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1 Introduction

Longshore current modeling has been dominated by a radiation-stress viewpoint applied to
shallow-water models. While the shallow-water model is arguably appropriate for gently
sloping beaches, radiation-stress convergences are difficult to apply directly in the mo-
mentum equations when longshore (y-coordinate) inhomogeneities are present. To date,
longshore currents have been modelled with y-independent wave forcing. Should longshore
inhomogeneities be fundamental to surf zone dynamics, the traditional models are insuffi-
cient. This has been pointed out in articles by D.H. Peregrine ([1], [2]), and was brought
to our attention by F. Feddersen. [3]

Feddersen mentioned the problem of longshore currents on a barred beach. (Figure 1)
There, waves breaking over bar and beach have their radiation stress convergences in these
locations. The y-independent theory predicts the development of longshore currents over
the bar and on the beach, a forecast at variance with observation. Experiments on a barred
beach in North Carolina found the longshore current in the trough between bar and beach.
[4] Laboratory experiments (and our numerical experiments of section 6) find that with
wave forcing which does not depend on y, the longshore currents indeed do develop over
bar and beach. Inhomogeneous forcing is a candidate to explain the observations.

Some theoretical difficulties with y-dependence may be overcome by considering vortic-
ity forcing rather than radiation stress convergence. The vorticity sources are those due to
wave breaking. With a sense of the location and strength of these vorticity sources, the
problem becomes one of predicting the vortex dynamics which result. A first approximation
for the location of the vorticity sources can be had using WKB theory and a parameteri-
zation of breaking. As well, Peregrine has derived a strength for such vortex sources using
the circulation integral. [1] We found the Generalized Lagrangian Mean theory useful in

air

sea

earth

Figure 1: A Barred Beach.
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Figure 2: A wavetrain incident at an angle.

determination of these strengths, and discuss this in section 4. Some simple results which
are helpful in predicting vortex dynamics are presented in section 5.

A numerical model of the surf zone was used to resolve wave and vorticity alike. The
model was a 2D, finite-volume, shock-resolving shallow water model with varying bottom
topography. The use of such a model to simulate vortex dynamics was expensive in com-
putation time, since the gravity wave speeds provide a severe CFL restriction on the time-
stepping. Nevertheless, this model reperesents a means by which the entire wave-forcing
process may be represented without parameterization.

The wave-forcing was considered to be by a wavetrain with longshore envelope incident
on the beach at an angle. (Figure 2) We found that simple vortex dynamics predict a
longshore current in the trough. This prediction was confirmed with the numerical model.

2 Equations of Motion in Shallow Waters

We will use a shallow water model for the surfzone throughout this article. Here we present
the shallow-water equations for reference. Figure 3 shows the meaning of the variables.

u,t + uu,x + vu,y = −c2

00(h,x + hb,x) (1)

v,t + uv,x + vv,y = −c2

00(h,y + hb,y) (2)

h,t + (hu),x + (hv),y = 0. (3)

The variable x represents cross-shore distances, the variable y alongshore distances. This
is a nondimensionalized model with the gravity g and constant reference depth H factored
into c00 =

√
gH. No apologies are made for the use of the shallow-water model, although

we note several modeling limitations in section 6. While the use of shallow-water bores as
a model of ocean-wave breaking lacks in its description of the breaking wave region itself,
the location and rough magnitude of vorticity sources due to breaking are of more interest
in this article. Moreover, precise models of wave-breaking may be desirable, but a 3D free-
surface simulation of the surf zone is well beyond analytical or computational means. It is
not beyond experimental means: wavetanks capable of such simulations exist. [5]

Our shallow-water model has no explicit viscous contribution. Viscous momentum mix-
ing and bottom drag necessarily enter the longshore current picture in the forced-dissipative
mean-state. We limit our concern to the initial transferral of wave-induced momentum
change to the trough region. However the addition of bottom friction to the model is
straightforward and we intend to carry this out in future work.
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Figure 3: The Shallow Water Model.

3 Ray Tracing

Ray-tracing provides for approximate calculation of the wave amplitudes. These may be
used in estimating vorticity source terms. We develop some ray-trace formulae and apply
them as needed. A full development of these methods can be found in many places, such
as [6]. An example of the use of this method to calculate vorticity sources may be found
in [7]. Throughout, we assume that the mean flow has no effect on the waves. Generaliza-
tions of the method exist to deal with such a case, but the situation then becomes much
more complex.

