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1 Introduction

In this work, Hartmann flow is studied in the framework of imcompressible magnetohydro-
dynamics. In the first sections, we present simple examples of magnetic problem showing the
role of the vaccum or an insulator on the energy and on the dissipation rate of a conductor.
Then, we derive exact laminar solution and explicit expression for the energy stability of
the Hartmann flow in contact with an insulator. We show that taking into account realistic
boundary conditions for the magnetic field yields technical difficulties in the derivation of
exact bounds on the dissipation rate using the background method.

2 Dissipation in a cylindrical conductor-1

In this section we study a simple situation of free decay of a magnetic field. We consider
a wire of metal with conductivity σ and permeability µ. The wire is a cylinder infinite in
the axial direction z and have a finite radius a. The cylinder is surrounded by vaccum( see
figure ??). We suppose that there is a current J only at t = 0 and we study the evolution
of the magnetic field created by the initial current.

In this first simple problem, the intial current is a toroidal current depending only on
the radial direction:

J(r) = Jθ(r)eθ (1)

By symmetry and use of Ampere’s law, we know that the corresponding initial magnetic
field created is Bz(t, r)ez inside the wire and is zero outside (for r > a). Thus, the governing
equation are:

∂B

∂t
= η∆B (2)

which is in cylindrical corrdinates for the magnetic field inside the conducting domain is :

∂Bz

∂t
= η[−∂2Bz

∂r2
− 1

r

∂Bz

∂r
] (3)

where we have introduced the magnetic diffusivity η = 1/(σµ). The magnetic field is simply
∇×B = 0 for r > a. In this diffusive situation, the magnetic field can only decay and we
suppose that Bz(t, r) = b(r)e−αt. The equation (3) then reduce to :
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∂2b

∂r2
+

1

r

∂b

∂r
+

α

η
b = 0 (4)

Using the change of variables ρ = r
√

α/η, we obtain:

∂2b(ρ)

∂ρ2
+

1

ρ

∂b(ρ)

∂ρ
+ b(ρ) = 0 (5)

We recognize the bessel equation for m = 0. A solution of the equation is thus:

b = J0(

√

α

η
r) (6)

The boundary conditions for the magnetic field leads to an expression for the zeros of
the bessel function:

Bz(a) = 0 =⇒ J0(

√

α

η
a) = 0 (7)

The nth zero of the bessel function J0(ρ) is given by λn =
√

αn

η a . We see that the boundary

conditions yields here a discretization of the possible decay rates for the magnetic field. This
is not surprising since these boundary conditions result in a confinement of the field in a
finite domain. We can then expand the fields in Fourier-Bessel series for r < a:

b(r, t) =

∞
∑

n=0

AnJ0(λnr/a)e−tηλ2
n/a2

(8)

And simply b(r, t) = 0 for r > a. Because Bessel’s equation is Hermitian, the solutions must
satisfy the following orthogonality relationship :

∫ 1

0
Jν(xλν

m)Jν(xλν
n)xdx =

δmn

2
[Jν+1(λ

ν
n)]2 (9)

In order to express the coefficient of the magnetic field we evaluate the integral :

I =

∫ 1

0
rdrJ0(λnr)Bo(r) (10)

Where Bo(r) represent the magnetic field at t = 0. Expansion of Bo(r) gives:

I =

∫ 1

0
rdrJ0(λnr)

∞
∑

m=1

AmJ0(λmr) (11)

I =

∞
∑

m=1

Am

∫ 1

0
rdrJ0(λnr)J0(λmr) (12)

I =
∞
∑

m=1

Am

2
δmn[J1(λm)]2 (13)
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I =
An

2
[J1(λn)]2 (14)

We then get an expression for the coefficient of the magnetic field:

An =
2

[J1(λm)]2

∫ 1

0
rdrJ0(λnr)Bo(r) (15)

The decomposition of the magnetic field on the basis of Bessel functions with well defined
coefficients provide a natural way for evaluating the magnetic energy in the volume. Indeed
the Parseval theorem applied to Bessel-Fourier series gives:

ε =

∫

dV [B(r, t)]2 =
∞
∑

n=0

|Ane−tηλ2
n/a2 |2 =

∞
∑

n=0

|An|2e−2tηλ2
n/a2

(16)

This yields to a negative time variation of the energy:

ε̇ = −2η
∞
∑

n=0

λ2
n|An|2e−2tηλ2

n/a2

(17)

Finally, we use the fact that all the zeros of J0 are greater or equal to the first zero λ1 of
the Bessel function:

ε̇ = −2ηλ2
1/a

2
∞
∑

n=0

λ2
n

λ2
1

|An|2e−2tηλ2
n/a2 ≤ −2ηλ2

1ε (18)

The gronwall inequality leads finally to a minimal rate of variation for the energy:

ε(t) ≤ ε(0)e
2ηλ2

0

a2
t (19)

3 Dissipation in a cylindrical conductor-2

In the previous problem, the initial current lead to very simple boundary conditions pre-
venting the magnetic field to come out from the cylinder. It is thus interesting to study a
similar problem but with different boundary conditions.

