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1 Introduction

The study of stratified fluids, i.e. bodies of e.g. water or air in which density varies with
height, is of great importance for the understanding of the oceans and the atmosphere.
As is well known, a system with dense fluid overlying light fluid is unstable, and if left
to evolve will spontaneously generate a flow that interchanges and mixes the fluids until a
stable stratification is reached, where the density decreases with increasing height. A less
well-known fact is that flow can also be spontaneously generated in a stably stratified fluid,
and that is the focus of this report. The spontaneous flow is called diffusion-driven flow,
and is due to a combination of diffusion and buoyancy effects.

For simplicity, in this report we consider a liquid whose density varies due to a varying
concentration of salt, although the discussion applies to thermal stratifications as well. (If
the stratification is due to a combination of multiple salts and/or heat with different diffusive
properties, then double-diffusive effects may come into play and we do not consider this case
here.) In a stable stratification, salt will spontaneously diffuse up from the salty and dense
fluid below to the fresh and light fluid above. This raises the centre of gravity of the fluid,
and hence increases the potential energy of the system (at the expense of thermodynamic
free energy), which can then be harnessed to drive a flow.

The classical example of diffusion-driven flow due to the presence of sloping insulating
boundaries was described by Phillips [13] and Wunsch [18] in 1970 (see figure 1(a)). We
assume that the stable background stratification is uniform, so that salt diffuses upward at
a constant rate. Thus, away from the wall, at each point (e.g. A in the figure) the amount
of salt leaving upward due to diffusion equals the amount of salt arriving from below, and
hence the concentration does not change. Just above the wall (e.g. B in the figure), however,
the salt that diffuses up and away is not replenished from below due to the presence of the
insulating wall, and hence (in the absence of flow) the fluid near the wall becomes lighter.
Put another way, the pycnoclines (surfaces of constant density) must meet the insulating
wall at right angles, and do so by bending down, as shown in the figure, resulting in the
fluid near the wall becoming lighter.

The lighter fluid wants to rise (relative to the ambient fluid away from the wall), and
hence flows up along the boundary in a “buoyancy layer”. A steady flow is achieved with the
velocity profile shown, and the salt leaving point B by diffusion is continually replenished
by advection from below (the dashed arrow). Similarly, fluid near a sloping upper boundary
becomes heavy, and hence flows down the slope. This buoyancy-layer flow is called Phillips–
Wunsch flow, and will be discussed more quantitatively in §2.2.



Figure 1: (a) Schematic of diffusion-driven (Phillips–Wunsch) flow near a sloping insulating
boundary in stably stratified fluid (adapted from [13, 12]). (b) Schematic of diffusion-driven
propulsion. The Phillips–Wunsch flow (dashed arrows) along the sloping surfaces propels
the wedge in the opposite direction.

More recent studies of Phillips–Wunsch flow include an experimental verification by
Peacock, Stocker and Aristoff in 2004 [12] and a few years later theoretical and numerical
studies of the diffusion-driven flow inside containers with sloping walls by Page & Johnson
[10, 11] and Page [8, 9].

Around the same time as the original papers by Phillips and Wunsch, the motion of
bodies through stably stratified fluids was extensively studied. The existence of an exact
analogy between the governing equations for two-dimensional viscous stratified flow and two-
dimensional viscous rotating flow (see e.g. Veronis [15, 16, 17]) led to parallel developments
in both fields, such as the calculation of the drag on a body moving horizontally in stratified
fluid (Foster & Saffman [2]) and axially in a rotating fluid (Moore & Saffman [6, 7]).

Although the Phillips–Wunsch flow on sloping boundaries and the motion of insulating
bodies through stratified fluid were thoroughly studied around 1970, these two ideas where
not combined until 2010, when Allshouse, Barad and Peacock [1] showed that the Phillips–
Wunsch flow could be harnessed by asymmetric bodies for horizontal propulsion. They
placed a wedge in stably stratified fluid and found that it moves (see figure 1(b)) at a
constant speed c which depends on the parameters of the problem. No studies so far have
given a theoretical explanation for the propulsion or prediction for the propulsion speed.
We will do so for a variety of two-dimensional cases in this report.

In §2, we describe the assumptions and approximations made and derive the main
governing equations. We then investigate three main cases, where the wedge is placed in
either a box with insulating walls (§3), a box with fixed-buoyancy walls (§4), or a large or
infinite box (§5). Finally, we summarize our results in §6 and discuss possible extensions to
this work.



2 Problem Setup

We consider a fluid with constant dynamic viscosity µ, whose density ρ depends on the
salinity S(x, t). We assume that the variations in S about a constant reference value S0 are
sufficiently small that the equation of state can be linearized, i.e.

ρ = ρ0(1 + βS(S − S0)), (2.1)

where βS is the coefficient of saline contraction and ρ0 is the reference value for ρ. The
(upward) buoyancy force can then be written as

−ρg = ρ0(−g +B), (2.2)

where g is the gravitational acceleration and we have defined the buoyancy (or reduced
gravity) by

B = g
ρ− ρ0
ρ0

= gβS(S0 − S). (2.3)

The salt is advected by the velocity field u(x, t) and diffuses with diffusivity κ, leading to
the equation

Ṡ + u · ∇S = κ∇2S ⇒ Ḃ + u · ∇B = κ∇2B, (2.4a,b)

where overdot denotes the time derivative and ∇ is the gradient operator.
We further assume that the Boussinesq approximation holds, so we can ignore any effects

due to density variations, apart from the buoyancy force. We thus obtain the incompressible
Navier–Stokes equations

ρ0 (u̇ + u · ∇u) = −∇P + µ∇2u + ρ0(−g +B) ez, ∇ · u = 0, (2.5a,b)

where P (x, t) is the pressure and ez is the unit vector in the vertical direction. As the
kinematic viscosity ν = µ/ρ0 of the salt solution is much larger than the diffusivity κ of
the salt (the Schmidt number is typically ν/κ ∼ 103), the inertial terms (left-hand side) of
equation (2.5a) can be neglected for diffusion-driven flow. (We confirm this claim in §2.2.)
We are left with the Stokes equations

0 = −∇(P/ρ0 + gz) + ν∇2u +B ez, ∇ · u = 0. (2.6a,b)

We will solve the main governing equations (2.4b, 2.6) in a domain between the wedge
and an outer bounding box, and require boundary conditions on u and B. As the boundaries
are rigid, the fluid satisfies the no-slip condition

u = U b, (2.7)

where U b is the velocity of the boundary. For the buoyancy, we consider either insulating
conditions or fixed-buoyancy conditions

Bn = 0 or B = Bb, (2.8)

where the subscript n denotes the derivative in the normal direction pointing into the fluid
and Bb is the prescribed value. We specify the detailed geometry and choice of condition
(2.8) in each separate section.



2.1 Two-dimensional governing equations

We consider the case when the wedge is sufficiently wide (in the y-direction) that the
flow can be approximated as being two-dimensional in the x- and z-directions with no
variation in the y-direction. This allows introduction of the stream function ψ(x, z, t),
defined by u = (u,w) = (ψz,−ψx), where subscripts denote differentiation and we omit the
y-component of any vector. Incompressibility (2.6b) is then automatically satisfied, while
taking the curl of the momentum equation (2.6a) yields the vorticity equation

Bx = ν∇4ψ, (2.9a)

which describes a balance between the generation of vorticity ∇2ψ by horizontal variations
in buoyancy and the dissipation of vorticity by viscous effects. The advection–diffusion
equation takes the form

Ḃ + ψzBx − ψxBz = κ∇2B. (2.9b)

We consider mainly the case when the buoyancy field has a uniform background strati-
fication N2z, and the perturbations b = B−N2z to the buoyancy field are small compared
with the background. The gradient N2 of the background field is the square of the Brunt–
Väisälä (buoyancy) frequency. After the change of variables from B to b, the governing
equations (2.9) become

bx = ν∇4ψ, ḃ+ ψzbx − ψxbz −N2ψx = κ∇2b. (2.10a,b)

Typically, the term −N2ψx in (2.10b), which expresses advection of the background strat-
ification N2 by the vertical velocity −ψx, dominates the remaining terms on the left-hand
side. In this case, we can eliminate either ψ or b from (2.10) to obtain

bxx +
κν

N2
∇6b = 0 or ψxx +

κν

N2
∇6ψ = 0. (2.11)

This reveals an inherent length scale

L0 =
( κν
N2

)1/4
(2.12)

of the governing equations. The equations (2.10) or (2.11) are typically too complicated
to solve exactly, so we will restrict ourselves to cases where the other length scales of the
problem (such as the size of the wedge and the size of the domain) are much larger than L0,
and use the method of matched asymptotic expansions to obtain approximate analytical
solutions.

