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1 Shear enhanced dissipation

In the (quick) overview of the SSP model, we discussed how the shearing of x-dependent
modes by the mean shear leads to a positive feedback on the mean flow. In the SSP model
these are the W 2 term in the M equation and the −MW term in the W equation. Although
this interaction is not necessary for the self-sustaining process itself, it is the key effect that
leads to the R−1 scaling of the transition threshold, and of the V and W components of the
lower branch steady state (while U and 1−M are O(1), see lectures 1 and 5).

Advection by a shear flow leads to enhanced dissipation and an R−1/3 scaling character-
istic of linear perturbations about shear flows, or evolution of a passive scalar. The R−1/3

enhanced damping, instead of R−1, was included by Chapman for the x-dependent modes
in his modification of the WKH model (as discussed in lecture 1). However, that is because
Chapman considers the weak nonlinear interaction of eigenmodes of the laminar flow, U(y).
In contrast, the basic description of the SSP consists of the weak nonlinear interaction of
streaky flow eigenmodes, that is, neutral eigenmodes of the spanwise varying shear flow
U(y, z) consisting of the mean shear plus the streaks. An important aspect of the streaky
flow U(y, z) is that the mean shear has been reduced precisely to allow that instability, as
illustrated by the SSP model where σwU − σmM − σvV > 0 is needed for streak instability
and growth of W . So it is unclear a priori whether the R−1/3 should apply to x-dependent
modes in the SSP. In section 2 below we review the numerical evidence that the 3D nonlin-
ear lower branch SSP states in plane Couette flow do have R−1/3 critical layers as R→∞
[24]. But why R1/3?

Back-of-the-envelope analysis. Consider plane channel flow with near-wall velocity pro-
file U(y) ' Sy (Figure 1), where S is the shear rate. Denote x̂ as the flow direction and ŷ
as the shear direction. We introduce a small disturbance which we imagine as a little eddy
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Figure 1: Shearing leads to enhanced dissipation and R1/3 scaling.

with characteristic length `0, generated perhaps using a push-pull perturbation as in some
of the experiments of Mullin et al. discussed in lecture 1 with the push-pull axis oriented
streamwise (we consider only 2D flow here). We assume that the eddy Reynolds number
is small so that the evolution of the eddy consists primarily of the distortion by the mean
shear (so small eddy Reynolds number and 2D means none of the Theodorsen horseshoes
discussed in lecture 1), that is the governing equation is the advection diffusion of spanwise
vorticity ω = ∂xv − ∂yu

(∂t + Sy ∂x − ν∇2)ω = 0. (1)

The eddy will be stretched in the x̂ direction as a result of the differential advection,1 and
the major axis a of this now elliptical eddy will grow like a ∼ `0

√
1 + (St)2 ∼ `0St, while

its minor axis b will decay like b ∼ `20/a ∼ `0/(St), since area is conserved in this 2D
incompressible flow. This is the back-of-the-envelope handling of the Sy∂x term in (1) and
we now estimate the dissipation ν∇2 ∼ −ν/`2 where the relevant length scale ` here is the
smallest scale which is b ∼ `0/(St) for long times. So the diffusion term will give

dω

dt
∼ −ν (St)2

`20
ω ⇒ ω ∼ ω0 exp

(
−ν S

2t3

3`20

)
(2)

Note that we have used a d/dt instead of ∂t since we have taken care of the advection
and are effectively doing a Lagrangian analysis. In the absence of differential advection,
we would have ω ∼ ω0 exp(−νSt/`20), so (2) is much smaller for St > 3, and differential
advection leads to enhanced diffusion. In non-dimensional form, we can define a Reynolds
number R0 = S`20/ν based on the length scale `0 and the velocity scale S`0 and write (2) as

ω

ω0
∼ exp

(
−(St)3

3R0

)
(3)

1Two material points at the same y do not separate, but two material points at the same x but `0 apart
in y are differentially advected in x and the distance between them will be ` = `0

p
1 + (St)2.
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where St is a nondimensional time based on the shear rate S and this shows that enhanced
dissipation occurs on a time scale St ∼ R1/3

0 . If we have a length scale, say h for the shear
flow, then we can define a Reynolds number R = Sh2/ν then R0 = R (`0/h)2 and the
enhanced dissipation occurs on the time scale St ∼ R1/3(`0/h)2/3, still scaling like R1/3.

