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1 Introduction

Many biological phenomena such as the spread of a favored gene, the population growth
of species, ecological competition, and others are described by equations that contain the
dominant physical processes of diffusion, convection, and a background reaction [6]. The
model studied in this paper describes the limited universe of these forces and its influence
on the lives and deaths one colony of photosynthetic bacteria living on an inhomogenous
substrate.

Interestingly, the model reaches beyond the scope of biology to touch upon unexpected
research areas in condensed matter physics, including vortices in superconductors [7] and
semiconductor physics [5]. The bacteria and vortex systems are mathematically analogous,
non-Hermitian models which have drawn a great deal of interest [1],[3] due to their ability to
undergo a delocalization transition in their eigenfunctions. Previously such transitions were
believed to be impossible in one or two dimensional systems [5].

The goal of this paper is to continue the analysis of Dahmen, Nelson, and Shnerb (DNS)
[4],[2], by studying the delocalization transition in the presence of a weakly non-linear satu-
ration term. This term represents the crowding of the bacteria due to competition or deadly
concentrations of toxins from their waste.

The model is new territory for the mathematical analysis of pattern formation and pop-
ulation dynamics in biology. With the exception of DNS, very little work has been done on
this type of inhomogenous system. Our analysis leads to the very interesting result that the
dynamics of the model is governed by a differential-delay equation. This delay equation is
explored with the hopes that oscillations, quasi-periodicity or chaos might arise within the
physical regime of the model. A little familiarity with delay-equations and a comparison with
another familiar delay-equation of mathematical biology, the Glass-Mackey delay-equation [6]
, suggests a structural method to quickly predict the dynamic behavior of a subset of such
equations.

Finally, several efforts are made to reasonably modify the physical system to achieve
interesting dynamics. These attempts include changing the form of the non-linear saturation
and the increasing the spatial complexity of the system. The former is proved to be stable,
while the latter remains an open-ended question.
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2 The Modified Fisher Equation

Imagine one species of bacteria living in a periodic, one-dimensional ring with coordinates in
x, 0 < x < L. Located at at the origin is an “oasis” where plentiful supplies of food and light
support life. The rest of the ring is deadly to the bacteria. DNS call this region a “desert”.
The bacteria experience diffusion, as well as a convective drift due to a background current.
They also compete with their fellow neighbors as mentioned above. This is the source of the
non-linear term neglected by DNS. The equation governing this model is the Fisher equation
with an extra term included to account for convection. Originally, the Fisher equation was
proposed as a model for the spread of a favored gene. The modified Fisher equation is then

ct(x, t) + ucx(x, t) = Dcxx(x, t) + [βδ(x) − α]c(x, t) − bc2(x, t) , (1)

where c(x,t) is the concentration of the bacteria. A delta function of strength β represents the
oasis and the −α term represents the death rate of the desert. The combination of βδ(x)−α
is the spatial inhomogeniety of this particular system.

DS’s biological motivation for suggesting this model was to study the effect of spatial
inhomogenieties in the underlying medium. Disorder in the medium may be due to many
things, including random diffusion constants, stochastic growth and death rates, or a random
concentration of environimental factors such as food, toxins or illumination. Here we use the
simplest choice, a random concentration of food and/or illumination.

A possible experiment suggested by DNS is to place the bacteria in a thin annular ring
covered by a dark mask with a small slot cut to let light pass through. Turning the mask at
a slow speed while the ring remains fixed would simulate the convection current. Currently
DNS are talking with experimental biologists to do this experiment. Another practical sys-
tem where this model may be applied is the circumpolar current around Anartica. It has
been shown to carry photosynthetic plankton completely around the continent, with various
patches of nutrient-rich upswellings supporting the plankton.

3 Linear Stability Analysis

The following section reviews the analysis of the linearized modified-Fisher equation. Here
we become familiar with the delocalization transition that occurs in this biological model and
with the associated behavior of the eigenspectrum. Linearizing about the fixed point c = 0
leads to

ct(x, t) + ucx(x, t) = Dcxx(x, t) + [βδ(x) − α]c(x, t) . (2)

3.1 Without the oasis:

An example of delocalized modes

Delocalized eigenfunctions are those solutions which have a form like eikx, where k is complex
and the real part is non-zero. The simplest example of a delocalization occurs if β = 0.
Solutions are of the form c(x, t) = esteikx. Periodicity requires that k be quantized as k =
2πm/L, where m is an integer.
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Figure 1: Regime diagram for an infinite ring

The associated dispersion relation is

s = −Dk2 + α − iuk . (3)

The growth rate, s, is a discrete set of complex numbers. The plot of Re(s) versus Im(s) is a
parabola symmetric to the real axis. Increasing the velocity u broadens the parabola. When
u = 0, the growth rate is real. The value of α determines the stability of the eigenfunctions.
The growth rate of the mth eigenfunction will be positive if

α > D

(

2πm

L

)2

. (4)

The eigenfunction with the largest positive growth rate (k = 0) will dominate the system
at large times.

