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1 Introduction

1.1 Planetary formation

Science in it’s most general definition began as a quest to answer the fundamental questions
on the origin of humanity and it’s relation to the surrounding Universe. One of the keys
to understanding the origin of Life is the mechanism of formation of our own Solar system,
and especially the formation of planets. This subject has gained a new interest in the past
few years with the discovery of giant planets orbiting some of the nearest neighbouring stars.
The generally accepted theory of planet formation consists in the following steps:

• Due to the onset of a large scale gravitational instability, the core of a dense molecu-
lar cloud collapses into a protostar; the conservation of its initial angular momentum
results in the gradual flattening of the collapsing gas into an accretion disk around the
protostar.

• The gas in the accretion disk has two components: a molecular gas, composed mainly
of H2 and other small molecules, and a dust gas, composed of particles of sizes ranging
from a few microns to a few centimeters. The interaction between these components
takes place mainly via Stokes drag. The vertical stratification in the accretion disk
relies on the balance between pressure and the vertical component of the gravitational
force. As a result, since the thermal pressure of the dust gas is much smaller than that
of the molecular gas, the dust settles into a very thin disk within the accretion disk.

• The dust particles then coalesce into larger and larger grains, up to sizes of a few
kilometers; as they grow in mass, the dynamics of these “planetesimals” gradually
decouple from that of the molecular gas.

• The planetesimals continue aggregating into planets. Giant planets may accrete some
of the molecular gas still left in the accretion disk.

However, although the dust aggregation into larger grains is known to take place, the
exact mechanism is poorly understood. The time-scale for this aggregation process has an
upper limit of a few Myr (106 yr) set by the evolution of the protostar into a T-Tauri star.
Indeed, T-Tauri stars are observed to have intense magnetic activity and strong stellar winds
which scatter all non-gravitationally bound dust and gas into the interstellar space. Random
encounters of the dust particles due to thermal agitation is not sufficient to account for the
growth of the dust grains into planetesimals within the T-Tauri evolution time-scale.
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In an attempt to remedy this problem, it has been shown in the case of two-dimensional
barotropic turbulence in a rotating fluid that dust particles may migrate to the center of
anticyclonic vortices [1]. They concentrate there for the lifetime of the vortex. As a result,
provided the vortices are long lived, it is possible to greatly increase the aggregation rate, and
reach the required sizes of dust grains before the T-Tauri phase. However, it is not yet clear
whether a Keplerian flow can undergo self-sustained turbulence. Indeed, from the Rayleigh
inflexion theorem, we see that the accretion flow is stable to linear shear instability, and the
latest numerical simulations seem to indicate that the primordial solar nebula may be stable
to nonlinear hydrodynamic instabilities too [2]. It has been shown that even a very small
magnetic field may trigger some linear instability [3], but in this case it is not clear how the
magnetic forces would influence the existence or stability of the vortices.

Although the problem of hydrodynamical stability of the accretion flows is not yet fully
understood, there has been evidence in two-dimensional decaying turbulence for the sponta-
neous apparition and the persistence of vortices on time-scales much larger than the turnover
time-scale. There is therefore hope in the Keplerian case that even if the turbulence is not
self-sustained, the initial anisotropies in the flow are large enough to create these long-lived
vortex structures. The work presented in this report is an attempt at finding steady state
solutions for vortices in Keplerian accretion flows. If these solutions exist and are found to be
stable, they would explain the persistence of the vortices, and therefore solve the remaining
dust aggregation problem.

1.2 Mathematical setup

We will always take u to be the velocity field, ψ the corresponding stream function and ω
the potential vorticity. In the work presented here, we have chosen to simplify the problem
greatly by considering only 2-dimensional, incompressible fluid motion. As a result of this
approximation, we can now write

u = −∇×(ψêz) = êz ×∇ψ and ω = ωêz = ∇2ψêz . (1)

We will consider the vortex to be a perturbation on the main Keplerian accretion flow.
The unperturbed shear flow uK is given by the Keplerian rotation law, which describes the
equilibrium between the centrifugal and gravitational forces:

uK = vKêθ =

√

GM

R
êθ (2)

where R is the distance from the central accreting object of mass M . The corresponding

vorticity is ωK = 1
2

√

GM
R3 . The vortex studied will be placed at a distance R0 from the center,

at θ = 0. In the following work, we will often have to change from the polar coordinate system
around the central mass, (R, θ) to that around the vortex, (r, ϕ). We chose to take ϕ = 0
where θ = 0; this change of coordinate is represented in Fig.1.

The perturbed vorticity and flow are represented by dashed quantities. The equation for
the evolution of the vorticity perturbation is

∂ω

∂t
+ u · ∇ω =

∂ω′

∂t
+ uK · ∇ω′ + u′ · ∇ωK + u′ · ∇ω′ = 0 . (3)

2



��
r

ϕ
R

θ

R 0
M

Figure 1: Change of coordinate

This can be rewritten in cylindrical coordinates around the vortex patch as

∂ω′

∂t
+ vK

1

r

∂ω′

∂ϕ
−

1

r

∂ωK

∂r

∂ψ′

∂ϕ
+

1

r

∂ψ′

∂r

∂ω′

∂ϕ
−

1

r

∂ω′

∂r

∂ψ′

∂ϕ
= 0 . (4)

The vorticity perturbation and the perturbed stream function are related by

ω′ = ∇2ψ′ . (5)

1.3 Dimensionless quantities

In order to simplify the expressions, we will now introduce the following new units system:

M = 1, R0 = 1, and T0 = 1 (6)

where T0 is the revolution time around the central object at radius R0, namely T0 = 2π

√

R3
0

GM .

As a result, the Keplerian velocity becomes vK = 2πR−1/2.

