
However, within an evolutionary context their action has been instrumental in the sculpting
of the modern biosphere. Removing old forms clears the way for the emergence of new
species with novel traits. Despite such importance, the mechanisms by which extinctions
play out in nature are still mysterious. For example, the Earth offered up 5 mass extinction
events within the past half-billion years, but it is unknown whether similar biodiversity
would exist today were it not for these events. Perhaps the smaller-scale stochastic forcing
of climate and competition would have sufficed.

Traditionally, environmental forcing has been considered in two broad ways. Commonly,
a coloured noise term is added to the equations of population dynamics, which represents
environmental forcing over a given autocorrelation time [1, 2, 3]. Though not a population
model, it has been shown that cells may undergo transitions between two bistable states
over a timescale that is minimised by an appropriate choice for the autocorrelation time of
the noise [3]. Such a dependence on timescale is interesting when one considers that both
the cell problem and the extinction problem reduce to a mean ‘exit time’ problem [4], where
one asks what the mean time is for stochastic dynamics to take a system through a given
point (zero individuals in the case of extinction).

Another way of looking at environmental stochasticity is to consider that most en-
vironmentally driven extinction occurs during particularly detrimental events, known as
Catastrophes. The typical strategy for analysis of these is to suppose that catastrophes
come along at a prescribed rate ν and instantaneously remove a given fraction of the pop-
ulation 1− p each time they do so [5]. This method may be related to the former method
by noting that the autocorrelation time and 1/ν are qualitatively similar. Accordingly, just
as there is an autocorrelation timescale that minimizes transition times in cells, there may
exist a frequency over which catastrophes are the most detrimental in terms of population
extinctions - a most catastrophic catastrophe.

The importance of the correlation time and/or the time between catastrophic events
is of great interest because it suggests that despite the forcing being intrinsically random,
the randomness has more of an effect upon some timescales than others. To emphasise the
significance of this fact, consider a deterministic environmental forcing such as the day night
or seasonal cycles. Many species have adapted their life cycles to take advantage of these
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predictable timescales, be it the breeding of mammals in spring or the growth-mortality
daily cycles of phytoplankton [6]. It is less obvious whether a stochastic forcing, with no
deterministic periodicity, can select for a specific timescale within a population.

To investigate the influence of time-scale upon population extinctions we model bio-
logical populations that experience stochastic catastrophic events with a typical frequency.
To illustrate the problem, consider a favourable environment that is nevertheless struck
randomly by deleterious events during which the death rate is enhanced. If these events
are extremely rare, but last a long time, such as mass extinction events, the mean time to
extinction of a given population might simply be the time until the next bad event. Con-
sequently, if the events become more frequent, the extinction time goes down. Eventually,
we reach a point where the events are not long-lived enough to make extinctions likely each
time an event occurs. The extinction time then begins to lengthen as populations are usu-
ally able to survive through at least one event, having to wait for several before extinction
occurs. This argument suggests that there is a frequency of stochastic events that minimises
the extinction time.

2 Modelling Stochastic Populations

Not only are populations typically influenced by a stochastic environment, their dynamics
are intrinsically stochastic. Specifically, births and deaths occur with a given probability,
with the probability dependent upon the number of individuals. There always exists a pos-
sibility that no individual will reproduce over the individuals’ lifetimes and thus extinction
may occur by chance. Such intrinsic randomness is known as demographic stochasticity,
distinct form environmental stochasticity. We investigate a population subject to both
forms of stochastism.

We set up the problem as follows. Suppose there is a probability Pn(τ) that a population
possesses n members at a time τ . Upon advancing time forward by one unit, the probability
at each n will change in one of two ways. Probability may enter from some other n, which
in the case of births means a probability flow from n− 1 to n and deaths come from n+ 1.
Alternatively, births and deaths at level n remove probability from Pn. We may write this
process succinctly as

Pn(τ + 1) =
∑

m

πnmPm(τ), (1)

where πnm is the probability that the population moves from m to n. Population models
usually consider only nearest neighbours to exchange probability, such as might be expected
from single birth and death events. However, we retain generality at first.

One of the terms in the sum multiples Pn(τ) and so we pick it out

Pn(τ + 1) = πnnPn(τ) +
∑

m6=n
πnmPm(τ). (2)

The probability of staying at the same n (πnn) is just 1 minus the probability of transferring
to anything else, or

πnn = 1−
∑

m6=n
πnm. (3)
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Accordingly, we arrive at the discrete-time master equation

Pn(τ + 1)− Pn(τ) =
∑

m6=n

(
πnmPm(τ)− πmnPn(τ)

)
. (4)

It is often more convenient to take the continuous-time limit of equation (4), but we must
then recast the probabilities πmn as rates of probability flow Rmn. Upon doing so, we obtain
the Master Equation

dPn(t)

dt
=
∑

m6=n

(
RnmPm(t)−RmnPn(t)

)
, (5)

which may be written in matrix-vector form as

ṗ(t) = Qp(t), (6)

where we have defined the transition matrix Q and the vector p each of the elements of
which corresponding to the probability at a given population level.

2.1 Birth-death model

Having set-up the Master Equation, we now prescribe forms for the elements of the transition
matrix Q. We require a death rate, δn and birth rate βn as a function of individual
number. Probability leaves step n if a birth or a death occurs, such that Rn+1,nPn = δn
and Rn−1,nPn = βn. Probability is gained by way of deaths from n + 1 and births form
n− 1 such that the Master equation becomes

dPn(t)

dt
= −(βn + δn)Pn + βn−1Pn−1 + δn+1Pn+1. (7)

We will choose the exact forms for βn and δn below. For now, suppose that there exists
a stochastic, environmental variable I that modulates the death rate according to

δn = δ(0)n + I(t)n, (8)

where δ
(0)
n is the death rate when I = 0.

Despite being probabilities, we have now introduced stochastic functions into β and δ
themselves, removing the usefulness of the Master Equation. Strictly speaking, we must
instead introduce a second stochastic dimension, described by a co-ordinate I. However, for
simplicity, we choose to allow I to take one of only two values, corresponding to a “good”
state and a “bad” state. The good state has I = 0 whereas in the bad state, I = aA, where
A > 0 is a constant and a is a constant with dimensions of inverse time that scales the
organisms’ generational overturning rate (see below).

The benefit of our two state system is that we can get around the requirement for a
second dimension by defining two separate probability distributions, P+

n and P−n , where the
former corresponds to the bad state and the latter the good state (the “plus” represents an
enhanced death rate). We suppose that the system switches from the bad to the good state
randomly, but with a typical frequency α. Conversely, the system switches from good to
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bad at rate εα where ε < 1 corresponds to an environment that is in the good state more
often than the bad state on average. 1 Note that the mean value of I(t), which we refer to
as Ā is given by

Ā =
ε

1 + ε
A. (9)

We are now in a position to write separate master equations for P+
n and P−n . In partic-

ular, we add a probability flow of αP+
n from the plus state to the minus state and likewise

a flow of εαP−n from the minus state to the plus state. Including these terms, we obtain
the Master Equations:

dP+
n (t)

dt
= −(βn + δ(0)n + aAn)P+

n + βn−1P
+
n−1 +

(
δ
(0)
n+1 + aA(n+ 1)

)
P+
n+1 − αP+

n + ε αP−n

dP−n (t)

dt
= −(βn + δ(0)n )P−n + βn−1P

−
n−1 + δ

(0)
n+1P

−
n+1 + αP+

n − ε αP−n . (10)

These equations describe the probabilistic trajectory of a population subject to the stochas-
tic forcing described above. An alternative view points to consider trajectories of the pop-
ulation size. We do not adopt such an approach, but a typical realisation is illustrated in
figure 6, where we plot the number of individuals (scaled by the carrying capacity) as a
function of time under the influence of stochastic catastrophic events.

2.2 Matrix approach

It is more convenient to analyse the equations above in matrix form. Accordingly, we recast
the Master Equations into the form:

d

dt

(
P+
n

P−n

)
=

(
M

(0)
mn + aAOmn − αImn εαImn

αImn M
(0)
mn − αεImn

)(
P+
n

P−n

)
, (11)

where M
(0)
mn is a tridiagonal matrix that represents birth and death rates in the good state.

To include the environmentally-enhanced death rate, we define the matrix

OmnPn ≡ (n+ 1)Pn+1 − nPn, (12)

along with the identity matrix, given by Imn.
In order to complete the specification of the problem, we prescribe functional forms for

the birth and death rates. We choose to have the birth rate grow linearly with n while
the death rate grows quadratically, forcing an “equilibrium” number n = K (the carrying

capacity) at which δ
(0)
n = βn. The carrying capacity here corresponds to the stationary

solution of the good state in the limit where dynamics are deterministic. Specifically, we
define

δ(0)n = an

(
n

K

)

βn = an (13)

1Switching between states in this manner is known as a Telegraph Process [4].
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Figure 1: A typical realisation of the population size, n, normalised by the carrying capac-
ity K = 60 under the action of stochastically distributed catastrophic events. The events
typically last long enough to initiate a significant decline in the population numbers. The
typical switching frequency α = 1, with time measured in units of 1/a. More rapid fluctua-
tions would increase the extinction time because each catastrophe becomes significantly less
detrimental. On the other hand, a slowing of the events would decrease extinction time,
until the events’ severity is offset by their scarcity.

and so as before, a measures the typical rate at which births and deaths proceed. Note
that in this form, the linear environmental augmentation of death rate (An) naively appears
commensurate with a decrease in birth rates. This statement is only true in the deterministic
case; as we show below, adding both deaths and births generates more noise in the system
than simply subtracting births, even if the resulting “deterministic” growth rate is the same
in both cases.

2.3 Numerical solution

With all parts of the problem defined, we can now integrate equation (11) numerically to
describe the time evolution of Pn under our specified stochastic forcing. The most important
quantity to be extracted from the model is the extinction rate Re which for now we simply
define as

Re ≡
1

P0

dP0

dt
. (14)
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We present the time evolution of P0 in Figure (3) along with its rate of change, using the
initial condition that P+

n = 0 and P−n is drawn from the quasi-stationary distribution that
would describe Pn in the absence of environmental forcing. This choice leads to a transient
period, during which, probability flows from the minus state to the plus state until a quasi-
steady state is reached for both. The timescale of the transient dynamics is related to how
quickly equilibrium is established in the bad state.
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Figure 2: The quasi-steady distribution for the plus state (P+
n , blue) and the minus state

(P−n , red) resulting from an environmental perturbation with frequency α. Notice the pile-
up of probability in the extinct state and the peak at n = K, but only for the minus state.
The plus state only has a maximum at the origin.

In many problems, the transient period, which depends upon initial conditions, is of
great importance. For example, initial conditions are crucial in computing the probability
that any given event will lead to extinction. Additionally, if a system possesses multiple
(quasi-) steady states, the initial configuration may determine where the long-time state
will decay to. These complications do not apply to our considerations here, where we are
interested in the long-term mean extinction time appropriate to an ensemble of populations
under the influence of the environmental forcing prescribed above. Essentially, we neglect
the probability that extinction occurs before the transient evolution decays.

Repeating the numerical integrations for a wide parameter-space would be time con-
suming. Instead, we take advantage of the quasi-steady evolution by seeking the lowest (in
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Figure 3: The flow of probability into the extinct state for the parameters of Figure 2. On
the left is the rate of extinctions where the right indicates the probability of being extinct at
a given time. After a brief transient period, extinctions begin to occur at a fairly constant
rate. It is this quasi-steady rate we seek.

magnitude) eigenvalue λ0 of the matrix on the RHS of equation (11). The inverse of λ0
gives us approximately the mean time to extinction (MTE) of the population as we show
next.

2.3.1 Mean time to extinction

After a time t, the probability a population is not extinct P(Te > t) is simply the sum over
all n > 0 of Pn,

P(Te > t) =
∑

n>0

Pn(t), (15)

and the probability distribution for extinction times is simply the (negative) time derivative
of P(Te > t). Suppose now that each Pn may be written as a sum of eigenmodes

Pn =
∑

m

Pnme
−λmt, (16)

such that the mean extinction time can be written as

T̄e = −
∑

n>0

∑

m

Pmn

∫ ∞

0
T

[
∂e−λmT

∂T

]
dT

= −
∑

n>0

∑

m

Pmn
1

λm
, (17)

where the second equality only holds when all λm > 0, i.e., there is no truly stationary
solution except certain extinction (P0|t=∞ = 1). The transient state is rapid compared to
the long-term quasi-steady decay of probability and so we may say that λ0 � λ1 < λ2,
etc. In other words, the sum over m above collapses to a single term, that of m = 0.
Furthermore, the eigenvectors Pmn are unit-normalized, such that the double summation
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Figure 4: Similar to Figure 4, except we demonstrate that for large enough Ā, the minimum
ceases to exist.

reduces to a single inverse eigenvalue and the mean extinction is given by

T̄e ≈ λ−10 (18)

which is equivalent to our ascertain above.

2.4 Eigenvalue

We now compute the lowest eigenvalue numerically for a range of parameters. If Ā & 1, we
find that the mean extinction time decreases monotonically with α (Figure 4). However,
this is not the case we are interested in because such detrimental mean values make it
unlikely a population would exist in the first place and, furthermore, the transient solution
would become of significance in that case. Below, we consider only Ā < 1, where the mean
growth rate is not always negative, leaving room for stochastic periods of recovery. We
present the results in Figure 5.

We immediately point out that there exists an α corresponding to a minimum in the
mean extinction time. Such a minimum is reminiscent of several important results from
the literature. For example, from the field of cell biology, cell-differentiation is sometimes
thought to proceed by way of a transition from one stable state to another [7]. Theoretical
models have shown that noise-induced transitions between the states can be minimised by
autocorrelating the noise over some critical timescale [3]. The mean extinction time of a
metapopulation can be maximised in an analogous fashion by allowing some critical degree
of migration between populations [8].

312



-10 -8 -6 -4 -2 0 2 4
2

3

4

5

6

7

8

log10 ↵

log10 TE

2

3

4

5

6

7

8

2 40-2-4-6-8-10

TE ⇠ T�
E

TE ⇠ 1

↵✏
+ T+

E

K = 20
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Figure 5: The mean extinction time as a function of the stochastic rate parameter α. Notice
the minimum. We explain the origin of the minimum in the text.

The specific cases above are related to a more general problem - the mean first passage
time of a particle over a potential barrier whose height fluctuates between a high and a low
state [9]. Referred to as “Resonant Activation” (RA), the optimum stochastic frequency was
found to be similar to the time it takes to escape when the barrier is at its lowest. Returning
to our problem, the analogous conclusion would be that the worst α would correspond
with the extinction time in the bad state. We find numerically that this statement is
approximately correct at large A (with the agreement being better at larger K). However,
for A > 1 but not significantly so, a better approximation is to solve for the α that makes
the variance equal to the turnover time, or

σ2 =
2AĀa2

α(1 + ε)2

= a

→ αres ≈ 2AĀa

(
1− Ā

A

)−2
. (19)

We do not yet have a theory to explain this correspondence.

2.5 Origin of “resonance”

In Figure 5, we highlight the dominant influence upon extinction time as a function of α.
As α→ 0, the mean extinction time is the mean of the extinction time in the bad state and
good state [10]. Owing to the greatly reduced extinction time in the bad compared to the
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good state, along with ε < 1, the mean extinction time in the small α limit simply becomes
approximately the extinction time in the good state, T̄−e .

Increase α such that its inverse α−1 . T̄−e and we enter the regime where a population
will not typically go extinct before it encounters a bad state. However, once the bad
state hits, with high probability, the population goes extinct before another good state is
encountered. Accordingly, the mean extinction time in this regime is roughly the mean time
to enter a bad state (1/εα), plus the extinction time in the bad state:

T̄e ∼ 1/εα+ T̄+
e . (20)

Eventually, α becomes sufficiently large that the most probable trajectory makes it through
at least one bad event, recovering during the subsequent good state. Accordingly, the mean
extinction time will begin to rise above the extrapolation of 1/εα+T̄+

e . The α at which such
a transition occurs corresponds approximately to the case when T̄+

e ≈ 1/α. Substituting
this condition into the small-α expression above, we arrive at an estimate for the minimum
extinction time

T̄ (min)
e ≈ T̄+

e

(
1 +

1

ε

)
. (21)

Unfortunately, this approximation is only good to within an order of magnitude or so.
One more regime may be described analytically: the limit α → ∞. In this regime,

the environment switches so rapidly that the population only “sees” the mean value of

environmental forcing Ā. Accordingly, the extinction time T̄
(∞)
e corresponds with that which

would be calculated in a stationary environment where δn is modulated by Ān. Notice that

there is no guarantee in general that T̄
(∞)
e > T̄

(min)
e , as is apparent from Figure 4. Rather,

a minimum exists only if the mean state is sufficiently favourable, or, that increasing α
above αres allows the population sufficient time to recover in the good periods, otherwise,
increasing α is monotonically more detrimental.

2.6 Implications/Applications

The existence of a minimum extinction time is of potential significance in a variety of
ways. First, our results suggest that even stochastic forcing can lead to selection upon a
population’s reproductive timescale. Recall that all times here are essentially scaled by a,
the organism’s life cycle turnover rate. If the population is forced at αres, it can increase its
mean extinction time by changing a, with an increase in a corresponding with movement
to the left in Figure 4. This result is interesting because, naively, one would not expect a
population to be able to adapt in this way because its biology cannot ‘know’ when the next
bad event will occur.

On a longer timescale, the existence of a ‘most catastrophic catastrophe’ at αres implies
an important realisation. Of all extinctions throughout evolution history, it appears that
to a first approximation, more populations have been removed by fluctuations over roughly
the timescale of a life-cycle than any other timescale, though exactly what that timescale
is depends upon the species. Considering annual life cycles, fluctuations on a year to year
timescale, such as droughts or ice extent, have removed more populations than extremely
rare events such as the bollide impact that sealed the dinosaurs’ fate. However, as far as
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recovery goes, the aftermath of a mass extinction probably leads to qualitatively differ-
ent evolutionary trajectories than occur subsequent to the various background extinctions
trickling in as a result of stochastic forcing at αres.