3.2 An infinite ring

We begin the linear analysis of our system for the case of an infinite ring because it has
simple analytical results which clearly demonstrate the signature of delocalization. Assume
c(x, t) = estc(x) to eliminate the time dependence in (1),

sc(x) + ucx(x) = Dcxx(x) + [βδ(x) − α]c(x) . (5)

It may also be written as
ct = Lc , (6)

where the linear operator,

Lc = Dcxx − ucx + [βδ(x) − α]c , (7)

generates the time-evolution of the system. When u = 0, the operator is Hermitian with real
eigenvalues, and for strong enough disorder, all of its eigenfunctions are real and localized
[2].
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Using c(x) = e−kx, a dispersion relation is found to have two roots for the wavenumber
k,

Dk2 + uk − s − α = 0 ,

k± =
−u ±

√

u2 + 4D(s + α)

2D
. (8)

Periodicity is satisfied only if the eigenfunction c(x) = e−kx decays as x → ±∞. Thus we
use k+ when x > 0 and k− when x < 0. This restriction is the equivalent of solving for only
the localized eigenfunctions of this physical system, i.e. we are working in the regime where
k± is real.

Using the appropriate eigenfunction to the left and right of the origin, we integrate (patch)
across the delta function to acquire a value for the growth rate s:

D[[cx]] + β = 0 ,

D[−k+ − (−k−)] = −β ,

⇒ s =
β2 − u2

4D
− α . (9)

The expression for k± (8) can now be simplified using the growth rate (9),

k± =
−u ± β

2D
, (10)

⇒ β > u when u > 0 ,

β > −u when u < 0 .

The requirements on k± restrict the range of u, according to the given strength of the oasis
β. We have one localized solution, although if the oasis were wider than a delta function, say
a box, there would be many localized solutions.

A regime diagram (figure 1) maps the properties of this system as β and u vary. The
two straight lines, β = u and β = −u, are the boundaries which restrict k±. If crossed, the
eigenfunctions will be in the delocalized regime.

The marginal stability curve is the hyperbola labeled s = 0. As the parameters u and
β tend to infinity, the marginal stability curve coincides with the delocalization transition.
Inside of the hyperbola, s is positive, and thus the eigenfunctions are unstable and grow in
time. Outside of the hyperbola, s is negative, and the eigenfunctions are stable and decay
with time.

Larger values of α and |u| shift the marginal stability curve upwards, increasing the regime
of stability. This is because α is the size of the death rate; while in an infinite ring, larger
velocities carry more bacteria and being carried away from the oasis is a sure death sentence
in an infinite ring.

The behavior of the concentation c(x) when there is positive background velocity is ex-
amined in figure (2). The plots are asymmetric due to the eigenfunction dependence on the
sign of u:

c(x±) = e(
−u±β

2D )x . (11)
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Figure 2: c(x) for positive velocities

The velocity blows bacteria away from the orgin to the right, increasing their concentration
in this region. To the left of the origin, the competing mechanisms of diffusion away from
the oasis, and advection back into the oasis result in a thin boundary layer. If no wind or
current were present, the distribution would be symmetric, decaying exponentially away from
the orgin.

As the value of the velocity increases, the concentration becomes nearly constant across x
because more bacteria is being blown out of the origin. For this particular example, choices
for the velocity u are limited by the choice of β = 1. At u = .99 for instance, the eigenfunction
is nearly delocalized. If we surpassed u = 1 we would be examing the delocalized spectrum.

The one localized mode, is unstable if

β2 > 4Dα + u2 . (12)

This section has been included to introduce the problem and gain some intuition for the
delocalization transition, and its dependence on the physics (D, β, u) of the system. Note
that for this infinite ring case, the velocity carries the bacteria away from their haven, never
returning them in time before they die. The velocity has a purely deadly effect. Thus, the
inequality above, a requirement for instability, makes sense. Only if the life production in
the oasis, β, is large enough to overcome the deadly effects of diffusion and convection, will
the system grow in time.

3.3 A finite ring with no convective drift

We now study the linearized problem in a finite ring with no wind. When u = 0, (5) becomes

sc = Dcxx + [βδ(x) − α]c . (13)

We arrange that the unknown concentration c(x) will be equal to 1 at x = 0. The eigenfunc-
tions will then be of the form,

c(x) = (1 − A)e−kx + Aekx . (14)
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Using periodicity, c(0) = c(L), we find an expression for A

A =
1 − e−kL

2 sinh kL
. (15)

Combining this result with (14), gives the expression for c(x):

c(x) = e−kx +
(1 − e−kL)

sinh kL
sinh kx . (16)

Patching across the delta function gives a transcendental relation for the wavenumber k:

2k(1 − cosh kL) = −
β

D
sinh kL . (17)

This is the same expression found for k by DNS [4], if one sets their velocity, v, equal to
zero. Their result was found by solving the problem for a periodic domain with an oasis that
is a finite square well, and then taking the area of the well to zero.

To study the delocalized spectrum, this expression can be neatly rewritten by letting
k = iκ and σ = βL/(2D):

κL(1 − cos(κL)) + σ sin(κL) = 0 . (18)

In this form, we assume that the wavenumber k is purely imaginary. The spectrum may
be studied graphically by plotting σ as a function of kL (see figure 3(a)). The wavenumbers
k for fixed σ are found by drawing a line at one value of σ and intersecting the curves. The
numerical results are plotted in 3(b) for various values of σ.

A double degeneracy exists in the solutions of the finite ring without a delta function
(σ=0). This degeneracy is not reflected in 3(a) because the dispersion relation was obtained
after dividing out one extra factor of cosh(kL). The degeneracy of the eigenvalues is broken
by turning on the delta function strength so that σ 6= 0. As σ is increased, one of the two sets
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of eigenvalues moves away from the general oscillatory solutions k = 2πm of section (3.1). As
the strength of the delta function increases, the moving eigenvalues asympotote to (2m+1)π.
The other eigenvalue remains fixed at these values.

