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We have shown in the previous lectures that the −vU ′ term in the u equation, that is
∂tu = −vU ′ + · · · , is the key term leading to momentum transport −uv ∼ vvU ′t and per-
turbation energy production −uv U ′ ∼ vv(U ′)2t > 0. This term is the redistribution of
streamwise velocity that releases energy from the background shear to enable bifurcation
to turbulent flow. However, in shear flows we have not yet identified a mechanism that
can feedback from the u fluctuation to v, thus v creates just the right u through the −vU ′
advection term, but how is v sustained? In this lecture, we first review two linear mech-
anisms of feedback on v involving extra physics, (1) through the Coriolis term in rotating
shear flow, (2) through buoyancy in Rayleigh-Bénard convection. We derive the famous
Lorenz model for convection, then consider a similar model for shear flows that illustrates
the mechanisms involved in the nonlinear feedback from u to v, yielding a self-sustaining
process for shear flows v → u → · · · → v. This is the model that was already discussed in
lecture 1.

1 Redistribution of streamwise velocity

In this lecture we will consider the mechanisms that lead to a 3D nonlinear self-sustaining
process in shear flows. Let us first consider what this may look like in plane Couette flow.
If we introduce a perturbation in the y-direction (in this case v > 0), such as a cross-stream
jet, the perturbation will create so-called streamwise rolls, as shown in Figure 1, that is a
flow v = (0, v(y, z), w(y, z)) as a result of incompressibility and the boundary conditions.1

The streamwise rolls redistribute the streamwise velocity, by advecting negative momentum
(u < 0) up and towards z = 0 (where z = 0 is defined as the position of the jet) and positive
momentum (u > 0) down and away from z = 0.

The redistribution of the streamwise momentum results in a pattern of so-called streaks
in u, with low streamwise velocity at the position of the jet. ‘Streaks’ refers to the patterns
made by hydrogen bubbles released in the near wall region of turbulent shear flows. In
theory, they refer to spanwise fluctuations of the streamwise velocity u, that is the departure

1Streamwise rolls have their axis in the streamwise direction and they are streamwise-independent. Their
horizontal wavevector kH = (kx, kz) = (0, kz) is actually pointing in the spanwise direction z.
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Figure 1: Streamwise rolls redistribute the momentum of the mean shear from the bottom
wall up and toward z = 0 and from the top wall down and away from z = 0. The mean
shear flow is into and out of the screen.

of the x averaged u, ux(y, z) from the x and z averaged u, u(y), so the streaks are defined
as ux(y, z) − u(y) (with t implicit). Figure 2 shows that the perturbation induces streaks
of faster and slower streamwise flow. The profile of u now has inflection points, but in the
spanwise z direction, and so we may expect it to be unstable.

z

x

u(y,z)

Figure 2: Top view: Streamwise rolls redistribute the mean shear creating streaks.

However, in order for the flow to bifurcate from the laminar flow, it is not enough to
have rolls (0, v(y, z), w(y, z)) creating unstable streaky flow (u(y, z), 0, 0), we need feedback
from the streak instability into the rolls sufficient to lead to a self-sustaining process. To
investigate whether a mechanism exists to feedback on the v perturbation, let us consider
the energy stability discussed in earlier lectures. If the perturbations are independent
of the streamwise x direction, we can separate out the streamwise from the cross-stream
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components as follows:

d

dt

∫
u2

2
dV =

∫ (
−uvU ′

)
dV − 1

R

∫
|∇u|2dV (1)

d

dt

∫
v2 + w2

2
dV = − 1

R

∫ (
|∇v|2 + |∇w|2

)
dV (2)

It is evident from eqn. (2) that there is dissipation, but no production, of the cross-stream
components. Therefore a further mechanism is needed if the rolls and streaks created by
the initial perturbation are to be sustained.

