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1 Introduction

Spicules are approximately 7, 000 km high jets of hot plasma seen on the sun extending
from the chromosphere into the lower corona. Each jet lasts roughly ten minutes and then
disappears. These jets have been previously discussed in the literature (for example, see
[Hasan and Venkatakrishnan, 1981], [Athay, 1984], and [Umurhan et al., 1998]); there is no
consensus on the driving mechanism. This paper follows the approach of Umurhan, Tao,
and Spiegel ([Umurhan et al., 1998]) who suggested that spicules are a non-linear effect of
overstable acoustic modes.

There are two main parts to this work. The first is to write down an eigenvalue equation
that can be numerically solved to obtain frequencies and growth rates for the various oscillation
modes, considered as infinitesimal perturbations to a background state, of a chromosphere-like
layer. The second part is to use the results of the linear stability problem to derive a non-linear
equation to describe the time evolution of the layer.

The main outline of the paper is as follows: Section 2 contains a brief outline of the basic
structure of the sun and spicules. Section 3 describes the time scales involved in the problem.
The basic equations that will be used to describe the plasma are introduced in Section 4 and
linearized in Section 5. Section 6 contains a discussion of the energy equation and Newton’s
law of cooling. Section 7 discusses the various background atmospheres around which the
linearization is done. The boundary conditions for the problem are described in Section 8.
Results for the case of the isothermal and polytrope background are shown in Sections 9 and
10. Sections 11 and 12 develop the amplitude equation. The remaining sections discuss the
conclusions and possibilities for future work.

2 A Brief Review of Spicules and The Sun

The sun has radius of 7×105 km. The inner 20% by radius is where the nuclear burning takes
place and is responsible for energy generation. The region below 70% of the solar radius is
called the radiative zone, in this region energy is carried outwards by radiation. Above the
radiative zone and extending to the surface is the convection zone, where as the name implies
energy is carried outwards mainly by convection. The top of the convection zone, known as
the photosphere, produces most of the visible light we see. At the top of the photosphere the
temperature, which decreases steadily outwards from the core, reaches its minimum of about
6, 000 K. Above the photosphere is the chromosphere, a layer roughly 4, 000 km thick, in which



the temperature increases with height from the photospheric value to approximately 10, 000
K while the density and pressure are steadily decreasing. At the top of the chromosphere the
temperature starts increasing very rapidly with height, up to the two million degrees of the
corona.

The surface of the photosphere shows two main spatial scales of convection. The smaller of
these scales is the granule scale, which is 1000 km. Granules are up-drafts of hot plasma, with
thin boundaries of down-going cooler plasma. The larger length scale is due to supergranules,
each of which contains approximately 1, 000 granules. Supergranules, like granules, consist of
a widespread warm up-welling surrounded by thin lanes of cooler down-drafts. The flow due to
the supergranular structure sweeps granules, as well as magnetic flux, towards the boundaries
between supergranules. As a result the magnetic field above the supergranule lanes can be up
to 2000 G, compared to the usual background of a few gauss. Spicules tend to occur above
these supergranule lanes. As a result, it is suggested that the formation of spicules is related
to the presence of the magnetic field.

Spicules can be seen in Hα, the 660 nm spectral line of hydrogen, images of the solar limb
as well as of the disk. In limb images they appear as extended, much taller than they are
wide, bright regions. They are seen to extend to heights of 7, 000 to 10, 000 km above the
photosphere and last for roughly ten minutes (e.g. [Suematsu et al., 1995]).