1.4 Change of reference frame

We will be looking for vortex solutions where the vortex is rotating around the central star
with a Keplerian velocity. Steady state solutions then only have a meaning when taken in
the rotating coordinate frame. We use a frame of reference rotating with velocity which is
that of the center of the vortex patch. The relative shear around this point is given by

vK(R) = 2π(R−1/2 −R) (7)

The corresponding stream function is

ψK(R) = 2π

(

2(R1/2 − 1) −
1

2
(R2 − 1)

)

(8)

Without loss of generality, we have chosen ψK(1) = 0. The Keplerian vorticity and its
gradient are given by

ωK = πR−3/2 − 4π, and
∂ωK

∂R
= −

3

2
πR−5/2 (9)
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2 Top hat vortices in a Keplerian shear

In this section we will use an approximation which consists in neglecting the background
Keplerian vorticity gradient in the vorticity equation. This approximation is valid primarily
for small vortices. In this case, there exists a solution of the steady state problem with ω ′

piecewise constant. We will therefore try to find solutions of the type

ω′ = ∇2ψ′ = q inside the vortex patch

= 0 outside the vortex patch (10)

Equation (10) can now be rewritten as

∇2ψ′ = qH (a+ η(ϕ) − r) (11)

where a is the average radius of the patch, and η is the departure from that average. We will
linearize this equation by considering η � a, so that

∇2ψ′ = qH(a− r) + qη(ϕ)δ(a− r) +O(η2) (12)

Replacing ω′ in equation (4) by this ansatz, we get the contour dynamics equation (pro-
vided we neglect the term involving the vorticity gradient)

∂η

∂t
δ +

vK(r)

r

∂η

∂ϕ
δ +

1

r

∂ψ′

∂r

∂η

∂ϕ
δ +

1

r

∂ψ′

∂ϕ

(

δ + ηδ′
)

+O(η2) = 0 (13)

where δ ≡ δ(a− r). Taking the steady state part of this equation, we integrate it once across
the boundary r = a to get

(

∂ψK

∂r
+
∂ψ′

∂r

)

r=a

∂η

∂ϕ
+
∂ψ′

∂ϕ
+O(η2) = 0 (14)

The condition for no fluid to enter or leave the vortex (which defines it as a localized vortex
patch) is that the total stream function should be constant along the boundary

∂

∂ϕ
(ψK + ψ′)

∣

∣

∣

∣

r=a

+O(η2) = 0 (15)

so that if we integrate equation (14) along the boundary, we get

ψK(a) + ψ′(a) +

(

∂ψK

∂r
+
∂ψ′

∂r

)

r=a

η = ψη (16)

where ψη is a constant. Since this implies that the velocity field is everywhere parallel to the
boundary, there is no net force exerted on the vortex..

4



2.1 Solution to zeroth order

Let ψc be a solution of the zeroth order in η of equation (12):

∇2ψc = qH(a− r) . (17)

We can integrate this on either sides of r = a, which yields the solution

ψc(r) =
qr2

4
+ c1 ln r + c2 for r < a

= c3 ln r + c4 for r > a (18)

Regularity at the origin requires that c1 = 0, and we can choose c4 = 0. Note that the stream
function diverges at infinity, but the velocity field is well behaved. Matching the function
and its derivative at r = a yields

qa2

4
+ c2 = c3 ln a

qa

2
=

c3
a

(19)

so that finally, we have

ψc(r) =

[

qr2

4
+
qa2

2

(

ln a−
1

2

)]

H(a− r) +
qa2

2
H(r − a) ln r . (20)

2.2 Solution to first order

If we define ψ′ = ψc + ψ̃, subtracting equation (17) from equation (12) yields

∇2ψ̃ = qη(ϕ)δ(a− r) . (21)

Write that ψ̃ =
∑

n ψne
inϕ, and η =

∑

n ηne
inϕ, then equation (21) becomes

1

r

∂

∂r

(

r
∂ψn
∂r

)

−
n2

r2
ψn = qηnδ(a− r) (22)

so the solution will be of the kind

ψn(r < a) = a1(r/a)
|n|

ψn(r > a) = a2(r/a)
−|n| (23)

provided n 6= 0; we have implicitly imposed regularity of the solutions at the origin and at
infinity. Matching the solution at r = a requires that a1 = a2. Finally, integrating equation
(21) across the discontinuity, we get

∂ψn
∂r

∣

∣

∣

∣

a+

a−

= qηn (24)

For n 6= 0, this condition yields a1 = a2 = − qηna
2|n| . We therefore get

ψ̃ = −
∑

n6=0

qηna

2|n|

(

(r/a)|n|H(a− r) + (r/a)−|n|H(r − a)
)

einϕ (25)

The case of n = 0 is discussed in the next session.
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2.3 Matching the vortex patch to the Keplerian flow.

The function η is given by equation (16), which corresponds to the requirement that the
shape of the vortex patch remains steady. We rewrite it here

ψK(a) + η
∂ψK

∂r
(a) + ψc(a) + η

∂ψc

∂r
(a) + ψ̃(a) = ψη +O(η2) (26)

The ψ̃ term, as we saw, is of first order in η. This equation provides all the ηn’s but η0.
A last condition arises from the normalization of the total vorticity of the patch, which is
equivalent to fixing the area of the patch. If we require that the area be A = πa2 (i.e. the
area of a corresponding circular patch), then we have

A =

∫ 2π

0

∫ a+η

0
rdrdϕ =

∫ 2π

0

(a+ η)2

2
dϕ = π(a+ η0)

2 + π
∑

n>0

η2
n

= π(a+ η0)
2 +O(η2) (27)

The normalization condition on A is therefore η0 = 0, and is valid to first order in η. The
only terms left to evaluate are ψK(a) and η ∂ψK

∂r (a).

2.3.1 The linear shear case

Before starting on the Keplerian shear flow case, let’s treat the simple linear shear case; in
any case, one would expect that the results of the linear shear case are recovered in the limit
where the size of the vortex patch a is much smaller than the distance of the patch to the
center of the Keplerian shear flow R.