We can further investigate the feedbacks between the streamwise rolls and streaks by
considering the streamwise and cross-stream linearized momentum equations eliminating
any x dependence (see lectures 1 and 4)

∂tu−
1
R
∇2u = −vU ′ (3)

∂tv −
1
R
∇2v + ∂yp = 0 (4)

∂tw −
1
R
∇2w + ∂zp = 0 (5)

with the pressure p(y, z, t) enforcing ∂yv + ∂zw = 0 and where U ′ = dU/dy is the shear
rate of the laminar base flow. Equation 3 further emphasises the creation of streaks from
the streamwise rolls; an updraft v > 0 creates u < 0, while a downdraft v < 0 creates
u > 0, assuming U ′ > 0. However the cross-stream velocities v, w are decoupled from the
streamwise velocity u and therefore the rolls will decay.

2 Rotation induced shear instability

One method of creating feedback from u onto v is to add rotation to our system of plane
Couette flow. Let us consider rotation of the form Ωẑ, with Ω > 0. The linearized momen-
tum equations in the rotating frame involve the Coriolis force −2Ωẑ× v = (2Ωv,−2Ωu, 0)
(the centrifugal force is absorbed into the pressure gradient) and read

∂tu−
1
R
∇2u = −vU ′ + 2Ωv (6)

∂tv −
1
R
∇2v + ∂yp = −2Ωu (7)

with the same w equation (5). The Coriolis force adds a feedback from u to v. The Coriolis
force is energy conserving since it is always orthogonal to v. However, in the presence of
background shear U ′, the advection of U by v creates u that is rotated into v by the Coriolis
term and this can lead to a linear instability. As shown previously in Figure 1, a positive
perturbation in v will lead to a negative perturbation in u, assuming U ′ > 2Ω via the
advection of mean shear (6). Coriolis −2Ωu in the v equation (7) turns this negative u into
a positive feedback on v, thereby sustaining the rolls and destabilizing the flow. Ignoring
diffusion and the pressure gradient, equations (6) and (7) suggest instability when

2Ω(U ′ − 2Ω) > 0, (8)
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for a base flow U(y)x̂ and rotation Ωẑ. Thus, too much rotation |U ′| < 2|Ω| will lead
to stability and any rotation in the direction of the shear vorticity (i.e. U ′Ω < 0) will
also stabilize, but a bit of rotation in the direction opposite to the shear flow vorticity (i.e.
U ′ > 2Ω > 0 or U ′ < 2Ω < 0) will lead to linear instability as a result of shear redistribution
and the Coriolis force.

This simple outline of rotating plane Couette flow is a way of understanding the classic
‘centrifugal’ instability seen in Taylor-Couette flow, in which fluid contained within two
concentric cylinders is unstable when the inner cylinder rotates faster than the outer cylin-
der, and indicate that that classic instability should perhaps be called ‘Coriolis instability’
instead of ‘centrifugal’. The rolls and streaks in Taylor-Couette flow are shown in Figure 3.
Placing a plane Couette flow on a rotating table leads to similar ‘Taylor vortices’ as done
in experiments by Tillmark and Alfredsson.

Figure 3: Toroidal vortices in Taylor-Couette flow (by M. Minbiole and R. M. Lueptow)

3 Thermal convection and the Lorenz model

A second method of creating feedback onto the cross-stream velocity perturbations v, w is
to add a thermal gradient. We consider the Boussinesq thermal convection between planes,
i.e. Rayleigh-Bénard convection (see Figure 4), especially in the weakly nonlinear regime,
and derive qualitatively the reduced system of ODEs known as the Lorenz model.
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Figure 4: Schematic picture of Rayleigh-Bénard convection. Gravity acts downward in the
−ŷ direction.

