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1 Introduction

Experimental observations of the vertical propagation and decay of near inertial oscillations
(NIO) through the oceanic mixed layer has stimulated a desire to understand the effect of NIO
activity on mixing processes in the upper ocean. Ocean surface forcing due to the passage
of large scale wind events or storms instigates the formation of coherent NIO structures
which tend to migrate in a helical trajectory as evident from near surface buoy drifters.
Observations also indicate that NIO mixed layer activity eventually decays to background
levels approximately 20 days after the initial onset of the storm [1]. A major challenge to
oceanographers has been to explain the primary mechanisms responsible for the observed time
scales of NIO propagation and decay. Young and Ben Jelloul [2] hypothesized that advective
distortion by the geostrophic eddy field decreases the NIO horizontal coherence scale. From
a multiple time scale analysis, they formulate a reduced NIO equation linearized about the
geostrophic flow. This analysis effectively filters out inertial oscillations allowing focus on the
near inertial component of the motion. Their NIO equation combines the effects of advection
by the geostrophic velocity, wave dispersion, and refraction due to the geostrophic vorticity.
Subsequent work by Balmforth et al. [3] investigated results from the NIO equation for
the case of a background geostrophic shear flow. The present study extends this work by
considering the fundamental properties of the NIO equation for the specific case of linearized
NIOs superposed on a two stage random wave model of the background geostrophic eddy
field.

We begin the paper with an overview of near inertial oscillations and describe the method-
ology used to obtain the reduced NIO equation that provides the basis for the present study.
We will see that the NIO equation is characterized by a parameter termed the dispersivity,
analogous to the diffusivity associated with passive scalar diffusion processes. We then dis-
cuss the random wave model used to represent the background geostrophic flow and some
fundamental properties associated with this type of model flow. We then study some limit-
ing parameter cases of the governing equation, specifically, zero and infinite dispersivity. We
present data from the numerical solution of the governing equation for a range of dispersivity
values. Finally, we take a look at the decay of energy in the large scales and conclude with
comments on directions for future research.

1



2 Near Inertial Oscillations (NIO)

Inertial oscillations describe fluid motions arising from a force balance between fluid inertia
and Coriolis acceleration. The reduced horizontal momentum equations, in a reference frame
rotating with the earth, are

ut − fov = 0 and vt + fou = 0. (1)

where the subscript t represents partial differentiation with respect to time and fo = 2Ω sin θ
is the inertial frequency with θ and Ω denoting the latitude and the earth’s rotation rate,
respectively. Throughout the paper, we follow the convention that (u, v) describe the hor-
izontal velocity components in the easterly (x) and northerly (y) directions, respectively,
and z refers to the vertical direction. The solution to (1), assuming constant f , is simply
U = Ũ e−ifot where U = u + iv and Ũ is the initial velocity. The corresponding particle

trajectories, x + iy = iŨ
fo

e−ifot, form closed loops. As a simple model of the passage of a
storm front, we assume that at time t = 0, an instantaneous, homogeneous wind event occurs
thereby exciting the entire horizontal domain to move with a uniform velocity of Ũ . The
ensuing motions, described by (1), are referred to as inertial oscillations. Using data from
mid latitude ocean buoy drifters [1], estimates of the typical diameter of inertial oscillations
is of the order of 5km. In reality, however, (1) only represents the leading order behavior of
the flow; and therefore, ensuing motions are actually near inertial oscillations that are more
accurately characterized by helical type trajectories and have a finite lifespan in the mixed
layer of approximately 20 days.

Note, in the solution of (1), a constant inertial frequency fo was assumed. This assumption
ceases to be valid if a coherent fluid motion spans a large enough horizontal extent; then the
latitude difference (and, hence, the change in fo) between the most northerly and southerly
points of the coherent motion can no longer be neglected. For simplicity, we neglect these
so-called β effects in the remainder of the paper.

3 Reduced Linearized NIO Equation

The previous work of Young and Ben Jelloul [2] regarding near inertial oscillations provides
the basis for the present study. We briefly summarize the relevant points of that work here.
We begin by assuming hydrostatic, Boussinesq, inviscid, incompressible flow. The velocity is
linearized about the background geostrophic flow which can be written compactly in terms of
a streamfunction, Ψ(x, y, z, t) = Pg/(foρo) with Pg denoting the geostrophic pressure field and
ρo, the mean density. Further reduction of the linearized governing equations (not reproduced
here) is achieved through a multiple time scale analysis with the requirement that internal
waves be nearly inertial. The general dispersion relation for internal waves can be written as
ω2 = (N2

o κ2
h + f2

o κ2
v)/κ2 where ω is the oscillation frequency, (κh, κv) denote the horizontal

and vertical wavenumbers, respectively, κ2 = κ2
h + κ2

v, and No is the characteristic buoyancy
frequency associated with the vertical density stratification of the fluid (for further discussion
of internal waves, see Gill [4], pp. 258). We define a small parameter ε ≡ (Noκh)/(foκv).
Physical estimates of No in the North Pacific and North Atlantic indicate No/fo = O(102)
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[5]. Therefore, in order for ε � 1, the characteristic vertical wavelengths of the motion
must be several orders of magnitude smaller than the characteristic horizontal wavelengths,
i.e. κv � κh. This is entirely consistent with our use of the hydrostatic approximation
(see Gill[4],pp. 159 for a discussion on the equivalence between longwave and hydrostatic
approximations). The internal wave dispersion relation then reduces to ω2 ≈ f2

o (1 + ε2);
whereby, inertial oscillations are recovered at leading order. Departures from perfect inertial
oscillations become appreciable on the slow time scale ts ≡ ε2fot.