A linear shear is given by uL(R) = s(R − 1), (taking the velocity to be 0 at the position
of the center of the vortex patch) so that the corresponding stream function is ψL(R) =
s
2(R − 1)2. Since, to a first approximation R = 1 + r cosϕ + O(r2), we have ψL(r) =
s
2r

2 cos2ϕ = sr2

8 (e2iϕ − 2 + e−2iϕ). The matching condition then yields

sa2

8
(e2iϕ − 2 + e−2iϕ) +





∑

n6=0

ηne
inϕ





sa

4
(e2iϕ − 2 + e−2iϕ) (28)

+
qa2

2
ln a+





∑

n6=0

ηne
inϕ





qa

2
−
∑

n6=0

qηna

2|n|
einϕ = ψη

An important point is that the first term in that expression is potentially much larger
than the other ones. In order for this term to be balanced, one requires that ηq ≈ sa. Since
η � a, this condition is equivalent to q � s. Hence this work is only valid for vortex patches
with vorticity much larger than the local Keplerian vorticity. We also see that the second
term in that expression is of order of η/a compared to the other ones, and will be neglected
in the coming analysis. As a result, if we take

∫ 2π
0 (28) e−imϕdϕ/2π, we get

ψη =
qa2

2
ln a−

sa2

4
and η±2 = −

sa

2q
(29)
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and all other ηn are zero. We see again that the condition η � a is equivalent to the condition
s� q. We therefore have

η(ϕ) = −
sa

q
cos(2ϕ) (30)

To first order in η, this corresponds to an elliptical shape1.

2.3.2 The Keplerian shear case

As a first approximation, let’s take R = 1 + r cosϕ. This approximation will be discussed
later. In this case, if we define

ψK(a) ≡ ψK(1 + a cosϕ) ≡
∑

n

IK
n e

inϕ (31)

we have, from the matching condition given by equation (26)

ψη = IK
0 +

qa2

2
ln a (32)

ηn =
2IK
n |n|

qa(1 − |n|)
for |n| > 1 (33)

Because of the symmetry in ϕ → −ϕ of the Keplerian shear flow, we know that IK
n = IK

−n,
which is confirmed by expression (33). The case n = 1 corresponds to a translation of the
vortex along the θ−direction (azimuthally around the central mass), so that η1 can always
be taken to be 0 by an appropriate change of referential2. The IK

n are given by

IK
n =

∫ 2π

0
ψK(

√

1 + a cosϕ)e−inϕ
dϕ

2π
(34)

= 2π

∫ 2π

0

[

2(
√

1 + a cosϕ− 1) −
1

2
(a2 cos2ϕ+ 2a cosϕ)

]

e−inϕ
dϕ

2π

In order to solve this integral, we need to expand it as a Taylor series (which is necessarily
convergent since we have a < 1). So

IK
n = −πa2

∫ 2π

0
cos2θe−inϕ

dϕ

2π
+ 4π

∫ 2π

0

∑

k>1

(1/2)k
k!

ak coskϕe−inϕ
dϕ

2π
(35)

where we define (ν)k = ν(ν − 1)(...)(ν − k + 1), and (ν)0 = 1. Then

IK
n = −πa2J2,n + 4π

∞
∑

k=|n|

(1/2)k
k!

ak
1

2k
Ckk−n

2

(36)

1Indeed, the equation for an ellipse being r = b
√

1 − a cos2ϕ/e
−1

, if the eccentricity e is very small, then
r ≈ b(1 + e cos2θ/2a) = r0 + be

2a
cos(2ϕ).

2Indeed, let’s take the example of the displacement of a circular patch: the equation for a circle centered
on x = η (instead of x = 0) is (x− η)2 + y2 = a2. Expanding this to first order in η and changing coordinates
from (x, y) to (r, ϕ), we get r = a + η cosϕ, which corresponds to an n = 1 deformation mode.
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Figure 2: On the left: steady-state shape of the vortex patch, for a = 0.05, 0.1 and 0.2 in the
Keplerian shear case, with the approximation R = 1 + r cosϕ. In all 3 plots q = 1. On the right:
Ratio of the 3rd and 4th order of deformation to the 2nd as a function of a.

where the Ckn are the binomial coefficients. Finally, we compute the deformation by adding
the Fourier coefficients as

η(ϕ) =
∑

n>0

2ηn cos(nϕ) (37)

Fig. 2 present the results for some values of a and q. One can however guess (and check)
that:

• The larger q, the smaller the deformation from a circular patch. Since q only appears
in the “normalization” of η rather than in the relative amplitude of the modes ηn of
deformation, changing q only amounts to changing the total amplitude of the deforma-
tion. In the following plots, a small value of q was chosen on purpose to let the vortex
deformation be more easily identifiable. In reality, we should take q � 1 to have the
required η � a.

• On the other hand, the value of a will influence the relative importance of the ηn, and
will dictate the shape of the vortex. The larger a, the larger the higher order modes of
deformation, and the more difficult the convergence.

We can see in Fig. 2 that for a (a/R0 in real units) small, the dominant term in the
deformation η is η2, the ellipsoidal term. The ratio of the 3rd and 4rd order deformation
modes to the second is also shown. As we can see from this plot, for a/R0 < 0.1, the shape
of the vortex patch is very well approximated by an ellipse.
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Figure 3: On the left: steady-state shape of the vortex patch, for a = 0.1, 0.2 and 0.4 in the linear
shear case. In all 3 plots q = 1. On the right: relative amplitude of the 3rd and 4th moment of
deformation compared to the second, for varying values of a.

2.3.3 Validity of the approximation R = 1 + r cosϕ.

The full expression for R is

R =
√

1 + r2 + 2r cosϕ ≈ 1 + r cosϕ+O(r2) (38)

therefore the approximation is only valid for r � 1. Let’s study again the example of the
linear shear case: this time, we have

ψL(R) =
s

2
(R− 1)2 =

s

2

(

2 + r2 + 2r cosϕ− 2
√

1 + r2 + 2r cosϕ
)

(39)

Following the same procedure as before (Taylor expansion + Fourier decomposition) we can
obtain the Fourier coefficients of ψL(a): successively

ψL(a) = −s
∑

k>1

(a2 + 2a cosϕ)k
(1/2)k
k!