3 Time Scales

The time scales involved in the problem determine what physics needs to be included when
describing the chromosphere. As only the fundamental modes of waves in a chromosphere-like
layer are considered the length scale is taken to be the height of the chromosphere, 4, 000 km.
The sound speed is approximately 10 km

s
. 200 G is taken as the magnetic field strength. The

important times are the sound speed transit time, the Alfvén wave transit time, and resistive
diffusion time, the viscous damping time, and the rotation period. In the expressions for these
times L is the length scale, cs is the sound speed, ca is the Alfvén speed, and η is the resistivity.
The expressions and values for these times are then:

Tsound =
L

cs
= 400s

TAlfvén =
L

ca
= 200s

Tresist =
L2

η
= 107years

Tsound is the time for a vertically pressure perturbation to cross the layer, TAlfvén is the
time for a vertically propagating magnetic field disturbance to cross the layer. The resistive
diffusion time Tresist is the time scale for the decay of magnetic field due to finite conductivity.
Because the resistivity of the chromosphere is so small compared to the length scale in the
problem, the resistive diffusion term will be neglected in the MHD equations in the next



section. The viscous diffusion time is the time for a velocity perturbation to decay in the
absence of other effects. It is not clear what value to use for the viscosity, perhaps turbulent
viscosity is important. The rotation period is a approximately a month, so rotation is not a
large effect on waves with periods of minutes, of order the sound or Alfvén wave transit times.

4 MHD equations

The standard ideal MHD equations are used to describe the plasma. ρ is the density, P is the
pressure, ~v is the velocity, ~J is the current, ~B is the magnetic field, ~E is the electric field, T is
the temperature. These quantities are functions of time and space. Cv is the heat capacity at
constant volume and is considered fixed. R is the gas constant. The equations are:

∂ρ

∂t
+ ∇ · (ρ~v) = 0 (1)

ρ
d~v

dt
= −∇P + ρgẑ +

1

c
~J × ~B (2)

∂ ~B

∂t
= −∇× ~E (3)

Cvρ
dT

dt
+ P∇ · ~v = Q(T, ρ) (4)

P = RρT (5)

~J =
c

4π
∇× ~B (6)

~E = −~v × ~B (7)

Equation 1 is the usual continuity equation, expressing the fact that there are no sources
or sinks of mass in the problem. Conservation of momentum is expressed by Equation 2.
The forces on the right hand side are the pressure gradient, gravity, and the Lorentz force.
Gravity is assumed to act only the in the +ẑ direction. Equation 3 is the usual Faraday’s Law.
Conservation of energy is given by Equation 4, the function Q gives the rate at which energy
is injected into (or removed from) the fluid at a given point and is in principle a function
of temperature and density. The equation of state is assumed to be that for an ideal gas
and is given in Equation 5. Equation 6 is the pre-Maxwell prescription for the current. The
displacement current is assumed to be negligible, so this set of equation is not expected to be
valid at high frequencies. The final equation gives the electric field in terms of the magnetic
field. It arises from Ohm’s law and the infinite conductivity assumption of Ideal MHD. If
the conductivity σ is infinite then in the frame of reference moving with the fluid the current
~J = σ( ~E + ~v× ~B) must be zero, from which a relation between ~E and ~B is obtained. Once Q
is specified this set of equations, along with boundary conditions and initial conditions, gives
a complete description of the time evolution of the system.



5 Linearization

In order to study the linear stability problem the MHD equations must be linearized around a
background state. In this work only the two dimensional plane-parallel problem is studied, x
describes the horizontal direction, z describes the vertical. The background state is assumed
static. Gravity and the background magnetic field are assumed to be constant and in the ẑ
direction. The background pressures is given by P0, the density by ρ0, and field by B0ẑ. The
variables P , ρ, θ, ~v = (U,W ), ~B = (Bx, Bz) describe the perturbations to the pressure, density,
temperature, velocity, and magnetic field respectively. The perturbations are assumed to have
the form f(z) exp i(kx− ωt). The linearized equations, given below, along with a prescription
for boundary conditions and a background state then constitute a linear eigenvalue problem
for the complex frequency ω.