For frequency ω and wavenumber vector ~k, we have:

~k,t + ~cg · ∇x
~k = −∇x ω, (4)

ω,t + ~cg · ∇x ω = −ω,t. (5)

Here, ω = ω(~k, ~x, t) is the frequency. The dependence of ω on the wavenumber vector, the
position and the time constitutes the dispersion relation. To find a law for the amplitude
of the waves, one can take as starting point the conservation of wave-action ([8]) to arrive
at:

(

h0E

ω

)

,t

+∇x ·
(

~cg
h0E

ω

)

= −D(h0, E). (6)

The quantity E is the wave energy density per unit mass. The function D(h0, E) is a
dissipation which represents the effect of loss of wave energy due to breaking. For shallow
water,

ω(~k, ~x, t) = c00

√

h0(~x)|~k|, (7)

E =
1

2
(|u|2 + c2

00

(∆h)2

h0(~x)
). (8)

The quantity ∆h is the surface perturbation (h− h0). (See Figure 3) For linear monochro-
matic waves, we could replace ∆h by a harmonically varying wave height h′. The polariza-
tion realtions for the linear wave then give
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E =
c2

00

h0

h′2. (9)

In our case there will be no topographic dependence on y. The dispersion relation is
time-independent. As a consequence, equations 4 reduce to:

k,t + cgxk,x = −ω,x (10)

l = l0, constant along rays (11)

ω = ω0, constant along rays (12)

ω0 = c00

√

h0(x)
√

k2 + l2
0
. (13)

The last three are sufficient to find the trajectories of rays, since rays are the integral curves
of the group velocity, a function of k, l, ω. The integration of the wave energy density by
equation 6 can now be contemplated if the field of group velocities is known. From the field
of wave energy density will come the vorticity source terms (Section 4).

Calculation of the wave energy density must take breaking into account. Consider
the case in which the waves have reached a forced-dissipative equilibrium. We also assume
independence of y for expository purposes, so that the average square linear wave amplitude

h′2 in given (via equation 6 and 9) in terms of the bottom topography:

(

√

h0 h′2

)

,x
= − ω0

c3

00

D(E, h0). (14)

Assuming that the waves break only when the nonlinear amplitides are large enough,

(
√

h0 h′2),x = 0 in non-breaking regions. The assumption is ad-hoc, but captures that
we wish to see sudden transitions to wave-breaking over topographic features. One could
introduce an additional law for the scaling of wave amplitude in breaking regions and inte-
grate equation 14 to get the energy density or mean-square amplitude field.

Figure 4 shows the cross-shore wave amplitudes (without breaking) in the case in which
it is assumed that the waves have no alongshore envelope.

4 Vorticity Sources, GLM, and the Circulation Theorem

A presentation of Generalized Lagrangian Mean (GLM) theory may be found in the two
papers by Andrews and McIntyre ([8], [9]). Some additional information about the theory,
as well as examples of its application to the theory of breaking waves are in [10], [7]. Of
essential interest to us is that GLM gives an approximate expession for the time rate of
change of mean vorticity in terms of the evolution of the wave pseudomomentum. We have
since found that the same results are available from the curl of the radiation-stress tensor
expressed in terms of the infinitesimal waves. The exact finite amplitude equations are
difficult to interpret in the present case, but rough estimates for sources in the breaking
region in terms of infinitesimal wave quantities are available [7]:

(∇× u),t = ∇× ~F , (15)
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Figure 4: Example of Cross-Shore Amplitudes.
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Fx =
k

h0

(

h0

k

κ2
E

)

,x

+
k

h0

(

h0

l

κ2
E

)

,y

(16)

Fy =
l

h0

(

h0

k

κ2
E

)

,x

+
l

h0

(

h0

l

κ2
E

)

,y

(17)

Here κ2 = |~k|2. These estimates can be useful for scaling the magnitude of the vorticity
deposition as a function of energy density. In our numerical experiments, the mean field
vorticity is directly available, but equations 15 and 16 can be used to think about some
simple cases, and to check the numerics. Moreover, these estimates allow extension of
the numerical model results to the cases of stronger wave forcing than is allowed by the
numerical model.

In the case of a normally incident wave (l = 0) with an envelope ( ∂
∂y
6= 0) over longshore-

independent terrain (see Figure 5), the vorticity source term is

(∇× u),t = − k

h0

(
h0

k
E),xy. (18)

Aside from factors which arise from topographic variation, the right hand side is due to the

y-variation of energy density divergence E,x. Hence ∇× u ∼ T E
XY

∼ T
c2
00

h0

h′2

XY
. Here X and

Y are length scales for change of E, and T is the total forcing time. The presence of the
cross-derivative and the sign of the result must be diagnosed from the situation. Since we
expect the amount of energy dissipation to be proportional in some way to the amplitude,
the vorticity signal is as in Figure 5.

