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1 Introduction

To date, studies of finite amplitude baroclinic waves have been mostly numerical. The
numerical models, ranging from general circulation models (GCMs) to two-layer quasi-
geostrophic (QG) models have been able to simulate certain observed features of the mid-
latitude synoptic system quite well. For instance, the asymmetric life cycle of global normal
modes observed by Randel and Stanford [1] has been well simulated by Simmons and
Hoskins [2] with a primitive equation model and by Feldstein and Held [3] with a 2-layer
QG model. Coherent wave packets that are observed in both the Northern Hemisphere (NH)
and the Southern Hemisphere (SH) have also been simulated in a hierarchy of models [4, 5].
Analytical theories of finite amplitude baroclinic waves, on the other hand, have not been
developed except for those under weakly nonlinear conditions. The requirement of small
super-criticality severely limits the application of such a theory on the real atmosphere,
which clearly exhibits finite super-criticality.

This work attempts to construct a truncated 2-layer QG model that is capable of cap-
turing the essential features of finite amplitude baroclinic waves. The existence of such a
model is suggested by the remarkably simple meridional structures of the nonlinear baro-
clinic waves as simulated by untruncated 2-layer QG models [5]. Successful truncation may
provide insight into the underlying processes, and might lead a step towards an analytical
theory for the finite amplitude barolinic waves.

2 Model

The 2-layer QG equations on a β-plane may be written as follows:

∂q1
∂t

+ J(ψ1, q1) = r

(

ψ1 − ψ2

2
− τe

)

− ν∇6ψ1 (1)

∂q2
∂t

+ J(ψ2, q2) = −r

(
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2
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)

− κM∇
2ψ2 − ν∇
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where

qj = βy +∇2ψj + (−1)j

(
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2

)

, j = 1, 2 (3)
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Here, j = 1 and 2 refer to the upper and lower layers. κM is the Ekman friction, r is the
relaxation rate towards the equilibrium state τe, ν is the numerical diffusion that param-
eterizes cascade to unresolved scales. The equations have been nondimensionalized. The
radius of deformation λ is chosen as the horizontal length scale, where

λ2 = g(ρ2 − ρ1)H/(2ρ2f
2
0 ) (4)

and H is the depth of either layer. Time is scaled by λ/U0, where U0 is the horizontal
velocity scale. For more detailed discussion about this model, the reader is referred to Lee
and Held (1993) [5].

I choose the boundary conditions that correspond to a channel with rigid walls [6]:

∂ψj

∂x
= 0 &

∂ψj

∂y
= 0 y = 0, Ly (5)

x is the direction along the channel (zonal, longitude) and y is the direction across the
channel (meridional, latitude). This choice is supported by the fact that wave packets are
more coherent when the storm track is more meridionally confined. The general solution
that satisfies the boundary conditions can be written as follows:

ψj(x, y, t) =
∑

∞

m=1A
′

j,m(x, t) sin my
N

+
∞

∑

n=1

Cj,n(t) cos
ny

N

+
∑

∞

m=1Aj,m(t)(sin my
N
− my

N
+[(m mod 2)− 1]

m

N

y2

Nπ
) (6)

where A′j,m(x, t) = Aj,m(x, t)−Aj,m. The overbar denotes the average over x. I have chosen
Ly to be Nπλ.

3 “Rules” for Truncation

To construct a truncated model, one needs to first select a desirable subset of base functions,
then express the unknowns in terms of these base functions and substitute them into the
equations. One then projects the equations onto the selected base functions to obtain a
new set of equations to solve for the coefficients of the base functions.

To be “desirable”, first of all, the truncation needs to be simple, as the whole goal of
truncation is simplification, or to capture essential features of the system with less degrees
of freedom. It is also desirable for the truncated models to retain the conservation laws
of, for example, energy, potential enstrophy, and momentum. Even though they are not
required, as the truncated models are, by nature, approximations, conservation laws, if
retained, prove to be very useful for model validation and facilitate the discussion of, for
instance, the energy conversion.

It can be shown that if energy and potential enstrophy, or in general, any quadratic
quantities, are conserved for a base function set, they are also conserved by a subset that
consists of orthogonal base functions. One complete set of base functions, suggested by the
general solution (6), includes:

()′ sin
my

N
, m = 1,∞ (7)
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()(sin
my

N
−
my

N
+ [(m mod 2)− 1]

m

N

y2

Nπ
), m = 1,∞ (8)

() cos
ny

N
, n = 1,∞ (9)

Modes in set 7 may be called eddy base functions and have zero x averages. Set 8 and 9 con-
sists of base functions that represent the zonal mean components. As

∫ Nπ

0 sin my
N

sin ly
N
dy =

0, when m 6= l, and
∫

()′()dx = 0 by definition, every base function in (7) is orthogonal
to all the other base functions, including those in (8) and (9). Base functions in (9) are
orthogonal to other base functions within set 9 yet not orthogonal to base functions in set
8. Base functions in set (8) are not orthogonal to each other. Therefore, any combination
of set 7 base functions together with any combination of set 9 base functions or one set 8
base function would be an orthogonal set. Here, I choose set 9 to represent the zonal mean
components as it appears to be simpler than set 8.