In the multiple time scale analysis, the complex velocity U is expanded in powers of ε2

giving U = U0 + ε2U2 + . . . where the leading order solution U0 is simply the velocity asso-
ciated with the inertial oscillations governed by (1). For convenience we write the leading
order solution as U0 = Mz(x, y, z, ts) e−ifot which allows for trivial integration of the incom-
pressibility condition to obtain the leading order vertical velocity explicitly. If we further
define a new complex field A such that M ≡ (f 2

o N−2)Az, then it is also possible to explicitly
calculate the leading order pressure by integrating the hydrostatic equation along with the
mass conservation equation. In essence, A incorporates all of the relevant physical quantities
of interest. Therefore, we prefer to work solely with the dependent variable A. Substituting
the definition of A into the leading order horizontal velocity solution yields an expression for
the demodulated velocity of the NIO

u + iv = e−fotLA, (2)

where

LA ≡ (f2
o N−2Az)z. (3)

We find that the O(ε2) equation contains resonant terms proportional to e−ifot. To prevent
related secular terms from arising in the higher order correction, we require that

LAt + J(Ψ, LA) +
i

2
fo∇2A +

i

2
∇2ΨLA = 0, (4)

where ∇2 = ∂xx+∂yy represents the horizontal Laplacian operator and J(Ψ, LA) = Ψx(LA)y−
Ψy(LA)x is the Jacobian. One advantage of (4) is that the first term on the left hand side has
the direct physical interpretation of being the time rate of change of the horizontal velocity.
The vertical boundary conditions demand zero vertical velocity at the top and bottom of the
ocean, translating into

Az(x, y, 0, t) = Az(x, y,−H, t) = 0 (5)

where H is the depth of the ocean. This condition follows the rigid lid approximation that
assumes the typical amplitude of surface waves are negligible compared to the vertical wave-
length of the propagating NIOs. Normalized horizontal boundary conditions are 2π periodic.
The initial condition depends on how one chooses to model the passage of the storm or other
instigating event. We will specify this condition later. The present study will focus on in-
vestigating some of the fundamental characteristics of the NIO equation (4) in the specific
context of a simple random wave model of the background turbulent geostrophic eddy field.

3



4 Vertical Normal Modes

The top and bottom boundaries of the ocean have the effect of confining wave energy to a
region of finite vertical extent. Thus, the ocean can be considered as a waveguide causing
energy to propagate along the horizontal direction. With this notion, we proceed in assuming
a solution to (4) in terms of a superposition of vertical normal modes

A =
∞
∑

m=1

Am(x, y, t)Pm(z)σm, (6)

where m denotes the vertical wavenumber, Pm(z) represents the eigenfunctions, and σm

represents the projection of the initial condition onto the vertical normal modes. Note, the
expansion in (6) relies on the assumption that the background geostrophic flow is barotropic,
i.e. Ψz =0. Applying the differential operator L to (6) gives

LA = L(AmPm) = (Am)LPm. (7)

Substituting (7) into (4),

LPm

Pm
=

−i(fo/2)∇2Am

Amt + J(Ψ, Am) + i/2(∇2Ψ)Am
= −R−2

m . (8)

For historical reasons [6], eigenvalues are represented as R−2
m , where Rm (dimensions of length)

symbolizes the Rossby deformation radius. From (8), we obtain a partial differential equation
for Am

Amt + J(Ψ, Am) +
i

2
(∇2Ψ)Am =

i~m

2
∇2Am, (9)

where ~m = foR
2
m will be referred to as the dispersivity† associated with the mth vertical

mode. Since the initial condition of A has been projected onto vertical normal modes, the
initial condition associated with each Am is simply Am(x, y, 0) = 1. Exact numerical values
of ~m depend on the eigenvalues of (8) which, in turn, depend on the shape of the buoyancy
frequency profile, N =N(z). If we assume N=constant, then Pm(z) ∝ cos(N2(foRm)−2z) and
Rm = N/fo

√

H/(mπ). A constant buoyancy frequency profile, however, is not a reasonable
physical model; and therefore, we chose something slightly more realistic. In this regard, we
follow the work of Gill [6]. Figure 1 shows the model N profile used here. The corresponding
eigenvalues are computed numerically and plotted in figure 2 using a value of fo = 1×10−4s−1.
Of interest is the relatively large range of ~ values (over four orders of magnitude) apparent
just within the first 10 vertical modes. We expect this to play an important role in the
developing structure of A. Also, note that for the N profile in figure 1, ~ → m−2 as compared
to ~ → m−1/2 for the case of N=constant.

†This is appropriate nomenclature since (9) begets a dispersion relation. Consider only the time derivative
and Laplacian terms; assuming a solution of the form e

kx+`y−ωt yields the real-valued dispersion relation
ω = ~(k2 + `

2). This is particularly interesting since (9) “looks like” an advection-diffusion equation but
because of the i multiplying the Laplacian term, a real-valued dispersion relation is obtained analogous to a
wave equation.
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Figure 1: Buoyancy frequency profile used

to calculate hm.
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Figure 2: Dispersivity as a function of ver-

tical wavenumber m.