−iωρ+Wρ′ + ρ0(ikU +W ′) = 0

−iωU = −
ikP

ρ0
+

iB0
2

4πρ0ω
(−k2U + U ′′)

−iωW = −
P ′

ρ0
+ g

ρ

ρ0

Cvρ0(−iωθ +WT0
′) + P0(ikU +W ′) = Q(θ, ρ, T0, ρ0)

P

P0
=

ρ

ρ0
+

θ

T0

The real part of ω gives the frequency of the mode and the imaginary part is the growth
rate. The linearization makes it clear the the magnetic field causes only a force in the horizontal
direction and is only due to motions in the horizontal direction. Motion along the background
field is not affected at all. Note now that the function Q, which originally was a function of
the total T and ρ must now be considered a function of both the background and perturbation
values of these quantities. In order to further simplify these equations a form of Q must be
chosen.

6 Heating Function

As mentioned earlier the function Q describes that rate at which heat is added or removed
from the plasma as a function of its temperature and density. The chromosphere, to a good
approximation, is optically thin (e.g. [Syrovat-skii and Zhugzhda, 1968]). Optically thin per-
turbations can be described by Newton’s law of cooling: Q(θ, ρ) = −qρ0Cvθ ([Spiegel, 1957]).
In general q is a function of the background state. For this work only the case in which q is a
constant is considered. For q constant and no flow the non-linearized heat equation is:



∂T

∂t
= −q(T − T0)

For the case q > 0 deviations in the temperature T from the background value T0 decay
with a time scale of 1

q
. If q < 0 then any temperature perturbation is unstable, growing

exponentially with time scale −1
q

. In general, though not always, q > 0 has the effect of
damping waves that produce temperature perturbations, and q < 0 increases the growth rate
of waves that produce temperature perturbations.

7 Background State

In addition to the function Q the background state also must be specified. The full problem
of heating in the chromosphere is unsolved. As a result it is not clear what the appropriate
background model is. For lack of a better model, the three simplest temperature profiles are
examined: a constant, a linear function of depth, and a quadratic function of depth. All three
of these background temperatures can be obtained from the diffusion equation, with constant
thermal conductivity κ and heating rate h,

−κ
∂2T

∂z2
= h

For the case h = 0 a linear temperature profile is obtained, of which the constant profile is
a special case. For nonzero h a parabolic profile is obtained. In all cases gravity is assumed to
be constant and the equations of state is that of an ideal gas. A further assumption, for the
sake of simplicity, is that the background state is in hydrostatic equilibrium. This assumption
is probably not good for the chromosphere.

7.1 Isothermal Atmosphere

For the case of T constant,

dP

dz
= gρ =

gP

RT

With the definition of the scale height H = RT
g

, P (z) has the form P̃ exp z
H

, where P̃ is
the pressure at z = 0. The scale height H is the distance it takes for the density and pressure
to increase by a factor e. It is reasonable the this distance increases with temperature and
decreases with increasing strength of gravity, g. It can be shown that this atmosphere is always
convectively stable.

7.2 Polytrope Atmosphere

Suppose T = βz + α. For β 6= 0, α can be made zero by choice of coordinates. Then:

dP

dz
= gρ =

gP

Rβz



The solution of which is P (z) = P̃ ( z
zs

)
( g

Rβ
)
. Here P̃ is the value of P at z = zs. zs has the

units of length and is put in only to make the units look correct. The definition of m = g
Rβ

−1

is commonly used. With this definition P (z) = P̃ ( z
zs

)m+1 and ρ(z) = ρ̃( z
zs

)m. This atmosphere
is known as a polytrope and can be either convectively stable or unstable depending on the
relationship between m and γ =

Cp

Cv
. For m < 1

γ−1 the atmosphere is unstable, while for

m > 1
γ−1 it is not. The instability arises from the combination of the stratification with

gravity.

7.3 Constant Heating

For the case of h 6= 0 the temperature has the form −h
2κ
z2 + βz + α. Again by change of

coordinates α can be made zero. By the same method as in the previous two sections the

pressure profile of this atmosphere is found to be P (z) = P̃ ( z

β− H
2κ

z
)
( g

Rβ
)
. This atmosphere

is more interesting then the previous two. In the other cases the temperature and pressure
both increase with depth. With constant non-zero heating there is the possibility of having
the temperature decrease with depth. This feature makes this atmosphere more like the
chromosphere than the previous two.

