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Many realised in the 1980s that Chaos theory was not going to solve the problem of
turbulence because it is an inherently spatiotemporal phenomenon (at least at low to inter-
mediate Re). Pomeau [12]1 was the first to start thinking about turbulence from a statistical
mechanical viewpoint by comparing spatiotemporal intermittency to directed percolation.
Here, a spatial lattice of sites which individually can either be active (‘turbulent’) or passive
(‘laminar’) is stochastically evolved in time using simple rules which incorporate information
about neighbouring states. In the simplest models, there is one parameter p which defines
the evolutionary strategy and then the challenge is to characterise the ensuing dynamics
as a function of p. What typically emerges is that the order parameter ρ(t) defined as the
ensemble average of the lattice average of active sites (active=1, passive =0) asymptotes to
0 as t → ∞ for p ≤ pc where pc is a critical value, whereas for p > pc, limt→∞ ρ(t) ∼ (p−pc)

β

(there are universality classes defined by the exact value taken by the exponent β). What
is important here is the idea that turbulence and the laminar state can coexist above a
definite threshold (in Re) and the use of statistical techniques to characterise this via an
order parameter (e.g. turbulent fraction in a domain).

These ideas were followed up most famously in 1998 by Bottin et al. [4] who conducted
a series of plane Couette flow experiments in very large domains (non-dimensionalised as
380 × 2 × 70 in the streamwise, cross-stream and spanwise directions respectively) so that
the spatiotemporal behaviour near the transition threshold could be seen. The turbulent
fraction of the flow, Ft as a function of time for various Re is shown in Figure 1. This
plot emphasizes the temporal variability in Ft and the sensitivity of the flow to the initial
conditions used (e.g. compare the two time signals for Re = 322). Ft is found to approach 0
eventually for all Re < Rc ≈ 323, but long transients are found when Ru ≈ 312 < Re < Rc

so that a long-time average which is non-zero can still be defined (all turbulence rapidly
decays for Re < Ru). This is plotted verses Re in Figure 2.

Bottin et al. then applied a statistical approach to quantifying the transience of tur-
bulence in the Re range [Ru, Rc]. They collected lifetime data from 50 − 120 separate
experiments and then estimated P (T ), the probability that the flow still remains turbulent
after a time T : see Figure 3. The best fit lines drawn through the data at each Re indicate
an exponential distribution of lifetimes

P (T ) = e−T/τ , (1)

1Apparently, this work was mostly done at the Woods Hole summer program of 1985.
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Figure 1: (From [4]) Turbulent fraction vs. time during typical runs at various values of
Re.

Figure 2: The time-averaged turbulent fraction against Re from [4]. Ru = 312 is the Re
threshold below which turbulent patches rapidly decay (see Figure 1)). For Ru < Re < Rc ≈

323, there are long-lived turbulent transients. Above Rc, turbulence is sustained although
since Ft < 1 it is not space-filling (the lower dotted line is a conjectured threshold).
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(since P (0) = 1) where τ = τ(Re) is the mean lifetime of the process. If p(T )dT is the
probability that the flow relaminarises in the time interval [T, T + dT ) (as dT → 0), then

p(T ) =
1

τ
e−T/τ (2)

and the half life (median) is τ ln 2. This distribution indicates that the relaminarisation
process is memoryless, that is, the probability of relaminarising in the interval [T, T + s)
only depends on s and not T . Figure 3 also shows that flows at higher values of Re take
longer to relaminarise. In fact plotting 1/τ against Re indicated a linear relationship with
an intercept (τ → ∞) at ≈ 323: see Figure 3. This is consistent with Rec such that for
Re < Rec the turbulence will always be transient with a finite half life, while for Re > Rec

the half life is infinite and the turbulence sustained.
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Figure 3: (From [4]) Left: cumulated lifetime distributions for turbulent transients at dif-
ferent values of Re < Rec indicating exponential decay (lin-log scales; solid lines are fits
through the experimental data points). Right: variation of the inverse average decay time
1/τ as a function of Re extrapolating to zero at Rec = 323.

A similar statistical approach was also adopted numerically in small systems, that is, flow
geometries where the flow is either globally laminar or turbulent: see Schmiegel & Eckhardt
(1997) for plane Couette flow and Faisst & Eckhardt (2004) for pipe flow. The latter study
was motivated by an experimental study by Daryshire & Mullin (1995) which showed no
sharp border between initial conditions which lead to turbulence and those that did not.
Faisst and Eckhardt found a similar situation when observing over a fixed period of time
in their short, 5D (5 diameters) long pipe across which they applied periodic boundary
conditions and through which they enforced constant mass flux. They collected lifetime
statistics based on repeatedly initializing a numerical simulation using a perturbation of
fixed form but randomly varying its amplitude. 50-100 different runs were done for each
Re and 8 values of Re chosen from the interval [1600, 2200]. As in [4], they found that
P (T ) = e−T/τ(Re) - see Figure 4 - and estimated τ using the half life rather than the mean
lifetime due to the cut off in the observation times imposed. Figure 5 shows that the mean
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lifetime τ increases rapidly with Re with the inset figure indicating that actually τ → ∞

as Re → 2250. Faisst and Eckhardt speculated that for Re < 2250 where the turbulent
lifetime is finite, there is a chaotic repeller while for Re > 2250 there is a chaotic attractor.