None of these delocalized modes are unstable in time, although we will see in the next
section, that they can be unstable when there is a strong enough wind to help blow the
bacteria around the ring before they die.

One localized mode exists. The solution can be found analytically if one assumes that σ
is very large so that cosh σ ≈ sinh σ. In this limit, we find that kL → σ. The localized mode
can be unstable depending on the values of the parameters k and α. The dispersion relation
for this system is

s = Dk2 − α . (19)

3.4 Finite length and a constant wind:

Traveling around the ring

We now explore the full linearized problem in a finite ring. The relevant partial differential
equation is

sc(x) + ucx(x) = Dcxx(x) + [βδ(x) − α]c(x) . (20)

We begin with the assumption of the form of the concentration c(x), so that c = 1 at the
origin,

c(x) = ((1 − A)e−kx + Aekx)e−
ux
2D . (21)

Applying periodicity gives an expression for the constant A

A =
e

uL
2D − e−kL

2 sinh kL
. (22)

Now, to obtain an expression for k similar to (17), we repeat patching. The ucx(x) term
adds nothing new since it is zero when integrating over x; however the derivative of c(x) is
now more complicated due to the addition of u/2D in the exponential. Using the definition,
η = uL/2D where η is the Peclet number of fluid mechanics, we find

2k(cosh η − cosh kL) = −
β

D
sinh kL . (23)

Note that if u = 0, it is identical to (17) as it should be. Also, if Re(k) > u and L → ∞ the
dispersion relation reduces to (9).

Given the concentration in (21), the dispersion relation is

s = Dk2 −
u2

4D
− α . (24)

To learn more about this new dispersion relation for k, let k = iκ and use the definition for
σ:

κL (cosh η − cos(κL)) + σ sin κL = 0 . (25)

When k is complex, the system is best studied using a numerical algorithim to solve for
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Figure 4: The movement of the localized mode into the delocalized mode with increasing
velocity. Complex s is a signature of delocalization

the growth rate s. The results are very interesting. We find that the eigenspectrum is a
parabola on the complex plane as it was in section (3.1), but now we also have one real
eigenvalue which varies in its distance to the parabola depending on the velocity u. This is
the one localized mode that accompanies the delta function. As the velocity is increased,
the eigenvalue moves towards and finally onto the apex of the parabola which remains fixed.
This represents the same delocalization transition we experienced in section (3.2) when we
crossed the boundaries β = ±u. Figure 4(b) shows a series of spectra with increasing velocity.
Here the critical delocalization velocity, the velocity at which the real eigenvalue moves onto
the parabola, is determined by a more complicated relationship between β and u which we
examine in the next section.

3.5 An important limit for the finite ring with wind

Here we present a nice way to represent the delocalization transiton for a large but finite
ring. This is a new addition to the analysis done by DNS.

In the limit that L is large, (23) reduces to the dispersion relation

e−L(k− u
2D

) = 1 −
β

2kD
. (26)

We define a parameter P , which in the limit that L → ∞, is a measure of our closeness to
the delocalization threshold

P =
β

u
− 1 . (27)

In order to examine the complex eigenvalue spectrum, we rewrite k in terms of a complex
parameter ζ,

k ≡ η[1 + Pζ] , (28)

where for eventual simplicity, ζ is

ζ = 1 +
x + iy

Pη
. (29)
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Then k becomes
k = η(1 + P ) + x + iy . (30)

Putting k (28) into the dispersion relation (26) and simplifying gives the expression,

e−Pη = 1 −
P + 1

1 + Pζ
. (31)

Making the assumption that Pζ << 1, we have a final expression for ζ

ζ = 1 +
e−Pηζ

P
. (32)

Using the definitions for ζ (29, 32) and plugging it into k (28), gives a nice expression for the
wavenumber

k = η[1 + P + e−ηP e−x−iy] . (33)

Another useful relation is obtained by combining (30, 33),

x + iy = ρe−x−iy , (34)

where we have used the definition of ρ

ρ ≡ ηe−Pη . (35)

Setting real and imaginary parts equal, we have two expressions for x and y,

x = ρe−x cos y , (36)

y = −ρe−x sin y . (37)

A little maninpulation of these expressions gives the final form that we use to explore the
delocalization transition,

x2 + y2 = ρ2e−2x , (38)
y

x
= − tan y . (39)

Figure (5)(b) plots contours of ρ in the x-y plane. The pair of values (x, y) for each
wavenumber k is found by solving

x = ρe−x cos
√

ρ2e−2x − x2 , (40)

for a given ρ. The most unstable mode (the largest solution) is x0, which is determined by
x0e

x0 = ρ. The cooresponding y0 is always zero, so that the most unstable model has a real
eignevalue. The higher modes occur in complex conjugate pairs.

For a given value of ρ, one can draw the eigenvalue locii in the x+iy plane. It is found
that when ρ < exp(−1), two contour curves exist in the x-y plane, while if ρ > exp(−1),
only one curve exists. The associated wavenumbers k are represented as points (x, y) on
the curves, corresponding to the intersections in figure 5(a). If we are in the region where
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ρ > exp(−1), the contour of ρ will be to the right of the set of half circles near the origin. An
infinite set of discrete pairs of (x,y) (and thus wavenumbers k) are found along each contour
in that set. If ρ <exp(-1), two curves exist, a half circle and a line somewhere to the left
of the half circle. Only one pair (xo,yo) exists on the associated half circle, representing the
one localized mode. The second curve will have an infinite but discrete set of (x,y) pairs
along it, representing the the delocalized spectrum. When ρ = exp(−1), we are right at the
delocalization transition. This corresponds to the eigenvalue s moving onto the apex of the
parabola in figure 4(b). Thus, the value of the non-dimensional parameter ρ determines at
what velocity the delocalization transiton occurs, for a given β, D, L.

