
Diagnosing El Niño - La Niña Transitions

Matthew S. Spydell

1 Introduction

Climate variability on interannual time scales is exemplified by the El Niño -Southern Os-
cillation (ENSO). An El Niño event is marked by anomalously warm SST’s in the eastern
portion of the equatorial Pacific and the weakening of the trade winds over much of the
equatorial Pacific, the opposite event is called La Niña. In addition to locally affecting the
climate near the equator, El Niño and La Niña significantly affect the weather throughout
the Americas. A standard ENSO index is the anomalous surface atmospheric pressure dif-
ference between Tahiti and Darwin, Australia. As a time series, this index shows significant
variability around the 1/4 yr−1 frequency. Although much research has been devoted to
the study of ENSO, there are still some open issues regarding: what starts El Niño, what
sustains its quasi-periodic behavior, etc. Two complementary conceptual models of ENSO
have been successful in exposing some of the main dynamics of ENSO.

Prior to the development of these conceptual models an intermediate model of ENSO
was developed by Zebiac and Cane [1]. This model (henceforth ZCM) is a coupled ocean-
atmosphere model that uses a steady state linearized atmosphere, and long-wave linear
momentum equations for the ocean. The atmospheric model is essentially a Gill type
equatorial model [2]. The ocean and atmosphere are coupled through the atmosphere being
forced by anomalous SST’s, and the ocean being forced by anomalous wind stresses. This
model was shown to have variability similar to ENSO. However, it was difficult to show
exactly what mechanisms resulted in ENSO variability because of the model’s complexity.

In an effort to understand the basic mechanisms that result in ENSO variability, Battisti
(1988) and Schopf & Suarez (1988) showed that the ZCM can be reduced to a delayed
oscillator model that contains ENSO-like variability ([3] and [4]). The delayed oscillator
model of ENSO emphasizes the role of equatorially trapped waves and the different crossing
times of Kelvin and Rossby waves as the source of ENSO-like variability. Specifically,
by integrating along characteristics of Kelvin and Rossby waves, and after making some
simplifying assumptions, the delayed oscillator equation, dT/dt = aT − bT (t− τ) +N , was
derived. The aT term represents the positive El Niño feedback and the −bT (t − τ) term
represents the delay effect of the Rossby waves which effectively carry temperature of the
opposite sign to the eastern equatorial region at a time τ later. It is this delay that is crucial
to ENSO variability.

In 1997 a different conceptual model of ENSO was developed by Jin ([5] and [6]). This
model is a recharge oscillator model and it deemphasizes the role of waves as the mechanism
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of variability and emphasizes the role of mass transport as the mechanism responsible for
ENSO variability. Specifically, this model shows that it is the different adjustment times
that is responsible for ENSO variability: the thermocline slope adjusts almost instantly
to wind stress changes, and the mass (volume) of the equatorial strip takes more time to
adjust to wind stress changes. In this model it is crucial for the equatorial strips volume to
oscillate in time; anomalous mass must be transported into the equatorial strip in order for
an El Niño event to occur.

The purpose of this work is to see if the conceptual models are in agreement with idealize
El Niño to La Niña transitions as produced by a shallow water model forced by periodic El
Niño - La Niña wind stresses. Specifically, the following questions were addressed. One, are
the delayed oscillator and the recharge oscillator complementary views of ENSO variability?
Two, from the recharge oscillator perspective what are the specific mechanisms in space and
time that charge and discharge the equatorial strip? To answer these questions, numerical
simulations of the ocean adjustment process to periodic El Niño to La Niña wind stresses
were performed. Additionally, a passive tracer was used to help diagnose the mass exchange
process that occurs in El Niño - La Niña transitions.

2 The Equatorial β-Plane

The governing equations used to study El Niño are the reduced-gravity shallow-water β-
plane equations. The scales of interest in this particular problem are such that the linearized
version of these equations is adequate. The familiar equations are

ut − vβy = −g′hx + Du + X

vt + uβy = −g′hy + Dv + Y

ht +H0(ux + vy) = 0 .