When there is no friction, the untruncated model should conserve total momentum

d

dt

∫ Nπ

0

∂ψM

∂y
dy = 0 (10)

where subscript M denotes the barotropic component. Adding equation (1) and equation
(2) gives

∂qM
∂t

+ J(ψM , qM ) + J(ψT,qT ) = 0 (11)

Subscript T denotes the baroclinic component. It is clear that changes in the zonal mean
barotropic components can only come from wave-wave interactions represented by the Ja-
cobian of eddies. Since the eddies have base functions of the form ()′ sin my

N
, if the indexes

(m’s) of any pairs of eddy base functions are separated by odd numbers and set 9 is selected
as the base functions for the zonal components, it can be shown that the Jacobians in Eq.
11 do not affect the channel integrated barotropic zonal velocity, i.e. they conserve the total
momentum (Appendix). The same is not true when set 8 is used or when the indexes of
the eddy base functions are separated by even numbers. It directly follows that the selected
eddy base function set should have no more than 2 base functions, for with more than 2
base functions, there must be at least one pair whose indexes are separated by an even
number.

4 Truncation I

Following the “rules” described in the previous section,

{

()′ sin
y

N
, ()′ sin

2y

N
, () cos

y

N
, () cos

2y

N

}

, (12)

appears to be an appropriate set. The unknown variables are then expressed in terms of
these base functions.

ψj(x, y, t) = A′j,1(x, t) sin
y

N
+A′j,2(x, t) sin

2y

N
+ Cj,1(t) cos

y

N
+ Cj,2(t) cos

2y

N
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Figure 1: Time evolution of a normal mode with a weakly supercritical background zonal
flow. (a) shows the total wave energy (solid), the baroclinic mean flow energy (dotted)
and the barotropic mean flow energy (dashed). The absolute values of baroclinic mean
flow energy have been shifted in the plot. (b) shows the latitude-time contour of zonally
averaged upper layer wave streamfunction squared (i.e. variance) over one lifecycle of the
normal mode. The unit in the y direction is 2πλ.
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The prime over Aj,is and the overbar over Cj,is remind us that A represents deviations from
the zonal average and C represents the zonal means (i=1,2). By Equation 3, qj , excluding
the βy term, can be expressed in terms of the following components:

()′ sin
y

N
:

∂2A′j,1
∂x2

−
A′j,1
N2

+ (−1)j
A′1,1 −A

′

2,1

2

()′ sin
2y

N
:

∂2A′j,2
∂x2

−
4A′j,2
N2

+ (−1)j
A′1,2 −A

′

2,2

2

() cos
y

N
: −

Cj,1

N2
+ (−1)jC1,1 − C2,1

2

() cos
2y

N
: −

4Cj,2

N2
+ (−1)jC1,2 − C2,2

2

After substituting ψj and qj into equations 1 and 2, I project the equations onto the selected

base functions. Take () cos y
N

as an example, the projection is done by first multiplying the

equations by () cos y
N

, and then integrating over y and averaging over x. Doing the projection
for each base function and for both layers gives us 8 predictive equations for the 8 unknowns
(the Aj,is and Cj,is). I then solve the new equations numerically using the spectral method.
The nonlinear Jacobian terms are computed using the spectral transform method. As the
spatial dimension of the problem is reduced from 2 to 1 (there is no y dependence in the
equations now), the implementation is greatly simplified. I implement the model in a way
that the selected base function set needs not to be the one specified in (12), but can be any
combination of set 7 and set 9 base functions.

I will first study the nonlinear initial value problem for this truncated model, and then
study the forced and dissipated system. The channel width is set to be 2π in this study.

4.1 Normal mode study

Without forcing and dissipation, I initialize the system with a zonal mean profile that is
supercritical and perturb it with a ()′ sin y

N
zonal wave disturbance that is close to the

most unstable mode. The super-criticality and the most unstable mode are obtained from a
linear stability analysis that I did for zonal wave disturbances with y dependence of the form
sin my

N
and zonal background flows of the form cos ny

N
(both in terms of stream-function).

Normal mode evolution with a weakly supercritical zonal flow has been studied using
the weakly nonlinear theory. Figure 1 shows the time evolution of a normal mode with
a weakly supercritical background zonal flow calculated from the truncated model. The
stream-function of the background flow takes the form of () cos y

N
. As described by the

weakly nonlinear theory and simulated by untruncated 2 layer QG models, there is little
change in the barotropic zonal flow energy. The eddies grow baroclinically and also decay
baroclinically, exhibiting a symmetric life cycle in terms of wave streamfunction squared.

