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Abstract

Tracer release experiments in coastal and open ocean settings have revealed unex-
pectedly large isopycnal diffusivities. The stirring and mixing effects of small scale eddies
(vortical modes) are discussed as a possible candidate for enhancing diffusivity. A simple
analytical model of vortical modes is used to evaluate their mixing potential.

1 Introduction

Recent oceanic dye release experiments have provided a venue for evaluating existing models
of passive tracer horizontal dispersion. In the Coastal Mixing and Optics (CMO) experiment
and the North Atlantic Tracer Release Experiment (NATRE), anthropogenic dye was injected
along constant density surfaces (isopycnals) in streaks a few km long. Subsequent surveys
through the evolving dye patches with towed instruments were used to look at the qualitative
nature of dye patch evolution and calculate quantitative measures of isopycnal diffusion [1, 2].

In the CMO experiment, several mid-water-column dye releases were conducted between
1995 and 1997 in ∼ 80 m deep water on the continental shelf south of New England. Post
release surveys were conducted over the several days following each release. By assuming
that dye streak evolution was governed by a balance between horizontal diffusion and strain
induced stretching [3], Sundermeyer 98 calculates an observed horizontal diffusivity of .3-5
m2/s [1]. A traditional way of estimating horizontal diffusivity in the ocean is by looking
at the enhanced diffusivity that comes from combining vertical diffusion with shear from the
internal wave field [4]. Applying this method to the measured CMO velocities gives diffusion
estimates that are a factor of 1-10 below observed values[1].

The NATRE experiment was conducted in open ocean 1200 km west of the Canary Islands
during May 1992 [2]. The dye was sampled five times during several subsequent years. Over
this extended period, the qualitative evolution of the dye agrees reasonably well with the
model of horizontal diffusion presented by Garrett 83 [1]. He proposes that a dye patch will
initially be stretched into long twisted streaks, the width of which is governed by a balance
between an effective isopycnal diffusivity and exponential stretching. The observed dye at
6 months is indeed streaky in nature and calculations give an estimated effective diffusivity
of 3 m2/s. The Young, Rhines and Garrett shear dispersion model applied to this situation
gives an estimate of .08 m2/s [1]. For longer times, Garrett predicts that dye streaks will
coalesce into a more homogeneous patch that grows with an effective diffusivity related to
the Lagrangian velocity autocorrelation time scale. During later dye surveys (1-2 years), the
tracer has expanded to encompass hundreds of kilometers and is more homogeneous. The
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observed diffusivity for this scale is 103 m2/s, and agrees with estimates calculated from float
velocities.

In both experiments, observed diffusivities on 1-10 km scales are larger than predicted by
shear dispersion alone. Both Sundermeyer and Polzin et al.99 propose that the small scale
eddies known as vortical modes could be an alternate diffusion mechanism. In brief, vortical
modes are thought to be generated when a vertical mixing event creates a relatively well
mixed patch of water within a stratified fluid [5]. This density anomaly adjusts to pressure
and Coriolis forces by spreading radially outward and beginning to rotate anticyclonically. A
steady rotational state can exist until the anomaly diffuses away or some event or instability
breaks it apart. Both the adjustment and equilibrium phases can act to enhance horizontal
diffusivity.

Sundermeyer considers dimensional arguments and concludes that in the coastal ocean
at least, horizontal spreading from vortical mode generation and adjustment may be of an
appropriate magnitude to explain observed diffusivities [1]. Polzin et al. evaluate evidence
of vortical modes in NATRE by looking at spectral shear and strain values that are not well
explained by an internal wave field. Using inferred vortical mode spectra, they calculate
estimates for shear dispersion and stirring contributions to effective diffusivity and also get
results potentially large enough to explain observations[6].

To tackle the time dependent picture of diffusivity due to vortical modes, we start with
a broad qualitative description of what might happen to an initially small dye patch in an
ocean where small eddies randomly appear and disappear in various locations near the patch.
We ignore the initial vertical mixing event that generates the vortical mode as beyond the
scope of this project. Instead we assume that we start with a round (axisymmetric) density
anomaly that abruptly appears near a small patch of concentrate. Over the lifetime of a
single vortex, a small dye patch located nearby feels a net (center of mass) displacement
both outward due to the initial adjustment and around the vortex. The patch also feels
a distortion due to the stretching effects of radial shear and molecular and shear-enhanced
diffusion. On a longer timescale, the patch will witness the appearance and disappearance
of many vortices appearing at different positions around it. Additionally, as it grows in size
it eventually becomes large enough to feel several spatially separated vortices at the same
time. The larger the number of vortices felt, the more their net displacements will cancel out
to produce little net patch movement. However, the net movements felt by smaller segments
of the patch stretch, twist, and fold the patch; increase gradients; and enhance diffusion
to cause the patch as a whole to grow in size. We seek an understanding of diffusion that
will encompass both small and large time limits. For small times, we’ll have a more time
dependent story of patch growth. For larger times and larger spatial scales we hope that
the net effects of smaller motions can be parameterized by an effective diffusivity. Our goals
hence are threefold: to understand the time dependence of small time evolution, to estimate a
long time eddy diffusivity, and to figure out an appropriate time scale for transition between
these two regimes.