(1)

These equations have been studied extensively and a review can be found in [7]. These
particular equations represent a one and a half layer model; a dynamic upper-layer and
a denser static lower layer. The reduced gravity, g′, is defined as g′ = g(1 − ρ1/ρ2), and
dissipation and forcing are symbolically represented. The appropriate scalings for this set
of equations are

(x, y) = ae(x̂, ŷ) , (u, v) = c(û, v̂) , h = H0ĥ , and t = t0t̂ (2)

where the length scale ae is the equatorial Rossby deformation radius, c is the shallow
water wave speed, H0 is the mean thermocline depth around which the equations have been
linearized, and t0 is the time it takes a shallow gravity water wave to cross a deformation
radius. For this particular problem we used

c =
√

g′H0 → 2.89 m/s

ae =
√

c/β → 380 km

H0 → 150 m

t0 = ae/c → 1.52 days ,
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consistent with the previous models of ENSO. For ENSO, the x scale of interest is much
larger than 380 km, and time scales of interest are much larger than 1.52 days. If we instead
scale by

(u, v) → (1, ae/Lx) c (1, 0.022)c

(x, y) → (Lx, ae) (17 Mm, 380 km)

t → t0 = Lx/c (70 days)

h → H0 (150 m)

we arrive at the long-wave equations which are the same as (1) except the terms vt and Y

both go to zero. Without the long-wave approximation, (1) represent equatorially trapped
wave modes. To obtain the modes, first (1) is nondimensionalized by (2) to obtain

ut − vy = −hx + Du + X

vt + uy = −hy + Dv + Y

ht + ux + vy = 0

(3)

where all variables are now nondimensional and the terms representing dissipation and
forcing are scaled appropriately. The modes of this system are found by first making the
change of variables

q = h+ u and r = h− u . (4)

The equations given by (3) in terms of q, r and v are

qt + qx + vy − vy = X

rt − rx + vy + vy = −X

2vt + qy + qy + ry − ry = Y ,

(5)

where dissipation has been neglected. The normal modes of the unforced non-dissipative
equations are found by assuming





q(x, y, t)
r(x, y, t)
v(x, y, t)



 =

∞
∑

n=0





q(y)
r(y)
v(y)



 exp[i(kx− σt)] . (6)

The resulting equations are reduced to a single parabolic cylinder equation for v

vyy +

(

σ2 − k2 − k

σ
− y2

)

v = 0 . (7)

The physically relevant boundary condition is that lim|y|→∞ |v| = 0. With this boundary
condition σ must satisfy

σ2 − k2 − k

σ
= 2n+ 1 , (8)

where n ∈ {0, 1, . . .}. Additionally, there is a mode for n = −1 and it is called the Kelvin
mode. This mode is derived from the momentum equations assuming v = 0. The mode for
n = 0 is called the mixed-mode, and there are two modes for n ≥ 1, inertia-gravity modes
(high frequency) and Rossby modes (low frequency). The Kelvin and Rossby modes are
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Figure 1: The dispersion relation for equatorial waves. The first three Rossby and gravity wave

modes are included. The frequency of Rossby modes decrease with mode number and the frequency

of gravity wave modes increase with mode number.

crucial to ENSO as we shall see later. The familiar dispersion relationship is plotted in Fig
1.

The ENSO adjustment process was our primary concern. In order to understand the
role of equatorial waves in this adjustment process it is necessary to project the evolution
of the system on to the systems modes. Following [2] and subsequently [3], but not making
the long-wave approximation, we can arrive at amplitude equations for the modes of the
system. Instead of assuming oscillatory solutions in x and t, we solve (5) by expanding the
y component of these equations in “normalized” parabolic cylinder functions





q(x, y, t)
r(x, y, t)
v(x, y, t)



 =
∞

∑

n=0





qn(x, t)
rn(x, t)
vn(x, t)



Dn(y) , (9)

where

Dn(y) =
(−1)n

√

2nn!
√
π

exp(y2/2)
dn

dyn
exp(−y2) . (10)

Dn is considered normalized because
∫ ∞

−∞
DmDn dy = δmn

where n is the set of whole numbers. This results in equations for the mode amplitudes

2vnt +
√

2(n+ 1)qn+1 −
√

2nrn−1 = 2Yn

qnt + qnx −
√

2nvn−1 = Xn (11)

rnt − rnx +
√

2(n+ 1)vn+1 = −Xn ,
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with Xn denoting the x forcing projected on the nth parabolic cylindric function