Except for the dependence of the dispersivity ~ on the vertical wavenumber m, A appar-
ently satisfies the same initial value problem regardless of the specific vertical normal mode
under consideration. Therefore, in the remainder of the paper, we drop the subscript m on
A. Focus is placed on understanding the general behavior of the initial value problem given
by

At + J(Ψ, A) +
i

2
(∇2Ψ)A =

i~

2
∇2A, A(x, y, 0) = 1 (10)

for a range of parameter values 0 ≤ ~ < ∞ and a specific form of Ψ detailed in section 6.
Equation (10) will be referred to as the passive scalar dispersion equation.

5 Scalar Dispersion Equation

An important aspect of (10) is that the quantity |A|2 is conserved over the spatial domain.
To see this, we start by writing A in terms of a magnitude R and phase θ

A = R eiθ. (11)

Substituting (11) into (10), separating real and imaginary parts and dividing by eiθn yields
evolution equations for R and θ, respectively,

Rt + J(Ψ, R) =
−~

2

[

2∇R∇θ + R∇2θ
]

, (12)

θt + J(Ψ, θ) =
−ζ

2
+

~

2

[∇2R

R
− (∇θ)2

]

, (13)

where ζ = ∇2Ψ represents the vorticity. Multiplying (12) by R and integrating over the two
dimensional spatial domain gives
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D

Dt

∫

S

R2

2
dS = −~

∫

S
∇(

R2

2
∇θ) dS = −~

∫

C

R2

2
∇θ · r̂ dC = −~

∫

C

R2

2

∂θ

∂r
dC, (14)

where DR/Dt ≡ ∂R/∂t + J(Ψ, R) and r̂ is the outward normal unit vector at the boundary.
In obtaining (14), we have used the product rule ∇R2/2∇θ = ∇(R2/2∇θ) − R2/2∇2θ and
the divergence theorem. Far-field boundary conditions are utilized, which translates into
∇A · r̂ = 0, on the boundary; or in polar representation, ∂R

∂r = 0 and R2

2
∂θ
∂r = 0, on the

boundary. Note, periodic boundary conditions in a two dimensional box automatically satisfy
the far-field conditions due to the fact that the gradient of the function at one end of the
periodic domain is exactly equal and opposite to the gradient at the other end. Application
of the far-field boundary condition to the last expression of (14) leaves

D

Dt

∫

V
|A|2dV = 0, (15)

which proves our initial statement at the beginning of the section.
We contrast (15) with the case of passive scalar diffusion. The equation governing the

evolution of a scalar concentration field c in a background flow can be written as

ct + J(Ψ, c) = ν∇2c, c(x, y, 0) = co, (16)

where ν is the molecular diffusivity coefficient, in analogy to the dispersivity of the scalar
dispersion equation (10). Following the same procedure for A, we find

D

Dt

∫

V

c2

2
dV = −ν

∫

V
(∇c)2dV, (17)

We conclude that the diffusion process tends to minimize the squared scalar concentration
whereas the dispersion process conserves this same quantity. What does this say about the
generation of small scales or the cascade of energy from large to small scales? Does A exhibit
a Batchelor scale/spectrum [7]? These questions have motivated, to some extent, the work
herein. At this point, we present the specific streamfunction model used for the remainder
of the calculations in the paper.

6 Two Stage Random Wave Model

We will investigate the behavior of (10) for the specific two dimensional, random flow field
described by the following streamfunction Ψ

Ψn =

{

sin(y + φn), 2nτ < t ≤ (2n + 1)τ,

cos(x + χn), (2n + 1)τ < t ≤ (2n + 2)τ,
(18)

for n = 0, 1, . . ., where φ, χ are uniform random phases between 0 and 2π and τ represents a
characteristic decorrelation time of the turbulence. A variation of this model has been used in
the past, [8]. Note, we have nondimensionalized Ψ by a characteristic streamfunction Ψo and
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the spatial coordinates by a characteristic horizontal wavenumber κh. The spatial domain is
thus 2π periodic. In order for the model to have physical relevance to the oceanic geostrophic
eddy field, we have taken Ψo = 3000m2/s and κh = 6×10−5m−1, based on the data of [1].
Together, these give a characteristic decorrelation time scale of τ ∗ = O(1day). The velocity
components, ~u = (u, v), follow from the definition of the streamfunction as u = −Ψy and
v = Ψx. The corresponding particles trajectories are

xn+1 = xn − cos(yn + φn)t, 2nτ<t≤(2n+1)τ (19)

yn+1 = yn + cos(xn+1 + χn)t (2n+1)τ<t≤(2n+1)τ . (20)

As apparent, the flow model is characterized by a two stage advection process. In the
first stage, during time intervals 2nτ < t≤ (2n+1)τ , particles are advected in the x direction
only for a time τ ; while in the second stage, during (2n + 1)τ < t ≤ (2n + 1)τ , particles
are advected in the y direction only for a time τ . The combination of these two advection
stages constitutes a single step in the random wave model. The total time to complete n
steps is then t = n(2τ). The main advantage of the two stage random model stems from
simplifications in the subsequent mathematics as will be described later. It is worthwhile to
analyze the two stage random flow field in terms of the effect on material line stretching and
fluid particle diffusivity. We compare the two stage model of (18) with a one stage model
such as the rennovating random wave model,

Ψn = cos [x cos φn + y sin φn + χn] , (n − 1)τ < t ≤ nτ, (21)

where advection is performed in a single stage.