8 Boundary Conditions

Boundary conditions must be specified in order to complete the formulation of the linear
stability problem. The linearized version of the equations are fourth order in space. As a
result four boundary conditions are required. The traditional boundary condition that the
vertical velocity, W , vanish on the top and bottom of the layer is used. This condition ensures
that the mechanical part of the energy flux across the boundary is zero.

Two more boundary conditions are required. Limits on the possible boundary conditions
on the magnetic field can be found be requiring that the Poynting vector ~S = ~E × ~B at the
boundary be parallel to the boundary. The result of the calculation is that for k 6= 0 either
Bx or Bz must be zero on the boundary. The physical meaning of these boundary conditions
requires some discussion.

The basic problem of selecting boundary conditions for this problem is that the boundaries
do not correspond to clear physical boundaries, but rather have been selected arbitrarily. In
order to deduce the physical meaning of the various boundary conditions on ~B it is necessary
to make assumptions about what is outside the layer in which the eigenvalue problem is to be
solved.

8.1 Bx = 0

For the case k 6= 0 the boundary condition Bx = 0 is equivalent to U ′ = 0 which is a
statement of no stress on the boundary. In particular U is allowed to be nonzero on the
boundary. Another point of view is that if the magnetic perturbation to the field outside the
layer is required to be vertical, then Bx = 0 on the boundary implies that no surface currents



are allowed, as can be seen by the standard Ampere’s law argument. In order to maintain
∇· ~B = 0 there would have to be a vertical perturbation to the field outside the layer to match
the perturbation inside.

8.2 Bz = 0

The boundary condition Bz = 0 is equivalent to considering the outside of layer to be a perfect
conductor with fixed field B0ẑ in it. As a result of ∇· ~B = 0, Bz must vanish at the boundary.
A consequence of this condition is that for k 6= 0 the horizontal velocity must vanish at the
boundary. The can be understood in terms of line pinning. Any horizontal motion along the
boundary would drag field lines with it, this motion is therefore not allowed as the field lines
are stuck into the boundary and cannot move.

9 Polytrope Atmosphere

The problem of the stability of adiabatic motions (q = 0) in a polytrope atmosphere without
magnetic field is well understood (e.g. [Lamb, 1925]). The adiabatic problem with magnetic
field has been studied in the case of a complete polytrope, i.e. a polytrope that extends
from z = 0 to z = ∞ (e.g. [Bogdan and Cally, 1997]) as well as for a generic polytrope
layer (e.g. [Kaplan and Petrukhin, 1965]). The case without magnetic field but including
heat transfer by conduction rather than Newton’s law of cooling has been previously studied
(e.g. [Lou, 1990]), as has the case of particular spatially dependent cooling times 1

q
(e.g.

[Macdonald and Mullen, 1997], [Spiegel, 1964]). There are few generalizations than can be
obtained from these studies besides that the existence of unstable modes depends sensitively
on the exact form of heat transfer that is used. In this study only the case where the cooling
time is independent of depth is considered.

9.1 Non-Dimensionalization

For the polytrope background atmosphere it is convenient to non-dimensionalize the MHD
equations by scaling the pressure, density and velocity perturbations by the background pres-
sure, density, and adiabatic sound speed at the bottom of the layer. The length scale, zs, is
the distance from the height where the density is zero to the bottom of the layer. In all of the
calculations for polytrope atmospheres shown here the layer is chosen to extend from z = 0.1
to z = 1. A result of this scaling is that the dimensionful frequency is given by ωc

zs
where c

is the adiabatic sound speed. For the values assumed for the chromosphere this implies that
the dimensionful frequency is 1

400 Hz times the dimensionless frequency. The dimensionful

horizontal wavenumber is given by k
zs

where k is the dimensionless horizontal wave number.