Toward these goals, we develop a a simple analytical model that we hope replicates some
of the essential stirring and mixing characteristics of oceanic vortical modes. Such an an-
alytical approximation allows us to look at the role small eddies may play in the different
stages of horizontal tracer dispersion, get some bounds on the relative importance of different
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diffusive mechanisms, and explore how these results are functions of fundamental problem
parameters. In section 2 we begin by looking at numerically integrated full numerical so-
lutions for vortical mode generation. Based upon these solutions, in Section 3 we suggest
an analytical approximation for a vortical mode field and extend it into a time dependent
stochastic model. In section 4 we evaluate the expected effect of an idealized single vortex
velocity field on the evolution of a dye patch. We expand the time scale to consider a time
dependent blinking vortex field in section 5. Throughout, we try to integrate different ways of
looking at diffusion and consider dependence on a few oceanographic parameters of interest.
Finally, in section 6 we re-dimensionalize our results and make some simple comparisons to
the observed ocean values.

2 Vortical Mode Solutions

Before we can develop an appropriate analytical model, we must first get a better feeling
for physically realistic vortex velocity fields. We start with the generation of the density
anomalies that become vortical modes. We then numerically solve for the equilibrium solu-
tions that describe the velocity field after an adjustment period. Finally, we consider physical
arguments for time dependence.

2.1 Generation Possibilities

Many observations have shown diapycnal mixing in the ocean to occur episodically [7]. En-
ergetic events such as internal wave breaking and wave wave interaction can lead to shear
instabilities and overturning. Such mixing events produce local regions of relatively unstrat-
ified water. Most observations of mixed patch height in the CMO coastal area range from
2-10 m [1]. In the NATRE experiment, observed vertical patch sizes were much larger, on
the order of 10-50 m [6]. It is difficult to measure the horizontal extent of mixing events. A
starting guess is that the mixed patches have roughly the same aspect ratio as the internal
waves that generate them, N/f (where N is the buoyancy frequency and f the local inertial
frequency). Microstructure sections made during the CMO experiment show mixing patches
on the order of a kilometer in horizontal extent [8].

Following Garrett and Munk, we estimate the frequency of vertical mixing events by
considering net observed vertical diffusivity[1]. We assume that vertical diffusion of tracer
is due to the sum of discrete identical vertical mixing events which occur with a frequency
ν, are characterized by height h∗, and by stratification change ∆N 2. Using potential energy
arguments we can infer the frequency of event occurrence given an observed vertical diffusivity
of Kz,

ν = 3
N2

∆N2

1

h2
Kz. (1)

2.2 Adjustment

A density anomaly of sufficient size in a stratified fluid will evolve according to the pressure
and Coriolis forces it feels until a state of balance is achieved. In studying the equilibrium
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solution reached after adjustment of an initial density anomaly, we follow McWilliams tactic
of combining the thermal wind equations with conservation of potential vorticity and mass
[9]. He starts by non-dimensionalizing as follows:

qd = fN2
∗
q

θd =
ρ∗v∗fl∗

gh∗

θ

rd = l∗r

zd = h∗z

pd = ρ∗v∗fl∗

ρd =
ρ∗N

2
∗
h∗

g
ρ

vd = v∗v,

where the subscript ’d’ indicates the dimensional form of a variable. Variables without this
subscript (now and throughout this paper) are assumed to be dimensionless. Variable q is
Ertel’s potential vorticity, θ is the density anomaly (deviation from constant stratification)
and the other variables have their traditional meaning (radial and vertical distance, pressure,
density and velocity respectively). Important non-dimensional parameters are given by

R ≡ 4v∗
fl∗

B ≡ (
N∗h∗

fl∗
)
2

β ≡ R

4B
.

R and B are the Rossby and Burger numbers. β can be shown to be a measure of the strength
of the density anomaly, with initial density and stratification profiles given non-dimensionally
by

ρi = −z + βθ

N2
i = 1 − β

δθ

δz
.

(We use β instead of McWilliams γ because the later is used as a stretching rate in later
sections.) Following McWilliams, we assume an initial density anomaly of the form

θ = 2ze−[z2+(r/r0)2]. (2)

At this point, parameters r0 and B both describe an aspect ratio of the problem. Without
loss of generality, we can set B=1 and vary r0.

For simplicity, we adopt these non-dimensionalizations for the remainder of our paper.
Physically, all horizontal distances, angular velocities and times discussed are fractions of
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the internal Rossby radius, intertial frequency and inertial period respectively. To convert
any result back into dimensional coordinates, one only needs to specify f, N and an anomaly
height scale h∗. Dimensional quantities are then given by

rd =
N

f
h∗r (3)

Ωd = fβΩ (4)

td =
1

fβ
t. (5)

We’ll return briefly to the world of dimensions at the end of the paper to compare our results
with oceanographic data.

The actual process of geostrophic adjustment will involve internal waves which radiate
energy away in a time roughly given by 1/f [10]. After the transients have disappeared, the
system will achieve an equilibrium state where Coriolis, pressure and centrifugal forces are
in balance. Equilibrium density and potential vorticity are given by

ρf = −z − β
∂p

∂z

qf = ZN2
s − Rβ

4S
(

δ2p

δrδz
)
2

with

S ≡
√

1 +
R

r

∂p

∂r

v ≡ 2r

R
[S − 1]

Z ≡ 1 +
R

4r

∂(rv)

∂r
.