Didn’t he say ‘analysis’? Fellows uncomfortable with the back of an envelope should
go with the flow x = x0 − Syt and consider ω = ω(x0, y, t) in terms of the Lagrangian
coordinate x0 = x+ Syt and y, t, then (∂/∂x)y,t = (∂/∂x0)y,t but

(∂/∂y)x,t = (∂/∂y)x0,t
− St (∂/∂x0)y,t (4)

(∂/∂t)x,y = (∂/∂t)x0,y
− Sy (∂/∂x0)y,t (5)

and (1) for ω(x0, y, t) becomes

∂ω

∂t
= ν

(
1 + (St)2

) ∂2ω

∂x2
0

− 2νSt
∂2ω

∂x0∂y
+ ν

∂2ω

∂y2
(6)

that has solutions of the form ω = A(t)ei(αx0+β0y) with

A(t) = A0 exp
(
− ν

(
(α2 + β2

0)t− αβ0St
2 + α2S2t3/3

) )
, (7)

which for α = 1/`0, β0 = 0 gives

ω = ω0 exp
(
−ν t+ S2t3/3

`20

)
, (8)

that should reassure fellows of the validity of (2).
One can also use Kelvin modes and solve (1) (in an infinite domain in y) using solutions

of the form ω = A(t) exp(ik(t) · r), that is, Fourier modes with time-dependent wavevectors
k(t). For (1), one finds k(t) = (α, β0−αSt) and dA/dt = −νk2A with k2 = α2 +(β0−αSt)2
and recover (7). Thus, shearing leads to wavenumbers that grow like St in the shear direction
β ∼ −αSt or ky ∼ −kxSt and this leads to enhanced damping.

In a semi-infinite domain, e.g. 0 ≤ y < ∞, the advection diffusion equation (1)2 has
eigensolutions of the form eλteiαxf(y) where f(y) can be expressed in terms of Airy functions
with y length scales ∼ (ν/(αS))1/3 and <(λ) ∼ −(να2S2)1/3. For a bounded domain, the
eigenmodes have y scale ∼ (αR)−1/3 and decay rates ∼ (αR)−1/3, with α now the non-
dimensionalized x wavenumber. The connection between the y scale and the decay rate
follows from the form of the dissipation ∂t = ν∇2 ∼ −νk2 where k is a wavenumber. In
non-dimensional units, this is ∂t ∼ −k2/R with k ∼ R1/3 for scales ∼ R−1/3, thus

−k
2

R
∼ −R−1/3. (9)

2for the y vorticity η with boundary condition η = 0 or ∂yη = 0, or for ∂xω = (∂2
x + ∂2

y)v with no-slip
v = ∂yv = 0 or free-slip v = ∂2

yv = 0.
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Figure 2: Scalings of the component of the lower branch steady state in plane Couette flow
from [24]. The top curve (green) is the amplitude of the streaks u0(y, z)− U(y) ∼ O(1) as
R → ∞. The 2nd from the top (red) is w1 ∼ R−1, the 3rd (blue) is v0, w0 ∼ R−1. The
bottom two curves are the higher harmonics exp(i2αx) (magenta) and exp(i3αx) (orange)
and they converge to zero faster than R−1.

2 R−1/3 in lower branch exact coherent states

Lower branch exact coherent states, that is the unstable 3D steady states calculated from
the Navier-Stokes equations using Newton’s method and the SSP phenomenology [18], show
R−1/3 critical layers as illustrated by the plane Couette flow steady states in [24]. Those
calculations (up to about R ≈ 60 000) show that for large R the flow converges to a simple
form

v→ v0(y, z) + eiαxv1(y, z) + e−iαxv∗1(y, z) (10)

such that v0 = (u0, v0, w0) has streaks u0(y, z)− u0(y) = O(1), but rolls v0, w0 ∼ O(R−1).
The x-mode v1(y, z) scales almost like R−1, see Figure 2. The structure of this lower branch
steady state is shown in Figure 3 and the gentle updraft and downdraft supporting O(1)
streaks is quite visible together with the critical layer structure of the wave mode v1(y, z).