9.2 Results

The results of numerical calculations, done in terms of the dimensionless variables, of the
frequencies and growth rates for the fundamental acoustic and gravity modes are shown for



a sample stable polytrope in Figure 1 and for an unstable polytrope in Figure 2, in both
cases without magnetic field. The first figure shows that both the acoustic and gravity wave
branches have zero growth rate as one would expect for a stable atmosphere. The gravity
wave frequency goes to zero with decreasing wavenumber. The acoustic wave has a minimum
frequency, this would be this case even in an infinitely thick layer though the actual minimum
would be different. The second figure shows that the acoustic mode has zero growth rate
and has a dispersion relation much like that for the stable atmosphere. The gravity mode
is completely different, however. The gravity mode is not oscillatory in time at all, rather it
grows exponentially.

If magnetic field is added to the problem, but the adiabaticity of the oscillations is main-
tained, a new set of features arises. The most striking feature of the magnetized polytrope,
with boundary conditions Bx = 0 on the top and bottom of the layer, is that the mag-
netic field can make unstable polytropes behave in a stable way. Kaplan and Petrukhin
([Kaplan and Petrukhin, 1965]) argued that stabilization of the transverse mode by the mag-

netic field only occurs, in the adiabatic case, for m+1
m

< γ + B2

4π
. This claim has not been

investigated here. One example where the magnetic fields makes the layer stable is shown
in Figure 3. The dotted line represents the more longitudinal mode and the solid the more
transverse mode. Growth rates are not shown because they are all zero. The modes are iden-
tified by their k = 0 behavior. At k = 0 the equations separate into two decoupled eigenvalue
problems, one for U(z), ~B(z) and one for W (z), P (z). The first eigenvalue problem describes
the vertically propagating Alfvén mode, which is transverse and causes no density or pressure
perturbations. The second eigenvalue problem describes the vertically propagating acoustic
mode, which is unaffected by the magnetic field. By starting at k = 0 with one of these
solutions and moving up in k the behavior of each branch can be calculated.

The ability of the magnetic field to completely suppress convective instability is likely due
to the reversibility of fluid parcel motions. For nonzero q as well as B0 the unstable polytrope
regains its instability. This is shown in Figure 4, again using the boundary conditions Bx = 0.
This figure has a number of important features. As in previous plots the dashed line is for the
longitudinal mode and the solid line for the transverse mode. The transverse mode is unstable
for large k while the longitudinal mode is unstable for small k. this is a general feature that
appears in many of the calculations shown in this paper. Another feature is that the modes
come very close to crossing. As a result, resonance between the modes, despite their different
physical characteristics, might be an important effect.

10 Isothermal

Adiabatic oscillations in an isothermal atmosphere in the absence of magnetic field have been
studied and well understood (e.g. [Lamb, 1925]). The isothermal atmosphere is always convec-
tively stable and supports three types of modes: the acoustic, Lamb, and the gravity waves.
With the addition of the magnetic field there are only two fundamental modes, a mostly
transverse and a mostly longitudinal mode.

The problem of the isothermal atmosphere with a constant magnetic field and Newton’s



law of cooling has been previously studied (e.g. [Babaev et al., 1995]). Babaev and coworkers
considered the case of an infinite isothermal atmosphere and found analytic solutions to the
linear stability problem. They found that all the modes were stable and discussed the damping
rates in the limits of strong and weak magnetic field.

10.1 Non-Dimensionalisation

For the numerical calculations with isothermal atmosphere background, pressure and density
perturbations are scaled by the values of background pressure and density at the middle of the
layer. The velocity perturbations are scaled by the adiabatic sound speed. The scale height is
used as the length scale. The calculations were done on a layer that extends from z = −0.5 to
z = 0.5.

10.2 Results

The results of the calculations for the isothermal atmosphere are qualitatively similar to those
of [Babaev et al., 1995] in that for q > 0 there are no unstable modes, as long as the boundary
conditions on ~B are either Bx = 0 or Bz = 0. For q < 0, all modes are overstable. For the
case q < 0 the fundamental longitudinal mode is most unstable for k = 0 while the transverse
mode is most unstable for some finite k which depends on the parameters of the problem. The
transverse mode is always marginally stable for k = 0 as the vertically propagating transverse
mode does not produce temperature perturbations.