In this section, we consider a problem with the same geometrical configuration than in
the previous section but with a different initial current. At t = 0 (and t = 0 only), we
impose an axial current depending only on r:

J(r) = Jz(r)ez (20)

Obviously, the magnetic field created by this current will be of the form Bθ(t, r)eθ.
Outside the conductor, the magnetic field is now non-zero and satisfy the equation ∇×B =
0, yielding an harmonic field going to zero at infinity. Inside the conductor the field obey
the diffusion equation:

∂Bθ

∂t
= η[−∂2Bθ

∂r2
− 1

r

∂Bθ

∂r
+

Bθ

r2
] (21)
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As before, the decaying magnetic field is Bθ(t, r) = b(r)e−αt. By using the change of
variable ρ = r

√

α/η, the equation (21) become:

∂2b(ρ)

∂ρ2
+

1

ρ

∂b(ρ)

∂ρ
+ b(ρ).(1 − 1

ρ2
) = 0 (22)

This is the bessel equation for degree m = 1. A solution of the equation is thus:

b = J1(

√

α

η
r) (23)

In this case, the boundary conditions do not provide sufficient constraint on the magnetic
field and thus do not lead to vanishing conditions for Bessel functions. This means that
the system can not be represented by a Fourier-Bessel serie. In particular, the decay rates
α can not be discretized, which seems to be in agreement with the fact that the energy is
infinite outside the cylinder.
Using Hankel transform, we can however expand the inner magnetic field as follow :

bi(r, t) =

∫ ∞

0
dαc(α)J1(

√

α

η
r)e−αt (24)

Using the transform β =
√

α/η, the equation (24) becomes:

bi(r, t) = 2η

∫ ∞

0
βdβC(β)J1(βr)e−ηβ2t (25)

defined only for r < a. Outside the conductor, the magnetic field is simply harmonic
and thus have the form bo(r, t) = A(t)/r. The continuity of the tangential component of
H = B/µ across the boundary yields an expression for the outer field:

bo(r, t) = 2η
µ0a

µr

∫ ∞

0
βdβC(β)J1(βa)e−ηβ2t (26)

We will now suppose that it is possible to find some magnetic field bT defined on all the
domain(0 < r < ∞) and represented on the basis of Bessel function:

bT (r, t) = 2η

∫ ∞

0
βdβA(β)J1(βr)e−ηβ2t (27)

In order to find an expression for the coefficent A(β), we will evaluate the integral:

Y =

∫ ∞

0
rdrJ1(βr)bT (r, 0) (28)

There is two way to evaluate Y . By considering the expansion of BT :

Y =

∫ ∞

0
rdrJ1(βr)2η

∫ ∞

0
β′dβ′A(β′)J1(β

′r)e−ηβ′2t (29)

Using the orthogonality condition :
∫ ∞

0
rdrJ1(βr)J1(β

′r) =
δ(β − β′)

β
(30)
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the equation (29) become:
Y = 2ηA(β) (31)

We can also evaluate Y by separating the domain of integration:

Y =

∫ a

0
rdrJ1(βr)bi(r, 0) +

∫ ∞

a
rdrJ1(βr)bo(r, 0) (32)

bo(r, 0) is related to bi(r, 0) and we get:

Y =

∫ a

0
rdrJ1(βr)bi(r, 0) + bi(a, 0)

µ0a

µ

∫ ∞

a
drJ1(βr) (33)

By grouping equations (31) and (33) we finally get an expression for the coefficient A(β) of
the magnetic field:

A(β) =
1

2η

∫ a

0
rdrJ1(βr)bi(r, 0) + bi(a, 0)

µ0a

2ηµ

∫ ∞

a
drJ1(βr) (34)

By comparison with the first problem where decay modes were quantified, it can be
interesting to investigate the evolution of the energy of the system.The energy in the infinite
volume is given by:

ε =

∫ ∞

0
rdrb2

T =

∫ ∞

0
βdβ|A(β)e−ηβ2 t|2 (35)

We separate this integral in two parts,using a small parameter w:

ε =

∫ w

0
βdβ|A(β)e−ηβ2 t|2 +

∫ ∞

w
βdβ|A(β)e−ηβ2 t|2 (36)