Xn =

∫ ∞

−∞
X(y)Dn(y) dy ,

similarly for Yn. This may appear complicated but the evolution equation for the equatorial
waves can be found all in terms of qn, the first two are

q0t + q0x = X0 (12)
√

2q1t = 2Y0 − v0t (13)

and for n ≥ 1

(2n+ 1)q(n+1)t − q(n+1)x = nXn+1 −
√

2(n+ 1)Xn−1 +
√

2(n+ 1)[
∂

∂t
− ∂

∂x
](Yn − vnt)

where

vnt =
∂

∂t
(q(n+1)t + q(n+1)x − Xn+1)

for all n ≥ 0. The advantage of this notation is that the different wave modes have different
y dependence. The amplitude of the Kelvin wave is given by q0, the mixed wave by q1,
and the Rossby and inertia-gravity waves by qm, m ≥ 2. Note that the equation for vnt

is displayed separately to emphasize that if the long wave approximation had been made
this term would be zero because the terms vnt = 0, and Yn = 0. With this approximation
the mixed mode and the gravity modes are not present, hence, the only modes that would
survive are the Kelvin (q0) and the Rossby modes (qn’s). If the long-wave approximation
is not made, the Rossby modes and gravity modes have the same y dependence, therefore
the modal amplitude q2(x, t) corresponds to the amplitude of the gravest gravity mode
in addition to the the amplitude of the gravest Rossby mode. Thankfully, the scales of
interest in this problem are such that the long-wave approximation is certainly valid and
the amplitude of qn with n ≥ 1 corresponds to the amplitude of the n ≥ 1 Rossby mode.

3 The Model Setup

The transition between La Niña and El Niño was diagnosed numerically by spinning up the
shallow water model to a periodic El Niño to La Niña forcing. Specifically, (1) was solved
numerically (see Appendix for details) using a standard shallow water model forced by wind
stress fields obtained from a run of the ZCM. These fields can be seen in Figure 2.

The time dependence of the wind stress forcing was given by the function

~τ(t) =
1

2

[

~τEl + ~τLa + tanh
[

α(t− 1)
](

~τEl − ~τLa

)

]

×H
(

2 − 4 mod(t/4)
)

+
1

2

[

~τEL + ~τLa + tanh
[

α(t− 3)
](

~τLa − ~τEl

)

]

×H
(

4 mod(t/4) − 2
)

,

(14)
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Figure 2: The mean wind stress and the El Niño anomaly. The La Niña anomaly is omitted since
it is just the opposite of the El Niño anomaly because the time dependence of the winds is a linear
combination of two fields. The total El Niño and La Niña wind stresses are used to force the shallow
water model. Contour lines are magnitudes of wind stress in 0.25 dynes/cm2.

where H is the heavy-side step function and t is measured in years. Figure 3 shows one
period (4 years) of the oscillating wind stress. The parameter α is used to adjust how
quickly the winds transition from La Niña to El Niño and we set α = 3 for all results
reported. It is acknowledged that this simple linear interpolation between two wind stress
states is a simplification of the true transition process, which includes spatial propagation
signals, however, this interpolation is used because it is simple yet physically revealing.

After the model spins up under periodic wind stress forcing, four years of data repre-
senting the transition from maximum La Niña winds to maximum El Niño winds and back
to La Niña was saved and analyzed. In order to diagnose these idealized La Niña to El Niño
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Figure 3: The time dependence of the periodic forcing used in the linear shallow water model used
to diagnose the transitions between El Niño and La Niña .
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Figure 4: A time-longitude plot of the anomalous height at the equator. The shaded area is positive
and the contour level is 5 m.

transitions the fields are split into climatologies and anomalies

h(x, y, t) = h0(x, y) + h′(x, y, t)

u(x, y, t) = u0(x, y) + u′(x, y, t)

v(x, y, t) = v0(x, y) + v′(x, y, t) .

(15)

4 The Role of Waves

The first question to answer is whether these idealized El Niño - La Niña transitions exhibit
characteristics implied by the idea of the delayed oscillator. Namely, to what extent are
wave dynamics responsible for the time evolution of the anomalous fields? A Hovmöller
diagram of h′ at the equator is an appropriate place to start, see Figure 4.

From Figure 4 is it possible to see the role of waves in El Niño to La Niña transitions.
Between time zero and one we can see a positive depth anomaly encountering the western
boundary, this depth anomaly is then reflected and rapidly moves east across the equator
between time 0.75 and 1.5. From Figure 4 it is not clear what occurs when this anomaly
reaches the eastern boundary at time 1.5. Due to the symmetry of the forcing the negative
depth anomaly evolves in the same manner starting at about time 2.5.

However, projecting q = h′ + u′ on the normal modes of the system can clarify the role
of waves in the transition process by explicitly indicating which equatorial waves are excited
in the transition process. The evolution of q projected on the Kelvin and first Rossby mode
can be seen in Figure 5.
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Figure 5: A time-longitude plot of the projection of q(x, y, t) on to the Kelvin mode and the first
Rossby mode. The shaded area is positive and the maximum value of the nondimensional projection
is displayed.

