
Fluid-Structure Interactions in the Living
Environment

Schedule:
1. June 20: [MS] A primer on continuum and fluid mechanics. Mass conservation, momentum

balance, the Eulerian and Lagrangian frame. Boundary conditions.
2. June 21: [MS] Canonical fluid-structure problems: elastic structures interacting with high-speed

flows. Flags, streamlining. Mathematical approaches: boundary integral methods, unsteady
Kutta condition, elasticity, conformal mapping methods.

3. June 22: [MS] Flapping flight: symmetry-breaking and the transition to flapping flight. Studying
collective flight through simple models and experiments.

4. June 23: [PH] High Re fluid-structure interactions in sports: sailing, ski jumping, cycling, kite
boarding.

5. June 24: [PH] Low Reynolds number swimming introduction: RFT and a slender-body theory
teaser, three-link swimmer, single flagellum, two flagella, optimization.

6. June 27: [MS] Low Reynolds number phenomena. Nonlocal Slender-body theory and numerical
methods for many body interactions; Buckling of elastic bodies by flow, and anomalous
stresses.

7. June 28: [MS] Collective behavior at low Reynolds number. Bioactive suspensions, simulations,
continuum theories. Fluid-structure interactions in cellular biomechanics.

8. June 29: [PH] Thin films with elastic boundaries: crawling, peeling, adhesion, soft objects
moving near rigid boundaries.

9. June 30: [PH] Hydrodynamics of textured surfaces: hairy textures, symmetry-breaking,
Darcy-Brinkman flow.

10. June 31: [PH] TBD
Some useful reference texts:

 Incompressible Fluid Dynamics:
George Batchelor – An Introduction to Fluid Dynamics
D.J. Acheson – Elementary Fluid Dynamics
C. Pozrikidis – Boundary Integral and Singularity Methods for Linearized Viscous Flow

 Complex Fluids and Solids
R.G. Larson – The Structure and Rheology of Complex Fluids
G.A. Holzapfel – Nonlinear Solid Mechanics
Doi & Edwards – The Theory of Polymer Dynamics

 Bio Mechanics, Fluids, Locomotion
S. Childress – Mechanics of Swimming and Flying
S. Vogel – Life in Moving Fluids
S. Vogel – Comparative Biomechanics
R.M. Alexander – Principles of Animal Locomotion



(1) Basic concepts of fluid and continuum mechanics

The volume of fluid V and the velocity field.
Consider a volume V filled with a fluid or continuous material. At each time t and at each point

x the fluid has a velocity ux, t and density x, t. Describing the fluid flow as passing through a
fixed (lab) coordinate frame is called the Eulerian frame.
Notation:

x  x,y, z  x1,x2,x3
u  u,v,w  u1,u2,u2

The basic constituents of the velocity field – translation, deformation,rotation
Consider a steady flow, fixing x and considering a nearby point x  r:

ux  r  ux  ux r O|r|2
break up into symmetric and anti-symmetric parts
 ux  12 u  ur  12 u  ur
 ux  E r W r

w. u ij  ui/x j called the rate-of-strain tensor, and E ij  ui/x j  uj/x i/2 (the symmetric
rate-of-strain tensor) and Wij  ui/x j  uj/x i/2. The velocity field can be decomposed as
1. A translation ux
2. A pure straining flow: E is a symmetric matrix, with 3 real eigenvalues  i and 3 associated,

mutually orthogonal eigenvectors pi.
trE  uix i    u  

i
 i

Recall that the trace is invariant under similarity transformations.
 i’s are called the principal rates-of-strain
pi’s are called the principal axes of strain

Locally



drdt  Er Wr
Consider first the linear system

r  Er  PP1 r, with ii   i
Setting

  P1 r    
The local effect of E is to deform, through compression and expansion, a ball centered at r  0
into an ellipsoid whose principal axes are the principal axes of strain. The velocity Er is called
a pure straining flow.
Example:

E 
1 0 0
0 1 0
0 0 2

An incompressible straining flow
 trI/3  trI/3
 S   ur0I/3 S I/3

By construction, trS  0   i  iS. Hence the velocity field Sr is divergence free and induces
no change in volume, while Ir r is a pure (isotropic) compression or expansion.

3. R is an anti-symmetric matrix with purely imaginary eigenvalues

W  12
0 3 2
3 0 1
2 1 0

where     u is called the vorticity. Vorticity is a fundamental quantity in incompressible
fluid dynamics.



Wr  12
2r3  3r2
3r1  1r3
1r2  2r1

 12   r

The velocity field Wr is a rigid-body rotation (and is divergence free), w. angular velocity 12 .
Note

r 12   r 
ddt r  r  0 fixed length
ddt r    0 fixed angle

 generates a cone upon which r moves.
In summary: The local flow is composed of (i) a translation; (ii) a pure straining flow, itself

decomposable into an incompressible part, and an isotropic expansion or compression; (iii) a rigid
body rotation.
Conservation of Mass

Consider a fixed subvolume V0  V with outward normal n . The mass of V0 at time t is:
MV0, t  V0

dVxx, t

The flux of mass through an Eulerian volume V0
The rate of change of MV0, t is balanced by the flux of mass through its boundary V0, or

ddt V0
dVx  V0

dSx  u n   #   
This is the integral form of mass conservation. Using the divergence theorem we can write



V0
dVx t     u  0

As V0 was arbitrary, this gives the continuity equation:

t  x   u  0   #   

which is a PDE governing the evolution of material density in a moving fluid or continuous material,
and is called the differential form of mass conservation. j  u is called the mass density flux.
The Lagrangian formulation

The quantities u and  have been expressed in the Eulerian frame, e.g.,  is measured at a fixed
point x. In the Lagrangian frame a quantity, say , is measured in the frame of moving fluid. Let
Xt satisfy

dXdt  uXt, t with X0  X0
The function Xt is called the Lagrangian, material, or particle path. Consider Xt, t, that is,
the evolution of fluid density along a Lagrangian path.

A Lagrangian path
Then

ddt Xt, t 
t x, t  X  xx, t

xXt
 t  u  x xXt

The operator DDt  t  u x is called the Lagrangian, material, or substantial derivative. It is the
Eulerian expression for the time-rate-of-change of quantities along Lagrangian paths. And so

D
Dt   x  u   #   

Some properties of the substantial derivative:
 DDt fg  f Dg

Dt  g Df
Dt plus other usual aspects of a derivative

 Df
Dt  0  fXt, t  fX0, 0, i.e., f is conserved along particle paths.

Previously we had considered a fixed, or Eulerian volume V0. Now, let t be a time
dependent volume moved by the flow from 0:



The deformation of the  under the flow
That is, solve

dXdt  uXt, t with X0  X0 X0  0
t is the set of all consequent Xt, and is called a Lagrangian or material volume.

Lagrangian flow-map: A Lagrangian variable is one that stays constant along a Lagrangian
path. The key idea of the Lagrangian formulation is to use the set of initial coordinates X0  0 as
independent spatial coordinates. So, consider the time-dependent transformation of spatial
coordinates

 X, t
found by solving

Xt , t  uX, t, t with X, 0  
(i.e.,   X0). X, t is the Lagrangian flow-map and  is the Lagrangian variable.

