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1 Introduction

Recent analytical and numerical results by Salmon [Salmon, 1992] and Becker and Salmon
[Becker and Salmon, 1997] have shown that the barotropic flow in simple β-plane models of
wind-driven ocean circulation is dramatically altered when the vertical boundaries usually
employed in such models are replaced by continental slopes on which the depth goes gradually
to zero at the boundaries. The sloping topography acts to guide the barotropic flow and moves
the western boundary currents away from the lateral boundaries and onto the lower part of
the slope. This produces a vorticity distribution which is more prone to instabilities than in
the case of vertical sidewalls and diminishes the role of lateral viscosity at the boundary in
dissipating potential vorticity, leaving Ekman friction as the dominant dissipation mechanism.

The ‘sliced cone’ model was introduced by Griffiths and Veronis [Griffiths and Veronis, 1997]
to investigate the effect of sloping sidewalls on homogeneous wind-driven flow on a simulated
β-plane in the laboratory. This model is a variant of Pedlosky and Greenspan’s ‘sliced cylin-
der’ model [Pedlosky and Greenspan, 1967] in which the vertical sidewalls have been replaced
by an azimuthally uniform slope around the perimeter of the basin. The presence of closed
geostrophic contours provides a “short cut” for the western boundary current of the interior
Sverdrup flow, allowing the current to delay dissipation of the potential vorticity imparted by
the wind until just before it rejoins the interior flow.

The laboratory results showed that the flow can become unsteady when the wind stress
forcing is anticyclonic and exceeds a critical strength. The fluctuations are periodic for mod-
erately supercritical forcing, but become aperiodic under relatively strong forcing. This paper
presents an analysis of the time dependence displayed by numerical simulations of the flow in
this apparatus as a function of forcing strength.

2 The ‘sliced cone’ model

The laboratory model employed by Griffiths and Veronis [Griffiths and Veronis, 1997] utilized
a basin of the form shown in Figure 1, filled with water and bounded above by a rigid horizontal
lid. The base of the apparatus rotates with a constant angular velocity Ωk̂ about a vertical
axis, whilst the rigid lid has a slightly different angular velocity (1 + ε) Ωk̂ in order to simulate
a spatially uniform wind stress curl. The sidewall has a 45◦ slope relative to the horizontal



and this cone is intersected by a plane with slope 1:10 which forms the central part of the
bottom boundary. Figure 1 shows that in this geometry the geostrophic contours (contours
of constant depth) are circles near the rim and D-shaped curves when they cross the interior.
All geostrophic contours are closed curves, in contrast to the ‘sliced cylinder’ in which all
geostrophic contours are blocked by the vertical sidewalls. The potential vorticity gradient
imposed by the shallow slope in the interior is analogous to the potential vorticity gradient
of a β-plane and allows us to identify directions in the apparatus with various points of the
compass, as shown in the figure (note that the apparatus rotates in the northern hemisphere
sense). The width 2a of the apparatus is 97.3 cm and the depth H at the center is 12.5 cm.
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Figure 1: Perspective diagram of the ‘sliced cone’ model used in the laboratory and numerical
experiments. The curves are contours of constant depth (geostrophic contours), and the com-
pass directions are defined in terms of the potential vorticity gradient imposed by the sloping
bottom in the interior.

The type of flow seen in this apparatus depends on ε and the Ekman number E = ν

ΩH2 ,
where ν is the kinematic viscosity of the fluid (water in our case). We can also define a Rossby

number by Ro = |ε|. A linear analysis (Ro=0) based on an expansion in powers of E
1

2 was
presented in [Griffiths and Veronis, 1998]. This analysis showed that the zeroth order flow is
along geostrophic contours, and is therefore about ten times faster on the slope than in the
interior due to the order of magnitude difference of the bottom slopes in these regions. The
E

1

2 -order correction introduces the effect of wind forcing in the interior, resulting in a cross-
contour Sverdrup flow which gives a northwest-southeast tilt to the streamlines in the interior
but relatively little change to the slope current. At the next order a Stewartson E

1

4 layer at
the junction between the rapid slope current and the slow interior flow makes the azimuthal
velocity continuous in this region.