3 SSP model with critical layers

The SSP model [17] discussed in lectures 1 and 5 was intended as an as-simple-as-possible
low Reynolds number model of the essential process in shear flow that leads to feedback
from u onto the shearwise velocity v that creates u through the redistribution of the base
shear (∂tu ∼ −v ∂yU + · · · ), thereby leading to bifurcation from laminar flow. The model
was derived from the Navier-Stokes equations through a Galerkin truncation procedure
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Figure 3: The lower branch plane Couette flow steady state for α = 1, γ = 2, R = 50 171.
Top left: Contours of u0(y, z) (dashed, with u0 = 0 thick solid) and v0(y, z) (color) showing
updraft at z = 0 and downdraft at z = ±π/2. Top right: |u1(y, z)|. Bottom left: |v1(y, z)|.
Bottom right: |w1(y, z)|. Note the concentration of u1, v1 and w1 in a R−1/3 layer about
u0 = 0. From [24].
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entirely similar to that needed to derive the Lorenz model of Rayleigh-Bénard convection.
The latter is well-known to be physically valid only for Rayleigh numbers Ra close to the
onset of convection at Rac = 27π4/4, and the famous chaos of the Lorenz 3-mode model
disappears for higher resolution, indeed the chaos is labelled as physically spurious [1].3

The 3-mode Lorenz model does capture the bifurcation from the conduction state to a
steady convection state for Ra & Rac but for Ra not too far from Rac only (Ra . 10Rac).
The 3-mode model is physically successful for relatively low Ra because the instability is
linear and supercritical, i.e. it saturates at small amplitudes ∼ (Ra−Rac)1/2 [10]. Likewise
the SSP 4-mode model [17] obtained by projection of the Navier-Stokes equations onto a
few large scale Fourier modes is expected to be valid only for low R near onset of bifurcated
states, but not as accurate as the Lorenz model since the SSP 4-mode model attempts to
capture a nonlinear, finite amplitude bifurcation.

Nonetheless, the lower branch steady states do appear to result merely from the weakly
nonlinear interaction of neutral streaky flow eigenmodes but those streaky flow eigenmodes
contain R−1/3 critical layers as we have seen. Thus the R → ∞ scalings predicted by the
low order model, namely W ∼ R−1 for the lower branch state (lecture 5 and [17]), may not
be correct. Recall that the SSP 4-mode model reads(

d

dt
+
κ2
m

R

)
M =

κ2
m

R
−σu UV +σmW 2(

d

dt
+
κ2
u

R

)
U = σuMV −σwW 2(

d

dt
+
κ2
v

R

)
V = σvW

2(
d

dt
+
κ2
w

R

)
W = σw UW −σv VW −σmMW

(11)

Since W is the amplitude of the only x-dependent mode in the SSP 4-mode model, it is the
mode that we should correct for critical layers and its dissipation wavenumber κw should
be κw ∼ R1/3 as R → ∞, as discussed in the previous section. This gives a W decay rate
scaling as κ2

w/R ∼ R−1/3, instead of R−1. The damping wavenumber κv for the rolls V also
needs to be changed to R1/3 in spite of it being x-independent. This is because the rolls are
generated through the nonlinear interaction of the streak eigenmode of amplitude W that
lives on the critical layer of thickness ∼ R−1/3 so the dissipation of the rolls occurs at that
scale and κv ∼ R1/3 also. Likewise the nonlinear interaction coefficients σw, σv, σm scale
like R1/3 because those originate from the u · ∇u nonlinearity, and when reduced to the
V forcing for instance, [17, eqn. (6)], it involves only ∂y and ∂z derivatives, i.e. derivatives
across the warped critical layer of thickness R−1/3, so those derivatives scale like R1/3. Thus
because of the critical layer of the streak eigenmodes we expect

κv, κw ∼ R1/3 and σv, σw, σm ∼ R1/3 (12)

but κm, κu and σu remain O(1) because the mean shear M and streaks U are x-independent
(so no shearing and critical layers for those modes) and they arise from the smooth redis-
tribution of streamwise velocity by the large scale rolls V .

3There are constrained physical systems, e.g. the heated fluid loop [9] or the Malkus-Howard water-
wheel nicely described in Strogatz’s Nonlinear Dynamics and Chaos book, that are governed by the Lorenz
equations and do show chaos.
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With these modifications, the lower branch steady state would have the R→∞ scaling
U , M ∼ O(1) and V ∼ R−1 but

κ2
v

R
V = σvW

2 ⇒ R−4/3 ∼ R1/3W 2 ⇒ W ∼ R−5/6 (13)

This scaling matches the asymptotic analysis of Hall and Sherwin [4], and the plane Couette
numerical results [24], but the asymptotic analysis of the full PDEs is a lot more involved.