The governing equations of Boussinesq thermal convection between planes are

∂u
∂t

+ (u · ∇)u +∇p = gαT ŷ + ν∇2u, (9)

∇ · u = 0, (10)
∂T

∂t
+ (u · ∇)T = κ∇2T, (11)

where u is the velocity, −gŷ is the acceleration of gravity, T the temperature2 departure
from some mean temperature so that the density ρ ≈ ρ0(1 − αT ) with α ≥ 0 the thermal
expansion coefficient, ν the kinematic viscosity and κ the thermal diffusivity. The distance
between the two plates is H = 2h and the temperature of the lower plate is T1 at y = −h
and the upper plate is at T2 at y = h, with T1 + T2 = 0. Thermal convection occurs when
the temperature difference ∆T = T1 − T2 is larger than a certain threshold. The base
temperature profile is

T = Tc = −∆T
H

y, (12)

which the conductive state solution of (9), (10) and (11) with u = 0, for all values of the
parameters. Buoyancy gαTc ŷ in (9) is balanced by an hydrostatic pressure.

(1) Insert rolls. We choose the boundary conditions as free-slip at the walls, that is v =
∂yw = ∂2

yv = 0, this is a physically reasonable boundary condition that is mathematically
convenient since it allows the representation of the velocity by Fourier modes. We insert a
‘streamwise roll’ into the flow that can be taken as

v = V (t) cos (βy) cos(γz), (13)

where v = ŷ · u and β = π/(2h) so v = ∂2
yv = 0 at y = ±h and γ is an arbitrary

wavenumber. We choose the flow in the (y, z) plane to match the shear flow problem (fig.
1). From incompressibility ∂yv + ∂zw = 0, the z velocity w = ẑ · u must be

w =
β

γ
V (t) sin (βy) sin(γz), (14)

2Here, T is temperature, not the perturbation Reynolds stress that appeared in earlier lectures!
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with ∂yw = 0 at y = ±h since β = π/(2h). So this u = (0, v, w) flow (13), (14) as the shape
of the rolls sketched in Figure 4 and satisfies the boundary conditions v = ∂yw = ∂2

yv = 0
at y = ±h.

(2) Rolls redistribute temperature. Let T = Tc(y) + T̃ (y, z, t), that is, the conductive
profile (12) plus a perturbation T̃ . Then, (11) becomes

∂T̃

∂t
+ u · ∇T̃ = −vdTc

dy
+ κ∇2T (15)

which is entirely similar to the streamwise velocity perturbation equation in shear flows (3)
(and earlier lectures). Inserting the v mode (13) into the temperature equation (15) with
Tc = −y∆T/H shows that the −vdTc/dy = v∆T/H term generates a thermal perturbation
of the form

T̃ = T11(t) cos (βy) cos(γz) + · · · , (16)

that is the rolls (13) redistribute the linear temperature profile (12) inducing a temperature
fluctuation T̃ that has the same spatial form as v. The nonlinear term u · ∇u for (13), (14)
can be absorbed into the pressure gradient,3 so it does not distort the velocity field. If it
did (for different rolls, say for no-slip), we would assume at this stage that the rolls are
weak so ∇× (u · ∇u) is small.

(3) Temperature fluctuation feedback onto rolls. The temperature fluctuation T̃ (16)
yields a buoyancy fluctuation gαT̃ ŷ in the momentum equation (9) that perfectly feeds
back on the v mode (13). These V → T11 → V interactions through the base state Tc(y)
will lead to thermal instability provided this feedback can overcome the viscous and thermal
damping of the V and T11 modes, as shown below (27).

(4) Mean temperature gradient reduction. The ‘next’ effect4 is the interaction between
the rolls (13) and the induced fluctuation T̃ (16), in the temperature equation (15). This
interaction arises from the advection term −u · ∇T̃ in (15) for v, w and T̃ as in (13), (14),
(16), then after a simple calculation

−u · ∇T̃ = −v∂T̃
∂y
− w∂T̃

∂z
=
β

2
V T11 sin(2βy) + · · · (17)

so this interaction generates a sin(2βy) temperature fluctuation, which is a modification of
the mean temperature profile T (y, t), that is the z (and x) averaged temperature profile.
We label this mode the T20 mode since it is a temperature mode with y wavenumber 2β and
z wavenumber 0, hence the ‘two-zero’ (20) mode. This reduction of the mean temperature
gradient will lead to a reduction of the T11 forcing and saturation of the instability.