The laboratory study by Griffiths and Veronis [Griffiths and Veronis, 1997] showed that the
sign of ε has a dramatic effect on the stability of the flow at finite Ro, through a mechanism
clarified by the numerical investigation of [Kiss and Griffiths, 1998]. When ε > 0 (cyclonic



forcing) the circulation was steady for all values of Ro and E investigated. Under anticyclonic
forcing (ε < 0) the slope current enters the interior as a jet when Ro is large, and the flow
becomes unstable for large enough Ro and small enough E. The laboratory results showed
that there are four main regimes as a function of Ro and E for anticyclonic forcing. For small
Ro the asymptotic state after spin-up is a steady circulation (apart from some extremely small-
amplitude fluctuations seen in the laboratory which the numerical model used here did not
reproduce). The flow becomes unstable at a critical value of Ro, which depends on the value
of E. For large Ro the only instability which appears is a pinching-off of cyclonic eddies from
the cyclonic meander in the western boundary current jet. At small E the situation is more
complicated: the first instability to appear is a growing wave in the anticyclonic shear layer
at the the west of the interior, in which anticyclonic eddies appear at the west and grow as
they are advected northwards until they dissipate when they collide with the southern edge
of the jet. At larger values of Ro the cyclonic loop in the jet also becomes unstable and sheds
cyclonic eddies. Initially both the cyclonic and anticyclonic instabilities are periodic, but at
large Ro the flow for any E appears to become chaotic.

These laboratory observations raise interesting questions as to the nature of the transi-
tions between these regimes, and the route to chaos in this system. This research project
was a numerical investigation of these transitions, using the techniques of dynamical sys-
tems theory in an approach similar to that of [Jiang et al., 1995, Meacham and Berloff, 1997,
Berloff and Meacham, 1997]. The behavior of the system under anticyclonic forcing was stud-
ied as a function of Ro at a fixed value of E (1.5075×10−5). This value was chosen in order to
study the more interesting situation in which both cyclonic and anticyclonic eddy shedding can
appear. In the next two sections the formulation and implementation used in the numerical
model are discussed; the rest of this paper is devoted to a presentation and discussion of the
methods used and the results obtained.

2.1 Formulation

The equations of motion for this system (relative to coordinates rotating with angular velocity
Ωk̂) are:

∂ut+Ro (u · ∇)u + 2k̂ × u = −∇p+ E∇2
u (1)

and
∇ · u = 0, (2)

where k̂ is the unit vector in the z direction (vertical), p is the pressure divided by the
density and we have scaled the velocity u, time t and length by U = |εΩH|, |Ω−1| and H,
respectively. The importance of advection and viscosity are parameterized by the Rossby
number Ro = U

ΩH
= |ε| and Ekman number E = ν

ΩH2 , respectively, where ν is the kinematic
viscosity of the fluid. Gravitational and centrifugal accelerations are not relevant to this
system, since there is no free surface and no stratification.

We shall separate the vertical and horizontal components of the velocity by writing u =
u

H
+ k̂w, where k̂ · u

H
= 0. For the parameters used in this study it is a very good approx-

imation to assume (outside the Ekman layers) that u
H

is independent of z and horizontally



nondivergent, so we have
u

H
= k̂ ×∇

H
ψ, (3)

where ψ is the streamfunction and ∇
H

denotes the horizontal gradient operator.
Taking the vertical component of the curl of the momentum equation 1 yields an equation

for the vertical vorticity ζ:

∂ζt+RoJ(ψ, ζ) = (2 +Ro ζ) ∂wz + E∇2
H
ζ, (4)

where
ζ = ∇2

H
ψ (5)

and J(a, b) ≡ ∂ax∂by − ∂ay∂bx is the two-dimensional Jacobian operator. The assumption

that ∂u
H
z = 0 implies (via 2) that ∂2w

∂z2 = 0, allowing us to find ∂wz by using steady, linear
Ekman matching conditions1 for w at the top and bottom boundaries. Since the bottom slope
is not small, a coordinate-free form of equation (4.9.32) in [Pedlosky, 1987] (valid where the
radius of curvature of the bottom topography is much larger than the Ekman layer thickness)
was used to find w on the bottom boundary. Combining this with the upper Ekman matching
condition yields

∂wz =
E

1

2

2 (1 − h)

(

ζ
T
− (1 + σ) ζ − sσJ

(

s−1J(ψ, h) , h
))

−
J(ψ, h)

(1 − h)
, (6)

where ζ
T

= 2 ε

|ε| is the vorticity of the lid, 1 − h is the scaled fluid depth, s = |∇
H
h| is the

bottom slope and σ =
(

1 + s2
)