Knowledge of one variable, p(r, z), is enough to specify the whole system. This final state
is related to the initial state through the net displacements felt by each Lagrangian water
parcel. Non-dimensional displacement variables are defined as

ζ(rf , zf ) ≡ rf − ri (6)

η(rf , zf ) ≡ zf − zi. (7)

These parcels conserve their density and potential vorticity values during adjustment

ρf (r, z) = ρi(r − ζ, z − η) (8)

qf (r, z) = qi(r − ζ, z − η). (9)
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Figure 1: Pre-adjustment density field used for numerical calculations. The full density field
is shown in (a), the density anomaly in (b), and a vertical profile at r = 0 in (c). Also shown
in (c) is a reference linear stratification profile. All values are non-dimensional.

Plugging forms for ρi, ρf , qi, qf into equations (8) and (9) gives us two equations and three
unknowns (p,ζ,η). The final equation comes from requiring that the adjustment be incom-
pressible, or equivalently that the Jacobian of the lagrangian transformation is identically
one:

ri

rf
(
δri

δrf

δzi

δzf
− δri

δzf

δzi

δrf
) = 1, (10)

where ri, rf , zi, zf can be written in terms of ζ and η following equations 6-7. As McWilliams
suggests, an iterative method is necessary to solve the non-linear set of equations 8-10 for
p,ζ,η. There are only two free parameters in this system, r0 and β, which control the aspect
ratio and strength of the initial anomaly, respectively. Physically, r0 = 1 corresponds to an
anomaly with aspect ratio f/N . Larger r0 corresponds to a flatter anomaly and vice versa.
The anomaly strength is controlled by β, which ranges from 0 (no anomaly, or background
stratification) to .5 (minimum of zero stratification). Figure 1 shows an initial density field
with r0 = 1, β = 1

4 ,the associated density anomaly, and a profile of density at r = 0 (with
linear stratification for comparison). These values of r0 and β will be used as a good first
estimate.

We numerically integrated solutions to equations (8), (9), and (10) 1. Boundary conditions

1Numerical integration was done using routines AVINT and HSTCYL, available from the NIST Guide to

Available Math Software
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Figure 2: Equilibrium solutions for the density anomaly (a) and angular velocity (b).

are given by

η, ζ, p →0 as r, z → 0 (11)

ζ =
∂p

∂r
= 0 at r = 0 (12)

η =
∂p

∂z
= 0 at z = 0. (13)

(14)

As expected, equilibrium solutions consist of a slumped density anomaly rotating anti-
cyclonically. Figure 2 shows non-dimensional equilibrium density and angular velocity fields.
Above and below the main anomaly, there are smaller, cyclonically rotating vortices that
correspond to regions of enhanced stratification that border the well mixed patch. We ignore
these smaller vortices for now and hope to come back to them in future work.

Figure 3 shows profiles at z = 0 of radial adjustment displacements, ζ, and equilibrium
angular velocities. Adjustment displacements are largest at the edge of the initial anomaly
(r = r0 = 1), and have a maximum value that approaches 1 as r0 becomes large. Angular
velocity is roughly given by solid body rotation out to r ∼ .5, and exponentially decays for
larger r. Also shown is an analytical approximation of velocity that will be used in later
sections. Further dependence on parameters r0 and β is considered by McWilliams. The
effect of varying these parameters on our diffusion calculations may be discussed in future
work.

2.3 Time dependence

As isolated vortical mode will exist in its equilibrium state until the density anomaly diffuses
away, another vertical mixing event occurs on top of it, or it succumbs to some type of
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Figure 3: Outward adjustment displacements (a) and equilibrium radial velocity (b) at z=0
for r0 = 1 and β = .25. Also shown are distances r1 and r2 which are the edge of solid body
rotation and an effective edge of vortex influence.

instability or large scale strain. The time scale for vertically mixing an anomaly of height h
away by a molecular vertical diffusivity Kzm is

τ1 =
h2

Kzm
. (15)

A new vortex will on average appear at a particular site with a frequency given by (1). Since
molecular diffusivity will always be smaller than observed diffusivity, we expect the maximum
lifetime for vortices will be given by

τ ≡ 1/ν.

For the coastal ocean observed patch size of 2-10 m and observed vertical diffusivity of
10−5m2/s, the appropriate dimensional timescale is τd = 1 − 20 days . In non-dimensional
units, Ωτ = .01 − .3. In most cases, significantly less than one rotation is completed. In the
open ocean, patch heights of 10−50 m and diffusivities of .5−1*10−5m2/s give nondimensional
Ωτ = .3 − 15 (All calculations assume Ω = .07.) In the later case vortices can exist in
equilibrium form for many rotations. This difference in the time scale of vortical modes in
different regions is in itself a major result. We expect that the ways in which vortical modes
contribute to diffusion may be significantly different in these two situations. Hence, it will be
a primary goal of subsequent calculations to consider how vortical mode enhanced diffusion
both qualitatively and quantitatively depends on our choice of τ .

3 Analytical Model

We now wish to consider the diffusive effects of a field of such vortices. To make our task
tractable, we incorporate an analytical approximation to the solutions in section 2 into a
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simple Random Renovating Vortex model that allows us to stochastically approach diffusion
quantities of interest. We posit a field of vortices, each of which appears in a random loca-
tion, exists for a set time τ , identical for all vortices, and disappears. Associated with the
appearance of any vortex are instantaneous adjustment displacements ζ outward from the
vortex center. During the subsequent interval τ of vortex existence, water parcels follow a
steady azimuthal velocity field, Ω(r). For simplicity, we basically ignore z dependence from
now on (except when considering vertical shear dispersion). We hope a first order picture
of the dispersive abilities of vortical modes will emerge from considering the radial depen-
dence alone. Future work may include a more baroclinic model. The numerical solutions to
McWilliams equations suggest analytical forms as follows. Let the azimuthal velocity field a
distance r from the center of the vortex be given by

Ω(r) ≡
{

Ω0 r < r1

Ω0e
−α(r−r1) r ≥ r1.