The evolution of the Lagrangian flow-map.
The Lagrangian flow map has many important properties:

(1)
t fX, t, t  ft  Xt  xf xX,t

 ft  u  xf xX,t
 Df

Dt xX,t



Hence, the substantial derivative relates the Eulerian and Lagrangian frames.
(2) A fundamental object defined by the Lagrangian flow-map is the deformation tensor or

matrix F, defined as the Jacobian of the flow-map:
F  X or F ij  X ij

F encodes the deformations of the Lagrangian flow-map relative to the initial state. Let
V, t  uX, t, t. Then F evolves by

F ijt  t X ij  j
X it  V ij

 j uiX, t, t  uiXk
Xkj

or
Ft  V  xu|X, tF with F, 0  I

or in Eulerian variables:
DFDt  xuF with Fx, 0  I

This introduces D  xu, the rate-of-strain tensor. A related tensor is E  xu xu/2, the
symmetric rate-of-strain tensor.

(3) Let J be the Jacobian determinant of the flow-map, that is,
J, t  detF  det F1,. . . ,Fn  det X1,X2,X3

Note: J, 0  1. We have the following important and standard result from dynamical systems
theory for its evolution: Louiville’s Formula:

t J, t  x  u|X, tX, t, t  J, t
Proof: In Rn

F  X1, ,Xn  F1,. . . ,Fn
The Jacobian can be expressed in terms of the multi-linear operator, the wedge product:

J  F1  F2 . . .Fn
which has the properties:
1. F1  . . .  U  W . . .Fn  F1  . . .  U . . .Fn  F1  . . . W . . .Fn
2. F i  spanF j, j  i  J  0
3. ddt J  F 1  F2 . . .Fn  F1  F 2 . . .Fn . . .F1  F2 . . .F n

Now,
F i  t X i  uiX, t, t

 uiX1 X1  uiX2 X2 . . . u iX i X i . . . uiXn Xn
 uiX i F i  Ti with Ti  spanF j, j  i

Then



ddt J  u1X1 F1  T1  F2 . . .Fn

 F1  u2X2 F2  T2 . . .Fn . . .
 F1  F2 . . . unXn Fn  Tn

 u1X1 J  u2X2 J . . . unXn J
 x  u J

(4) The effect of change in geometry: Consider two nearby Lagrangian points  and    d.
Now consider the displacement of these points in the Eulerian frame under the flow of the material:

dX  X, t  X, t  F, td
Then, |dX|2  dTFTFd  dTCd. Hence C  FTF controls the relative stretching of Lagrangian
line elements by the flow. C is the right Cauchy-Green tensor, which is symmetric and positive
definite (spd), satisfying detC  detF2  J2  0. C satisfies the dynamics equation:

Ct  F tTF  FTF t  FT uT F  FT xu F  2FT E F
We can also write d  F1dX, or |d|2  dXTFTF1dX  dXTFFT1dX  dXTb1dX. Here

b  FFT

is the left Cauchy-Green (or Finger) tensor, which is also spd, and satisfies
detb  detF2  J2  0. This tensor arises very naturally in the theory of rubber elasticity. This
has the far more attractive dynamics:

DbDt  xu F FT  F FTxuT  xu b  b xuT

Note: (i) C and b have the same invariants. Let F  UDVT be the singular value decomposition of
F, so that D contains the singular values, and U and V are orthogonal matrices. Then,

C  FTF  VD2VT and b  FFT UD2UT

and so C and b have the same eigenvalues,  l2, and hence have the same invariants. (ii) The
evolution for b is closed, and does not require knowledge of F. This is not so for C.

Side Note: The operator b  DbDt  xu b  b xuT is called the upper convected derivative
and is intimately related to conservation principles in the Lagrangian frame. First, a simple proof of
the result of Cauchy. For the incompressible 3D Euler equations, vorticity transport is given by (in
the Lagrangian frame)

t  xu   xu FF1   F t F1  FF1 t 
or

F1  t  0 giving   F 0
which is the result. Hence, any vector or matrix satisfying

Wt  xu W also satisfies W  F W0
Consider now the dyadic matrix Z  WWT  F W0W0TFT. Then

Zt  xu Z  Z xuT



In general, we have the result that Z satisfies the conservation law
F1ZFT t  0 or Z  F Z0FT

if and only if
Z Zt  xu Z  Z xuT  0

Mass Conservation in the Lagrangian frame
The mass of a Lagrangian volume does not change in time, that is

Mt  M0
where M can be expressed as:

Mt  t dVx x, t tf. to Lagrangian coords
 0 dV X, t, tJ, t

Then
0  Mt  M0  0 dV X, t, tJ, t  , 0

As 0 was arbitrary we have
X, t, tJ, t  , 0   #   

This is one Lagrangian form of mass conservation. As J also represents the measure of an
infinitesmal volume, it says that if the volume increases, then the density must decrease. This now
gives sense to incompressibility of a fluid or material. Incompressibility means that material
volumes, infinitesimal or otherwise, do not change their volume. That is, J, t  1, and
consequently X, t, t  , 0. This has two consequences, following Liouville’s formula:

x  u  0 and D
Dt  0

Hence, incompressible fluids are have divergence free velocity fields, and the density is conserved
along Lagrangian paths.

To recover the Eulerian form, take a time-derivative of Eq. (1”’) and use the relation with the
substantial derivative and Liouville’s formula:

0  t X, t, tJ, t
 D

Dt X, t, t J, t  X, t, tx  uX, t, t J, t
 D

Dt X, t, t  X, t, tx  uX, t, t J, t
If the flow is smooth, then J  0, and we have

D
Dt x, t  x, tx  ux, t

which we have already proved.
The Lagrangian statement of mass conservation yields the following fundamental result:
The Transport Theorem: For any smooth fx, t



ddt tdVxf  tdVx  Df
Dt

Proof: Use that tX, t, tJ, t  0 and that tfX, t, t  Df/DtX, t, t:
ddt t dVxf  ddt 0 dV Jf  0 dV t Jf

 0 dV f t J  J ft
 0 dV J ft  t dVx  Df

Dt
Side Note: If the flow is incompressible, then the deformation tensor F satisfies   FT  0 at all

times.
Proof: In Eulerian coordinates, using that ui/x i  0, F satisfies

tF ij  uk F ijxk  uixk Fkj

 t F ijx i  ukx i
F ijxk  uk xk

F ijx i  uixk
Fkjx i

The underlined terms are identical under interchange of k and i. Hence
t F ijx i  uk xk

F ijx i  0 or
DDt   FT  0 where F0  I

Balance of momentum and forces in a fluid or deformable material
The acceleration of a fluid particle is given by

at  d2
dt2 Xt  ddt uXt, t

 ut  u  xu  DuDt Xt, t
where notationally u  xui  ujxjui.

A Lagrangian subvolume  being
acted upon by body forces (fbody) and

forces of stress s A .
Now, let’s develop Newton’s 2nd Law for balance of forces in a fluid. The momentum carried by

a Lagrangian volume of fluid t is



mt  t dVx u
Generally, forces come in two flavors, body and stress:
 Body forces – externally imposed forces such as gravity or electro-magnetic fields, that exert a

force/unit mass. Let gx, t be such a force/unit mass. The total body force exerted upon tis:
fbody  t dVx g

 Forces of stress – Forces arising from the mechanical contact of the volume , across , with
the rest of the fluid or material. According to Cauchy, the (Cauchy) stress s (units of force/unit
area) across a surface with outward normal n , at a point x, has the form

s  n or si  ijnj
 is called the Cauchy stress tensor and it is a central focus of nearly all modeling of complex
fluids and deformable materials. Conservation of angular momentum implies that the stress
tensor is symmetric. The total force of stress exerted upon t is:

fstress  t dSx n
Newton’s 2nd law then gives

ddt m  fbody  fstress
Applying the transport theorem to the expression for d/dtm and the divergence theorem to the
expression of fstress gives:t dVx  DuiDt  t dVx gi t dVx x j ij

or
 DuDt  x  g

Write
  pI  d with trd  0

Newtonian fluids are those that have a linear relation between the deviatoric stress d and the
rate-of-strain tensor u. All others are termed non-Newtonian.