1

4 . On the sloping sidewall we have ∂hθ = 0 (where θ is the
azimuthal coordinate) and 6 has the form

∂wz =
E

1

2

2 (1 − h)

(

ζ
T
− (1 + σ) ζ −

s2σ

r2
∂2ψ

∂θ2

)

−
J(ψ, h)

(1 − h)
, (7)

where r is the radial coordinate. In the interior the bottom slope is so small that its effect on
the bottom Ekman layer can be neglected, giving

∂wz =
E

1

2

2 (1 − h)
(ζ

T
− 2ζ) −

J(ψ, h)

(1 − h)
. (8)

The no-slip boundary condition gives

ψ = ∂ψr = 0 at r =
a

H
. (9)

1Steady, linear Ekman matching is valid for flows which are nearly steady over one rotation pe-

riod [Beardsley, 1975b] and have Ro << E
1

4 [Bennetts and Hocking, 1973]. The latter criterion is violated
for the more strongly forced results presented here, but the close similarity of the calculated flows to those seen
in the laboratory suggests that the error involved in using linear Ekman conditions is insignificant. Thus it was
felt that using the much more complicated nonlinear Ekman conditions was not justified for our purposes.



2.2 The numerical model

The numerical experiments were conducted with a highly efficient sliced-cylinder code devel-
oped by Page [Page, 1982] and described in detail in his PhD thesis [Page, 1981]. The algorithm
is the same as that presented by Beardsley [Beardsley, 1975a], which was in turn based on the
refinement by Israeli [Israeli, 1970] of a scheme proposed by Pearson [Pearson, 1965]. For this
study the code was modified to include the effect of the sloping sidewalls on the bottom Ekman
layer. The code solves 4 and 5, where ∂wz is found by using 7 on the slope2 and 8 in the interior.
This system generalizes that analyzed in [Griffiths and Veronis, 1998] by including advection,
lateral viscosity and time dependence. Spatial derivatives are calculated using second-order
centered differences on a polar grid, except at the origin where an integral treatment is used.
The vorticity equation 4 is solved using the alternating-direction implicit method, and a fast
Fourier transform in θ is used to solve the Poisson equation 5 for ψ. Since the nonlinearity in 4
couples it to 5, these equations are solved iteratively within each timestep until both ψ and ζ
converge. This in-timestep iteration also serves to converge ζ at the boundary to a value which
is consistent with the no-slip boundary condition 9, using optimal relaxation. The algorithm
is unconditionally stable for zero Ro and retains its stability for all reasonable values of Ro.
The numerical results reported here were obtained using 160 grid points in the radial direction
and 512 in the azimuthal direction (with no stretching in either direction) and a timestep of

10−3E− 1

2 ≈ 1
8 rotation periods, giving good spatial and temporal resolution. A comparison of

numerical and laboratory results for the northward velocity under cyclonic forcing is shown in
Figure 2.

3 Methods

Although some use was made of sequences of snapshots of the ψ and ζ fields, the primary
diagnostic we used to study the time dependence of the computed flows was the basin integral
of the kinetic energy, K(t) = −

∫∫

ψ(t)ζ(t)dA. Another quantity plotted in the following

section is the normalized fluctuation in K, K ′(t) = K(t)−K̄

K̄
, where K̄ is the time-average of K

in the statistically steady state. Time series of K ′ calculated at each time step were analyzed
by several techniques:

3.1 Power spectra

Power spectra of the time series allowed identification of the primary frequencies present, and
provided a means of discriminating between quasiperiodic and chaotic time series.

3.2 Delay coordinates

The spatial resolution used in the model implies that this numerical system has a phase
space with over 80000 dimensions. However as we shall see the trajectory of the state vec-
tor is confined to a manifold with a much smaller dimension than that of the full phase

2 7 is not evaluated on the lateral boundary itself (where 1− h vanishes) because this is where 9 is imposed
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Figure 2: Laboratory and theoretical results from [Griffiths and Veronis, 1997]
and [Griffiths and Veronis, 1998] compared with numerical results for the northward
component of the normalized velocity as a function of position along the line y = 0, for
cyclonic forcing.

space. The technique of delay-space reconstruction allows a trajectory to be extracted from
the time series which has the same topological properties as the trajectory in the full phase
space [Takens, 1981]. The delay-space trajectory is constructed by forming the time-dependent
n - dimensional vector X(t; τ), whose components are Xi = K ′(t− (i−1)τ), where τ is a fixed
delay time. The topological properties of the trajectory are independent of the choice of τ ,
but in order to obtain a trajectory which is not too contorted it is best to choose τ so that
Xi and Xi+1 are neither strongly correlated nor strongly uncorrelated. The delay used in the
results presented here was 7.52 days, about a quarter of the shortest period (25 to 31 days).
Trajectories were produced using embedding dimensions n of 2 or 3.