(16)

The free parameters are r1, the edge of the solid body rotation part of the vortex, Ω0, the
velocity scale, and α, the exponential decay rate for the outer vortex velocity field. Fitting
this model to the numerical solution shown in Figure 3 yields r1 = .5, α = 1.3, and Ω0 = .07.
Also noted on the graph is a distance r2, which we define as a length-scale of vortex influence.
It should scale roughly with the exponential decay scale, r2 ∼ 1 + 1/α. For simplicity, we set
r2 = 2.

Simplifying further, we assume a parcel at any given location feels only one vortex at
a time and that vortices do not interact with each other. Despite these caveats, we want
vortices to be evenly distributed in space, in some statistical sense. Hence, we propose that
the probability of a vortex appearing within r and r + dr of a given parcel is given by the
Holtzmark distribution,

P (r) ≡ 2

r2
2

re−(r/r2)2dr.

Intuitively, this probability is proportional to the area of the strip between r and r + dr,
multiplied by the probability that there isn’t a closer (within a circle r) vortex. The proba-
bility is normalized using the vortex spatial scale, r2. Finally, we assume that these spatially
uncorrelated vortices blink in and out of existence simultaneously over units of time τ . At
small scales, the steady flow field of the single, closest vortex will be felt during each time
interval. For objects of larger scales, several spatially separated vortices may be felt during
each time step.

To account for the variability associated with different realizations of vortex placement,
we ensemble average many quantities of interest. For any quantity which is a function of
distance to the vortex center, r, we define

〈f(r)〉 =

∫

∞

0
f(r)P (r)dr.

Ensemble averaging can be problematic, as no particular oceanic realization will resemble
the smoothness of an ensemble average. However, such averaging is necessary to make our
problem tractable and we hope that the most salient features are preserved.
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4 Short Times / One Vortex

Using this model we can consider what happens to a small dye patch during short times,
in which it feels only the effects of a single vortex. The center of mass of the patch will
be displaced as a point parcel would be. This displacement is made up of two components,
the quick adjustment radial displacement and the slow azimuthal displacement from the
equilibrium velocity field. A patch will also be stretched by radial shear, and for long times
and high shear could be wrapped up around the vortex center several times. Finally, the patch
will be diffusing all this time, both from molecular diffusion and under some circumstances
from an enhanced horizontal shear dispersion. Each of these items will be considered in turn
below.

4.1 Outward Displacements

The first displacement comes during the adjustment phase and is given by ζ(r). The ensemble
average adjustment displacement felt by a parcel will take into account the probability of
being a given distance away from the closest vortex center and is given by

〈ζ(r)2〉 =

∫

ζ2(r)P (r)dr (17)

≈ .01 (18)

where the approximate form was obtained by integrating the numerical ζ(r) profile shown
in Figure 3. As a reminder, these numbers should be scaled by (h∗N/f)2 to return to
dimensional units of m2. Since we don’t have a good analytical approximation for ζ(r) and
since it doesn’t vary with the main parameter of interest, τ , we aim for just an order of
magnitude estimate.

4.2 Azimuthal Displacements

The average azimuthal displacements felt by a parcel moving around a vortex will depend
not only on the distance to the vortex center, but also on the length of time τ it has to move.
For a given τ and r, the displacement is shown in Figure 4 and is given by

l2 = 2r2[1 − cos(Ω(r)τ)]

〈l2〉 =

∫

∞

0
P (r)2r2[1 − cos (Ω(r)τ)]dr. (19)

With Ω(r) given by 16, it is difficult to solve for 〈l2〉 analytically. However, there are a
few limits of interest that are more approachable. For small vortex lifetimes, we can Taylor
expand(19) in powers of (Ωτ).

〈l2〉 ≈
∞

∑

n=1

(Ω0τ)2n 4(−1)n−1

(2n)!

∫

∞

r1

r3e
−( r

r2
)2

e2nα(r1−r)dr. (20)
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Figure 4: Azimuthal distance traveled during a time τ by a particle a distance r away from
the center of the closest vortex (V).

Taking only the first expansion term and integrating gives

〈l2〉 ≈ 2(Ω0τ)2e
−(

r1

r2
)2

Γ, (21)

where we define

Γ ≡ r2
2

4
[
√

παr2e
α2r2

2
+2αr1+(r1/r2)2(3 + 2(αr2)

2)(erf(
r1
r2

+ αr2) − 1)

+2((
r1

r2
)2 − αr1 + (αr2)

2 + 1)]. (22)

The upper bound on (19) is obtained by noting that

1 − cos [Ω(r)τ ] ≤ 2,

and thus

〈l2〉 ≤ r2
2

2
(r2

1 + r2
2)e

−(
r1

r2
)2

. (23)

A numerical solution to equation (19) together with the limits given in (21) and (23) is plot-
ted in Figure 5a. The outward displacement magnitude, ζ2, is also plotted for reference.
Figure 5b shows expected squared displacements divided by τ , which is related to the dif-
fusivity expected for a random walk process of given step length. For increasing τ , average
displacements approach steady values, but expected diffusivities peak and then decline.

