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1 Introduction

The quasi-geostrophic (QG) potential vorticity (PV) for a homogeneous layer can be written
as

q = βy + ζ − f
h′

H
(1)

where β is the planetary PV gradient ( ∂f∂y ), ζ is the relative vorticity, H is the mean depth

of the layer and h′ is a perturbation of the latter. For a layer bounded below by the bottom
topography we can write:

q = βy + ζ − f
η

H
+ f

hb
H
, (2)

where η is the displacement of the interface bounding the layer at the top and hb is the
elevation of the bottom topography. A topographic feature can thus be viewed as an
anomaly in the in the background PV field, similar to the β-effect.

Different theoretical concepts have been propasfosed arguing that quasi-geostrophic tur-
bulence acts to ”homogenize” the mean potential vorticity (PV) field which can be ”dis-
turbed” by topographic features. (See [7] for an older but still very useful review.) This
homogenization would then lead to an anomaly in the relative PV field1 over the topography
which would be associated with a mean circulation.

Indeed observational evidence exists for this kind of circulations around topographic
features. [8] first notized an almost barotropic 100Sv anticyclonic flow around the Zapiola
Drift in the South Atlantic. A result later confirmed by various other observational studies.

Many previous theoretical and numerical studies focused on the adjustment of a turbu-
lent flow in a closed domain in the abscence of forcing and with weak or no dissipation (e.g.
[3] or [5]). [2], however, suggests that the strength of topographic circulations might be
determined by a balance between the eddy flux of PV, and Ekman pumping due to bottom
friction. Kinetic energy is in this case assumed to be provided by eddies from remote regions
(such as the ACC for the Zapiola drift). The same approach is used in this study.

1relative PV is here used as the PV anomaly given by the displacement of the free interface and the

relative vorticity
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A simple qualitative explanation for the tendency of turbulent flows to homogenize PV
can be given by assuming that stirring by geostrophic turbulence moves elements of fluid
over the topography. Assuming that this happens on time-scales shorter than those of
forcing and dissipation, these fluid elements will conserve their PV. If the fluid is stirred
randomly so that each fluid parcel reaches each point of a domain with a similar average
frequency, the time-mean PV has to be constant over that domain. If we further assume
that the stirring ”transports” inhomogeneities to smaller scales, until viscosity finally mixes
the fluid irreversibly, the PV field will be homogenized.

Here we want to follow an approach used by [2] which is based on this idea of eddy-
mixing. Treating PV as a conserved passive tracer we apply the commonly used approach of
down-gradient eddy-diffusion. It should be noted that in doing this we ignore the fact that
PV is not strictly a passive tracer since it’s distribution determines the flow field. However,
the results of eddy resolving numerical simulations, presented in this study, tend to support
the use of this approximation.

An analytical derivation for the expected mean flow over topography in a two layer
QG model assuming down-gradient diffusion of PV is shown in section 2. In section 3
the predictions of this theory are tested against eddy-resolving numerical simulations and
section 4 presents some preliminary results from laboratory experiments. A concluding
discussion of the results is given in section 5.

2 A Two Layer QG Model Assuming Down-Gradient Diffu-

sion of PV

The two layer quasi-geostrophic PV equations on an f-plane with horizontal viscosity ν and
linear bottom friction F = −Ru, can be written as

[

∂

∂t
+ J(ψ1, )

]

q1 = ν∇4ψ1 (3)

[

∂

∂t
+ J(ψ2, )

]

q2 = −R∇2ψ2 + ν∇4ψ2 (4)

where

q1 = ∇2ψ +
f

H1

η (5)

q2 = ∇2ψ +
f

H2

(hb − η) . (6)

The shear between the two layers is given by the interface displacement η through the
thermal wind relation

ψ1 − ψ2 =
g′

f
η . (7)

Assuming that the eddy flux of PV can be described by down-gradient diffusion

u′q′ = −K ∂q̄

∂x
, (8)
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the steady-state solution would be given by:

(K1 + ν)∇4ψ1 +
K1f

H1

∇2η = 0 (9)

(K2 + ν)∇4ψ2 +
K2f

H2

∇2(hb − η) −R∇2ψ2 = 0 , (10)

where where the eddy diffusivity of PV, K1/2 is allowed to be different in the two layers. If
hb, η and ψ2 vanish somewhere outside the domain of interest , (9) gives:

ζ1 ≡ ∇2ψ1 = − K1

K1 + ν

f

H1

η . (11)

Using (7), we find
(

K1 + ν

K1

L2

D1
∇2 + 1

)

ψ1 = ψ2 (12)

where L2

D1
= H1g′

f2 . Hence we find a barotropic solution (ψ1 ≈ ψ2) if

L2

D1

L2
� K1

K1 + ν
, (13)

where L is the typical length-scale of the topographic mean flow which is assumed to be
of the same scale as the topography itself. Note that the left hand side corresponds to the
Burger number. With (13), we find from (11) that

η ≈ −K1 + ν

K1

H1

f
∇2ψ2 (14)

and therefore
η

H1

∼ K1 + ν

K1

Ro (15)

where

Ro =
U

fL
. (16)

We now find that (10) simplifies to

ψ1 = ψ2 =
K2f

RH2

h , (17)

if
L2

D1

L2
� K1

K1 + ν
, Ro� K1

K1 + ν

h

H1

and Ro� K2

K2 + ν

h

H2

. (18)

Note that the first two conditions imply that η � h.
For sufficiently small Rossby and Burger numbers, we find a barotropic flow along isolines

of constant depth controlled by an equilibrium between an eddy-diffusive flux of PV and
bottom friction. This result is similar to the result obtained by [2] in the limit of a vanishing
planetary vorticity gradient and wind-stress.
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3 Numerical Simulations

The full set of equations (3) to (7) are integrated numerically. A list of parameters is
given in table 3, they are chosen to resemble the laboratory experiments described later
in this report. The topography used is given by a truncated cone centered in the middle
of the domain. The length scale Ltop given in table 3 denotes the length of the slope, the
total diameter of the ”bump” is 3Ltop. It should be noted that the topography is large
compared to the deformation radius. Additionally to the truncated cone the topography is
slightly parabolic (maximum amplitude about 0.1H2) over the whole domain to simulate
the parabola arising due to the centrifugal force in the tank.

Ldomain Ltop LD H1/H2 hb/H2 f R ν

150 cm 17 cm 1.5 − 2 cm 0.5 0.5 3s−1 0.01 − 0.08 s−1 0.01 cm2 s−1

Table 1: Parameters used for the numerical simulations

The equations are intergrated using a pseudo-spectral2 model with a grid spacing ∆ ≈
0.6cm. Considering that the typical eddy scale is a few times the deformation radius the
model is eddy resolving. The model has periodic boundary conditions though a sponge
layer is implemented along the boundaries which strongly damps PV perturbations and
thus eliminates eddies that move into this boundary layer. The sponge layer was chosen to
simulate an infinite domain in which eddies are allowed to move out of the area of interest.
Turbulence was generated by four pairs of sources and sinks of PV located in the middle of
the four sides of the square domain, right outside the sponge layer.