Although equations (2.10) suffice to describe the flow and buoyancy fields, we will need
the pressure in order to calculate the force on the wedge. Hence, we retain the momentum
equation (2.6a) as well, in the form

px = ν(ψzxx + ψzzz), pz = −ν(ψxxx + ψxzz) + b, (2.13)

where have defined the rescaled pressure perturbation p = P/ρ0 + gz −N2z2/2.



2.2 Solutions near non-horizontal walls

As discussed in the introduction, diffusion-driven flow is generated by the interaction of
stratified fluid with sloping boundaries. We investigate the details of this in more detail, by
considering an infinite wall with angle α to the horizontal placed in a stratified fluid with
linear ambient stratification B = N2z and no ambient flow (see figure 1(a)). The solutions
obtained here will serve as boundary-layer solutions for later calculations, and so the aim
in particular is to understand the far-field behaviour of these solutions.

We seek steady solutions for the buoyancy perturbation b and the stream function ψ
which depend only on the distance η from the wall, and hence are independent of the
distance along the wall. The governing equations (2.10) reduce to

− sinα bη = ν ψηηηη, N2 sinαψη = κbηη. (2.14)

As the wall is stationary, the no-slip condition (2.7) yields

ψ = 0, ψη = 0 at η = 0, (2.15)

where we have chosen the arbitrary additive constant for the stream function such that
ψ = 0 on the wall.

If the wall is insulating (which is the case for Phillips–Wunsch flow), then the condition
(2.8) for no perpendicular gradient of total buoyancy B = N2z + b yields

bη = −N2 cosα at η = 0. (2.16)

The solution to equations (2.14, 2.15, 2.16) that does not grow exponentially as η →∞ is

ψ = κ cotα
[
1− (cos γη + sin γη) e−γη

]
, b = N2 cosα

γ
cos γη e−γη + b∞, (2.17)

where b∞ is a constant of integration and

γ−1 =

(
4κν

N2 sin2 α

)1/4

=

√
2

sinα
L0 (2.18)

is the length scale on which the flow decays away from the wall. We conclude that there
is a flow confined to a boundary layer of thickness O(L0) near the wall, and the net flux
of fluid up the slope is the far-field value κ cotα of the stream function ψ. Although in
this case we would set the constant of integration b∞ to be zero, to recover the ambient
stratification with b → 0 as η → ∞, we note that this is in general not necessary and the
far-field buoyancy perturbation could have a non-zero value.

We note that the Phillips–Wunsch flux κ cotα is zero for vertical walls (α = π/2). In this
case, the solution is in fact trivial (ψ = 0, b = b∞) and there is no boundary-layer flow. As
the slope α decreases, the flux increases and eventually diverges to infinity as α approaches
zero and the wall becomes horizontal. We thus assume for the rest of this report that α is
not too small, so that cotα = O(1). In our analyses that follow, the velocity is largest in
the Phillips–Wunsch boundary layer, so the Reynolds number is everywhere smaller than
the local estimate κ cotα/ν. Since ν � κ, the use of the Stokes equations (2.6) is indeed
appropriate.



If instead the wall has prescribed buoyancy (i.e. salinity) B = N2z, then

b = 0 at η = 0, (2.19)

and the solution to (2.14, 2.15, 2.19) that does not grow exponentially as η →∞ is

ψ = −κb∞
N2

γ

sinα

[
1− (cos γη + sin γη) e−γη

]
, b = b∞

[
1− cos γη e−γη

]
(2.20)

This result states that the difference b∞ in buoyancy between the far field and the wall
drives a flux proportional to b∞ in an O(L0) boundary layer near the wall.

3 Wedge in a Box with Insulating Walls

We first consider the case when the wedge is placed in a box with insulating walls. On
the top and bottom of the box, we assume that the buoyancy is held fixed at two different
constant values, which would generate a uniform stable stratification B = N2z in the
absence of a wedge.

Figure 2: Schematic geometry for a wedge placed inside a box.

The wedge is placed with its apex pointing to the left (see figure 2), which turns out to
be its direction of motion. We work in the frame of reference moving with the wedge, with
the origin (0, 0) at the midpoint of the back of the wedge at all times. We assume that the
level of neutral buoyancy of the wedge is vertically centred in the box, and that the initial
conditions are symmetric about z = 0. Hence, the top-down symmetry will be preserved
throughout the evolution, and we need only consider the upper half z ≥ 0 of the system.

The wedge has length l and (half-)height h, so that its corners are at (−l, 0) and (0, h).
Its apex half-angle is α, so that

cotα =
l

h
. (3.1)

The box has length L = LF + LR, where LF (t) and LR(t) are the distances from the front
(left) wall and the rear (right) wall to the base of the wedge and evolve according to

c = −L̇F = L̇R, (3.2)

where c(t) is the leftward speed of the wedge (and hence, in this reference frame, the
rightward speed of the bounding box). The height of (the upper half of) the box is h+HT .



We assume that the wedge has a length scale L1 which is much greater than the natural
scale L0 of the flow given in (2.12). (In the experiments [1], typically L1 = O(10 mm) and
L0 = O(0.1 mm).) We thus obtain a small parameter

ε = L0/L1 (3.3)

that we can exploit using the method of matched asymptotic expansions. We also take
the height HT of the box to be O(L1), but in this section we assume that the horizontal
dimensions LF and LR of the box are O(ε−1L1), i.e. much larger than the dimensions of
the wedge.

At every instant in time, we seek to calculate the flow field (via the stream function
ψ(x, z, t)), the buoyancy distribution b(x, z, t), and the net “propulsive” left-ward force
F (t) on (the upper half of) the wedge as a function of the unknown speed c(t) of the wedge.
Requiring that F = 0 then determines the actual value c(t).

We non-dimensionalize the variables as follows. Length is scaled by L1, except for LF
and LR which are scaled by ε−1L1. Given that the flow is driven by the Phillips–Wunsch flux
κ cotα (see §2.2), we scale the stream function by κ and velocity by κ/L1. We scale time by
by ε−1L2

1/κ, as this is the time scale of the overall evolution due to the horizontal motion of
the wedge. (We neglect the fast initial adjustment at the start of the experiment.) Buoyancy
perturbations are scaled by εN2L1, for reasons which will become clear later (and thus we
scale the pressure and force by εN2L2

1 and εN2L3
1 respectively). The rescaled governing

equations (2.10) are thus

bx = ε3∇4ψ, ε2ḃ+ ε(ψzbx − ψxbz)− ψx = ε∇2b. (3.4a,b)

We choose the stream function ψ to be zero on the centreline z = 0. Hence, ψ (as well
as b) are odd functions of z, and we obtain the symmetry conditions

ψ = ψzz = 0, b = 0 on symmetry axis z = 0. (3.5a)

The boundary conditions on the insulating wedge (analogous to (2.16)) are

ψ = ψn = 0, bn = −1
ε cosα on wedge front x = −l + z cotα, (3.5b)

ψ = ψn = 0, bn = 0 on wedge rear x = 0. (3.5c)

On the bounding box, which moves to the right at speed c(t), we have the no-slip condition
and insulating or prescribed-buoyancy conditions:

ψ = cz, ψx = 0, bx = 0 on walls x = −ε−1LF , ε−1LR, (3.5d)

ψ = cz, ψz = c, b = 0 on ceiling z = h+HT . (3.5e)

For a given value of c(t), ψ and b are determined uniquely by the equations (3.4) and
boundary conditions (3.5). Equation (2.13), which in non-dimensional form is

px = ε3(ψzxx + ψzzz), pz = −ε3(ψxxx + ψxzz) + b, (3.6a,b)



then determines the pressure up to an arbitrary additive constant, which we can choose
without loss of generality such that p = 0 at (x, z) = (0, h+HT ). The horizontal leftward
force on the wedge is given by

F (t) =

∫ h

0

[
(−p+ ε3 2ψxz) + ε3(ψxx − ψzz) cotα)

]
x=−l+z cotα+

[
p− ε3 2ψxz

]
x=0

dz, (3.7)

and the correct value of c(t) is the one that makes F (t) vanish.