In the first part of the integral, A(β) can be expressed by its Taylor expansion A(β) = Kβ
since A(0) = 0. In the second part, the asymptotic limit of long time t allow us to neglect
this term to zero. The energy is then given by:

ε ∼
∫ ∞

0
β3dβe−2ηβ2t (37)

By integration by parts we get ε ∼ t−3/2. We can easily derive this equation and we finally
get the result :

ε̇

ε
∼ µ

t
(38)

In the previous problem, the magnetic field was restricted to a finite radius, yielding
a quantification of the decay modes. As a consequence, the energy was bounded by the
exponential decay of the less damped mode. In this new problem, the magnetic field is no
longer restricted to a finite volume but goes to infinity. Moreover, the total energy is infinite
outside the conductor. We see here that it is thus impossible to get some exponential decay
for the magnetic energy. In this situation, the system is damping the energy with a much
slower rate. This is probably reminiscent from the infinite amount of energy to dissipate
coming from outside and collapsing on the conductor.
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4 Decay problem in spherical geometry

We have seen how the magnetic field is decaying in a cylindrical conductor under the ac-
tion of ohmic diffusion. In some case, it is impossible to observe exponential bound of the
magnetic energy. In this section we study the problem of free decay modes in a spherical
configuration.

Let’s consider a spherical conductor of permeability µ and conductivity σ surrounded
by infinite vaccum. In such a geometry, it is in general useful to decompose the soleloidal
fields into poloidal part P and toroidal part T . The magnetic field is given by :

B = ∇×∇× (rP ) + ∇× (rT ) (39)

The governing equations for the toroidal part are:

∂T

∂t
= η∆T r < a (40)

T = 0 r > a (41)

Similarly we get two equations for the poloidal part:

∂P

∂t
= η∆P r < a (42)

∆P = 0 r > a (43)

This decomposition in toroidal and poloidal part is interesting because P and T may always
be decomposed on the basis of the spherical harmonics, which are the eigenfunction of
the angular part of the spherical laplace operator.The problem for T and P are totally
independant and can be sutdied separatly. I will present all the work as axisymmetric
problem for simplicity but the results are totally similar for non-axisymmetic problem.

4.1 Toroidal decay problem

The scalar T can be decomposed as follow:

T =
∑

l

T̂ lYl(θ, φ) (44)

Using this decomposition the equation (40) become:

∂T̂ l

∂t
= η

(

1

r2

∂

∂r

(

r2 ∂T̂ l

∂r

)

− l(l + 1)

r2
T̂ l

)

(45)

We know that it is a decaying problem so we can suppose T̂ l(r, t) = T l(r)e−αt. We then
get the equation:

∂2T l

∂r2
+

2

r

∂T l

∂r
+

(

α

η
+

l(l + 1)

r2

)

T l = 0 (46)
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This equation is the spherical bessel equation and a solution to this equation is :

T l
α = r−1/2Jl+ 1

2

(
√

α

η
r

)

(47)

Boundary conditions for toroidal magnetic field are:

T l(a) = 0 =⇒ Jl+ 1

2

(
√

αn

η
a

)

= 0 (48)

As for the problem 1, the vanishing of T at the boundary yield a determination of the zeros

λn =
√

αn

η a of the Bessel function. We can then expand T l as a Fourier-Bessel serie:

T l =
∞
∑

n=0

Anr−1/2e−tηλ2
n/a2

Jl+ 1

2

(λnr) (49)

The total representation of the toroidal magnetic field inside the conductor is thus:

Ti(r, t) =
∑

l

Yl(θ, φ)

∞
∑

n=0

Al
nr−1/2e−tη(λl

n)2/a2

Jl+ 1

2

(λl
nr) (50)

The field is now expanded in term of Bessel function but also of spherical harmonics. In
addition of the orthogonality for bessel function (9) we have to consider the orthogonality
of spherical harmonic:

∫

dΩY m
l (θ, φ)Y m′

l′ (θ, φ) = δll′δmm′ (51)

We can now use boundary conditions to compute the coefficient Al
n. Because the toroidal

field is vanishing on the boundary, it leads to consider integral restricted to the conducting
domain. We evaluate thus the integral :

I =

∫

dΩ

∫ 1

0
r2drTi(r, 0)r

−1/2Jl+ 1

2

(λl
nr)Yl(θ, φ) (52)

We expanding Ti(r, 0) and using orthogonality, I becomes:

I =

∫

dΩ

∫ 1

0
r2dr

∑

l′

∑

n′

Al′

n′(r−1/2)2Jl+ 1

2

(λl
nr)Jl′+ 1

2

(λl′

n′r)Yl(θ, φ)Yl(θ
′, φ) (53)