Also of significance, global warming is thought increase the frequency of extreme events.
An important issue is knowing how these changes may impact different species. This work
suggests that each species’ life-cycle timescale is crucial to understanding their extinction
risks. For example, as the frequency of events changes, it may enter the resonance of some
species, whilst leaving the resonance of others, actually reducing their extinction risks.

The final implication we mention here is with regard to treating infectious diseases. An
extinction is good when it means wiping out an illness. Suppose multiple populations are
infected by a pathogen, for which treatment is available, but only at a limited supply rate.
An important question is how to best distribute the medicine to minimise the extinction
time - the time it takes to wipe out the disease. The minimum here may inform how to
best go about such treatments.

3 Continuum Limit and Fokker-Planck Approximation

In the form thus far adopted, i.e., discrete population numbers, we are unable to write down
any simple, closed-form expressions for extinction times. However, we highlighted several
regimes where the extinction time of the full system was dominated by the plus state, the
minus state, or some well-defined combination thereof. Analytic approximations for these
extinction times may be obtained, but only in large-K limit. In such a limit, we may
approximate the population size as a continuum, thereby re-casting the master equation in
terms of a Fokker-Planck equation, from which, the mean extinction time may be drawn.
It must be cautioned that the continuum results will not be quantitatively the same as the
discrete problem [10], but in most cases the general qualitative nature is preserved.

Above, the population may be thought of as occupying one of a semi-infinite number of
“steps” n at any one time. Now suppose we define a new variable

x ≡ n

K
, (22)

such that the space between steps is reduced by a factor K. If we make K large, meaning
that the equilibrium population size is large, the space of x becomes closer to a continuum.
The continuum version of the master equation is derived by considering that probability
may flow into position x from other x′ at a rate W (x−x′)R(x′)ρ(x′), but flow out at a rate
R(x)ρ(x), with ρ(x) taking the place of Pn as the probability density function. It evolves
according to the equation

dρ(x)

dt
= −R(x)ρ(x) +

∫ ∞

0
R(x′)W (x− x′)P (x′)dx′. (23)

Upon comparison with the birth-death process above, we see that the function W (x − x′)
forces probability to only flow between nearest neighbours, corresponding to an interval
∆x = 1/K. Accordingly, W takes the form of two Dirac delta functions, one at x + 1/K
and one at x− 1/K. We may now integrate equation 23, then perform a Taylor expansion
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to order O(1/K)2 about x such that

dρ(x)

dt
≈ ∂

∂x

[
− f(x) +

1

2K

∂

∂x

(
g2(x)

)]
ρ(x) (24)

where we have defined the “drift” f(x) and “diffusion” g(x) using the continuous analogues
of δn and βn above:

f(x) = β(x)− δ(x) g(x)2 = β(x) + δ(x)

= ax(1−A− x) = ax(1 +A+ x). (25)

The Fokker-Planck equation and functions f(x) and g(x) make be applied to the good state
by setting A = 0, the bad state using A = A and the mean, large-α limit using A = Ā.
Within each of these regimes, we may calculate an approximate expression for the MTE.
However, the functional form of the solution depends upon whether A > 1 or A < 1. We
do not consider the case where A ∼ 1.

3.1 Asymptotic solutions

In what follows, we solve for the MTE by supposing that the PDF is stationary, but that
there exists a current at x→∞ that is balanced by extinctions at the origin. The equation
to to solve is

∂ρ

∂t
= − ∂

∂x

[
a x (1−A− x) ρ

]
+

1

2K

∂2

∂x2

[
a x (1 +A+ x) ρ

]
(26)

which we rewrite as

∂ρ

∂t
= − ∂

∂x

[
u(x) ρ

]
+

1

2K

∂2

∂x2

[
v(x) ρ

]

= −∂J
∂x

(27)

We now solve the steady-state equation to extract the conserved current

J = − 1

2K

∂

∂x

[
v(x)ρ(x)

]
+ u(x)ρ(x), (28)

which has the general solution

ρ = −2KJ

a

1

x(x+ 1 +A)
e2KF(x)

∫ x

0
e−2KF(x

′)dx′, (29)

where

F(x) ≡
∫
u(x)

v(x)
dx =

∫
1−A− x
1 +A+ x

dx

=

∫ [
− 1 +

2

1 +A+ x

]
dx

= −x+ 2 ln(1 +A+ x)

(30)
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and so the solution for ρ reads

ρ =
2KJ

a
e2K(2 ln(1+A+x)−x) 1

x(x+ 1 +A)

∫ x

0
e−2K(2 ln(1+A+x′)−x′)dx′. (31)

The current J is obtained by requiring that the integral over all space of the PDF is unity:
∫ ∞

0
ρ dx = −2KJ

a

∫ ∞

0
e2K(2 ln(1+A+x)−x) 1

x(x+ 1 +A)

∫ x

0
e−2K(2 ln(1+A+x′)−x′)dx′dx

= 1 (32)

We cannot solve this equation exactly, however, we may make progress by analysing the
large K case. Specifically, where F(x) is positive, exp(2KF(x)) is very large and vice versa,
such that we can approximate which regions of the integral make the largest contribution.
The expansions must be carried out separately for A > 1 and A < 1. The reason is
that when A is smaller, ρ will be Gaussian-like about x = 1 − A, where the deterministic
dynamics would reach a stead state. However, if A > 1, this argument breaks down because
the deterministic dynamics do not possess a steady solution and the PDF becomes pressed
up against the origin. The integral above behaves very differently within these two regimes

3.1.1 Calculation for A < 1

We begin with A < 1, such that the PDF has a Gaussian-like peak around x = 1 − A.
The second integrand (the one over x′ in 31) is approximately constant within the region
of interest (under the Gaussian). More precisely,

∫ x

0
e−2K(2 ln(1+A+x′)−x′)dx′ ≈

∫ x

0
e−4K ln(1+A)

∫ ∞

0
e−2K

1−A
1+Ax

′
dx′

= e−4K ln(1+A) 1

2K

1−A
1 +A . (33)

Therefore, the integral becomes

1 ≈ − 1

2K

1 +A
1−Ae

−4K ln(1+A) 2KJ

a

∫ ∞

−∞

1

2(1−A)
e2K(2 ln(2)−1+A)e−

1
2
Ky2dy

= − J

2a

1 +A
(1−A)2

e2K(2 ln 2−1+A−2 ln(1+A)
√

2π

K

→ J = −
√
Ka

(1−A)2

1 +A

√
2

π
e−2Kc1

c1 ≡ 2 ln 2− 1 +A− 2 ln(1 +A), (34)

and so the mean extinction time

−J−1 ≈ 1 +A
a(1−A)2

√
π

2K
exp

(
2K[2 ln 2− 1 +A− 2 ln(1 +A)]

)
(35)

with the most crucial result being the square root combined with an exponential. This
expression, for A < 1, is most applicable to the good state and the mean states.
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3.1.2 Calculation for A > 1

We return to the original equation to solve:

∫ ∞

0
ρdx = −2KJ

a

∫ ∞

0
e2K(2 ln(1+A+x)−x) 1

x(x+ 1 +A)

∫ x′

0
e−2K(2 ln(1+A+x′)−x′)dx′dx,

(36)

where, this time, A > 1 and so the PDF is pressed up against x = 0 (see numerics for
P+). Accordingly, the second integral will receive most of its contribution from x ≈ 0. The
first integral must again be expanded about small x′ but is no longer approximately
constant within the region of interest. Accordingly, we expand the exponent but do not
approximate it as linear in x:

∫ x

0
e−2K(2 ln(1+A+x′)−x′)dx′ ≈

∫ x

0
e−4K ln(1+A)e−2K

1−A
1+A

x′dx′

= e−4K ln(1+A) 1 +A

1−A
1

2K

(
1− e−2K

1−A
1+A

x

)
. (37)

We deviate once again from the A < 1 case by expanding the exponential term in small x
rather than about the maximum in x (because the maximum is now at x < 0). Specifically,
we approximate

e2K(2 ln(1+A+x)−x) ≈ e4K ln(1+A)e2K
1−A
1+Ax (38)

which after substitution yields

1 ≈ −J
a

1 +A
1−A

∫ ∞

0

1

x(1 +A+ x)

(
e2K

1−A
1+Ax − 1

)
dx, (39)

which is a relatively simple form as some exponential terms have cancelled out.
Next, we define the positive quantities

B ≡ A− 1

A+ 1

λ ≡ 2K(A− 1) (40)

and a positive variable

ξ ≡ 2KBx (41)

such that the integral becomes

1 ≈ J

a
2K

∫ ∞

0

1

ξ(ξ + λ)

(
e−ξ − 1

)
dξ. (42)

Integrating by parts:

a

2KJ
≈ 1

λ

∞

0

[
ln

(
ξ

ξ + λ

)
(e−ξ − 1)

]
+

1

λ

∫ ∞

0
ln

(
ξ

ξ + λ

)
e−ξdξ. (43)
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whence the boundary term vanishes, leading to the compact integral

a

2KJ
≈ 1

λ

∫ ∞

0
ln

(
ξ

ξ + λ

)
e−ξdξ. (44)

Adding and subtracting ln(λ) yields

aλ

2KJ
=

∫ ∞

0
ln

(
ξ

λ

)
e−ξdξ −

∫ ∞

0
ln

(
1 +

ξ

λ

)
e−ξdξ

= −γ −
∫ ∞

0
ln(λ)e−ξdξ −

∫ ∞

0
ln

(
1 +

ξ

λ

)
e−ξdξ

≈ −γ − lnλ−
∫ ∞

0

(
ξ

λ
+

ξ2

2λ2

)
e−ξdξ

= −γ − lnλ− 1

λ
− 1

λ2
. (45)

Finally, the mean extinction time, neglecting 1/K terms, becomes

−J−1 ≈ 1

a(A− 1)

(
γ + ln(2K(A− 1))

)
(46)
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fro small x0 rather than taken to be constant. Owing to these separate regimes, depending upon A, we now analyse
the form for ⇢ in these two regimes separately.

We must treat the integrals di↵erently depending upon whether A > 1 or A < 1. We begin with A < 1, such that
the pdf has a Gaussian-like peak around x = 1�A. The second integrand is approximately constant within the region
of interest (under the Gaussian). More precisely,

Z x

0

e�2K(2 ln(1+A+x0)�x0)dx0 ⇡
Z x

0

e�4K ln(1+A)

Z 1

0

e�2K 1�A
1+A x0

dx0

= e�4K ln(1+A) 1

2K

1 � A
1 + A (23)

which is approximately the area contained under the curve in figure ??.
Therefore, the integral becomes

1 ⇡ � 1

2K

1 + A
1 � Ae�4K ln(1+A) 2KJ

a

Z 1

�1

1

2(1 � A)
e2K(2 ln(2)�1+A)e�

1
2 Ky2

dy

= � J

2a

1 + A
(1 � A)2

e2K(2 ln 2�1+A�2 ln(1+A)

r
2⇡

K

! J = �
p

Ka
(1 � A)2

1 + A

r
2

⇡
e�2Kc1

c1 ⌘ 2 ln 2 � 1 + A � 2 ln(1 + A), (24)

and so the mean extinction time

J�1 ⇡ 1 + A
a(1 � A)2

r
⇡

2K
exp

�
2K[2 ln 2 � 1 + A � 2 ln(1 + A)]

�
(25)

with the most crucial finding being the square root combined with an exponential. This expression may used for
A < 1, most appropriate to the good state and the mean states. Before analysing the limiting cases, we now derive
the analogous solution for A > 1 before comparing to the discrete solution.

4.2. Calculation for A > 1

We return to the original equation to solve:

Z 1

0

⇢dx = �2KJ

a

Z 1

0

e2K(2 ln(1+A+x)�x) 1

x(x + 1 + A)

Z x0

0

e�2K(2 ln(1+A+x0)�x0)dx0dx. (26)

This time, A > 1 and so the pdf is pressed up against x = 0 (see numerics for P+). Therefore, the second integral
will receive most of its contribution from x ⇡ 0. The first integral must again be expanded about small x0 but is no
longer approximately constant within the region of interest. Accordingly, we expand the exponent but do not
approximate it as linear in x:

Z x

0

e�2K(2 ln(1+A+x0)�x0)dx0 ⇡
Z x

0

e�4K ln(1+A)e�2K 1�A
1+A x0

dx0

= e�4K ln(1+A) 1 + A

1 � A

1

2K

✓
1 � e�2K 1�A

1+A x

◆
. (27)

We deviate once again from the A < 1 case by expanding the exponential term in small x rather than about the
maximum in x (because the maximum is now at x < 0). Specifically, we approximate

e2K(2 ln(1+A+x)�x) ⇡ e4K ln(1+A)e2K 1�A
1+A x (28)

which after substitution yields

1 ⇡ �J

a

1 + A
1 � A

Z 1

0

1

x(1 + A + x)

✓
e2K 1�A

1+A x � 1

◆
dx, (29)

which is a relatively simple form as some exponent terms have cancelled out.
We define a positive quantities

6

B ⌘ A � 1

A + 1
� ⌘ 2K(A � 1) (30)

and a positive variable

⇠ ⌘ 2KBx (31)

such that the integral becomes

1 ⇡ J

a
2K

Z 1

0

1

⇠(⇠ + �)

✓
e�⇠ � 1

◆
d⇠. (32)

We now integrate by parts to obtain

a

2KJ
⇡ 1

�

1

0


ln

✓
⇠

⇠ + �

◆
(e�⇠ � 1)

�
+

1

�

Z 1

0

ln

✓
⇠

⇠ + �

◆
e�⇠d⇠. (33)

The boundary term vanishes and so the integral becomes fairly compact

a

2KJ
⇡ 1

�

Z 1

0

ln

✓
⇠

⇠ + �

◆
e�⇠d⇠, (34)

where we now add and subtract ln(�) to obtain

a�

2KJ
=

Z 1

0

ln

✓
⇠

�

◆
e�⇠d⇠ �

Z 1

0

ln

✓
1 +

⇠

�

◆
e�⇠d⇠

= �� �
Z 1

0

ln(�)e�⇠d⇠ �
Z 1

0

ln

✓
1 +

⇠

�

◆
e�⇠d⇠

⇡ �� � ln��
Z 1

0

✓
⇠

�
+

⇠2

2�2

◆
e�⇠d⇠

= �� � ln�� 1

�
� 1

�2
. (35)

Therefore, the mean extinction time, neglecting 1/K terms, becomes

�J�1 ⇡ 1

a(A � 1)

✓
� + ln(2K(A � 1))

◆
(36)

5. APPENDIX: MATRIX APPROACH

In what follows, we consider the Pn as N -dimensional vectors. From the master equation above, we may write

d

dt

✓
P+

n
P�

n

◆
=

✓
M+

mn � ↵I ✏↵I
↵I M�

mn � ↵✏I

◆✓
P+

n
P�

n

◆
, (37)

where we have already made the continuous-time approximation. The situation above has “+” corresponding to the
enhanced death rate state. However, our relatively simple choice of environmental impact facilitates a simplification
of the M matrix, similarly to what was done above. Accordingly, we define

M+
nm = Mnm � aAOnm (38)

and it is now worth making some explicit definitions in order to solidify dimensions, which is what the a is. Specifically,

�n =
a

K
n2 + aÃ(t)n

�n = an (39)

and so a measures the typical rate of births and deaths and is the parameter to be compared to ↵ as far as rates go.
The form above allows the environmental stochasticity in death rates to be factored in with birth rates but note that
it is okay for A > 0, making birth rates appear negative. All this means is that the environment is so bad that the
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Figure 6: Asymptotic solutions for extinction time in both cases A < 1 and A > 1. We ex-
clude the region near A as our expansions were not valid there. There is a reasonable degree
of matching between the two regimes, which could be improved by utilised an expansion of
A about unity.

Using the above expressions from extinction time, we may approximate the dynamics
of the full, environmentally-forced system in the α → 0, small α and α → ∞ limits. De-
termining whether a minimum extinction time exists or not requires a comparison between
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the extinction time at αres and the extinction time at α→∞, which requires an expression
for the extinction time near A = 1, as this is where the numerics suggest the minimum
disappears. We do not yet have an expression in this regime. However, such a calculation
is fairly straight forward and becomes applicable in the case where low extinction times
characterise even the mean state.

4 Stochastic Calculus Form

The goal of this section is to obtain a stochastic differential equation that approximates
the evolution of the population size, which now takes the form of a stochastic variable
Xt

2. A well-known result is that the probability density function satisfying a Fokker-
Planck equation of the form 24, describes a trajectory given by the so-called Itô Stochastic
Differential equation

dXt = f(Xt)dt+
[
g(Xt)/

√
K
]
· dWt, (47)

where Wt describes a Weiner Process, whose time derivative produces delta-correlated Gaus-
sian White Noise. Notice that if we suppose K →∞, the equation aproaches a deterministic
differential equation with the population increasing simply as the different between births
and deaths (f(Xt)).

The form above suggests that the noise associated with random births and deaths is
intrinsically white, or at least can be modelled as such. More specifically, there exist two
different interpretations of stochastically-forced systems - Itô and Stratonovich. In the Itô
interpretation, one considers the system to be forced by noise that exactly satisfies both the
Martingale and Markovian conditions [11]. The former implies that the expectation value
at some future time equals the current state, whereas the latter suggests that the future
state depends only upon the current conditions. The Stratonovich interpretation supposes
that no real noise precisely satisfies these criteria and so deriving the noise term requires
considering some real noise before taking the white-noise limit. These two interpretations
yield different functional forms for the SDE.

Now suppose we wanted to add environmental forcing to the Itô SDE above. Owing
to the ‘realness’ of environmental forcing, it has previously been suggested that one adds
a noise term using Stratonovich calculus [12] thereby mixing the interpretations. In what
follows, we do not explicitly make this assumption, but rather, we derive an SDE describing
the environmentally forced situation, taking particular limits upon α. What we find is an
expression that appears to mix the Itô and Stratonovich interpretations, but only within
the appropriate limits, suggesting that merely postulating an extra, Stratonovich term is
not adequate in most scenarios.

