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1 Introduction

1.1 Motivation

Understanding eddy transport of heat and momentum is crucial to developing closure
schemes for general circulation models.

While eddy momentum fluxes do not adhere to a clear parameterization methodology,
potential vorticity (PV) and heat fluxes may be easier to comprehend and thus parameterize.

If the eddy diffusivity (defined as the eddy flux over the mean gradient) was computed
from a simple homogeneous model, it could be fit with an analytic function of the various
model parameters, and subsequently used in a inhomogeneous model to provide closure for
the zonal mean quantities that are forced by eddy fluxes.

1.2 Problem Formulation

Highly idealized baroclinic models have been frequently used to study various aspects of
homogeneous turbulence ([1, 2, 3, 4]). These studies used doubly periodic, two-layer, quasi
geostrophic models on a β plane to represent the interior of a channel flow that is continu-
ously forced by an imposed vertical shear (U). The use of a doubly periodic box is enforcing
the homogeneity of the turbulent flow. In both [3] and [4] the eddy statistics of the equili-
brated flow do not appear to depend on the length of the domain, thus the representation
of the channel interior seems to be accurate.

To achieve computational economy and at the same time retain essential features of
homogeneous turbulence, [4] in their study of baroclinic eddy fluxes have used a truncated
model. This model retains only the zonally averaged flow and one nonzero wavenumber in
the zonal direction, but has high meridional resolution to allow for an enstrophy cascade.
Severely truncated models have been used in numerous meteorological studies, for diverse
topics as sudden stratospheric warmings ([5]) and climate sensitivity ([6]), among others.

In this project a doubly periodic, quasi geostrophic, two-layer model, with a rigid lid
and flat bottom, truncated in the zonal direction and with high resolution in the meridional
direction is implemented and used to assess eddy fluxes.
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2 Methodology

2.1 The Two Layers, Doubly Periodic, QG Model

2.1.1 Equations

In the formulation of the model we follow [4] . The layers are of equal depthH. A rigid lid on
top and a bottom horizontal surface defines the vertical boundaries. The Coriolis parameter
is f0. The meridional coordinate y measures distance from the domain center. Subscripts
1 and 2 refer to the upper and lower layer, respectively. The internal Rossby radius of
deformation is defined by λ2 = g(ρ2 − ρ1)H/(2ρ2f

2
0
). Ekman friction is implemented only

for the lower layer. A scale-selective biharmonic diffusion of potential vorticity is included
to absorb the enstrophy cascade. The friction and diffusion coefficients are denoted by κ
and ν respectively.

The dimensional equations in terms of the streamfunctions Ψj read:

∂Q1

∂t
+ J(Ψ1, Q1) = −ν∇4Q1 (1)

∂Q2

∂t
+ J(Ψ2, Q2) = −ν∇4Q2 − κ∇2Ψ2 (2)

where the potential vorticity Qj is:

Qj = βy +∇2Ψj + (−1)j(Ψ1 −Ψ2)/(2λ
2), j = 1, 2

We now assume that there is a positive vertical shear U and that the upper and lower
layer streamfunctions are given by:

Ψ1(x, y, t) = −U
2
y + ψ1(x, y, t)

Ψ2(x, y, t) = +
U

2
y + ψ2(x, y, t)

We non-dimensionalize (x, y, t, ψj) with (λ, λ, λ/U,Uλ). It follows that the dimensionless

parameters are β̂ = βλ2/U , κ̂ = κλ/U , and ν̂ = ν/(Uλ3).
If we drop the hats in the dimensionless parameters the eddy equations become:

∂qj
∂t

+ J(ψj , qj) = Fj +Dj (3)

The transient eddy potential vorticities are given by:

qj = ∇2ψj + (−1)jτ

where τ = (ψ1 − ψ2)/2 is the baroclinic perturbation that is proportional to the vertical
thickness. The right-hand-side terms represent forcing by the imposed mean flow,

F1 = −1

2

∂q1
∂x

− (β + 1/2)
∂ψ1

∂x
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F2 = +
1

2

∂q2
∂x

− (β − 1/2)
∂ψ2

∂x

and dissipation by Ekman friction and hyper-diffusion:

D1 = −ν∇4q1

D2 = −ν∇4q2 − κ∇2ψ2

To retain only the zonal mean and a nonzero wavenumber k in the x-direction, we
assume that the streamfunctions ψj are of the form:

ψj(x, y, t) = ψj,0(y, t) + (ψj,k(y, t)e
ikx + c.c.) (4)

where the ψj,0(y, t) is referred as the “zonal mean component” and the ψj,k(y, t) as the
“wave component”. If we further ignore wave-wave interactions ( i.e. the e2ikx waves ), the
resulting equations for the two components are:

∂qj,0
∂t

= −2Re
∂(ikψj,kq

∗

j,k)

∂y
(5)

∂qj,k
∂t

= ik(qj,k
∂ψj,0

∂y
− ψj,k

∂qj,0
∂y

) (6)

where an asterisk denotes complex conjugation, and the decomposition of qj , F and D is
as in (4).