6.1 Material line stretching

We investigate material line stretching induced by (19–20) in the context of Lyapunov expo-
nents. Lyapunov exponents are used extensively in the study of nonlinear dynamical systems
as a measure of whether two initial conditions diverge exponentially in time, thus possibly
leading to the onset of chaos. The same concept is often applied to neighboring fluid particles
in the study of fluid turbulence. In this manner, the Lyapunov exponent gives some indica-
tion of the stretching of differential line elements in the flow. In the case of advection of a
real-valued passive scalar, this can be directly related to the development of spatial gradients
in the scalar field. We will consider later whether an analogy to the complex-valued scalar A
exists.

6.1.1 Lyapunov exponent: background

We follow the general definitions and methodology of Seydel [9] regarding the Lyapunov
exponent calculations. An initially small ring of fluid particles with initial radius ρo deforms
into an ellipse with major axis µ due to regions of localized strain in the flow. Linearizing the
flow about the origin ρo = 0, we obtain ~hn = Jn~ho where J denotes the Jacobian matrix of
the random map given by (19–20), and ~ho, ~hn describe the particle positions in the original
(circular) and deformed (elliptic) configurations, respectively. Strictly, ~hn and ~ho must be
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differential vectors for the linearization to be valid. We look for exponential stretching of the
form ‖~hn‖2 = (‖~ho‖ eLt)2 where L denotes the Lyapunov exponent. Rearranging and taking
the limit as t → ∞ leads to

L = lim
n→∞

1

4nτ
ln

(

‖Jn~ho

‖~ho‖2

)

, (22)

where we have substituted in t = 2nτ with 2τ denoting the decorrelation time associated
with the two stage random wave model of (19–20). Since J describes a random process, we
ensemble average (denoted as 〈·〉) over the random variables φn and χn so that L does not

depend on a particular realization. Additionally, we use the identity ‖Jn~ho‖2 = ~hT
o (JnT

Jn)~ho

to simplify (22). The resultant definition of the Lyapunov exponent used herein is

L = lim
n→∞

1

4nτ
ln

(

~hT
o 〈K〉~ho

~hT
o

~ho

)

, (23)

where K = JnT

Jn. Note, for convenience, we have taken 〈K〉 rather than 〈lnK〉. The
ramifications of this subtle difference stem from the fundamental differences between additive
and multiplicative random walks as detailed by Redner [10]; but it is not a primary concern
of the present study.

6.1.2 Lyapunov exponent: two stage random wave model

We now want to explicitly calculate the Lyapunov exponent defined in (23) for the two
stage random wave model given by (19–20). During the nth step of the random walk, Jn =
JII(χn)JI(φn), where JI and JII describe advection in the x direction (first stage) and y
direction (second stage), respectively. From (19–20),

JI(φn) =

[

1 sin(yn + φn)τ
0 1

]

, and JII(χn) =

[

1 0
− sin(xn+1 + χn)τ 1

]

. (24)

The independence of each step allows the ensemble average of K after n steps to be written
as

〈K〉 = 〈JT

I
(φ1)〈JT

II
(χ1) . . . 〈JT

I
(φn)〈JT

II
(χn)JII(χn)〉JI(φn)〉 . . .JII(χ1)〉JI(φ1)〉. (25)

Introducing the diagonal matrix Γ=
[

a 0
0 b

]

, the inner most ensemble average of 〈K〉 can
be written as 〈JT

II
(χn)ΓJII(χn)〉. Upon calculating several sequential ensemble averages, the

recurrsion relation for ~a = (a, b) becomes apparent. After n steps, we find

[

an+1

bn+1

]

=

[

1 τ2

2
τ2

2 1 + τ4

4

]

[

an

bn

]

, (26)

where a0 =b0 =1. With this, the general form of the Lyapunov exponent (23) reduces to

L = lim
n→∞

1

4nτ
ln

(

[h1 h2]

[

an 0
0 bn

] [

h1

h2

])

. (27)
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In order to represent ~an in terms of ~a0 we need to solve the corresponding eigenproblem,
M~v =λ~v, with M as given in (26). Due to space limitations, we do not provide the details
of this calculation. The main result is ~an = RΛnR

T~a0, where R is the rotation matrix,

R=
[ v+

1
v−
1

v+
2

v−
2

]

, and Λn =
[

λ+n
0

0 λ−n

]

. After performing the algebra, we find

an =
2−1−3n

16 + τ4

[

(16 + τ4 + (τ2 − 4)
√

16 + τ4)(8 + τ4 − τ2
√

16 + τ4)n +

(16 + τ4 − (τ2 − 4)
√

16 + τ4)(8 + τ4 + τ2
√

16 + τ4)n
]

, (28)

bn = 2−1−3n

[

(4 + τ2 +
√

16 + τ4)(8 + τ4 + τ2
√

16 + τ4)n

√
16 + τ4

−

(τ2 − 4 +
√

16 + τ4)(8 + τ4 − τ2
√

16 + τ4)n

16 + τ4 + τ2
√

16 + τ4

]

. (29)

Notice, an and bn are not equal; therefore, stretching is anisotropic in this flow field. In fact,
looking at the simple case of n = 1, a1 = 1+ τ2/2 and b1 = 1+ τ2/2+ τ4/4; we see that more
stretching occurs in the y direction as compared to the x direction. However, at long times,
taking the limit as n → ∞, we find that the stretching does become isotropic as shown in
the following. We rewrite (27) as

L = lim
n→∞

1

4nτ
ln

(

h2
1

an

bn
+ h2

2

)

+ lim
n→∞

1

4nτ
ln(bn). (30)

As n → ∞, an

bn
= − τ2

4 +
√

16+τ4

4 . Figure 3 shows an/bn as a function of n for a family of
three τ values. We see that for any given τ , an/bn asymptotes to a constant value. Therefore,

9



in the limit as n → ∞, the first term in (30) goes to zero. At large n, bn remains as the only
contribution to L and thus stretching becomes isotropic. From figure 3, one can determine
how quickly the flow becomes isotropic for a given τ . We see that for τ = 3, stretching
becomes isotropic after the first step.