4.1 Mixed interpretations

In order to proceed we must obtain an approximate solution for the full probability

Pn = P+
n + P−n , (48)

2As a convention, the subscript ‘t’ in the field of stochastic calculus refers to ‘as a function of time’, rather
than ‘time derivative’.
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which is easier at first for the discrete case. To do so, we add the Master equations (10) to
obtain

dP+
n

dt
=
(
Mmn + aAOmn − αImn

)
P+
n + εαImn(Pn − P+

n )

dPn
dt

= MnmPn + aAOnmP
+
n . (49)

First, we define a matrix

Cmn ≡ −(Mmn + aAOmn − α(1 + ε)Imn), (50)

such that the master equation for the bad state becomes

dP+
n

dt
+ CmnP

+
n = ε α ImnPn. (51)

For convenience, we now make somewhat of an abuse of notation, using C in favour of Cmn,
in terms of which, the general solution to the equation above is

P+
n (t)− e−C(t−t0)P+

n (t0) = ε α

∫ t

t0

e−C(t−s)Pn(s)ds, (52)

where it must be remembered that C is subject to the rules of matrix algebra.
As noted above in the eigenvalue problem, we are interested in the quasi-steady be-

haviour. Accordingly, it is appropriate to take as our lower bound t0 → ∞, thereby elim-
inating the boundary term on the LHS. Furthermore, we may solve the integral on the
RHS by way of the following arguments. The matrix C possess a full spectrum of positive
eigenvalues, however, by taking the limit t0 → −∞, we are essentially stating that the
time-evolution of Pn is dominated by the lowest (in magnitude) eigenvalues. Consequently,
we may suppose that the integral over all past times s on the RHS obtains the majority of
its contribution from the recent past, i.e., small t−s. Accordingly, we Taylor expand about
s = t:

P (s) ≈ P (t) + (s− t)dP
ds

∣∣∣∣
t

+O(s− t)2. (53)

Upon substitution into the general solution (52) we integrate to arrive at the result

P+
n ≈ εα

(
C−1Pn + C−2

dPn
dt

)
. (54)

Finally, we may insert this expression into the master equation for Pn to obtain one single
equation for the dynamics, which after some rearranging, takes the form

dPn
dt

=

(
1− aAεαOmnC−2mn

)−1(
Mmn + aAεαOC−1mn

)
Pn. (55)

We now carry out similar Taylor expansions as before to obtain the continuum approx-
imation to the above equation. However, in addition, we suppose that α and A are large, a
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condition satisfied by the white-noise limit of our chosen environmental forcing. The final
expression, up to terms with second derivatives, is

∂ρ(x, t)

∂t
≈ ∂

∂x

[
− ax(1− Ā− x) +

1

2K

∂

∂x

(
ax(1 + Ā+ x)

)]
ρ(x, t) +

1

2

∂

∂x

[
σ
∂

∂x
σ

]
ρ(x, t),

(56)

where the notation is such that all terms to the left of ρ(x, t) operate upon it. Here,
σ2 = a2A2ε/(α(1 + ε)2) is the variance of the noise.

There are two crucial things to note about the form above. First, if one truly considers
α = ∞, then the equation becomes that of the mean state. Importantly, the mean envi-
ronmental state acts upon the demographic stochasticity. However, with α large but finite,
an extra term arises on the right that has the form one would infer from a Stratonovich
interpretation of white noise with variance σ2. Accordingly, by prescribing a real source
of noise, we could extract the Stratonovich form, but only by making approximations that
exclude some of the more interesting aspects of the dynamics, i.e., the the minimum at αres.
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1 Introduction

Many field observations indicate a layered stratification in the Global Ocean. For ex-
ample, double-diffusive staircase structures are prevalent across the Arctic Ocean inhibiting
different depth regions: above the Atlantic Water layer at around 400 m and in the deep
Arctic above the homogeneous bottom layer. There are proposed scenarios on how brine-
enriched shelf water plumes can penetrate towards the deep Arctic (see e.g., [1, 2]) causing
slow deep water ventilation. Presumably, while descending such dense plumes pass through
the regions of a layered stratification that can modify the plume dynamics. The influence
of the layered stratification on plume dynamics and a feedback mechanisms have not been
investigated yet.

Another example where plume interacts with the layered stratification is melting of
marine-terminating glaciers. Recently it has been shown that glacial melting rate can be
constrained by considering interaction of turbulent plume with a linearly stratification in a
presence of repeating layered intrusions [11].

In this study by conducting a series of experiments and using the numerical model,
we examine how layered stratification can change the plume dynamics and how plume can
modify the initial stratification.

This report is organized as follows. In the next section, we describe the experimental
technique. We describe the observed dynamics of plume penetration through the strati-
fied environment and interaction with the layers in section 2.2. In section 3, we present
the developed numerical model and discuss model outputs. Findings are summarized and
discussed in section 4.

2 Experiments

2.1 Experimental procedure

We have conducted a series of experiments to understand the interaction between layered
stratification and a turbulent plume. In these experiments we used: a square tank (42 cm
× 42 cm × 70 cm), a plume source, a conductivity–temperature (CT) probe and a light
projector and a camera to create shadowgraph images (Figure 1).
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Figure 1: A schematic of the experimental set-up showing a square tank with layered
stratification. Blue line shows a salt solution plume, released in the middle of the tank.
Evolution of stratification is measured by a traversing conductivity–temperature (CT) probe
from the depth where a plume released till maximum depth CT probe can reach, covering
the total depth of about 30 cm. This schematic shows the initial stage of the experiment
when the plume has been just released and depth of the free surface corresponds to the
location of the plume source.

To establish a layered stratification we prepared solutions with different density (i.e.,
salinity) and fill the tank through a bottom opening layer by layer starting with fresh water
and using a very low flow rate to reduce turbulent mixing and create sharp interfaces. The
bottom opening was covered by an elevated metallic plate to spread incoming flow horizon-
tally. With such technique an average height of interfaces is about 1–1.5 cm. We used one
value of bulk stratification N0 ≈ 1.13 s−1, apply two different flow rates (Q1 ≈ 0.95 cm3/s
and Q2 ≈ 1.9 cm3/s) and choose three layer depths of 10 cm, 5 cm and 2.5 cm (that becomes
effectively a linear stratification after some time due to diffusive mixing). In total we had
6 experiments.

Salt solution plumes (with 20% salinity) were released in the middle of the tank and
the CT probe was located at a diagonal position about 1/4 from one of the corners in order
to sample density evolution in time and not to have influence from turbulent mixing due
to plume propagation. CT measurements have a vertical resolution of ∼ 0.6 mm and only
down-going profiles were used in the analysis because the CT sensors are located at the
base of the profiler so that they are affected by turbulence in the wake of the instrument
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in the up-cast profiles. The total profiled depth is about 30 cm, spanning from the depth
where a plume is released till ∼20 cm from the bottom of the tank. It takes ∼90 s to finish
one cycle of sampling.

In addition to the data derived from the CT measurements we used shadowgraph tech-
nique of the flow pattern visualization. Pictures were taken every 30 seconds, allowing
to sample the first front propagation with 3 times higher frequency compared to the CT
measurements. We used the Hough transform [8] to identify locations of interfaces in each
image and calculate rate of first front descent. This method allows to distinguish only well-
separated interfaces. At the moments when an interface reaches the one bellow its location
is no longer recognizable and there are some missing data. Signal reappears again when
this bottom interface starts to move downwards from its original position (see Figure 2).
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Figure 2: Shadowgraph (corresponding to the experiment N0 ≈ 1.13 s−1, Q0 ≈ 1.9 cm3/s,
h = 5 cm) showing evolution of the background stratification due to interaction with the
dense (salinity of 20%) plume at a) 2 s, b) 9.6 min and c) 20.5 min after the beginning of
the experiment. Salinity is marked in percentage for each layer. Yellow arrows represent
a direction of the first front propagation. Reddish color shows contaminated fluid. An
uncontaminated layer (see text) is visible in c).

2.2 Experimental results

2.2.1 Qualitative observations

In order to examine the impact of plume on layered stratification, we begin by characterizing
the qualitative observations of mixing within the layers and at the interface.

After a plume has been released, it entrains ambient fluid as it descends. Depending
on the initial buoyancy flux the plume can pass through a few layers (interfaces) before
the buoyancy flux becomes zero (at the depth zF , note that at the very first moment of
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the experiment this level always coincides with one of the artificially created interfaces)
and then it spreads out laterally. Some portion of the plume, however, penetrate further
till the depth where momentum flux is zero (zM , this level does not necessarily coincide
with an interface as shown in Figure 3, see e.g., Figure 2a, 2c). In the overshooting region
(depth range between zF and zM ) penetrative entrainment process is taking place and the
plume fluid is mixes with the more dense ambient fluid beneath zF . This mixture eventually
ascends towards its neutral density level that is close to zF but bellow this depth. Thus, the
penetrative entrainment modifies the ambient stratification by introducing lighter fluid in
place of the original dense fluid within the mixed layer (Figure 4a). Depth where the ambient
stratification (after some time from the beginning of the experiment) begins to differ from
the original is defined as a penetrative depth (zp) of the descending front (Figure 3,4). The
other process that happens as the plume fluid spreads out at zF is a formation of a stable
stratification above this level according to a “filling box” model described by [3].

As time evolves, a plume head in an overshooting region reaches the next artificial
interface and entrains even more dense fluid from the layer below that interface (as shown
in Figure 3). This accelerates the propagation rate of the descending front, since each time
portion of the dense fluid in the final mixture due to penetrative entrainment increases
and neutral density level is moving downward faster compared to the previous stage when
penetrative entrainment operates only within the mixed layer. Meanwhile, due to the filling
box process density of the plume fluid at zF increases and zF approaches zP . At the moment
when zF = zP , the density of the plume fluid becomes equal to the density of a remainder
portion of the initial mixed layer and the plume punches through this remnant towards the
next artificial interface leaving behind an uncontaminated background fluid (Figure 3, 4a).

This process continues, however, only first ∼ 2 uncontaminated layers are formed as
the remainders from the initial mixed layers. When plume propagates deeper zF can not
catch up with zP any more, because it takes a longer time to accumulate density through a
filling box mechanism and penetrative entrainment takes over and erodes the background
stratification in a way, that every time when zP approaches an artificial interface an actual
jump in density is even larger than it was in the original stratification (Figure 4b).

2.2.2 Quantitative observations

It is of interest to examine the variations in center of mass of the contaminated fluid and
the rate of the descending front across the set of experiments. The center of mass can be
expressed as

ZCM =

∫
(ρ(z, t) − ρ(z, 0))zdz∫
(ρ(z, t) − ρ(z, 0))dz

, (1)

where ρ(z, 0) is density at the beginning of the experiment (t = 0) and ρ(z, t) is density after
some time, z is the vertical coordinate. Figure 5 indicates that data from all experiments
fall around the same curve showing that during the first instants the center of mass moves
towards the plume source because all added plume fluid is accumulated within the top
layers. Later in time, when the plume fluid is transported down into deeper regions, the
center of mass begins to move away from the plume source. The descend rate of center of
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Figure 3: Example of a shadowgraph image showing two different types of mixing of plume
fluid with the ambient water: entertainment from the sides of the plume and penetrative
entertainment from the base of the plume). Uncontaminated layer is moving upward (see
text for details). Location of the penetration depth (zP ), the depth where momentum flux
is zero (zM ) are shown by solid black lines and approximate location of the depth where
buoyancy flux is zero (zF ) is shown by dashed line.

mass is about the same for all experiments, meaning that layered stratification does not
influence the the bulk property of the propagation of the contaminated fluid within the
basin.

To compute the second important measure of the distribution of contaminated fluid in
the basin, the descend rate of the penetration level, we used data derived from shadowgraph
images (as described in section 2.1). The rate of penetration of the descending front in the
experiments with a linear stratification (Figure 6) follows t1/2 that is in agreement with
“stratified filling box” experiments performed by [5], where continuous linear stratification
was used. In the experiments with the layered stratification, zp descends with a changing
rate depending on the region of the profile where penetrative entrainment takes place. When
ambient fluid entrains only from one mixed layer, zP propagates very slowly, however, once
the penetrative entrainment encompasses some portion of the layer below (in other words,
when zM crosses next artificial interface), the descend rate increases. At the early stages of
the experiment (Figure 6, at time around 5 and 9) the plume punches through the remnant
of the original layer as described in section 2.2.1 and a jump in propagation of zP is observed.
Note that the depth of this jump may contain some artificial signal due to the method we
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Figure 4: Density profiles measured by a CT probe in the experiment with parameters
N0 ≈ 1.13 s−1, Q0 ≈ 1.9 cm3/s and H = 5 cm at the beginning t = 0 (red line) and after a)
t ∼5 min (red line) and b) t ∼1 h 5 min (red line). zF is the depth where the buoyancy flux
is zero, zP is the penetrative depth of the descending front. Two regions of uncontaminated
fluid and portions of the profiles that have been modified from the original due to “filling
box” and penetrative entrainment processes are marked in a).

used to detect level zP (see section 2.1).
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Figure 5: Non-dimensional center of mass versus non-dimensional time across the set of
experiments. The nondimensionalization is discussed in section 3.1. For each experiment
the flow rate (Q, in cm3/s) and height of the mixed layers (H, in cm) are shown in the
legend. H = 0 means linear stratification.

3 Numerical Model

3.1 Formulation of the model

To model the dynamics of the plume in a layered stratified environment we use the theory
of turbulent buoyant plumes [10]. Consider conservation equations of mass, momentum and
buoyancy averaged over a horizontal cross-section for a steady plume

dQ

dz
= 2εpM

1/2 (2a)

dM

dz
=
FQ

M
(2b)

dF

dz
= −QN2, (2c)

where πQ is volume flux, πM is specific momentum flux and πF is buoyancy flux. Buoyancy
frequency is defined as

N2 = − g

ρref

dρ

dz
.
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Figure 6: Penetration level (zP ) versus non-dimensional time across the set of experiments.
The nondimensionalization is discussed in section 3.1. For each experiment the flow rate
(Q, in cm3/s) and height of the mixed layers (H, in cm) are shown in the legend. H = 0
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where dρ
dz is background bulk density gradient over the staircase.

Following [6] we use a characteristic length scale of the plume heightHp = (2εp)
−1/2F

1/4
s N

−3/4
0 ,

where εp is the entrainment constant, Fs is the source specific buoyancy flux, and N0 is the
Brunt–Väisälä frequency determined using the bulk density gradient over a staircase, to
nondimensionalize variables as

ẑ =
z

Hp
(3a)

N̂ =
N

N0
(3b)

F̂ =
F

Fs
(3c)

Q̂ =
Q

(2εp)4/3F
1/3
s H

5/3
p

(3d)

M̂ =
M

(2εp)2/3F
2/3
s H

4/3
p

. (3e)

t̂ =
t

(2εp)4/3F
1/3
s H

2/3
p A−1

, (3f)

where A is a cross section of the basin. The buoyancy flux at the source can be computed
using the Fs = g′pQs, where πQs is the source flow rate and g′p = g(ρp− ρ)/ρ is the reduced
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gravity with ρp being a density of the plume source fluid. The non-dimensional governing
equations are then

d

dẑ
Q̂ = M̂1/2 (4a)

M̂
d

dẑ
M̂ = F̂ Q̂ (4b)

d

dẑ
F̂ = −Q̂N̂2. (4c)

In case of a staircase, it is simplest to construct the model such that equations (4) are
evaluated in the mixed layers (letting N = 0) and at each interface the buoyancy flux is
adjusted as F̂i+1 = F̂i− ĝ′i,i+1Q̂i, where ĝ′i,i+1 is the reduced gravity between two adjacent

layers i and i + 1, and Q̂i,i+1 is the volume flux at the interface (all notations are defined
in Figure 10). Therefore, we solve the system of equations (4) with the number of the
equations equal to the number of a mixed layers in a staircase.

3.2 Model output

Solutions of the equations (4) with initial conditions Qs ≈ 0, Ms ≈ 0 and Fs = 1 show that
zM is almost insensitive to the height of a mixed layer (H) when H < 1.8 and proportional
to the layer height for H > 1.8 (Figure 8, 9). The regime shift occurs when the buoyancy
flux becomes negative at the very first interface (e.g., see Figure 8d), because in this case
regardless of the height of the layer, the plume always reaches the base of the first layer
and then overshoots the interface to decrease its momentum to zero. Since the buoyancy
flux is constant within the mixed layer and reduces by a finite amount at the interface, the
buoyancy flux profile also has a staircase structure. Given this, zF always equals to the
height of one of the interfaces and in the occasions when a plume looses its buoyancy flux
within the very first layer, zF is equal to the layer height. Thus, in Figure 9b) we observe
a linear trends with the coefficient of proportionality 1, 2, 3, etc. starting from the most
right line.

In our experiment, however, the plume is time-dependent and in a confined basin. There-
fore, over the course of the experiment, the background stratification continuously changes
due to the “filling box” and penetrative entrainment processes (as discussed in section 2.2.1).
To account for the “filling box” process we use a numerical scheme proposed by [7]. In this
case, from a conservation of volume in the environment we can compute the location of the
top interface of the newly formed layer as hi,j = hi,i+1 − Q̂i,i+1∆t, where hi is the position
of the interface that corresponds to zF , Q̂i is the volume flux at this interface and ∆t is a
time increment in integration. Penetrative entrainment can be also described in terms of
formation of a new layer beneath zF . In this case we assume that the entrained volume
flux is linearly proportional to the volume flux of the plume at zF [9, 4] and the height of
the interface beneath zF can be found from hj,i+1 = hi,i+1 + EQ̂i,i+1∆t (indecies here are
counted from the plume source, i.e., i + 1 is located further from the source compared to
j as shown in Figure 10), where E is an empirically determined constant. The density of
this layer depends on how many interfaces (layers) are swept be the plume during the over-
shooting, and it can be computed as a weighted mean. Subsequently, these two constructed
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layers are mixed to generate one mixed layer that is added to the original staircase. During
this process, one “old” interface (i, i+ 1) is being replaced by two new interfaces (i, j) and
(j, i + 1). This leads to an additional equation in the system (4). When the depth of a
generated layer is smaller than a chosen threshold l, then this layer collapses; in this case
the background density is redistributed whereas the number of equations remains the same.
Note also that if a generated layer via the penetrative entrainment process is more dense
than a layer below, this causes merging.