= −s
∑

k>1

(1/2)k
k!

k
∑

p=0

Ckpa
k+p2k−p cosk−pϕ (40)

so that

IL
n = −s

∑

k>1

(1/2)k
k!

k
∑

p=0

2k−pCkpa
k+p 1

2k−p
Ck−pk−p−n

2

(41)

The ηn are given by equation (33). The resulting steady-state shape of the vortex patch is
shown in Fig.3 This deformation is due to the fact that the flow is not a plane parallel flow,
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Figure 4: Deformation of a vortex patch in a Keplerian shear for a = 0.05, 0.1, 0.2, and q = 1.

but rather curves around the central accreting object. When the size of the patch is large,
this curvature acts to deform it.

To conclude, if we interpolate the linear shear results to the Keplerian case, it is likely
that the approximation will fail for a > 0.1. The full expression for R should therefore be
kept. The results for the Keplerian shear, using equation (38) in expression (35), are the
following:

IK
n = −4π

∑

k>1

(1/4)k
k!

k
∑

p=0

ak+p2k−pCkpC
k−p
k−p−n

2

(42)

The corresponding vortex patches are presented in Fig. 4, for both a cyclonic and an anticy-
clonic vortex.

2.4 Discussion.

Assuming that the background vorticity is constant, it has been possible to calculate the
steady state shape of top-hat (i.e. constant piece-wise) vortices. In a linear shear, it is a well
known result that the shape of the vortices should be elliptical [4]. For very small vortices,
for which the variation of the background vorticity is negligible, we could expect, and saw
that the vortices were mainly elliptical in shape. However, for larger vortices3, there is a
systematic variation from elliptical, and this has two main causes: firstly, the curvature of
the Keplerian flow around the central star, and secondly (and this is the dominant effect),
the background variation in the velocity field. The next step in this analysis would be to
consider the stability of these vortices, in a similar way as has been done by Meacham et

al.[5]. This is not in the scope of this project.

3In fact the approximation of constant vorticity around the vortex is no more valid for the larger
vortices anyway.
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3 Including the main flow vorticity gradient

In the previous section, the vorticity gradient term in the vorticity equation (4) has been
neglected in order to allow solutions with piece-wise constant vorticity. However, including
the vorticity gradient term forbids this solution. In particular, when the nonlinear terms can
be neglected, we will see that there exist stationary wave-like solutions: the lee waves. These
have to be taken into account in their interaction with the vortex patch. In the following
work, we will therefore study two main regimes:

• Far from the vortex, the perturbation induced by the vortex is small; the vorticity
equation becomes a linear equation for stationary lee waves. The far field of the vortex
can then be obtained by studying the lee waves which are created around a point vortex.

• Near the vortex, the perturbation is much stronger than the Keplerian flow. By rescal-
ing the coordinate system to emphasize the region near the vortex, we will see that
to a first approximation, the gradient of the vorticity can be neglected. This zeroth
order solution resembles closely that presented in Section 1 for the linear shear. The
deformation of the vortex patch is then given by the next order in the approximation.

In the steady state, equation (4) becomes

J(ψK + ψ′, ωK + ω′) = 0 (43)

where the Jacobian J is, in the cylindrical coordinate system

J(A,B) =
1

R

∂A

∂R

∂B

∂θ
−

1

R

∂A

∂θ

∂B

∂R
(44)

Let’s now use the new coordinate system

θ = −X

R = exp(Y ) (45)

The Keplerian velocity and stream function in this new ordinate system is then (using equa-
tions (7), (8), (9) and Γ = 3π)

vK =
2Γ

3

(

e−
1

2
Y − eY

)

(46)

ψK =
2Γ

3

(

2e
1

2
Y −

1

2
e2Y −

3

2

)

(47)

ωK =
Γ

3
e−

3

2
Y −

4Γ

3
(48)

The Jacobian equation then becomes (dropping the primes on the perturbed quantities)

J

(

2Γ

3

(

2e
1

2
Y −

1

2
e2Y −

3

2

)

+ ψ,
Γ

3
e−

3

2
Y −

4Γ

3
+ e−2Y∇2ψ

)

= 0 (49)

where we now have J(A,B) = ∂XA∂YB − ∂YA∂XB, and the Laplacian operator is ∇2 =
∂XX + ∂Y Y .
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3.1 The far field: a linear approach

3.1.1 Assumptions and equations

We will assume that the perturbation is much smaller than the Keplerian stream function.
This should be valid everywhere but around Y = 0, where ψK vanishes. Equation (49) implies
that

Γ

3
e−

3

2
Y −

4Γ

3
+ e−2Y∇2ψ = F

[

2Γ

3

(

2e
1

2
Y −

1

2
e2Y −

3

2

)

+ ψ

]

(50)

The function F is not unique. This means that there are many steady state solutions to the
problem we are considering, each of them depending on the type of forcing, the symmetries
required, the behaviour far from the vortex. We must choose the function F carefully to
represent the physics of the system considered. We want to represent the presence of a small
vortex patch, and its influence on the Keplerian accretion flow. Far from the vortex (the
region considered here), we hope that there exist solutions in which the disturbance caused
by the vortex is very small, so that the Keplerian stream lines are merely displaced by a small
amount. Taking these two ideas in consideration, we see that a possible prescription for F is

F (ψK + ψ) = FK(ψK + ψ) +Qδ(X)δ(Y ) (51)

where Q is the total vorticity of the patch, and the function FK is defined as

ωK = FK(ψK), ⇔
Γ

3
e−

3

2
Y −

4Γ

3
= FK

[

2Γ

3

(

2e
1

2
Y −

1

2
e2Y −

3

2

)]

(52)

Putting this ansatz back into equation (50) we get

e−2Y∇2ψ = FK(ψK + ψ) − FK(ψK) +Qδ(X)δ(Y )

≈ ψF ′
K(ψK) +Qδ(X)δ(Y ) (53)

since we assumed that ψ � ψK. The function F ′
K can easily be obtained by taking the

Y -derivative of equation (52), and is

F ′
K =

∂ωK

∂Y
∂ψK

∂Y

= −
3

4
e−

3

2
Y
(

e
1

2
Y − e2Y

)−1
(54)

We finally get
(

e
3

2
Y − 1

)

∇2ψ =
3

4
ψ +Qδ(X)δ(Y )

(

e
7

2
Y − e2Y

)

(55)

Note that equation (53) is an equation for stationary waves, the lee waves.