Classical examples – (1) the Euler equations. d  0. Take the stress to be only in the direction
of the normal, that is:

   px, tI
p is called the (mechanical) pressure, and is compressive for p  0. Hence,

 DuDt  xp  g (L. Euler, 1755)
When the fluid is incompressible, then we have a closed set of evolution equations

 DuDt  xp  g
D
Dt  0 and x  u  0

Very Important Note: Here the pressure plays the role of a Lagrange multiplier that enforces



incompressibility, adjusting itself at each time to ensure that velocity remains divergence free. This
system is nonlinear due to the nature of the substantial derivative, but also nonlocal as the
divergence free condition yields an elliptic character to the equations.

(2) the isotropic Navier-Stokes equations for an incompressible fluid.
   px, tI  2E

yields the N-S equations
 DuDt  xp  u  g
D
Dt  0 and x  u  0

 is bulk or shear viscosity.
(3) a different example: Neo-Hookean elastic solid –    pI  GJ1b gives the simplest model

of a perfectly elastic solid that dissipates no energy. If the material is incompressible, then when
combined with

DbDt  xu b  b xuT and x  u  0 J  1
this system is closed.
Momentum balance in the Lagrangian frame

What is the analogous expression for momentum balance in the Lagrangian frame? For this, we
need Nanson’s formula. This crucial identity allows a change of surface variables between Eulerian
and Lagrangian descriptions (Holzapfel, Eq. 2.55):

n dSx  J FT N dS
Here n is the normal to a patch of surface of area dSx in the Eulerian frame, while N is the surface
normal to the originating Lagrangian surface of size dS. Now, here is the proof not given by
Holzapfel of Nanson’s equality in differential form:

x    J1    FTJ
Proof: Consider the (stress) tensor  as a set of vectors indexed by i, the row index. i.e.,

ij  ji. Then, x   i  ji
xj . Now
p ji  jixq

xqp  jixq Fqp or  i  x i  F

and hence, x i   i  F1 or taking a trace: jix j  jip Fpj1

We now make use of the following identity:
p Fpj1J    FTJj  0

(Do this as an exercise.) And so,
x  i  J1 p ijFpj1J  J1 p ijF jpTJ  J1    FTJi

Hence, we have



tx   dVx  0    FTJ dV

or setting P    FTJ    J1PFT we havet x   dVx  0   P dV or
Here  is the symmetric Cauchy stress tensor, and P is called the first Piola-Kirchoff stress tensor.
Since  is symmetric,

PFT  FPT

The tensor P is itself not generally symmetric. We also havet  n dSx  0 P N dS
which defines the two stress vectors:

sx, t,n   x, tn and S, t,N   P, tN
where s is the (Cauchy) stress relative to the current configuration, and S is the (first Piola-Kirchoff)
stress relative to the reference configuration.

Now, reconsidering balance of momentum,
ddt t dVxx, t ux, t  t dSxx, t n  t dVxx, tgx, t

or, rewriting everything in Lagrangian variables, i.e. letting V, t  uX, t, t,
G, t  gX, t, t, and using , t J, t 0:

ddt 0 dV, t uX, t, t J, t  0 dV 0 Vt , t
 0 dS P, t N   0 dV 0 G, t

And applying the divergence theorem yields:0 dV 0 V t, t  0 dV   P, t  0 dV 0G, t
Now using the arbitrariness of 0, we have

0 Vt    P  0G
Very nice.

And so, back to the Neo-Hookean solid:
  pI GJ1b  P  pFT  GF

Ignoring incompressibility for the moment, in the Lagrangian frame this yields:
0 Vt  G   F

Ft  aV
that is, two coupled linear PDEs.

For an incompressible material J  1, we would have:



0 DuDt  xp  Gx  b
DbDt  xu b  b xuT

  u  0
For small displacements: u  u, b  I c, and expanding to first-order in :

0ut  xp  G x  c
c t  xu  xuT  2E

  u  0
Taking a time derivative of the first equation and setting q  pt, we have

0utt  xq  G x  xu
  xq  Gu

  u  0
That is, an "incompressible" wave equation.
Conservation of Energy

We will come back to this if necessary. Usually associated with non-isothermal situations,
which get quite ugly.
Back to the Navier-Stokes Eqs and its properties.

Let us assume constant density , so that
 DuDt  xp  u  g

x  u  0
1. Boundary conditions on the N-S equations:

A body of time-dependent (surface St)
moves through a fluid above a solid wall.

 On a solid boundary, as at point B above, we require for a viscous fluid the no-slip
condition: u|B 0. For an inviscid fluid, u|Bn wall  0 so that no fluid penetrates the wall.

 On an impenetrable time-dependent body with surface St which has velocity V and which
exerts a stress T on the fluid, we require that u|BS  V and |BS n  T.



 At an interface St between two fluids, or at least two continuum materials, with stress
tensors 1 and 2, we require 1 n  2 n  T where T is the surface traction. Typically,
T  n for surface tension.

2. The N-S equations have a symmetric stress tensor: ij  pij   u ixj  u j
xi . This

guarantees conservation of angular momentum.
3. If no work is done on the system, then N-S has a decaying kinetic energy: Let  be either a

fixed closed domain upon whose boundaries the no-slip condition is applied, or all of R3. The
kinetic energy is given by

K  12  u2dVx
and satisfies

K 
viscous dissipation to heat

  |u|2dVx 
work done on the system

 g  u
The latter term is zero if the body force arises from a potential. Work can also be done by the
time-dependent motion of boundaries in the fluid.

4. The N-S equations are Galilean invariant; that is their form is conserved under the
transformation u  u  U where U is a constant velocity.

5. Vorticity,     u, is a fundamental quantity for incompressible flows and has distinctly
different dynamics in two and three dimensions:
 Vorticity transport and diffusion g  0 of 2-d fluid in the x  y plane. Here, vorticity is a

scalar    z. Taking a curl of the momentum equation:
DDt  

where   / is called the kinematic viscosity. This is an advection-diffusion equation.
 In 3-d we have instead:

DDt  u   
The extra term, u  , is the so-called vorticity stretching term, and is the term that shows
how the vorticity vector field can be amplified or diminished by the local straining flows of
the fluid flow, in addition to being advected and diffused. To see this, we recall thatu  E W, where W  f    f for any vector f. Hence we have

DDt  E   
Recall that the symmetric rate-of-strain tensor E is trace-free. If  is aligned with a
principal direction of positive (negative) rate-of-strain, then the magnitude of  will be
increased (decreased) (neglecting diffusion). What we shall see shortly is that vorticity
actually induces the velocity field, and hence the straining flow in which it evolves. This
coupling of vorticity stretching/depletion to the vorticity dynamics itself makes the
understanding of the 3-d Navier-Stokes equations especially difficult.

 It is worth examining vorticity transport in the Lagrangian frame in the absence of
viscosity. Both equations reflect fundamental conservation laws of the Euler equations. In
2d, the statement D/Dt  0 simply becomes, in the Lagrangian frame:

t  0  , t  0



or that vorticity is conserved in the Lagrangian frame, that is, along Lagrangian particle
paths. The 3d statement is similar, but more complicated. We manipulate the vorticity
advection equation in the Lagrangian frame using the evolution equation for the
deformation tensor F:

t  xu   xu  FF1
F tF1  FF1 t

giving the conservation law:
F1 t  0  , t  F, t0  

This is the so-called Result of Cauchy, which states that vorticity is stretched or depleted by
the action of the deformation tensor.