11 General Form of The Amplitude Equation

As a result of the unrealistic nature of the background atmospheres considered in this work no
attempt was made at the derivation of a detailed amplitude equation. Instead the procedure
of Fauve ([Fauve, 1991]) is followed in order to derive a schematic amplitude equation.

Consider the isothermal atmosphere with a background magnetic field. For q = 0 the
fundamental longitudinal mode is marginally stable. For q > 0 the fundamental longitudinal
mode is overstable with maximum growth at k = 0. Define ε = −q as the control parameter,
which will be useful later. The amplitude A(k, t) is then introduced through the equation:

ψ(x, z, t) =

∫
A(k, t)eikxφk(z)dk (8)

Where φk(z) = ( ~vk(z), ~Bk(z), Pk(z)) describes the velocity, magnetic field, and density per-
turbation eigenfunctions associated with the fundamental longitudinal mode with horizontal
wavenumber k. ψ(x, z, t) then describes the behavior of these fields in time as well as space.
It is important to note that the effect of modes other than the fundamental longitudinal mode
is ignored. The other modes could be easily included. With the simplifying, but incorrect,
assumption that φk(z) = φ0(z) Equation 8 becomes:

ψ(x, z, t) = φ0(z)

∫
A(k, t)eikxdk = φ0(z)A(x, t)



Thus if the amplitude A(x, t) is known, the behavior of our physical fields can be found by
multiplying by the eigenfunction for k = 0.

Fauve explains that for the case of overstable modes with most unstable wave number k
the lowest order non-linear equation for the time evolution of A(k, t) is

∂A(k, t)

∂t
= (iω(k) + η(k))A(k, t) + α|A(k, t)|2A(k, t)

Here ω(k) is the mode frequency as a function of k and η(k) is the growth rate. The
Fourier transform of this equation gives the time dependence of the amplitude A(x, t). The
Fourier transform of the linear part is straightforward and gives a linear operator involving
even power of ∂x, as only even powers of k can appear by symmetry. The non-linear part is
quite complicated. In order to proceed without working out the details, the Swift-Hohenberg
argument ([Manneville, 1990]) is used to show that:

∫
|A(k, t)|2A(k, t)eikxdk ≈ |A(x, t)|2A(x, t)

With this assumption:

∂A(x, t)

∂t
= L(∂x

2)A(x, t) + α|A(x, t)|2A(x, t)

12 Particular Form of the Amplitude Equation

In the previous section the general form of the amplitude equation was derived. In this section
the linear operator L(∂x

2) is obtained from the Fourier transform of iω(k) + η(k). In order
facilitate this computation a function of the form εδ+ εκ

1+βk2 is fit to the numerical results for the
growth rate. In addition the frequency is assumed constant, equal to ω0. This approximation
could easily be relaxed. The calculation that needs to be done then is:

∫
(iω0 + εδ +

εκ

1 + βk2
)A(k, t) exp ikxdk

which gives:
(iω0 + εδ)A(x, t) + εκC(x, t)

with
(1 − β∆)C(x, t) = A(x, t)

The complete form of the amplitude equation is then, (explicitly noting that α is order ε
) :

∂A(x, t)

∂t
= (iω0 + εδ)A(x, t) + εκC(x, t) + εα|A(x, t)|2A(x, t)

with
(1 − β∆)C(x, t) = A(x, t)



13 Conclusions

The general eigenvalue problem for the growth rates of normal modes of 2D MHD with New-
ton’s law of cooling in a layer with a variety of boundary conditions has been set up and
solved for both isothermal and polytrope backgrounds with constant vertical magnetic field.
The linear stability of the different modes depends strongly on the boundary conditions as
well as the background atmosphere.

For the particular case of the boundary condition Bz = 0 and an isothermal background
atmosphere it was found the modes are always stable for q > 0 and unstable for q < 0. An
amplitude equation was developed for the overstable fundamental acoustic modes for the case
q < 0. The amplitude equation was derived with the assumption that the only important
branch is the fundamental acoustic branch and by making a Swift-Hohenberg type simplifica-
tion of the Fourier Transform of the nonlinear term.