In the case of an obliquely incident wave (l 6= 0) with no envelope ( ∂
∂y

= 0) over
longshore-independent terrain, the vorticity source term is

(∇× u),t = − l

h0

(
h0k

κ2
E),xx (19)

The primary signal is in the rate of change along the x-axis of E,x, but the scaling now

includes a geometric factor: ∇ × u ∼ T kl
κ2

E
X2 ∼ T lk

κ2

c2
00

h0

h′2

X2 . This idealized situation is
depicted in Figure 6.

We conclude this section by noting a relevant result that D.H. Peregrine has obtained. He
used the circulation integral to give the total change in vorticity that a parcel of infinitesimal
extent experiences upon passing through a bore [1]:

δ(∇× ~u) =

[

2h2

gh1(h1 + h2)

]
1

2 dED

dy
(20)

Here, ED is the energy dissipation rate at the bore, h2 and h1 are fluid depths to the
right and left of the bore, respectively. We take h2 > h1 and the parcel crossing from left
to right. There is an additional change ∆ in vorticity due to the stretching of the parcel
as it crosses the bore. ∆ is proprtional to (h2

h1
− 1)(∇× ~u). Notice the dependence on the

along-bore change in energy dissipation.
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Figure 5: Enveloped incident waves. The component of the vorticity due to breaking which
is associated with the envelope appears as the signed circles at the margins of the envelope.

wavetrain

vorticity generated

sea

vorticity generated

be
ac

h

+

+

+
region of breaking

−

−

−

Figure 6: Unenveloped incident waves. The vorticity associated with the restriction of the
breaking region to the region over the bar appears as the signed circles to the left and right
of the bar.
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Figure 7: A vortex pair. Plan Form.
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Figure 8: Vortex near a wall. Plan Form.

5 Vortex Dynamics

Consideration of the dynamics of a few typical vortical structures helps explain the motions
associated with wave-induced mean-flow vorticity.

The motion of a vortex pair of opposite sign is perpendicular to the joining axis, see
figure 7. The motion is in the direction indicated, with a velocity V which scales with
S/L, where S is the vortex strength (i.e. circulation), and L is the separation. A typical
timescale is T ∼ L/V = L2/S.

The motion of a single vortex adjacent to a wall is found from the method of images. It
is just that of a vortex pair whose joining axis is perpendicular to the wall, and which has
midpoint on the wall. (See Figure 8.)

The motion of a vortex on a slope is also found by a method of images: the vortex is
completed to a vortex ring outside the domain. (Figure 9.) The vortex moves under the
velocity field of this ring, perpendicular to the gradient of the slope. This result is not
useful for a line vortex ring since such a ring moves with infinite velocity ([11]); instead,
one should consider a distributed vortex patch. Stable vortex ring cross-sections are not
known analytically, but one can estimate the speed of travel by cutting off the logarithmic
divergence of the longshore velocity at the edge of the vortex core.

The distributions of vorticity in figure 5 of the previous section is such that the vortex
pair should move up-slope over the bar, and towards the beach. However, the vortices
should separate as they move up-slope, and come together as they move down-slope, in
correspondence with the motion of figure 9.

The vorticity distribution in figure 6 is such that there is no apparent self-advection of
vorticity, but a jet is driven between left and right vortex line. This situation would be
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Figure 9: A vortex ring. The cross-section is the plane perpendicular to the axis of the
beach. Motion of the vortex core is into or out of the page according to the sign of the
vorticity.

unstable in the absence of mixing and bottom friction.

6 Numerical Results

We present two sets of results from the numerical experiments. The first is for the case of an
obliquely incident wavetrain incident on a barred beach, and corresponds to the idealization
of Figure 5. The second is the y-homogeneous case of Figure 6, again on a barred beach.