3.1 Numerical results using the finite-element method

In order to inform, and later validate, our asymptotic analysis, we developed a simple code
in FreeFem++ [4] that solves the governing equations (3.4, 3.5). However, for simplicity
we do not simulate the full time-evolution of the system with moving boundaries. Instead,
we neglect the time derivative ḃ in (3.4b), as it is of higher order than the other terms.
This quasi-static approximation leaves us with an instantaneous problem with no time
derivatives, that is readily solved by our program.

For our numerical calculations, we use the following parameters:

ε =
L0

L1
=

1

100
, h = HT = 1, L = 1, (LF , LR) =

(
1

4
,
3

4

)
,

(
1

2
,
1

2

)
,

(
3

4
,
1

4

)
, (3.8)

with a focus on the symmetric case LF = LR = 1/2 with α = 45◦. Figure 3 shows results
for this particular case.

We observe that a Phillips–Wunsch boundary layer develops on the sloping surface of
the wedge, and that fluid arrives in a boundary layer near z = 0 in front of the wedge (to
the left), and leaves in a boundary layer near z = h behind the wedge (to the right). The
buoyancy perturbations are approximately uniform in x both in front of, behind and above
the wedge. As we shall see, the buoyancy field is key to calculating the force on the wedge,
and we will show more detailed results later in §3.3.

3.2 Asymptotic calculation

We divide the domain into the regions shown schematically in figure 4(b). The bulk of the
fluid is divided into three “outer” regions which we call the front region, the rear region,
and the top region. These regions are joined by horizontal boundary layers at z = h, and
in addition there are boundary layers at z = 0.

3.2.1 Boundary layers on the insulating surfaces

Near the sloping surface of the wedge (but away from the corners), we expect to find a
boundary layer with the Phillips–Wunsch solution discussed in §2.2. Indeed, if we define
rescaled coordinates (η, χ) perpendicular and parallel to the slope by

x = −l + χ cosα− εη sinα, z = χ sinα+ εη cosα, (3.9)

then the governing equations (3.4) and boundary conditions (3.5b) on the wedge become

− sinα bη + ε cosα bχ = bηηηη + ε2 2bηηχχ + ε4 bχχχχ, (3.10a)

ε3ḃ+ ε(ψηbχ − ψχbη) + sinαψη − ε cosαψχ = bηη + ε2bχχ, (3.10b)
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Figure 3: Contour plots of buoyancy perturbation b (top row) and stream function ψ
(bottom row, flow from left to right in the frame of reference of the wedge) showing the
whole box with stretched coordinates (left) and a close-up of the wedge (right), for the
parameters (3.8), LF = LR = 1/2, α = 45◦. The contour spacing is 0.05. (The irregularities
in the contours are artefacts of the plotting tool and are not present in the original data.)

Figure 4: Schematic of asymptotic regions for a wedge in a box with insulating walls.

ψ = ψη = 0, bη = − cosα on the wedge η = 0. (3.10c)



These equations are analogous to the equations (2.14, 2.15, 2.16) for Phillips–Wusch flow
at leading order, and hence the solution (which does not grow exponentially as η →∞) is

ψ = cotα
[
1− (cos γη + sin γη)e−γη

]
+O(ε), (3.11a)

b = cotα
√

2 sinα cos γη e−γη + b∞(χ) +O(ε), (3.11b)

where γ =
√

sinα/2, analogously to (2.17).
The far-field behaviour of the solution (3.11) is to be matched to the outer solution for

the front region. We find that

ψ → cotα+O(ε), b→ b∞(χ) +O(ε) as η →∞. (3.12)

For the buoyancy field, the matching determines the constant of integration b∞(χ) to be
the effective value bF (−l+χ cosα, χ sinα) of the outer buoyancy field bF on the wedge, but
imposes no constraint on bF . However, the outer stream function ψF ahead of the wedge
must satisfy the effective condition

ψF = cotα+O(ε) on the wedge x = −l + z cotα. (3.13a)

Since the back of the wedge is vertical, the corresponding boundary layer there is trivial
at leading order (as discussed in §2.2). Hence the boundary condition (3.5c) for the stream
function on the rear of the wedge becomes the effective condition on the leading-order
stream function ψR0 in the rear region:

ψR = 0 +O(ε) on the wedge x = 0. (3.13b)

The insulating front and rear wall behave like the insulating back of the wedge, and
hence also have trivial boundary layers. The conditions (3.5d) on the stream function then
translate to effective conditions on the outer solutions, including ψT for the top region:

ψF = cz +O(ε) at x = −ε−1LF , ψR = cz +O(ε) at x = ε−1LR, (3.13c)

ψT = cz +O(ε) at x = −ε−1LF , ψT = cz +O(ε) at x = ε−1LR. (3.13d)

3.2.2 Outer solution

Using the conditions (3.13), we can now start obtaining solutions for the outer regions. As
these regions have length O(ε−1), we introduce a scaled horizontal coordinate X = εx. The
governing equations (3.4) become

bX = ε2(ψzzzz + ε2ψXXzz + ε4ψXXXX), (3.14a)

ε(ḃ+ ψzbX − ψXbz)− ψX = bzz + ε2bXX . (3.14b)

At leading order, these equations simplify to

bX = 0 +O(ε), −ψX = bzz +O(ε). (3.15a,b)

Equation (3.15a) describes how the flow is too weak to sustain horizontal variations in
buoyancy, and thus we obtain b = b(z, t) + O(ε) in every outer region. Equation (3.15b)



describes how the vertical diffusion of buoyancy is balanced by advection of the background
buoyancy field by the vertical velocity−ψX . By integrating this equation inX, and applying
the conditions (3.13), we obtain equations describing the balance of vertical flux in each
outer region:

LF b
F
zz = ψF |X=−LF

− ψF |X=O(ε) +O(ε) = cz − cotα+O(ε), (3.16a)

LRb
R
zz = ψR|X=0 − ψR|X=LR

+O(ε) = −cz +O(ε), (3.16b)

LbTzz = ψT |X=−LF
− ψT |X=LR

+O(ε) = 0 +O(ε). (3.16c)

We also obtain the stream function directly as

ψF = −X cz

LF
+ cotα

LF +X

LF
+O(ε), (3.17a)

ψR = X
cz

LR
+O(ε), (3.17b)

ψT = 0 +O(ε). (3.17c)

The equations (3.16) are ordinary differential equations for bF,R,T depending on the
variable z, and require boundary and matching conditions at z = 0, h, h + HT . At the
ceiling z = h + HT , the condition (3.5e) that b vanishes applies directly. However, the
conditions at z = 0 and z = h are obtained from consideration of horizontal boundary
layers. These calculations are quite complicated and not very enlightening, so we will deal
with them later in §3.4.

We assert for now that b is continuous to leading order at the symmetry axis, and in
fact

bF,R = 0 +O(ε2/3) on symmetry axis z = 0. (3.18)

Applying this condition and the ceiling condition yields the results

bF = c
z3 − h2z

6LF
− cotα

z2 − hz
2LF

+AF
z

h
+O(ε2/3), (3.19a)

bR =− cz
3 − h2z
6LR

+AR
z

h
+O(ε2/3), (3.19b)

bT = AT
h+HT − z

HT
+O(ε2/3), (3.19c)

where AF,R,T are constants of integration to be determined by matching at z = h.
At z = h, the boundary-layer solutions from §3.4 yield continuity of b at leading order

and continuity of the total vertical diffusive buoyancy flux (with O(ε1/3) errors),

bF = bR = bT , LF b
F
z + LRb

R
z = LbTz at z = h. (3.20a,b)

(We note that full continuity of bz would be two conditions rather than one, and hence too
many conditions to impose.) Applying these conditions to the solutions (3.19) determines
the constants

AF , AR, AT = cotα
h2

2L(1 + h/HT )
+O(ε1/3), (3.21)

which are substituted back into (3.19) to yield the solution.



3.2.3 Force calculation

Having calculated the stream function and buoyancy field in the main outer regions, we now
have sufficient information to determine the leading-order force F on (the upper half of)
the wedge. Since forces balance for Stokes flow and no horizontal body forces are present,
the net horizontal force from the fluid on the wedge is equal and opposite to the horizontal
force from the fluid on the bounding box, which is simpler to calculate.

