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This lecture discussed a number of topical problems in geological fluid mechanics. Two
particular examples are covered in details in these notes: the dynamics of the grounding
line of an ice sheet & shelf, and the fluid mechanics of carbon sequestration. Some further
mathematical and physical details are relegated to the appendices.

1 Ice Sheet Grounding Line

Figure 1: Ice Sheets and Ice Shelves.

In the present day, the last of Earth’s large ice sheets can be found in Greenland and
Antarctica. These ice sheets are continental in size and are characterized by complex dy-
namics that may be driven by climate forcing or the spactial and temporal variations at the
ice bed or internal boundaries. Ice shelves are enormous beds of floating ice as can be seen
in Figure 1 that gives a schematic view of ice sheets and shelves. Figure 2 shows photos of
floating ice sheets and icebergs in the sea.

The ice sheet/ice shelf transition zone plays an important role in controlling marine ice
sheet dynamics, as it determines the rate at which ice flows out of the grounded part of
the ice sheet. Any change in ice thickness will of course lead to migration of the grounding
line. There have been several experiments on the dynamics of the grounding line. One such
experiment can be seen in Figure 3, where wax is poured over water to create a grounding
line.
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Figure 2: Floating ice sheets and Icebergs.

Figure 3: Laboratory experiment with wax showing the formation of the shelf.

1.1 Dynamics of Grounded Ice Sheet

The Grounded Ice Sheet can be modelled as a shear flow (see Figure 4). The dynamical
balance is between the pressure gradient and the shear stress.

−ρg
∂h

∂x
≈ µ

∂2u

∂y2
. (1)97



Figure 4: Schematic of the Grounded Ice Sheet.

The horizontal length scale, obtained from dimensional analysis (see section 1 in appendix
A) is

L ∼
(

ρgq3

µ

)1/5

t4/5. (2)

where q is the precipitation rate. The horizontal length is plotted against t in Figure 5.

Figure 5: Plot of horizontal length scale, L against t for the grounded ice sheet.

1.2 Dynamics of Freely Floating Shelf

In the preceding section, the sheet has been modelled as fixed on a bedrock. The dynamics
of a freely floating shelf shall be considered now. The leading order dynamical balance is
satisfied by the pressure gradient balancing the inertia.

−ρg′
∂h

∂x
≈ 4µ

h

∂

∂x

(

h
∂u

∂x

)

, (3)
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Figure 6: Schematic showing the freely floating shelf.

where g′ = ∆ρ
ρ g. The horizontal scale is given by

L ∼ ρg′q

µ
t2. (4)

The plot of horizontal scale, L against t is shown in Figure 7.

Figure 7: Graph of L against t for freely floating shelf.

1.3 Modelling Ice Sheet-Shelf Dynamics

The dynamics of both ice sheet and shelf together is considered in this section. A sketch of
this with various parameters is given in Figure 8. The flux in the sheet is given by

q =
gH3

3ν

(

−∂h

∂x

)

. (5)

Here H = h + b. The continuity (mass conservation) requires that

∂h

∂t
= −∂q

∂x
, (6)
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Figure 8: Schematic of the ice sheet and shelf with flux q0 due to precipitation. The
parameter b(x) defines the bottom topography.

This gives rise to the nonlinear diffusion equation,

∂h

∂t
=

∂

∂x

[

g

3ν
(h + b)3

∂h

∂x

]

. (7)

The prescribed volume flux (due to precipitation) at x = 0 is given by

q0 = − g

3ν
h3 ∂h

∂x
, (8)

The floatation condition at x = xG(t) is defined as

ρH = ρwb, (9)

The normal stress balance at x = xG(t) is

(

∆ρ

ρ

db

dx
− ∂h

∂x

)

xG =
gH2

8ν

[

4

(

∂h

∂x

)2

− ∆ρ

ρ

]

. (10)

Theory gives the following results:
xG(t) ∼ t1/2, (11)

at early times. For late times,
xG(t) → constant. (12)

The various grounding line positions are plotted against time in Figure 9. Theory predicts
the position of a steady grounding line to be

xG =
1

α

ρ

ρw

(

6νq0

g

)1/3 (

g

g′

)1/6

.