In this model we have three turning parameters: side entrainment coefficient εp, penetra-
tive entrainment coefficient E and a threshold value for layer collapsing l. To find the best
combination of these parameters we choose to simulate the experiment with N0 ≈ 1.13 s−1,
Q0 ≈ 1.9 cm3/s and h = 5 cm that clearly shows uncontaminated layers. As described
in section 2.1, during the setup processes it was hard to obtain very thin interfaces, and
the generated staircases, in fact, are a combination of mixed layers and regions with linear
stratification. Thus, to obtain the most realistic model output and compare it with the
observations we initialize the model with an experimental profile at time t = 0, that has
been divided into a number of mixed layers with various heights (i.e., many thin layers in
place of an interface, see Figure 11).

Having explored the range of parameters, we concluded that the model with εp = 0.08,
E = 0.09 and l = 0.1 cm (this value was non-dimensionalized correspondingly to use in a
model) has the best representation of the observed physical processes. Figure 11 indicates
that the model generates uncontaminated layers and modifies the background density profile
due to the penetrative entrainment and the shape of the profile from the model output
resembles that from the experiment.

4 Results and Discussion

From the experiments we concluded that the rate of penetration in the layered stratifica-
tion depends on the location within the staircase, however, overall it follows the penetration
rate that is characteristic for the linear stratification. Position of center of mass does not
depend whether density profile is linear or consists of layers. The major difference between
linear and staircase stratification is that in the second case uncontaminated layers are gen-
erated during the first stages of the experiment. CT measurements also show that structure
of the density profiles for three examined stratification (layered with 5 and 10 cm layer
depth and linear but with the same bulk density gradient) at any particular instant is very
different (Figure 7).

Despite this similarity between the model output and observed profiles, further analysis
of the numerical simulations has revealed that the model and experimental results differ
significantly when penetration depth and location of center of mass are considered. The
possible explanation can be in oversimplified parametrization of the penetrative entrainment
process. To improve it, one can construct more realistic model where generated layers do
not necessary ascend all the way till zF , causing further merging, instead, these layers
spread out at the level of neutral buoyancy. Further, relative contribution of the layers
(covered during the overshooting) to the density can be accounted for if the total volume
flux (EQ̂i,i+1) is distributed over the layers proportionally to their depths and distance from
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zF . Another possible source of error is the effect of internal waves on momentum reduction
at the interfaces that is completely neglected in the current version of the model.

This study has demonstrated that although layered stratification in comparison to the
linear stratification does not influence the bulk properties (penetration depth, location of
center of mass), the profile structure is very different. The distinctive difference between
the layered and linear stratification is in the presence of the uncontaminated layers in case
of the initial layered stratification.
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Figure 7: Density profiles measured by a CT probe in the experiment with parameters
N0 ≈ 1.13 s−1, Q0 ≈ 1.9 cm3/s and various layer height a) H = 10 cm, b) H = 5 cm and
c) linear stratification. Red line shows the initial profiles, black line shows the profiles after
8 min from the beginning of the experiment.
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Qs ≈ 0, Ms ≈ 0 and Fs = 1. All simulations were performed applying the same initial bulk
density gradient.
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Introduction

Optimisation of mixing for a passive scalar subject to advection-diffusion by an incompress-
ible flow has a long and celebrated story. The question of its measure is a major issue and
various metrics have been adopted in order to quantify the mixing efficiency in terms of
suppression of the scalar variances by a stirring flow ([13], [2] for a quantification of mixing
efficiency on multiple scales, [7], [5], and the review [15]). Using these different metrics, var-
ious related problems have been addressed - for instance, optimising either the flow ([8], for
an unsteady problem) or a source-sink distribution ([14], steady case) given a fixed energy
budget, and deriving sharp asymptotic bounds on the mixing enhancement due to advec-
tion ([13], [9], [12]). In the present report we will address the following question: given a
fixed kinetic energy constraint and an initial, uniform distribution of particles, what steady,
incompressible flow achieves minimum exit time (in L1-norm) from a cavity with absorbing
boundary conditions?

The equation governing the advection-diffusion of a passive scalar c by an autonomous
flow with velocity field u and constant, homogeneous molecular diffusivity κ is:

∂c†

∂t†
= −u† · ∇†c† + κ�†c†. (1)

In what follows, the flow is incompressible (∇† · u† = 0) and the magnitude of the velocity
field is tuned through a fixed kinetic energy constraint:〈

|u†|2
〉
= 2E†, (2)

where 〈·〉 = ∫Ω ·dΩ, so that 〈| · |〉 denotes the L1-norm. Using the typical size of the domain
as the unit length and a diffusive timescale, (1) then becomes in dimensionless variables:

∂c

∂t
= −u · ∇c+�c. (3)

Note that with this choice of non-dimensionalisation, the magnitude of the dimensionless
velocity u can be regarded as a Péclet number Pe = UL

κ , which quantifies the ratio between
diffusive and advective timescales. All the scalings in terms of dimensionless, kinetic energy
E can thus be regarded as equivalent scalings in terms of squared Péclet number Pe2.
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1 The Exit Time Problem

A flow with velocity u is prescribed in a cavity where the concentration of released parti-
cles satisfies the advection diffusion equation (3) with absorbing (homogeneous Dirichlet)
boundary conditions, meaning that particles are removed from the system as soon as they
first hit the boundary. Suppose we initially release particles at a location x0:

c(x, 0) = δ(x− x0), (4)

and let f(t, x0) the probability density for a particle released in x0 at t = 0 to hit the wall
(and therefore exit the domain) at time t. The fraction S(t, x0) of surviving particles after
a time t is given by integrating the probability density for particles to exit the domain at
later times, and we have:

S(t, x0) = 〈c(x, t, x0)〉 =
∫ ∞

t
f(s, x0)ds, (5)

implying
dS(t, x0)

dt
= −f(t, x0). (6)

The expected exit time for particles issued from x0 at t = 0 is then, using the fact that no
particle is expected to survive at infinite times (S(t, x0) →

t→∞ 0):

T (x0) =

∫ ∞

0
tf(t, x0)dt (7)

= −
∫ ∞

0
t
dS(t, x0)

dt
dt (8)

=

∫ ∞

0
S(t, x0)dt (9)

=

〈∫ ∞

0
c(x, t, x0)dt

〉
. (10)

Let us introduce the linear operator L = u · ∇ −� and prove that

L ∗T = 1, (11)

where L ∗ is the adjoint of L , which we shall determine to be L ∗ = −u · ∇ − �. The
particles which are released on the boundary are expected to instantly leave the domain,
therefore T satisfies the homogeneous Dirichlet boundary condition:

T = 0 on ∂Ω. (12)

Let us apply L to
∫∞
0 c(x, t, x0)dt. Using (3) we get:

L

∫ ∞

0
c(x, t, x0)dt =

∫ ∞

0
L c(x, t, x0)dt (13)

=

∫ ∞

0
−∂c

∂t
dt (14)

= c(x, 0) (15)

= δ(x− x0). (16)
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From now on we write C =
∫∞
0 c(x, t, x0)dt, so that (16) reduces to L C = δ(x− x0), and

we assume that the initial distribution of particles is spatially homogeneous. Let U be the
unique solution of the equation L ∗X = 1 with X = 0 on ∂Ω. Then for every x0,

U(x0) = 〈δ(x− x0)U〉 = 〈L CU〉 = 〈C L ∗U〉 = 〈C 〉 = T (x0), (17)

therefore U = T .
The boundary terms in the calculation of the adjoint vanish due to impermeable bound-

ary condition (u · n = 0 on ∂Ω), (12) and the fact that C = 0 on the boundary:

〈TL C 〉 = 〈T (u · ∇ −�)C 〉 (18)

= 〈C (−u · ∇ −�)T 〉+
∫
∂Ω

(uTC − T∇C + C∇T ) · nd(∂Ω) (19)

= 〈C L ∗T 〉 . (20)

2 Formulation of the Variational Problem

2.1 ... for the minimum exit time

The problem considered here is the minimisation of the particles expected exit time from a
cavity with absorbing boundary conditions on the periphery and uniform initial distribution
of particles, where we will use the L1-norm as a metric. In the absence of stirring (u = 0),
the transport is purely conductive and the mean expected exit time solely depends on the
fluid molecular diffusivity κ. As will be seen in the next section, stirring always results in
lowering the mean exit time for the particles with our choice of a metric. Note that this
result is true for the L1-norm but not, for example, for the L∞-norm as demonstrated by [5],
who proved that for any 2D, simply connected domain different from a disc, there always
exists a flow that enhances the largest exist time compared to the pure conduction case (see
Theorem 1.1 in [5]). In the following we will also consider a 2D domain with incompressible
flow (∇ · u = 0), and therefore we introduce the stream-function Ψ such that:

ux = −∂Ψ

∂y
and uy =

∂Ψ

∂x
. (21)

We aim at determining the structure of the flow that realizes optimally efficient stirring,
under a given energy constraint. The expected exit time and stream-function have to satisfy:

L ∗T = 1, (22)〈|∇Ψ|2〉 = 2E, (23)

where we write L ∗T = −J(Ψ, T )−�T , with the Jacobian J(a, b) = ∂xa∂yb− ∂ya∂xb. We
thus define the following functional, to be minimised in order to achieve minimal mean exit
time under the above constraints:

F (T,Ψ,Θ, μ) = 〈T 〉 − 〈Θ(L ∗T − 1)〉+ μ

2

(〈|∇Ψ|2〉− 2E
)
, (24)
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where Θ, μ are Lagrange multipliers. With impermeability boundary conditions (Ψ = 0 on
the wall), we get the first variations of F :

δTF = 〈δT 〉 − 〈Θ(L ∗δT )〉 = 〈δT 〉 − 〈(LΘ) δT 〉 , (25)

δΨF = 〈ΘJ(δΨ, T )〉+ μ 〈∇(δΨ) · ∇Ψ〉 = 〈δΨJ(T,Θ)〉 − μ 〈δΨ�Ψ〉 , (26)

δΘF = 〈δΘ(L ∗T − 1)〉 . (27)

We look for an extremum by setting the functional derivative of F to 0, which gives the
Euler-Lagrange equations:

LΘ = 1, (28)

J(T,Θ)− μ�Ψ = 0, (29)

L ∗T = 1. (30)

2.2 ... for an internal heating problem

Let us temporarily drop our previous notations and consider now the steady-state of tem-
perature Θ† in an internally heated flow with heat source Q†(x), divergence-free velocity
field u† and constant, homogeneous molecular diffusivity κ:

0 = −u† · ∇†Θ† + κ�†Θ† +Q† (31)

or equivalently, in dimensionless variables and diffusive timescale:

LΘ = Q. (32)

Let us consider a uniform heating source and fix Q = 1. We look for optimum cooling by
a 2D flow using the L1-norm of the temperature as a metric, under incompressibility and
fixed energy constraints. Let the functional:

F (Θ,Ψ, T, μ) = 〈θ〉 − 〈T (LΘ− 1)〉+ μ

2

(〈|∇Ψ|2〉− 2E
)
, (33)

where T, μ are Lagrange multipliers (again, let us forget about last paragraph notations!).
With impermeability boundary conditions (Ψ = 0 on the wall), the first variations of F
are:

δΘF = 〈δΘ〉 − 〈T (L δΘ)〉 = 〈δΘ〉 − 〈(L ∗T ) δΘ〉 , (34)

δΨF = −〈TJ(δΨ,Θ)〉+ μ 〈∇(δΨ) · ∇Ψ〉 = 〈δΨJ(T,Θ)〉 − μ 〈δΨ�Ψ〉 , (35)

δTF = 〈δT (LΘ− 1)〉 . (36)

Looking for an extremum implies setting the functional derivative of F to 0, which now
yields:

L ∗T = 1, (37)

J(T,Θ)− μ�Ψ = 0, (38)

LΘ = 1. (39)
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Remarkable here is the conjugacy between both systems: under fixed energy constraint,
optimization of cooling in the internal heating problem and minimisation of expected time
in the exit time problem require solving the same set of Euler-Lagrange equations, the
Lagrange-multiplier in the first problem (28)-(30) satisfying the same equation as the passive
scalar in the second one (37)-(39) and vice versa. Solving for the exit time problem therefore
provides a solution for the internal heating problem as well. We will focus on the former in
the next sections, although the later remains an underlying motivation as it may be relevant
for many engineering purposes.

3 The System

This section is dedicated to the introduction of the various notations and relationships
that will be used in undertaking an analytical solution of the Euler-Lagrange equations.
The master equations are expressed in terms of the new variables and the geometry of the
domain is then restricted to the unit disc. Finally, the introduction of a particular Ansatz
results in recasting the variational problem in a 1D, non-linear eigenvalue problem to be
solved under fixed energy constraint.

Re-writing (28)-(30) in terms of Jacobians, we now have:

−J(Ψ, T )−�T = 1, (40)

J(Ψ,Θ)−�Θ = 1, (41)

−J(T,Θ) + μ�Ψ = 0, (42)

to be solved under the energy constraint:〈|∇Ψ|2〉 = 2E, (43)

and homogeneous Dirichlet boundary conditions for T ,Θ and Ψ on ∂Ω. Let

T = C + τ and Θ = C + σ, (44)

where C is the pure conduction solution in the domain:

−�C = 1. (45)

Since C verifies (45), the system (40)-(42) becomes after subtraction:

−J(Ψ, C)− J(Ψ, τ)−�τ = 0, (46)

J(Ψ, C) + J(Ψ, σ)−�σ = 0, (47)

J(σ, τ) + μ�Ψ = J(τ − σ,C). (48)

Introducing the new variables

ξ = τ − σ and η = τ + σ, (49)

in order to simplify the calculations and noting that J(τ, σ) = 1
2J(ξ, η), we obtain the

following system, whose solutions correspond to the extrema of the cost function F :

−J(Ψ, ξ)−�η = 0, (50)

−J(Ψ, η)−�ξ = 2J(Ψ, C), (51)

1

2
J(η, ξ) + μ�Ψ = J(ξ, C). (52)
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3.1 A few useful identities

Before we attempt to solve for the system (50)-(52) in terms of ξ, η and Ψ, it will prove
useful to write down a few integral relationships obtained from taking the scalar product
of the master equations (under their various forms) against the different variables. In this
paragraph, we justify that stirring effectively improves the mixing compared to the case
where the flow is at rest (u = 0) and derive two different expressions for the mean expected
exit time which we will need later on.

Let us prove first that stirring enhances mixing with our choice of metric. Starting back
from the original equation (40) and multiplying it by T , integration over the domain leads
to: 〈|∇T |2〉 = 〈T 〉 . (53)

A similar operation on (45) yields

〈|∇C2
〉
= 〈C〉 . (54)

As the expected exit time can be decomposed as T = C + τ , we can re-write:

〈T 〉 = 〈|∇C|2〉+ 2 〈∇τ · ∇C〉+ 〈|∇τ |2〉 . (55)

Multiplying (46) by respectively C and τ and integrating over the domain leads to:

0 = −〈CJ(Ψ, C)〉 − 〈CJ(Ψ, τ)〉 − 〈C�τ〉 = −〈CJ(Ψ, τ)〉+ 〈∇C∇τ〉 , (56)

0 = −〈τJ(Ψ, C)〉 − 〈τJ(Ψ, τ)〉 − 〈τ�τ〉 = + 〈CJ(Ψ, τ)〉+ 〈(∇τ)2
〉
. (57)

Thus

〈∇C · ∇τ〉 = − 〈|∇τ |2〉 (58)

and 〈|∇T |2〉 = 〈|∇C|2〉− 〈|∇τ |2〉 i.e. 〈T 〉 = 〈C〉 − 〈|∇τ |2〉 , (59)

which shows that stirring can only lower the L1-norm for the expected exit time (compared
to the purely conductive case).

Multiplying now (50), (51), (52) by, respectively, η, ξ and Ψ and integrating over the
domain yields: 〈|∇η|2〉 = 〈ηJ(Ψ, ξ)〉 = 〈ΨJ(ξ, η)〉 , (60)

〈ηJ(Ψ, ξ)〉+ 〈|∇ξ|2〉 = 2 〈ξJ(Ψ, C)〉 , (61)

−μ
〈|∇Ψ|2〉 = 1

2
〈ΨJ(ξ, η)〉+ 〈ΨJ(ξ, C)〉 . (62)

It follows that 〈|∇η|2〉+ 〈|∇ξ|2〉 = −2 〈ΨJ(ξ, C)〉 , (63)
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and

2Eμ = −1

2

〈|∇η|2〉+ 1

2

〈|∇η|2〉+ 1

2

〈|∇ξ|2〉 . (64)

We also have

4|∇τ |2 = |∇ξ|2 + |∇η|2 + 2∇ξ · ∇η, (65)

4
〈|∇τ |2〉 = 〈|∇ξ|2〉+ 〈|∇η|2〉 , (66)

as multiplying (50) by ξ and integrating over the domain yields:

〈∇ξ · ∇η〉 = 0. (67)

Therefore

〈|∇τ |2〉 = Eμ+
1

4

〈|∇η|2〉 i.e. 〈T 〉 = 〈C〉 − Eμ− 1

4

〈|∇η|2〉 . (68)

Moreover, we can also write:

〈T 〉 = 〈C〉+ 1

2
〈η〉+ 1

2
〈ξ〉 . (69)

Multiplication of (40) and (41) by ξ and integration over the domain yields:

−〈ξJ(Ψ, T )〉 − 〈ξ�T 〉 = 〈ξ〉 and 〈ξJ(Ψ,Θ)〉 − 〈ξ�Θ〉 = 〈ξ〉 . (70)

Hence

2 〈ξ〉 = −〈ξ�η〉 − 〈ξJ(Ψ, ξ)〉 = 〈∇ξ · ∇η〉 = 0, (71)

which, once combined with (69), provides an alternative expression for 〈T 〉:

〈T 〉 = 〈C〉+ 1

2
〈η〉 . (72)

3.2 The disc case

From now on the domain is assumed to be a disc of radius 1 and cylindrical coordinates
are adopted. The conduction solution in the unit disc is given by C = 1−r2

4 and the system
above simplifies to:

−J(Ψ, ξ)−�η = 0, (73)

−J(Ψ, η)−�ξ =
∂Ψ

∂θ
, (74)

μ�Ψ =
1

2
J(ξ, η) +

1

2

∂ξ

∂θ
, (75)

with the kinetic energy constraint

2E =
〈|∇Ψ|2〉 . (76)
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3.2.1 Preliminary remark

If we consider small-amplitude perturbation from the pure conduction problem (say E = ε),
with Ψ = O(ε) and, accordingly, τ = O(ε), σ = O(ε), then the system (46)-(47) becomes at
order O(ε):

−J(Ψ, C)−�τ =0, (77)

J(Ψ, C)−�σ =0, (78)

which implies τ + σ = o(ε) since τ and σ verify the same boundary conditions.
Therefore η = o(ε) and from (51)-(52) we get at order O(ε):

−�ξ =
∂Ψ

∂θ
, and μ�Ψ =

1

2

∂ξ

∂θ
. (79)

Combining both equation in order to eliminate one variable leads to the same equation for
ξ and Ψ: 1

μ�2ξ = −1

2

∂2ξ

∂θ2
, μ�2Ψ = −1

2

∂2Ψ

∂θ2
. (80)

As ξ and Ψ also satisfy the same homogeneous Dirichlet BCs, we can look for Ψ = λξ
with λ a proportionality constant, to be determined. For the two equations of (79) to be

consistent we need λ = (2μ)−
1
2 . Assuming continuation of the linear solution into the

non-linear regime, this observation provides a guess for a class of solutions satisfying the
following Ansatz.