3.1.2 Localized solutions to the point vortex problem

The periodicity in X suggests the expansion ψ =
∑

m ψme
imX . The symmetry of the system

as X → −X limits the sum to m ≥ 0. In this case, we will have to solve

(e
3

2
Y − 1)

(

∂2ψm
∂Y 2

−m2ψm

)

=
3

4
ψm +

Q

2π
δ(Y )

(

e
7

2
Y − e2Y

)

(56)

Asymptotically, we see that there exists solutions to this equation which are localized in the
radial direction:
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• for Y � 1, we get

e
3

2
Y

(

∂2ψm
∂Y 2

−m2ψm

)

≈
3

4
ψm (57)

This equation can be solved exactly by using the change of variable t = e−
3

4
Y , which

leads to the solutions

ψm = I± 4

3
m(

√

4

3
t) (58)

For Y � 1, t → 0 so we must keep the I+ 4

3
m solution to ensure the decay of the

solutions. Note that when m = 0, there is no decaying solution. This will be discussed
later.

• for Y � −1, which corresponds to the center of the accretion disk, the equation becomes
(

∂2ψm
∂Y 2

−m2ψm

)

≈ −
3

4
ψm (59)

which has the decaying solutions

ψm ∝ exp(

√

m2 −
3Γ

4
Y ) (60)

when m 6= 0. When m = 0, we get oscillatory solutions.

Near the point vortex (X, Y small) the equation becomes

Y

(

∂2ψm
∂Y 2

−m2ψm

)

≈
1

2
ψm + Y

Q

2π
δ(Y ) (61)

By changing the variable to t = αY , we get, for the homogeneous part

∂2ψm
∂t2

−
m2

α2
ψm −

1

2αt
ψm = 0 (62)

which corresponds to a Whitaker equation with coefficients κ = −1/2α, and µ2 = 1/4 (cf.

Abramovitz & Stegun [6]) provided m2

α2 = 1/4. The solutions are the Whitaker functions
Mκ,µ and Wκ,µ such that

Mκ,µ = e−
1

2
tt

1

2
+µM(

1

2
+ µ− κ, 1 + 2µ, t)

Wκ,µ = e−
1

2
tt

1

2
+µU(

1

2
+ µ− κ, 1 + 2µ, t) (63)

where M and U are the regular and singular confluent hypergeometric functions. Since we are
actually solving the problem of stationary waves in a shear flow, we know that the point at
which the velocity vanishes is a critical layer for the waves. The singularity of the equations
near Y = 0 reflects the presence of this critical layer. As a result we expect solutions of the
kind [7]

ψr ∝ tP1(t)

ψs ∝ t ln |t|P1(t) + P2(t) (64)
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with P1(t) = a0 + a1t + · · · and P2(t) = b0 + b1t + b2t
2 + · · · near the origin, we know that

we should take µ = 1/2 [6]. The expansion of the functions near the origin is then

Mκ,1/2 = e−
1

2
ttM(1 − κ, 2, t) = e−

1

2
tt

∞
∑

n=0

(1 − κ)nt
n

(n!2)n
(65)

Wκ,1/2 = e−
1

2
ttU(1 − κ, 2, t)

=
e−

1

2
tt

Γ(−κ)

[

M(1 − κ, 2, t) ln t+
∞
∑

n=0

(1 − κ)nt
n

(2)nn!
(ψΓ(1 − κ+ n)

− ψΓ(1 + n) − ψΓ(2 + n)) +
Γ(−κ)

Γ(1 − κ)

1

t

]

(66)

where ψΓ(a) = Γ′(a)/Γ(a). We see that in order for Wκ,µ to be well defined, we need to
choose t positive everywhere, which means taking α+ = 2m for Y > 0 and α− = −2m for
Y < 0. This also means that the Y > 0 and Y < 0 branches will have different values of κ:
κ+ = −1/4m and κ− = 1/4m.

Let’s now write the full solutions:

ψm(Y > 0) = AMκ+,
1

2

(2mY ) +BWκ+,
1

2

(2mY ) (67)

ψm(Y < 0) = CMκ
−
, 1
2

(−2mY ) +DWκ
−
, 1
2

(−2mY ) (68)

Since Mκ, 1
2

(0) = 0, and Wκ, 1
2

(0) = 1
Γ(1−κ) , the continuity of ψm across the origin implies

B

Γ(1 + 1/4m)
=

D

Γ(1 − 1/4m)
(69)

Integrating equation (56) across Y = 0, we get the jump condition

∂ψm
∂Y

∣

∣

∣

∣

0+

0−

=

∫ 0+

0−

ψm
2Y

dY +
Q

2π
(70)

The integral term on the RHS is mathematically ill-defined. However, if we assume that it
should really be the principal value of this integral, then we can show that this term is 0
using the expansion in Y of ψ near Y = 0, and we are left with the simple jump condition

∂ψm
∂Y

∣

∣

∣

∣

0+

0−

=
Q

2π
(71)

Since we have M ′
κ, 1

2

(0) = 1 and W ′
κ, 1

2

(0) = 1
Γ(−κ) ln t + c(κ) where c(κ) is a constant

term, we see that the singular part of the derivative is continuous across the origin when the
function ψm itself is: indeed, the derivative is

ψ′
m(0+) = 2m

(

A+B
ln(2mY )

Γ(−κ+)
+Bc(κ+)

)

(72)

ψ′
m(0−) = −2m

(

C +D
ln(−2mY )

Γ(−κ−)
+Dc(κ−)

)

(73)
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so that the continuity of the singular part of the derivative implies

B

Γ(1/4m)
= −

D

Γ(−1/4m)
⇔

B

Γ(1 + 1/4m)
=

D

Γ(1 − 1/4m)
(74)

using the property Γ(1 + x) = xΓ(x).
This comment implies that although the derivative of the function ψm becomes singular

near the origin, it is still possible to have a finite jump of the derivatives across the origin.
The asymptotic behaviour and the jump condition define uniquely the four coefficients A, B,
C and D for each value of m but 0, to yield a unique solution for the far field depending only
on the vortex strength Q.