I =
∑

l′

∫

dΩYl(θ, φ)Yl(θ
′, φ)

∑

n′

Al′

n′

∫ 1

0
rdrJl+ 1

2

(λl
nr)Jl′+ 1

2

(λl′

n′r) (54)

I = Al
n[Jl+ 3

2

(λl
n)]2 (55)

By changing bounds of the integral over r, we finally obtain an expression for Al
n :

Al
n =

√
aη

a3[Jl+ 3

2

(λl
n)]2

∫

dVcondr
−1/2Jl+ 1

2

(λl
nr/a) (56)
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We see here that the boundary conditions for the toroidal field lead to quantification
of the modes and, as in the section 2, we expect that the energy will be dominated by the
decay rate of the modes. Using orthogonality of Bessel fuction and spherical harmonic we
get an expression for the evolution of the energy:

εT =
∑

l

∑

n

|Al
n|2
2

e−2η(λl
n)2t/a2

[Jl+ 3

2

(λl
n)]2 (57)

By derivating this energy with respect to t and using Gronwall inequality like in section 2,
we get an exponential bounds for the energy related to the less damped mode:

εT ≤ εT (0)e−2tη(λ1

1
)2/a2

(58)

4.2 Poloidal decay problem

Let’s do the same thing for the poloidal part of the magnetic field. The SPherical harmonic
decompostion is still possible:

P =
∑

l

P̂ lYl(θ, φ) (59)

Inside the conductor, the equation is the same than for the toroidal part and we get the
solution:

P l
γ = r−1/2Jl+ 1

2

(

√

γ

η
r) (60)

Where γ denotes now the decay rate of poloidal component P l
γ . The boundary conditions

are however different in the case of the poloidal field. According to the equation (43) the
scalar P is harmonic outside the conductor and P l(r, t) = c(t)r−(l+1).The radial derivative
of this field at the outer boundary is then related to P by:

∂P l
γ

∂r
+

(l + 1)

a
P = 0 (61)

By plugging expression (60) into equation (61) and using recurrence relation for the Bessel
functions, we obtain:

Jl− 1

2

(

√

γ

η
a) = 0 (62)

We see here that the boundary conditions discretize the possible decay rate of the field as
for toroidal part but involve now zero of Jl− 1

2

. This is easy to relate it to the zeros λl
n of

Jl− 1

2

and the decay rates of the modes are given by:

γl
n = η

(λl−1
n )2

a2
(63)

We thus have the following expansion for P inside the conductor:

Pi(r, t) =
∑

l

Yl(θ, φ)
∞
∑

n=0

Bl
nr−1/2e−tη(λl−1

n )2/a2

Jl+ 1

2

(λl−1
n r) (64)
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Outside the conductor, the field is expanding only on the spherical harmonics, and is totally
determined by the value of the internal field at the boundary:

Po(r, t) =
∑

l

cl(t)Yl(θ, φ)r−(l+1) (65)

Where we use the boundary conditions to calculate the coefficent cl(t) :

cl(t) =

∞
∑

n=0

Bl
nal+1/2e−tη(λl−1

n )2/a2

Jl+ 1

2

(λl−1
n a) (66)

The determination of the coefficient is identical as for the toroidal field and give:

Bl
n =

√
aη

a3[Jl+ 3

2

(λl−1
n )]2

∫

dVcondr
−1/2Jl+ 1

2

(λl−1
n r/a) (67)

Here again, the rate of decay of the magnetic energy will be governed by the decay rate
of the less damped mode. However, because of the shift in the index l, the first eigenvalue
is now given by λ0

1 = pi and we get the following bounds for the rate of decay of the energy:

εP ≤ εP (0)e−
2ηπ2

a2
t (68)

Although the poloidal magnetic field is not constrained to a finite volume like the toroidal
one, we see that it can also be represented as a discrete sum of magnetic modes, with
quantification of the possible decay rate, yielding an exponential bound for the energy. We
note however that the amount of energy outside is finite, in opposition with the problem of
the section 3 where an exponential decay could not be reached.
By comparing equations (58) and (68), we note that the poloidal energy is decaying much
slowly than the toroidal field. This can easily be explained: P is not vanishing outside and
create a large amount of energy. In the vaccum, there is no mechanisms to dissipate the
energy and this energy is forced to collapse on the conductor by use of the Poynting flux.
In consequence it is more difficult for the system to dissipate this energy. In the limit of an
infinite energy, we have seen in section 3 that the system lost its ability to exponentially
damp the energy and we get a power law.
The conclusions presented here simply a conjecture of the different case explored here and
can not be taken as rigourous assumption.We will next use a more simple model trying to
capture the essential arguments presented here.