A similar condition restraint of the velocity like |u| < β of the infinite ring, comes in the
form of the transcendental equation

ρ ≡
uL

2D
e(β−u)( L

2D ) < exp(−1) . (41)

4 Weakly non-linear anaylsis near

the delocalization transition

The goal of this work is to study the effect of the non-linear saturation term on the delocal-
ization transition that we observed in the linear analysis. In the following sections we explore
this effect in infinite and finite diameter rings.

The previous section reviewed the results of DNS and carefully studied the existance of
the delocalization transition in our one-dimensional model. While DNS quickly discuss the
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effects of the non-linear term which represents the competition between the bacteria, they do
not study it in depth. They suggest that the non-linear term is irrevelant, especially in the
limit that the ring has an infinite diameter.

Here we consider the effect of the non-linear saturation term, −bc2, on the delocalization
transition and discuss its effects on the dynamics of our bacteria colony. The modified-Fisher
equation is now examined in its entirity:

ct + ucx = Dcxx + [βδ(x) − α]c − bc2 . (42)

4.1 Infinite ring on a windy day

We start by studying the infinite ring. We remain near to the delocalization transition
represented by the lines in figure (1), by keeping βc nearly equal to the critical beta, β = u,

β = βc(1 + ε) , (43)

where ε is a small parameter. We also define a slow time T and express the concentration as:

T = εt , c = εf .

Rewritten with these scalings, the adjusted equation is

εfT + ufx = Dfxx + βc(1 + ε)δ(x)f − αf − bεf 2 . (45)

Expanding the eigenfunction c = εf :

f = f0 + εf1 + ε2f2 + . . . ;

Substituting in the expansion of f gives:

ε(f0T + εf1T ) + u(f0x + εf1x) = D(f0xx + εf1xx) + (47)

βc(1 + ε)δ(x)(f0 + εf1) − α(f + εf1) − bε(f0 + εf1)
2 . (48)

The zeroth order equation in ε is:

Df0xx − uf0x + βcδ(x)f0 − αf0 = 0 . (49)

It is useful to write (49) in terms of the linear operator L (7) defined previously in section
3.2, so that

Lf0 = 0. (50)

The solution f0 for this zeroth order homogeneous equation is

f0 = A(T )e(u−βc
2D

x) (51)

where A(T ) is the time-dependent constant of the solution. This is the result we expect,
since the zeroth order solution represents the eigenfunction at the delocalization transition.
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The constant concentration along x is what would see when βc = u in figure (1). For now,
we imagine that β is not quite equal to u. The first-order equation in ε is

f0T + uf1x = Df1xx + βcδ(x)f1 + βcδ(x)f0 − αf1 − bf2
0 . (52)

Rewriting (52) in terms of the linear operator, L,

Lf1 = f0T − βcδ(x)f0 + bf2
0 . (53)

The first order eigenfunctions may be solved for from (53), using the definition of f0 found
in (51).

To find the time-dependence of f0 = A(T ), we derive an amplitude equation. Using the

adjoint of f0, f †
0 , and integration by parts, it is easy to show that

〈f †
0Lf1〉 = 〈f1L

†f †
0〉 = 0 . (54)

We may take advantage of this fact if we multiply (53) by f †
0 and integrate over x. The left

hand side dissapears and the right hand side reduces to the amplitude equation

〈f †
0Lf1〉 = 〈f1L

†f †
0〉 ≡ 0 = 〈f †

0f0T 〉 + b〈f †
0f2

0 〉 − 〈βcf
†
0f0δ(x)〉 . (55)

Using our solution for the zeroth-order amplitude f0 and performing the integrals results in
the amplitude equation:

AT =

(

β2
c

2D

)

A +
6bβ2

c A2

u2 − 9β2
c

. (56)

This result is not unusual for a perturbative analyis of a non-linear problem, and is not
of much interest except for comparison with the unique results of the next section. It is
reassuring to note that if βc = u, this amplitude equation blows up, as it should since none of
the integrals we performed would have converged. The solution to (56) is found easily using
the Bernoulli trick which transforms non-linear equations to solvable linear equations. As a
check on this result, one may show that the analytical and perturbative energies agree at the
zeroth and first orders.

4.2 Finite ring on a windy day: Part I

The solution

In this section we work with the entire physical model. At the origin there is an oasis where
the bacteria grows; away from the origin the bacteria struggles for life, dying at a rate α.
The bacteria diffuses along concentration gradients and is advected by a constant background
flow at speed u. Throughout the ring, the bacteria competes, dying if conditions become too
crowded, thus adding to the the resultant death rate of the desert. Finally, the bacteria live
in a finite domain with periodic boundary conditions, e.g. a ring.