3.2.2 The Ansatz

Let’s look for a variable-separated solution of the form:

ξ = A(r) cos(mθ), and Ψ = B(r) sin(mθ), (81)

with m an integer. Consistency in (74) requires retaining only cos(mθ) terms, hence ∂η
∂θ = 0.

Plugging these forms into (73)-(75), we get

m

r
B′A sin2(mθ) +

m

r
BA′ cos2(mθ)− 1

r

d

dr
(rη′) =0, (82)

m

r
Bη′ − 1

r
(rA′′ +A′) +

m2

r2
A−mB =0, (83)

μ

r
(rB′′ +B′)− μm2

r2
B − m

2r
Aη′ +

m

2
A =0, (84)

1Assuming now separation of variables with Ψ = Ψ̂(r) sin(mθ) (or Ψ = Ψ̂(r) cos(mθ)), we notice that Ψ
necessarily verifies (80) if it verifies Helmholtz’ equation

�Ψ = − m√
2μ

Ψ,

as then

�2Ψ =
m2

2μ
Ψ = − 1

2μ

∂2Ψ

∂θ2
.
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Based on the previous analysis for small-energy stirring, we require A and B be proportional
(let B = λA) such that

B′A = A′B. (85)

Then we can re-write (82) as:

B′Bλ−1m =
d

dr
(rη′), (86)

hence
rη′ =

m

2λ
B2, (87)

where the integration constant has been set to 0 so as to ensure regularity of η at r = 0
(regularity of the velocity field across the disc center requires B(0) = 0 for m �= 0). Using
A = Bλ−1, (83) and (84) become

(r2B′′ + rB′)−m2B − λmrη′B + λmr2B = 0, (88)

(r2B′′ + rB′)−m2B − λ
m

2μ
rη′B + λ

m

2μ
r2B = 0, (89)

with λ = (2μ)−
1
2 for (88) and (89) to be equivalent. Then using (87) the ODE on B becomes:

r2B′′ + rB′ +
(
r2λm−m2

)
B =

m2

2
B3 . (90)

This eigenproblem, with eigenvalue mλ, has to be solved under homogeneous Dirichlet
boundary conditions B(0) = 0 and B(1) = 0 and the energy constraint:

2E =
〈|∇Ψ|2〉 = ∫∫ (B′2 sin2(mθ) +

B2m2

r2
cos2(mθ)

)
rdrdθ (91)

2E = π

∫ 1

0

(
B′2 +

B2m2

r2

)
rdr . (92)

An analytical solution of (90) under the energy constraint and boundary conditions men-
tioned above will be undertaken asymptotically in the two limiting cases of small (E → 0,
or equivalently Pe → 0) and large-energy flows (E → ∞, Pe → ∞).

4 Small E Case: The Linear Problem

In the limit of small-energy flow, the cubic term is omitted from (90) and we recover a
Bessel equation:

r2B′′ + rB′ +
(
r2λm−m2

)
B = 0. (93)

Rescaling r̃ = αr with B̃(r̃) = B(r), and choosing α =
√
λm yields

r̃2B̃′′ + r̃B̃′ +
(
r̃2 −m2

)
B̃ = 0. (94)
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We look for non-axisymmetric solutions as the m = 0 mode evidently has poor mixing
properties, the flow only sweeping particles along the iso-contours of C in the purely diffusive
case. We expect the optimum flow pattern to favor radial transport so as to quickly expel
particles toward the boundary.

For a given modem, non-singular solutions of (94) are proportional to the Bessel function
Jm(r̃) whose (stricly) positive roots determine the constant λ (and therefore μ) so as to meet
the homogeneous Dirichlet boundary condition B(1) = 0. This requires, for a given m:

√
mλ = jm,n =

√
m√
2μ

(95)

where jm,n is the n-th positive root of the Bessel function Jm(r̃).
Coming back to the linearized ODE, we divide (93) by r and rewrite it as:

(rB′)′ − m2

r
B = −λmrB (96)

Multiply by B and integrate in r leads in∫ 1

0
λmrB2dr =

∫ 1

0

(
−B(rB′)′ +

m2

r
B2

)
dr

=

∫ 1

0
rB′2 +

m2

r
B2dr

since B = 0 on r = 0 and r = 1. Thus with B̃ = βJm we have

2E

π
= λm

∫ 1

0
rB2dr = j2m,n

∫ 1

0
rB̃(jm,nr)

2dr = j2m,nβ
2

∫ 1

0
rJm(jm,nr)

2dr (97)

and using the result (see [6]) that
∫ 1
0 rJm(jm,nr)

2dr = 1
2J

′
m(jm,n)

2, we finally obtain the
amplitude of the solution:

β2 =
4E

πj2m,n

1

J ′
m(jm,n)2

. (98)

The mean expected exit time is given by (68), where in the unit disc case 〈C〉 = π
8 . Since

B = O(E) and
〈|∇η|2〉 = O(E4) (following (87)), this last contribution can be neglected in

the calculation of 〈T 〉 and we find:

〈T 〉
〈C〉 = 1− μ

8E

π
. (99)

Optimal stirring efficiency therefore requires μ be as large as possible. Since

μ =
1

2

m2

j4m,n

, (100)

this yields

〈T 〉 = π

8
− m2

2jm,n
4E, (101)

and the optimal streamlines pattern necessarily displays a single cell in the radial direction
(n = 1). For m = 1, n = 1, we find μ = 0.00232; for m = 2, n = 1: μ = 0.00287; for m = 3,
n = 1: μ = 0.00271. Thus optimal stirring at low energy budget (or low Péclet number) is

realised for (m,n) = (2, 1) (see pattern on figure 1).
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Figure 1: Left: Streamlines pattern and Right: τ -isocontours for the optimal stirring flow at small
energy E, where τ = T − C is the correction to the purely conductive exit time (dark blue denotes
”large”, negative values, with τ = 0 on the boundary).

5 The Large Energy Limit

5.1 Fixed m, large E case

For a given mode m, let us first consider the asymptotic behavior of (90) at large energy
(the details of the calculations are left to the appendix).

Dominant balance in the bulk of the flow occurs between the eigenvalue term and the
cubic one provided λ ∼ B2, resulting in a linear leading term for the outer solution in
the limit of infinitely large E. A peripheral boundary layer, of thickness ε, accommodates
for the homogeneous Dirichlet boundary condition in r = 1, while local analysis reveals a
behavior of B ∼ rm near the origin, in a region whose typical thickness goes to 0 as E tends
to infinity (this internal layer existing for m > 1 only). Neglecting this region in a first
approximation, we thus form the following composite solution:

B ≈
√

2λ

m
r tanh

(√
mλ

2
(r − 1)

)
. (102)

The energy constraint on (102) requires B = O(E
1
3 ) = ε−1 and determines the value of λ

at leading order:

λ =

(
9m

2π2

) 1
3

E
2
3 =

1√
2μ

. (103)

We then compute the L1-norm of the expected exit time at infinitely large E:

〈T 〉 = 〈C〉+ 1

2
〈η〉 = π

8
− π

2

∫ 1

0
η′r2dr =

π

8
− π

4

∫ 1

0
λ−1mB2rdr. (104)

Replacing B by the composite solution (102) and splitting the integral at 1 − δ with ε �
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δ � 1, we roughly get after introducing x =
√

mλ
2 (r − 1):

〈T 〉 ≈ π

8
− π

2

∫ 1−δ

0
r3dr − π

2

√
2

mλ

∫ √
mλ
2

δ

0
tanh2(x)dx (105)

≈ π

8
− π

8
(1− δ)4 − π

2
δ +

π

2

√
2

mλ
. (106)

Finally

〈T 〉 = π

2

√
2

mλ
+ o(δ) + o(ε), (107)

and, replacing λ by (103), we find at leading order:

〈T 〉 =
(
π4

6

) 1
3

m− 2
3E− 1

3 . (108)

The calculation of the mean exit time in (105) shows that the contribution of the con-
ductive exit time 〈C〉 = π

8 = O(1) is exactly canceled by the flow in the bulk (outer region)
provided we assume linear behavior for B everywhere except in the wall boundary layer.
On the other hand, the remaining, leading-order mean exit time O(ε) is solely determined
by this peripheral boundary layer profile.

The large E, fixed m expected exit time (108) appears to correctly describe the asymp-
totic behavior of the solution for a given mode as will be seen in the next paragraph.
However, asymptotics at fixed m do not provide any evidence for the existence of an op-
timum flow pattern as the mean exit time goes to 0 if m is chosen arbitrarily large. The
existence of an optimum, if any, must result from a ”penalty” on large wavenumbers m,
which will arise from taking the distinguished limit for large m and large E.

5.2 Some numerics

For different values of the wavenumber m, we solve for the non-linear eigenvalue problem
(90) by means of a continuation method, using the dedicated bvp5c function ([11]) in
MATLAB with λ as a parameter: starting from the Bessel function solution as an initial in
the quasi-linear regime (typically E = 0.001−0.1 depending on m), E is gradually increased
up to E = 108, the output of each computation providing a ”first guess” for the next one. 2

The numerical results are in excellent agreement with the asymptotics and reproduce
the scaling (103) of λ = O(E

2
3 ). As can be seen on figure 2 (top), the numerical mean exit

time for a given m perfectly superimposes with the large-energy asymptotics provided E is
large enough, with a decay ∼ E− 1

3 .

2The function bvp5c (as its older version bvp4c) relies on a collocation method where the non-linear
eigenvalue problem is solved iteratively by linearizing around the (user-provided) initial solution. This
unfortunately prevents one from capturing all the possibly existing solutions (and in particular, flows with
more cellular structures in the radial direction) for numerical convergence requires a relatively accurate first
guess.
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Figure 2: Solid lines: mean expected exit time versus energy (numerical result from bvp5c), for
the wavenumber: m = 1, 2, 4, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36, 42, 48, 56, 64. Dashed, blue line:
large E, fixed m asymptotics, for m = 2. As an example, the result obtained for mode m = 32 is
highlighted in red.

The superposition of mean exit times for various wavenumbers on figure 2 clearly in-
dicates the existence of an optimal m at a given energy E. The minimal mean exit time
corresponds to the lower envelope of the various m graphs, whose equation seems to satisfy
a power law in E (namely ∼ E− 1

2 , as will be shown in the following).

5.3 Large m, large E case

The ”penalty” on large wavenumbers actually results from the presence of an internal layer
(for m > 1): indeed for large m, the streamlines of the divergence-free flow strongly tighten
near the center of the disc where diffusion is likely to overpower radial transport. This
creates a very-low velocity region (a ”stagnant” zone) which widen at fixed E with increasing
m - and shrinks at increasing E for fixed m. In this region, the flow is nearly ineffective and
the exit time corresponds to the purely conductive one. Hence for a given energy budget,
an optimum flow has to be found in combining a large number of cells that efficiently expel
particles toward the wall with a stagnation area of limited extent at the center of the disc.
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5.3.1 A composite solution for the large-energy flow

The outer solution (bulk): If we consider large wavenumbers and assume that m scales
as a power of E, (90) at leading order degenerates into:

(
mλr2 −m2

)
B =

m2

2
B3. (109)

As in the fixed m case, balancing the eigenvalue and the cubic terms yields λ ∼ mB2. The
difference in the solution arises from the second term in the LHS of (109), whose weight
becomes comparable to the one of the first term for a typical radius r× such that:

r× =

√
m

λ
. (110)

The solution of (109) (outer solution) is then

B =

√
2λ

m
(r2 − r2×). (111)

This solution breaks down for a radius of r ≈ r×, which is the typical thickness of the
stagnation zone. (Note that we have then r× ∼ B−1, implying that the stagnation zone
shrinks as the energy budget increases.) As r approaches 1, we have

B ≈
√

2λ

m
r

(
1− 1

2

r2×
r2

)
(112)

≈
√

2λ

m
r at leading order since r2× ∼ B−2. (113)

The leading terms in (109) as the wall is approached are therefore the first and the third
ones, which have to be retained while solving for B near r = 1.

The inner solution (r → 1): A boundary layer develops on the wall so as to accommo-
date for the Dirichlet homogeneous condition on B. Writing ε the typical thickness of this
peripheral layer, we rescale the radial coordinate as r = 1− ερ. Expressing (90) in the fast
variable ρ yields:

(1− ερ)2ε−2B′′ + (1− ερ)ε−1B′ +mλ(1− ερ)2B −m2B =
m2

2
B3, (114)

and retaining the higher order derivative in the dominant balance implies λm ∼ ε−2. At
leading order, since λ ∼ mB2 we have

ε−2B′′ + (mλ−m2)B =
m2

2
B3. (115)

The solution of (115) (inner solution) satisfying the boundary condition in r = 1 (or ρ = 0)
is

B =

√
2λ

m

(
1− m

λ

)
tanh (kρ) , (116)

where k = ε
√

mλ−m2

2 . This inner solution clearly satisfies asymptotic matching with the

outer solution (using (111)).
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The stagnation zone (internal layer): Local analysis in the vicinity of the center
reveals that B ∼ rm as r goes to zero - there the stirring is largely ineffective. For this
reason the composite solution for B which is proposed in the next paragraph, where B = 0 is
assumed everywhere in the stagnation zone, turns out to provide sufficient accuracy for the
calculations to come. However, a complete description of the asymptotic solution is much
more satisfactory and we aim at capturing the region where the outer solution (111) breaks
down as well as its reconnection with the stagnant zone, which seems hard to reconcile
with the infinite slope of the bulk solution in r = r×. Introducing the change of variables

t = ln
(

r
r×

)
, (90) becomes:

Btt +
(
λmr2×e

2t −m2
)
B =

m2

2
B3. (117)

Linearizing around t = 0 (or equivalently r = r×) yields

Btt +
(
λmr2×(1 + 2t)−m2

)
B =

m2

2
B3 at leading order, (118)

Btt + 2m2tB =
m2

2
B3 as r× =

√
m

λ
. (119)

Let us rescale the variable s = αt and the unknown function βb(s) = B(t). The choice of

α = (2m2)
1
3 and β =

(
16
m

) 1
3 results in recovering a second Painlevé’s transcendent equation

with constant zero:
b′′ = 2b3 − sb. (120)

Fortunately, this equation does admit a particular solution - namely the Hastings-McLeod
solution (see [4], up to a change of sign x ← −x) - which asymptotically satisfies:

bHM (s) →
s→−∞ 0 and bHM (s) ∼

s→+∞

√
s

2
. (121)

Moreover, the Hastings-McLeod solution decays toward 0 as a Airy function as s → −∞,
thus displaying the correct behavior for r → 0, and its asymptotic matching with the bulk
solution (111) takes care of itself as r > r×: there

BHM (r) ∼
(
16

m

) 1
3

√
(2m2)

1
3

2
ln

(
1 +

r − r×
r×

)
, (122)

∼ 2

√
(r − r×)

r×
, (123)

while the bulk solution (111) in the vicinity of r× is equivalent to:

B(r) =

√
2

r2×
(r2 − r2×) ∼

r→r+×
2

√
(r − r×)

r×
. (124)

Nevertheless, the calculation of the asymptotic mean exit time in the next paragraphs will
be made considerably simpler by ignoring this last refinement and adopting the expression
(125)!
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Figure 3: Black circles: numerical solution for m = 16, E = 8.4e5, computed with bvp5c by a
continuation method. Red, dashed line: approximated composite (following (125)) for the corre-
sponding parameters, with the eigenvalue λ(m,E) provided by the dispersion relation (142) (see
next section). Inset: Blow-up on the vicinity of r×. The different flow regions are indicated on
the graph: SZ = internal boundary layer or ”stagnation zone”, PBL = peripheral boundary layer,
BULK = main flow.
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A composite solution In the following, let us approximate the full solution by the
composite:

B ≈
{√

2λ
m (r2 − r2×) tanh

[
kε−1(1− r)

]
, if r× < r;

0 , if 0 < r < r×.
(125)

Indeed, superposition with the numerical solution of (90) on figure 3 (obtained with the
function bvp5c using our continuation method) shows excellent agreement except for the
small region restricted to the vicinity of r×, which we should neglect in the next calculations.