As we can see from (3.6b), the pressure is approximately hydrostatic, pz ≈ b, in the
outer region (and it is straightforward to check that this also holds true in the horizontal
boundary layers). In addition, the forces on the bounding box are due to pressure only at
leading order. Hence, the leading-order force is given by the difference in pressure on the
front and rear walls.

As pressure is only defined up to an additive constant, we are free to choose the pressure
to be zero at the point (0, h+HT ) on the ceiling directly above the base of the wedge. From
(3.6a), we thus find that p = 0+O(ε3) along the top wall. Instead of obtaining the pressure
field from separate asymptotic expansions in each region, we make use of the approximate
hydrostatic relationship to write

p = −
∫ h+HT

z
b dz +O(ε), (3.22)

and hence the force on either wall is

F̃ =

∫ h+HT

0
p dz +O(ε) = −

∫ h+HT

0
b z dz +O(ε), (3.23)

where the latter expression is obtained by using (3.22) and interchanging the order of the
two integrals.

The net force is the difference between (3.23) for the front and rear walls. In the top
region, the outer solution (3.19c) is independent of X, and hence contributes equally to
both integrals and has no effect. The leading-order leftward force on the wedge (rightward
force on the wall), obtained from the outer solutions (3.19a,b), is thus

F =

∫ h

0
(bF − bR)z dz = cotα

h4

24LF
− ch

5

45

(
1

LF
+

1

LR

)
+O(ε1/3). (3.24)

The first term, which is proportional to cotα, describes the propulsive force on the wedge
due to the diffusion-driven flow. The second term, which is proportional to c, describes the
drag on the wedge and was originally calculated by Foster & Saffman [2]. For a free wedge,
the two forces balance, and hence the wedge moves at speed

c =
cotα

h

15LR
8L

+O(ε1/3). (3.25)

(The dimensional version of this result simply has an additional factor κ on the right-hand
side.)

Finally, we note that the leading-order result for the speed (3.25) does not depend
on the height of the bounding box. In fact, this result also applies for other types of



boundary conditions on the top and bottom surfaces, such as a fixed-flux condition. This
is because, although such changes would affect the resulting values of the constants AF,R,T ,
the expression (3.24) for the forces depends on these only through the difference (AF −AR),
which is always prescribed by the matching condition (3.20) to be zero at leading order.

3.3 Summary and comparison between asymptotic and numerical results

Our asymptotic analysis has revealed the physical mechanisms behind diffusion-driven
propulsion: The sloping surface of the wedge induces a Phillips–Wunsch flow up the slope.
For a stationary wedge, this flux is balanced by a uniform downwelling in the front region
with the same flux, which advects buoyant liquid downward and hence reduces the hydro-
static pressure in front of the wedge. The pressure difference between the front and the
rear regions results in a leftward propulsive force. When the wedge moves forward, the
downwelling is reduced since part of the fluid volume removed by the Phillips–Wunsch flux
is balanced by the front region shrinking instead. A force-free wedge moves at the speed
(3.25), for which the net force is zero.

Figure 5(a) shows a comparison between the asymptotically predicted and numerically
calculated buoyancy profiles (using the same parameters as in §3.1). We find that there
is good agreement between the two, confirming the validity of the asymptotic analysis.
Figure 5(b) shows the dependence of the propulsion speed c on the slope of the wedge and
the distances LF and LR to the front and rear walls. Again, a good agreement is achieved
between the asymptotic and numerical results. (Also shown are a set of results calculated
in §3.4, which include O(ε1/3) corrections to the leading-order result calculated so far.)
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Figure 5: Comparison between asymptotic and numerical results. (a) Buoyancy distribution
b as a function of vertical position z for the case shown in figure 3. The thin black curves
are numerical data from vertical slices X = ±0.1,±0.2,±0.3,±0.4 in the forward and rear
regions. The thick curves are asymptotic results (3.19), with the leading-order coefficients
(3.21, 3.25) (solid red curves) or the corrected ones (3.41, 3.43) below (dashed blue curves).
(b) Propulsion speed c as a function of wedge slope α for the parameters (3.8), showing
numerical results (circles), leading-order asymptotic results (3.25) (solid lines) and corrected
asymptotic results (3.43) below (dashed lines). The values of (LF , LR) are (1/4, 3/4) (top
red series), (1/2, 1/2) (middle green series) and (3/4, 1/4) (bottom blue series).

The reason for choosing to work with a large, i.e. O(ε−1L1), bounding box is now clear:



The upward Phillips–Wunsch flux, which in dimensional terms is O(κ), is balanced by a
downwelling with velocity O(κ/LF ) in the forward region. The resulting advective flux of
buoyancy O(N2L1κ/LF ) is in turn balanced by diffusion of the buoyancy perturbations,
which must be b = O(N2L2

1/LF ). For LF � L1, the buoyancy perturbation is small
compared with the background buoyancy B = O(N2L1), and hence the non-linear advective
terms and time derivative in the governing equation (2.10b) could be neglected.

If the dimensions of the box are O(L1), then the buoyancy perturbations are of the same
order as the background stratification. In addition, the change in geometry of the system
due to the motion of the wedge occurs on a faster time scale L2

1/κ due to the reduced length
of the box. Thus, both the time derivative and the non-linear terms become important,
and the problem becomes more complicated. However, the mechanism of propulsion and
the qualitative flow structure can be expected to remain the same.

3.4 The ε1/3 layers and O(ε1/3) corrections

We complete our analysis by calculating the boundary-layer solutions near z = 0 and z = h
that will yield the conditions, such as (3.20), asserted earlier in §3.2.2. These calculations
are mostly a technicality, which is why we have left them to this separate subsection.

We first deal with the boundary layer near z = 0 in the forward region −LF < X < O(ε).
The scaling z ∼ ε1/3 yields a new balance in the governing equations (3.14), so we define
the rescaled vertical coordinate ζ = z/ε1/3. The governing equations (3.14) then become

bX = ε2/3ψζζζζ +O(ε3), −ε2/3ψX = bζζ +O(ε). (3.26)

The domain under consideration is (up to O(ε)) an infinite strip −LF < X < 0, −∞ <
ζ < ∞. The appropriate effective boundary conditions in the X-direction are obtained by
revisiting the calculations for the Phillips–Wunsch boundary-layer solution with a rescaled
vertical coordinate ζ:

ψ = ε1/3ζ +O(ε2/3) at X = −LF , ψ = cotα+O(ε2/3) at X = 0. (3.27)

In the ζ-direction, we have the symmetry-axis conditions (3.5a) at ζ = 0, and must also
match to the outer solution as ζ →∞.

We assume that the outer solution has an expansion

bF = bF0 + ε1/3bF1 + ε2/3bF2 +O(ε) (3.28a)

with the generic behaviour (for i = 0, 1, 2)

bFi = CFi +DF
i z + EFi z

2 +O(z3) as z → 0. (3.28b)

We expand the boundary-layer solution as

b = b0 + ε1/3b1 + ε2/3b2 +O(ε), ψ = ψ2 +O(ε1/3), (3.29a)

and find that matching to the outer solutions (3.28b) requires

b0 ∼ CF0 , b1 ∼ CF1 +D0ζ, b2 ∼ CF2 +D1ζ + E0ζ
2 as ζ →∞. (3.29b)



(It is straightforward to verify a posteriori that a correct matching of b also yields the correct
matching of ψ, so we do not consider the latter here.)

At O(1) and O(ε1/3), the governing equations (3.26) yield that b0 and b1 are linear
functions of ζ. Imposing the matching conditions (3.29b) and symmetry-axis conditions
(3.5a) yields

b0 = 0, b1 = D0ζ, CF0 = CF1 = 0. (3.30)

This confirms the condition (3.18) for the forward region, and the same analysis applies to
the rear region as well.

The adjustment of ψ from a non-zero value (3.17a) in the outer solution to zero on the
symmetry axis (3.5a) occurs here at O(ε2/3). The equations

b2X = ψ2ζζζζ , −ψ2X = b2ζζ , (3.31a,b)

are to be solved with boundary conditions (3.5a), (3.27) and (3.29b). A solution can be
found using e.g. Fourier transforms and yields a condition on C2 (i.e. the value of the outer
solution bF on the symmetry axis at O(ε2/3)), but we do not present this here.