The strategy here, is to expand near the delocalization threshold, as we have done for the
infinite domain. It is also assumed that the ring is large, but finite. Obviously, this is not the
most general consideration of the problem that can be made, but it allows one to proceed
analytically. The meaning of a large domain will be discussed below.
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Figure 6: The outer and inner eigenfunctions. ε ≡ D̂

We begin by non-dimensionalizing the modified-Fisher equation with the intention of
having a firm grasp of the size of each term. Non-dimensionalizing may obscure the physics,
but it clarifies the relative magnitudes of terms. It is natural to scale distance with the length
of the ring and to scale time with the transit time:

x̂ =
x

L
, t̂ = t

u

L
, δ(x) = δ(Lx̂) =

1

L
δ(x̂) . (57)

The resulting equation is:

ct̂ + cx̂ =
L

u

(

1

L
βδ(x̂) − α

)

c +
D

Lu
cx̂x̂ −

Lb

u
c2 . (58)

Several more useful non-dimensionalizations are:

α̂ =
L

u
α, β̂ =

1

u
β, D̂ =

D

Lu
, c̃ =

√

b

α̂
ĉ . (59)

These non-dimensionalized constants contain the physical meaning of competing effects. α̂
is the ratio of the decay rate α to the advective transit time L/u. D̂ is the inverse Peclet
number, or a measure of the strength of diffusion versus advection. Finally, β̂ is a measure
to the nearness of the delocalization transition. If |β̂| = 1, we are at the transition.

The fully non-dimensionalized equation is

c̃t + c̃x̂ = D̂c̃x̂x̂ + [β̂δ(x̂) − α̂]c̃ − α̂c̃2 . (60)

We are interested in the non-linearity near the delocalization transition, and so we expand β̂
around 1. Using the non-dimensionalized diffusion coefficient D̂ as the small parameter with
which we expand, we have

β̂ = 1 + D̂β̂1 . (61)
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When β < 1 there is a localized mode and this mode becomes delocalized if β > 1. Thus,
condition (61), in which β1 is held fixed as D̂ → 0, ensures that the system is operating
close to this delocalization threshold. β1 may be positive or negative, putting us in either
the localized or delocalized regime, as long as D̂ is small. Small D̂ is the equivalent to large
L or large u since D̂ = D/Lu (59).

4.2.1 The outer solution

Dropping the tildes and hats for notational simplicity, and making an expansion in the small
parameter D, c ≈ c0 + Dc1, (60) becomes:

(c0t + εc1t) + (c0x + εc1x) = (βδ(x) − α)(c0 + εc1) (62)

+ D(c0xx + εc1xx) − α(c2
0 + 2εc0c1) . (63)

The zeroth order equation is then:

c0t + c0x = −αc0 − αc2
0 . (64)

A series of tricks and substitutions are used to solve for the zeroth order concentration c0(x, t).
The result is

c0(x, t) =
f(t − x)

(eαx − 1)f(t − x) + eαx
. (65)

Checking this expression at x = 0, reveals c(0, t) = f(t). This implies that all higher-order
terms must be zero at the origin. Meanwhile attempting to demonstrate the periodicity of
the system at x = 1,

f(t) =
f(t − 1)

(eα − 1)f(t − 1) + eα
, (66)

requires a stringent restriction of f(t − x), suggesting that there is a problem at x = 1.
In fact, this solution is an “outer approximation”, which is valid provided that 0 ≤ x ≤

1 −O(D). The failure of the outer solution at the boundary becomes apparent, if we define
the restricted parameter λ,

λ ≡
e−α

D
, or, α = log

(

1

D̂λ

)

, (67)

where λ is fixed as D̂ → 0. This means that α is large, but not very large. The parameter λ
is necessary for a satisfactory asymptotic development.

In the sequel we will treat α as O(D0), except when it appears in exponentials, where it
is O(D1). This condition means that the population which is swept away from the oasis will
decay to O(D) on its passage through the desert before revisiting the oasis.

In the limit D → 0, with β1 and λ fixed, all details of the solution can be expressed in
terms of f(t − x) and simple functions of x. The form of the solution is indicated in figure
(): there is a boundary layer of thickness D immediately to the left of x = 1.
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Rewriting the zeroth order concentration c0 in terms of λ and expanding in terms of
the small parameter D, we see why the outer approximation does not satisfy the periodicity
requirement. At x = 1, c0(x = 1, t) is:

c0(x = 1, t) =
Dλf(t − 1)

1 + f(t − 1) − Dλf(t − 1)
. (68)

Expanding gives,

c0(x = 1, t) ≈
Dλf(t − 1)

1 + f(t − 1)
−

D2λ2f(t − 1)2

1 + f(t − 1)
+ . . . 6= f(t) . (69)

Near x = 1, this outer solution of the concentration of bacteria, c0 has decayed to O(D) and
thus is inappropriate to describe this region of the ring. The role of the boundary layer at
x = 1 is to repair this failure, and so to determine the evolution of f(t). This insight is the
most difficult part of this asympototic expansion.

4.2.2 The boundary layer

We now turn to the “inner region”, and introduce the stretched coordinate, ξ = x/D. In
terms of ξ, equation (60) becomes

Dct + cξ = cξξ + D[βδ(Dξ) − α]c − Dαc2 . (70)

Making an expansion in D of the concentration: c(ξ, t) ≈ c0 + Dc1, we arrive at an equation
to solve for the zeroth order, boundary layer concentration, c0(ξ, t):

c0ξξ − c0ξ = 0 . (71)

The solution is
c0 = feξ . (72)

This solution satisfies the requirement that at ξ = 0 we have c(0, t) = f(t), implying that all
higher order terms are zero at the origin.