The relative importance of azimuthal versus radial displacements depends on the magni-
tude of τ . From Figure 5, the two effects achieve equal magnitudes for Ωτ ∼ .6. In coastal
areas, we expect outward displacements to be more important, and vice versa for the open
ocean. More precisely, the true ensemble average displacement is 〈(l + ζ)2〉, which is even
less analytically tractable. But since

〈l2〉 + 〈ζ2〉 ≤ 〈(l + ζ)2〉,

calculating them separately gives us an upper bound on average displacement magnitude.

11



10
-2

10
0

10
2

10
-4

10
-2

10
0

10
2

10
4

Ω τ

〈 l
2  〉

10
-2

10
0

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

Ω τ

〈 l
2  〉 

/ τ

2
2 / τ

Figure 5: Numerically integrated average squared displacements along with analytically cal-
culated limits are shown in (a). Also shown are adjustment displacements squared for com-
parison. Random walk diffusivities based on such displacements are shown in (b).

4.3 Azimuthal stretching

While a dye patch moves around a vortex center, it is sheared by radial gradients in velocity.
The direction of shear is likely to be different in different periods of time τ . Hence, in
calculating stretching we must consider not only the distance to a vortex center but also a
dye streak orientation with respect to a vortex. The increase in length of a small line element
during one time interval τ is shown in Figure 6 and given by

δs2 ≡ s2
1

s2
0

= [1 + τr
dΩ(r)

dr
sin(2φ) + (τr

dΩ(r)

dr
cosφ)2].

Ensemble averaging must be done over r and φ. We assume that φ is evenly distributed
between 0 and 2π. After N period of length τ have passed, a streak of initial length s0 will
have grown to

〈s2
N 〉 = s2

0 [〈〈δs(r, φ)2〉φ〉r]n

= s2
0 [〈1 +

τ2

2
(r

δΩ(r)

δr
)
2

〉r]n

= s2
0 e−n(r1/r2)2 [1 + Γα2(Ω0τ)2]

n
. (24)

Equation (24) can be written in a simple exponential form

〈s2
N 〉 = e2γt, (25)

by defining

γ ≡ 1

2τ
[ln(1 + Γα2(Ω0τ)2) − (

r1
r2

)2]. (26)
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Figure 6: Stretching of a line element.
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Figure 7: Exponential stretching rate felt over many vortex lifetimes.

One might note the similarity of this to the Lyapunov exponents calculated for the Random
Renovating Wave model developed in the principle lectures. The stretching rate, γ, is plotted
in Figure 7 as a function of Ωτ .

4.4 Diffusion/Shear Dispersion

As a dye patch stretches and moves around a vortex center, its area will increase due to hori-
zontal diffusivity. Molecular diffusion in a sheared velocity field is enhanced by the interaction
between horizontal or vertical shear and a background horizontal or vertical diffusivity. In
a steady shear field, this interaction leads to an anomalously fast diffusion at large times[4].
In an oscillatory flow field, the anomalous diffusion of steady shear is appropriate only for
time-scales smaller than the oscillation time. Over several periods, diffusion regains a Fickian
character, with an enhanced effective diffusivity which is averaged over the oscillation time
of the anomalous diffusion. Young et al. considered the vertical shear associated with typical
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open ocean values of the internal wave field and found that horizontal diffusion was enhanced
over it’s molecular values by a factor of N 2/f2. Our flow similarly contains a finite time
scale. In our case, shear is steady for the vortex existence time, τ , after which it may change
direction and magnitude. However, unlike the Young et al. model in which the advective
solution returns to it’s original state at the end of each oscillation, our flow is circular within
each time period. Therefore, Rhines and Young’s work on two-dimensional dispersion for
closed streamlines is also helpful[11]. The shear in their case is radial shear of a circular
flow. To get the best shear dispersion estimate for our problem, we start with the Rhines
and Young approach and add a vertical component of shear and time dependence.

Following their approach, we start with the advection diffusion equation for concentration,
θ in a steady velocity field. For a circular velocity field with azimuthal velocity given by

1

r
uφ = Ω(r, z) (27)

and distinct vertical and horizontal diffusivities, the governing equation is

θt + Ωθφ = KH [
1

r
(rθr)r +

1

r2
θφφ] + Kzθzz (28)

If we assume that there is an independent internal wave field with a faster time scale super-
imposed on our vortical mode field, a plausible relationship between KH and Kz is given by
[4]

KH =
N2

f2
Kz. (29)

We assume the solution can be written as a sum of components with different azimuthal
wavenumbers, each of which is given by

θ = A(r, z, t)einφ̂ (30)

φ̂ ≡ φ − Ω(r, z)t. (31)

Plugging (30) into (28) and grouping terms gives an equation for the rate of concentration
change in the framework of the advective solution

At = KH [
1

r
(rAr)r +

n2

r2
A] + KzAzz (32)

−i{KH [
A

r
(rΩ̄r)r + 2ArΩ̄r] + Kz[AΩ̄zz + 2AzΩ̄z]}

−{KHAΩ̄2
r + KzΩ̄

2
z)},

with
Ω̄ ≡ ntΩ.