Instead, we turn to the boundary layer near z = h, for which we define the rescaled
coordinate ζ = (z − h)/ε1/3. In addition, it turns out that the stream function must be
O(ε−1/3) to deal with leading-order differences in bz, so we define a rescaled stream function
Ψ = ε1/3ψ = O(1). We follow the same steps as for the boundary layer at z = 0, but the
analysis is more complicated.

The rescaled governing equations are

bX = ε1/3Ψζζζζ +O(ε3), −ε1/3ΨX = bζζ +O(ε), (3.32)

and the domain is again an infinite strip −LF < X < LR, −∞ < ζ <∞ but with a cut at
X = 0, −∞ < ζ ≤ 0 representing the wedge whose thickness X = O(ε4/3) can be neglected
at leading order. The appropriate boundary conditions in the X-direction are

Ψ = ε1/3ch +O(ε2/3) on walls X = −LF , LR, −∞ < ζ <∞ (3.33a)

Ψ = ε1/3 cotα+O(ε2/3) on wedge X = 0−, ζ < 0 (3.33b)

Ψ = 0 +O(ε2/3) on wedge X = 0+, ζ < 0. (3.33c)

We expand the outer solutions as

bF,R,T = bF,R,T0 + ε1/3bF,R,T1 + ε2/3bF,R,T2 +O(ε), (3.34a)

bF,R,Ti = CF,R,Ti +DF,R,T
i (z − h) + EF,R,Ti (z − h)2 +O(z − h)3 as z → h, (3.34b)

and expand the boundary-layer solution as

b = b0 + ε1/3b1 + ε2/3b2 +O(ε), Ψ = Ψ1 + ε1/3Ψ2 +O(ε). (3.35a)

The resulting matching conditions are

b0 ∼ CF,R,T0 , (3.35b)

b1 ∼ CF,R,T1 +DF,R,T
0 ζ, (3.35c)

b2 ∼ CF,R,T2 +DF,R,T
1 ζ + EF,R,T0 ζ2, (3.35d)



as |ζ| → ∞ in each corresponding region.
At leading order, the governing equations (3.32) reveal that b0 is a linear function of ζ,

but the matching conditions (3.35b) prevent b0 from growing linearly with ζ, so

b0 = constant = CF0 = CR0 = CT0 . (3.36)

This yields the result (3.20a) stated above.
At O(ε1/3), the governing equations (3.32) take the form (3.31), which together with

the boundary conditions (3.33) and (3.35c) can be solved using the Wiener–Hopf method.
The calculations and explicit solution are given in Appendix A of Moore and Saffman [7],
and we do not repeat them here. The result is

LFD
F
0 + LRD

R
0 = LDT

0 , (3.37)

from which we obtain the matching condition (3.20b) stated above. However, further in-
spection of the solution reveals that

CF1 − CT1 = ∆
LR
L

(DR
0 −DF

0 ), CR1 − CT1 = ∆
LF
L

(DF
0 −DR

0 ), (3.38a)

where ∆ = −2 ζ(1/3)

π1/3
(L

1/3
F + L

1/3
R − L1/3) > 0 (3.38b)

and ζ(·) denotes the Riemann ζ-function. We will use this result to get O(ε1/3) corrections
to the leading-order results calculated in §3.2.

At O(ε2/3), the governing equations (3.32) again take the form (3.31b). This can again
be solved using the Wiener–Hopf method, but the analysis would be very complicated.
Instead, we integrate the analogue of equation (3.31b) over the region −LF < X < LR,
|ζ| < M for some large constant M . We simplify the resulting left-hand side using the
conditions (3.33) and the right-hand side using the conditions (3.35d), and obtain

−M cotα = 2M(LET0 + LFE
F
0 + LRE

R
0 ) + LDT

1 − LFDF
1 − LRDR

1 . (3.39)

The terms involving M cancel (by virtue of (3.19)), and we are left with a condition anal-
ogous to (3.37).

Thus, the matching conditions (3.20) at z = h can be extended by (3.38, 3.39) to

bF − bT = 0 + ε1/3∆
LR
L

(bRz − bFz ) +O(ε2/3), (3.40a)

bR − bT = 0 + ε1/3∆
LF
L

(bFz − bRz ) +O(ε2/3), (3.40b)

LF b
F
z + LRb

R
z − LbTz = 0 +O(ε2/3). (3.40c)

and we obtain adjusted values of the constants:

AF = cotα
h2

2L(1 + h/HT )
+ ε1/3∆

[
cotα

hLR
2LFL

− c h
2

3LF

]
+O(ε2/3), (3.41a)

AR = cotα
h2

2L(1 + h/HT )
+ ε1/3∆

[
− cotα

h

2L
+ c

h2

3LR

]
+O(ε2/3), (3.41b)

AT = cotα
h2

2L(1 + h/HT )
+O(ε2/3). (3.41c)



These can be directly substituted into the solutions (3.19) to yield the corrected results
shown in figure 5(a), which do indeed agree better with the numerical results than the
leading-order asymptotic results. The corrected force is

F = cotα
h4

24LF

(
1 + ε1/3

4∆

h

)
− ch

5

45

(
1

LF
+

1

LR

)(
1 + ε1/3

5∆

h

)
+O(ε2/3), (3.42)

and the resulting corrected speed

c =
cotα

h

15LR
8L

(
1− ε1/3∆

h

)
+O(ε2/3), (3.43)

(where ∆ is given in (3.38b)) also agrees well with the numerical results (see figure 5(b)).

4 Wedge in a Box with Fixed-buoyancy Walls

We now consider the case when the buoyancy B is prescribed to be equal to the background
stratification N2z on the walls of the bounding box, rather than the walls being insulating
with no buoyancy flux through them. We focus on the case when the dimensions of the box
and the wedge both have the same scale O(L1).

We non-dimensionalize lengths using the scale L1, stream function using κ, velocity using
κ/L1, time using L2

1/κ, and buoyancy perturbation using εN2L1. The resulting governing
equations are

bx = ε3∇4ψ, ε(ḃ+ ψxbz − ψzbx)− ψx = ε∇2b, (4.1a,b)

and the boundary conditions are

ψ = ψzz = 0, b = 0 on symmetry axis z = 0. (4.2a)

ψ = ψn = 0, bn = −1
ε cosα on wedge front x = −l + z cotα, (4.2b)

ψ = ψn = 0, bn = 0 on wedge rear x = 0, (4.2c)

ψ = cz, ψx = 0, b = 0 on walls x = −LF , LR, (4.2d)

ψ = cz, ψz = c, b = 0 on ceiling z = h+HT . (4.2e)

4.1 Numerical results

In this section, we use the parameters

ε =
L0

L1
=

1

100
, h = HT = 1, (LF , LR) = (2, 1), (2, 2), (2, 3), (4.3)

and focus on the particular case (LF , LR) = (2, 1) and α = 45◦. Figure 6 shows numerical
results obtained using the finite-element method as described in §3.1.

We again find that a Phillips–Wunsch boundary-layer flow develops on the sloping sur-
face of the wedge, and that there are horizontal boundary layers at z = 0 and z = h.
However, in addition there are also boundary layers on the front and back walls. The
buoyancy perturbations remain mainly independent of x as before.



x

-2 -1 0 1

z

0

0.5

1

1.5

2

0

0.5

1

1.5

2

x

-2 -1 0 1

z

0

0.5

1

1.5

2

0

0.5

1

1.5

Figure 6: Contour plots of buoyancy perturbation b (left) and stream function ψ (right,
flow from left to right in the frame of reference of the wedge) for the parameters (4.3),
(LF , LR) = (2, 1), α = 45◦. The contour spacing is 0.05.

4.2 Asymptotic calculation

The asymptotic calculation is again similar to the one in §3.2, although there are more
boundary layers involved. The structure of these boundary layers is shown in figure 7, and
their relevance will become clear as we proceed with the calculations.

Figure 7: Schematic of asymptotic regions for a wedge in a box with fixed-buoyancy walls.
We calculate the force on the dotted box.