Figure 10 provides a comparison between the theoretical and experimental results. Figure 11
compares some of the theoretical steady profiles with actual ice sheets from Antartica.

To summarise, ice sheets and shelves flow as viscous gravity currents. In grounded ice
sheets, shear stresses balance the hydrostatic pressure gradient. The result is a decelerating
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Figure 9: Plot showing the grounding line position as a function of time in the case of ice
sheet-shelf dynamics.

Figure 10: A comparison between theoretical prediction and experimental results for the
position of the grounding line.

flow. The floating ice shelf, on the other hand, has extensional stress balancing the hydro-
static pressure gradient, causing the flow to accelerate. This gives rise to a hypothesis that
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Figure 11: Steady Ice sheets with Grounding Lines.

the dynamic control of grounding line is effected by balance of normal stress. Hence, leading
to a closed mathematical model. This hypothesis is being tested using laboratory experi-
ments. One application of this mathematical model is to determine the dynamical stability
of ice sheets. As mentioned earlier, grounding line is very sensitive to any change in the
climate. To this end, more work is being carried out to understand the basic mechanisms
determining its stability and position.

To summarize, ice sheets and shelves can be modelled as viscous gravity currents. In
grounded ice sheets, shear stresses balance the hydrostatic pressure gradient. The result
is a decelerating flow. The floating ice shelf, on the other hand, has extensional stress
balancing the hydrostatic pressure gradient, causing the flow to accelerate. This gives rise
to a hypothesis that the dynamic control of grounding line is effected by balance of normal
stress. Hence, leading to a closed mathematical model. This hypothesis is being tested
using laboratory experiments. One application of this mathematical model is to determine
the dynamical stability of ice sheets. As mentioned earlier, grounding line is very sensitive
to any change in the climate. To this end, work is being carried out to understand the basic
mechanisms determining its stability and position.

2 Fluid Mechanics of Carbon Dioxide Sequestration

2.1 Introduction and Motivation

The Keeling curve (Fig. 12) is a graph showing the variation in concentration of atmospheric
carbon dioxide since 1958. It is based on continuous measurements taken at the Mauna
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Loa Observatory in Hawaii under the supervision of Charles D. Keeling from the Scripps
Institution of Oceanography. His measurements show evidence of CO2 undergoing a regular
seasonal cycle, reflecting the seasonal growth and decay of land plants in the northern
hemisphere, as well as a regular long-term rise driven by the burning of fossil fuels. Before
the industrial era, atmospheric CO2 concentration was between 275 and 280 ppmv for
several thousand years. Carbon dioxide has risen continuously since then, and the average
value when Dr. Keeling started his measurements in 1958 was near 315 ppmv. By the year
2000 it has risen to about 367 ppmv. Keeling’s measurements showed the first significant
evidence of rapidly increasing carbon dioxide levels in the atmosphere.

Figure 12: Keeling Curve. Atmospheric carbon dioxide concentration (ppm) above Mauna
Loa observatory in Hawai.

Fig. 13 compares the world and the United States population and energy usage in 1906
and 2006. At the start of the industrial era, the world population was about one billion
souls. It took 120 years to double this number. Today, at the rate about 200,000 new
people per day, it takes 13 years for the world population to grow by a billion. Todays large
human population and rate of growth is not without effect on the environment. Between
1906 and 2006, the U.S. as well as the world population grew nearly four fold. The world
energy usage increased almost 13-fold. In the U.S. alone, energy usage in 2006 is 9 times
its value in 1906.