The rhs terms of (32) are grouped by powers of (ntΩ), which is physically related to
distance traveled around the vortex center. Analysis in section 2 indicated that oceanic
vortical modes can have existence times that vary from much shorter to much longer than
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Figure 8: Non-dimensional magnitude of vertical and horizontal shear from the full numerical
solutions for an equilibrium vortex velocity field.

their eddy turnover time such that we are interested in solutions for a range of Ω̄ values.
The first term in (32) is simply molecular diffusion, and in the limit of Ω̄ � 1, this is the
dominant term. In the opposite limit, Ω̄ � 1, the third term of (32) dominates. This is the
limit considered by Rhines and Young. Following their analysis, the solution to (32) for large
Ω̄ becomes

A ∼ e−
1

3
n2t3[KHΩ2

r+KzΩ2
z ]. (33)

For intermediate values of Ω̄, we need to use the full version of (32). Such precision is
beyond the scope of this paper, and unnecessary to get the sort of magnitude estimates we are
interested in. The above approximations suggest that for vortices with short lifetimes (coastal
regions), vortical shear dispersion is not significant, and we can define an appropriate effective
horizontal diffusivity, Ks which is in this case equal to the traditionally used internal wave
enhanced value given by (29). In areas with long lived vortices (open ocean), this traditional
value is likely to be further enhanced by vortical mode shear dispersion. Roughly following
methods of dealing with oscillatory waves in Rhines and Young and Young et al., we pull
from (33) an effective diffusivity of the form

Ks ∼
1

6
n2τ2〈KHΩ2

r + KzΩ
2
z〉. (34)

KH is given by (29) and Kz is perhaps a molecular diffusivity. Radial and vertical shears
from the McWilliams model are shown in Figure 8. The reader will recall that these shears
are non-dimensional and dimensional forms of Ω2

r and Ω2
z will have a relative scaling factor of

N2/f2. Hence, the roughly comparable magnitudes shown in Figure 8 indicate comparable
importance of the two terms in (34).

All of the abovementioned effects (stretching, shear dispersion, net displacement) occur
at the same time for a dye patch feeling a single vortex field. To gain some insight into how
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Figure 9: Schematic of different growth rates that characterize tracer distribution.

these various effects fit together into a more coherent picture of diffusion, we now turn to
longer time scales.

5 Longer Times

During longer time periods, a dye patch will experience the effects of multiple vortices, both
because we are considering times greater than an individual vortex lifetime and because over
long times a patch grows spatially to feel many vortices. As a dye patch is stretched by
several randomly oriented vortices in turn, it stretches and folds as illustrated in the cartoon
in Figure 9. There are now two types of diffusion of interest. First, one might like to know the
size of the bounding circle, designated as Ap in Figure 9. This represents the area in which
one has a chance of encountering concentrate. As suggested by Garrett, this area grows as
the separation between discrete parcels in the flow field[3]. The second quantity of interest is
the actual area occupied by dye, At, which will depend on the stretching rate γ from equation
(26). We now approach both these quantities more specifically for our RRV flow field.

5.1 Multiparticle Dispersion

The bounding area, Ap, will roughly grow like the size of a group of discrete water parcels
initially close together. Qualitatively, the dispersion rate of a collection of particles is a
function of how close they are to each other. A group of closeby particles will all be feeling a
similar velocity field and will move more or less together, dispersed only by the small velocity
differences between their positions. As they move apart, they feel a larger velocity difference
and move apart more quickly. In our case there comes a point when they are so far separated
that (on average) they no longer feel the same vortex, at which point their velocities become
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completely uncorrelated. At this point each particle moves in its own random walk and the
particle separation distance should increase as twice that of a single random walker.

Quantitatively, the area of a group of particles is described by the second moment,

σ2 ≡ 1

n

n
∑

i=1

(xi − x̄)2 =
1

n

n
∑

i=1

x2
i − x̄2, (35)

with

x̄ ≡ 1

n

n
∑

i=1

xi.

Parcel position xi at any time t can be obtained by integrating the Lagrangian velocity field

xi ≡ xi0 +

∫ t

0
ui(t

′)dt′. (36)

Plugging (36) into (35) gives

σ2 = σ2
0 +

1

n

n
∑

i=1

[
∫ t

0
ui(t

′)dt′
]2

− 1

n2

n
∑

i=1

n
∑

j=1

∫ t

0
ui(t

′)dt′
∫ t

0
uj(t

′′)dt′′. (37)

For our model, t = Nτ , where N is the number of vortex lifetimes experienced. The net
displacement, xi(t), is simply the sum of displacement from each successive vortex

∫ t

0
ui(t

′)dt′ =
N

∑

k=1

∫ τ

0
u

(k)
i (t′)dt′.

Next, we simplify by ensemble averaging (37). Consider how variance increases on average
during one period

〈σ2
N 〉 − 〈σ2

N−1〉 = 〈 1

n

n
∑

i=1

[
∫ τ

0
ui(t

′)dt′
]2

〉

−〈 1

n2

n
∑

i=1

n
∑

j=1

∫ τ

0
ui(t

′)dt′
∫ τ

0
uj(t

′′)dt′′〉,

which can be re-written as

=
1

n

n
∑

i=1

〈l2〉 − 1

n2

n
∑

i=1

n
∑

j=1

〈lilj〉

=
1

n

n
∑

i=1

〈l2〉[1 − 1

n

n
∑

j=1

〈lilj〉
〈l2〉 ]. (38)
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Figure 10: Two different possibilities for multiparticle spatial correlation.