5 Simple model

The geometries and the calculations involved in the previous cases are relatively compli-
cated. In this section we will study a very idealized mathematical model, in the perspective
of a better comprehension of the different behavior of the energy depending on the situation
outside the conductor.
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Let us consider a one dimensional problem involving a scalar φ(x, t) depending only on
the x direction. The domain is divided in two part: the inside part for r < a and the outside
part from a to infinity. Inside, φ obey the equation:

φ̇ = Dφ′′ (69)

Where the dot means time derivative and the prime means x derivative. D is a coefficient
of diffusion. Outside the conducting region, we suppose an equation of the type:

φ(x)′′ − m2φ = 0 (70)

Where m is a parameter representing the spatial damping of the field outside. Indeed
solution outside is of the form φ ∼ e−m(x−a). By supposing exponential decay for the time
dependance of φ we get the equation :

φ(x)′′ +
α

D
φ = 0 (71)

α is the decay rate of the mode. The boundary condition for the field at the origin is
φ′(0) = 0 A solution of this equation satisfaying φ non-zero at x = 0 is φ(x) = cos(kx) with
k =

√

α/D. We can now use the boundary conditions for this problem. We suppose here
that φ and its derivative in x are continuous at the interface, leading to the same kind of
relation than in the case of the poloidal field:

φ′ + mφ = 0 (72)

By plugging the expression for φ in this equation, we get:

tan(kna) =
m

kn
(73)

This yield a quantification of the decay rate αn = k2
nD. We can now expand our field on

the Fourier-cosine series:
φ(x, t) =

∑

n

φncos(knx)e−k2
nDt (74)

By using of the classical orthogonality relationship for cosine, the coefficients are obviously
given by:

φn =

∫ ∞

O
dxcos(knx)φ(x, 0) (75)

As in the previous section, the energy is bounded by the less damped mode and we have:

εφ ≤ εφ(0)e−2Dk2

1
t (76)

This model show clearly how the decay rate of the energy of a field is related to the extension
of this field in the space. Here, m represent the damping of the field outside the conductor.
For large m, the field is strongly damped near the boundary and tend to a constant value
of ( π

2a )2 when m is increased. This is the situation for the diffusion of toroidal field seen
before, where the field is confined to the inside region. When m is decrease, this correspond
to an increase of the extension of the field outside the conductive region. The slowest decay
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rate is then reducing and the corresponding energy is less and less damped. In the limit
of m very small, the decay rate of the energy tends to zero. However, one can note that
when m = 0, the only solution satisfying the boundary conditions is φ = 0. This behavior
illustrate all the case studied before and show clearly the relationship between the external
energy and the internal diffusion.

Using these simple examples, we have seen how the energy outside a conductor can
play an essential role in the dissipation of the energy inside the conductor. In particular, a
large amount of energy outside the conductor will in general collapse on the conductor and
reduce the damping of the total energy by forcing the system to dissipate more energy. This
means that surrounding a conductor with vaccum can help the system to keep its energy.
In experimental situation, for instance in dynamo experiment, the conducting fluid is in
general separated from the insulating region by the container, which can be a metal with
different magnetic properties. In the next section we will study the decay problem for this
more complicated situation.

6 Effect of ferromagnetic materials

We consider the same situation than for the decay problem in spherical geometry. In
addition, we suppose now that there is two concentric sphere with region of different per-
meability. We consider only the decay problem for a poloidal magnetic field. The equation
in the inner sphere of radius r = r1 is given by:

∂P

∂t
= η1∆P (77)

For the external shell (r1 < r < r2) we have the equation :

∂P

∂t
= η1∆P r < a (78)

For r > r2, the field is harmonic in a medium of permeability µ0 By using spherical harmonic
expansion and solving the radial equation we find that the solution to this problem, for a
given decay rate α, is given by:

P l(r) = Cr−1/2Jl+ 1

2

(
√

α

η1
r

)

(79)

for the field in the inner sphere. In the shell we have now:

P (r) = Ar−1/2Jl+ 1

2

(
√

α

η2
r

)

+ Br−1/2Nl+ 1

2

(
√

α

η2
r

)

(80)

where Nl(r) is the neumann function which appears because we can not invoke singularity
at the center for eliminating it. Note that the decay rate is assumed to be identical in the
two region of the problem. The boundary conditions at the external sphere is the same
than before, but we suppose now that the permability of the two regions are not identical:

∂P

∂r
+

µ2

µ0

(l + 1)

r2
P = 0 (81)
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Using Bessel expansion it gives us the relation:

kr2Jl− 1

2

(kr2)+(l+1)(
µ2

µ0
−1)Jl+ 1

2

(kr2) = −B

A

[

kr2Nl− 1

2

(kr2) + (l + 1)(
µ2

µ0
− 1)Nl+ 1

2

(kr2)

]

(82)

with k =
√

α
η2

The second boundary condition, acting on the inner core, consists on the

following system:
[B] = 0 (83)

[

∂B

∂r

]

=
µ1

µ2
(84)

leading to the equation :

B

A
=

√

µ2σ1

µ1σ2
jl(ρ2)j

′
l(ρ1) − j′l(ρ2)jl(ρ1)

−
√

µ2σ1

µ1σ2
yl(ρ2)j′l(ρ1) − j′l(ρ2)jl(ρ1)

(85)

The decay rates are then quantized and given by solving the system of equations (82)
and (85).THis can be done numerically for any value of the permabilties. However, by
considering the limit of high permeability for the shell, asymptotic calculation leads to the
following expression for the decay rates of the system:

αn
l = (l + n)2

π2σ1µ1

(r1 + r2)2σ2µ2
(86)

We see here that the limit of high permeability leads to a decrease of the damping rate of
the energy of the system. This effect is stronger for a thin shell. This result suggest inter-
esting modification for dynamo experiment in spherical geometry currently ongoing. For
example, in the Madison experiment, surrounding the experiment with a shell of ferromag-
netic materials (soft iron for instance) will probably yield a more excitable system and may
cause a decreasing in the threshold of the dynamo instability( see figure ??). Increasing the
permeability of the inner sphere instead of the external ones leads to similar decrease of the
decay rate and using ferromagnetic core would be a modification for dynamos experiment
like DTS experiment in Grenoble in France or in Maryland experiment where two concentric
sphere are used (see figure ??).

In more realistic MHD situation, the conductor is a fluid, the system have now more
complex way to dissipate the energy. It is thus of primary interest to consider the MHD
case and see how the system dissipate the energy.

7 MHD bounds and background method

In this section we would like to study shear flow of a conducting fluid across a magnetic
field. This situation occurs in many physical situation in astrophysical object or industrial
application. In general, this imply the existence of Hartmann layers near the boundaries
of the system. In particular we want to study such an Hartmann layer when one consider
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Figure 1: decay rate of the energy inside the sphere when the permeability of the shell is
increased, for different aspet ratio. In the limit of ferromagnetic shell, the energy of the
system do not decay.

Figure 2: decay rate of the energy inside the sphere when the permeability of the core is
increased, for different aspect ratio. In the limit of ferromagnetic core, the energy of the
system do not decay.
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Figure 3: Setup of the Hartmann problem

realistic boundary conditions for the magnetic field, for instance when the conducting region
is in contact with insulator walls or vaccum.The main quantities of interest are the energy
stability and the rate of dissipation of this system.

The problem consist of a layer of conducting fluid of kinematic viscosity ν and magnetic
resistivity η confined between two horizontal plates of size L in x and z directions. The
plates are located between y = −d/2 and y = +d/2. There is a force F creating some flow
in the x direction and an imposed constant magnetic field B0 in the vertical direction. We
assume periodic boundary conditions in the horizontal directions x and z for all the fields.
In the vertical direction y there is no slip boundary conditions for the velocity field and the
magnetic field match a potential field due to insulating region outside (see figure ??).

The solenoidal velocity fields v and B satisify the MHD equations:

∂v

∂t
+ (v · ∇)v = −∇π + ν∆v + F +

1

µρ
(B · ∇)B, (87)

∂B

∂t
= ∇× (v ×B) + η ∆B. (88)

In the above equations, ρ is the density, µ is the magnetic permeability and σ is the con-
ductivity of the fluid.

A laminar solution for Hartmann flow is given by:

UH =
Fd

2B0

√

η

ν





cosh( B0d
2
√

νη ) − cosh( B0y√
νη )

sinh( B0d
2
√

νη )



 (89)

for the velocity field and :

BH =
Fd

2B0





sinh( B0y√
νη )

sinh( B0d
2
√

νη )
− 2y

d



 (90)

For the magnetic field.
We will use different dimensionless number in this section. The Hartmann number:

Ha =
B0d√

νη
(91)

The grashoff number:

Gr =
Fd3

ν2
(92)
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Figure 4: Laminar solution for the Hartmann problem

and the magnetic grashoff number:

Gm =
Fd3

νη
(93)

We define the dissipation associated with this laminar state as:

D = ν〈|∇UH|2〉 + η〈|∇BH|2〉 (94)

where brackets indicate space averaging. We can then evaluate the laminar dissipation:

D =
Ha1/2

2
√

2Ha

[

coth(Ha) − 1

Ha

]

(95)

We note here that the magnetic field tends to zero when the applied field vanish and the
velocity reduce to Poiseuille flow.