Therefore, the temperature distribution has the form

T = −y∆T
H

+ T11(t) cos (βy) cos(γz) + T20(t) sin(2βy) + · · · . (18)

3∇×(u·∇u) = u·∇ωx̂ where ω = ∂yw−∂zv for this 2D flow. Using a streamfunction v = ∂zψ, w = −∂yψ
gives u · ∇ω = (∂yψ∂z − ∂zψ∂y)(∂2

y + ∂2
z )ψ. Now for (13), ψ = (V/γ) cosβy sin γz and ∇2ψ = −(β2 + γ2)ψ

so u · ∇ω = 0. Thus u · ∇u = ∇χ, indeed χ =
`

cos 2βy − (β2/γ2) cos 2γz
´
V 2/4.

4All these effects take place simultaneously but here we identify a cause and effect sequence, starting
with a small stirring of the fluid, then analyzing the dynamical consequences of that stirring.
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together with the velocity field u = (0, v, w) with v and w as in (13), (14). The cause-
effect chain that we have in mind being V −→ T11 −→ V =⇒ T20 =⇒ T11, where as in
the scenarios of lecture 1, a −→ indicates a linear interaction (that is between the base
flow and a fluctuation) and a =⇒ a nonlinear interaction between fluctuations. Note that
amplitude-wise T11 ∼ V , T20 ∼ V T11 ∼ V 2 and the feedback from V and T20 onto T11 is of
order V T20 ∼ V 3.

We have identified a physically consistent set of modal interactions and can truncate
the expansion at this level. In general, this truncation will be valid only for sufficiently
small amplitude V since other modes are generated. We truncate the above formulation
using what is known as the Galerkin truncation or projection, that is we substitute these
expansions for v, w and T̃ into the equations and throw away higher order modes such as
cos 2γz, cos 3βy, etc. In the Galerkin truncated system, the dependent variables are the
modal amplitudes V (t), T11(t) and T20(t), thus we reduce the complete set of PDEs (9),
(10), (11) to 3 ODEs.

The temperature equation (15) is easy enough, but the u equation is complicated by the
pressure gradient needed to enforce incompressibility. For 2D flow, we can eliminate pressure
and u using a streamfunction, or as in the derivation of the Orr-Sommerfeld equation by
taking ŷ · (∇×∇(∗)) = (∂y∇− ŷ∇2) · (∗) ≡ P v · (∗), so P v · u = −∇2v and P v · ∇ϕ = 0.
Applying this P v operator to (9) yields

∂t∇2v = ν∇2∇2v + gα∇2
⊥T + P v · (u · ∇u) (19)

where ∇2 = ∂2
x + ∂2

y + ∂2
z and ∇2

⊥ = ∂2
x + ∂2

z and u follows from v and incompressibility in
2D flow, and P v · (u · ∇u) = 0 for (13). Additional η = ŷ · ∇ × u and mean flow equations
would be needed for general 3D flow but (19) together with (15) suffice for 2D flow. Then
for v and T as in (13) and (18), equations (15) and (19) yield the governing equations for
the modal amplitudes V (t), T11(t) and T20(t),

dV

dt
+ ν11V = g11 T11,

dT11

dt
+ κ11T11 = V ∆T

H −β V T20,

dT20

dt
+ κ20T20 = β

2 V T11,

(20)

where

ν11 = ν(β2 + γ2), κ11 = κ(β2 + γ2), κ20 = κ(4β2), g11 = gα
γ2

β2 + γ2
(21)

and β = π/(2h) = π/H. This is the famous Lorenz model of convection.5 One solution of
5The standard non-dimensional form of the Lorenz model is