5.3.2 Dispersion relation and optimal exit time

So far the eigenvalue λ is still unknown and its relationship withm and E will be determined
by the fixed energy budget, and will in turn be used in the minimisation of the mean expected
exit time. Multiplying (90) by B and integrating yields a useful, alternative expression for
the energy constraint:

rB′′ +B′ + (mλr − m2

r
)B =

m2

2
B3 (126)

=⇒
∫ 1

0

(
B(rB′)′ + (mλr − m2

r
)B2

)
dr =

∫ 1

0

m2

2
B4dr (127)∫ 1

0

(
rB′2 +

m2

r
B2

)
dr =

∫ 1

0

(
mλrB2 − m2

2
B4

)
dr (128)

2E

π
=

∫ 1

0

(
mλrB2 − m2

2
B4

)
dr. (129)

Injecting (125) into the last expression, we find:

2E

π
= m2

∫ 1

0

(
λ

m
rB2 − 1

2

B4

r

)
dr = m2

∫ 1

0
rB2

(
1

r2×
− 1

2

B2

r2

)
dr. (130)

Noting that the term inside the brackets can be rewritten as

1

r2×
− 1

2

B2

r2
=

1

r2×
− 1

r2

(
r2

r2×
− 1

)
tanh2(kρ) (131)

=
1

r2×
− 1

r2×
tanh2(kρ) +

1

r2
tanh2(kρ) (132)

=
1

r2×
cosh−2(kρ) +

1

r2
tanh2(kρ), (133)

356



we obtain:

2E

π
= m2

∫ 1

r×
2r

(
r2

r2×
− 1

)
tanh2(kρ)

(
cosh−2(kρ)

r2×
+

tanh2(kρ)

r2

)
dr (134)

=
2m2

r2×

∫ 1

r×

(
r3 − rr2×

) (
1− cosh−2(kρ)

)(cosh−2(kρ)

r2×
+

tanh2(kρ)

r2

)
dr (135)

=
2m2

r2×

∫ 1

r×

(
r3 − rr2×

)(cosh−2(kρ)

r2×
− cosh−4(kρ)

r2×
+

1

r2
− 2 cosh−2(kρ)

r2
+

cosh−4(kρ)

r2

)
dr

(136)

E

π

r2×
m2

=

∫ 1

r×

⎛
⎜⎜⎜⎜⎝(r − r2×

r
)︸ ︷︷ ︸

(a)

+
1

cosh2
(kρ)

(
r3

r2×
− 3r +

2r2×
r

)
︸ ︷︷ ︸

(b)

+
1

cosh4
(kρ)(kρ)

(
− r3

r2×
+ 2r − r2×

r

)
︸ ︷︷ ︸

(c)

⎞
⎟⎟⎟⎟⎠ dr.

(137)

Retaining only the leading term in each contribution (a),(b),(c) yields:

E

π

r2×
m2

=

∫ 1

r×
rdr +

ε

k

∫ k
ε
r×

0

(1− ε
kx)

3

r2× cosh2(x)
dx− ε

k

∫ k
ε
r×

0

(1− ε
kx)

3

r2× cosh4(x)
dx (138)

≈ 1

2
+

ε

k

∫ k
ε
r×

0

1

r2× cosh2(x)
dx− ε

k

∫ k
ε
r×

0

1

r2× cosh4(x)
dx (139)

≈ 1

2
+

1

r2×

ε

k
− 2

3r2×

ε

k
(140)

≈ 1

2
+

1

3r2×

ε

k
. (141)

Finally, recalling that at leading order k = ε
√

mλ
2 and r× =

√
m
λ , we obtain a compact

expression for the energy constraint as a function of m and λ:

2E

π
= mλ+

2
√
2

3

√
λ3

m
. (142)

Similarly, we compute the mean exit time at leading order:

〈T 〉 = π

8
− π

4

∫ 1

0
γmB2rdr (143)

=
π

8
− π

2

∫ 1

r×
r3(1− r2×

r2
) tanh2(kρ)dr (144)

=
π

8
− π

2

ε

k

∫ k
ε
r×

0
(1− ε

k
x)3
(
1− r2×

(1− ε
kx)

2

)
tanh2(kρ)dr (145)

≈ π

8
− π

2
(
1

4
− r2×

2
+

δ4SZ
4

+
ε

k
) (146)

≈ πr2×
4

+
π

2

ε

k
, (147)
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Figure 4: Left: eigenvalue λ against azimuthal mode m, for a given kinetic energy budget E = 106.
Right: expected exit time (in L1-norm) against azimuthal mode m.

which in terms of m and λ gives:

〈T 〉 = π

4

m

λ
+

π√
2
(mλ)−

1
2 . (148)

For a given E, we can already draw - numerically - the graph of λ and 〈T 〉 as a function
of m as illustrated on figure 5.3.2.

Considering the energy constraint, we can now guess the scaling for m and λ requiring
all the terms to be of the same order. If m = O(Eν) and λ = O(Eβ), we get from (142)
that 1 = ν + β = 3

2β − 1
2ν i.e.

ν =
1

4
and β =

3

4
. (149)

As a result, we also know the stagnation zone and the peripheral typical thicknesses:

r× = O(E− 1
4 ) and ε = O(E− 1

2 ) . (150)

Accordingly, let us write m =
(
2E
π

) 1
4 m̃, λ =

(
2E
π

) 3
4 λ̃ and the conduction-normalised mean

exit time 8
π 〈T 〉 =

(
2E
π

)− 1
2 T̃ . The energy constraint then becomes a dispersion relation

between m and λ:

1 = m̃λ̃+
2
√
2

3

λ̃
3
2

m̃
1
2

, (151)
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and the exit time estimate is now:

T̃ = 2m̃λ̃−1 +
8√
2
(m̃λ̃)−

1
2 . (152)

For the sake of simplification we introduce a new variable Z = λ̃− 1
2 m̃

3
2 and re-write

both equations in terms of Z, thus eliminating λ̃. This yields respectively

1 = m̃4

(
1

Z2
+

2
√
2

3Z3

)
and T̃ =

(
2Z + 4

√
2
)(

1 +
2
√
2

3Z

) 1
2

. (153)

The energy constraint provides an expression for m̃ as a function of Z and, plugging this
into the second expression in (153), we derive the conduction-normalized mean exit time
as a function of Z solely. The asymptotic behavior of T̃ (Z) as Z → 0 and Z → ∞ clearly
indicates the existence of a global minimum on R+, which is obtained for

∂T̃

∂Z
= 0 =⇒ 0 = Z2 +

√
2

3
Z − 4

3
=⇒ Z>0 =

2
√
2

3
. (154)

Therefore the value of m̃∗ and λ̃∗ that correspond to optimal flow efficiency are

m̃∗ =
√

2

3
and λ̃∗ =

√
3

8
i.e. m∗ =

√
2

3

(
2E

π

) 1
4

and λ∗ =
√

3

8

(
2E

π

) 3
4

. (155)

For this optimal mode m∗, the achieved, conduction-normalized mean exit time is then:

〈T 〉
〈C〉 =

32

3

(
2E

π

)− 1
2

. (156)

As can be seen on figure 5, (156) is in excellent agreement with the numerical solutions
of the eigenvalue problem (90) found with bvp5c: the straight (dashed) line corresponding
to the asymptotic optimal exit time perfectly matches the lower envelope of the different
modes m for E larger than 104 approximately.

5.4 A fast mixer

The result in (156) is expressed in terms of dimensionless energy. Using the fact that the
master equations were made dimensionless in diffusive timescale, we have in dimensional
variables:

E† =
〈
|u†|2

〉
∝ κ2E and

〈
C†
〉
∝ L4

κ
=⇒

〈
T †
〉
∝ L4

κ

κ

E† 1
2

(157)

i.e. 〈
T †
〉
∝ L3

U
. (158)

It is important to emphasize that due to the very particular scaling of (156), the dimen-
sional mean exit time (158) is completely independent of the molecular diffusivity: κ may be

359



Figure 5: Blue, solid lines: mean expected exit time (from bvp5c) as a function of the kinetic
energy, for different wavenumbers (as in figure 2). The black, dashed line represents the asymptotic,
optimal exit time as computed from (156).

chosen arbitrarily small (but non-zero) and the particles will be expelled from the domain in
purely mechanical time (once they have reached the external boundary layer, diffusivity is
still needed for the particles to exit the domain despite impermeability boundary condition).
This result is consistent with the bound on mixing efficiency derived in [13] at large Péclet
number, which turns out to be independent of the molecular diffusivity (and is expected to
hold under turbulent or chaotic mixing). A comparison can be drawn between this physical
result and the existence of the so-called fast dynamos (as, for instance, the Ponomarenko
([10]) or the ABC flows dynamo ([1], [3]), whose growth-rate becomes independent of the
magnetic diffusivity in the limit of large magnetic Reynolds number.

Although the problem we consider here is quite different from the one addressed for
instance by [14] (source optimization), and even though we use a different metric for quan-
tifying the mixing efficiency (they consider the ratio of the L2-norms for the scalar concen-
tration without and with stirring, see the case p = 0 in [14]), we could recast (156) in terms
of a ”mixing enhancement factor”

E =
〈C〉
〈T 〉 =

3

32

(
2E

π

) 1
2

, (159)
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and recover a similar linear dependency of the enhancement factor with Péclet number in
the asymptotic Pe → ∞ regime.

Conclusion

Although neither our analytical approach (due to the choice of the Ansatz (85)), nor the
numerical one (due to the use of a continuation method, the routine bvp5c being highly
sensitive to the initial) enables us to capture any existing bifurcation in the large-E regime,
we exhibit a solution which at least achieves mechanical exit time. Direct numerical simu-
lation would be necessary to ensure that the solution we find with our choice of an Ansatz,
which is suggested by the small-energy case, truly corresponds to the general optimum over
all possible flows, including small-scale, cellular patterns. However, assuming a stronger
exponent for E in (156) - say E−α with α > 1

2 - would yield

〈
T †
〉
∝
(

L4

E†α

)
κ2α−1, (160)

meaning that the L1-norm of the expected exit time corresponding to the optimal flow
would be enhanced by increasing molecular diffusivity, which seems unconvincing as a higher
diffusivity tends to improve mixing. We therefore expect any improvement compared to the
solution we find with (85) to deal only with the prefactor in (156). An important source for
improvement would presumably reside in considering the mixing enhancement achieved by
a time-dependent flow, which we have not attempted, but would be of considerable interest
also from an engineering point of view.
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A Large E, fixed m case

In the case of large E, we look at the dominant balance taking place in the bulk of the flow.
Introducing the rescaled variables B = EαB̃ and λ = Eβλ̃, (90) becomes:

r2B̃′′Eα + rB̃′Eα + r2λ̃mB̃Eα+β −m2B̃Eα =
m2

2
B̃3E3α. (161)

The only contribution likely to balance the cubic term is the one containing the eigenvalue,
requiring β = 2α. Then at leading order (90) degenerates into:

r2λ̃mB̃ =
m2

2
B̃3, (162)

which directly gives the outer solution

Bo = B̃Eα = ±
√

2

m
λ̃Eαr (163)

This solution does not satisfy B(1) = 0. Proper rescaling of the radial coordinate is required
so as to accommodate for the boundary condition: we introduce a new scale r = 1−ερ. The
inner solution has to satisfy asymptotic matching with the outer solution, which suggests
using B = EαB̄ to get

(1− ερ)2

ε2
B̄′′Eα +

(1− ερ)

ε
B̄′Eα + (1− ερ)2λ̃mB̄E3α −m2B̄Eα =

m2

2
B̄3E3α. (164)

Dominant balance and the requirement that the higher-order derivative be retained yield
ε = O(E−α). At leading order, (164) then becomes:

B̄′′ + λ̃mB̄ =
m2

2
B̄3, (165)

a solution of which can be found under the form B̄ = B̄∞ tanh(kρ) where asymptotic

matching with the outer solution as ρ → ∞ leads to B̄∞ = ±
√

2λ̃
m and k = ±

√
mλ̃
2 . At

leading order the inner solution is then, up to a change of sign:

Bi =

√
2λ̃

m
Eα tanh

(√
mλ̃

2
ρ

)
. (166)

The energy constraint determines α:

2E

π
=

∫ 1

0
rB′2 +

m2

r
B2dr =

∫ 1−δ

0
(rB′2

o +
m2

r
B2

o)dr +

∫ 1

1−δ
(B′2

i +m2B2
i )dr (167)

2E

π
=

∫ 1−δ

0
B2

∞r(1 +m2)dr︸ ︷︷ ︸
=O(E2α)

+

∫ 0

′′−∞′′

(
B2∞k2

ε

(
1− tanh2(kρ)

)2
︸ ︷︷ ︸

=O(E2αε−1 )

+m2B2
∞ε tanh2(kρ))︸ ︷︷ ︸
=O(E2αε)

)
dρ

(168)
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Dominant balance requires ε = E−α and α = 1
3 , hence β = 2

3 . The leading terms in the

energy constraint then determine the factor λ̃:

2

π
=

∫ 0

′′−∞′′

B̃2∞k2

ε

(
1− tanh2(kρ)

)2
dρ =

B̃2∞k2

ε

∫ 0

′′−∞′′

(
1− 2 tanh2(kρ) + tanh4(kρ)

)
dρ

(169)

and since tanh2− tanh4 = tanh2 tanh′, we finally get:

2

π
=

B̃2∞k2

ε

[
tanh(kρ)

k
− tanh3(kρ)

3k

]0
−∞

=
2B̃2∞k

3ε
=

2
√
2λ̃

3
2

3
√
m

(170)
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1 Introduction

1.1 Motivation

In the context of a warming climate, a key question of interest is the fate of the Arctic sea
ice. Reductions in the sea ice extent have the potential to greatly affect Arctic communities
and ecosystems, and an ice-free Arctic would have a range of commercial and geopoliti-
cal implications related to the opening of previously unnavigable shipping routes. More
fundamentally, the Arctic sea ice is often viewed as a diagnostic for the state of the warm-
ing Earth system, and its decline is one of the most striking indicators of modern climate
change. While it is apparent that with sufficient warming the sea ice will eventually all be
lost in the Arctic, the specifics of this decline are less well understood. This is related to the
fact that superposed on the clear seasonal cycle and general decreasing trend displayed in
the satellite record of the Arctic sea ice extent (shown in Figure 1) is significant variability
on the annual timescale.

The seasonal growth and decline of Arctic sea ice is tied to the large variations in
insolation at high latitudes over the course of the year. During the winter when the daylight
hours are short or non-existent, the Arctic ocean cools sufficiently to allow ice to form,
attaining its maximum extent in March. As the daylight hours increase through spring
and summer, the Arctic warms and the ice melts back to reach its minimum extent in
early September. The variability observed on top of this seasonal cycle is in part due to
the interannual variability of the underlying climate, but also central to this variability is
the existence of strong feedbacks in the sea ice system. Positive feedbacks act to magnify
the effect of any small perturbation to the sea ice extent, while negative feedbacks dampen
perturbations. It is consequently not just the underlying climate variability that complicates
seasonal prediction, but also fluctuations in the strength of these feedbacks on different
timescales.

Due to the intrinsic sensitivity of the sea ice system to perturbations, the ability of
modern Global Climate Models (GCMs) to predict the Arctic sea ice extent seasonally
is limited. In this project, it is hoped that insight might be gained by application of
stochastic theory to an idealized sea ice model, which captures the essential physics of the
sea ice system while allowing for unmodelled variability by inclusion of a noise term. The
physical understanding derived from this study has implications for the interpretation of
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Figure 1: Area extent of Arctic sea ice since the beginning of the satellite era. Earlier
years are shown in cold colors, with later years in warmer colors. In addition to the general
decreasing trend over the satellite era, there is interannual noise in the ice extent, with a
maximum variability displayed in September. (Data Source: NSIDC)

GCM results concerning short term Arctic sea ice prediction, and helps identify the key
processes GCMs must capture if they are to be successful at seasonal forecasting.

1.2 Defining predictability

Predictability describes our ability to say something about the state of a system at some
future time, given a specific initial condition. Mathematically, there are several ways to
quantify what is intuitively understood by predictability. A measure frequently used to
make statements about the predictability of Arctic sea ice is the correlation coefficient
between sea ice anomalies at a given start month and subsequent months of increasing
lag time, as shown for the sea ice extent data from the satellite era in Figure 2A. The
decrease in the correlation coefficient with increasing lag is associated with a decline in
predictability. However, how the time variation of the correlation coefficient relates to
a stochastic interpretation of the system is not immediately obvious. Instead, a more
transparent measure of predictability is the standard deviation of anomaly trajectories for
a given point in time: if the standard deviation increases from a given start month to a
later month, we might expect predictability to decrease due to the divergence of trajectories
from nearby initial conditions. On the other hand, if the standard deviation decreases over
the forecast period, the convergence of trajectories might be associated with an increase in
predictability.

The standard deviation of the ice anomaly (once the seasonal cycle is removed) for the
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Figure 2: Two measures of predictability for the detrended Arctic sea ice extent satellite
data: (A) lagged correlation coefficients, and (B) path standard deviation. (Data Source:
NSIDC)

detrended sea ice extent satellite data is plotted in Figure 2B. The standard deviation is
seen to increase throughout the year from a winter minimum, to a maximum that coincides
with the sea ice minimum in September. This suggests poor predictability of the summer
minimum of Arctic sea ice in winter due to the divergence of nearby trajectories going from
March to September associated with the increase in standard deviation over this time. In
turn, this begs the question of whether a spring “predictability barrier” might exist for the
Arctic sea ice, similar to that discussed in the literature for El Niño prediction.

1.3 Model skill

The stochastic interpretation of predictability is closely related to the concept of skill,
defined in the modeling community as

skill ≡ 1− σ2
sim

σ2
ref

, (1)

where σref is the reference standard deviation of anomalies for a given period, calculated
from a long control run, and σsim is the standard deviation of runs from a given initial
condition. If the initial value problem yields the same variance as the reference, the model
has no skill. As the variance of the initialized model ensemble decreases relative to the
reference standard deviation, the model’s skill is said to increase.

In what follows, we use stochastic theory applied to a simple model of Arctic sea ice
to explain the physical origins of variations in the predictability of Arctic sea ice, and to
better understand the concept of skill. In Section 2 the simple model is introduced, and
the key features of its deterministic solutions explained. Section 3 treats the application of
stochastic theory to this model, and finally Section 4 considers the use of GCMs for seasonal
prediction in light of the findings of the previous section.
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2 A Simple Model for Arctic Sea Ice

2.1 Model description

By working with a simple model of the Arctic sea ice, it is hoped that the fundamental
features of the system that act to control the annual variations in predictability might be
deduced. The energy balance model of Eisenman & Wettlaufer (2009) [1] (hereon E&W09)
is appropriate for this purpose in that it captures the essential physics of the Arctic sea
ice, without additional complications. The model is based on a simplified version of the
thermodynamic model of [3] coupled to a two-stream model of the atmosphere, which feels
a heat flux convergence that depends on the meridional temperature gradient.