4.2.1 Boundary layers on the wedge and walls

We again begin by seeking effective boundary conditions for the outer solutions ψF,R,T in
the x-direction. On the wedge, the calculations from §3.2.1 apply, and we obtain

ψF = cotα+O(ε) at wedge x = −l + z cotα, ψR = 0 +O(ε) at wedge x = 0, (4.4)

describing how a Phillips–Wunsch flux of magnitude cotα is driven up the slope.
For the front wall, we obtain a boundary-layer solution analogous to (2.20) by defining

a rescaled variable ξ = (x+ LF (t))/ε and solving the resulting equations

bξ = ψξξξξ + ε2ψξξzz + ε4ψzzzz, ε2ḃ+ ε(−cbξ + ψzbξ − ψξbx)− ψξ = bξξ + ε2bzz, (4.5a)

ψ = cz, ψξ = 0, b = 0 at the wall ξ = 0. (4.5b)

The result is

ψ = cz +
b∞(z)√

2

[
1− (cos η√

2
+ sin η√

2
)e−η/

√
2
]

+O(ε), (4.6a)

b = b∞(z)
[
1− cos η√

2
e−η/

√
2
]

+O(ε). (4.6b)

Again, matching the far-field behaviour to the outer solution determines the constant of
integration b∞(z), and yields an effective condition on the outer stream function in terms
of the outer buoyancy

ψF = cz + 1√
2
bF +O(ε) on the front wall x = −LF , (4.7a)

A similar analysis of the rear wall yields

ψR = cz − 1√
2
bR +O(ε) on the rear wall x = LR. (4.7b)

As for the solution (ψT , bT ) in the top region z ≥ h, we similarly find

ψT = cz + 1√
2
bT +O(ε) on the front wall x = −LF , (4.7c)

ψT = cz − 1√
2
bT +O(ε) on the rear wall x = LR. (4.7d)

4.2.2 Leading-order outer solution

We now have sufficient information to calculate the leading-order outer solutions. The
governing equations (4.1) yield

ψFx , b
F
x , ψ

R
x , b

R
x , ψ

T
x , b

T
x = 0 +O(ε). (4.8)

These equations describe, as before, how the flow is too weak to sustain horizontal gradi-
ents in buoyancy. In addition, a vertical downwelling is suppressed because the buoyancy
perturbation is too weak for its diffusion to balance the resulting advection. Thus, ψ and b
are functions of z only and we immediately find, from the effective conditions (4.4, 4.7),

ψF = cotα+O(ε), bF =
√

2 (cotα− cz) +O(ε), (4.9a)

ψR = 0 +O(ε), bR =
√

2 cz +O(ε), (4.9b)

ψT = cz +O(ε), bT = 0 +O(ε). (4.9c)



4.2.3 Horizontal ε1/2 boundary layers

We expect, as before, to find boundary layers near z = 0 and z = h. Assuming that x
remains O(1) while z scales with some positive power of ε, two possible balances are found
in the governing equations (4.1), corresponding to two boundary-layer thicknesses ε1/2 and
ε2/3. These boundary layers are analogous to the outer region (§3.2.2) and ε1/3 boundary
layers (§3.4) from the insulating case, respectively. We calculate the solutions for the ε1/2

layer here, while the calculations for the ε1/3 layer are exactly identical to those in §3.4
(apart from a change X → x and ε→ ε1/2) so we will use those results directly here.

Near z = 0, in the front region, we define a rescaled coordinate ζ = z/ε1/2, and obtain
the governing equations

bFx = 0 +O(ε), −ψFx = bFζζ +O(ε1/2), (4.10a,b)

whose form we recognize from equation (3.15) for the outer region in the insulating-wall
case.

At the left end of this ε1/2 boundary layer, i.e. where it meets the wall, we must seek a
corner solution with x+LF ∼ ε and z ∼ ε1/2. The analysis of this region is identical to the
wall analysis from §4.2.1, except that the vertical length scale is O(ε1/2) rather than O(1).
The resulting effective condition, analogous to (4.7a), is

ψF = 1√
2
b+O(ε1/2) on the front wall x = −LF . (4.11a)

Similarly, at the right end of the ε1/2 boundary layer, i.e. where it meets the wedge, it is
straightforward to verify that the Phillips–Wunsch solution from §3.2.1 is recovered, with
result

ψF = cotα+O(ε1/2) on the wedge x = −l + ε1/2ζ cotα. (4.11b)

We proceed, as in §3.2.2, by integrating (4.10b) in x (using the fact that b is independent
of x to leading order) and obtain

L̂F b
F
ζζ = 1√

2
bF − cotα+O(ε1/2), where L̂F = LF − l. (4.12)

In matching with the outer layer, i.e. ζ →∞, we require that b does not grow exponentially.
At ζ = 0, matching with the ε2/3 layer (cf. §3.4) yields bF = 0 +O(ε1/3). The solution is

bF =
√

2 cotα

[
1− e−ζ/

√√
2L̂F

]
+O(ε1/3), (4.13a)

ψF = cotα

[
1 +

x+ l

L̂F
e−ζ/
√√

2L̂F

]
+O(ε1/3). (4.13b)

Similarly to in §3.4, the nested O(ε2/3) boundary layer ensures that ψ satisfies the condition
ψ = 0 from (4.2a) on the symmetry axis.

A similar analysis applies near the symmetry axis in the rear region, but in this case
the resulting boundary-layer solutions are trivial since the outer solution (4.9b) satisfies the
symmetry-axis conditions (4.2a).



Near z = h, we instead define the rescaled coordinate ζ = (z − h)/ε1/2. The rescaled
leading-order governing equations (4.10) remain the same, but the conditions (4.4, 4.7) on
the wedge and walls become

ψF = ch+ 1√
2
bF at x = −LF , ψF = cotα at x = ε1/2ζ cotα, (4.14a)

ψR = 0 at x = 0, ψR = ch− 1√
2
bR at x = LR, (4.14b)

ψT = ch+ 1√
2
bT at x = −LF , ψT = ch− 1√

2
bT at x = LR, (4.14c)

with errors O(ε1/2). Integration of (4.10b) yields

LF b
F
ζζ = 1√

2
bF + ch− cotα+O(ε1/2), (4.15a)

LRb
R
ζζ = 1√

2
bR − ch +O(ε1/2), (4.15b)

LAb
T
ζζ = 1√

2
bT +O(ε1/2), (4.15c)

where we have defined the average

LA =
LF + LR

2
=
L

2
. (4.16)

Requiring that the solutions b do not grow exponentially in the matching with the outer
solutions (i.e. as ζ → −∞ for the front and rear regions and ζ → +∞ for the top region)
yields

bF =
√

2

[
cotα− ch+AF eζ/

√√
2LF

]
+O(ε1/2), (4.17a)

bR =
√

2

[
ch+AReζ/

√√
2LR

]
+O(ε1/2), (4.17b)

bT =
√

2

[
AT e−ζ/

√√
2LA

]
+O(ε1/2), (4.17c)

where the three constants of integration AF,R,T will be determined by matching to the ε2/3

layer. (The corresponding solutions for ψ are easily obtained from (4.10b).)
The nested ε2/3 layer yields the following matching conditions, analogous to (3.40),

bF − bT = 0 + ε1/6∆
LR
L

(bRζ − bFζ ) +O(ε1/3), (4.18a)

bR − bT = 0 + ε1/6∆
LF
L

(bFζ − bRζ ) +O(ε1/3), (4.18b)

LF b
F
ζ + LRb

R
ζ − LbTζ = 0 +O(ε1/3), (4.18c)

where ∆ is given by (3.38b). Applying these conditions to the solutions (4.17) determines



the constants

AF =
1

D

[
− cotα

(√
LR + 2

√
LA

)
+ 2ch

(√
LR +

√
LA

)]
+

− ε1/6E√√
2LF

[√
LA +

√
LR

]
+O(ε1/3), (4.19a)

AR =
1

D

[
cotα

√
LF − 2ch

(√
LF +

√
LA

)]
+

+
ε1/6E√√

2LR

[√
LA +

√
LF

]
+O(ε1/3), (4.19b)

AT =
1

D

[
− cotα

√
LF + ch

(√
LF −

√
LR

)]
+

+
ε1/6E√√

2LA

[√
LR −

√
LF

2

]
+O(ε1/3), (4.19c)

where

D = 2
√
LA +

√
LF +

√
LR, E =

2∆

D

[
− cotα

√
LA +

√
LR

D
+ ch

]
. (4.20)