Figure 4: (From [6]) Probability for a single trajectory to still be turbulent after a time t
for six Reynolds numbers as indicated.

Further evidence for critical point behaviour in the transition to turbulence in a pipe was
presented by a novel experiment by Peixinho and Mullin in 2006 [11]. In their experimental
setup (depicted in Figure 6a), a short duration perturbation was used to generate a localised
puff at Re = 1900. The puff was allowed to advect 100D down the pipe so as to become
independent of the initial conditions, at which point Re was lowered to the required value.
The lifetime of the turbulence from this point onwards was then measured up to a maximum
travel of 500D (their pipe was 785D long in total). The mean puff lifetime as a function of
Reynolds number is shown in Figure 6b. In qualitative agreement with the conclusions of
Faisst and Eckhardt’s numerical simulations, the experiments showed that above a critical
Reynolds number - estimated to be Rec ≈ 1750 ± 10 - the lifetime of the puffs becomes
infinite and turbulence is sustained.

An experimental and numerical study by Hof et al. in 2006 [8], however, failed to find
any evidence for a critical Reynolds number. Instead, their results indicated that although
the half life of turbulence increases rapidly with Re it never actually becomes infinite for
finite Re so that pipe turbulence remains transient for all Re. Their experiments were
performed using a longer (30m) and thinner (4mm diameter) opaque pipe which was non-
dimensionally much longer at 7500D than Peixinho & Mullin’s. Turbulent puffs were excited
by injecting water through holes in the pipe (apparatus shown in Figure 7a). Since the pipe
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Figure 5: (From [6]) τ is found to increase rapidly with Re until the cut-off lifetime of 2000
at Re = 2200 is reached. The red dashed line shows the linear increas e in lifetime expected
due to purely non-normal linear dynamics. The inset shows the inverse mean lifetime vs.
Re and a linear fit, corresponding to a law τ(Re) ∝ (Rec − Re)−1, with Rec ≈ 2250.

was opaque, the angle at which the jet exited the pipe was monitored to see if the puffs
had survived or not (an exiting puff causes a small flicker in the jet). This meant survival
distances were measured rather than survival times with the latter found assuming that
the puff speed is uniform. Other differences with the experiments of Peixinho & Mullin
(2006) included using fixed-pressure-gradient driving rather than constant mass flux and,
since the pipe was opaque, the implicit assumption that puffs were always triggered by the
jets. These subtleties aside, their mean lifetime data (inset of Figure 7b) did not appear
to fit the simple exponential implied by τ(Re) ∝ (Rec − Re)−1, as in [6] and [11]. Instead,
they suggested an exponential relation between τ and Re, of the form

P (T ;T0) = e−(T−T0)/τ(Re) (3)

with lifetime given by
1

τ
= e(a+bRe)

where a and b are constant fitting parameters. The significance of an exponential relation-
ship is that there is no critical Reynolds number beyond which turbulent puffs are sustained
for all times. The introduction of a shifted time origin T0 was crucial in their data analysis:
the best straight line fit needs to be shifted in time. The explanation for this was that the
flow would take a finite time ≈ T0 to reach the turbulence state after the initial disturbance,
so that T −T0 would actually be the puff lifetime. Hof et al (2006) also redid the short pipe
numerical computations of [6] to reach the same conclusion. Furthermore, they reprocessed
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a)

b)

Figure 6: (From [11]) a) Schematic of flow control procedure. Laminar pipe flow was
developed at Re = 1900 for 185D before a perturbation was injected (indicated by the
arrow). The puff progressed downstream for 100D and Re was then reduced to a prescribed
value. b) Variation of the mean lifetime as a function of Re and a fit, which indicates a
sharp cutoff at Rec ≈ 1750 ± 10. The inset is the inverse mean lifetime versus Re and a
linear fit.

Faisst & Eckhardt’s original data incorporating a best-fitted time origin to confirm that
this data also supported a lack of a critical Re.

Next to attack this problem were Willis & Kerswell in 2007 [15] who carried out numer-
ical simulations in a pipe long enough (10 times longer than in [6]) to realistically capture
the localised structure of a turbulent puff. The methodology for generating initial condi-
tions mirrored that of [11], as puffs at a higher Re of 1900 were used as initial conditions
for the numerical simulations at lower Re. Using 40-60 independent simulations per Re as
the computations were so costly, a critical Rec was found with a value of ≈ 1870 and τ best
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b)

a)

Figure 7: (From [8]) a) Sketch of the experimental apparatus. b) The reciprocal charac-
teristic lifetimes as a function of Re for all experiments with t0 = 120D/U , plotted on a
log scale. Each data point required 400 to 500 measurements, with the total number of
experiments underlying the figure exceeding 5,000. The straight line is an exponential fit
to the data points. Inset, the same data replotted on a linear scale, underlining that they
are not compatible with a diverging mean lifetime.

fitted by
τ = α (1870 − Re)−1 ,

where α = 2.4 × 10−4, comparing favourably with the results of [11] who found

τ = α (1750 − Re)−1 ,

with α = 2.8 × 10−4.
This result was countered by Hof et al. in 2008 [7] who presented results from four

different physical experiments (pipe length =600D, 690D, 2000D & 3600D ) in three dif-
ferent locations (Manchester, Delft and Göttingen) (see also the arXiv discussion articles
arXiv:0707.2642 and arXiv.0707.2684). The authors also increased the number of observa-
tions taken compared to their previous paper [8]. From this greater data set, they revised
their exponential dependence of τ upon Re to superexponential,

τ ∼ eαRe
⇒ τ ∼ eeαRe

.