The model evolves the single variable E, which describes the latent heat of the sea ice or
the heat content of the ocean mixed layer, depending on whether the water is frozen or not.
In the case that ice is present, E is determined from the latent heat of freezing Li times the
ice thickness hi, while in the ice-free case E is the product of the ocean heat capacity cml,
the mixed layer depth Hml (assumed constant), and the ocean temperature Tml. Hence,

E ≡

{
−Lihi E < 0 (sea ice)

cmlHmlTml E ≥ 0 (ocean).
(2)

The energy variable evolves according to equation

dE

dt
= [1− α(E)]Fs(t)− F0(t) + ∆F0 − FT (t)T (t, E) + FB + ν0R(−E), (3)

where α is the state-dependent albedo, FB is the oceanic heat flux to the base of the ice,
and R is the ramp function defined such that ν0R(−E) represents a constant export of 10%
year−1 of the sea ice in the case with ice, and is zero otherwise. The terms F0 + FTT are
the linearization of the Stephan-Boltzmann equation for the emission of longwave radiation
about freezing temperature TFr (adapted to include the dependence of the atmospheric heat
flux on the meridional temperature gradient, and to allow the atmosphere to be partially
opaque), and ∆F0 is an adjustable parameter used to apply radiative forcing perturba-
tions to the model (to mimic increased atmospheric CO2 levels, for instance). For given
Fs, F0,∆F0, FT , and FB, to close the equations it remains to specify functional forms for α
and T .

The albedo of solid ice αi is very high compared to the substantially lower albedo of
open water αml. As sea ice melts, pools of meltwater appear on the surface, leads open up,
and the ice thins and eventually disintegrates. This is modelled in E&W09 by allowing the
albedo to decrease smoothly from αi to αml via

α(E) =
1

2
(αml + αi) +

1

2
(αml − αi) tanh

(
E

Lihα

)
, (4)

for thickness parameter hα.
The surface temperature is given by

T (t, E) =

{
−R

[
(1−αi)Fs(t)−F0(t)+∆F0

kiLi/E−FT (t)

]
E < 0

E
cmlHml

E ≥ 0,
(5)
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which expresses the energy balance in the three possible cases of an ice layer that is below
freezing, melting ice, and an ice-free ocean. If the ice is below the freezing point, E and T
are negative and ice growth occurs until a balance is reached between the surface radiative
fluxes and the upward heat flux in the ice. For ice at the freezing point, ablation may occur
and release latent heat, thinning the ice. These two regimes are expressed by the ramp
function in equation 5. When all the ice is melted, so E ≥ 0, the mixed layer is able to
absorb energy and raise its temperature (dependent on the mixed layer heat capacity cml
and depth Hml) to maintain radiative equilibrium.

2.2 Behavior of the deterministic model

For a sufficiently low forcing ∆F0, integration of the deterministic model yields a solution
with perennial sea ice, while for high ∆F0, an ice-free state results. In between, E&W09
find a stable seasonally ice-free state in the full nonlinear model, but show that this solution
is unstable in a partially linearized version of the model. Historically it has been proposed
that seasonal ice states must be unstable due to the ice-albedo feedback, which is always
positive. This has lead to concerns regarding a “tipping point” in the stability of the Arctic
sea ice, due to the possibility of hysteresis in the bifurcation diagram of such a system.
However, in the nonlinear model E&W09 find that competing longwave effects, which allow
thin ice to grow more quickly than thick ice, act to stabilize seasonal sea ice solutions. The
underlying structure of the system is still the same though, and additional heating once
this seasonally stable ice state has been reached could result in hysteresis behavior as the
system jumps to the permanently ice-free state.

A minimal model for a seasonally stable ice cover is analyzed in [4], in which it is deduced
that the minimal condition for stability of a seasonal ice state is that the seasonal cycle be
broken into more than two periods such that there may be heat loss by the ocean during
the period when the summer is ice-free. This follows intuitively from the understanding
that the ocean mixed layer must lose its accumulated heat before ice can form.

3 Stochastic Theory & its Implications for Predictability

While the deterministic deterministic E&W09 model captures the essence of the seasonal
cycle of Arctic sea ice, it was seen in the satellite data in Figure 1 that the real ice extent is
subject to small amplitude variability superposed on this cycle. To simulate this variability,
a noise term may be added to the governing ODE of the deterministic model, turning it
into the Stochastic Differential Equation (SDE)

dE

dt
= f(E, t) + σξ, (6)

where the term f(E, t) encapsulates all the right-hand side forcings of Equation 3.

3.1 Stochastic perturbation theory

The small magnitude of the noise in the sea ice extent in relation to the amplitude of its
seasonal cycle motivates the application of the stochastic perturbation theory developed by
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Moon & Wettlaufer (2013) [5], in which the solution to the SDE is sought as a perturbation
about the time-dependent ODE solution in terms of small parameter σ, which is the noise
magnitude.

Starting from the deterministic equation

dEs
dt

= f(Es, t), (7)

we suppose that the SDE
dE

dt
= f(E, t) + σξ (8)

is solved by E = Es + η(t), for η small, so that the right-hand side of Equation 8 may be
expanded about ODE solution Es as

dη

dt
≈
[
∂f

∂E

∣∣∣
Es

η +
1

2

∂2f

∂E2

∣∣∣
Es

η2 + ...

]
+ σξ (9)

= c(t)η + d(t)η2 + σξ, (10)

where time-dependent parameters c and d are defined such that c(t) ≡ ∂Ef |Es and d(t) ≡
∂2
Ef |Es/2.

It follows from the above that the time evolution of perturbations to the underlying
seasonal cycle of the zero-dimensional sea ice model are entirely governed at leading order
by the parameters c and d. These parameters vary over the course of the year, and display a
seasonal cycle just like the sea ice. Over short time periods for which perturbations remain
small and the above theory is valid, c and d may be considered constant to simplify analysis.
In what follows, a consideration of the system’s behaviour for constant c and d of different
signs will allow the roles played by c and d in determining the evolution of perturbations to
the sea ice, and their resultant impact on the predictability of the system, to be understood.

3.2 Numerical solution

To integrate Equation 10, the Euler-Maruyama method may be employed. The Euler-
Maruyama method is an adaptation of the Euler method for SDEs. At each timestep in the
standard Euler integration, a Guassian random variable is drawn from normal distribution
of mean zero and standard deviation 1. This value is scaled by the size of the timestep and
the noise amplitude, and added to account for the noise term in the SDE. Explicitly

ηt+1 = ηt + f(ηt)dt+ σdW, (11)

where dW ∼ N(0,
√

dt). If an ensemble of such integrations are run for a given initial
condition, each with different realisations of the Guassian noise term at each timestep, a
pdf of the solution may be obtained from the spread of the ensemble at a given time. This
method is explained in full in [2].

Ensembles of integrations from a given small initial perturbation for constant c and d
are shown in Figure 3. For different signs of c, very different behaviour is observed, with
the divergence of trajectories for c > 0, and convergence for c < 0. To understand this
behaviour, and the importance of the values of c and d, an analytical solution is sought.
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Figure 3: Realisations of integrations of Equation 10 using the Euler-Maruyama method
for c > 0 (left) and c < 0 (right). The ensemble mean is shown in black.

3.3 Analytical solution

Expanding η in powers of the (small) noise magnitude σ as η = η0 + ση1 + σ2η2 + ..., and
considering the equation at subsequent orders of σ,

O(1) :
dη0

dt
= c(t)η0 + d(t)η2

0

O(σ) :
dη1

dt
= [c(t) + 2d(t)η0(t)] η1 + ξ

O(σ2) :
dη2

dt
= [c(t) + 2d(t)η0(t)] η2 + d(t)η1(t)2,

...

(12)

It is immediate that the equation is deterministic at leading order, with solution

η0 =
cη0(0)ect

c+ dη0(0)− dη0(0)ect
, (13)

whose evolution is described by potential V (t) ≡ −1
2cη

2
0− 1

3dη
3
0. The shape of this potential

for the different sign cases is shown in Figure 4. As we supposed η is a small perturbation
to the deterministic solution and so close to zero, the salient point to take from Figure 4
is that zero is a steady state for c < 0, and and unsteady state for c > 0. In this respect
c determines the stability of the system, explaining the divergence seen in the numerical
solution for c > 0, and the convergence for c < 0. The parameter d, meanwhile, controls the
concavity of the potential, and influences the asymmetry of the response to positive versus
negative perturbations.
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Figure 4: A schematic of the potential governing the evolution of the deterministic first
order solution to the SDE.

372



3.3.1 Order σ

The stochastic term ξ enters the equation at first order in σ, so it is possible to write down
the Fokker-Planck equation for the evolution of the pdf ρ of η1 for a given initial condition:

∂ρ

∂t
= −

[
c(t) + 2d(t)η0(t)

] ∂
∂η1

(η1ρ) +
1

2

∂2ρ

∂η2
1

. (14)

This equation is complicated by the fact that the O(σ) equation is non-autonomous, due
to c, d, and η0 being time-dependent. To solve, the Fourier transform in η1 is taken to give

∂ρ̂

∂t
= c̃k

∂ρ̂

∂k
− k2

2
ρ̂, (15)

where ˜c(t) ≡ c(t) + 2d(t)η0(t). The characteristic equations for this PDE are

dk

dt
= −c̃k (16)

dρ̂

dt
= −k

2

2
ρ̂, (17)

which integrate to give

k = k0 exp

(
−
∫ t

0
c̃(s) ds

)
(18)

ρ̂ = exp

(
−
∫ t

0

k2

2
ds

)
. (19)

Substituting for k in the equation for ρ̂, taking k0 outside of the integral and then substi-

tuting back using k0 = k exp
(∫ t

0 c̃(s) ds
)

, ρ̂ is found to be

ρ̂ = exp

[
−k

2

2

(
e2

∫ t
0 c̃(s) ds

∫ t

0
e−2

∫ s
0 c̃(r) dr ds

)]
. (20)

Finally, on inverting the Fourier transform we have

ρ =
1√

2πσT
exp

(
− η2

1

2σ2
T

)
, (21)

where the time-evolving standard deviation σ2
T is described by

σ2
T = e2I(t)

∫ t

0
e−2I(s) ds, (22)

I(t) =

∫ t

0

[
c(s) + 2d(s)η0(s)

]
ds. (23)

From this it can be deduced that the standard deviation, and hence the predictability, of
perturbation trajectory ensembles is dependent on the parameters c and d. For negative
c there is the possibility that the standard deviation will converge with time, and hence a
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Figure 5: Left to right: Time evolution of the pdf of a perturbation η once its deterministic
O(1) part has been subtracted for (A) c > 0 and (B) c < 0 (c, d constant). Numerical
integrations are shown in the blue histograms, and the O(σ) analytical solution is overlaid
in red.

degree of predictability will be maintained, while for positive c it can be seen that σT will
diverge, and information will be lost. This agrees with the interpretation of c as defining
the stability of the system at first order, as noise is magnified when the system is in an
unstable state, and damped when the system is stabilizing.

This analytical solution is compared to the pdfs computed numerically from ensemble
integrations of the SDE in Figure 5. In Figure 5A, for case c > 0 when the deterministic
solution is close to an unstable steady state, the analytical solution agrees with the numer-
ically observed rapid divergence of trajectories. In the stable case c < 0 shown in Figure
5B, both the analytical and numerical solution display the maintenance of a tight Guassian
centred about the deterministic solution. There is some divergence in the tails between the
analytical and numerical solutions for the case c > 0, but overall the agreement is fair.

The role of parameter d is explored in Figure 6, in which the time evolution of standard
deviation σ2

T is plotted for various sign choices of c and d. There is either exponential growth
or convergence of the standard deviation, depending on the sign of c, as seen in Figure 5.
The parameter d has a lower order effect on the rate of this growth or convergence.

3.3.2 Approximations for small perturbations at small time

To understand the influence of c and d more clearly in Equation 22, consider the evolution of
a small perturbation over a short time period, so ε ≡ dη0(0)� 1 and ct� 1. Such solutions
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Figure 6: Time evolution of the O(σ) standard deviation for various constant values of c
and d.

are relevant as perturbations to the Arctic sea ice are generally small in comparison to the
climatological value, and the initial evolution of the stochastic solution is of most interest
in determining the roles of c and d.

On introducing small parameter ε, we have that by definition,

c̃ = c+
2cεect

c+ ε(1− ect)
. (24)

So substituting into the expression for I(t),

I(t) = ct+ 2

∫ t

0

cεecs

c+ ε(1− ecs)
ds

= ct+ 2log

(
c

c+ ε(1− ect)

)
, (25)

assuming constant c and d. It follows that

σ2
T = e2I(t)

∫ t

0
e−2I(s)ds

= e2ct

(
c

c+ ε(1− ect)

)4 ∫ t

0
e−2cs

(
1 +

ε

c
(1− ecs)

)4
ds. (26)

Thus far, no assumptions have been made other than that c and d are constants. If it is
now supposed that ε is small, the binomial parts of the above expression for the standard
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deviation may be expanded to give

σ2
T ' e2ct

(
1− 4ε

c
(1− ect)

)∫ t

0
e−2cs

(
1 +

4ε

c
(1− ecs)

)
ds

= e2ct

(
1− 4ε

c
(1− ect)

)(
1

2c
(1− e−2ct)− 2ε

c2
(1− e−ct)2

)
=

(
1 +

4ε

c
(ect − 1)

)(
1

2c
(e2ct − 1)− 2ε

c2
(ect − 1)2

)
. (27)

Then to O(ε), the standard deviation becomes

σ2
T '

1

2c
(e2ct − 1) + ε

2

c2
ect(ect − 1)2. (28)

From this approximate expression, the role of c and d deduced from numerically integrating
the full expression for the standard deviation can be seen directly. If c is negative, then the
limit as t→∞ can be found as −1/2c, whereas if c is positive, the variance grows without
bound with time. The parameter d only enters in combination with the initial perturbation
η0(0) through ε ≡ dη0(0). A positive value of ε increases the growth in the variance at
second order, so positive perturbations to the sea ice extent lose predictability more rapidly
when d > 0 than when d < 0, whereas negative perturbations lose predictability faster for
d < 0.

Applying the small time limit ct� 1, the exponentials may be expanded to give

σ2
T ' t(1 + (2ε+ c)t), (29)

demonstrating the role of both c and d (through the parameter ε) in the divergence of
trajectories at small time. As discussed previously, both positive c and positive ε contribute
to the loss of predictability due to the increase of σ2

T with time.

3.3.3 Order σ2

At O(σ2), the stochasticity is no longer explicit in the η2 equation, but enters through the
appearance of the stochastic variable η1. To obtain a Fokker-Planck equation at second
order then, we return to equation 10, and write down Fokker-Planck equation

∂ρ

∂t
= − ∂

∂η
(c̃η + dη2)ρ+

σ2

2

∂2ρ

∂η2
. (30)

Now rescaling by defining y such that η = σy,

∂ρ

∂t
= − ∂

∂y
(c̃y + dσy2)ρ+

1

2

∂2ρ

∂η2
, (31)

the Fokker-Planck equation may be expanded in powers of σ as

O(1) : ∂ρ0
∂t = − ∂

∂y (c̃yρ0) + 1
2
∂2ρ0
∂y2

O(σ) : ∂ρ1
∂t = − ∂

∂y (c̃yρ1) + 1
2
∂2ρ1
∂y2
− ∂

∂y (dy2ρ0)
...

(32)
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Due to the rescaling employed, the O(1) equation is identical to that seen previously in
the O(σ) problem, and the O(σ2) solution comes from the O(σ) Fokker-Planck equation
above. Note that the form of the higher order equation is the same as that of the lower
order equation, but with an additional forcing term determined by the lower order solution.

To solve, a Fourier transform is taken in y to give

∂ρ̂1

∂t
= c̃k

∂ρ̂1

∂k
− k2

2
ρ̂1 + idk

∂2ρ̂0

∂k2
. (33)

Substituting in the known Guassian form of ρ̂0, the method of characteristics may be applied
similarly to before to solve for ρ̂1. It is found that

ρ̂1 = id
[
S(t)k3 −M(t)k

]
exp

(
−
σ2
Tk

2

2

)
, (34)

for: S(t) = e3I(t)

∫ t

0
σ4
T e

−3I(s) ds, (35)

M(t) = eI(t)
∫ t

0
σ2
T e

−I(s) ds. (36)

Inverting for ρ1,

ρ1 = dM(t)
∂ρ0

∂y
+ dS(t)

∂ρ0

∂y3
. (37)

So recalling that y = η/σ,

ρ ≈ ρ0 + σρ1 (38)

= ρ0 + σ2dM(t)
∂ρ0

∂y
+ σ4dS(t)

∂3ρ0

∂y3
(39)

=
[
1− dM

σ2
T

η +
dS

σ4
T

(3η − η3)
]
ρ0. (40)

3.3.4 Evolution of moments

The analytical form of the probability distribution calculated to second order in σ has the
following moments

< ηρ > = −σ2dM (41)

< η2ρ > = (σσT )2 (42)

< η3ρ > = σ4(3dMσ2
T − 6dS). (43)

The distribution skewness, defined as

Sk ≡ < η3ρ > −3 < ηρ >< η2ρ > − < ηρ >3

< η2ρ >3/2
(44)

can be calculated from these moments as

Sk =
σ

σ3
T

[
− 6dS + 6dσ2

TM + σ2d3M3
]
. (45)
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Figure 7: Evolution of the perturbation pdf skewness with time, for varyious constant values
of parameters c and d.

This is plotted in Figure 7. Inclusion of the second order correction yields little improvement
of the analytic solution, but it allows the interpretation of the parameter d as the asymmetry
present in the system, when coupled with initial condition η(0). For η(0)d positive, the
skewness evolves to positive values, while for η(0)d negative, the skewness becomes more
and more negative with time. This may be intuitively understood by referring to the
potentials in Figure 4, in which it can be seen that if η(0)d is positive, the initial condition
is on the same side as the origin as the unstable steady state, while if η(0)d is negative, it
will be on the same side of the origin as the stable steady state. Depending on the stability
of this nearby secondary fixed point, the tails of the distribution evolve differently, resulting
in a positive or negative skewness.

3.4 Physical interpretation

From the simple model of Arctic sea ice, it has been seen that increases in the standard de-
viation of trajectories are caused by c positive, while convergence of trajectories is achieved
for c negative. Returning to the definition of c as ∂Ef |ES

, c may be interpreted as rep-
resenting feedbacks in the sea ice system. For c positive, the forcing f increases with the
ice thickness variable E implying that positive feedbacks dominate, while for c negative,
an increase in E causes a reduction in the ODE forcing so that the system is controlled by
negative feedbacks. This interpretation allows a physical explanation for the seasonal vari-
ation of the sea ice extent standard deviation in terms of the annual variation of feedback
strengths in the Arctic.