With further manipulation of (27) we obtain the functional relation between L and τ

L =
1

4τ
ln

[

(1 + τ4/8) +
τ2

8

√

τ4 + 16

]

. (31)

Figure 4 shows the graphical representation of (31) compared with that obtained for the
rennovating random wave model of (21). Maximum stretching in the two stage random wave
model occurs at τ = 3.64 in contrast to τ = 3.94 for the one stage random model. In general,
the two stage random wave model generates more stretching of the fluid elements.

6.2 Diffusivity of fluid particles

We follow Einstein’s theory of Brownian movement [11] to determine the diffusivity associated
with the movement of fluid particles in the random wave model of (19–20). For a random
walk processes in two dimensions, Einstein showed that

∆2
n = 4Defft, (32)

where ∆ is the particle displacement, an overline denotes an average performed over n steps
in the random walk, and Deff is the effective diffusion coefficient that appears in the scalar
diffusion equation. Since each of the steps in the random walk is independent, ∆2

n =n∆2 =
∆2t/τ , where t is the total time and τ represents the decorrelation time of the random walk. In
our particular case, particle displacements during the nth step can be written as r2

n =r2
In

+r2
IIn

,
where rI , rII are the displacements during the x, y stages of advection, respectively. Without
loss of generality, we can make the coordinate translation (xn, yn) → (0, 0) before each nth

step. Applying this simplification to (19–20) gives

r2
n = τ2 cos2(φn) + τ2 cos2(− cos(φn)τ + χn). (33)

Because we want the calculation to be independent of the random phase angles associated
with a particular realization, we ensemble average over both φ and χ to yield 〈r2〉φ,χ = τ2.
Note, in analogy to (32), ∆2 =〈r2〉φ,χ. Taking the average of 〈r2〉φ,χ over n total steps in the
random walk and using (32) gives the resultant particle displacement diffusivity of Deff = τ

8 .
It is interesting to note that this diffusivity is identical to that of the rennovating random
wave model (21) where advection is performed in a single step. At this point, there is some
confidence in our understanding of the model flow field; we, therefore, proceed to study the
behavior of the scalar dispersion equation (10) under the two limiting parameter conditions
of ~ = 0 and ~ → ∞.

7 Zero Dispersion Limit

In the case ~ = 0, the scalar dispersion equation (10) along with (18) reduces to
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A t − cos(y + φ)A x − i

2
sin(y+φ)A = 0, 2nτ<t≤(2n+1)τ , (34)

A t − cos(x + χ)A y −
i

2
sin(x + χ)A = 0, (2n+1)τ<t≤(2n+2)τ . (35)

We solve the above set of equations using the method of characteristics. In the first stage of
the random wave model, we define new variables x̃ = x+cIt, t̃ = t, ỹ = y; while in the second
stage, we define ỹ = y + cIIt, t̃ = t, x̃ = x where cI = cos(y + φ) and cII = cos(x + χ). This
effectively removes the advective terms from (34) simplifying the problem to two, uncoupled,
first order ordinary differential equations, one at each advection stage. The solutions valid
in the first and second stages are

AI = Aoe
i/2 sin(ỹ+φ)t̃ and A = AIe

i/2 sin(x̃+χ)t̃, (36)

respectively, where Ao represents the initial condition at the beginning of the nth step. Recall,
at n = 0, A(x, y, t=0) = 1. Using the fact that x̃ and ỹ remain constant along characteristic
curves, the solution can be written in terms of an iterated map

2nτ<t≤(2n+1)τ : AI n+1
= An ei/2 sin(yn+φn)τ , xn+1 = xn − cos(yn + φn)τ, (37)

(2n+1)τ<t≤(2n+1)τ : An+1 = AI n+1
ei/2 sin(xn+1+χn)τ , yn+1 = yn + cos(xn+1 + χn)τ. (38)

Figure 5 displays four snapshots of <(A) as computed from the map above for the case of
τ = 1. The resolution is 1028×1028. Later, we will compare these pictures to the structure
of <(A) for ~ 6= 0. From (37) and (38), it is apparent that no mechanism exists to instigate
changes in |A|; therefore, |A| remains constant at its initial value of unity. This agrees with
the previous results of section 5. However, the phase of A, denoted by θ as in (11), does
exhibit interesting behavior. The iterated map for θ follows directly from (37–38) as

θn+1 = θn + sin(yn + φn)
τ

2
+ sin(xn+1 + χn)

τ

2
, (39)

where xn+1 and yn+1 are given as in (37) and (38). We observe that for ~ = 0, θ undergoes
a random walk process and therefore has an associated diffusivity Dθ (not to be confused
with the diffusivity of particle trajectories). To calculate Dθ, we follow the procedure in
section 6.2. The ensemble averaged variance of θ is defined as 〈θ′2〉φ,χ = 〈(θn+1 − θn)2〉.
Substituting in (39) and performing the average yields 〈θ′2〉 = τ2/4. Making the analogy
with Einstein’s theory in (32), we have ∆2 = 〈θ′2〉φ,χ. Taking the average of ∆2 over n total
steps in the random walk and using (32)† gives the resultant phase diffusivity Dθ = τ/16.