3.3 Poincaré sections

We found Poincaré sections to be a useful diagnostic tool for studying the structure of phase
space trajectories and the manner in which the system converged to its final state. They were
constructed by choosing a plane of interest in delay space (say, Xk = c for some component k)
and recording the position at which the trajectory passed through the plane in the direction
of increasing Xk. The set of these intersection points comprises a Poincaré section of the
trajectory. The results presented here used c = 0, the asymptotic mean value of K ′.

4 Results

Numerical results were obtained for many different Rossby numbers, concentrated about values
of Ro corresponding to transitions between regimes. The numerical model was integrated until
the system reached a statistically steady state (at least several hundred days, and longer when
close to a bifurcation) and the integration was continued to obtain a long time series in order
to study the time dependence of the asymptotic state. The results are summarized in Figure 3,
which shows the time average K̄ of the asymptotic basin-integrated kinetic energy as a function
of Ro. It is clear that there are several transitions between regimes, which take place abruptly
at critical values of the Rossby number. The most interesting region, in which the behavior
changes from periodic to quasiperiodic and ultimately to chaotic, takes place over a relatively
small range of Ro. Over some of this range there is a second branch of solutions. The details
of these regimes and the transitions between them are discussed below.

4.1 Fixed point (steady flow)

For Ro < Ro1 ≈ 8.5×10−3 the flow converges to a steady state of the form shown in Figure 4,
in which flow is closely aligned with depth contours on most of the slope and is driven across
depth contours by the wind stress in the interior. These regions are joined by a region of
strong anticyclonic vorticity at the bottom of the slope where dissipation of vorticity by the
bottom Ekman layer allows flow across depth contours. The inertial overshoot where the slope
current rejoins the interior at the west becomes more pronounced as Ro is increased. A time
series of the normalized energy perturbation K ′ at Ro = 1.0 × 10−3 is shown in Figure 5. At
this Rossby number the flow converges directly to the steady state without oscillations. Closer
to the transition to unsteady flow the convergence is oscillatory (see Figure 6). The power
spectrum of the extremely small-amplitude decaying oscillation at Ro = 7.5×10−3 shows that
the oscillation frequency is around 0.027 cycles per day. This spectral peak has been labeled
A for future reference.

4.2 Limit cycle (periodic flow)

When Ro1 < Ro < Ro2 ≈ 2.64 × 10−2, the flow is unsteady and displays a periodic train of
growing anticyclonic waves in the anticyclonic shear layer at the west. Close to the bifurcation
point the oscillations in K ′ have an extremely small amplitude, as shown in Figure 7 for
Ro = 10−2. The frequency at Ro = 10−2 is 0.032 cycles per day, close to that of the decaying
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Figure 3: Time average K̄ of the basin-integrated kinetic energy as a function of Ro. a) the
complete range of Ro investigated; b) a closeup of the transition from a limit cycle to chaos,
showing the presence of two branches for a range of Ro.



Figure 4: Contours of ψ (left) and ζ (right) for Ro = 5× 10−3. Contours of anticyclonic ζ are
dashed and the grey ellipse marks the bottom of the slope. North is at the top and the mean
flow is clockwise.
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Figure 5: Time dependence of K ′ with Ro = 1.0 × 10−3.
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Figure 6: Time dependence of K ′ with Ro = 7.5 × 10−3. Top: time series; middle: power
spectrum of time series (the zero frequency peak has been suppressed); bottom left: delay-
space trajectory for the time series.
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Figure 7: Time dependence of K ′ with Ro = 1.0 × 10−2. Top: time series; middle: power
spectrum of time series (the zero frequency peak has been suppressed); bottom left: delay-space
trajectory for the time series; bottom right: Poincaré section of the delay-space trajectory.

oscillation at Ro = 7.5 × 10−3. The other peaks in the power spectrum are harmonics of this
fundamental frequency, as they must be for a periodic oscillation. The phase - space trajectory
in Figure 7 has the form of a limit cycle; the Poincaré section (which has axes scaled to fit the
range of the intersection points) shows that convergence to this invariant set does not involve
any oscillations. These observations of time series for Ro in the vicinity of Ro1 provide strong
evidence that the onset of time-dependence takes place by a supercritical Hopf bifurcation at
Ro = Ro1.