7.1 Background decomposition

In order to do the energy stability and estimate bounds on the dissipation, an useful method
is to decompose the fields into two parts. A stationnary background profile depending only
on y and a perturbation part:

v = iUb(y) + u (96)

B = iBb(y) + jBo + b (97)

The background profile and the perturbations can be any fields given the conditions that
the total field have to be divergence-free and satisfy the boundary conditions. We can then
use this decomposition in the equations (87) and (88). By adding the two equations, this
gives the expression for the energy of the perturbation defined by E = u2/2 + b2/2:

∂E

∂t
= 〈uxB0B

′
b〉 + 〈bxB0U

′
b〉 + 〈(bxby − uxuy)U

′
b〉

+ 〈(uxby − uybx)B′
b〉 + η〈∆b.b〉 − ν〈|∇u|2〉

+ ν〈uxU ′′
b 〉 + η〈bxB′′

b 〉 + 〈uxF 〉 (98)

7.2 Poincare inequality

Before doing the energy stability, we need to obtain an inequality for the term 〈∆b.b〉 ine
the energy equation above. Indeed, the classical Poincare inequality which we use for the
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velocity field can not apply for the magnetic field due to the boundary conditions.
Let’s derive the magnetic field in Fourier space:

bi =
∑

k

bk
i (y)φk (99)

i.e.

bi =

∞
∑

k=0

bk
i (y)ei(kxx+kzz) (100)

where subscipt i stands for x,y or z and φk are the eigenfunction of the horizontal
laplacian with eigenvalue λk = k2

x + k2
z = k2

h, satisfying the equation:

(∂xx + ∂zz)φk = λkφk (101)

We see that the fourier coefficient depend on y since b is different from zero at the boundaries
and Fourier decomposition is impossible in this direction. However, the field is harmonic
outside the conductor and the Fourier modes satisfy :

(∂yy − k2
h)bk

i (y) = 0 (102)

which give us :
bk
i (y) = e−kh(y−d/2) (103)

bk
i (y) = ekh(y+d/2) (104)

In the same manner that for the poloidal field in the sphere, the continuity of the field
and its derivative imply :

∂yb
k
i (

d

2
) + khbk

i (
d

2
) = 0 (105)

∂yb
k
i (−

d

2
) − khbk

i (−
d

2
) = 0 (106)

We remark here that the magnetic field satisfy mode by mode exactly the same conditions
than the toy model. Suppose now that the vetical dependance of the field can be described
by the following expansion for the coefficents bk

i (y):

bk
i (y) = Acos(qky) + Bsin(qky) (107)

The boundary conditions becomes:

tan

(

qkd

2

)

= ±
(

kh

qk

)±1

(108)

This equation yield an expression for the wavenumber qk Using this expansion, it is straight-
forward to derive an expression for ∆B.B :

− 〈∆B.B〉 = −
∫ + d

2

− d
2

dy
∑

k

bk(∂yy − k2
h)bk

=

∫ + d
2

− d
2

dy
∑

k

(q2
k + k2

h)|bk|2) ≥ (q2
1 + k2

1)〈B2〉 (109)
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Where we use the first wavenumber to bound the expression. Eliminate the k = 0 terms,
(there is no horizontally averaged magnetic field) we get the Poincare inequality :

−η〈∆B.B〉 ≥ η(
π2

L2
+ q2

1)〈B2〉 (110)

7.3 Energy stability

The stability of the Hartmann layer is an important characteristic of the system. A complete
determination of the problem would imply to solve the full variationnal problem involving
the resolution of the Euler-Lagrange equation. We will instead derive rigourous energy sta-
bility by considering appropriate bounds on the energy. Note that this method generally
capture the main behavior of the system and the full resolution only improve the results by
some factor.