This is an interesting result in that the behavior of θ for zero dispersivity undergoes a
normal diffusion process analogous to that of a real passive scalar. The structure of θ after
25 iterations of the map in (39), for τ = 1, is shown in figure 6. Note, in order to obtain a
continous field, results are plotted as θ/2π. The initial condition at t = 0 is θ = 0 and the
resolution is 1028 × 1028. This picture looks surprisingly similiar to the stirring of a passive
scalar as presented in [8] (figure 1 of that paper), for a random velocity field nearly equivalent
to that of (18).

†In the case of θ, we have a one dimensional random walk given by ∆2
n = 2Defft.
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n=12

Figure 5: Snapshots of the spatial structure of <(A) for the τ = 1, ~ = 0. Recall that at

n = 0, <(A) = 1.

8 Strong Dispersion Limit

We use a simple multiscale analysis to investigate the large ~ behavior of (10) by introducing
a small parameter ε and a slow time t′ such that ~ = O(1/ε) and t′ = εt. Applying these
scalings to (10) and multiplying by ε gives

At′ + εJ(Ψ, A) + ε
iζ

2
A =

i

2
∇2A. (40)

We assume that the solution can be written as a power series expansion in ε, A = A0 +
εA1 + ε2A2 + . . . . The O(1) equation is obtained by substituting this expansion into (40)
and taking the limit as ε → 0

12
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Figure 6: Phase of A for the case of ~ = 0, τ = 1 after 25 random advection steps.

O(1) : A0t′
=

i

2
∇2A0 (41)

with the initial condition A0(t = 0) = 1. The solution A0 = 1 trivially satisfies this initial
value problem. The O(ε) equation is obtained by substituting the O(1) solution into (40),
dividing by ε, and taking the limit as ε → 0

O(ε) : A1t′
+

iζ

2
=

i

2
∇2A1 (42)

with the initial condition A1(t = 0) = 0. Note, J(Ψ, A0) = 0. Because of the explicit form
of ζ, see (18), we need to consider the two stages of the advection process separately. This
complicates the problem in that the initial condition for each advection stage depends on the
final state at the end of the previous advection stage. We start by considering the first time
interval 0 < t ≤ τ , during which ζ =− sin(y + φ) and (42) reduces to

A1t′
− i

2
∇2A1 = − i

2
sin(y + φ). (43)

with A1(t=0)=0. We require both the homogeneous and particular parts of the solution to
vanish at t = 0. Therefore, the homogenous part of the solution is simply 0. We assume a
particular solution of the form A1 = ã(t′) sin(y + φ). Substituting this into (43), we obtain
an ordinary differential equation for ã(t′), the solution of which is ã(t′) = 1 − e−it′/2. Thus,
in the first time interval,

A = 1 +
1

~
(1 − e−

it
2~ ) sin(y + φ) + O(ε2), 0 < t ≤ τ. (44)
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In the subsequent time interval τ < t ≤ 2τ , ζ =− sin(x + χ) and the initial condition is

A1(t=τ)=(1 − e−
iτ
2~ ) sin(y + φ). Following the same procedure used above, we find

A = 1+
1

~

[

1 + e−
i

2~
(t−τ)

(

(1 − e−
iτ
2~ ) sin(y + φ) + 1

)]

sin(x+χ)+O(ε2), τ < t ≤ 2τ. (45)

One thing to notice in the strong dispersion limit is that spatial structure in A develops very
slowly, in stark contrast to the case of ~ = 0 where, after only 12 iterations, the structure of
A has become highly stretched and contorted (see figure 5). We will return to these results
later in section 10 to ascertain how the energy contained in the large scales of A varies as a
function of ~. We now consider the regime ~ 6= 0.

9 Numerical Solution for ~ 6= 0

Both the spatial domain and the streamfunction are 2π periodic; therefore, we seek a general
solution to (10) in the form of a Fourier series expansion

A =
∞
∑

k,`=−∞

ak,`(t) eik x+i` y, ak,`(0) =

{

1, if k = ` = 0,

0, otherwise
(46)

where ~κ = (k, `) describes the wavenumber vector and ak,`(t) are the corresponding Fourier
coefficients. Substituting (46) into (10) yields

∞
∑

k,`=−∞

[

ȧk,` + i` Ψx ak,` − ik Ψy ak,` +
i

2
∇2Ψak,`

]

e~κ·~x = − i~

2

∞
∑

k,`=−∞

(k2 + `2)ak,` e~κ·~x. (47)

In order to eliminate the summations, we utilize the fact that the Fourier modes are
orthogonal. To exploit this, we multiply (47) by e−iqy−ipx and integrate over y = 0–2π and
x = 0–2π. Integrations are performed in detail in the Appendix. It is worth noting that if
we did not chose a two stage random wave model for the velocity field, but rather used a
single stage model such as (21), then it would not be possible to analytically integrate the
terms resulting from (47). Performing the integrations yields two sets of coupled, first order
ordinary differential equations for ak,`(t), each valid in one of the two stages of the advection
process

ȧk,` + ak,`+1 e−iφ

(

1 − i2k

4

)

− ak,`−1 eiφ

(

1 + i2k

4

)

=
−i~

2
(k2 + `2)ak,`, (48)

ȧk,` + ak+1,` e−iχ

(

1 + i2`

4

)

− ak−1,` eiχ

(

1 − i2`

4

)

=
−i~

2
(k2 + `2)ak,`, (49)

for n = 0, 1, . . . and k, ` = −∞, . . . ,−1, 0, 1, . . . ,∞ where (48) and (49) are valid during
the time intervals 2nτ < t ≤ (2n + 1)τ and (2n + 1)τ < t ≤ (2n + 2)τ , respectively. The
apparent coupling between nearest neighbors of a results directly from the fact that the
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imposed velocity field contains only one Fourier component, the lowest nonzero wavenumber
component. A convenient aspect of the two stage random wave velocity field is that, in the
first stage, coupling occurs only between ` wavenumbers; while, in the second stage, coupling
occurs only between k wavenumbers.