2.1.2 Numerical Solution

We choose to solve the real equation (5), and complex equation (6) using spatial finite
differencing and a leapfrog scheme for the time differencing. Inspection of the equations
suggest that the zonal mean and wave components should be staggered with respect to each
other so that the y-derivatives would be computed with the smallest error. Note that with
this type of staggering, the non-linear terms, corresponding to the Jacobians in equation
(3) exactly conserve enstrophy and energy.

L̂ is the non-dimensional parameter controlling the length of the domain that is set to
2πL̂. All the experiments reported here have used L̂ = 10. The number of grid points in the
y-direction is set to N = 256. With this choice for L̂ and N , the meridional wavenumber is
given by: ln = n/L, n = 1 · · ·N/2, where n is the discrete meridional wavenumber. Thus,
the grid spacing is dy =∼ 0.245 (i.e. ∼ 4 points per internal radius of deformation), which
appears to be adequate to resolve baroclinic eddies in our model.

2.1.3 Spectra

Following [4] again, we calculate spectra for the various quantities in our model (enstrophy
q2j , kinetic energy 1

2
(u2

j +v
2

j ), potential energy 1

2
τ2, etc.) as follows: If the Fourier coefficients

of the zonal mean components of two functions f, g are F0,n, G0,n and those of their wave
components are Fk,n, Gk,n, then the spectrum {zn} of zonal component of < fg > is defined
as:

zn = 2cnRe(F0,nG
∗

0,n), n = 1, · · · , N
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and the spectrum {wn} of the wave component as:

wn = 2cnRe(Fk,nG
∗

k,n + Fk,−nG
∗

k,−n), n = 0, · · · , N

where cn is 1

2
, if n = 0 or n = N , and is 1, otherwise.

2.2 Modal Variables Formulation

An alternative representation of the two layers system may be formulated in terms of the
so-called modal variables defined as: ψ = (ψ1 + ψ2)/2 and τ = (ψ1 − ψ2)/2, where ψ and τ
are identified as the barotropic and baroclinic streamfunctions, respectively.

The non-dimensional equations are modified as follows:

∂∇2ψ

∂t
+ J

(

ψ,∇2ψ)
)

+ J
(

τ,∇2τ)
)

= −1

2

∂∇2τ

∂x
− β

∂ψ

∂x
− κ

2
∇2(ψ − τ)− ν∇4(∇2ψ) (7)

{∂∇
2τ

∂t
+ J

(

ψ,∇2τ)
)

+ J
(

τ,∇2ψ)
)

} − ∂τ

∂t
− J(ψ, τ) =

{−1

2

∂∇2ψ

∂x
− β

∂τ

∂x
− κ

2
∇2(τ − ψ)− ν∇4(∇2τ)} − 1

2

∂ψ

∂x
+ ν∇4τ (8)

The corresponding dimensional equations on an f -plane may be found in [7].
For ease of reference we define barotropic and baroclinic vorticities as ζ = ∇2ψ, φ = ∇2τ ,

respectively, and the baroclinic potential vorticity as ρ = ∇2τ − τ = φ − τ . Note that the
barotropic vorticity and potential vorticity are identical.

The equations for the barotropic and baroclinic zonal mean components become:

∂ζ0
∂t

= −2
∂Re(ik(ψkζ

∗

k + τkφ
∗

k))

∂y

−κ
2
(ζ0 − φ0)

−ν∇4ζ0 (9)

∂ρ0

∂t
= {−2

∂Re(ik(ψkφ
∗

k + τkζ
∗

k))

∂y
}+ 2

∂Re(ik(ψkτ
∗

k ))

∂y

{−κ
2
(φ0 − ζ0)}

−ν∇4({φ0} − τ0) (10)

The equations for the barotropic and baroclinic wave components read:

∂ζk
∂t

= −ik(ψk

∂ζ0
∂y

− ζk
∂ψ0

∂y
+ τk

∂φ0

∂y
− φk

∂τ0
∂)

y

−ik(1

2
φk + βφk) (11)

−κ
2
(ζk − φk)

−ν∇4(ζke
ikx)
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∂ρk

∂t
= {−ik(ψk

∂φ0

∂y
− φk

∂ψ0

∂y
+ τk

∂ζ0
∂y

− ζk
∂τ0
∂y

}+ ik(ψk

∂τ0
∂y

− τk
∂ψ0

∂y
)

{−ik(1

2
ζk + βτk)} −

1

2
ikψk (12)

{−κ
2
(φk − ζk)}

−ν∇4(({φk} − τk)e
ikx)

Note that the modal formulation is exactly equivalent in terms of truncation, domain
size, numerics, conservation laws, and non-dimensionalization to the two-layer formulation.
The reason for the re-formulation of the model will be discussed in the next section when
we describe a reduced model derived from the modal variables model.