Here 〈l2〉, from (19) is the same for each parcel and 〈lilj〉 is a measure of correlation between
a pair of parcels and must be summed over all pair combinations. Physically, (38) states that
the increase in particle area goes like the single particle diffusivity with a correction term
that accounts for correlation between particles. If all particles are moving with the same,
perfectly correlated velocity, 〈lilj〉 = 〈l2〉, then no relative dispersion occurs. In our flow, the
degree of correlation is a function of the particle separation, 〈lilj〉 = F [〈σ2

N−1〉].

To make this calculation more tractable, consider the evolution of distance between only two
particles. Let 〈ξ2〉 = x2 − x1 be the distance between two parcels. The ensemble averaged
increase in 〈ξ2〉 during any single time period is given by

〈ξ2
N 〉 − 〈ξ2

N−1〉 = 2〈l2〉[1 −
〈l2ij(ξN−1)〉

〈l2〉 ] (39)

For two parcels a distance ξ apart, 〈lilj〉 is given by

〈l2ij〉 =

∫

∞

0

∫ 2π

0
P (r)2r(r + δr)

√

[1 − cos (Ω(r)τ)][1 − cos (Ω(r + δr)τ)]dφdr, (40)

with

δr ≡
√

ξ2

4
+ r2 −

√

ξ2

4
− ξr cos(φ) + r2.

We define a spatial correlation function

Rij ≡
〈lilj〉
〈l2〉 . (41)

As is, this representation assumes that as particles grow further apart their velocity becomes
less correlated but they still feel different parts of the same vortex field. It is more realistic to
say that significantly separated particles will feel the effects of uncorrelated vortices. From
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Figure 11: Squared pair separation distance obtained by iterative integration. τ ranges from
1 to 1000. In all subplots the solid lines represent ξ0 values of .1,.5 and 1. The dotted line is
the growth rate expected for uncorrelated randomly walking particles.

Section 2, the lengthscale of vortex influence is r2. We manually impose this constraint
by defining a new correlation function in which particles greater than r2 away feel different
vortices

R′(ξ) ≡ (R)(ξ)f(ξ), (42)

where f(ξ) is some function that goes from 1 at r = 0 to 0 for large r. There are several
forms f(ξ) can take. We could impose that correlation abruptly goes to 0 when the distance
exceeds r2, so f(ξ) takes the form of a Heavyside step function

f1(ξ) =

{

1 r < r2

0 r ≥ r2.
(43)

This is straightforward but a little abrupt. Another possibility is to make the transition very
smooth by assuming that the probability of nearby particles being in different vortices goes
from 0 to 1 linearly:

f2(ξ) = 1 − ξ

R0
. (44)

Both possibilities for R′ are plotted in Figure 10, where Rij has been numerically cal-
culated from (19) and (40) for different values of ξ. Reality is likely to be somewhere in
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between. The second choice has the advantage of a continuous derivative. It also provides
an approximate lower bound for parcel spatial correlation and hence an upper bound for
diffusion rate. We will use the form in (44) from now on.

The real quantity of interest is the time evolution of ξ for particles initially separated by a
distance ξ0. We numerically integrate (39) for different values of ξ0 and τ and plot the results
in Figure 11. For reference, we also plot the separation growth expected for uncorrelated
particles based on (19) alone, assuming 〈lilj〉 = 0. At large times, particle separation goes as
twice the single particle dispersion rate, 〈l2〉, as expected. For a given value of τ , the initial
particle separation, ξ0, controls the time it takes to settle into linear growth, but not the
qualitative nature of the transition or any aspect of the large time solution. For different
values of τ , several things change. First, the final diffusivity (the intercept of our log-log
plot) is different, as expected from the relationship in Figure 5. Second, the transition to
linear growth has a different character. For τ = 1, 10, the initial growth in 〈ξ2〉 is slower than
linear, while for τ = 100, 1000 it grows with a faster than linear growth rate.

5.2 Streak Area

The other way to characterize the growth of a dye streak is by the actual area of the tracer.
As described by Ledwell et al. and Sundermeyer, the streak will go through an initial period
of stretching during which it gets thinner, cross-streak gradients get larger and cross-streak
diffusive fluxes grow. Eventually a balance between stretching and diffusion is reached, at
which point the streak continues to grow larger, but its width remains the same. This
equilibrium width is related to the stretching rate γ (26), by

∆l =

√

Ks

γ
(45)

where Ks is an appropriate horizontal diffusivity (section 4.4).
After a width is established, the streak area grows with its increasing length

At = (∆l)(l)

∼ l0

√

Ks

γ
eγt (46)

for some initial length l0.

5.3 The Big Picture

During the initial period of stretching and folding of a dye patch, the containing area Ap will
be significantly larger than the actual dye area At. However, tracer area grows exponentially,
(46), and will catch up. Physically, as the tracer area depicted in Figure 9 grows, different
parts of the tracer streak get close enough together that they start to merge and the tracer
fills in the area bounded by Ap. From then on, the dye patch is fairly homogeneous, and
continues to grow in a Fickian manner with Ap. In Figure 12, we plot Ap(t) and At(t) together
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Figure 12: Growth rates for multiparticle dispersion and tracer area. They merge

for γ = .008, τ = 100, ξ0 = .1. We have assumed that both quantities start with the same
initial area,

A0 ≡ l0

√

Ks

γ
= ξ2

0 .

In this case, tracer area is much smaller than the bounding area up until a time Ωτ0 ∼ 70,
after which tracer area grows linearly as Ap.