-2 -1 0 1 2 3
(A)

n=15 n=20

n=5 n=10

Figure 7: Snapshots of the spatial structure of <(A) for the τ = 1, ~ = 1. Recall that at

n = 0, <(A) = 1.

We solve (48–49) numerically to obtain the time evolution of the Fourier coefficients ak,`,
then utilize an inverse fast Fourier transform (FFT) algorithm to perform the resummation in
(46) to obtain A. In the numerical solution, k, ` must be truncated at the N th Fourier mode,
i.e. the summation appearing in (46) occurs over −N ≤ k, ` ≤ N . We chose N such that
the amplitudes of the corresponding Fourier modes at |k|, |`| ≥ N have decreased below a set
tolerance. In practice, though, we typically over resolve the Fourier domain by a substantial
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amount since we favor a grid size of 2p×2p, p = 0, 1, 2, . . . .
The two truncated systems can each be described by a matrix equation, written in the

general, compact form

~̇y(t) = ~f(t, ~y(t)). (50)

For example, considering the simple case of N = 2, (50) becomes













ȧ−2

ȧ−1

ȧ0

ȧ1

ȧ2













=













c d 0 0 0
b c d 0 0
0 b c d 0
0 0 b c d
0 0 0 b c

























a−2

a−1

a0

a1

a2













, (51)

where b = (1+ i2k)/4 eiφn , c = −i~/2(k2 + `2), d = −(1− i2k)/4 e−iφn , in the first stage; and
b = (1− i2`)/4 eiχn , c = −i~/2(k2 + `2), d = −(1 + i2`)/4 e−iχn , in the second stage. We use
the tridiagonal structure of (51) to our advantage in selecting a discretization method. The
second order, fully implicit Adams-Moulton method is used in the present study. Applying
this discretization method to (50) gives

~ym+1 − ~ym

δt
=

~fm+1 − ~fm

2
. (52)

The numerical method conveniently perserves the tridiagonal structure of the original
truncated system. At each time step, we solve two, uncoupled linear, tridiagonal systems
for ak,`(t) (one during each advection stage) with an efficient tridiagonal system solver. A
numerical C code was written to compute the time evolution of ak,` and perform the sub-
sequent inverse FFT to obtain the spatio-temporal structure of A. Since C does not have
built-in capability for handling complex numbers, special functions were written to deal with
complex number operations.

There are some additional comments worth mentioning regarding the present numerical
scheme. At each time step we verify that the code conserves |A|2 over the spatial domain
(refer to section 5) by tracking a0,0. The deviation of a0,0 from the expected value of unity
is never greater than 1×10−10. Additional calculations regarding the stability and accuracy
of the present numerical scheme were performed; however, due to space limitations, we do
not provide those details. The analyses stem from a comparison between the solution to
the discretized equation and the analytical solution obtained in section 8. We found the
numerical method to be unconditionally stable. Furthermore, we found that the minimum
time step required to achieve a specified accuracy depended on ~ and the magnitude of the
wavenumber κ2. For example, to achieve 98% accuracy in the highest wavenumber component
of the numerical solution for ~ = 1, a minimum time step of 0.005 is required.

Figure 7 displays four snapshots of the spatial structure of <(A) for the case of ~ = 1,
τ = 1. The resolution in each picture is 1028×1028. Figure 8 displays the numerical results
from a comparison study between four different parameter values of ~=0, 0.1, 1, and 10.
Only the real part of A is shown, although the imaginary part exhibits similar structure. The
snapshots are taken at n = 10 with τ = 1. All computations utilized the same random data
set for φ and χ.
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Figure 8: Comparison of the spatial structure of <(A) for four different ~ values of 0, 0.1, 1,

10. All snapshots were taken at n = 10, τ = 1 and utilize the same random data set for φ, χ.

10 Energy in Large Scales

We now take a look at how the energy in the large scales decays in time as a function of ~.
Recall from section 5 that 〈AA∗〉 represents a conserved quantity where 〈·〉 denotes a spatial
average and the superscript * denotes the complex conjugate. Therefore, we will define the
energy associated with the complex scalar A as

ε = 〈A〉 〈A∗〉. (53)

Figure 9 shows the results of ε for three different cases of ~ = 0, 0.01, 1 as computed from
the numerical code presented in section 9. The results are for one particular realization only.
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Figure 9: Decay of energy in the large

scales of A for τ = 1.

0 1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

1

n τ

<
A

>
<

A
* >

h=0          
h=0.01       
h=1          
’prediction’ 
analytic, h=0

Figure 10: Expanded view of figure 9

in the region near t = 0.