The first order boundary equation is:

c1ξ − c1ξξ = −αc0 − α2c2
0 − c0t . (73)

Solving this inhomogeneous, partial differential equation with the help of the solution c0(ξ, t)
in (72), gives the expression for the first order boundary layer c1(ξ, t):

c1(ξ, t) = (ft + αf)ξeξ + r(t)(1 − eξ) +
1

2
(e2ξ − eξ)αf2 , (74)

where r(t) is the constant of integration.
The constant r(t) is found by matching the outer concentration with the boundary layer

in the limit that ξ → −∞, which is equivalent to taking the limit where the boundary layer
dissapears, D → 0. The zeroth order boundary solution c0 is zero, and all the terms but r(t)
are zero in the first order boundary layer in this limit. For the matching, the outer solution is
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evaluated at x = 1, which is appropriate in this limit, since there is no boundary current for
an infinite domain. This is an example of a “switchback” - the O(D1) inner solution matches
the leading order outer solution.

The resultant expression for r(t) is:

c0(ξ = −∞, t) + Dc1(ξ = −∞, t) = c0(x = 1, t)

⇒

r(t) =
λf(t − 1)

1 + f(t − 1)
. (75)

The first order expression for the boundary layer concentration is then:

c1(ξ, t) = (ft + αf)ξeξ +
λf(t − 1)

1 + f(t − 1)

(

1 − eξ
)

+
1

2
αf2(e2ξ − eξ) . (76)

Thus r(t) represents a time-delay of t − 1. The origin of this term is interesting to note, as
it will be the origin of the rest of our discussion.

As usual, an element of information has been neglected by excluding evaluation of the
modified-Fisher equation at the origin. The patching condition contains this information,
and can now be evaluated since we have expressions for the outer and inner solutions. This
condition, obtained by integrating (70) about the orgin, is

cξ(−) − cξ(+) = (1 + Dβ)c(0), (77)

where the pluses and minuses indicate evaluation to the left and right of the orgin, and thus
imply whether to use the outer or inner solution. For instance, cξ(+) is actually the outer
solution to the right of the origin, Dc(x = 0, t). Expanding in D gives

c0ξ + Dc1ξ − Dc0x − D2c1x = (1 + Dβ1)[c0(x = 0) + Dc1(x = 0)] . (78)

It is interesting to note that the zeroth order outer solution is related non-trivially to the first
order boundary solution because of the role of the diffusion coeffcient D as a small parameter.

The zeroth order equation is trivially satisfied due to our choice of the constant in the
solution (72). The non-trivial first order expression is:

cx(x = 0, t) − cξ(ξ = 0, t) + (1 + β1)c(x = 0, t) = 0 . (79)

Differentiating the appropriate expressions of the concentration and evaluating them at x = 0
(ξ = 0) in (79) leads to a very interesting amplitude equation for f(t),

ft = (
β1

2
− α)f −

3

4
αf2 +

1
2λf(t − 1)

1 + f(t − 1)
. (80)

This amplitude equation is a differential-delay equation. The rate of change of f at any
time depends not only on the value of f at that particular moment, but also on the particular
value of f at a specific earlier time, t − 1. Not suprisingly, the time-delay is 1 time-unit, or
the time required for transit around the ring. Comparison to the amplitude equation for
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the infinite ring reveals that we have the same Ginzburg-Landau type terms, while the time-
delay piece is a result of the finite-size of the ring. We note that λ is the only parameter that
depends on the length of the ring L. As the ring becomes infinite in size, λ → 0, so that the
differential-delay equation reduces to the Ginzburg-Landau equation of the previous section
with redimensionalization.

A good check is to verify that the first order energy obtained from (80) agrees with the
analytic expression for the energy of the linear solution. The linearized version of (80) is:

ft =

(

β1

2
− α

)

f +

(

e−α

2σ

)

f(t − 1) (81)

Consistent with linearization, we assume this is an eigenvalue problem and let f = est. The
expression for the first order energy is then:

s =
β1

2
− α +

e−α−s

2D
. (82)

Remembering that we have non-dimensionalized our results, we work the analytic result, (23,
24), into the same form. Non-dimensionalization leads to,

2Dk

(

cosh k − cosh
1

2D

)

= (1 + Dβ) sinh k , (83)

k ≡
1

2D

√

1 + 4D(α + s) . (84)

To show the equivalence, we expand k in D and drop any terms which have e−(1/(2D̂)) since
they are very small.

k ≈
1

2D̂
+ α + s . (85)

Using this in the transcendental relation for k (81), leaves us with the expression:

−
1

2
+ (αD + sD)(eα+s − 1) = D

β1

2
eα+s (86)

Again, we consider which terms are very small. Much smaller than any of the exponential
terms, sD is dropped, as is αD, since α ∼ O(−ln(D)). Thus, we are left with an expression
identical to the first order energy, if we rearrange the following

−
1

2
+ (α + s)Deα+s = D

β1

2
eα+s . (87)

4.3 Finite Ring on a Windy Day: Part II

The Dynamics

The next step of this analysis is obvious: we should study the stability of the steady state
solutions of our amplitude equation. Before beginning this analysis, we set the tone of the
rest of this project by suggesting the results that were expected.