6 Ocean comparisons and Conclusions

Our goal in this work has been to evaluate whether sub-mesoscale eddies could make a
significant contribution to horizontal diffusion in the coastal or open ocean. Because it was
not immediately apparent which of the potential stirring and mixing abilities of vortical modes
would be important, we undertook a step by step look at the time dependent diffusion of an
initially small patch of passive tracer. To get a realistic form for a single vortical mode, we
looked at numerical solutions to the non-linear adjustment of an isolated density anomaly,
and incorporated an idealized version of these results into a simple stochastic renovating
vortex model. Most of the qualitative features of qualitative tracer evolution we discuss are
the same as those described by Garrett for a two-dimensional turbulent field. Using our
analytical model, we’re able to calculate exact values for some of the stages he talks about
more qualitatively. The picture that emerges is that at space and time scales of the same order
of magnitude of vortex scales and lifetimes, a patch of dye twists and folds with exponentially
increasing area, filling a larger bounding area governed by the multiparticle dispersion rate.
At larger space and time scales, the tracer area grows in a fickian manner with the effect of
vortical modes incorporated into an effective diffusivity.
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In a realistic ocean, the added complexities of stirring processes operating on a variety
of time and space scales will prohibit comparison of the distinct stages of diffusion we’ve
discussed. The most practical results to emerge from our work are estimates of an effective
(Fickian) diffusvity, and bounds on when such a diffusivity is appropriate. In the coastal
ocean, vortex lifetimes are likely to be shorter than their turnover timescale. In this limit, the
displacements, stretching distortion and shear dispersion associated with azimuthal motion
may not be as important as displacements from the initial vortex adjustment. We calculate
a non-dimensional effective diffusivity for this random-walk like motion of .01 (Figure 5.) To
redimensionalize, we multiply by (N 2h2

∗
fβ)/f2. Using N = 10 cph, f = 1 day−1, β = .25, and

h∗ = 3-10 m, we get dimensional diffusivities of up to .1 m2/s. While this is an enhancement
over the estimates from shear dispersion alone, it is still an order of magnitude smaller than
observations. In the open ocean, vortices may exist for many rotations, in which case the
mechanisms of Section 5 are more appropriate. Using h∗ up to 30 m, we calculate dimensional
diffusivities of order 1 m2/s, the same order as observations. This value will be appropriate
only after a dye patch has grown to scales larger than the vortex scale (approximately an
internal Rossby radius). Our analysis suggests the time necessary to get there is highly
dependent on the initial dye patch size and the vortex lifetime (Figure 11).

There are numerous additional complexities that could be included in future work. First,
given the importance of the vortex lifetime, τ in our results, we should try to get better es-
timates of realistic ocean values. We should consider the potential effect of instabilities as a
limit on expected lifetime. Second, we could consider a model with a continuous distribution
of vortex lifetimes. Third, we could use a the full baroclinic vortex form suggested by the
numerical adjustment results. Such an approach would include the effects of cyclonically ro-
tating vortices, which could significantly enhance stirring motions. Finally, we could compare
our analytical results with full numerical simulations, such as those being performed by P.
Lelong [12].

7 Acknowledgements

I’d like to thank Jim Ledwell and Miles Sundermeyer for suggesting this project and being
patient and helpful throughout. I also thank Bill Young, Glenn Flierl, Antonello Provenzale,
Claudia Pasquero, Jean-Luc Thiffeault, and Stefan Llewellyn Smith for numerous helpful
discussions. I’m indebted to Neil Balmforth, Bill Young and the entire GFD staff for giving
me the opportunity to participate in the summer program and for all the wisdom they
generously share. The summer was infinitely enhanced by the company of the other fellows
for lively (and only occasionally squalid) dinners, triathalons, beach trips, and softball games.
Thanks especially to Nifer, Claudia and J-Luc for their friendship and support.

References

[1] M. A. Sundermeyer, Ph.D. thesis, WHOI, 1998.

[2] J. Ledwell, A.J.Watson, and C. Law, “Evidence for slow mixing across the pycnocline
from an open-ocean tracer-release experiment,” Nature 364, 701 (1993).

22



[3] C. Garrett, “On the initial streakiness of a dispersing tracer in two- and three-simensional
turbulence,” Dyn. Atmos. Oceans 265 (7).

[4] W. Young, P. Rhines, and C. Garrett, “Shear-flow dispersion, internal waves and hori-
zontal mixing in the ocean,” J. Phys. Ocean. 12, 515 (1982).

[5] J. McWilliams, “Submesoscale, coherent vortices in the ocean,” Rev. Geophys. 23, 165
(1985).

[6] K. Polzin, E. Kunze, J. Toole, and R. Schmitt, in progress (unpublished).

[7] M.C.Gregg, E. D’Asaro, T. Shay, and N. Larson, “Observations of persistent mixing and
near-inertial internal waves,” J. Phys. Ocean. 16, 856 (1986).

[8] N. Oakey, personal communication.

[9] J. McWilliams, “Vortex generation through balanced adjustment,” J. Phys. Ocean. 18,
1178 (1988).

[10] W. Blumen, “Geostrophic adjustment,” Rev. Geophys. and Space Phys. 10, 485 (1972).

[11] P. Rhines and W. Young, “How rapidly is a passive scalar mixed within closed stream-
lines?,” J. Fluid Mech. 133, 133 (1983).

[12] P. Lelong, personal communication.

23