dx

dτ
= σ(y − x), (22)

dy

dτ
= −y + rx− xz, (23)

dz

dτ
= −bz + xy, (24)

where τ = κ11t, σ = ν/κ, r = g11(∆T )/(ν11κ11H), b = κ20/κ11 and x = βV/(
√

2κ11), y =
β/(
√

2κ11)(g11/ν11)T11, z = (β/κ11)(g11/ν11)T20.
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these equations is V = T11 = T20 = 0 which corresponds to the conductive state. Linearizing
about that state yields

dV

dt
+ ν11V = g11T11,

dT11

dt
+ κ11T11 = V ∆T

H ,
(25)

which has an unstable mode V (t) = eλtV̂ , T11(t) = eλtT̂11 if g11∆T/H > ν11κ11, that is for

gα∆T
H

γ2

β2 + γ2
> νκ(β2 + γ2)2 (26)

or in non-dimensional form with β̂ = βH = π and γ̂ = γH

Ra ≡ gα∆TH3

νκ
>

(π2 + γ̂2)3

γ̂2
≥ 27π4

4
≈ 657.5, (27)

where Ra is the non-dimensional Rayleigh number and the minimum Ra = 27π4/4 = Rac
value for onset of convection with free-slip occurs at γ̂ = γH = π/

√
2.

This, of course, is just the beginning of the story since the simple nonlinear model (20)
has some rather interesting chaotic nonlinear dynamics as first studied by E. Lorenz (1963),
and for the the full PDEs (9), (10), (11), this is just the onset of convection leading to
multiscale turbulence for larger Ra, much beyond the range of validity of the simple Lorenz
model.

4 SSP Model

In the previous sections we have illustrated instabilities that result from the interactions
v → u → v thanks to base velocity redistribution −vdU/dy and the Coriolis force, and
from the interaction v → T11 → v thanks to mean temperature redistribution −vdT/dy and
buoyancy in convection. In bare shear flows, there is no direct linear feedback from u→ v,
but there are more involved 3D nonlinear mechanisms that provide that crucial feedback.
The entire set of mechanisms is called the self-sustaining process and we illustrate it here
with a low order model similar in spirit to the Lorenz model of convection.

From the earlier energy stability result (Equation 2) we know that unless we have vari-
ation of the velocity in the x direction any perturbations must eventually die out (possibly
after some initial transient growth) thus any successful model must include such variation.

The SSP model was already described in lecture 1 and was first described in [2, 3]. The
model can be derived by Galerkin truncation from the full Navier-Stokes equations [4], and
some mode linking.

Brief derivation

We consider a wall-bounded Kolmogorov flow with free-slip at the walls, figure 5. This will
allow us to use Fourier modes to represent the flow and lead to a simpler and cleaner model
than other shear flows with no-slip.

U(y, t) = M(t) sin(βy)x̂ (28)
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Figure 5: Wall-bounded Kolmogorov flow, U = sinβy with βy = ±π/2 at the walls, is
stable for all Reynolds numbers for free-slip perturbations, as proved in lecture 4.

with β = π/2 and the walls at y = ±1. We assume that this flow is maintained by a body
force, so that the evolution of M in the absence of any perturbations is given by

Ṁ +
1
R
M =

1
R
, (29)

for which one solution is simply M = 1 and R is the Reynolds number. We proved in lecture
4 that this wall-bounded Kolmogorov flow is stable for all Reynolds numbers for free-slip
perturbations.