From Figure 5 the role of the Kelvin and Rossby wave in the transition process is
evident. We shall now analyze the positive depth anomaly or warm anomaly in some detail.
At t = 0.5 the first mode Rossby wave has maximum amplitude near 200◦ East. This mode
propagates along the equator at 1/3 the Kelvin wave speed and then encounters the eastern
boundary at t = .9.1 The Rossby wave is then reflected as a Kelvin wave but initially,
for t < 1, the Kelvin wave loses intensity because the stress anomaly is negative. This is
clear from the Kelvin modal amplitude equation (12) where X is the stress anomaly which
is negative at the equator for −1 < t < 1. It is negative because during this time there
are La Niña winds, hence the Kelvin wave amplitude q0 decreases. At t = 1 the stress
anomaly changes sign and the Kelvin wave intensifies. It is this intensification which brings
El Niño to its maturity. The idea that an equatorial Rossby wave reflects from the western
boundary as a Kelvin wave that is later intensified is the principle of the delayed oscillator.
In the delayed oscillator model the equatorial Rossby wave is assumed to be excited by the
anomalous wind stress in the central part of the basin from the previous El Niño. Is this the
case here? See Figure 6 for the projection of q on the third and fifth Rossby modes. From
this figure we see that the projection on the slower equatorial Rossby waves is weaker and
occurs at the same time and place, t = 0 and x =200◦ East. We ask, what is responsible
for the excitation of these modes?

Figure 7 shows the evolution of h′(x, y, t) through the maximum La Niña wind stress

1These times denote the approximate time when the maximum amplitude encounters the eastern bound-
ary, etc.
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Figure 6: A time-longitude plot of the projection of q(x, y, t) on to the third and fifth Rossby mode.
The shaded area is positive and the maximum value of the nondimensional projection is displayed.

anomaly, notice especially the off-equatorial wave near 15◦ North. It is possible to show
that this is a long-QG-Rossby wave at 15◦ North, i.e. −a−2ψt + βψx = 0, with a speed of
about βa2 ≈38◦/yr.

Beginning in panel 2 of Figure 7 this off equatorial long Rossby wave “leaks” into the
equatorial region west of 200◦ E. This is rather unexpected because the delayed oscillator
model of El Niño does not address off equatorial dynamics as part of the ENSO mechanism.
However, this off equatorial Rossby does eventually “leak” into the equatorial region and
excites equatorial Rossby waves that are crucial to ENSO mechanism according to the
delayed oscillator mechanism. We will now show that it is the background potential vorticity
that allows the off equatorial Rossby wave to leak into the equatorial region. Rossby waves
propagate along lines of constant background potential vorticity

ζ = f/H0 . (16)

Figure 8 shows lines of constant background potential vorticity superimposed on fourth
panel of Figure 7.

We see a ridge of high potential vorticity that forces the off equatorial Rossby wave to
travel north of 10◦. This Rossby wave then “leaks” through the gap in the ridge of potential
vorticity at about 170 E Longitude. Again, it is interesting to see off equatorial dynamics
playing a role in ENSO transitions, not something usually associated with ENSO, nor is off
equatorial dynamics apart of conceptual ENSO models. However, off equatorial dynamics is
discussed in the context of El Niño in Philander (1997), where it is discussed in the context
of decadal modulations of ENSO variability.
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Figure 7: Six frames in the transition through the La Niña wind stress. Maximum La Niña stress
anomalies occur at t = 0. An off equatorial positive anomaly Rossby wave is clearly seen moving
west at around 15◦ N. Additionally, this Rossby wave can be seen to “leak” into the equatorial region
beginning in the second panel. The contour interval is 20 m.
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Figure 8: One frame in the transition through the La Niña wind stress with the background
potential vorticity contours at a time when the off equatorial Rossby wave is “leaking” into the
equator. The contour level for the anomalous height field is 20 m and the potential vorticity field is
in bold contours.

5 Recharging and Sverdrup Flow

In the Section 4 it was demonstrated that the wave dynamics view of ENSO is indeed
captured in the idealized ENSO transitions we simulated. Can we also see the recharge
oscillator perspective in these simulations? If ENSO can be described as a recharge oscillator
the total mass (volume) of the equatorial region must oscillate, i.e. the equatorial strip must
charge and discharge. According to [5], the recharging takes place prior to an El Niño event,
and in the case of our model ENSO transitions this recharging occurs during La Niña wind
stresses. Figure 9 shows the zonal mean thermocline depth anomalies and from this Figure
we see that the equatorial region has maximum volume prior to the onset of the El Niño,
in other words prior to the El Niño wind stress anomaly.