17



0 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

time (days)

co
nc

en
tr

at
io

n 
of

 w
hi

te
 b

lo
od

 c
el

ls

Glass−Mackey model of Haematopoiesis, T=2,   λ =2,   γ =1,   a=1,   m=8

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

c(t)
c(

t−
2)

T=2,   λ =2,   γ =1,   a=1,   m=8

360 370 380 390 400 410 420
0.2

0.4

0.6

0.8

1

1.2

1.4

co
nc

en
tr

at
io

n 
of

 w
hi

te
 b

lo
od

 c
el

ls

time (days)

Glass−Mackey model of Haematopoiesis, T=2,   λ =2,   γ =1,   a=1,   m=10

0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.4

0.6

0.8

1

1.2

1.4

c(
t−

2)

c(t)

Glass−Mackey model of Haematopoiesis, T=2,   λ =2,   γ =1,   a=1,   m=10

Figure 7: Periodic and chaotic behavior of the Glass-Mackey equation in various regimes (a)
quasi-periodic state when m=8 (b) phase diagram, m=8 (c) chaotic state when m=10 (d)
phase diagram, m=10

4.3.1 Interesting Zoology of Differential-Delay Equations

Differential-delay equations are well know for their periodic, quasi-periodic, or chaotic be-
haviour, with examples often arising in biology. One such system is the model suggested by
Glass and Mackey [6] to describe the regulation of white blood cells. The structure of the
Glass-Mackey equation is similar to our differential delay equation,

ct =
λc(t − T )

1 + cm(t − T )
− γc , (88)

and is nearly identical to ours, if m = 1.
This differential-delay equation describes the change in time of the concentration of the

white blood cells ct. The rate at which cells die is proportional to c, e.g., −γc. Meanwhile, the
flux, λ of new cells produced by bone marrow, is dependent on the concentration of the blood
cells at some previous set time, t−T due to a delay time T in the production of white blood
cells. This time delay exists because of the time costs of communciation and production. All
the parameters, λ, g, m, T are greater than zero. m is a parameter determined experimentally,
and if large enough, gives rise to limit cycles or chaos. See figure (7).

In our system, we deal with our first exposure to a delay-equation and thus, a potentially
chaotic system. The possiblility of chaotic dynamics of the concentration of bacteria seems
like a fascinating result. We examine this possibility below.

4.3.2 What about us? A stability analysis

Thus, one might begin the stability analysis of the bacteria-ring system. Perhaps the three
free parameters of our system, λ, β, and α, can have both reasonable physical values and
interesting dynamics. Simplifying the differential-delay equation (80) with the definitions

β̄ =
β1

2
− α , ᾱ =

3

4
α , λ̄ =

1

2
λ , (89)

the equation becomes

ft = β̄f − ᾱf2 +
λ̄f(t − 1)

1 + f(t − 1)
. (90)
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The steady-states of (90) are found by letting ft = 0 where f(t − 1) ≡ f(t). This leads
to a cubic equation for the roots, one of which is zero, and the other two roots are obtained
from

ᾱf2 + (ᾱ − β̄)f − (λ̄ + β̄) = 0 . (91)

The roots are

f± =
(β̄ − ᾱ) ±

√

(ᾱ + β̄)2 + 4ᾱλ̄

2ᾱ
. (92)

Discarding the non-physical negative amplitude, we are left with two steady-states which
the system may tend towards, f = 0 and f0. A study of the stability is necessary to un-
derstand the dynamics. Expanding around the steady-state solutions, we use f = f0 + εf1.
The delay term in (90) must also be expanded in terms of ε. We find that the zeroth or-
der equation for f0 is just the cubic equation obtained earlier. The first order differential
delay-equation defining f1 is:

f1t = β̄f1 − 2ᾱf0f1 +
λ̄f1(t − 1)

1 + f0
−

f0f1(t − 1)

(1 + f0)2
. (93)

It is useful to define a function N ,

N =
1

1 + f0
, (94)

N ′ = −
1

(1 + f0)2
, (95)

to rewrite (93), where N ′ = dN/df0. Since this is a linear stability analysis, f = est, which
gives

s = β̄ − 2ᾱf0 + λ̄e−s(N + f0N
′) . (96)

To study the growth rate s, let s = µ + iω. (96) becomes,

µ + iω − β̄ + 2ᾱf0 = λ̄e−µ−iω(N + f0N
′) . (97)

Direct instabilities occur when µ, the real part of s, is greater than zero. For simplicity,
let ω = 0 and examine if it is possible for µ > 0. We can show that β̄ = ᾱf0 − λ̄N , using the
zeroth order equation, (91), so that

β̄ − 2ᾱf0 = −ᾱf0 − λ̄N . (98)

Using (98) we arrive at:
µ − ᾱf0 + λ̄N(1 − e−µ) + λ̄e−µN ′ . (99)

Assuming u > 0, we find the expression on the right hand side to be negative for all param-
eters. This disproves our assumption. There can be no direct instability.

Hopf instabilities are the second possible type of linear instability. Breaking (97) up into
its real and imaginary parts, squaring and combining them gives

(µ − β̄ + 2ᾱf0)
2 + ω2 = λ̄2e−2µ(N + f0N

′)2 (100)
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Figure 8: (a) Various steady-state solutions found numerically using ARCHI. Parameters are
given with each curve. (b) Plot of Nf0 vs f0 of the modified-Fisher equation and the Glass-
Mackey equation. The leveling off of the modified-Fisher equation prevents any instability.
The negative slope in the Glass-Mackey equation is what gives it the ability to be unstable.
The higher the value of the Hill coeffient, m, the steeper the slope.

For simplicity, assume µ = 0, and subtract ω2 from each side. Using (98), we have the
inequality

(
ᾱf0

λ̄
+ N)2 < (N + f0N

′)2 . (101)

If (101) is true, an instability exists. Further simplification leads to

|f0N
′| > 2N +

ᾱf0

λ̄
(102)

⇒

−λ̄(2 + f0) − ᾱf0(1 + f0)
2 > 0 .