4 SSP and Exact Coherent States

4.1 Bifurcation from streaky flow

OK, but how does one find the 3D Navier-Stokes solutions shown in section 2? There
are several approaches nowadays, but the original robust approach that worked for plane
Couette and plane Poiseuille with both no-slip and free-slip perturbations [18, 19, 20] as well
as for pipe flow [2, 25, 11] is based on the self-sustaining process (SSP) shown schematically
in Figure 4.

O(1/R) O(1/R)

O(1)

Streaks

Streak wave
mode (3D)

Streamwise

self−interaction
nonlinear

U(y,z)
instability of

Rolls

advection of
mean shear

Figure 4: Schematic of the self sustaining process from [17]. Note that the scaling of the
‘Streak wave mode’ should now be corrected to R−5/6.

The SSP was initially conceived as a periodic process where each element would occur
in succession: (1) rolls redistribute streamwise velocity to create streaks, (2) streaky flow
U(y, z) develops an instability, (3) the nonlinear self-interaction of that instability (essen-
tially an oblique vortex roll-up) regenerates the rolls. Indeed, the earliest test of the validity
of this process [22, 5] using direct numerical simulations, showed a nearly periodic version
of the process and truly time-periodic solutions were later isolated by Kawahara and Kida
[6] and Viswanath [15].

But there are also equilibrated versions of the process where the rolls, streaks and streak
eigenmode have just the right structure and amplitude to stay in mutually sustained steady
or traveling wave equilibrium. The self-sustaining process theory can be used to find 3D
steady state or traveling wave solutions of the full Navier-Stokes equations (NSE), i.e. the
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3D NSE with sufficiently high resolution in all 3 directions. The solutions are represented
in terms of Fourier-Chebyshev expansions, Fourier in the x and z directions and Chebyshev
in the wall-normal y direction (see [20] for numerical details). The SSP-based procedure to
do this [18] is

1. Add
F

R2
forcing of rolls (0, v0(y, z), w(y, z)) to NSE ⇒ O(

1
R

) rolls, O(1) streaks

2. Find Fc for onset of instability of [u0, v0, w0](y, z) for given α (or αc for given F ).

3. Use W (amp of eiαx mode) as control parameter and continue to F = 0 (Subcritical
bifurcation thanks to nonlinear feedback from wave mode onto rolls).

The parameter F is O(1) and R is the Reynolds number [17, 18, 20]. This procedure
is illustrated in Figures 5, 6 and 7 for free-slip plane Couette flow (‘FFC’ = ‘Free-Free
Couette’) where it is particularly clean since the roll forcing has a simple form to yield the
v0(y, z) = (F/R) cosβy cos γz with β = π/2 from lecture 5. Here Fc = 5 for α ≈ 0.49 and
γ = 1.5 at R = 150. F = 0, W = 0 is the laminar flow u = y with u = 0 at y = 0 (the green
surfaces in Figures 6, 7, the yellow surface is u = −0.5). For F 6= 0, we are forcing simple
streamwise rolls seen as the red and blue tubes in Fig. 6 that redistribute the streamwise
velocity u, warping the isosurfaces u = constant, to create a 2D streaky flow. Increasing
F beyond a critical value Fc leads to an unstable streaky flow, although when F becomes
too big, the rolls stir up the flow so much that the mean shear and streaks are wiped out
and the streaky flow regains stability. This streaky flow for α = 0.49, γ = 1.5, R = 150
is unstable for 5 < F < 18.3 (i.e. fixed geometry, although we usually fix F and find the
band of unstable α). Taking W , the normalized amplitude of the eiαx mode, as the control
parameter and increasing from W = 0 leads to the sequence of 3D steady states shown in
figures 6 and 7 yielding to self-sustained states with no roll forcing (F = 0).

This procedure can be used in other flows: Rigid-Rigid Couette (i.e. no-slip at both
walls), Rigid-Free Couette, Rigid-Free Poiseuille, Rigid-Rigid Poiseuille as well as in no-slip
pipe flow [2, 25, 11] and duct flow (Kawahara et al. ).