6. The vorticity-stream formulation establishes the relation between velocity and vorticity.
2D:   u  0    such that u    y,x    vx  uy  xx  yy  . For
an open flow this then yields the Biot-Savart law.

x  12 2 dAx ln|x  x  |x  
ux  12 2 dAx

x  x 
|x  x  | x 

7. In the Lagrangian frame for an inviscid flow we have
uX, t, t  12 2 dA 

X, tX, t
|X, tX, t| X, t, t

and using the definition of the Lagrangian frame, and conservation of vorticity along particle
paths, we have

Xt, t  12 2 dA 
X, tX, t
|X, tX, t| 0

which is a closed set of equations for the Lagrangian flow map (vorticity moves itself).
8. Important, special solutions. In general the nonlinearity of the NS equations, u  u, prevents

finding analytical solutions, and most know solutions are steady-states for which u  u  0.
Most such solutions are unidirectional flows.

The Reynolds Number

The Reynolds number is perhaps the most important dimensionless constant in fluid dynamics.
Its magnitude quantifies the relative balance of inertial and viscous forces in a fluid. Consider a
body of characteristic size L moving with speed U through a Newtonian fluid. This also defines a



characteristic time T  L/U. Rescale variables as
x  L x, t  L/Ut, u  U u, and p  P p

Then the incompressible NS eqns become:
Re DuDt   P/L

U/L2 p  u and   u  0
where all variables are without dimension. Note that the divergence free condition remains
unchanged. The dimensionless constant

Re  U2L2
UL  "inertial" force

"viscous" force  UL

is famous Reynolds number. We have left the pressure scale to be determined. Because of the role
the pressure plays in satisfying the divergence free condition it is simply scaled to keep it in the
dynamics, regardless of what limiting system in Reynolds number is considered. Consider two
extreme, but centrally important cases:
 Re  1, meaning that the fluid dynamics is dominated by the inertial forces of the fluid. This

is typical for the locomotion of most birds, fish, whales, etc. In this case, choose
P  Re  U/L, and we have

DuDt  p  1Re u and   u  0
Taking the formal limit Re  , we get the Euler equations:

DuDt  p and   u  0
We emphasize that this is a formal limit because in the presence of boundaries, static or
dynamic, the no-slip condition is a singular perturbation and makes that limit a possibly singular
one; There can be a persistent shedding of vorticity produced at the wall even in the limit of
infinite Reynolds number. While the Euler equations retain the convective nonlinear of the NS
equations, their lack of diffusion gives their dynamics a great deal of geometric structure that is
useful in understanding the structure of solutions, as well as giving special tools, such as
potential theory, for constructing special classes of solutions.

 Re  1, meaning that the fluid dynamics is dominated by the viscous forces of the fluid. This
is the typical situation for micro-organismal locomotion, transport of small particles of any sort,
and indeed any dynamics that takes place on either a sufficiently slow time-scale, or at a
sufficiently small spatial scale. In this case, we choose P  U/L, giving



Re DuDt  p  u and   u  0
and the formal limit Re  0 yields the Stokes equations:

p  u  0 and   u  0
Note that the Stokes equations are linear, constant coefficient PDEs. For the Stokes equations
there is no loss of boundary conditions, unlike the Euler equations, since the highest order
spatial term is retained. Unlike either the NS or Euler equations, the Stokes equations are not
necessarily solved as an initial value problem as the equations do not contain any time
derivatives. They are typically solved as a boundary value problem, where any dynamics
devolves from time dependence in boundary data or in solution domain (e.g. as in free boundary
problems).
Note that if there free bodies in the fluid, then the low Reynolds number scaling requires that
they exert zero net force and torque upon the surrounding fluid. To see this, a body in the fluid
moves through Newton’s 2nd law as

mbX c   dSx  n or in dimensionless units
mbU2
L X c  L2  dSx U

L   n which can be rearranged to yield
Re mbmf X c   dSx  n where mf  L3

Hence, if Re  1, then the inertial term can be dropped so long as mb/mf is not large, and we
will generate the constraints

F   dSx  n  0 and
T   dSxX  Xc    n  0

 Moderate Reynolds number. In this regime both inertial and viscous forces are important, and
this is a regime that has come under increasing scrutiny, for example in studies of small insect
locomotion, and efficient mixing in micro-fluidic devices. In the low and high Reynolds
regimes there have been many tools – asymptotic reductions, special numerical methods – that
have greatly aided in understanding the fluid dynamics. All of these tools fail in the moderate
Reynolds number regime, or must be used at best perturbatively, and theoretical studies have
been almost exclusively computational in nature.

The Stokes Equations
The Stokes equations have considerable analytic structure. Again,

 p  u  f and   u  0
It is often useful to write them as:

    0 and   u  0 with    pI  2E
Taking a divergence of the momentum equation gives that

p    f
so the pressure satisfies a Poisson equation and is harmonic in the absence of an external force.
Taking a curl of the momentum equations gives that



    f
so the vorticity also satisfies a Poisson equation. As before, the divergence free condition implies
the existence of a vector stream function  which satisfies   , and hence

2    f
and so the stream-function satisfies a biharmonic equation.
An Application – Lubrication Theory

Lubrication theory concerns the dynamics of a fluid – a Stokes fluid – in a thin gap. Force
balances in such flows are dominated by shear stresses. This arises in many, many instances, such as
in the lubrication of joints (a very interesting fluid dynamics problem), or the locomotion of snails
and of worms, as well as in many engineering settings such display device design, and scientific
problems in pattern formation. The main point here is to derive a simplified version of the Stokes
equations that can be more easily analyzed. Consider a long thin channel (in 2d) such as is sketched
below, with a horizontal length-scale L and characteristic height h, with aspect ratio   h/L  1.
We assume the fluid obeys the Stokes equations:

 px  u  0
 py  v  0

ux  vy  0
We scale each direction on its characteristic length, as well as the associated velocities:

x  Lx; y  hy; u  L/Tu; v  L/Tv; p  Pp
We assume that there is some characteristic time-scale T, perhaps related to an imposed wall
velocity, or a force, though this would be given by the precise application. Then, rescaling the
(dimensional) Stokes equations we have

 PT 2px  2uxx  uyy  0
 PT py  2vxx  vyy  0

ux  vy  0
We choose the pressure scale so as to balance pressure stress against the shear stress in the horizontal
momentum equation. That is, P  /T2 and so

 px  2uxx  uyy  0
 py  4vxx  2vyy  0

ux  vy  0
At leading order we have the reduced Stokes equations:

 px  uyy  0
py  0

ux  vy  0
and so



p  px, t
 ux,y, t  12 y2pxx, t  ax, ty

that is, the horizontal velocity is a parabolic plus linear shear flow. The vertical velocity is then
given by:

vx,y, t  0
y 12 y2pxx  axy dy   y3

6 pxx  y2
2 ax

There are similar reductions that can be used for non-Newtonian problems involving shear-thinning
of -thickening, and elasticity (e.g., see FKSP2001 for its development in non-Newtonian Hele-Shaw
flow).