The exponential prediction shown stems from the hypothesis that the spatial average in the
definition of (53) can be replaced by an ensemble average, i.e. 〈A〉 = E[eiθ], where E[·]
denotes the expectation of the random process. For the case of ~ = 0, we showed in section 7
that θ obeys a random walk; therefore, the probability of θ is Gaussian. According to the
prediction,

〈A〉 =

∫ ∞

−∞

e−θ2/2σ2

√
2πσ2

eiθdθ = e−σ2/2 = e−Dθt, (54)

where Dθ is the diffusivity of the phase as calculated in section 7. Obviously from figure 9,
the prediction (54) fails to describe the actual behavior of ε.

From our analysis of the strong dispersion limit, we know that as ~ → ∞, ε remains
constant at the initial value of 1. This yields an interesting picture of the decay of the large
scale energy as a function of ~. At ~ = 0, the rate of decay of ε is faster than exponential.
As ~ increases from 0, the rate of decay becomes faster than that for ~ = 0. However, at
some critical value of ~ > 1, the rate of energy decay becomes slower than exponential and
eventually becomes zero, since ε = 1 for all time as ~ → ∞.

11 Conclusion and Future Work

The main focus of the present study has been the attempt to understand some of the funda-
mental properties of the passive scalar dispersion equation (10) in the context of a random
wave model (18) for the two dimensional background turbulent velocity field. We have found
that the dispersivity parameter ~ greatly affects the spatiotemporal structure of the complex
scalar A. For ~ = 0, both the real and imaginary parts of A become highly stretched and
contorted even after only 10 iterations of the random wave field. In contrast, for the case of
~ = 1, the spatial structure of A looks blotchy with little indication of stretching or amplifi-
cation of the gradient of A. As ~ increases, the time evolution of the spatial structure of A
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becomes increasingly slower. Below a critical value ~c, energy in the large scales of A decays
faster than exponential; while for cases of ~ > ~c, the energy in the large scales decays slower
than exponential. In fact, as ~ → ∞, the energy in the large scales remains constant at a
value of unity. A useful extension of the present study would be to quantify the structure of
A, visualized herein, using probability density functions. Another natural direction for future
work would be to determine whether A exhibits a Batchelor scale. In other words, is there
a limit to the smallest scales of A achievable in the flow? Additionally, if there is a cascade
of energy from large to small scales, then what are the relevant scalings associated with the
spectra and how do these compare with the case of passive scalar diffusion?

Finally with regard to near inertial oscillations, from the vertical normal mode decompo-
sition presented in section 4 along with figure 2, we recognize that large ~ corresponds to low
wavenumber vertical motions while ~→0 corresponds to high wavenumber vertical motions.
It remains somewhat unclear, though, how one can directly apply the present observations
regarding the variation in the decay of energy of A with ~ toward further understanding the
behavior of the NIO velocity field in the oceanic mixed layer. Recall that in order to relate
the NIO velocity field to the results of A presented here, we first need to compute A using
the superposition of vertical normal modes and then apply the operator L. This is left as a
task for future work.
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13 Appendix

Here, we detail the integrations resulting from the Fourier series expansion of A as described
in section 9. The corresponding terms in (47) will be referred to sequentially as (I)–(V)
starting from left to right. Each term is multiplied by e−iqy−ipx and integrated over y = 0–2π
and x = 0–2π. Due to orthogonality of the Fourier modes,

∫ 2π

x=0
ei(k−p)xdx = 2π δkp and

∫ 2π

y=0
ei(`−q)ydy = 2π δ`q, (55)

where δ is the kronecker delta. The two stages of the advection process are considered
separately. We only outline integrations for the first stage; those for the second stage follow in
a similar manner. The first advection stage occurs during time intervals, 2nτ < t ≤ (2n+1)τ ,
n = 0, 1, . . . with the streamfunction given by Ψ = sin(y + φ). Terms in (47), excluding term
(II) which is identically zero, are as follows:
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(I)

∫ 2π

0





∫ 2π

0

∞
∑

k,`=−∞
ȧk,`(t) ei(k−p)xdx



 ei(`−q)ydy = (2π)2ȧk,`,

(III) −
∫ 2π

0





∫ 2π

0

∞
∑

k,`=−∞
ik cos(y + φ)ak,`(t) ei(`−q)ydy



 ei(k−p)xdx =

−
∫ 2π

0

[ ∞
∑

k=−∞
i2πk

(

ak,`+1(t)
e−iφ

2
+ ak,`−1

eiφ

2

)

]

ei(k−p)xdx =

− ik(2π)2
[

ak,`+1

(

e−iφ

2

)

+ ak,`−1

(

eiφ

2

)]

,

(IV) −
∫ 2π

0





∫ 2π

0

−i

2
sin(y + φ)

∞
∑

k,`=−∞
ak,`(t) ei(`−q)ydy



 ei(k−p)xdx =

−
∫ 2π

0
2π

[

e−iφ

4

∞
∑

k=−∞
ak,`+1(t) −

eiφ

4

∞
∑

k=−∞
ak,`−1(t)

]

ei(k−p)xdx =

(2π)2
[

ak,`+1

(

e−iφ

4

)

− ak,`−1

(

eiφ

4

)]

,

(V)

∫ 2π

0





∫ 2π

0

−i~

2

∞
∑

k,`=−∞
(k2 + `2)ak,`(t) ei(`−q)ydy



 ei(k−p)xdx =

− (2π)2
i~

2
(k2 + `2)ak,`(t).

Note, terms similar to cos(y+φ) ei(`−q)y can be easily integrated by rewriting the trigonometric
part as an exponential, e.g. 1/2(ei(y+φ) + e−i(y+φ)).
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