14 Future Work

This work is far from complete. Viscosity of any sort has not been included. It is likely
that introducing a finite viscosity would reduce the growth rates or perhaps even damp the
large horizontal wave number modes. This would introduce a new horizontal length scale
into the problem and would alter the amplitude equation significantly. The expansions in the
eigenfunctions may have to be done around finite k instead of k = 0.

The issue of resonance between modes was not treated in the work, and may be an im-
portant effect. For many choices of parameters there appears to be nearly a mode crossing
between the longitudinal and transverse waves.

A vast improvement in the realism of the problem could be made through the use of a more
accurate background atmosphere. For both the polytrope and the isothermal atmosphere the
temperature either increases with pressure and density or remains constant. The temperature
of the chromosphere decreases with increasing density and pressure.
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Figure 1: The dispersion relation for the fundamental acoustic, in the dashed line, and gravity
mode, in the solid line, are shown for them = 5, γ = 1.28, non-magnetic polytrope atmosphere.
The layer extends from z = .1 to z = 1. The atmosphere is stable and the oscillations are
adiabatic so the growth rate is zero for both branches.
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Figure 2: The dispersion relation for the fundamental acoustic, in the dashed line, and grav-
ity mode, in the solid line, are shown for the m = 1.5, γ = 1.28, non-magnetic polytrope
atmosphere. The layer extends from z = .1 to z = 1. The atmosphere is unstable and the
oscillations are adiabatic so the growth rate is zero for the acoustic mode and positive for the
gravity modes. The gravity modes have zero frequency and thus are not oscillatory in time
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Figure 3: The dispersion relation for the fundamental longitudinal, in the dashed line, and
transverse mode, in the solid line, are shown for the m = 1.5, γ = 1.28 magnetic polytrope.
The layer extends from z = .1 to z = 1 and the magnetic boundary conditions are Bx = 0 on
top and bottom. For this plot q = 0 so the oscillations are adiabatic.The growth rates are not
shown because they are zero. Without magnetic field this atmosphere would be unstable, but
the transverse modes are stabilized by the magnetic field.
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m=1.5, 1/(gamma−1)=3.6, B0=6, q=1, Bx=0, Convectively Unstable

Figure 4: The dispersion relation for the fundamental longitudinal, in the dashed line, and
transverse mode, in the solid line, are shown for the m = 1.5, γ = 1.28 magnetic polytrope.
The layer extends from z = .1 to z = 1 and the magnetic boundary conditions are Bx = 0 on
top and bottom. For this plot q = 1 so the oscillations are non-adiabatic. The finite cooling
time makes fluid motions irreversible so the transverse modes are unstable. Even though this
atmosphere is convectively unstable the transverse modes have an oscillatory component. In
addition for the given B0 and q the longitudinal mode is unstable for k < 1.
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Isothermal, B0=2,q=−.01

Figure 5: The dispersion relation for the fundamental longitudinal, in the dashed line, and
transverse mode, in the solid line, are shown for the isothermal atmosphere. The layer extends
from z = −0.5 to z = 0.5 and the magnetic boundary conditions are Bz = 0 on top and bottom.
For this plot q is small and negative. The background magnetic field is 2 which corresponds
roughly to real magnetic field of 60 gauss. The modes in this diagram almost cross, which
results in small features in the growth rate near the close approach of the frequencies.
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Figure 6: The dispersion relation for the fundamental longitudinal, in the dashed line, and
transverse mode, in the solid line, are shown for the isothermal atmosphere. The layer extends
from z = −0.5 to z = 0.5 and the magnetic boundary conditions are Bz = 0 on top and bottom.
For this plot q is small and negative. The background magnetic field is 6 which corresponds
roughly to real magnetic field of 180 gauss. In contrast with the previous diagram, for a weaker
field, the modes don’t come close to crossing. This is a result of the higher frequency for the
k = 0 Alfvén mode.