It is obvious from Figure 9 that the equatorial region, between -10◦ S and 10◦, exchanges
mass periodically with the off equatorial region, thus these ENSO transitions can be viewed
in terms of a recharge oscillator. Can we be more specific about the recharging of the
equatorial region? Specifically, what is the mechanism that allows the equatorial region to
recharge, and where is the mass responsible for the recharging coming from? It is possible
to answer these questions from our idealized El Niño - La Niña transitions. To do so, we
will start with the anomalous continuity equation

h′t +H0(u
′
x + v′y) = −rh′ . (17)

We can now integrate the anomalous continuity equation to obtain the anomalous transport
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Figure 9: The zonal mean of the thermocline depth anomaly. Notice the recharging and discharging
of the equatorial region. The contour interval is 5 m.

into the region east of x,

dV

dt
(x, t) ≡

∫ 10◦

−10◦

∫ Xe

x

dh′

dt
(x̃, y, t) dy dx̃ =

− r

∫ 10◦

−10◦

∫ Xe

x

h′(x̃, y, t) dy dx̃

−H0

∫ Xe

x

[v′(x̃, 10◦, t) − v′(x̃,−10◦, t) dx̃

+H0

∫ 10◦

−10◦
u′(x, y, t) dy .

(18)

The total transport into this region, dV
dt

, has contributions from the relaxation term, −rh,
meridional velocity at ±10◦, v, and from the zonal velocity u at longitude x. A schematic
of this idea is seen in Figure 10. If we let x = Xw in (18) we get the total transport into
the equatorial region. This is displayed in Figure 11. This figure clearly shows that the
equatorial region is charging during the La Niña phase, t < 1 and t > 3, and discharging
during the El Niño phase, 1 < t < 3.

From (18) we can deduce where the anomalous transport is taking place such that the
equatorial region charges and discharges. Figure 12 is a plot of dV/dt as a function of x
for certain times during the recharging phase. This Figure shows where the anomalous ve-
locities, more importantly the anomalous meridional velocities, are transporting anomalous
mass into the equatorial region during this phase. In the first panel it is a negative v ′(10◦)
east of 200 E is transporting anomalous mass into the equatorial region. West of 200 E v ′ is
positive but small and is not helping to recharge the equatorial region. We can also see that
u′ is transporting anomalous mass west in the region where v′ is transporting anomalous
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Figure 10: A schematic diagram of the contributions to the transport into the equatorial region
east of x.
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Figure 11: The transport into the entire equatorial region as a function of time. The net transport
is depicted by the ht curve and the contributions to this from the anomalous meridional velocity
and the anomalous relaxation are displayed.
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Figure 12: The transport dV/dt into the equatorial region east of x at different times during the
recharging phase. The overall transport into the region and the contributions from the anomalous
velocities and anomalous relaxation is displayed.

mass into the equator. Note that the anomalous transport due to the boundary current is
contributing a small amount to the recharging at this time. In the second panel a negative
v′ is evident everywhere east of 180 E. This anomalous velocity is responsible for all of the
anomalous mass transport into the equatorial region. A negative u′ in this same region
transports this anomalous mass west. Note that the boundary current is actually helping
to expel mass from the equator at this time. Also, the rate at which the equatorial region
is filling with mass is approximately constant for all x, i.e. the entire thermocline is filling
with water at the same rate. We see this from the constant slope on the ht curve of this
panel. The third panel is at a time close to when the equatorial region begins to discharge.
It is possible to see in this panel that the Kelvin wave is helping to transport mass into
the eastern equatorial region. Because of the periodic nature of our linear problem and the
wind stresses being a linear combination of two states, the discharging process is just the
opposite of the charging process.

It was shown that anomalous meridional velocities at ±10◦ mainly in the eastern portion
are responsible for the anomalous mass transport that charges and discharges the equatorial
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Figure 13: The curl of the mean wind stress field and the curl of the El Niño anomaly wind stress
field.

region. From the scales of the problem we would expect the velocities to be in quasi-Sverdrup
balance. We can then obtain the anomalous meridional velocities from the anomalous wind
stress via the Sverdrup balance

βv′ =
∇ × τ

′

ρ0H0
· k . (19)

Figure 13 shows that for El Niño there is a positive wind stress curl anomaly in the
eastern equatorial region at 10 N and a negative curl anomaly at 10 S. These anomalous
curls are responsible for the discharging of the equatorial region. The curl anomaly for La
Niña has the opposite sign as the curl anomaly for El Niño and is hence responsible for the
charging of the equatorial region.