Fig. 14 shows the source contributions of world energy consumption. Fossil fuels (coal,
oil and natural gas) still account for over 85% of the primary energy consumed in the world.
Fossil fuels or mineral fuels are fossil source fuels, that is, hydrocarbons found within the
top layer of the Earth’s crust. The burning of fossil fuels produces around 21.3 billion tons
of carbon dioxide per year, but it is estimated that natural processes can only absorb about
half of that amount, so there is a net increase of 10.65 billion tons of atmospheric carbon
dioxide per year (one ton of atmospheric carbon is equivalent to 44/12 or 3.7 tons of carbon
dioxide). Carbon dioxide is one of the greenhouse gases that enhances radiative forcing and
contributes to global warming, causing the average surface temperature of the Earth to rise
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Figure 13: A hundred years evolution of the United States and the world’s population and
energy usage. Between 1906 and 2006, the U.S. as well as the world population grew nearly
four fold. The world energy usage increased almost 13-fold. In the U.S. alone, energy usage
in 2006 is 9 times its value in 1906.

in response.
In the last 400,000 years temperature was highly correlated with CO2 concentration in

the atmosphere. Inferred mean temperature anomalies (difference with present time) exhibit
a roughly 100,000 year cycle with amplitude varying from -6 ◦C to +2 ◦C. Effect of strong
increase of CO2 in the atmosphere is associated with climate change. Long records of carbon
dioxide concentration in the atmosphere indicate that CO2 content never exceeded 300 ppm
in the last 400,000 years. The amplitude of the sudden increase of CO2 concentration in
the last hundred years, associated with burning of fossil fuel, is unprecedented in recent
geological history. The effects, mechanisms and time scales of climate change are subject
to active research. Limiting the effects of human activities on the environment involves a
migration to renewable energies and the reject of fossil fuel as a primary source of energy.
One way to reverse the Keeling curve, however, to return to geologically normal atmospheric
carbon dioxide concentration, is to the re-injection of CO2 in underground reservoirs. The
so called carbon dioxide sequestration provides means to remove CO2 from the atmosphere
and restore the status quo of pre-industrial era. The problem of carbon dioxide sequestration
calls for further investigation of the behavior of gravity (buoyancy) driven flows in porous
media.

2.2 Source in Porous Medium

Flow in porous media occurs in many natural and industrial situations. Included in these
are the seepage of rainwater through permeable ground into an aquifer, the forced flow of
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Figure 14: Distribution of energy source over the last five decades. Fossil fuels still account
for over 85% of the primary energy consumed in the world.

Figure 15: Carbon dioxide levels over the last 60,000 years in volume ppm. Longer records
show that CO2 concentration did not exceed 300 ppm in the last 400,000 years. Observed
increase in CO2 content in the last hundred years is unpreeceded in recent geological history.
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Figure 16: Schematic of gravity fluid in a porous medium.

oil from sandstone reservoirs (Lake 1989; Gerritsen & Durlofsky 2005), and the dispersion
of polluted liquids through gravel pits. In some situations the fixed, solid matrix through
which the flow passes reacts with the interstitial fluid and the structure and porosity of the
matrix change with position and time (Hallworth, Huppert & Woods 2005). Examples of
such reactions include the gradual formation of dolomite (Phillips 1991) and the convective
flow due to solidification through a mushy layer, which is a region of reactive solid matrix
bathed in interstitial fluid (Worster 2000; Aussillous et al. 2006).

A gravity current occurs whenever fluid intrudes primarily horizontally into fluid of
different density. The fundamentals of flows beneath a relatively less dense homogeneous
fluid layer at either low (Huppert 1982a, b, 2000) or high Reynolds number (Benjamin
1968; Hoult 1972) are well known. In recent years additional phenomena due to the effects
of rotation (Ungarish & Huppert 1998), and flows over porous media (Acton, Huppert
& Worster 2001; Thomas, Marino & Linden 2004), into stratified ambients (Ungarish &
Huppert 2002; Maxworthy et al. 2002) and over variable topography have been investigated.