For the topography used in the simulation (17) gives a constant along-slope velocity

uφ =
∂ψ

∂r
=
K2f

RH2

∂hb
∂r

= −K2

R

hbf

H2Ltop
≡ −K2

R
β , (19)

where we defined β as the topographic PV gradient. Nondimensionalizing all variables using
the deformation radius LD as a length scale and L−1

D β−1 as a time scale gives

u∗φ = −K
∗

2

R∗
. (20)

Two series of simulations are performed in which first the strength of the forcing was
varied, and then the magnitude of bottom friction. Each simulation is run into a statistically
steady state for at least 500 s. After this initialization period the PV fields of each layer are
averaged over at least 1000 s. An overview of all simulations is given in table 2. Figure 1
shows an example of mean relative PV and streamfunction fields from the S04-3 simulation.
We see the four PV sources which produce jets that get deflected to the right, which
can be explained by the parabolic background PV field. Over the topography we observe
anticyclonic circulations along the slope in both layers which is in qualitative agreement with
(19). This is associated with negative relative PV in the lower layer and a positive relative
PV in the upper layer, which is the PV disturbance expected from a positive displacement of

2Pseudo spectral here means that the product uq in the nonlinear advection term is calculated in grid-

space and then transformed back into fourier space
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the interface. The negative relative PV in the lower layer acts to reduce the topographic PV
anomaly, though it does not completely compensate the latter which is as high as fhb

H2
≈ 1.7.

Moreover we can find that a strong PV anomaly is only found on the lower part of the slope
with a relatively sharp transition to a smaller PV anomaly further inside. This indicates a
”PV staircase” as suggested by [7] due to a limitation of the coss-slope eddy mixing length
to the Rhines-scale (LR =

√

u/β) which is of the same order as the deformation radius
here.

Name S01 S02 S04-1 S04-2 S04-3 S08 S16 S32 R1 R2 R4 R8

Source [s−2] 0.1 0.2 0.4 0.4 0.4 0.8 1.6 3.2 0.4 0.4 0.4 0.4

R [10−2s−1] 2 2 2 2 2 2 2 2 1 2 4 8

Table 2: List of performed numerical simulations. The second line gives the peak absolute
value of the vorticity sources and sinks and the last line gives the bottom drag. The
deformation radius LD was 2 cm for simulations S01-S32 and 1.5 cm for simulations R1-R8.
All other parameters are as given in table 1.

For a more quantitative analysis the mean along slope velocity was calculated for each
performed simulation. Figure 2 shows the non-dimensional mean along-slope velocity from
simulations S01 to S32 against the non-dimensional mean lower layer Eddy Kinetic Energy
(EKE) averaged over the whole domain of integration and against the EKE averaged only
over the topography. A first observation is that the along slope velocity increases with EKE.
Since we expect the eddy diffusivity to rise with EKE, this is in qualitative agreement with
the theoretical prediction (20). However, while the flow is anticyclonic in both layers, the
magnitude is quite different in some simulations, especially for those with low EKE where
we find a stronger anticyclone in the upper layer then in the lower layer. As the strength
of the sources is inreased and the EKE becomes higher, the flow becomes more barotropic
with the anticyclone in the lower layer being somewhat stronger than in the upper layer
for high EKE. Focussing on the lower layer velocities and the EKE over the topography
(which we assume is a better predictor for the eddy dissusivity in this area) we find that
the along-slope velocity approximately grows as EKE3/4.

The left panel in figure 3 shows the along-slope velocity versus the inverse of the bottom
friction for experiments R1 to R8. The linear increase of u∗

φ with 1/R∗ appears to be in
good agreement with (20), assuming that the eddy-diffussivity does not change between the
experiments. This, however, can not necessarily be expected.

To allow for a better test of prediction (20), two different methods were used to estimate
the eddy-diffussivity K2 and how it relates to EKE.

The eddy-flux of PV can generally be decomposed into a down-gradient flux and a bolus
flux along iso-lines of PV as follows:

u′q′ =
u′q′ · ∇q̄
|∇q̄|2 ∇q̄ − u′q′ ×∇q̄

|∇q̄|2 ×∇q̄ (21)

≡ −K∇q̄ + ψB ×∇q̄ . (22)

Using this formulation we can calculate the actual PV-diffussivity K and bolus stream-
function ψB from time averages of the numerical integration. While ψB is rather indistin-
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Figure 1: Mean relative PV in s−1 and velocity vectors (top) and streamfunction in cm2s−1