The reduced Stokes equations worked out in 3d leads to Darcy’s law for 2d Hele-Shaw flow:
v   b2

12 2p and 2  v  0

The Stokes solution for a sphere
Consider a sphere of radius a moving at velocity U U . George Stokes showed that the fluid

stress on the sphere is given by
  p cos   3U2a 

where the polar axis of the sphere is taken in the  direction. We then have for the force F on the
sphere the famous Stokes formula:

F  S dA   6aU

The Jeffrey equation for ellipsoidal particles
Consider an axisymmetric ellipsoid of length l and diameter d rotating in a linear flow

u  U  Ax so that u  A  W  E. Let the unit vector pt point in the direction of the major
axix, Xct be the ellipsoid center, and assume that no force or torque acts upon the ellipsoid. Then
(Jeffrey, 1922)

X c  U  AXc
p  Wp  2  12  1 I  ppEp
 I  pp W  2  12  1 E p

with   l/d.
 Sphere:   1  p  Wp  12   p. Rotation of the director about the vorticity vector. The

strain flow contributes nothing to the rotation of the sphere.
 Slender rod:     p  I  ppu p. Rotated by the flow, but constrained from stretching.
 Plate:   0  p  I  ppW  Ep  I  ppuTp
Fundamental Solutions of the Stokes Equations

Because the Stokes equations are constant coefficient linear PDEs, solutions to them can be
represented in terms of Green’s functions. There are several important fundamental solutions for the



Stokes equations, such as the Stokeslet, Rotlet, and Stresslet.
Formal Construction of the Stokeslet: Find a solution to the equation

     q  v  ê x and   v  0
where ê is an arbitrary unit vector, and  is the 3-d -function. Recall that the 3d free-space Green’s
function for the Laplacian is

G  14 1|x |
i.e., G  x. Taking a divergence gives q  ê   ê G  ê G and so we choose

q  ê G  14 x
|x |3  ê  14 x

|x |2  ê  Pkêk
Hence, the fundamental solution for the pressure is

Pk  14 x k
|x |2

We then have
q  14 1

|x |3 I  3xx ê
 v  ê  ê  G

Now we construct two functions B1, B2 that satisfy
B1   & B2  G

and let
v  1 êB1  ê  B2

Now, plucking out only the radially symmetric particular solutions for B1,2 gives:
B1  G and B2  18 |x |

where further calculation gives
v  18 I  xx|x | ê

The rank-two tensor
S  18 I  xx|x | or Sik  18 ikx ix k|x |

is called the Stokeslet or the Oseen tensor. It has a long-range R1 decay and is a negative definite
matrix. It can be used to construct other relevant fundamental solutions. We define the Stresslet as
the rank-three tensor Tijk satisfying  ij  Tijkêk, or

Tijk  Pkij   Sikx j  Sjkx i
 34

x ix jx k
|x |2

The Stokeslet and Stresslet can be used to construct a boundary integral representation for
solutions of the Stokes equations, which we very roughly outline (see Pozrikidis for a more detailed
derivation). Consider a closed body B with surface  and outer normal n , and with a surface stress
distribution  and surface velocity u. Let ,u be the Stokes solution that satisfies |n   and



u|  u  .
The Lorentz Identity

A fundamental identity satisfied by any two solutions ,u and  ,v of the Stokes equation is
the Lorentz identity:

   v  u  0 or xk kiv i  kiui  0
Using symmetry of the stress tensor, we can write:

   v  u   : v   : u
 pI  2Eu :EvWv qI  2Ev :EuWu   0

The Classical Boundary Integral Formulation
We let  ,v be the Stresslet/Stokeslet pair. Following Pozrikidis, redefine x  x  y, and

integrate the above equality over the punctured fluid domain /Dy (with normal into the domain)
where Dy is the -ball about y, hence excluding the singular point from the domain. The
divergence theorem then gives

0  |xy |v ix yikx nkx   uix ikx ynkx dAx

(1) On |x  y|  : Note that on the boundary of Dy, x y n, xy  Sijx yikx nkx dAx

 18  xy 
ij  ninj ikx nkx dAx  0 as   0

since the area element scales as 2. Now the second term is given by:
34 |xy | ui ninjnk

2 nkdAx  34 2 |xy | uininjdAx

 34 22 0
2 d 0

 d sinuiy  Oni,nj,
 34 0

2 d 0
 d sin n n uy  O

 34 0
2 d 0

 d sin
cos2 sin2 0 0

0 sin2 sin2 0
0 0 cos2

uy

 ujy
One can thus show that:

ujy  Sjix  yix  uixTijkx  ynkxdAx

or in nicer notation
uy   Sx  yx  uxTx  yn xdAx

Note that S is even wrt its argument, while T is odd.



Hence, we have expressed the velocity at every point in the fluid as a function of the surface
stress and velocity. Of course the surface velocity and the fluid velocity are related by the no-slip
condition, and so it remains to take the limit y  x  . The hard one is the stresslet, so let’s do that
one first. The dominant part of the limit to the surface should arise from this integral:

I  |xx0 | uixTijkx  ynkxdAx

where x0 is the closest point to y. Let’s replace the  patch with a flat disk, and assume that
y  x  r n0   R0 e where R0 is a rotation matrix (R0z  n0) and e  cos, sin, 0. That
is, this is a little , coordinate system on the patch. Then

y  x  r n0   R0 e
r2  21/2

:
I  34 0

2 d 0
 d  u rn0  R0e n0rn0  R0e

r2  25/2 rn0  R0e

 34 r 0
2 d 0

 d  u rn0  R0e
r2  25/2 rn0  R0e

 34 r 0
2 d 0

 d  r2u  n0n0  2u  R0eR0e
r2  25/2

Ok, we need to calculate
0

2 du  R0eR0e R0 0
2 dee R0Tu

 R0I  zzTR0Tu
 u u  n0n0

And so
I  34 r 0

 d  2r2u  n0n0  2u u  n0n0
r2  25/2

 32 0
 d/r /r

1  /r2 5/2 u  n0n0  34 0
 d/r /r3

1  /r2 5/2 u u  n0n0

 32 0
 x
1  x25/2 dx u  n0n0  34 0

 x3
1  x25/2 dx u u  n0n0 ;   /r

 12
2  1 32  1
2  1 32

u  n0n0  14 1
2  1 32

32  22  1 32  2 u u  n0n0
Now, we need to take r  0 for  fixed, that is,   . This yields

I  12 u  n0n0  12 u u  n0n0   12 u
And so, in this limit we have



ujx   Sjix xix dAx

12 ujx  P  uix Tijkx xnkx dAx

or
12 ux  P  ux Tx xn x dSx    Sx xx dSx/

or a Fredholm integral equation of the second kind for the surface velocity, or a first-kind equation
for the surface stress. If we are given the surface stress, then this equation can in principal be solved
for the surface velocity, and then used to give the fluid velocity everywhere in the fluid domain.
This is one of the fundamental relations of the Stokes equations.

Now, for illustration, consider a rigid body moving under an applied force F and torque L, that is dSx xn x  F and  dSxx  Xc  x  L
and being rigid means that for the surface velocity u  U  x  Xct  t. Before inserting
this into the integral equation we note two identities for x   (the fluid domain):

P  vTx xn x dSx  0 for any constant vector v.
P  x lTijkx xnkx dSx  0

or
ux    Sx xx dSx/

which means that for rigid bodies, taking the limit x  , we have:
U  x  Xct  t    Sx xx dSx/

which is an integral equation for  in terms of the two unknowns U and . The system is closed by
the specification of the force and torque. The body is then evolved via

X c  U and   
Note however that this is essentially a first-kind integral equation for the surface stress , and is
widely used but ill-conditioned. Need an argument for this...
The formulation of Power & Miranda

PM1987 use an Ansatz of a velocity induced by a distribution of stresslets:
ux   x Tx xn x dSx . . .