We can combine the solutions (4.9, 4.13, 4.17) to form the following composite solutions,
which are valid in both the outer regions and the ε1/2 boundary layers:

bF =
√

2

[
cotα

(
1− exp

−z√√
2εL̂F

)
− cz +AF exp

−(h− z)√√
2εLF

]
+O(ε1/3), (4.21a)

bR =
√

2

[
cz +AR exp

−(h− z)√√
2εLR

]
+O(ε1/3), (4.21b)

bT =
√

2

[
AT exp

−(z − h)√√
2εLA

]
+O(ε1/3). (4.21c)

4.2.4 Force calculation

As in 3.2.3, the pressure is approximately hydrostatic in the outer regions. Rather than
calculating the net force on either the wedge or the bounding box (which are now both lined
with boundary layers), we use an intermediate surface (shown in figure 7) which intersects
the outer regions away from any boundary layers (apart from the ones at z = h which
cannot be avoided). The net force on (the top half of) the wedge is then given by a formula
similar to (3.24), and we use the composite solution (4.21) to obtain

F =

∫ h

0
(bF − bR)z dz +O(ε5/6) = (4.22a)

=
√

2

[
cotα

h2

2
− 2ch3

3
+ ε1/221/4h

(√
LFAF −

√
LRAR

)]
+O(ε5/6), (4.22b)



where the main error is due to the O(ε1/3) corrections in the ε1/2 layer and the neglect of
O(ε1/6) variations in the ε2/3 layer near z = h. Hence the speed of the wedge is

c(t) =
3

4

cotα

h

[
1 +

ε1/225/4

Dh

(√
LFLR − 1

2

√
LFLA + 3

2

√
LRLA

)
+

+
ε2/32∆

Dh

(
−3

2

√
LF + 1

2

√
LR −

√
LA

)]
+O(ε5/6), (4.23)

as this is the value for which F = 0.

4.3 Summary and comparison with numerical results

Our analysis of this case with fixed-buoyancy conditions on the bounding walls bears many
similarities to the previous analysis with insulating walls (see §3.3). The main difference is
the appearance of front and rear outer regions with new behaviour (4.9), namely no leading-
order flow (ψx = ψz = 0) relative to the wedge. This phenomenon is called “blocking” and
is the stratified analogue of Taylor columns in rotating systems. The Phillips–Wunsch flux
up the slope is then not supplied from a uniform downwelling in the front region, but
rather from a strong downward current confined to the front wall (and via a symmetry-axis
boundary-layer jet).

Near z = 0 and z = h, there are ε1/2 boundary layers which behave like the outer regions
in §3.2.2, and nested inside these are ε2/3 boundary layers which are identical to the ε1/3

layers in §3.4. These two types of boundary layer are the stratified analogues of Stewartson
E1/4 and E1/3 layers for rotating flows.

We compare our composite (outer and ε1/2-layer) solutions (4.21) with numerical results
in figure 8a, and find that they agree well. However, the results for the propulsion speed c
are less convincing in the case ε = 1/100 (see figure 8b), and so we have included the case
ε = 1/400 as well (figure 8c). In the latter case, we can see a clear improvement between
the leading-order result, the O(ε1/2) correction, and finally the O(ε2/3) correction.

5 Wedge in a Very Large or Infinite Domain

Having investigated the cases with a wedge placed in boxes whose size are comparable to
or slightly larger than the size of the wedge, we finally consider the case when the box is
very much larger than the size of the wedge. We approach this case by considering what
happens as the horizontal dimensions of the fixed-buoyancy box in §subsec are increased.

As we can see from e.g. (4.21), the dimensional thickness of the ε1/2 boundary layers is
O((L0L)1/2), while the ε2/3 boundary layers can be seen to have thickness O((L2

0L)1/3) from
e.g. (2.11). As L grows to O(ε−1L1), the ε1/2 boundary layers near z = 0 and z = h invade
and replace the outer region. (Explicit asymptotic solutions can be found in this case, but
end up being complicated expressions involving hyperbolic trigonometric functions from the
solution of equations similar to (4.15), so we do not report them here.) As L grows further
to O(ε−2), the ε2/3 boundary layers fill the domain, and equations like (3.26) need to be
solved.
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Figure 8: Comparison between asymptotic and numerical results. (a) Buoyancy distribution
b as a function of vertical position z for the case shown in figure 6. The thin black curves are
numerical data from vertical slices at −1.9 ≤ x ≤ −1.1 and 0.1 ≤ x ≤ 0.9 with spacing 0.1
in the forward and rear regions. The thick curves are asymptotic composite solutions (4.21),
with the leading-order (solid red curves) or corrected (dashed blue curves) coefficients (4.19,
4.23). (b,c) Propulsion speed c as a function of wedge slope α for the parameters (3.8),
showing numerical results (circles) and asymptotic results (4.23) with the leading-order term
only (black dotted line), O(ε1/2) corrections (solid lines) and O(ε2/3) corrections (dashed
lines). The values of (LF , LR) are (2, 3) (top red series), (2, 2) (middle green series) and
(2, 1) (bottom blue series).

Finally, for L � ε−2L1 (and HT � L1), we still have to solve the ε2/3-layer equations,
but since the box is much larger than the natural length scales

z ∼ L1, x ∼ ε−2L1, (5.1)

we can treat the domain as being infinite, which simplifies the analysis greatly.

5.1 Asymptotic analysis

Based on the scaling (5.1), we non-dimensionalize lengths by L1 and introduce a stretched
horizontal coordinate X = ε2x. We scale the stream function by κ, velocity by κ/L1,
buoyancy by ε2N2L1, pressure by ε2N2L2

1 and force by ε2N2L3
1. We proceed immediately



with calculating the outer solution, valid throughout the domain away from any boundaries.
Unlike in §3 and §4, we consider the whole domain rather than just the upper half z ≥ 0.
Also, we work with the stream function Ψ = ψ − cz in the reference frame of the ambient
fluid to simplify the decay conditions (but retain the use of a coordinate system moving
with the wedge so that the geometry does not evolve with time).

The governing equations (2.9) simplify to

bX = Ψzzzz, −ΨX = bzz, (5.2)

with errors of size O(ε2) or smaller. As we treat the domain as being infinite, we impose
decay conditions in the far field,

Ψ, b→ 0 as X, z → ±∞, (5.3a)

and the conditions on the bounding box, whether they have fixed buoyancy or no buoyancy
flux, have no effect at leading order.

In the horizontally stretched coordinate system, the width of the wedge is O(ε2) and
hence negligible at leading order. Thus, we can treat it as a cut at X = 0, |z| ≤ h. The
Phillips–Wunsch flow on the wedge yields the effective conditions

Ψ = cotα− cz at X = 0−, Ψ = −cz at X = 0+ for 0 < z < h (5.3b)

on the upper portion of the wedge, and the corresponding antisymmetric conditions (Ψ =
− cotα+ cz and Ψ = cz) on the lower portion −h < z < 0, with errors of size O(ε).

We exploit the linearity of the leading-order equations (5.2) to decompose the boundary
conditions (5.3b), which describe the redistribution of fluid due to Phillips–Wunsch flow,
into two parts. The first part, with Ψ anti-symmetric in X,

Ψ = 1
2 cotα at X = 0−, Ψ = −1

2 cotα at X = 0+ for 0 < z < h, (5.4a)

describes the effect of moving fluid from the centreline z = 0 to the heights z = ±h, and
will be solved by a distribution of sources and sinks on the wedge. However, this gives rise
to a pressure distribution that is symmetric in X, and hence yields no net horizontal force.
The second part, with Ψ symmetric in X,

Ψ = 1
2 cotα− cz at X = 0− and X = 0+ for 0 < z < h, (5.4b)

describes the effect of moving fluid from one side of the wedge to the other, and will be
solved by a distribution of force singularities on the wedge. The sum of the two solutions
form the solution to the original boundary conditions.

Although the point source and point force solutions have been described many times
before (see e.g. [5, 7, 3]), we rederive them briefly here for completeness.