(bottom) for simulation S04-3. The upper layer is shown on the left and the lower layer
is shown on the right. The black circles indicate the topography, with the outer circle
representing the outer edge of the cone and the inner circle representing the truncated top.
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Figure 2: Non-dimensional mean along-slope velocity uφ in the upper (blue) and lower layer
(red) for simulations S01 to S32 vs. the (non-dimensional) mean EKE averaged over the
whole domain of integration (crosses) and against the EKE averaged over the topography
(circles).
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Figure 3: Left: Non-dimensional mean along-slope velocity uφ in the upper (blue) and
lower layer (red) for simulations R1 to R8 against the inverse of the non-dimesional friction
parameter (1/R∗). Center: As left, but uφ against EKE∗/R∗, where EKE∗ denotes EKE
averaged over the topography. Right: As left but uφ against EKE∗
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Figure 4: Lower level eddy-diffussivity K∗

2
over the topographic slope, estimated from (22)

(blue) and from (23) (red) against EKE∗ over the topography. The circles show data from
experiments S01, S02, S04-3 and S32. The cross shows an estimate from R8.

guishable from noise in both layers, for the data available, the lower layer diffussivity K2

is found to be coherently negative over the slope of the topography, which retrospectively
justifies the down-gradient diffusion parameterization used in the theory presented above.
An averaged eddy-diffussivity over the slope is calculated this way.

This direct calculation of PV diffusion is compared to the diffusion of a conserved tracer
obtained from particle release simulations. For two experiments (S04-3 and S32) 1000 par-
ticles were placed in a circle along the topographic slope. The diffussivity can be estimated
using

4K =
∂

∂t

〈

1

N

∑

i

r2i

〉

, (23)

where N is the total number of particles and ri is the distance of each particle from the
center. Since we are interested in estimating the diffussivity above the slope, we evaluate
(23) only until the particles leave the slope-area. To increase the accuracy of the estimate,
the tracer release was repeated 5 and 8 times in succession for the S04-3 simulation and the
S32 simulation, respectively. A possible error in this estimate up to a factor of two however,
should still be considered.

Figure 4 shows the eddy-diffusivity over the slope in the lower layer, estimated in this two
ways versus the lower layer EKE over the topography. Note, that for the two experiments
for which both methods were applied, the eddy diffussions of PV calculated directly from
(22) agree well with the diffussivity estimates from the particle release simulations. We
further find that the eddy diffussivity scales convincingly like

K∗ ∼ EKE∗ , (24)

though simulation R8 for which Ekman friction was increased by a factor of four deviates
somewhat from this scaling. This result might come rather surprising considering that for
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a fully turbulent flow we expect a scaling like

K ∼ UeddyLeddy (25)

with typical eddy velocities and scales Ueddy and Leddy, respectively. Assuming that Leddy
scales like the deformation radius this becomes, in non-dimensional parameters

K∗ ∼ U∗

eddy ∼
√
EKE∗ . (26)

This is not observed, probably because flow over the slope is not fully turbulent. Comparing
the nonlinear advection term of the QG PV equation with the advection of topographic PV
(the topographic β-term) we find a “nonlinearity -parameter”3

N ≡ J(ψ,∇2ψ)
1

r
∂ψ
∂φβ

∼ L2

R

L2

D

= U∗

eddy , (27)

where LR =
√

Ueddy

β is the topographic Rhines scale. N ranges around 0.2 to 5 in the

simulations shown here, indicating that the assumption of fully developed turbulence is
rather inadequate. Considering that (undamped) linear motion does not contribute to
mixing we can argue that the eddy-diffusion in this weakly nonlinear case is given by the
traditional scaling for turbulent motion (25) times this nonlinearity-parameter which would
give

K∗ ∼ U∗

eddyN ∼ EKE∗ . (28)