This is incomplete however because this flow induces no force or torque upon the body, i.e., ux n x dSx  0 and x   Xc  ux n x dSx  0
Indeed, in the 2nd-kind integral equation there is a rank-two deficiency. To corrct this, one must add
explicit flow contributions from a Stokeslet (which generates a unit-scale force) and a Rotlet (which
generates a unit-scale torque). Hence,

ux   x Tx xn x dSx  Sx  XcF  Rx  XcL



together with the conditions that relate  to F and L: xdSx  F and x   Xc  xdSx  0
which identifies  as a force density. The extra terms are known as the completion flow.

Taking x   then gives
U  x  Xct  t   12 x  P  x Tx xn x dSx  Sx  XcF  Rx  XcL

which is a well-conditioned, full-rank system for , U, and .
To solve this problem, the whole game is the numerical quadrature of the singular integral

contribution. Recall that T is odd, with a |x |2 singularity, and the integral is apparently of principal
value type. However, let’s introduce surface coordinates ,, and so write

P  x Tx xn x dSx  P  ,Tx,x,n ,J,dS
Then, wlog setting ,  0, 0, we have in the neighborhood of the singularity that

x,x0, 0  x 0, 0  x 0, 0  HOTs
Both x and x are both tangent to , and hence orthogonal to n. This means that the PV integral
actually has a singularity of first-order, not second, which is integrable. Still, before proceeding we
recall another identity:

P  Tx xn x dSx  12  for any constant  .
Hence

 12 x  P  x Tx xn x dSx  x   xTx xn x dSx

which has no divergence at all, which is not to say that it is smooth. The integrand is actually
bounded but multi-valued at the origin, with a value depending upon the direction of approach. This
is the convenient form for numerical integration. An easy approach is the so-called Point Vortex
Method, which comes from the vorticity formulation of the 2D Euler equations. The Biot-Savart
integral has a similar structure.
U  x  Xct  t   12 x  x   xTx xn x dSx  Sx  XcF  Rx  XcL

Reintroduce the surface coordinates, discretize uniformly in them (i.e., generalized spherical surface
coordinates), and use collocation: ,  j,jTx,xj,jn ,J,dS    I,;j,jdS
which is ill-defined for ,  j,j. Approximate the integral simply by omitting the singular
point in the evaluation: I,;j,jdS  hh 

k,l
k,li,j

klIk,l;j,j

where k and l are quadrature weights. This will yield second-order accuracy (KS2011) using the
trapezoidal rule. The integral relations of  to F and L are nonsingular.

So, the set of equations have the form:



U  x ijXc    hh 
k,l

k,li,j
klIk,l;j,j  Sx ijXcF  Rx ijXcL

hh
k,l

klkl  F
hh

k,l
klxklXc  kl  L

This is a large dense system of equations, Az  b, for N  3N  N  6 unknowns. Not so bad to
solve directly for a single body, but for many it becomes prohibitive. Instead one uses an iterative
scheme, such as GMRES, that only requires matrix multiplies. Matrix multiplies require ON2
floating point operations. This can be reduced to ON using methods such as FMM (Greengard et
al), or kernel-independent FMM (Biros, Zorin, et al). Effective preconditioning can key to finding an
solution, accurate to a specified tolerance, in a number of steps that is N independent (or at least
weakly so).

Comments:
1. Is easily reformulated for solving for forces and torques, given the rigid body motion

(NRZS2016).
2. Close interactions of bodies is problematic. This is being overcome (slowly) through the

development of QBX schemes.
3. If one needs to know the surface stresses, Keaveny & Shelley (2011) have developed a 2nd-kind

integral equation formulation based on the Power-Miranda formulation. It is only applicable to
rigid body motion (new Spagnolie work), and was used as the basis for shape optimization
studies of magnetically driven microswimmers (KSW2013). Also, the completion flow is not
unique, and they show that different choices can lead to markedly improved numerical results.

4. Coupling of many bodies, and to background flows, is straightforward.
Slender-Body Theory

See Tornberg & Shelley (J. Comp. Phys. 196, 8-40 (2004); TS2004) for discussion and
references (most especially Keller & Rubinow ( JFM 1976), Johnson (JFM 1980), and Gotz (PhD
thesis 2000)).
The dynamics of a small rigid rod in a background flow

For a rigid rod we can write Xs, t  Xct  spt. Assume that the length of the rod is very
small relative to the length-scale of the flow, i.e., Ux  UXc  UXcx  Xc

 X c  UXc  s p  UXc p  I  ppTf
with L/2

L/2 ds fs  0 and
L/2
L/2 ds Xs, t  Xct  fs  p  L/2

L/2 ds sfs  0
we have

f  I  12 ppT X c  UXc  s p  UXc p
and from the force-free condition and oddness of f gives



X ct  UXc and hence f s I  12 ppT p  UXc p
Zero torque gives:

p  I  12 ppT p  UXc p  0 
p  p  UXc p  0

Now we use that p  p  g  I  ppg and that p  p  0 to get
p  I  ppTUXc p

Finally, we calculate the force itself:
f  s I  12 ppT ppT : Up   s

2 ppT : Up
Applied to Simple Swimmers

Here given in 2d, proceeds as follows: Consider a inextensible swimmer of finite length L, with
its time-dependent shape given by s  s, t, the curvature. We represent the body as

Xs, t  X t  I0Xs s, t
s, t  t  I0s, t

where
I0fs  0

s f ds  1L 0
L ds 0

s f ds
 I0f  1L 0

L I0f ds  0
so that we care dealing naturally with centroidal coordinates. Then

Xt  X tt  I0 Xs t & t   tt  I0 t  
Xt  X tt  I0 Xs  tt  I t 

 X tt   ttI0Xs   I0 Xs I0 t 
f  

2 D X tt   ttI0Xs   I0 Xs I0 t 
and finally:

0
L ds Ds X tt   tt 0

L ds Ds I0Xs s
 0

L ds Ds I0 Xs I0 t  s
0
L ds Xs  Ds X tt   tt 0

L ds Xs  Ds I0Xs s
 0

L ds Xs  Ds I0 Xs I0 t  s
A couple of comments are in order:

1. First, note that the viscosity does not show up in determining the velocity or the rate-of-rotation.
This is typical of Stokes. If the motion of a boundary is specified independently of the viscosity,
then the consequent fluid motion will be also independent of it. This is easily seen by noting



that viscosity could be scaled out of Stokes by rescaling the pressure. However, this is no
longer true if boundary forces that are irreversible, rather than boundary position, is specified.

2. This analysis is easy to replicate for 3d motions, where a rotation matrix R with two degrees of
freedom replaces the angle .