6.1 Numerical Model

The model is a shock-resolving finite-volume shallow-water solver built for this project. It
uses a second-order time-stepping method, with the inter-cell fluxes computed by a Roe-
approximate scheme. The topographic momentum source terms are handled with a splitting
scheme. The CFL number is mantained at 0.95 throughout, with wavespeeds updated after
each time-step. The waves are generated at the left side of the computational domain by an
irrotational momentum forcing, derived from a potential. The forcing site introduces neg-
ligible vorticity into the simulations. The forcing generates a left- and a right-propagating
wavetrain. The rightwards-moving wavetrain survives to break at the bar, but the other is
removed by a damping layer at the left edge of the computational domain. The right side
of the computational domain is a reflecting boundary condition. All runs were performed
with shallow water (< 0.1hmax) near this right edge, so that waves of significant amplitude
are removed by breaking at this location. The model is periodic in the longshore direction.
The model has two major limitations. Only small-amplitude waves (h′/h0 ∼ 0.01) can be
used, since waves of a larger order of magnitude shock fully after a single wavelength. This
is in contrast with ocean waves, which experience no difficulty in propagating through deep
water, only to break with O(1) nonlinearity in the surf zone. Second, the requirement that
the model resolve gravity waves led to small time-steps, so that integration of the vortex
dynamics became computationally expensive. Pertinent information about the model runs
is summarized in Table 1.

6.2 Enveloped oblique wavetrain

In this model run, a wavetrain is incident on the bar at an angle of 74 degrees from the
normal. Figures 6.2 shows a contour plot of the free surface height. The PV field and the
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Type k l kabs Frequency Envelope (half-width) Amplitude

Enveloped π 0.3π 1.044π 1.044π 6 0.01
Homogeneous π 0.5276π 1.131π 1.131π None 0.01

Table 1: Computations with and without envelope.

longshore current appear also in figure 6.2. Notice the appearance of the dipolar vorticity
signal and its subsequent self-advection into the trough region. The longshore current
is itself a consequence of another vortical dipole structure, though this is visible only in
the tilting of the much stronger cross-shore-axis dipole. The average longshore velocity
maximum clearly moves into the trough, though the average velocities are pathetic compared
with local mean flow velocities (Figure 6.2). Much larger incident wave amplitudes would
be needed to generate the longshore currents seen in the real surf zone, though whether the
overall structure of the flow would be maintained in this case is unclear. In any case, this
is the mechanism proposed for the presence of longshore currents in the trough. Ultimately
the vortex pair curls up at heads which separate on the shore slope of the beach. They
begin to feel the periodicity of the domain (Figure 6.2). At this point, the applicability of
the model is ended and the run is termianated.

6.3 Homogeneous oblique wavetrain

This case has a homogeneous wave structure incident at 60 degrees from the normal. This
case is intended as a check against the experimental work of Reiners and Battjes. [5]. The
wavefield develops significant interaction with the mean flow after some initial development
(Figure 13). Likewise, an intially extremely clean signal of PV its longshore jet are seen to
become unstable in time. (Figure 14) The experimental work in [5] shows little evidence
of this instability, but that work included bottom friction and momentum diffusion as an
experimental matter of course, but such things as are not present in the numerics. The
numerically produced longshore currents remain of lower amplitude (by a factor of six) than
those of Reiners and Battjes, but half of this disagreement disappears when the numerical
results are rescaled by

√
g to include gravity in the shallow-water wave speed. If the jet

had been stabilized by dissipation and forced at a higher wave amplitude, a result close to
that of the experimental work might have been obtained. However, the forced-dissipative
regime may be rather different from the numerical regime.

7 Conclusion

The main limitations of the numerical model are its inability to deal with large amplitude
waves, and its failure to include dissiption and an eventual forced-dissipative equilibrium.
The latter effect is easily incoporated into the model and should be included in any future
work. The problem of amplitude is probably best approached by considering scaling argu-
ments with respect to the wave amplitude h′. Questions of three-dimensional structure may
be of interest, but lie beyond the scope of this study. The same is true of issues regarding
the space- and time-distributions of incident waves. Such effects could be incorporated in

89



Figure 10: The enveloped oblique wavetrain. (See section 6.2.) A view of the height, PV,
and average velocity in the early stage of development...
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Figure 11: ...later...
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Figure 12: ...right before model termination.
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Figure 13: The homogeneous oblique wavetrain. (See section 6.3.) A view of the height,
PV, and average velocity in the early stage of development...
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Figure 14: ...after the jet has grown unstable.
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the numerical model, but are computationally much more demanding. Typical integration
times for this model were already on the order of 10-20 hours.) An interesting topic for
future research would be an attempt, probably based at first on a WKB approximation and
a breaking parameterization, to identify interesting coupled wave-mean interactions. One
could also consider the motion of the sand bars as a further mediation between wave and
mean.
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