However, to some extend any power of N and thus any power of U ∗ could be justified this
way. Since the eddy scale is generally larger than the deformation radius, which makes the
effective nonlinearity even smaller than the above estimate, we could argue that the motion
over the slope is in a regime of linear damped waves. In this case the “eddy diffussivity”
would be given by

K =

∫

u(t)u(t+ τ)dτ ∼ U2R

R2 + ω2
≈ U2R

ω2
(29)

where ω is the frequency, U is the velocity perturbation associated with the wave motion
and R is the coefficient of bottom friction (see above). The approximation on the right-
hand side holds for weakly damped waves. Assuming that the wave length scales like the
deformation radius and the corresponding frequency is given by the Rossby-wave dispersion
relation we find, in non-dimensional parameters

K∗ ∼ U∗2R∗

R∗2 + 1
≈ U∗2R∗ = EKE∗R∗ . (30)

This limit can explain the observed linear scaling of K ∗ with EKE∗. However, the calcu-
lated eddy diffussivity for simulation R8 agrees somewhat less with (30) than with (28).
Plotting K∗ vs. EKE∗R∗ shows that the diffussivity of R8 lies significantly below the line
K∗ ∼ EKE∗R∗ (not shown).

The center and right panels of figure 3 show the along slope velocity versus EKE ∗/R∗

which would be expected to be linear from (20) and assuming the scaling law (28), and versus

3The inverse of this parameter is sometimes referred to as“steepness”.
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Figure 5: Non-dimensional along-slope velocity u∗φ in the upper (blue) and lower layer (red)
versus K∗

2
/R∗ for all simulations for which K2 was explicitly calculated (S01, S02, S04-3,

S32 and R8). The circles show two experimental results (see text). The solid straight line
denotes −u∗φ = 0.65 ·K∗

2
/R and the dashed line shows −u∗φ = K∗

2
/R which is the theoretical

result (20).

EKE∗ which would be expected to be linear assuming scaling law (30), for simulations R1
to R8. Both relations appear rather non-linear, suggesting that both scaling laws might be
inadequate to describe the scaling of the eddy diffusivity under variation of bottom friction,
found here.

The most direct test of the theoretical prediction (20) is given by figure 5 which shows
the along-slope velocity in both layers versus K ∗

2
/R∗ for all simulations for which K2 was

explicitly calculated. As mentioned before, we note the lack of barotropization especially
for low-EKE simulations, which was expected from the theory. For the lower layer, however,
we find good agreement with the theory as long as the EKE does not become too large.
For high EKE (i.e. high eddy diffussivity) the results indicate a deviation towards lower
along-slope velocities than expected from (20).

4 Experimental Results

In a second step the theory shall be verified by laboratory experiments. Experiments were
conducted in a rotating tank using a two layer fluid. The density difference was obtained
using water with slightly different salinity. The reduced gravity for the experiment shown
here is g′ = 4cms−2. The rotation rate gives f = 4s−1, which results in a deformation
radius LD ≈ 2cm. A truncated cone is placed in the center of the tank as in the numerical
simulations. A sketch of the experiment is shown in figure 6. Eddies are generated by four
pairs of sources and sinks in the upper layer equally spaced around the tank. The method
is described in detail in [4].

Since the expected along-slope velocities are on the order of 1mms−1 or less the experi-
ment, and especially the filling up of the upper layer, has to be done very carefully. A series
of similar experiment has previously been performed by [6], but the results are not used
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Figure 6: Sketch of the experimental setup. Left: Topview. The arrows on the tank wall
indicate sources and sinks in the upper layer to generate pairs of cyclonic and anticyclonic
eddies, indicated in red and blue. Right: Side view. The figure on the left is taken from [1].

here, mainly because a review of the lab-recordings suggested that the filling-up procedure
in these experiments might have had a significant influence on the observed circulation,
which can hardly be filtered out in hindsight. Due to similar and other problems during
this study, only the results of one experiment will be discussed here. However, the flow rate
of the sources and sinks was increased by a factor of 1.7 during this experiment, so that two
different values of the flow rate are presented. The first part of the experiment, with a flow
rate of 540 cc/min per jet, will be referred to as Ex3, while the second part, with a flow
rate of 920 cc/min per jet, will be refferred to as Ex3.5, in the following. Since the diffusion
of the interface between the two layers is significantly enhanced due to the eddy activity, it
is likely that a sharp interface did not exist any more during Ex3.5, which therefore has to
be handled with care.