8



−5 0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

F

W

FFC α=0.49, γ=1.5, R=150

Figure 5: Bifurcation diagram for Free-Free Plane Couette Flow with α ≈ 0.49, γ = 1.5,
R = 150, fixed. F = W = 0 is the laminar flow U = y. W = 0 corresponds to x-
independent streaky flow with rolls and streaks when F 6= 0. The green markers at W = 0,
F = 5, 18.3 are the streaky flow bifurcation points and the streaky flow is unstable between
those markers (dashed line). The red markers at F = 0 indicate the self-sustained 3D steady
states. Since W is the amplitude of the eiαx mode, a change of sign of W corresponds to a
half-period shift in x. This is for well-resolved spectral calculations of the full Navier-Stokes
equations not the low-order model, although the low-order model has similar behavior.
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Figure 6: SSP construction of exact coherent states for Free-Free Plane Couette Flow.
The green surfaces are u = 0, gold is u = −0.5. Red and blue correspond to positive
and negative streamwise vorticity ωx, respectively (80% of max). F is the normalized roll
v0(y, z) amplitude and W is the normalized eiαx streaky mode amplitude. First we increase
F with W = 0 until the 2D streaky flow is unstable (bottom left), then we start increasing
W with F free.
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Figure 7: Continued from Fig. 6, we keep on increasing W and obtain a lower branch
self-sustained steady state when F = 0 (bottom left) and an upper branch (bottom right).
These are the upper two red markers in the bifurcation diagram Fig. 5.
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4.2 Homotopy of exact coherent states

The solutions can also be easily ‘deformed’ into one another. For instance one can perform
the homotopy from Free-Free Couette to Rigid-Free Poiseuille, this is a Newton continuation
of the steady state Couette solutions to traveling wave Poiseuille solutions in a half-channel
with no-slip at the bottom wall at y = −1 and free-slip at the centerline at y = 1. This is
the homotopy

UL(y) = y + µ

(
1
6
− y2

2

)
(1− µ)

∂u

∂y
+ µu = 0 at y = −1

(14)

and similarly for w at the wall, with µ = 0 → 1 to go from Couette with free slip at both
walls to Poiseuille UL(y) = 1/6 + y − y2/12 with no-slip at the bottom wall, where UL(y)
is the laminar flow and Poiseuille is normalized to be nearest to Couette. If this homotopy
is performed at fixed W (amp of eiαx mode) then R becomes the free parameter, since
we are now only interested in self-sustained 3D states with no external roll forcing F = 0
(Figure 8).

Figure 8: Homotopy (14) from free-free Couette µ = 0 (left) to Rigid-free Poiseuille at
µ = 1 (right) [18, 19]. The gold u = −0.5 isosurface cannot be swept away with no-slip at
y = −1 (right). The green isosurface on the right is u− c = 0 where c is the wave speed.

By ‘homotopy’ we mean to emphasize the very similar (‘homo’) shape (‘topos’) of the
solutions in the various flows, e.g. free-slip Couette and no-slip Poiseuille, and the ‘homo-
topy’ procedure consists of a smooth deformation of one solution into the other. In contrast,
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we used bifurcation from streaky flow to construct the solution from scratch and that is not
smooth since it involves a bifurcation (sect. 4.1). In the literature, authors often refer to
the latter as ‘homotopy’ as well, but we do not.

4.3 ‘Optimum’ channel Traveling Wave

Once a self-sustained 3D steady state or traveling wave has been found, it is interesting to
find its lowest onset Reynolds number. To do so we need to optimize the 3D solutions over
the fundamental wavenumbers α and γ, i.e. over the wavelengths Lx and Lz in order to
minimize the Reynolds number. This was done for a variety of flows, including Rigid-Rigid
Couette where onset R ≈ 127.7 and Rigid-Free Poiseuille where onset R ≈ 977 (based on
the laminar centerline velocity and the wall to centerline distance to compare to 5772 for
onset of the weak 2D viscous no-slip instability). Note that there is a factor of 4 difference
arising just from the different definitions of R in plane Couette and Poiseuille.