7



Figure 8: (From [7]) Decay rate 1/τ plotted on a log linear scale against Re suggesting
superexponential dependence of τ upon Re.

This new relationship still implied that no finite value for Rec existed (see Figure 8: note
the last Re considered and the later work of [1] discussed below).

Further numerical work then started to be done in large domains. Initially, due to the
extreme cost, these simulations were carried out working with reduced resolution in one
direction in order to ensure enough data was collected of long transients (e.g. Lagha &
Manneville 2009, Willis & Kerswell 2009). The hope was that these reduced models would
capture the real qualitative aspects of the problem, that is, whether there is a finite Rec or
not. In work by Lagha & Manneville [9] on plane Couette flow, the authors heavily reduced
the resolution in the wall-normal direction, while maintaining the resolution in the two
remaining directions. Using this approach they found evidence for a finite value for Rec.
Alongside this work, Willis & Kerswell [16] developed a similar reduction in pipe flow. Here
the resolution reduction was made in the azimuthal direction, with just 3 Fourier modes
retained in this direction (m = 0, ±3). Again the reduced model provided good qualitative
comparisons with full DNS. Large numbers of simulations were carried out for both short
and long pipes which suggested a transition in the relationship between τ and Re (Figure 9).
For pipes too short to support localized turbulence, Rec = ∞ with τ taking the form

τ ∼ eαRe.

When long pipes were studied, a different relationship emerged with a finite Rec,

τ ∼ (Rec − Re)β .
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Figure 9: (From [16]) The sensitivity of lifetime (τ) to pipe length is shown with data
generated using the 2 + ǫ dimensional model. The 1/τ is plotted against Re for a range of
pipe lengths from 2π D to 32π D ≈ 100D. The results suggest an infinite value of Rec for
pipes shorter than 8π and a finite value for longer pipes.
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The ‘2+ǫ’ dimensional model of [16] was so much more efficient to run that the full 3
dimensional situation that 100D pipes could easily be handled and transients followed for
O(100) times longer. However, this was not fully exploited because as Re was increased
the puffs started to delocalise or split to form ‘slugs’ (a turbulent state which aggressively
expands). This highlighted the fact that extrapolating puff lifetime data to asymptotically
large Re was actually irrelevant since the morphology of the turbulence changes. It took a
later study (Avila et al. 2011, see below) to pursue this realisation to a logical conclusion.

In the meantime, further numerical work was attempted in the 50D pipe to collect even
more data by fully harnessing a supercomputer. Using the same numerical code as in [15]
with the same resolution, Avila et al [2] extended the results of [15] in Re, sample size and
included pipes of length 100D. Armed with much more data, the authors saw no statistical
evidence for Rec being finite within their range of Re < 1900 (Figure 10).

Figure 10: (From [2]) 1/τ plotted against Re, summarising the recent work against their
results which suggest a superexponential dependence of τ upon Re.

After this, Avila et al. 2011 [1] took measurements of a puff splitting in both numerical
simulations and experimental work. They measured the lifetime of a puff before it underwent
its first split to become two puffs, and calculated S (T ), the probability that a puff has not
split by time T . Their results suggested this probability had an exponential (memoryless)
form with a mean lifetime τs having a superexponential dependence on Re (Figure 11). By
combining the plots of decay and splitting to see the crossover, a critical Reynolds number
of 2040 was found beyond which, on average, a puff should survive. For Reynolds number
smaller than this, puffs are more likely to decay than split, and therefore, on average to
ultimately decay. In other words, below 2040 turbulence is transient, and above it, the
expectation is that it will be sustained. Individual initial conditions at Reynolds numbers
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greater than 2040 can still lead to transient turbulence, but the expectation over an ensemble
of runs is that more will yield turbulence at the end of a given time period (however long)
than not.

Figure 11: (From [1]) Mean lifetime before decay and the mean lifetime before splitting are
plotted against Re (both experimental and numerical data shown).

The current conclusion is then the following. For small systems, all current evidence is
that turbulence appears transient albeit with very large half life as Re increases. In large
domains, however, the balance of evidence is that turbulence is ultimately sustained. The
key difference between small and large systems is that in large systems, turbulent patches
can independently exist in the flow. The spatial coupling between these turbulent patches
appears crucial to achieve sustenance [10]. This realisation has led to a return of statistical
approaches to modelling turbulence, most recently in the form of directed percolation [14]
and other reduced models [3].
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