3. What happens if the swimmer is executing only small amplitude motions, that is,   , with
  1. From the presence of  t on the RHS of the equations we see immediately that the RHS
is O. We note that   I0 is the only term appearing. Wlog we assume that X t and  t are
zero. Then

  
Xs  1  12 22  O4,  O3
Xs    O3, 1  12 22  O4
X  s  L/2  12 2I02   O4,I0  O3

and so
D I  XsXs  1  22  O4   O3

  O3 2  22  O4

 D  1  O2 O3
O3 2  O2

I0Xs   X (in this instance)
 I0  O3, s  L/2  12 2I02   O4

I0 Xs I0 t   I0 t   O3, 1  12 22  O4
 t  12 I02   O3, I0  16 2I03   O4

and so again:
D I0Xs 

 1  22  O4   O3
  O3 2  22  O4

I0  O3
s  L/2  12 2I02   O4

 I0  s  L/2  O3
2s  L/2  O2

 D I0Xs   s  L/2  O3
O2



D I0 Xs I0 t 

  1  22  O4   O3
  O3 2  22  O4

 12 tI02   O3
I0t   16 2tI03   O4

   12 tI02   I0t   O3
2I0t   O2

 D I0 Xs I0 t   2I0t   O4
O3

Note that since   0, we can write   ps where p|s0,L  0. Then, s  L/2  pThe
first equation then becomes

1  O2 O3
O3 2  O2

x t
y t  p  O3

O2  t

 2I0t   O4
O3

The only leading order behaviors that are consistent with this equation are that x t  O2,
y t  O3, and  t  O, that is, that the speed of the swimmer increases only quadratically
with amplitude of deformation. This is consistent with Taylor’s results for a swimming sheet in
a Stokes fluid. This calculation needs to be finished.

While slightly tiresome, I would like to rewrite all of the "swimming" material in a form
invariant under the precise position and rotation. Define

R cos  sin
sin cos ;

      I0; Xs, t  X t  R Y
Ys  cos, sin  Xs  R Ys & Xs  R Ys
X t  R Y t 
Xt  R Y tt   ttI0Ys   I0 Ys I0 t 

using that
D I  XsXs  RI  YsYsRT  RDYRT

f  
2 RDY Y tt   ttI0Ys   I0 Ys I0 t   

2 R g
It is easy to show that

0
L g  0 and 0

LY  g  0
and finally:



0
L ds DYs Y tt   tt 0

L ds DYs I0Ys s
 0

L ds DYs I0 Ys I0 t  s
0
L ds Ys  DYs Y t   tt 0

L ds Ys  DYs I0Ys s
 0

L ds Ys  DYs I0 Ys I0 t  s
In this form everything is expressed in terms of purely geometric quantities.
Deriving the Batchelor formula

Consider a system volume V of volume L3 and containing N particles of length-scale lb. Assume
that V can be parcellated into many subvolumes of length-scale l. We will make some separation of
scale arguments when we need them, such as lb  l  L.

We would like to calculate the total average stress in a volume containing a Newtonian liquid in
which are immersed many small bodies, where each body exerts a stress gi on the surrounding fluid.
Center the volume on point x and write x. Let the fluid subdomain be  f and the particle
subdomain be p  n Bn. We assume that both fluid and particle is described by the zero
divergence stress tensors  f and p, respectively, and require that g  p|B in   f|B in. The bodies
have outward normals while  has inward.

We write    f  1  p with  being the indicator function of  f. The average stress  is
then:

x  1V x dVy y  1V fx
dVy  fy  px

dVy py
Now some work. We make two assumptions for now, first that inertia is unimportant, and second
that there is no intersection of an immersed body with .

(1) First show that     0:
  fx

dVy  fy  x dS  fyny
 px

dS  fyny  fx
dV    fy

The first term is zero because of the force-free condition on each particle (this could be relaxed), and
the second because it just is.



  px
dVy py  px

dS pyny  px
dS  fyny  0

Note that I did not use that p is divergence free.
(2) The pressure and velocity are only defined in the fluid region, and so I define

ū  1V f fx
dVy u 

  fx
dVy u  x dS u  n

 px
dS u  n  fx

dV   u
 0

Here we assume that there is no mass flux from the particles (this could be relaxed to model volume
changes and fluid exchange).

(3) Now let’s average our Newtonian stress tensor:fx
dVy  f  fx

dVy pI  u uT
 V f pI   uuT

 V f pI   xunT  nuT  px
unT  nuT

and now calculate ū to eliminate the outer boundary term:
 fx

dVy u  x dS unT

yielding: fx
dVy  f  V f pI  ū ūT   px

unT  nuT
Nice.

(4) and we average our particle stress tensor, using Batchelor’s little trick to express the internal
particle stress in terms of surface quantities:

px
dVy ijpy  px

dVyikp y y jyk
 px

dSy ikp y jnk  px
dVy y j yk ikp

Now we use that   p  0, and writepx
dVy py  px

dSy gyT
In summary then, we have derived the Kirkwood-Batchelor formula:



   0,   ū  0 with
  V fV pI  ū ūT  1V px

dSy gyT   px
unT  nuT or

 p  ū    e and   ū  0
with e   1V f px

dSy gyT   px
unT  nuT

a. Two spheres connected by a spring in a linear backgroundflow.
As a model for a polymer coil, consider two spheres connected by a spring between their centers

X1 and X2, and moving in a background flow. We assume that the two spheres have no direct
hydrodynamic interaction, and only interact through the spring. We then use Stokes’ formula to
calculate the dynamics of the spheres. Label the spheres 1 and 2, of radius a, so that

6aX 1uX1  FX1  X2
6aX 2uX2  FX1  X2

These two particles comprise a zero force particle, as was assumed for deriving Batchelor’s formula.
For the distension, or end-to-end displacement, vector R  X1  X2 we have

6aR 1uX1uX2  2FR
Expanding in small displacement about the midpoint XcX1  X2/2

6aR xuXcR  2FR 
R xuXcR  13a FR and similarly

X c  uXc
Note that we have a stretching equation again for R. What is the extra stress produced by this single
pair? Let the sphere surface be given by Xi  ary with y a surface coordinate on the unit sphere.
From Batchelor

e   1V f S1S2
dSx gxT  unT  nuT with g   fn

the stress exerted by the flow upon the sphere. Assuming that each sphere moves rectilinearly as a
rigid body, we have u1,2  consts, and g1  3

2a FR and g2   3
2a FR, so that

e   1V f S dSy
3
2a FRX1  aryT  3

2a FRX2  aryT
u1nT  nu1T  u2nT  nu2T

  1V f
3
2a 4a2FRRT   1V f 6a FRRT

where we used that for any closed surface S dSn  0. If the spring is a linear Hookean spring,
FR  kR we then have

e  1V f 6ak RRT



b. A rigid fiber in a linear background flow.
b. A swimming rod in a background flow.

Consider a slender rod Xs, t  X t  spt with l/2  s  l/2 where we pose a propulsive
surface stress for negative s and a no-slip condition and consequent drag for positive s. Slender body
theory:

x t  u   I  ssf
where   8/c  0 (following TS2004; c  ln2e) and f is the force/length acting on the fluid
by the filament.

(i) No background flow: The first version to consider is the following system:
 l/2  s  0: U  usp  I  ppf1

where f1  fsp with f  0 and
0  s  l/2: Up  I  ppf2

That is, U is the speed of propagation, us is the surface slip, f1 is the propulsive stress, and f2 is
the drag stress. This is completed by the requirement of zero total force. Note that f2 must be in the p
direction. Given f we then have the three equations

U  u   2f
U  2f2

 l/20 ds f  l2 f2  0
This set of equations has the solution:

f2  1l/2 l/20 ds f
U  2 1l/2 l/20 ds f  0
u  U  2 f   4l l/20 ds f  2 f  0

Example 1: f a constant.
f2  f, U  2 f, u   4 f

Or, using that f  2ag with g the surface stress:
U  28/|ln2e| 2ag  |ln2e|

2
lg  2 lg

Let’s try and calculate the extra-stress contributions. From above, it’s density has the form:
S  l/2l/2 ds fsxTs   l/20 dsfpX t  sptT  0

l/2 dsf2pX t  sptT

  l/20 ds sf ppT  0
l/2 ds sf ppT  12 s2|l/20  s2|0l/2 fppT  l24 fppT

  l24 2agppT   2 l3gppT  1l3gppT



Note that 1,2 are solely geometric constants.
(ii) With a background flow: Now let xs, t  x0t  spt so that x t  x 0  sp . Here it will be

interesting to make general the sets where different BCs are applied. Let l/2,l/2  1  2where 1 and 2 are disjoint measurable sets (!) with l i  meas i and  i their characteristic
functions. Hence, we consider

1: x 0  sp  usp  ux0  sp  I  ppf1
where f1  fsp  g with f  0

2: x 0  sp  ux0  sp  I  ppf2
Here g will pick up the part of the stress due to rotations, and u || picks up the effect of motive stress.
Note, this is a choice!