Figure 9: Channel flow traveling wave at onset Reynolds number Rτ ≈ 44 for L+
x ≈ 274 and

L+
z ≈ 105 in wall units. This corresponds to a pressure gradient based Reynolds number

(i.e. laminar centerline velocity and wall to centerline distance) of 977 [20]. Rτ is based on
the friction velocity uτ =

√
τw and the wall to centerline distance. Wall or ‘plus’ units are

based on ν/uτ . Each vortex (red and blue isosurfaces) has a shear layer of opposite sign ωx
at the wall below it. The green isosurface is u− c = 0 where c is the traveling wave speed.
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One remarkable result of this optimization is that the length scales for minimum onset
Reynolds number turn out to be almost identical to the length scales that had long been
observed for coherent structures in the near-wall region of turbulent channel flows, namely
L+
x ≈ 300, L+

y ≈ 50 and L+
z ≈ 100, the latter corresponding to the well-known 100+

streak spacing. This fits with the idea that those scales are the smallest scales for the self-
sustaining process and the streak spacing is essentially an onset Reynolds number [16]. The
structure of the traveling wave is also remarkably similar to the educed structure of near
wall momentum transporting flows shown in Figure 10. Those observed structures consists
of wavy low speed streaks flanked by staggered counterrotating quasi-streamwise vortices,
exactly like the 3D traveling waves, hence the name of exact coherent states for the latter
[19].

Figure 10: Near-wall coherent structure educed from turbulent channel data by Derek
Stretch (1990) [14]. Note the wavy streak as the wavy green isosurface in Fig. 9 and the
counterrotating quasi-streamwise vortices as the red and blue isosurfaces in Fig. 9, and the
earlier Couette solutions in Fig. 7.

5 Turbulence: onset and structure in state space

We saw in sect. 4.1 how the exact coherent states — 3D steady states and traveling wave
solutions of the Navier-Stokes equations — can be constructed by bifurcation from streaky
flow in the (F,W ) parameter space for fixed R,α, γ (Fig. 5). For fixed F = 0 these solutions
arise from saddle-node bifurcations, also known as out-of-the-blue-sky bifurcations, in the
(R,W ) parameter plane, as shown in Figure 11. Although the drag of the upper branches
grows quickly with Reynolds number, at least initially (we expect fixed (α, γ) solutions
to eventually saturate), the lower branch solution quickly asymptotes to a constant larger
than the laminar drag. These computations have been pushed to R ≈ 60 000 and the lower
branch drag appears constant, consistent with Fig. 2 where the solution asymptotes to O(1)
streaks. This suggest that these solutions never bifurcate from the laminar flow, not even
at R→∞.

But all these upper and lower branches are unstable from onset, how then could they be
relevant? We have already seen that their structure and length scales (e.g. the 100+ streak
spacing) match very well with the observed near-wall coherent structures in turbulent shear
flows, and the latter are clearly unstable, yet they are statistically ever present and control
the momentum transport. Figure 12 provides other evidence of the relevance of unstable
coherent states to turbulent flows that appear to oscillate around the upper branches,
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Figure 11: Rigid-rigid Couette bifurcation diagram for 3D steady states for (α, γ) = (1, 2)
(red) and (1.14,2.5) (blue). Drag versus Reynolds number. Drag is non-dimensionalized by
the laminar drag so this is a Nusselt number, τw/(νU/h) and Drag=1 is the laminar flow.
The upper branch drag increases rapidly with R but the lower branch quickly asymptotes
to a constant > 1. The solutions arise out-of-the-blue-sky but do not bifurcate from the
laminar flow.

suggesting that the upper branch is a good first approximation to the statistics of turbulent
flows such as drag, energy dissipation, mean flows, . . .

The lower branch on the other hand has the remarkable property of having only one
unstable direction, at least in plane Couette flow except close to the nose of the bifurcation
curve [24]. Starting in the unstable direction either leads quickly to turbulent flow, or in the
opposite direction leads quickly back to laminar flow as shown in Figure 13. This suggests
that the lower branch is the backbone of the laminar-turbulent boundary that would be the
stable manifold of the lower branch. Further calculations by us and others have confirmed
this role of the lower branch [12].