The physical nature of the instability which occurs at Ro1 can be seen by computing the av-
erage streamfunction field over one period and subtracting this from the instantaneous field at
a given time. Mean and perturbation streamfunctions at Ro = 9.5×10−3 are shown in Figure 8.
The perturbation streamlines are inclined into the mean velocity gradient in a manner consis-
tent with extraction of energy from the mean flow, as discussed by Pedlosky [Pedlosky, 1987].
This barotropic instability is associated with the cross-flow extremum of the potential vorticity
q = (2 + Roζ)/(1 − h) at the bottom of the slope, as discussed in [Kiss and Griffiths, 1998].
The positive perturbations in ψ coincide with regions of increased anticyclonic vorticity, and



Figure 8: Contours of ψ averaged over one oscillation (left) and the difference in ψ from this
field at one time (right; the contour interval has been reduced by a factor of 30). Ro =
9.5 × 10−3; contours of negative ψ are dashed and the grey ellipse marks the bottom of the
slope. North is at the top and the mean flow is clockwise.

hence to maxima in the vorticity waves seen in the anticyclonic shear layer. The waves grow as
they are advected northwards with the flow until they reach the end of the outflow region from
the slope current, where they die out. Each kinetic energy peak corresponds to an anticyclone
reaching its maximum amplitude before being advected into the region where it decays.

As Ro is increased towards Ro2 the amplitude of the anticyclonic perturbations becomes
larger, until they are sufficiently strong to produce closed contours of ψ, resulting in a northward-
traveling train of anticyclonic eddies. The vorticity of the anticyclones acts to stretch out the
jet when they arrive at its southern edge, making it extend southeastwards into the interior
and intensifying its cyclonic meander. The jet then retracts back to its former length as each
anticyclone dissipates, before being stretched again by the arrival of the subsequent anticy-
clone. When Ro is large enough, these periodic perturbations to the jet result in a cyclonic
eddy pinching off from the cyclonic loop in the jet as each anticyclone dissipates. This process
is shown in Figure 9, which shows snapshots of ζ at a local maximum and the following local
minimum of K.

Figure 10 shows the time behavior at Ro = 2.62×10−2, just before the second bifurcation.
The frequency has increased to 0.039 cycles per day, and the oscillation has a much larger
amplitude but is still periodic. However in contrast to the case of Ro = 10−2, the convergence
to the limit cycle is now oscillatory, the decaying oscillation having a frequency of about 0.017
cycles per day. This new spectral peak will be denoted B.



Figure 9: Contours of ζ at two different times for Ro = 2.5× 10−2. Left: at a local maximum
of K; right: at the subsequent minimum of K. Contours of negative ζ are dashed. Note
how the strong anticyclone wraps a tongue of cyclonic vorticity around itself, which sheds a
cyclonic eddy when the anticyclone dissipates. An animation of this sequence can be viewed
at http://rses.anu.edu.au/gfd/link/AK/WHOIGFD.html

4.3 Torus (quasiperiodic or phase-locked flow)

A very slight increase in Ro from Ro = 2.62× 10−2 to Ro = 2.64× 10−2 produces a transition
from periodic to quasiperiodic flow, giving a trajectory which is a torus, as shown in Figure 11.
The oscillation denoted B is now no longer decaying, and appears as a peak in the power
spectrum at a frequency which is indistinguishable from that of the decaying oscillation at
Ro = 2.62 × 10−2. The winding number of the trajectory on the torus is B/A = 0.433. The
numerous other peaks in the spectrum are cross-harmonics of A and B, as indicated in the
figure. Once again, this transition seems to have taken place by a Hopf bifurcation. As for
strongly forced periodic flow, relative maxima and minima of K ′ correspond respectively to
the arrival of a large anticyclone at the southern side of the jet, and the subsequent shedding
of a cyclone. This basic cycle has a period 1/A, but is amplitude-modulated by the second
period 1/B, giving rise to the cross-harmonics of A and B in the power spectrum.