In the real atmosphere, however, normal modes are observed to have asymmetric life
cycles. This is not explained by the weakly nonlinear theory. For eddies to decay barotropi-
cally, some of the eddy energy has to be converted into barotropic mean flow energy through
irreversible mixing processes like wave breaking. Figure 2 shows the time evolution of a nor-
mal mode in the untruncated model when the super-criticality is raised. Greater changes in
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Figure 2: The same as Figure 1, except for the large super-criticality case.

the barotropic mean flow energy is observed. The life cycle becomes asymmetric as seen in
the latitude-time contour of the zonal variance of the upper layer streamfunction. Changes
in the barotropic mean flow energy are quite small however. So is the asymmetry of the
life cycle. This should be expected since the truncated model has very limited degrees of
freedom in the y direction, which limits its ability of mimicking fine scale processes like wave
breaking. The model’s ability of fully simulating the asymmetry in the eddy life cycles may
be further limited by the cos y

N
shape zonal mean stream-function that I have chosen. The

resulted sin y
N

shape zonal winds have rather weak meridional wind shear, which is thought
to be critical for the barotropic decay of waves.

4.2 Forced and dissipated systems

I now examine the statistically steady state behaviors of finite amplitude wave when forcing
and dissipation are present. The system is initialized with small noise like perturbations,
with a Ekman friction κM of 0.05 and a relaxation time of 50 model days (i.e. r=0.02), and
is relaxed towards the equilibrium profile τe. The relative magnitude of κM r, τe affects the
shear strength of the statistically steady state. Here, I use the equilibrium profile τe, which
takes the form of cos y

N
, as a parameter to change the super-criticality of the statistically

steady state.
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Figure 3: The longitude-time contour plots for the sin y
N

(left) and sin 2y
N

(right) modes of
the upper layer stream-function for the weak super-criticality case. The unit of x (longitude)
is 2πλ. Negative contours are dotted.
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Figure 4: The same as figure 3, except for the strong super-criticality case.

The results from the truncated model are remarkably similar to those from an untrun-
cated model study by Esler [7]. In Esler’s study, the meridional structure is fully resolved
by a 100 grid point finite differencing. An Empirical Orthogonal Function (EOF) analy-
sis was then applied on the results to identify the dominant modes. Esler identified the
first two modes as the antisymmetric mode and the symmetric mode, which have almost
identical structures as the sin y

N
and sin 2y

N
modes used in this study. This result is not

totally expected since although the sin y
N

and sin 2y
N

modes have the largest linear growth
rates, whether they should still dominate when nonlinear effects become important is not
totally clear. In figures 3 and 4, I present the longitude-time contour plots of the upper
layer streamfunction for the cases of weak super-criticality (linear growth rate is about
0.02/day) and strong super-criticality (linear growth rate is about 0.17/day) respectively.
For the weak super-criticality case, the wave train is modulated and the peaks appear to
move at the same velocity as the phase speed. For the strong super-criticality case, the
waves undergo quite chaotic evolution. Figure 3 may be compared to Esler’s figure 15, and
figure 4 may be compared to his figure 18. The remarkable similarity between the truncated
model results and the untruncated model results strongly implies that the system has very
low degrees of freedom in the meridional direction.

The model may be further reduced. Without the zonal mean component cos y
N

, one
obtains results similar to those shown in figure 3 and 4 exceptthat the asymmetry of the eddy
life cycles would not be simulated. Although not shown here, the potential vorticity (PV)
fields in the upper and lower layers also resemble the results from Esler’s study (his figure
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19) and show the expected behaviors. The PV field in the lower layer is homogenized and
the PV gradient in the upper layer is strengthened with some indication of wave breaking.

5 Other Truncations and Discussion

Esler’s model [7] does not show coherent wave packets. However, wave packets were found
over a broad parameter regime by Lee and Held in their 2-layer QG model [5]. The two
differences between their model and Esler’s model are: (1) Lee and Held used a wider
channel (21λ) than Esler did (2πλ); (2) Lee and Held used a Gaussian zonal wind shear
while Esler used a uniform zonal wind shear. These two differences appear to be crucial for
wave packet formation.