Experiments were performed where tracers were injected into the flow at time t = 0
with constant gradients in y. These tracers were then advected by the anomalous velocities.
These experiments were performed to see where the anomalous velocities were present and
to show where anomalous mass was being transported. These experiments confirmed that
anomalous equatorward meridional velocities were indeed responsible for the anomalous
mass transport. This anomalous mass enters the eastern equatorial region and is then
transported west by anomalous zonal velocities at the equator. Again, because of the
symmetrical nature of the forcing the opposite is true for the expulsion of mass during the
El Niño phase.
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Figure 14: The transport into the equatorial region east of x and the contributions from the full
velocity fields and the full relaxation.

6 Total Mass Transport & No Relaxation

The previous sections on transports have emphasized the role of anomalous velocities trans-
porting anomalous mass. In these sections we have isolated what causes the recharging
of the equatorial region. However, by using anomalous velocities we do not have a true
Lagrangian perspective on the recharging of the equatorial region. In order to determine
the origins of the water that actually recharges the equatorial region we must add in the
climatological transport to the analysis performed in Section 5. Doing this equation (18) is
now an equation that involves the total velocities and Figure 14 displays the total transport
into the equatorial region during the recharging phase.

Figure 14 clearly shows that the meridional velocities east of 240 E are transporting
mass out of the the equatorial region, between 180 E and 240 E v is transporting mass
into the region, and west of 180 E mass is being transported out of the equatorial region.
This figure also shows that if it were not for the Western Boundary Current the equatorial
region would be losing mass from v transport. We can conclude that it is anomalously
weak meridional velocities in the eastern portion of the equatorial region that allows the
western boundary current to fill the region. From this figure we see that the relaxation
term (−rh) in the continuity equation is actually doing more work than v to recharge the
equatorial region. Knowing that this term is a slightly nonphysical parameterization of
upwelling and mixing, we should ask whether the recharging of the equatorial region should
rely this heavily upon this term? Additionally, is this term necessary for the recharging of
the equatorial region?

These questions were answered by running the same experiment but without the relax-
ation term in the continuity equation. From Figure 15 we see that the equatorial region
still charges and discharges, hence the −rh term is not mandatory for the recharging of
the equatorial region. Additionally, the the transport analysis was performed on this ex-
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Figure 15: Zonal mean anomalous thermocline depth with no relaxation in the continuity equation.

periment and it was found that in this case the meridional transport is solely responsible
for the recharging of the equatorial region. Specifically, it is the weakening of the merid-
ional transport in the out of the basin that allows the western boundary current to fill the
equatorial region with anomalous mass, as Figure 16 clearly shows. It is interesting that in
Figure the contributions to this charging by u and v are such that the equatorial region is
uniformly charging as seen in the constant slope of dh/dt.

7 Conclusions

The purpose of this project was to see if both the wave perspective of ENSO, as exemplified
by the delayed oscillator model (Suarex & Schopt 98, Battisti 98), and the mass transport
perspective of El Niño , as exemplified by the recharge oscillator model (Jin 97), may
be diagnosed in a model simulation of ENSO transitions using a numerical model that is
capable of capturing both mechanisms. Both perspectives of ENSO were clearly evident in
the idealized ENSO transitions that we modeled. However, as regards to the wave dynamics
perspective of ENSO our model shows that it is off equatorial Rossby waves that propagate
anomalous thermocline depths from the eastern equatorial region to the west in contrast to
equatorially trapped Rossby waves that are emphasized in the delayed oscillator picture of
ENSO. The off equatorial Rossby wave does excite equatorial Rossby waves but not until
it encounters a gap in the ridge of background potential vorticity in the western portion of
the basin where it is able to “leak” into the equatorial region. Thus, this model indicates an
interesting interaction between off equatorial dynamics and equatorial dynamics in ENSO
transitions (Galanti & Tziperman have also noted this phenomena, personal communication
2001). It is this particular interaction that is worthy of future research.