The non-dimensional parameters of the model are still β (which may be thought as the
inverse of supercriticality ξ = (U/λ2)/β ) and the frictional parameter κ. Inviscid instability
occurs when β < 0.5. The most unstable wavenumber is k =

√
2/2, which is the retained

wavenumber in the calculations presented here. The model has been integrated for 1100
non-dimensional time units for various parameter configurations. The initial conditions
had small amplitudes in all the retained wavenumbers. Note that a time unit is λ/U ; if
we choose realistic values for the internal radius of deformation (λ ∼ 106m) and the mean
vertical shear (U ∼ 10m/s) we estimate a time unit to be about 1 day.

In this report, results from the modal variables model are presented. Figure (1) shows
the experiments that were performed for various choices of β and κ.

Figure (2) presents a table of plots of the time series of the total energy in the model
for the days of integration. Note that equilibration is reached around the 600th time unit.
Generally, the equilibration energy level is higher for high values of supercriticality, as
expected. It appears that lower values of friction do not signify higher PV flux, a point
that we return later.

Figure (3) presents a table of plots of the time series of the PV flux in the model for the
integration period. For high values of supercriticality and low friction, the PV flux seems
to be fluctuating greatly. Friction seems to decrease the PV flux variance, but not affect its
amplitude greatly.

In Figure (4) the energy spectra are displayed for a two experiments with varying β and
κ. If the scale of the domain was the largest scale of the flow, one would expect the wave
energy spectra to strongly peak at l = 0. Clearly, this is not the case for these particular
choices of parameters. Note that the most energetic scale of the zonal mean component is
not at the radius of deformation (discrete wavenumber n = 10, or ln = 1 ) but at smaller
scales around n = 5 (ln = 0.5).

The Hovmuller diagrams for the same parameters choices are displayed in (5) computed
at longitude x = 0. The turbulent nature of the flow is clearly evident. Also evident
are zonal jets that persist for long periods. The less supercritical experiment has smaller
streamfunction amplitude although the friction is half of the more supercritical one.

Figure (6) shows the spectra of PV flux for four experiments with varying β while
the friction held at κ = 0.2. Similarly, Figure (7) shows the spectra of PV flux for three
experiments with varying κ while β is held at 0.15. The PV flux spectra vary significantly
for different values of supercriticality, while they do not appear to fluctuate greatly for
varying friction.
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Figure 1: Performed integrations for varying β and κ. The retained zonal wavenumber is
k =

√
2/2, the length of the domain is given by L = 10 and the hyper-diffusion coefficient

is set to ν = 10−3

2.3 Reduced Model

[2] argued that the large-scale motion of the two layers system is dominated by the barotropic
streamfunction ψ, while the baroclinic streamfunction τ acts as a passive tracer, and cas-
cades downscale towards smaller scales. The same line of argument has been pursued in
[7, 8] to provide scaling arguments for the PV flux. The baroclinic mode is assumed to be
mixed downgradient by the turbulent diffusion provided by the barotropic flow.

To test this hypothesis we drop the terms in curly brackets from equation (8), (corre-
spondingly from equations (10) and (13)) and solve the reduced system of equations.

The reduced system needs a rather drastic modification in the value of eddy viscosity
that is applied to the baroclinic and barotropic wave components. The eddy viscosity
applied to the zonal mean components is the same as in the full model.

This is necessary to prevent an “ultraviolet catastrophe”, where the smaller meridional
scales are more unstable than the larger ones. The linear growth rate of the full system
along with linear growth rates of the reduced system modified by an eddy viscosity term of
varying order are displayed in Figure 8. We choose to use a second order diffusion operator
with a value of 0.280 for ν. This type of eddy viscosity appears to provide the best fit of
the full model’s linear growth rate.

The time series of the total kinetic energy, PV flux, and the kinetic energy of the zonal
and wave components for each layer for the full and reduced models are shown in Figure 9.
It seems that the reduced model is not able to quantitatively capture the essential physics
of the full model. Its PV flux is much lower (almost half) than the full model. The total
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Figure 2: Table of time series of total energy for the integration period.

energy never increases to the level of the full model, mainly because the upper layer kinetic
energy remains very low. This seem to be a side effect of the eddy viscosity that we use
in our attempt to parameterize the neglected terms of the full model. Clearly, more effort
needs to be put in quantitatively using a reduced model like ours.