Noting that f  1 f1  2 f2 we have:
 x 0  sp  1 usp  ux0  sp  I  ppf

The condition of zero force gives
x 0  1l l/2l/2 ds ux0  sp  1l 1

ds usp
The torque is given by,

l/2l/2 ds sp  f p  I  12 pp l/2l/2 ds s2p  1 susp  sux0  sp
Noting that p  I  12 pp g  p  g for any g gives

l/2l/2 ds sp  fp  l/2l/2 dss2p  sux0  sp
  l312 p  p  p  l/2l/2 ds s ux0  sp 

p  p  12l3 p  l/2l/2 ds s ux0  sp
Now use that p p  q I  ppq and that I  ppp  p :

p  12l3 I  pp l/2l/2 ds s ux0  sp
This is the generic result since the slip velocity drops out. And so, we have

f  I  12 pp
1 us  1l 1

ds us p
 ux0  sp  1l l/2l/2 ds ux0  sp
s 12

l3 I  pp l/2l/2 ds s ux0  sp
Or, on 1:



 fsp  g  I  12 pp
us  1l 1

ds us p
 ux0  sp  1l l/2l/2 ds ux0  sp
s 12

l3 I  pp l/2l/2 ds s ux0  sp
which gives:

us  1l 1
ds us   2 fs

Note that this equation can only be uniquely inverted if l1  l, otherwise the mean is left
undetermined. Applying the integral operator on the left yields:1

ds us   2 ll2 1
ds fs

yielding the lovely expression
us   2 fs  1l2 1

ds fs
We then have

x 0  1l l/2l/2 ds ux0  sp  2 1l2 1
ds fsp

We also have

g  I  12 pp  ux0  sp  1l l/2l/2 ds ux0  sp
s 12

l3 I  pp l/2l/2 ds s ux0  sp
Finally, for the remaining force:

f2
1 1l2 1

ds fsp
 I  12 pp ux0  sp  1l l/2l/2 ds ux0  sp

s 12
l3 I  pp l/2l/2 ds s ux0  sp

(iii) Now, let’s assume that l is small relative to the scale of the linear flow, so that
ux0  sp  ux0  sux0p:

x 0  ux0  2 1l2 1
ds fsp

p  I  ppux0p
g   2 ppux0ps

f2 1l  l1 1
ds fsp  2 ppux0ps



f  1 fsp  g  2 f2
 1 fsp  2 1l2 1

ds fsp  2 ppux0ps
(iii.a) Single particle input power calculation

Pt   ds fTu
  ds 1 fsp  2 1l2 1

ds fsp s 2 ppux0p
 x 0  sp 1 2 fs  1l2 1

ds fs p
 1

ds fsp s 2 ppux0p
 x 0  sp  2 fs  1l2 1

ds fs p
 2

ds 1l2 1
ds fsp s 2 ppux0p  x 0  sp 

Let’s assume that f ||  Const, then
x 0  u0  2 l1l2 fp

Pt  1
ds fp s 2 ppu0p  x 0  sp  2 1  l1l2 fp

 2
ds l1l2 fp s 2 ppu0p  x 0  sp 

 fl1 p  u0 2 f  
2 1

ds s u0 2 fp TppTu0p
 fl1 p  u0  2 l1l2 f  

2 2
ds s u0  2 l1l2 fp TppTu0p

 2 l l1l2 f ||2 
l1l2 f 1

ds s  2
ds s pTu0p

Ok, there it is, though it needs checking (don’t like this model giving infinity as l2  0. Note that the
first term is independent of being either Pusher or Puller. The second is not, and changes sign
accordingly:

Pusher: Let 1  l/2, 0, 2  0, l/2. Then
P  2l f ||2  f l28 pTu0p

Puller: Let 1  0, l/2, 2  l/2, 0. Then
P  2l f ||2  f l28 pTu0p

I think that there is a sign error somewhere along the line. Check. Still, the two cases give
oppositely-signed contributions relative to the first term. This sets the baseline in the paper.

Side calculation: Power for single SS swimmer, using David’s notation from the supplementary
material notes. Now swimmer is length 2l.



Pss  ll ds u  f
with

f  sf0sm1srs  ms
M ll ds sf0sm1srs p

uU  sm1sussp
and

U   2cM ll ds sf0sm1srs
uss  2cf0srs  m1sU

yielding

Pss  ll ds sm1suss sf0sm1srs
 ms

M ll ds sf0sm1srs
 ll ds sm1suss sf0sm1srs  U2c ms
 ll ds sm1s2cf0srs  m1sU sf0sm1srs  U2c ms

 ll ds sm1s
2cf02ssm1sr2s

Uf0srs1  2sm12s
m1s U2

2c ms

  U2M2c  ll ds 2cf02s2sm12sr2s  U2
2c sm12sms

2U2sm13sf0srs
What a mess; Don’t really see what to do...

(iii.b) Single particle extra stress calculation:

 ds f xT  l/2l/2 ds s 1 fsp  2 1ll1 1
ds fsp

 
2 ppTux0ps pT


1l2 1

ds fs  2
ds s  1

sfs ppT

 
2 l312 ppTux0ppT

Simplify further by assuming that f ||  Const, so that
x 0  ux0  2 l1l2 f || p

 ds f xT  f l1l2 2
ds s  1

ds s  2 l312 ppT : u ppT

This form is pretty interesting because it involves first moments of the regions where propulsive
stress and no-slip are separately applied, and their difference determines whether one has a pusher or



a puller. Also, shear-thinning etc should drop immediately out of this.
b. The extra stress calculation

   1lb3 m
M Bm

dS gXT   1lb3 m
M m

ds fxT

  NL3
M/lb3N/L3 1l3g 1M 

m

M
pmpm  n S C 1M 

m

M
pmpm

where S  1l3g (units of force x length) , and C  M/lb3/N/L3 is the local concentration.
c. Scaling

The normalization from SS2008 is
1L3  dVx S dSp   n  NL3

Now rescale as x  lcx, u  Uu, and   n. Normalization becomes
1

L/lc3  dVx S dSp   1
where   1/4 if  is a constant. Fluxes become

x  p  u  DplcU x ln
p  I  ppxu p  dplcU p ln

and momentum balance:
 u  q  lc2U 1lc nS x   dSppp

 lc n1l3g
2lg/ x   dSppp

 lc Nl3
L3 l1 12 x   dSppp

 lcl1 12 x   dSppp
So, choose lc  l/ and   1/2 so that

 u  q  x   dSppp
and the fluxes are then

x  p  u  DplU x ln
p  I  ppxu p  dplU p ln

If as observed at low  in SS2007 that dp  d p and Dp  D p/, we have



x  p  u  D plU x ln
p  I  ppxu p  d plU p ln