Figure 14 is an old cartoon (APS DFD 2001, [19], [21]) sketching how these exact
coherent states and their stable and unstable manifold structure the state space. Gibson,
Cvitanović and Halcrow [3] have produced a beautiful picture of the state space of plane
Couette flow for given fundamental wavenumber (α, γ) and Reynolds number R = 400 that
shows the role of the coherent states and their unstable manifolds in guiding the turbulent
dynamics. Kawahara, Uhlmann and van Veen explore the relevance of invariant solutions
for fully developed turbulent flows [7].
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Figure 12: Rigid-rigid Couette 3D steady states for (α, γ) = (0.95, 1.67) in the total energy
input rate τwU/h versus total energy dissipation rate E (lecture 2), normalized by laminar
values so blue marker is laminar flow at (1,1). Green marker is lower branch, red marker
is upper branch. The blue orbit is a DNS of turbulent flow for 2000 h/U time units for
(α, γ) = (1.14, 1.67). Turbulent orbit was computed by Jue Wang using John Gibson’s
Channelflow code [24].
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Figure 13: Rigid-rigid Couette for (α, γ) = (1, 2) at R = 1000. Starting on the positive (say)
side of the lower branch unstable direction quickly leads to a turbulent flow that oscillates
about upper branches (left). Starting on the opposite side quickly leads to a slow, reverse
SSP, decay back to laminar. That is, the flow first loses its x dependence, then the rolls
and streaks slowly decay back to laminar flow (right). Note the different scales. The dots
on the red curve mark equal time intervals to show speed along the curve.

Laminar

Turbulent

Figure 14: Schematic of the state space and role of the unstable exact coherent states.
Laminar flow (blue) is stable for all R. Lower branch is the backbone of the laminar-
turbulent boundary which is the stable manifold (red dashed) of the lower branch (green
marker). The turbulent flow is an aperiodic oscillation about upper branches (red marker).
There exists also unstable periodic orbits (red curve), that form the skeleton of the turbulent
attractor.
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5.1 Conclusion

These six lectures have been a quick and necessarily incomplete overview of the problem of
turbulence onset and structure in basic flows such as flows in pipes and channels. The sci-
entific study of this basic fluid dynamics problem started with the experiments of Reynolds
and the analyses of Rayleigh in the 1880s and has been an active field of study ever since,
splitting into several distinct directions such as stability theory, turbulence modeling and
statistical theories of turbulence.

Linear stability theory of shear flows does not explain onset of turbulence but has many
technical and physical peculiarities such as critical layers and (weak) instability arising
from viscosity in channel but not in pipe, in pressure-driven but not wall-driven flows,
yet turbulence in all these different flows is quite similar. Statistical theories have focused
largely on homogeneous isotropic turbulence and disconnected drag from energy dissipation.
The Kolmogorov picture of turbulence with its energy cascade concept and k−5/3 energy
spectrum is compelling, but has little if anything to say about momentum transport or
heat flux in realizable wall-bounded flows. Numerical simulations and modern experimental
visualization techniques such as PIV (particle image velocimetry) have revealed a myriad
of coherent structures and a major challenge has been to decide how to identify and classify
these observed structures and their interconnections, and figure out how to introduce them
in models and theories.

Our work on exact coherent states reconnects turbulence onset to developed turbulence
with its observed and educed coherent structures. The 100+ streak spacing of near-wall
coherent structures in fully developed turbulent shear flows is closely related to, if not
identical with, the critical Reynolds number for turbulence onset [16], [20]. In a little
more than a decade, we have gone from the two well-known states of fluid flow, laminar
and turbulent, to the discovery of a multitude of intermediate states, unstable exact coherent
states. These states can be steady states or more generally traveling waves in plane Couette,
Poiseuille, pipe and duct flows as well as time periodic solutions. The latter have been
found mostly in plane Couette flow so far, by Kawahara and Kida [6], Viswanath [15] and
many unpublished states found by John Gibson (but posted on his web page). Schneider,
Gibson and Burke [13] have found spanwise localized states that bifurcate from the lower
branch states close to the ‘nose’ of the saddle-node bifurcation. This bifurcation is directly
connected to the Hopf bifurcation that was known to occur along the lower branch as we
approached the saddle-node bifurcation [23], [24], and to the instability of the upper branch
(the node) at onset.

Our cartoon (Fig. 14) is now too simplistic, there are many lower branches and upper
branches, even snakes and ladders [13], and Eckhardt and co-workers have shown that
there are more complex types of ‘edge states’ on the laminar-turbulent boundary than mere
traveling waves. Lebovitz [8] uses low order models to explore features of the laminar-
turbulent boundary and shows that the ‘edge’ may not be a laminar-turbulent boundary
but an invariant set separating the basin of attraction of the laminar state in two parts. We
have discovered the unstable coherent scaffold of turbulent flows and, not surprisingly, it is
rich and complex.
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