The mass transport perspective of ENSO was also evident in these idealized ENSO
transitions. Using this model we were able to specifically diagnose the mechanisms respon-
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Figure 16: The x dependence of the total transport and the contributions from the full velocity
fields with no relaxation in the continuity equation during the recharging phase.

sible for the recharging and discharging of the equatorial region. We found that anomalous
wind stress curls in quasi-Sverdrup balance with meridional velocities are responsible for the
charging and discharging of the equatorial region. These anomalous wind stress curls are
present in the eastern portion of the equatorial region at ±10◦. These anomalous meridional
velocities allow the western boundary current to fill the equatorial region with mass. We
also found that the −rh term included in most models of ENSO for numerical purposes, is
not necessary for the recharging of the equatorial region, nor does it distort the qualitative
picture.
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9 Appendix

9.1 Numerical Methods

The numerical model used was a modification of the Bleck and Boudra isopycnic coordi-
nate general circulation model. This code was modified to solve the linear shallow water
equations. The model uses a standard “c” grid and a leap frog time stepping scheme. The
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model solved the equations

ut − vβy = −g′hx − ru+ ν∇2u+
τ (x)

ρ0H0

vt + uβy = −g′hy − rv + ν∇2v +
τ (y)

ρ0H0

ht +H0(ux + vy) = −rh .

(20)

The resolution of the model was 0.5◦, as measured at the equator, in both the x and y
directions. The values of most of the constants were given in Section 2. The additional
values used were:

r = 1/30 mo−1 and ν = 1100 m2s−1 . (21)

9.2 The Long-wave Approximation

In order to better understand the long wave approximation and why it is relevant to the
equatorial basin and ENSO, we examined the reflection of equatorial Kelvin waves by the
eastern boundary of a basin. Additionally, this problem was examined to better understand
why in the delayed-oscillator model of ENSO eastern boundary reflection is sometimes
ignored. The set up is simple, if a Kelvin wave is excited along the equator, perhaps by
an anomalous wind stress, it will propagate along the equator until it reaches the eastern
boundary of the basin at which point it must be reflected2. What is the outcome of this
reflection? It can not reflect as a Kelvin wave or a mixed wave; they only propagate energy
eastward. It must transmit its energy to coastally-trapped Kelvin waves (or some deviant of
a coastally-trapped Kelvin wave3, equatorially trapped Rossby waves or gravity waves. The
structure of the disturbance in k space determines the outcome of this reflection. Consider
an initial value problem of the linear shallow water equations. The initial disturbance is





u(x, y, 0)
v(x, y, 0)
h(x, y, 0)



 =





αc
0

αH0



 exp

(

− β

2c
y2

)

G(x/L) . (22)

This initial disturbance is designed to excite an equatorial Kelvin wave response that will
propagate to the east with speed c and amplitude α. This disturbance will not disperse
because Kelvin waves are not dispersive. We shall choose the specific x dependence to be

G(x/L) = exp[−(x/L)2] . (23)

Assuming that the scale of this disturbance is small compared to the size of the basin we
can assume that the disturbance is not affected by the presence of the boundaries, and
we can analyze this initial disturbance as if x were unbounded. This disturbance excites

2Reflected is perhaps not the best word here, the energy fluxed into the eastern boundary of the basin
must be fluxed out, and this is what is meant by reflection in this particular usage.

3A true coastally-trapped Kelvin wave only exist on an f -plane, therefore true coastally-trapped Kelvin
waves can not exist at the equator since f goes to zero there [8].
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Figure 17: The energy density at the equator, in ergs/cm2, of an equatorial Kelvin wave as it strikes

the eastern boundary of the basin for four different zonal length scales of the disturbance. As the

zonal length scale of the disturbance increases, is transmitted to equatorially-trapped gravity waves

and more energy is transmitted to equatorial Rossby waves. There are ten equally spaced contours

in each panel.

many plane wave Kelvin modes where the amplitude of these excited modes is given by the
Fourier transform of (23)

G(k) =
L

2
√
π

exp[−(kL/2)2] (24)

assuming that G(x) =
∫ ∞
−∞ G(k) exp(ikx) dk. We see that small initial disturbances (small

L) project into high wave number plane waves - obviously the width of Gaussian in k
space is inversely proportional to the width of the Gaussian in x space. Since these are
Kelvin waves, the frequency is proportional to k (ω = ck) and therefore a small disturbance
projects into many high frequency Kelvin modes. When this disturbance encounters the
eastern boundary the energy fluxed in must be radiated away by other waves. Some of this
energy goes into coastally trapped Kelvin (like) waves that propagate away from the equator
and some may be reflected back as either equatorial trapped gravity waves or Rossby waves
depending on the frequency of the incident waves. If the disturbance is small, the frequencies
may be large enough to reflect as gravity waves. Notice on the dispersion relation, Figure
1, that Kelvin waves with large positive k will have frequencies in the frequency range of
the gravity waves.