Figure 7 shows a series of snapshots from Ex3. Neutrally buoyant dye, released from
outlets on the bottom of the cone, indicates an anticyclonic circulation around the cone in
the lower layer, with an average velocity of the order of −uφ2 ≈ 0.3mm/s. The flow in
the upper layer can be evaluated more quantitatively by tracking of surface particles which
can also be seen in figure 7. Two 30-minute time averages of surface velocity and vorticity
from Ex3 are shown in figure 8. The most striking feature that is observed is a strong
cyclone above the flat center of the truncated cone. It should be noted that the frame-rate
used for the particle tracking was slower for the figure shown on the left, which causes an
inadequate resolution of the fast cyclone observed over the top of the cone. The cyclone
remained above the flat center of the cone during the whole time of the experiment. Dye
releases in the lower layer indicate an associated cyclonic motion in the lower layer, though
probably weaker. A similar feature is not predicted by theory and was never observed in
the numerical simulations. It should be noted that the Rossby-number for this cyclone is
O(1), which might explain it’s absence in the numerical QG model. A physical explanation
for this observation, however, is still outstanding. Over the slope itself we observe an
anticyclonic circulation as predicted by the theory. The averaged along-slope velocity in
the upper layer is −uφ1 ≈ 0.9mm/s and thus probably stronger than in the lower layer,
similar to the results found in the numerical simulation for rather small EKE. We further
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Figure 7: Series of snapshots from Ex3. Time elapses from the top left to the bottom right
with the time difference between each snap-shot being about 4min 45s. One can see the
dye in the lower layer traveling anticyclonicly along the topographic slope.

observe a band-like vorticity structure. This was previously mentioned in the discussion of
the numerical results and probably indicates a PV-staircase as discussed by [7].

Figure 9 shows a ten minute average4 of surface velocity and vorticity from Ex3.5, i.e.
with increased flow rate. Since the kinetic energy of the fluid injected by the sources scales
with the square of the flow-rate, and the amount of fluid with that kinetic energy scales
linearly with the flow rate, we expect the kinetic energy injected per time to scale like the
cube of the flow rate. Assuming linear dissipation, we thus expect the EKE in the tank to
rise approximately like the cube of the flow rate. An increase of the flow rate by a factor of
1.7 should therefore cause an increase of the EKE by a factor of 1.73 ≈5. Using the scaling
(28) or (30), the theoretical result (20) would therefore suggest an increase of the along-
slope velocity by a factor of 5. The experiments show an increase of the mean along-slope
velocity by about a factor of ten The estimated upper layer mean velocity over the slope
for Ex3.5 is −uφ1 ≈ 9mm/s.

The results of experiments Ex3 and Ex3.5 are added to figure 5. Since no good estimate
for the eddy diffussivity exists for the experiments exists, for Ex3 K ∗

2
is fitted to match with

the numerical results. For Ex3.5 K∗

2
was then chosen to be five times this value, following

the argumentation above. Due to the ”tuning” of the diffussivity of Ex3, the comparison to
the numerical result has some limitations. However, figure 5 indicates that the experiments
are in a regime well covered by the numerical study. Also the slope between the two
experimental data points, which is not affected by this tuning, shows general agreement
with the numerical results. Note, that the used EKE estimate provides an estimate for EKE

4Since the faster flow allows for a reasonable average in a shorter time and the strong eddy activity in

Ex3.5 caused the interface to be destroyed more rapidly, a shorter time average is used in Ex3.5 then in Ex3.
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Figure 8: Two different eulerian mean velocity fields and the resulting vorticity, each aver-
aged over about 30 minutes of EX3. The average field shown on the left was taken about
one hour earlier than the field on the right. Velocity vectors are stretched by a factor of 10.
The solid lines indicate the truncated cone.