5.1.1 Antisymmetric part

We first consider the flow due to a unit point source at the origin. The flow can not be
described by a continuous stream function, as it does not satisfy the continuity equation



(2.6b) at the origin (and indeed the conditions (5.4a) are discontinuous on the wedge).
However, we can still define

Ψs(X, z) =

∫ z

0
u(X, z′) dz′ ⇒ u = Ψs

z, (5.5)

and the continuity equation (2.6b) with a point source yields

uX + wz = δ(X)δ(z) ⇒ w = −Ψs
X + δ(X)

sgn(z)

2
, (5.6)

where δ is the Dirac δ-function and sgn is the signum function. Including the point source
in the governing equations (5.2) and eliminating b yields

Ψs
XX + Ψs

zzzzzz = δ′(X)
sgn(z)

2
. (5.7)

We take a Fourier transform in the z-direction and obtain

Ψ̃s
XX = k6Ψ̃s +

1

ik
δ′(X) ⇒ Ψ̃s = sgn(X)

1

2ik
e−|k

3X|, (5.8)

after application of the decay boundary conditions in the X-direction. We only require the
solution on the z-axis, so we set X = 0± and invert the Fourier transform to find

Ψs(0±, z) = ±sgn(z)

4
. (5.9)

Hence, as may be expected, the original antisymmetric conditions (5.4a) are satisfied by
the distribution

Ψ(X, z) = cotα [Ψs(X, z − h)− 2Ψs(X, z) + Ψs(X, z + h)] (5.10)

of two point sources of strength cotα at z = ±h and a point sink of double the strength at
z = 0.

5.1.2 Symmetric part

We now consider the flow due to a horizontal rightward unit point force at the origin (cor-
responding to the fluid imparting a unit leftward force on the wedge). This introduces the
term δ(X)δ(z), on the right-hand side of the approximate horizontal momentum equation
pX = Ψzzz. Modifying the governing equation (5.2) yields

Ψf
XX + Ψf

zzzzzz = −δ(X)δzzz(z). (5.11)

As in §5.1.1, it is straightforward to solve the equation using a Fourier transform,

Ψ̃f
XX = k6Ψ̃f + ik3δ(X) ⇒ Ψ̃f = − i sgn(k)

2
e−|k

3X|, (5.12)

and inverting the transform at X = 0 yields

Ψf (0, z) =
1

2πz
. (5.13)



An unknown force distribution f(z) (symmetric in z) located on the wedge −h < z < h
gives rise to the flow

Ψ(X, z) =

∫ h

−h
f(z′)Ψf (X, z − z′) dz′, (5.14)

so the condition (5.4b) yields

1

2π
−
∫ h

−h

f(z′)

z − z′
dz′ = sgn(z)12 cotα− cz, (5.15)

where the horizontal bar indicates that the Cauchy principal value is taken for the integral.
The inversion formula for finite-range Hilbert transforms is given by [14] as

g(z) =
1

2π
−
∫ h

−h

f(z′)

z − z′
dz′ ⇒ π

√
h2 − z2f(z) = F − 2−

∫ h

−h

g(z′)
√
h2 − z′2

z − z′
dz′, (5.16)

where F =
∫ h
−h f(z′) dz′. Hence, consideration of z = h yields the net force as

F = 2

∫ h

−h

[
sgn(z)12 cotα− cz

] √h2 − z2
h− z

dz = 2h cotα− ch2π, (5.17a)

and the force distribution is given by

f(z) =
2

π
cotα ln

h+
√
h2 − z2
|z|

− 2c
√
h2 − z2. (5.17b)

The flow field is then determined by (5.14).
As the antisymmetric solution in §5.1.1 has no net force. Hence, we deduce that the

net leftward force on the wedge in the original problem is also given by (5.17a), and the
propulsion speed is thus

c =
2

π

cotα

h
+O(ε). (5.18)

6 Summary and Discussion

We have investigated the two-dimensional diffusion-driven flow that gives rise to propulsion
of an insulating wedge in a stably stratified fluid. Using the method of matched asymptotic
expansions, we have calculated the flow field, the buoyancy distribution and the propulsion
speed in the case when the dimensions of the wedge are much larger than the natural length
scale L0 = (κν/N2)1/4 of the flow.

Whether the outer boundaries are insulating (§3), have prescribed buoyancy (§4), or are
very far away (§5), we find that the root cause of the propulsion is the Phillips–Wunsch flux
of magnitude κ cotα up the sloping upper surface of the wedge (and down the sloping lower
surface, by symmetry). This removal of fluid at the apex of the wedge is balanced by vertical
flow towards the symmetry axis ahead of the wedge, either throughout the forward region
(§3, §5) or along a boundary layer on the front wall (§4). The resulting vertical advection
of buoyancy lowers the hydrostatic pressure ahead of the wedge, resulting in a propulsive



force. When the wedge moves at speed c, the O(ch) redistribution of fluid generates a drag
force by the same mechanism.

Since the forces on the wedge must balance, we can expect the scaling

c ∼ κ cotα

h
(6.1)

to hold. Our calculations confirm this result, with various O(1) numerical prefactors, for
all three types of outer boundary condition (3.43, 4.23, 5.18). Somewhat surprisingly, the
scaling (6.1) depends on neither the the strength N2 of the background stratification nor
the viscosity ν of the fluid. (However, N2 and ν do affect ε and hence the thicknesses of
the various boundary layers and the corrections to the leading-order velocity.)

6.1 Comparison with experiments

We compare our theoretical results to the experimental results by Allshouse et al. [1]. In
their experiments, the natural length scale was typically L0 = O(0.1 mm) while the wedge
had size L1 ∼ h = O(10 mm), so there was indeed a reasonable separation of scales with
ε = L0/L1 � 1.

However, since they used wedges whose width-to-length ratio was typically 1/4 (and
never larger than 2), our two-dimensional analysis which requires the wedges to be much
wider than they are long does not apply. Also, many of their results are for a wedge with
slope α = 5◦, which is very close to horizontal and again excluded by our analysis. Hence,
we can only make a qualitative comparison with their results.

Overall, the experimental results indicate that the velocity c scales with the boundary-
layer velocity c0 = κ cotα/L0, which is 1/ε times our scaling (6.1). This is evidenced by
figures 3(a,b) in [1], which show that c does depends on the strength of the stratification,
closely following the power law c ∝ N1/2, and that c/c0 does not vary with the Schmidt
number κ/ν. However, we note that the latter figure indicates that the numerical prefactor
of the scaling is very small. In addition, the range of velocities in the former figure is limited
to 1–4 µm/s, so the scaling result is not conclusive. We note that this range is comparable
to the values 0.8–2.5 µm/s given by our scaling (6.1). Hence, further study of the three-
dimensional case and the near-horizontal case is needed to conclusively decide which scaling
is correct.

6.2 Extensions

Our analyses extend relatively easily to two-dimensional objects of other shapes. If the
shape of the object is described by S−(z) < x < S+(z), then the effective leading-order
conditions ψ = cotα on the wedge slope and ψ = 0 on the wedge back are replaced by
ψ = S′±(z) at x = S±(z). The variation in slope allows fluid to be entrained or expelled
continually along the surface of the object, rather than only at the corners of the wedge,
but this is not a problem for the analyses in §3, §4 or §5.

If the object is not top-down symmetric, then the boundary conditions for the stream
function will involve an unknown constant corresponding to the unknown circulation around
the object. However, this constant is straightforwardly determined by requiring that the



hydrostatic pressure is continuous on both sides of the object. There may also be issues
with rotation due to non-zero torque.

A more serious problem with objects of arbitrary shape is that they may have near-
horizontal surfaces. In particular, a smooth object which does not have corners at the top
and bottom will have horizontal surfaces there. As stated in §2.2, Phillips–Wunsch flow
breaks down on surfaces that are too close to horizontal. Whether such top and bottom
regions can be ignored for rounded shapes, just like we could ignore the corners of the wedge
a leading order, remains to be seen.

As for extensions into the third dimension, a radically different theoretical approach
would be required. This is because we have been relying on calculating the force on the
wedge using the hydrostatic pressure, which is only possible due to the two-dimensional
wedge acting as a dam between the front and rear regions. When fluid is allowed to flow
around the wedge in the third dimension, a large pressure difference between the front and
back wedge would simply drive such a flow around the wedge until the pressure force is
balanced by viscous drag. Hence, the forces on the wedge are due to both pressure forces
and viscous forces at the same order. Thus, it seems that a solution would have to involve
solving a complicated equation in a complicated domain.

Nevertheless, based on our two-dimensional analysis we can hypothesize that the three-
dimensional system is amenable to simplification by asymptotic decomposition. The Phillips–
Wunsch boundary layer would be replaced by a line of sinks at the front of the wedge and
two lines of sources at the back, and even though the outer equations have a complicated
geometry and require numerical solution the computational cost would be greatly reduced
due to the boundary layers not needing to be resolved.
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