3.1.3 The axisymmetric (m=0) case

In this case, the solutions do not decay at infinity. In fact, we see that for Y � 1, the equation
becomes ψ′′

0 = 0, which has the general solutions ψ0 = aY + b, and for Y � −1 there is an

oscillatory solution ψ = c cos
(
√

3
4Y
)

+ d
(

sin(
√

3
4Y
)

. There is here an arbitrariness in the

choice of the boundary conditions, which is solved by the matching with the inner solution.
For the purpose of plotting the results only, we chose to take the following boundary conditions
ψ0(Yc) = ψ0(−Yc) = 0. Again, there exists a unique solution fulfilling these 2 boundary
conditions and the jump condition at the origin.

3.1.4 Numerical procedure and results

Having established that there exists a unique solution to the problem, it is now easy to find
it numerically. We start by integrating equation (56) from +∞ and −∞ towards the origin
using the asymptotic behaviour as a first boundary condition. We define a free parameter h
as ψm(0) = h, and use this as a second boundary condition for both branches of the solution.
We then calibrate this parameter h so that the jump across the origin is indeed Q/2π. Since
both parts of the solution are linear, increasing h by a factor of 2 amounts to increasing Q
by a factor of 2: there is a linear relation between h and Q, namely

Q

2π
= s(m)h (75)

The coefficients s(m) can be found numerically by fixing h = 1. The result is shown in Fig.5,
on the left. On the right, the resulting solutions for Q = −50 are shown. Note the slow
convergence of the modes for large m. This is due to the fact that the point vortex is a
logarithmic singularity, and the amplitude of the modes vary as 1/m.

Finally, we are left to sum the Fourier coefficients to reconstruct the function: we have

ψ = ψ0 + 2
∞
∑

m=1

ψm(Y ) cos(mX) (76)

The contour lines of the total stream function (the perturbation and the Keplerian shear)
have been plotted for 4 values of Q, and are represented in Fig.6. In all cases, the summation
over m has been truncated at m = 20.
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Figure 5: On the left, the coefficients s(m) have been calculated and are represented as a function
of m. On the right, this calibration has been used to calculate the functions ψm for m = 0, 1, 2, 3, 4, 5
for Q = −50. Only the first few have been labelled. The cutoff for ψ0 has been chosen at Yc = 10.

3.1.5 Discussion

The solutions obtained correspond well to what might have been expected. There are here
two main features to the result. Firstly, the presence of a point vortex in any shear flow
induces the deformation of stream lines seen in Fig.7. This type of deformation is also seen
in the results presented here. The second feature corresponds to the presence of the critical
layer at the radius R = 1, and is characterized by the discontinuity in the velocities at that
radius. This is qualitatively similar to the case of the Cat’s Eyes patterns seen in the plane
parallel shear flows [7]. The linear approximation theoretically fails as Y → 0, and a full
non-linear theory would normally be necessary; however, it was shown that the nonlinear
boudary layer simply connects to the linear branches of the solution far from the critical
layer, without change in the phase of the logarithm, so that the solution found here is a good
approximation to the nonlinear solution provided Y � ε

3.2 Close to the vortex

In this case, we want to chose a new scaling to represent the region near the vortex. Let’s
chose to take Y = εy and X = εx, and expand the equations in ε, assuming that ε � 1. We
also assume the following form for the stream function ψ and the vorticity:

ψ = ε2(ψ0 + εψ1) (77)

ω = ω0 + εω1 (78)

The Jacobian equation becomes

J

(

−
Γ

2
y2 −

5

12
Γεy3 + ψ0 + εψ1 +O(ε2) ,

Γ

3
(1 −

3

2
εy) + (1 − 2εy)∇2ψ0 + ε∇2ψ1 +O(ε2)

)

= 0 (79)
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Figure 6: Stream line contours of around an anticyclonic point vortex in Keplerian shear flow, Q=1,
(upper left), Q=10 (upper right), Q=-1 (lower left) and Q=-10 (lower right)

and we also have

ω0 = ∇2ψ0 (80)

ω1 = ∇2ψ1 − 2y∇2ψ0 (81)

The successive orders in ε from the Jacobian yield

J

(

ψ0 −
Γ

2
y2,∇2ψ0

)

= 0 (82)

J

(

ψ0 −
Γ

2
y2,−

Γ

2
y + ω1

)

+ J

(

ψ1 −
5

12
Γy3,∇2ψ0

)

= 0 (83)

3.2.1 Zeroth order solutions

The solutions to

J

(

ψ0 −
Γ

2
y2,∇2ψ0

)

= 0 (84)
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Figure 7: Stream lines around a cyclonic (left) and an anticyclonic (right) vortex positioned at a
zero-velocity point

are well known, and have been calculated in the previous section: taking piece-wise constant
solutions, we get an elliptical vortex patch of constant vorticity. This suggests the use of the
elliptical orthogonal coordinate system (χ, ζ), such that

x = fχζ

y = f
√

χ2 − 1
√

1 − ζ2 (85)

with 1 < χ and −1 < ζ < 1. The boundary of the vortex is given by χ = a so that the
solution can be written as

ω0 = qH(χ− a) (86)

The stream function ψ0 is then given by equation (82). The Laplacian in the elliptical
coordinate system is

∇2ψ0 =
1

f2(χ2 − ζ2)

[

√

χ2 − 1
∂

∂χ

(

√

χ2 − 1
∂ψ0

∂χ

)

+
√

1 − ζ2
∂

∂ζ

(

√

1 − ζ2
∂ψ0

∂ζ

)]

= qH(a− χ) (87)

Looking for separable solutions, such that ψ0(χ, ζ) =
∑

nGn(χ)Hn(ζ), we must solve

√

χ2 − 1
∂

∂χ

(

√

χ2 − 1
∂Gn
∂χ

)

= λ2
nGn + qf2χ2 (88)

√

1 − ζ2
∂

∂ζ

(

√

1 − ζ2
∂Hn

∂ζ

)

= −λ2
nHn − qf2ζ2 (89)

The homogeneous part generates the Chebyshev polynomials for both χ and ζ with λ = n.
The polynomials form the basis for the regular solution. The Hn solutions must always be
regular, so that we simply have