As Ro increases, the Poincaré section becomes an increasingly distorted loop, and the
amplitude of the peak with frequency A−2B becomes larger. At Ro = 2.70×10−2 these long-
period fluctuations are periodic, but at Ro = 2.75 × 10−2 the fluctuations appear to become
aperiodic (although a longer time series would be needed to confirm this). Figure 12 shows
the time dependence of the kinetic energy at Ro = 2.75 × 10−2, in which the peak at A− 2B
has become large, corresponding to the conspicuous variations with a period of about 500 days
visible in the time series.
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Figure 10: Time dependence of K ′ with Ro = 2.62 × 10−2. Top: time series; middle: power
spectrum of time series (the zero frequency peak has been suppressed); bottom left: delay-space
trajectory for the time series; bottom right: Poincaré section of the delay-space trajectory.
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Figure 11: Time dependence of K ′ with Ro = 2.64 × 10−2. Top: time series; middle: power
spectrum of time series (the zero frequency peak has been suppressed); bottom left: delay-space
trajectory for the time series; bottom right: Poincaré section of the delay-space trajectory.
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Figure 12: Time dependence of K ′ with Ro = 2.75 × 10−2. Top: time series; middle: power
spectrum of time series (the zero frequency peak has been suppressed); bottom left: delay-space
trajectory for the time series; bottom right: Poincaré section of the delay-space trajectory.
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Figure 13: Time dependence of K ′ with Ro = 2.75 × 10−2, on branch 2. Top: time series;
middle: power spectrum of time series (the zero frequency peak has been suppressed); bottom
left: delay-space trajectory for the time series.

4.4 The second branch

The numerical results show that there is an additional branch of solutions (which will be
referred to as branch two) over at least the range 2.74 × 10−2 ≤ Ro ≤ 2.85 × 10−2, as can be
seen in Figure 3. Figure 13 shows a kinetic energy time series for a flow on branch two with
Ro = 2.75 × 10−2 (the same value as in Figure 12). The time series is periodic, and now the
fundamental frequency is A/3. This is not simply a case of B being locked on to A/3, since
the trajectory does not lie on the torus of branch one.

A numerical run which has converged to a final state on branch two can be used as an
initial condition for a run at a different value of Ro, allowing this branch to be traced out over
a range of Ro. Following this procedure it was found that the branch could not be extended for
Ro < 2.74 × 10−2 (where it actually seems to be a torus). Further numerical experiments are
required in order to understand the disappearance of this branch at lower values of Ro. As Ro
is increased the attractor for this branch seems to remain qualitatively similar to that seen at
Ro = 2.75× 10−2, until at Ro = 2.83× 10−2 it appears that a period-doubling bifurcation has
occurred and the basic period becomes A/6 (see Figure 14). The behavior of this attractor at
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Figure 14: Time dependence of K ′ with Ro = 2.83 × 10−2, on branch 2. Top: time series;
middle: power spectrum of time series (the zero frequency peak has been suppressed); bottom
left: delay-space trajectory for the time series; bottom right: Poincaré section of the delay-
space trajectory.

larger Ro has not been sufficiently investigated for conclusions to be drawn about the ultimate
fate of this branch.

4.5 The path to chaos

The attractor corresponding to the first branch appears to go through several changes for Ro
between about 2.75×10−2 and 2.90×10−2. At Ro = 2.79×10−2 it was found that integrations
started from initial conditions on branch one at lower Ro result in a trajectory which quickly
leaves the branch one set and converges to the same branch two attractor which is obtained if
initial conditions on branch two are used (see Figure 15).

It is tempting to conclude from Figure 15 that the attractor for branch one has become
unstable for this Rossby number, leaving the branch two attractor as the only possible final
state. However this explanation is less convincing in the light of the results shown in Figure 16
of a run at Ro = 2.80 × 10−2 started from an initial condition on branch one. Integrations
started from branch two show convincingly that the second branch is an attracting limit cycle
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Figure 15: Time dependence of K ′ with Ro = 2.79 × 10−2 for an integration started from
branch 1 initial conditions, but which results in a final state on branch 2. Top: time series;
bottom : delay-space trajectory for the time series.

at this Rossby number, yet the trajectory shown in Figure 16 seems unable to converge to the
second branch attractor. The trajectory remains mostly in the vicinity of the torus seen at
lower Ro, but displays intermittent excursions on trajectories close to the branch two attractor.
It is possible that the system would eventually settle on the branch two attractor, but there
is no indication that this will happen from the time series of 5000 days shown Figure 16.