As before we consider an initial perturbation consisting of rolls whose axes are in the x
direction, see Figure 1, and flow in the y and z directions as follows:

v = V (t) cos(βy) cos(γz),

w =
β

γ
V (t) sin(βy) sin(γz)

(30)

this V (t) mode satisfies incompressibility ∂yv + ∂zw = 0 and the free-slip boundary condi-
tions v = ∂yw = ∂2

yv = 0 at βy = ±π/2. This is the same rolls as in the Lorenz model (13).
The vertical component, v, of these perturbations advects momentum associated with the
background flow and leads to a perturbation of the velocity in the x direction, which to
leading order has structure

u = U(t) cos(γz), (31)

these are the streaks and the need for this mode arises from the redistribution of the base
shear (28) by the rolls (30), so

v∂yU + w∂zU = βVM cos γz (cosβy)2x̂ =
β

2
VM cos γz (1 + cos 2βy) x̂.

The cos 2βy was dropped in the derivation in [4] but it might be better to keep it and
define the streaks as U(t) cos γz (1 + cos 2βy). Moehlis et al. [1] have considered small
modifications of the 8 mode model in [4] that includes a few such adjustments of the mode
definitions. In any case, there is a VM forcing of U and likewise the advection by the rolls
of the streaks ux̂ with u as in (31) gives

v∂yu+ w∂zu = −β V U sinβy (sin γz)2 = −β
2
V U sinβy (1− cos 2γz)

and this gives a negative feedback on the base flow (28). Again we truncate the cos 2γz
contribution.
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Figure 6: Inflectional instability viewed from below.

At this level, our Galerkin truncation for the redistribution of the base flow (28) by the
streamwise rolls (30) has the form

Ṁ + 1
RM = 1

R −UV

U̇ + 1
RU = VM

V̇ + 1
RV = 0

(32)

where the dot ˙( ) ≡ d/dt and the coefficients have been set to 1 to highlight the structure
of the interactions as clearly as possible. However, as our motion is still independent of the
x direction, there is nothing to regenerate the vertical motion V and all perturbations will
eventually die out. Viewed from above the flow now has strips of faster and slower flowing
fluid, the streaks U (31) sketched in Figure 2, which have been generated by the advection
of the mean shear M by the rolls V . This streaky flow has inflection points in the spanwise
z direction and hence we might expect it to be unstable to an inflectional instability as
discussed in lecture 4. This instability provides a mechanism for introducing the variation
in the x direction that we know is vital to sustain the perturbations. This inflectional
instability of U cos γzx̂ will consist of the growth of ‘streak-sloshing’ mode, illustrated in
Figure 6, that is most simply represented by a spanwise velocity perturbation periodic in
x, that is

w = W (t) cos(αx) (33)

(we could just as well choose sinαx, this is a phase choice that is inconsequential to the
dynamics at this point). This spanwise perturbation should be added to the streamwise roll
contribution (30) so the full spanwise velocity at this level of truncation is

w = W (t) cos(αx) +
β

γ
V (t) sin(βy) sin(γz) (34)

Mode Ψ100 = (0, 0, cosαx) in (33) can grow from the U streak mode Ψ001 = (cos γz, 0, 0)
but only through interaction with the velocity mode (−γ cosαx sin γz, 0, α sinαx cos γz)
labelled Ψ101 in [4]. The Ψ modes are solenoidal, ∇ · Ψ = 0, and satisfy the boundary
conditions. The details are left to [4] but the conceptual result is that we now have an
x dependent mode W (t) and interactions between U and W such that W grows from an
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instability of U , so the ‘forcing’ of W is in the form of a UW . Conceptually, the dynamics
reads

Ṁ + 1
RM = 1

R −UV

U̇ + 1
RU = VM −W 2

V̇ + 1
RV = 0

Ẇ + 1
RW = UW

(35)

Unfortunately there is still no feedback on V so our perturbations must still die out. This is
an important point rarely understood, streak instability does not guarantee bifurcation from
the laminar flow. The streak instability could simply, as in model (35), destroy the streaks
U created by V from M , and therefore accelerate the return of the flow to the laminar state
(M,U, V,W ) = (1, 0, 0, 0).