H(ζ) =
∞
∑

n=0

bnTn(ζ) (90)

where the Tn are the Chebyshev polynomials of the first kind. However, because of the
matching of Ψ, we also need to find the singular solution for G outside the vortex. In order
to do this, let’s perform the change of variables χ = coshα

∂2Gn
∂α2

= n2Gn (91)
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We have the solutions, for n > 0

Gn = ane
nα + ãne

−nα = an

(

χ+
√

χ2 − 1
)n

+ ãn

(

χ+
√

χ2 − 1
)−n

≡ anRn + ãnSn (92)

which defines the functions Rn and Sn, and and for n = 0

G0 = a0 ln(χ+
√

χ2 − 1) + ã0 = a0S0 + ã0 (93)

which defines S0, and R0 ≡ 1. The special solution, necessary inside the vortex, is a second
order polynomial in the variables χ or ζ respectively, so that the final solution is

ψin
0 =

∞
∑

n=0

(

AnTn(χ) + (χ2 − 2)
qf2

2

)(

BnTn(ζ) + (ζ2 − 2)
qf2

2

)

(94)

ψout
0 =

∞
∑

n=0

CnSn(χ)Tn(ζ) (95)

where we have used the fact that the solutions must be regular inside the vortex, and that
they should decay outside the vortex. Note that we can rewrite x2 = (T0(x) + T2(x))/2 =
(1 + T2(x))/2. The matching condition at the boundary χ = a yields the following relation
between the coefficients 4:

(

AnTn(a) + (a2 − 2)
qf2

2

)(

Bn +
qf2

4
δn,2

)

= CnSn(a) for n > 0

(

A0 + (a2 − 2)
qf2

2

)(

B0 − 3
qf2

4

)

= C0S0(a) for n = 0

The matching of the derivatives yields a similar system,

(

AnT
′
n(a) + qf2(a− 1)

)

(

Bn +
qf2

4
δn,2

)

= CnS
′
n(a) for n > 0

qf2(a− 1)

(

B0 − 3
qf2

4

)

= C0S
′
0(a) for n = 0

Using equation (82) with the fact that ∂ω0

∂ζ = 0 yields

∂

∂ζ

(

ψ0 −
1

2
Γy2

)∣

∣

∣

∣

χ=a

= 0 (98)

4In order to derive these conditions, we use the orthogonality relation between the Chebyshev polynomials

∫

1

−1

Tn(ζ)Tm(ζ)
dζ

√

1 − ζ2
=

π

2
δm,n if n 6= 0 (96)

= πδm,n if n = 0 (97)
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or rather,

ψ0 −
1

2
Γy2

∣

∣

∣

∣

χ=a

= ψ0(a, ζ) −
1

2
Γf2(a2 − 1)(1 − ζ2) = c (99)

where c is a constant. This implies that we must take

CnSn(a) =
Γ

2
f2(a2 − 1)(δn,0 −

1

2
δn,2) (100)

so we see that only 2 coefficients are non-zero, namely C0 and C2.
If we were to match this with the Keplerian shear flow, and ignore the far field solution,

we would then obtain a unique relation between the size of the vortex a and it’s vorticity q.

3.2.2 First order solutions

We now have to solve equation (83). The Jacobians in this equation can directly be trans-
formed into Jacobians for the new coordinate system: with

J (A,B) =
∂A

∂χ

∂B

∂ζ
−
∂A

∂ζ

∂B

∂χ
(101)

we get

J

(

ψ0 −
Γ

2
y2,−

Γ

2
y + ω1

)

+ J

(

ψ1 −
5

12
Γy3,∇2ψ0

)

= 0 (102)

Since ∇2ψ0 = qH(a− χ), we see that

J

(

ψ0 −
Γ

2
y2,−

Γ

2
y + ω1

)

= −qδ(a− χ)
∂

∂ζ

(

ψ1 −
5

12
Γy3

)

χ=a

(103)

This equation suggests the ansatz ω1 = qη(ζ)δ(a− χ) + ω2, so that we have the condition

∂η

∂ζ

∂

∂χ

(

ψ0 −
Γ

2
y2

)

χ=a

+
∂

∂ζ

(

ψ1 −
5

12
Γy3

)

χ=a

= 0 (104)

which can be integrated along the boundary to yield

η(ζ)
∂

∂χ

(

ψ0 −
Γ

2
y2

)

χ=a

+ ψ1(a, ζ) −
5

12
Γf3(a2 − 1)3/2(1 − ζ2)3/2 = ψη (105)

The equation for ω2 is

J

(

ψ0 −
Γ

2
y2,−

Γ

2
y + ω2

)

= 0 (106)

which implies

ω2 = G

(

ψ0 −
Γ

2
y2

)

+
Γ

2
y (107)

As in the far field solution, we must chose the function G to represent the presence of a
vortex. Ideally, the functions F should be the linear continuation of G when ψ � ψK. As a
first guess, we chose to take simply G ≡ 0, so that

ω2 =
Γ

2
y (108)
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We now have to express the stream function ψ1 as a function of y. This can be done by
solving the equation

∇2ψ1 = 2yqH(a− χ) + qη(ζ)δ(a− χ) +
Γ

2
y (109)

Set ψ1 = φ1 + φ2 + φ3, where the φi satisfy respectively

∇2φ1 = qη(ζ)δ(a− χ) (110)

∇2φ2 =
Γ

2
y (111)

∇2φ3 = 2qyH(a− χ) (112)

In all three cases we will have to solve the homogeneous equation ∇2φh = 0. This has already
been done in the zeroth order case, and the result is

φout
h =

∞
∑

n=0

(aout
n Rn(χ) + bout

n Sn(χ))Tn(ζ) (113)

outside the vortex, where the singular solution must be kept, and

φin
h =

∞
∑

n=0

ain
n Tn(χ)Tn(ζ) (114)

inside the vortex. For φ2 and φ3, the special solutions are easy to find and we get

φ2 = φh + φ2,s = φh +
Γ

12
y3 + c1y + c0 (115)

φ3 = φh + φ3,s = φh +
(q

3
y3 + d1y + d0

)

H(a− χ) (116)

Note that the solutions are divergent for large y, and that the true solution is obtained
by matching the near-vortex solution to a far field, wave-like solution. Inside the vortex,
however, the solutions must be regular.