Figure 9: Eulerian mean velocity fields and the resulting vorticity each averaged over about
10 minutes of EX3.5. Velocity vectors are stretched by a factor of 2
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averaged over the whole domain and not over the topography itself. The numerical models
showed that the latter might grow faster with increased forcing, since the topographic PV
gradient prevents weak eddies to propagate over the topography. Note also, that, due to
the better measurability, the experimental results show upper layer velocities. As in the
numerical simulations, however, the flow was not strictly barotropic.

5 Summary and Discussion

Assuming down-gradient eddy-diffusion of potential vorticity it was shown that in a two
layer QG model for small Rossby numbers an approximately barotropic mean along-slope
circulation is expected to arise over an isolated topographic feature which is anticyclonic
for a mount and cyclonic for a depression. The strength of the circulation is controlled
by an equilibrium between the eddy flux of PV and bottom friction. This prediction was
tested using numerical simulations performed with an eddy resolving two-layer QG model
and laboratory experiments.

The numerical simulations reproduce an anticyclonic along-slope circulation in both
layers over a mount. However, especially for low EKE, the magnitude of the circulation is
significantly different in the two layers, which disagrees with the theoretical prediction of a
barotropic flow. Part of this inconsistency might be explained by a direct influence of the
forcing. The latter consists of four pairs of PV sources and sinks in the upper layer which
generate jets penetrating towards the center of the tank. The jets get unstable and generate
eddies. These jets, however, could have a significant direct influence on the circulation in
the upper layer, especially in the less turbulent simulations with low EKE.

The eddy diffussivity was estimated for a series of experiments. The results suggest
a down-gradient diffusion of PV over the topography of similar magnitude as the eddy
diffussivity of a passive tracer. It was further found that in the performed simulations
the eddy-diffussivity over the slope scales linearly with the EKE, which suggests a linear
or weakly nonlinear motion over the slope. However, no scaling law was found which
consistently describes the dependence of the observed eddy diffussivity on bottom friction.
It is likely that the experiments are covering a transition between a regime of fully linear
damped waves and weakly nonlinear motion, for which case the dependence on bottom
friction is expected to change over the range of performed experiments.

In the simulations for which the eddy diffusivity is calculated explicitely, the lower layer
velocity agrees well with the theory in the range of lower and medium eddy diffussivity, but
the along-slope velocity is smaller than the theoretical prediction for high eddy diffussivity.

It seems desirable to test whether the differences between the eddy resolving numerical
simulation and the theoretical results, are mainly a shortcoming of the down-gradient diffu-
sion parameterization or due to additional approximations made for the analytical solution.
Preliminary results, not shown above, solving the full two layer QG model numerical without
forcing but using a down-gradient diffusion parameterization, indicate that the differences
are mostly a shortcoming of the down-gradient diffusion parameterization (including the
lack of a representation of the direct effect of the forcing) and not dominantly due to inap-
propriate additional approximations made to obtain a simple analytical solution. Adding
an additional eddy-viscosity seems to improve the results, though no convincing physical
justification for this is known to the author.
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Laboratory experiments using a two-layer fluid in a rotating tank do also reveal an
anticyclonic flow along the topographic slope, which is in qualitative and to a lesser ex-
tend quantitative agreement with the theory. However, additionally a strong cyclone was
observed over the flat center of the topography. An explanation for this observation is so
far outstanding. More, carefully performed, experiments would be necessary to test the
theoretical predictions in a more quantitative way.
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