The background kinetic and magnetic fields are now taken to be the laminar solutions
of the problem. The energy equation (98) simplify in :

∂E

∂t
= −F [u,b] (111)

where the funtional F is given by:

F [u,b] = 〈(bxby − uxuy)U
′
H〉 + 〈(uxby − uybx)B′

H〉
− η〈∆b.b〉 + ν〈|∇u|2〉

(112)

Using Holster and Young inequality, we can bound the two first term of the above
quaratic form as follow:

〈(bxby − uxuy)U
′
H〉 ≤ max(|U ′

H |)
2

〈b2 + u2〉 (113)

〈(uxby − uybx)B′
H〉 ≤ max(|B′

H |)
2

〈b2 + u2〉 (114)

The two last term can be controlled by Poincare inequalities

ν〈|∇u|2〉 ≥ ν
π2

d2
〈u2〉 (115)

−η〈∆b.b〉 ≥ η(
π2

L2
+ q2

0)〈b2〉 (116)

The above inequality yield conditions for non-negativity of the quadratic form (112) which
can be formulated as:

G2
m [Ha coth(Ha) − 1]2 ≤ Ha2

(

2π2 − Gr

)

(

2

(

d2π2

L2
+ q2

0d
2

)

− Gm

)

(117)
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Figure 5: Energy stability of the Hartmnn flow for different Hartmann number.

Figure 6: Evolution of the stability with the aspect ratio of the problem.

In the limit where Gm tends to zero, we find the energy stability of the Poiseuille flow.
Figure (??) show the energy stability in the plane Gr −Gm for different Hartmann number.
We see here that the results depend now on the aspect ratio r = L/d and the figure (??)
illustrate the destabilisation of the Hartmann flow when the lenght perpendicular to the
magnetic field is increased.

7.4 Bound on dissipation rate

Using the procedure followed in the previous section, we are now interesting in the total
dissipation of the system, defined by:

D = ν〈|∇v|2〉 + η〈|∇B|2〉 (118)

To determined bounds on the dissipation, we now choose arbitrary backgrounds, which
are not the laminar solutions but which will be determined in order to get the best possible
estimation of the bound.
Taking the equation (98) and adding to the energy half of the total dissipation we obtain:
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∂E

∂t
+

D

2
= 〈uxB0B

′
b〉 + 〈bxB0U

′
b〉 + 〈(bxby − uxuy)U

′
b〉

+ 〈(uxby − uybx)B′
b〉 −

η

2
〈∆b.b〉 − ν

2
〈|∇u|2〉

+
ν

2
〈U ′2

b 〉 +
η

2
〈B′2

b 〉 + 〈uxF 〉 (119)

In order to eliminate the linear term in the previous expression, we perform the following
change of variable:

u = w − iVb(y) (120)

b = h − iHb(y) (121)

with:
νV ′′

b = B0B
′
h (122)

and:
ηH ′′

b = B0U
′
h (123)

We end up with the final expression for the dissipation rate of the Hartmann layer:

D = 2F 〈Ub〉 − Db + Qb (124)

where the functional Q is given by

Qb = ν〈|∇w|2〉 − η〈∆h.h〉 − 2〈(hxhy − wxwy)U
′
b + (wxhy − wyhx)B′

b〉 (125)

We see that if we can find background fields such that the quadratic form Qb is non-negative,
the dissipation will be bounded by an expression depending only on the backgroun profiles.

Using the same inequalities than for the estimation of the energy stability, we can obtain
conditions for positivity of the quadratic form Qb leading to a lower bound for the dissipation
. This bound is valid only in the region of parameter space defined by

Rm ≤ 4

(

π2d2

L2
+ d2q2

0

)

1

Re
(126)

One can note that this prediction on the dissipation rate of the system is very weak. Indeed,
the bound on the dissipation is restricted to a laminar region and do not apply for turbulent
behavior. This problem come from the fact that the estimation of the bounds is done without
taking into account the presence of the boundary layers which would occur in any physical
situation.
Focusing on the boundary of the system, we can use the fundamental theorem of calculus,
Schwartz and Young inequalities in order to get:

〈(wxwy)U
′
b〉 ≤ U∗δ|∇w|2〉 (127)

The derivation of this equation come from the fact that the conditions of vanishing per-
turbation w on the boundary give a control on the magnitude of the gradient of the field
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inside the conductor. The same derivation is not possible for the magnetic field, where the
matching with an external potential field do not offer any control on the value of h at the
boundary. In fact, these boundary conditions specify only a relation between the field and
its gradient at the boundary, which is not sufficient to conclude something about the gradi-
ent inside the conductor. In consequence, it is not possible to characterize the behavior of
the magnetic field in the boundary layers, leading to the impossibility of obtaining a bound
on the dissipation rate.

8 Conclusion

We have seen in the first sections that the vaccum can play an important role in the
dissipation of a conductor or MHD system. It is thus of primary interest to see how
stability or dissipation rate are changed when one take into account realistic boundary
conditions. Using the background we studied the Hartmann flow problem in order to derive
energy stability and lower bound on the dissipation rate. We have seen that the insulating
boundary conditions do not allow sufficient control on the magnetic field in the boundary
layer to get a bound on the dissipation rate. This suggest to use a different approach,
involving a modification of the classical background method.
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