This condition is obviously impossible since f0, ᾱ, λ̄ are all positive. Thus, there are no Hopf
instabilities. This system is stable – an acceptable but dissapointing result for situation
represented by an equation filled with such apparent possiblity. We check these results with
a numerical results, exploring some of the 3-dimensional parameter space. The two agree,
as shown in figure (8(a)), which plots several numerical results. One may note that the
bumpiness in the amplitude corresponds with the time delay, so that at each time unit, the
slope increases until the steady-state value is reached.

4.3.3 Key to Instability: A comparison

In hindsight, it is easy to predict that our system will be stable for all parameter space,
despite the freedom of three independent parameters, λ, β,and α. The hint is contained
in the Glass-Mackey equation (88). Rewriting it in terms of a similar N , the NGM of the

20



Glass-Mackey equation is,

NGM (f0) =
1

1 + f0
m , (103)

N ′
GM (f0) =

−mf0
m−1

(1 + f0
m)2

. (104)

A similar stability analysis shows that direct instabilities are always impossible, while Hopf
instabilities may exist if

|f0N
′| > 2N . (105)

This inequality is very similar to our the bug-ring system’s inequality for Hopf bifurcations.
The difference is due to the non-linear term in our amplitude equation (80). One might think
that the non-linear term is what is preventing instability – that it is damping out oscillations
- but comparison of these two inequalities reveal that the non-linear term only makes what
is already impossible, more impossible. The stability is a result of the structure of N and
NGM . Plot (8)(b) shows Nf0 versus f0, where the slope is Xi = N + f0N

′. For our system,
the slope is always positive so that

X1 = N + f0N
′ > 0 . (106)

For Glass-Mackey,
X2 = NGM + f0N

′
GM < 0 . (107)

We see from (103) that for a Hopf instability to exist,

0 > Xi + N +
ᾱf0

λ̄
. (108)

This is impossible unless the slope, Xi < 0, since the other two terms are positive. And so
we see that the structure of N is crucial to the stability of these types of systems.

4.4 Other possiblilities for instability

With the initial goals of this work accomplished, it is fun to continue along further lines of
investigation. For instance, is it possible to modify the non-linear saturation term so that
we may find a non-steady-state solution? Or what about increasing the spatial complexity?
Or perhaps adding another delta function to the ring or many more, will lead to chaotic
dynamics. What if the strength of the delta function(s) varies with time? The first two ideas
are explored in the rest of this paper.

4.4.1 Adjusting the non-linearity

We begin with the simplest adjustment. What happens if we increase the non-linearity in
the modified-Fisher equation from −bc2 to −bcn? Perhaps this will do something. However,
it was shown that if we change the power of c to any value n, that the structure of N will be

N =
1

(1 + f0
n)

1

n

. (109)
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Direct instabilities remain impossible, while this N still does not yield the negative slope N ′

necessary for a Hopf instability.
In fact, it appears that we must tailor a function which has a similiar behavior to the

Glass-Mackey type N, so that it levels off at some lower value than it’s maximum. For our
system, this seems physically unreasonable.

4.5 Two delta functions and more...

Does spatial complexity breed instability?

The second physically motivated suggestion, is to increase the complexity of the oasis and
desert zones to acheive interesting dynamics. If one additional delta function is added to the
ring, located at position a′, possesing a strength β′

1, while the first delta function is located
at a with strength β1, a similar analysis to section (4) leads to two coupled differential-delay
equations:

ft = (
β1

2
− α)f −

3

4
αf2 +

1
2λg(t − a)

1 + g(t − a)
, (110)

gt = (
β′

1

2
− α)g −

3

4
αg2 +

1
2λ′f(t − a′)

1 + f(t − a′)
, (111)

where λ = e−αa/2D and λ′ = e−αa′

/2D In general, for independent parameters, these equa-
tions yield 8 steady-state solutions (f0, g0), if we count f0, g0 = 0. A study of the stability is
quite complex. A few things, however can be said:

1. No direct instabilities exist, for any set parameters.

2. Equal parameters, β1 = β′
1, a = a′, results in the amplitudes f0 and g0 always being

equal. (f0 = g0). This case reduces to the 1-delta function case, so there is no interesting
zoology here.

3. When the parameters are not equal, f0 never equals g0. Stability has not been proven
for this case, although numerical tests suggest that the system is stable.

The first two results are also true a system composed of n delta functions. The coupled
delay-equations are straightforward to derive:

f1t = β̄1f − ᾱf2
1 +

λ̄nfn

1 + fn
,

f2t = β̄2f − ᾱf2
2 +

λ̄1f1

1 + f1
,

. . .

fnt = β̄nf − ᾱf2
n +

λ̄n−1fn−1

1 + fn−1
. (112)

It would be nice to develop a technique to study the stability of all the steady-state solu-
tions for 2-delta functions (and then n-delta’s) which is more straightforward than the usual
algebraically complex method. Perhaps this will be accomplished as our familiarity with
delay-equations grow, just as the simple discovery of N made the analysis of the simplest
case swifter and less convoluted.
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5 Conclusion

In conclusion, the modified-Fisher equation and the delocalization transition has been studied
in detail for a large ring and in the distinguished limit that λ is O(1). While the differential-
delay equation was an unexpected result, it is an interesting property of the system which
deserves more study in complex inhomogenous backgrounds. It is also suggested that a time-
dependent delta function could model oscillations of illumination due to cloud cover, or the
day/night cycle, as well as lead to an interesting problem with a new delay-equation. Other
work may also be done in different parameter regimes, especially in the small diameter limit.
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