Typically, simple models of ENSO ignore eastern boundary reflection because the long
wave approximation has been assumed and Kelvin waves excited by anomalous wind stresses
are assumed to have spatial scales large enough such that these disturbances do not project
into high wave number Kelvin modes. When these large disturbances encounter the eastern
boundary they will propagate away as coastally trapped Kelvin waves and equatorially
trapped Rossby waves. The above analysis showed that Kelvin waves can reflect as fast
gravity waves - how large do disturbances need to be such that they will not reflect some of
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their energy as gravity waves? For any disturbance the majority of the energy must be in
wave numbers less than some critical wave number kc, where kc ∼ (3/2)ae according to the
dispersion relation. To find the smallest length scale of the disturbance, L, such that the
majority of the energy will be in wave numbers less than kc it is possible to show that the
percentage of energy in wave numbers less than kc, for the Gaussian disturbance (23), is

E =
E(k ≤ kc)

E0
= erf

(

kcL√
2

)

. (25)

The percentage of energy in wave numbers less than kc must be greater than some threshold
denoted by T . This results in a bound for L,

L ≥
√

2

kc

erf−1(T ) . (26)

For simplicity let’s assume T = erf(1) ≈ 0.8427 so that L ≥
√

2/kc. As mentioned previously
kc ∼ 3/2ae giving an approximate bound for L,

L ≥ 2
√

2

3
ae ≈ ae . (27)

Thus the zonal length scale of disturbances must be larger than the equatorial deformation
radius such that little energy is reflected as gravity waves. This was verified using our
shallow water equatorial β-plane model. Four separate cases were considered in which the
zonal length scale of the initial disturbance was set to L = [1/4 1/2 1 2] ae, respectively.
We can clearly see in Figure 17 that as the zonal length scale of the disturbance increases
less energy is reflected as equatorially trapped gravity waves. Note that most of the energy
fluxed into the boundary leaves as coastally trapped Kelvin waves which can not be seen
in Figure 17 because Figure 17 only shows the energy density at the equator. In the fourth
panel of Figure 17 notice that some of the incident energy is reflected as an equatorially
trapped Rossby wave(s), which is inferred from the speed of this disturbance.

The reflection of the Kelvin wave was also studied by projecting the solution, u =
u(x, y, t), v = v(x, y, t), and h = h(x, y, t), on the normal equatorial modes as outlined in
Section 2. The projection of the solution on the first five modes of q is given in Figure 18 and
Figure 19 for length scales of the disturbance given by L = [1/4 2] ae, respectively. In these
figures the magnitude of the projection is squared and normalized by the magnitude of the
Kelvin wave projection. We can see that before the reflection the projection of q is entirely
in the equatorial Kelvin mode. For all times the projection of q on to odd numbered modes is
very small because the odd numbered modes represent odd structure in y which should not
exist because of the symmetric y structure of the initial disturbance. The small projection
on these modes is due to numerical inaccuracies. For the small disturbance there is some
projection on q2 after the disturbance has reflected. The speed of this mode is consistent
with the speed of the first equatorial gravity wave mode, however this mode is dispersive
and the magnitude of the projection can not remain localized in space. Also notice that
the maximum magnitude of the projection on this mode is only 6% of the projection on
the Kelvin mode. Again this is evidence that most the energy that is in the original Kelvin
wave is transferred to coastally trapped Kelvin (like) waves.
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The same procedure was performed with the initial disturbance with a length scale of
L = 2 ae, and the results are in Figure 19. Again we can see that the initial disturbance
is a pure equatorial Kelvin mode prior to reflection. However, after reflection the solution
projects into the first and third Rossby modes, and these projections have speeds con-
sistent with the appropriate Rossby mode wave speeds. Again the odd numbered modes
corresponding to odd y structure are only excited because of numerical inaccuracies.

A discussion of incident waves on the eastern boundary of an equatorial basin is found
in [8]. Philander shows that waves of frequency close to

√
cβ (the Kelvin and mixed modes)

transmit their energy to coastally trapped disturbances of the form

v = A
√
y exp

[

i

(

σt− σy

c
+
βx

2σ

)

− βy
Lx − x

c

]

.

We see that eastward-propagating equatorially-trapped waves do not transfer their energy
to a coastally-trapped Kelvin waves, but rather a coastally-trapped Kelvin-like wave. Phi-
lander also shows that as the frequency of the incident Kelvin wave decreases more energy
is reflected as Rossby waves, but there is always a finite amount of energy that is reflected
as coastally trapped waves. This is shown by fixing σ in the dispersion relation, (8), and
solving for all the possible k’s by letting n vary. We find that there is always an infinite
number of coastally trapped waves, imaginary k’s, for a given σ.
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