It turns out that the wave packets are readily formed if wave-wave interaction only
affects the mean flow and does not change the eddies. This is sometimes called the quasi-
linear or wave-mean flow interaction model [3]. The simplest example of such a system has
the following base function set:

{

()′ sin
y

N
, () cos

y

N

}

, (13)

One can also choose, for example,
{

()′ sin
y

N
, ()′ sin

2y

N
, () cos

y

N

}

, (14)

but ignore effects on the eddies by the wave-wave interaction, or choose, for example,
{

()′ sin
3y

N
, ()′ sin

4y

N
, () cos

3y

N

}

, (15)

so that the wave-wave interactions do not project back onto the eddies themselves. Figure
5 shows the results for selection (13) as an example. The super-criticality here is much
greater than that of the case in figure 4 (linear growth rate is about 1.9/day), yet wave
packets are found and exhibit great coherence.

For the base function sets specified in (13), (14) and (15), the behavior of wave packets
closely resembles that described in Lee and Held (1993) [5]. For example, the number of
wave packets is found to increase with increasing super-criticality and increasing channel
length. The power spectrum of the eddies is also found to be very simple, as found by Lee
and Held for the wave packets (e.g. their figure 11) [5], while truncation (I) gives very
noisy spectrum when the super-criticality is high.

In all the quasi-linear models, one eddy mode interacts with other eddy modes and with
itself to affect the evolution of the mean flow (nonlinear). The evolution of the eddies,
however, is determined by the wave-mean interaction and is not directly affected by the
wave-wave interaction. In these cases, the evolution of an eddy mode is in a sense indepen-
dent of the other modes (of course, eventually they are coupled through the mean flow).
The role of this “independence” in wave packet formation is unclear. Furthermore, from a
weakly nonlinear analysis [7] and from the difference between Esler’s model and Lee and
Held model, it appears that the eddies need to be confined away from the walls for wave
packets to form. Further understanding of these two points may provide us some hints on
the mechanisms of wave packet formation.
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Figure 5: The longitude-time contour plot for the sin y
N

mode of the upper layer stream-
function with base functions specified in (13). The unit of x is again 2πλ.
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6 Concluding Remarks

This work attempts to construct truncated 2-layer QG models for the study of finite am-
plitude baroclinic waves. I find that models severely truncated in the meridional direction
are capable of capturing essential features of the fully resolved model. This is an indication
of small degrees of freedom in the y direction. Truncation (I) is capable of simulating the
asymmetric life cycle of the eddies, although only to a small extent due to the inefficiency of
the truncated model in simulating fine scalewave breaking events. Coherent wave packets
are found for truncated models that are quasi-linear, but not for models with wave-wave
interactions in the eddy evolution equations. Coherent wave packets are also found for
untruncated models with a wide channel and with a Gaussian zonal wind shear profile, but
not for models with a narrow channel and with a uniform shear. Understanding these two
differences may shed some lights on the mechanisms of wave packet formation. I also note
that some important aspects of the problem have not been explored in this study, including,
for instance, the effects of the channel width and the effects of different shapes of zonal wind
profile.
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Appendix

Suppose that we take two eddy base functions ()′ sin my
N

,()′ sin ly
N

so that

ψ′M = A′M sin
my

N
+B′M sin

ly

N

q′M = (
∂2A′M
∂x2

−
m2A′M
N2

) sin
my

N
+ (

∂2B′M
∂x2

−
l2B′M
N2

) sin
ly

N

Now we calculate J(ψ′M , q
′

M ). The Jacobian of the sin my
N

and the sin my
N

terms is

{

∂A′M
∂x

(
∂2A′M
∂x2

−
m2A′M
N2

)
m

N
−A′M (

∂3A′M
∂x3

−
m2

N2

∂A′M
∂x

)
m

N

}

1

2
sin

2my

N
(16)

The x average of Eq. 16 vanishes as

∂A′M
∂x

∂2A′M
∂x2

=
1

2

∂(∂A′M/∂x)
2

∂x

A′M
∂A′M
∂x

=
1

2

∂(A′M )2

∂x

A′M
∂3A′M
∂x3

=
∂

∂x
(A′M

∂2A′M
∂x2

)−
∂A′M
∂x

∂2A′M
∂x2
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and
∂()

∂x

x

= 0

The same is true for the Jacobian of the sin ly
N

and the sin ly
N

terms. On the other hand, the

x averages of the Jacobians of the sin my
N

and the sin ly
N

terms generally do not vanish and

produce nonzero terms of the form () sin (l−m)y
N

and () sin (l+m)y
N

. When projected onto the

zonal mean base functions of the form () cos ky
N

, we note that

∫ Nπ

0
sin

iy

N
cos

jy

N
dy =

{

0 i− j is even
2Ni

i2−j2 i− j is odd

We also note that only changes in zonal mean components with odd k’s change the total
momentum. Therefore, if l-m is odd, the Jacobian terms have zero projection onto those
components, and the momentum is automatically conserved. If l-m is even, the Jacobian
terms have non-zero projection onto zonal mean components with odd k’s. Total momentum
would not be conserved unless all zonal mean components have zero momentum when
integrated over the whole channel.
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