3 Sensitivity Experiments

Several experiments were performed spanning a moderate area of the parameter space (see
Figure 1). The objective of the multiple runs is to gain an overview of the behavior of the
PV flux for different choice of parameters.

Figures 10 and 11 display the computed time averaged PV flux for various choices of β
and κ.

An interesting feature of the PV flux dependence on friction is shown in 11. There is a
local maximum in PV flux around κ = 0.20, 0.15 . The decreasing fluxes for increasing κmay
be readily understood as the direct effects that friction has on the energy that is transported
in the system. However, the decrease in PV flux for decreasing κ may be understood in
different terms. The equilibrated system experiences barotropic eddies that the size depends
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Figure 3: Table of time series of PV flux for the integration period.

on their frictional dissipation. [2] has hypothesized that these barotropic eddies strain the
unstable baroclinic eddies so that their meridional wavenumber becomes very large and their
linear growth rate decreases. Weaker friction will permit the barotropic energy to cascade
to large barotropic eddies (mainly zonal) that are less efficient in providing PV fluxes, while
they will strain all the smaller baroclinic eddies. Thus, the local maximum in PV flux would
correspond to a value of the frictional parameter κ for which the straining of the unstable
baroclinic eddies is not as efficient and the transport accomplished by the barotropic eddies
is not small. It appears that for higher β (i.e. lower supercriticality) the local maximum
is shifted towards lower κ’s indicating that the straining mechanism hypothesized above is
performed by the large barotropic eddies left by friction in the system, at sizes larger than
their counterparts in a more supercritical system.

As expected, Figure 10 shows that the PV flux generally increases with decreasing non-
dimensional β (i.e. increasing supercriticality). The same type of result has been presented
in [4] (their Figure 4d) and has been added here for comparison. Some interesting behavior
is displayed at intermediate values of β when κ is 0.1 and 0.3. This may be understood
in terms of the behavior that the eddies have been hypothesized to acquire in the above
paragraph.
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4 Conclusions and Future Work

In this work we use a quasi-geostrophic, two-layer model, severely truncated in the zonal
direction, to understand the eddy PV fluxes. To ascertain homogeneity, a doubly periodic
boundary condition was used. To enable an inertial range of enstrophy cascade, a large
resolution is kept in the meridional direction. The system then equilibrates by reducing
the northward heat flux < ψxτ >, i.e. the correlation of the northward velocity with
temperature, and by non-linear transfer of energy from unstable baroclinic waves to stable
ones (or less unstable) through triad interactions and consequent frictional dissipation ([2]).

It was also attempted to reduce the model to one that has guided many qualitative
arguments (e.g. [7], [2] ) concerning the parameterization of eddy PV fluxes. Unfortunately,
quantitative use of this kind of reduced system does not appear to be fruitful. To avoid an
“ultraviolet catastrophe” in the reduced model, where the waves with larger wavenumber
grow the fastest, the eddy viscosity assumes the role of the neglected terms to stabilize the
large wavenumbers. In this case, the gross statistics of the reduced model do not resemble
the ones of the full model. It may be possible, that another way of preventing the smaller
waves to grow without bound exists, in which case the reduced model may be revisited.

The eddy PV flux in our system appears to depend only marginally on the frictional
parameter κ. An interesting behavior, where there is a local maximum around κ = 0.2
was noted and qualitatively discussed. The dependence on the β parameter (or inverse
supercriticality) seems to be linear. The linear growth rate of the most unstable wave,
when friction is taken into account, incorporates both β and κ, which are the only free
parameters in our system. When PV flux is plotted against it, an approximate quadratic
dependence appears, although the error of fit seems to be large.

More intense exploration of the parameter space seems appropriate to further establish
any relationship of the eddy PV fluxes to the free parameters of the problem. A theory
may be developed for PV flux parameterization in the framework of the truncated model
once these relationships are more thoroughly studied. The reduced model could be possibly
used either qualitatively, or quantitatively.
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Figure 4: Energy spectra for two runs: top: β = 0.05, and κ = 0.2, bottom: β = 0.35, and
κ = 0.1
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Figure 5: Hovmuller diagrams for two runs: top: β = 0.05, and κ = 0.2, bottom: β = 0.35,
and κ = 0.1
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Figure 6: PV flux spectra for three experiments with varying κ while β is held at 0.15.

Figure 7: PV flux spectra for four experiments with varying β while the friction held at
κ = 0.2.
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