At Ro = 2.85× 10−2, a run initialized on branch one appears to switch erratically between
the two types of behavior (see Figure 17). The second branch was actually discovered by taking
the ψ and ζ fields at a time when the trajectory was following type two behavior and using
this as an initial condition for a run at lower Rossby number. The alternation between these
two types of behavior is very intriguing and further numerical experiments at intermediate
values of Ro are needed to understand it fully. It is possible that the original attractors have
become joined by a heteroclinic orbit involving an unstable periodic orbit. In order to follow
up this possibility it would be necessary to solve for the unstable periodic orbit which remains
after the second Hopf bifurcation, and trace its location in phase space as Ro increases.

At larger Ro the trajectory appears to be less closely bound to either of the original at-
tractors, perhaps indicating that they have both become more strongly unstable. At Ro =
3.0 × 10−2 the trajectory bears no obvious resemblance to either original attractor (see Fig-
ure 18). The power spectrum has become broad-band (a hallmark of chaos) but the peak at
A can still be discerned. Runs at Ro = 4.0×10−2 and Ro = 5.2×10−2 were also chaotic, with
broad-band power spectra.
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Figure 16: Time dependence of K ′ with Ro = 2.80 × 10−2 for an integration started from
branch 1 initial conditions. Top: time series; middle: power spectrum of time series (the zero
frequency peak has been suppressed); bottom left: delay-space trajectory for the time series;
bottom right: Poincaré section of the delay-space trajectory.
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Figure 17: Time dependence of K ′ with Ro = 2.85 × 10−2 for an integration started from
branch 1 initial conditions. Top: time series; middle: power spectrum of time series (the zero
frequency peak has been suppressed); bottom left: delay-space trajectory for the time series;
bottom right: Poincaré section of the delay-space trajectory.
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Figure 18: Time dependence of K ′ with Ro = 3.0 × 10−2 for an integration started from
branch 1 initial conditions. Top: time series; middle: power spectrum of time series (the zero
frequency peak has been suppressed); bottom left: delay-space trajectory for the time series;
bottom right: Poincaré section of the delay-space trajectory.



5 Conclusions

The numerical results reported here show that the sliced cone model can display a great
richness of complicated behavior including multiple attracting states and a transition to chaos.
These results are of particular interest because the model can be realized in the laboratory,
allowing the study of low-dimensional chaos in a real physical system. In particular these
results show that the transitions from a fixed point to a limit cycle and then to a torus take
place via Hopf bifurcations. At larger Rossby number the behavior of the system becomes
more complex. A second solution branch appears which coexists with the original branch at
moderate Ro. As Ro increases the time series appear to become intermittent when started from
the original branch, switching erratically between oscillations characteristic of each branch.
These transitions become more frequent at larger Ro, until at Ro ≈ 2.9×10−2 the delay space
trajectory bears little resemblance to either branch and the behavior seems to be chaotic for
all larger values of Ro.

6 Future work

There remain several interesting avenues for future study of this system. These include an elu-
cidation of the mechanism by which the flow becomes chaotic (which could involve interaction
with unstable periodic orbits or unstable fixed points), and the extent of the second branch
as a function of Rossby number. Much longer time series are needed to better understand
the chaotic dynamics above Ro ≈ 2.85 × 10−2. A sufficiently long time series may show that
the Poincaré map is a fractal set, and allow the fractal dimension of the chaotic attractor
to be calculated. Longer time series could also clarify whether the erratic behavior seen for
2.80 × 10−2 ≤ Ro ≤ 2.85 × 10−2 is truly chaotic or a chaotic transient.

The behavior of the system as a function of E is yet to be studied using these techniques,
and it would be interesting to discover more about the suppression of the anticyclonic insta-
bility as E is increased.

The insights provided by this numerical approach to the sliced cone also open up new lines
of enquiry using the laboratory apparatus. It would be interesting to look in the laboratory
for some of the features of the numerical results, such as the second branch and the intricate
dependence of the flow behavior on Ro in the transition from a toroidal attractor to chaos. If
time series could be obtained from the flow in the laboratory, the same delay-space techniques
could be applied to laboratory data, allowing a detailed comparison with the numerical results.
However this would be technically demanding, since the variations in velocity and pressure are
very difficult to detect.
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