In fact it is remarkably difficult to generate feedback on the streamwise rolls from the
streak eigenmode interactions. This feedback requires the interaction of modes with opposite
y-symmetry, i.e. an even mode interacting with an odd mode, and those modes arise from
each other through interaction with the mean shear. Thus as observed in [4], the mean
shear M plays the dual role of supplier of energy and momentum but also shaper of the
streak instability in order to allow feedback on V from the nonlinear interaction of the
streak instability eigenmode. It turns out that no less than five x-dependent modes are
required before we can get feedback on V , [4, §III. A], giving an 8th order model. However
we can simplify the model by kinematic linking of those 5 modes into a single complex mode
of amplitude W , the details are spelled out in [4, §III. C] and the result conceptually is

Ṁ + 1
RM = 1

R −UV

U̇ + 1
RU = VM −W 2

V̇ + 1
RV = 0 W 2

Ẇ + 1
RW = UW −VW

(36)

with, at last, feedback on V .
However, the derivation in [4] shows that these interactions are necessarily accompanied

by a feedback from W to M , which can be interpreted as the unavoidable shearing of x
dependent modes by the mean shear M sinβy x̂ that tends to destroy the W mode and by
conservation of energy, transfer that energy and momentum back to M . This is therefore a
mean shear stabilizing term and it is key to the 1/R threshold discussed in lecture 1. The
complete model [4, eqn. (20)] is then(

d

dt
+
κ2
m

R

)
M =

κ2
m

R
−σu UV +σmW 2(

d

dt
+
κ2
u

R

)
U = σuMV −σwW 2(

d

dt
+
κ2
v

R

)
V = σvW

2(
d

dt
+
κ2
w

R

)
W = σw UW −σv VW −σmMW

(37)
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where all κ2 and σ are positive constants and R > 0 is the Reynolds number. This model
(37) has a laminar flow (M,U, V,W ) = (1, 0, 0, 0), that is linearly stable for all Reynolds
number. The nonlinear interactions conserve energy and

d

dt

(
M2 + U2 + V 2 +W 2

2

)
= κ2

m

M

R
− 1
R

(
κ2
mM

2 + κ2
UU

2 + κ2
V V

2 + κ2
WW

2
)

(38)

from which we see that the kinetic energy of the flow decays due to viscous dissipation
with the only energy input coming from the forcing of the mean shear, as should be. This
energy equation also shows that there is no blow-up since we have linear energy input with
quadratic dissipation and any non-laminar statistically steady state must have 0 < M < 1.

Brief analysis of the model

An analysis of the SSP model (37) is given in [4] and also in the notes for lecture 1. Although
the laminar flow is stable for all Reynolds numbers, as is the case for the full linearized
Navier-Stokes PDEs, the SSP model (37) allows the onset of non-trivial steady states for
sufficiently large R. For those non-trivial states,

1. V redistribute M to create U . This is the σuMV term, and −σuUV is the corre-
sponding ‘Reynolds stress’.

2. the streaks U are unstable leading to the growth of W . This is the σw UW term, this
is an instability, not a direct forcing. The corresponding ‘Reynolds stress’ on U is the
−σwW 2 term,

3. Ah, Ha! nonlinear feedback from W onto V , the σvW 2,

4. but also a feedback onto M , σmW 2, pushing up the transition threshold.

This process supports onset of non-trivial steady states for R above a critical value and these
states arise from ‘saddle-node’ bifurcations, although typically both states are unstable from
onset. Because of the higher dimensionality, both the saddle and the ‘node’ are unstable
at onset. In the low order model, the upper branch of solutions (the node), gains stability
at higher R. The bifurcation and scaling of W are sketched in Figure 7. The lower branch
saddle scales like W ∼ R−1 and the upper branch like W ∼ R−3/4.
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Figure 7: Non-trivial steady states of the SSP model (37), Re is the Reynolds number. The
dashed line indicates instability of the solution. The laminar flow at W = 0 is stable for all
Re.
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