To summarize, renormalizing the coefficients an and bn, we have

ψin
1 =

∞
∑

n=0

ain
n Tn(χ)Tn(ζ) + φ2,s + φ3,s

ψout
1 =

∞
∑

n=0

(

aout
n Rn(χ) + bout

n Sn(χ)
)

Tn(ζ) + φ2,s (117)

where by definition, R0(χ) = 1. The continuity of the function across the boundary of the
vortex implies that

π

2
ain
n Tn(a) +

∫ 1

−1

φ3,s(a, ζ)
√

1 − ζ2
Tn(ζ)dζ =

π

2

(

aout
n Rn(a) + bout

n Sn(a)
)

(118)
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for n > 0 and

πain
n +

∫ 1

−1

φ3,s(a, ζ)
√

1 − ζ2
dζ = π

(

aout
0 + bout

0 S0(a)
)

(119)

for n = 0. For φ1, the function must be continuous across the boundary, but the derivative
has a jump given by equation (112). Integrating (112) across the boundary, we get

1

f2

a2 − 1

a2 − ζ2

[

∂φ1

∂χ

]a+

a−

= qη(ζ) (120)

Let’s write η(ζ) =
∑∞

n=0 ηnTn(ζ). The matching condition of the derivatives therefore implies
that, for n > 0

(

aout
n R′

n(a) + bout
n S′

n(a)
)

− ain
n T

′
n(a) = qηn (121)

and for n = 0,
bout
0 S′

0(a) = qη0 (122)

The coefficients ηn can actually be determined from self-consistently using equation (105),
provided we know an and bn for all n. If we truncate the system at the order N − 1, there
are in total 3N + 3 coefficients to solve for, and 2N matching conditions. The remaining
coefficients are given by the matching of this solution to a far field.

3.3 Matching of the far field to the vortex solution.

The behaviour of the far-field is mostly determined by the total vorticity Q of the vortex patch
(with the exception of the axisymmetric component). In order to be consistent between the
far-field and the close-field, we require that Q = ε2q, since we assumed the size of the vortex
patch to be of order of ε. The aim of this section is more to assess whether such a matching
is possible rather than to perform it. The actual matching, as we shall see, can only be done
numerically, and will be the aim of future work.

In order to do this matching, it is necessary to study the behaviour of the inner solution
for χ→ ∞ and the outer solution as χ→ 1. The elliptical coordinate system asymptotically
tends to the polar coordinate system as χ � 1. Indeed, we then have r2 = x2 + y2 ≈ f2χ2

and ζ ≈ cosϕ = x/
√

x2 + y2. Also, we use the property that Tn( cosϕ) = cos(nϕ), and
that χ+

√

χ2 − 1 ≈ 2χ. As a result, for χ� 1, the inner solution tends to

ψinner = ε2
∞
∑

n=0

Cn

(

2r

f

)−n

cos(nϕ) + ε3
[

aout
0 + bout

0 ln
(

χ+
√

(χ2 − 1)
)

+
∞
∑

n=1

(

aout
n

(

2r

f

)n

+ bout
n

(

2r

f

)−n
)

cos(nϕ) + φ2,s

]
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On the other hand, as we saw, the outer solution tends to

ψouter = α±ψ
outer
0 (|Y |) +

∞
∑

n=1

(

Am,±M±1/4m,1/2(|Y |)

+ Bm,±W±1/4m,1/2(|Y |)
)

cos(nX) (124)
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where the ± sign refers to the difference in the Y > 0 and Y < 0 branches. All the coefficients
Am,± and Bm,± are uniquely defined, with the exception of the m = 0 mode where we
imposed some additional boundary conditions to determine them. These may be taken as
free parameters if necessary to perform the matching on to the inner solution.

Let’s study the various terms that appear in the inner and the outer, and that may
cause problems in the matching. The most obvious term is the axisymmetric term, which
has the main component as (Γ/12)ε3y3 in the inner, and that can be shown to behave as
c0 + c1Y + c2Y

2 + c3Y
3 + ...+ logarithmic terms in the outer. The Y 3 terms can be matched,

since we can to choose the coefficients c3 on either sides of Y = 0 to be Γ/12. This is possible
since we had the freedom of varying the boundary conditions on the axisymmetric mode to fit
this requirement. Next, we must fit the logarithmic terms. The main logarithmic dependence
in the inner comes from the O(ε2) term. As we take y → ∞, this term can be assimilated to
the contribution from a point vortex only in the outer region. We expect this term to match
exactly onto the outer solution for a point vortex only, which has been studied in Section
3.2.5. Finally, it can be shown that the remaining difference between the point vortex case
and the vortex+waves case is non-singular, so that this could possibly be matched onto the
O(ε3) term in the inner. This last matching would yield the coefficients an and bn, and
therefore determine the shape of the boundary by determining η.

4 Conclusion

In an attempt to understand the dynamics of vortices in accretion flows, we have been looking
for steady state solutions of such a system, since the existence of stable steady states might
be reason for the observed longevity of the vortices. The first part of the project was a simple
attempt at finding such solutions using the rather crude assumption of a constant vorticity
field, which is only truly justified in the case small vortex patches. This assumption allowed
us to consider top-hat vortex solutions, and study their steady state shapes. The second
part of the project was an attempt at dropping this assumption. In that case, it has been
shown that a general stationary lee wave solution must be added to the vortex solution in
order to satisfy the vorticity equation. This problem can only be solved asymptotically in
two limits: far from the vortex, it is possible to find linearized solutions. Closer to the vortex,
an expansion in the small parameter ε which is really the ratio of the size of the vortex to
the distance to the center of the shear flow, yields results very similar to the first section:
to zeroth order, we recover the elliptical vortex solution, and to first order, the deformation
of the vortex matches onto the “background flow”, which consists of the Keplerian flow and
the lee waves. The possibility of the matching between the two solution has been considered,
and will be the purpose of future work.
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