The two main relevant feedbacks in the Arctic are the ice-albedo feedback and the
longwave stabilization feedback. The ice-albedo feedback refers to the effect of changes in
surface albedo with ice thickness and extent. Any initial ice melt reduces the surface albedo,
causing more solar radiation to be absorbed, resulting in further melting. Conversely, a
positive perturbation to the ice thickness or extent increases the surface albedo so that
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Figure 8: A schematic of the seasonal variation in trajectory standard deviation, and the
physical mechanisms that control this. The spreading of trajectories in spring and summer
is associated with the dominance of the positive ice-albedo feedback during this time of
year, while the dominance of the negative longwave stabilization feedback in fall causes the
re-focussing of trajectories going into the winter months.

more radiation is reflected, the system cools, and more ice is able to form. The ice-albedo
feedback is therefore a positive feedback. The longwave stabilization feedback, on the other
hand, describes the faster growth of thin ice than thick ice due to the nonlinearity of
the system, and is a negative feedback. If there is a negative perturbation to the sea ice
thickness, the speed at which is grows increases, pushing the system back to equilibrium.
Similarly, the growth of positive perturbations is arrested, again stabilizing the system.

On a seasonal basis, the strength of the ice-albedo feedback varies in step with the solar
radiation. In the winter when there is no sunlight to produce a positive ice-albedo feedback,
the negative longwave stabilization feedback dominates, and we would anticipate a negative
value for c. As the insolation increases through spring, the ice-albedo feedback increases
in strength, raising the value of c to its summer maximum. As the value of c controls
the growth of the standard deviation of trajectories, this explains the observed seasonal
variation in sea ice extent standard deviation, which is low during winter and increases to a
September maximum in step with the Arctic insolation levels. This situation is illustrated
in the schematic in Figure 8.

The second parameter of relevance that came out of the preceding analysis was ε; the
combination of d ≡ ∂2

Ef |ES
/2 and η0(0). It was seen that predictability was lost more

quickly in the case of positive ε. The simple model shows the seasonal cycle of d as following
a similar pattern to that of c; positive in the spring and summer, and negative over winter.
As ε comprises both d and the sign of the initial perturbation, this suggests faster loss of
predictability following anomalously high ice extents (η0(0) > 0) than for anomalously low
spring ice extents (η0(0) > 0) in spring when d > 0, but the converse in fall when d > 0.

3.4.1 Changing predictability in a warming climate

With the aid of the physical framework outlined above, it is possible to attempt to answer
the question of how the predictability of the Arctic sea ice extent might change in the
context of a warming climate. Running the simple model of Eisenmann & Wettlaufer with
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Figure 9: Steady state seasonal cycle of parameters c and d under increasing radiatve forcing
F0 from the E&W09 model. The seasonal cycles of both c and d are amplified as the forcing
is increased from 0.4Wm−2 to 0.7Wm−2.

increased values of radiative forcing F0, the annual cycle of c is seen to amplify under global
warming as shown in Figure 9. As c becomes more positive in summer months in a warmer
climate, it might be anticipated that the predictability of the September minimum of Arctic
sea ice will decline under global warming. Conversely, as c is seen to become more negative
during winter as F0 increases, the predictability of the winter maximum might increase.

Although the influence of dε on predictability is secondary to that of c, the amplification
of the seasonal cycle of d could likewise contribute to a worsening predictability of summer
sea ice minima following positive perturbations to the spring ice extent, but might act to
improve predictability following anomalously low spring extents. Again, the converse would
be true for the prediction of the winter sea ice maximum, when the sign of d is reversed.

3.5 The backward equation

From analysis of the Fokker-Planck equation, it has been seen that predictability in the
sense of trajectory standard deviation is limited by the dominance of positive feedbacks
in the sea-ice system in spring. However, given an observed sea ice extent in September,
what does this feature of the system mean for our ability to pinpoint the origin of such an
anomaly? This problem calls for application of the Kolmogorov Backward Equation (KBE),
which gives the pdf at some initial time s < tend ≡ 0 of conditions that could have led to
solution ηend at t = tend (where stochastic perturbation is applied as before so that η is a
small anomaly superposed on the seasonal sea ice solution).
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From the O(σ) expansion fo Equation 10, the KBE may be written down as

−∂ρ
∂s

=
[
c(s) + 2d(s)η0(s)

]
η1
∂ρ

∂η1
+

1

2

∂2ρ

∂η2
1

. (46)

Fourier transforming and applying the method of characteristics as for the forward equation,
the standard deviation of the leading order Guassian solution is found to be

σ2
TB = e−2IB(s)

∫ 0

s
e2IB(r) dr (47)

IB(s) =

∫ 0

s

[
c(r) + 2d(r)η0(r)

]
dr . (48)

This is plotted backwards in time in Figure 10.
Figure 10 demonstrates that the evolution of the standard deviation of trajectories

going back in time is controlled by the stability parameter c just as for forward trajectories.
However, unlike for the forward case, a positive value of c leads to trajectories converging
backwards in time, while a negative value of c causes them to diverge. Returning to the
interpretation of c as the stability of the system, this can be understood in terms of the
possible initial conditions that could have produced a given anomaly. If the system is in a
stable regime (c < 0), trajectories may have originated from a large range of ICs within the
potential well, so looking back in time the pdf of ICs that could have resulted in a given
anomaly is broad. On the other hand, if the system is unstable (c > 0), there is a very low
probability of the IC being far from the origin, as this is a potential hill when the system
is unstable.

If the KBE standard deviation is plotted further back in time for the stable case, then
the direction of the perturbation (controlled by asymmetry parameter η0(0)d) is found
to matter, with some divergence in trajectories occurring if this places the perturbation
on the side of the origin with a potential well, as opposed to further convergence if the
perturbation was on the opposite side of the origin (see Figure 4). While this agrees with
the interpretation above, its physical relevance may be limited by the fact that stochastic
perturbation theory is only valid for small perturbations, as so may fail far back in time
when trajectories are far from the origin.

As for the forward equations, approximations for small perturbations at small time can
be made for the backward equation to see directly the role of c, d, and η0(0) in the equation.
For small parameter ε defined as before, for constant c and d the expression for IB(s) is

IB(t) = ct+ 2

∫ t

0

cεe−cs

c+ ε(1− e−cs)
ds

= ct− 2log

(
c

c+ ε(1− e−ct)

)
, (49)

where the change of variables t ≡ −s has been made in the definition of IB for ease of
comparison with the forward equation. Then

σ2
TB = e−2IB(t)

∫ t

0
e2IB(s)ds

= e−2ct

(
c

c+ ε(1− e−ct)

)4 ∫ t

0
e2cs

(
1 +

ε

c
(1− e−cs)

)4
ds. (50)
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Figure 10: Trajectory standard deviation evolution backward in time, as calculated from
applying the Kolmogorov Backward Equation to the O(σ) problem for various constant
values of parameters c and d.

Now assuming that ε is small, the binomials may be expanded as before, allowing integration
for the approximate expression

σ2
B '

(
1− 4ε

c
(1− e−ct)

)(
1

2c
(1− e−2ct) +

2ε

c2
(1− e−ct)2

)
. (51)

Then to O(ε),

σ2
TB '

1

2c
(1− e−2ct)− 2ε

c2
e−ct(1− e−ct)2. (52)

It can immediately be seen from this expression that the influence of c on the standard
deviation has changed signs; now a positive value of c allows the variance to converge, while
negative c leads to exponential growth of the variance with time. Similarly, the sign of ε is
flipped, with positive dη0(0) now reducing the divergence of trajectories.

These findings bode well for the attribution of a given year’s September sea ice minimum
to events earlier in the season, even if the forward equation suggests that the prediction of
this minimum is inherently limited. There have been attempts in the literature to trace
anomalous sea ice extents in specific years to the spring melt pond fraction [6], or the
occurrence of given winter storms [7]. In particular, our understanding of the role of ε
suggests attribution of extreme summer minima (i.e. negative η0(0)) should be easier than
the attribution of maxima (positive η0(0)) when d has a positive value as in summer.
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3.6 Understanding skill

Returning to the concept of skill defined in the Section 1.3, we may now relate this to the
system’s stability in a similar manner to the above treatment of predictability. Recall that

skill ≡ 1− σ2
sim

σ2
ref

, (53)

for reference standard deviation σ2
ref, and simulation standard deviation σ2

sim. In the context
of the simple model considered previously, σ2

sim is the quantity σ2
T defined in Equation ??.

To calculate σ2
ref, the long time limit of the O(σ) SDE is taken following [5], which gives

σ2
ref = exp

(
2

∫ t̃

0
c(s) ds

)[
It̃ +

1

e2γ − 1
IT

]
, (54)

where

It̃ ≡
∫ t̃

0
exp

(
−2

∫ r

0
c(s) ds

)
dr, (55)

IT ≡
∫ T

0
exp

(
−2

∫ r

0
c(s) ds

)
dr (56)

γ ≡ −
∫ T

0
c(s) ds, (57)

for t = nT + t̃, where T is the period length of c, and t̃ = t mod T .
To make the skill calculation numerically tractable, consider a simplified two-season

model in which c = cP > 0 for six months (‘spring’), and c = −cN < 0 for six months
(‘fall’);

c(t) =

{
cP 0 ≤ t < 1/2

−cN 1/2 ≤ t < 1,
(58)

where cP and cN are positive and cN > cP for stability. In this system,

IT =

∫ 1/2

0
exp

(
−2

∫ r

0
c(s)ds

)
dr +

∫ 1

1/2
exp

(
−2

∫ r

0
c(s)

)
dr

=

∫ 1/2

0
e−2cP rdr +

∫ 1

1/2
exp

(
−cP + 2cN (r − 1

2
)

)
dr

=
1

2cP
(1− e−cP ) +

1

2cN
(ecN−cP − e−cP ). (59)

Also,

γ = −
∫ 1/2

0
cPds+

∫ 1

1/2
cNds

=
1

2
(cN − cP ). (60)
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The value of It̃ depends on which half of the year the model is in. When 0 ≤ t̃ < 1/2,

It̃ =

∫ t̃

0
exp(−2cP r)dr =

1

2cP
(1− e−2cP t̃), (61)

while if 1/2 ≤ t̃ < 1,

It̃ =

∫ 1/2

0
exp(−2cP r)dr +

∫ t̃

1/2
exp

(
−cP + 2cN (r − 1

2
)

)
dr

=
1

2cP
(1− e−cP ) +

1

2cN
e−(cP +cN )(e2cN t̃ − ecN ). (62)

The above expressions give reference standard deviation

σ2
ref = e2cP t̃

[
1

2cP
(1− e−2cP t̃)+

1

e(cN−cP ) − 1

(
1

2cP
(1− e−cP ) +

1

2cN
(e(cN−cP ) − e−cP )

)]
(63)

in the first part of the year (i.e. 0 ≤ t̃ < 1/2), and

σ2
ref = ecP +cN−2cN t̃

[
1

2cP
(1− e−cP ) +

1

2cN
e−(cP +cN )(e2cN t̃ − ecN )

+
1

e(cN−cP ) − 1

(
1

2cP
(1− e−cP ) +

1

2cN
(e(cN−cP ) − e−cP

)]
(64)

in the latter part of the year (1/2 ≤ t̃ < 1).
Figure 11 shows the time evolution of the skill for such a model, in the case of a spring

start of for the case of a fall start. It is apparent that skill is lost more rapidly when the
system is in the unstable spring state than when the model is in the stable fall state. This
agrees with the role of the stability parameter c in controlling whether nearby trajectories
converge or diverge, as explained previously.

A concept often noted in the literature on model skill is that of reemergence. In general,
model skill is expected to decrease monotonically away from a given initial condition. How-
ever, some models exhibit a slight increase in skill following their initial decline; a feature
referred to as reemergence. One hypothesis put forward to explain this phenomenon is that
of natural variability. Initial work has suggested that the simple model may demonstrate a
reemergence of skill at long time if forced periodically, which motivates further consideration
of this concept in future work.

4 Application of Results to Global Climate Models

In practice, the seasonal prediction of Arctic sea ice is not done using simple one-dimensional
models, but using high resolution Global Climate Models (GCMs). From a consideration
of the origins of predictability in a simple model, however, it is evident that GCMs must
be capable of capturing the important feedbacks at play in the Arctic (principally, the
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Figure 11: The decrease in skill over time for different start months; one during the unstable
season (spring; c = 0.1) and one going into the stable season (fall; c = −2.0).

positive ice-albedo feedback and the negative longwave stabilization feedback) if they hope
to predict Arctic sea ice on a seasonal basis. It might be expected that if such feedbacks are
incorporated in the GCMs, they will show the same seasonal variation in standard deviation
seen in the satellite data and explained by the simple model considered above.

4.1 CMIP5 data

To assess the success of GCMs at reproducing the seasonal cycle in the standard deviation
sea ice anomaly trajectories that forms the basis of our understanding of predictability,
data from the CMIP5 model ensemble is analysed. CMIP5 is the fifth Climate Model
Inter-comparison Project, and gathers state of the art GCMs for a series of standardised
runs with common forcings to enable comparison between the models. Available statistics
include the ice thickness, the sea ice extent, and the ice volume. From the ice extent, a
secondary metric known as the Equivalent Ice Extent (EIE) may be calculated, which is
the area within the sea ice margin. This may be used to avoid biases resulting from the
location of the ice in relation to land.

To analyse the GCM sea ice predictability, timeseries of the statistics listed above were
taken from the CMIP5 historical runs. These runs start between 50 and 150 years before
present, depending on the model, and are run through to the modern day with conditions
mimicking those of the last century. For each model, the data was detrended, and its
seasonal cycle was removed. The remaining timeseries anomalies were then split into years,
with each year considered an independent anomaly trajectory. This enabled calculation of
the annual cycle of the trajectory standard deviation, both for individual models and for
the CMIP5 data as a whole, as shown in Figure 12 for the EIE.
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Figure 12: Annual evolution of the standard deviation of the EIE anomaly for the different
models included in CMIP5, with the multimodel standard deviation shown as the black
dashed line.

It is evident from Figure 12 that the models, in general, do not capture the seasonal cycle
in the sea ice anomaly standard deviation seen in the satellite data. This is problematic
given the relation of the seasonal variation in standard deviation to the annual cycle in
feedback strengths, which is fundamental to the problem of seasonal prediction. Some
insight can be gained into why the models might be failing by plotting the EIE before the
seasonal cycle is removed (Figure 13). In Figure 13 it is seen that the models may be split
into two rough categories; those that capture the naturally observed sinusoidal seasonal
cycle in the Arctic sea ice, and those that have a somewhat unnatural cycloidal-shaped
seasonal cycle. If the ice extent is considered instead of the EIE, however, this cycloidal
behaviour is eliminated and all the models display a sinusoidal seasonal cycle. This suggests
that the models may have been tuned to fit the ice extent rather than the EIE, resulting
in the strange seasonal cycles seen in Figure 13, and a loss of the statistical behaviour
pertinent to seasonal prediction.

It is hoped that the models might succeed better at reproducing the statistics of the ice
thickness and ice volume, as these metrics are dominated by the less noisy multi-year ice,
and consequently not as prone to the large interannual fluctuations experience by the sea
ice extent.

4.2 Ensemble size & statistic convergence

When using GCM runs to make statements about the Arctic sea ice, a further issue is that
of ensemble size. Under the assumption of independence, the CMIP5 data might be thought
of as providing a collection of stochastic trajectories of Arctic sea ice extent. How many
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Figure 13: The seasonal cycle of Equivalent Ice Extent (EIE) for a selection trajectories
from each of the CMIP5 models. Left: those models that capture a sinusoidal seasonal
cycle, right: those models with a cycloidal seasonal cycle.

models then are needed to make robust statistical statements about the behaviour of ice,
say under a forcing like that associated global warming?

In Figure 14, the simple model SDE is integrated for increasing ensemble sizes ranging
from 10 to 1000, and the time evolution of the resultant standard deviation is compared
to that computed from the analytic solution. Convergence occurs relatively quickly, with
ensemble sizes of around 50 producing standard deviations that are in reasonable agreement
with the analytic result. Even such a modest ensemble size is somewhat larger than the
number of models included in CMIP5, though. This should be taken into consideration
when drawing conclusions from GCM data derived from a limited number of runs.

5 Conclusions & Future Work

The application of stochastic perturbation theory to a simple model has allowed the annual
variations in the predictability of Arctic sea ice to be traced back to the stability of the
system, which arises from the presence of feedbacks. The dominance of the positive ice-
albedo feedback in spring makes the system unstable, resulting in low predictability of the
sea ice minimum going into summer. The negative longwave stabilization feedback in fall,
however, focusses sea ice anomaly trajectories going into winter, increasing predictability
during this period. It was seen that the problem of attribution works in reverse, with an
unstable system making anomalies easy to attribute to events earlier in the season, and a
stable system complicating attribution.

It was further shown that the system stability may be directly related to the concept
on model skill. In the unstable regime (i.e. spring), model skill drops off faster than in
the stable regime (i.e fall). This is likewise a consequence of trajectories diverging away
from an initial condition when positive feedbacks dominate, and converging when negative
feedbacks dominate. Change in the strength of the ice-albedo and longwave stabilization
feedbacks under global warming would alter the stability properties of the system, affecting
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Figure 14: Convergence of the standard deviation from the numerical integration of ensem-
bles to the analytically computed standard deviation when the system is in a stable regime
(left) and an unstable regime (right).
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our ability to predict the summer and winter sea ice extents.
A brief analysis of GCM data suggests that current generation models may experience

difficulty in the seasonal prediction of Arctic sea ice as their failure to capture the annual
cycle of sea ice variance suggests difficulty in reproducing principal physical feedbacks that
underlie the evolution of sea ice anomalies.

It should be noted that the methodology presented in this project is by no means
constrained to the Arctic sea ice system, but may in fact be applied to any problem for
which there is relatively small magnitude noise superposed on a strong periodic cycle. As
such, future work might focus on using this framework to consider other climate signals for
which seasonal or interannual prediction is of interest.
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