The spreading of a liquid phase in a porous medium hosting pore fluid of different
density, as sketched in Fig. 16, is a kind of gravity current. Consider the gravity current
due to horizontal pressure gradient of (unknown) free surface slope (see also Appendix A).
The dynamics of the fluid is simplified to the viscous approximation (Darcy’s flow)

0 = −∇p − ρg− µu/k (13)

where k is the porous medium permeability, µ is the dynamic viscosity of input fluid and u

is the input fluid velocity. In the horizontal direction, this becomes

∂p

∂r
= ρ g′

∂h

∂r
(14)

where

g′ = g
∆ρ

ρ
(15)

is the reduced gravity. The equation of local continuity gives

φ
∂h

∂t
+

1

r

∂

∂r
(r u h) = 0 (16)
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where φ is the porosity of the host rock. Equating the last two equalities gives

∂h

∂t
− γ

r

∂

∂r

(

r h
∂h

∂r

)

= 0 (17)

and

γ =
ρ k g′

φµ
(18)

has the dimensions of a velocity. The equation of global continuity gives

Qt = 2π

∫ rN (t)

0
r h dr (19)

The similarity variable
η = (γ Q/φ)−1/4 r t−1/2 (20)

leads to an expression for the position of the nose

rN (t) = ηN (γ Q/φ)1/4 t1/2 (21)

Defining y = η(r, t)/η(rN , t) with 0 < y < 1 and

h(r, t) = η2
N (Q/φγ)1/2 f(y) (22)

one obtains the ordinary differential equation

(y f f ′)′ +
1

2
y2 f ′ = 0 (23)

with f(1) = 0 and

ηN =

[

2π

∫ 1

0
y f(y) dy

]−1/4

(24)

For a linear case, with Q = 0, approximation solution of the differential equation gives

f(y) ∼ 1

2
(1 − y) (25)

and
ηN ∼ (6/π)1/4 (26)

Data from laboratory experiments are well explained by such scaling. Further experiments
on gravity currents in porous media may help us predict the fate of liquid phase carbon
dioxide injected in porous reservoirs (Fig. 17).
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Figure 17: Schematic of carbon dioxide (liquid phase) sequestration and propagation in a
porous reservoir

Figure 18: Gravity current model. The flow is driven by pressure gradient due to unknown
free surface slope and resisted by viscosity.
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Appendices

A Gravity Currents

Gravity currents are generated by the release of some volume of one homogeneous fluid into
another of slightly different density. If a viscous fluid is released vertically on a horizontal
surface it rapidly takes up a circular plan form as it spreads. This form is observed to
be stable to any small disturbances which are initiated on the front due, for example, to
irregularities in the horizontal surface or to chance perturbations (Huppert 1980, Huppert
1982a). In this note, we describe how gravity currents spread, and quantify their radius or
extent as a function of time.

We consider that the flow is driven by pressure gradient due to unknown free-surface
slope h(x, t) and resisted by viscous effects. We first examine a two-dimensional flow prop-
agating in the x-direction only, with a vertical dependence. Model geometry is illustrated
in Fig. 18. Assuming the velocity field u = ux(x, z) ex, the Navier-Stokes equation can be
written

µ
∂2

∂z2
u = − ∂

∂x
p = ρ g

∂

∂x
h (27)

where we have ignored inertial effects (Reynolds number Re � 1), µ is the dynamic viscosity
and p is pressure. Also assumed is a thin layer where uzz � uxx.

A.1 Dimensional analysis

As shown in Fig. 18, the flow is sustained by the mass flux ρQ(t). Experimental data
indicates the time dependence

H L ∼
∫ t

0
Q(t′)dt′ ∼ q tα (28)

where H, L are typical height and typical length and α is a constant. For α = 0, the volume
is constant. The case α = 1 corresponds to constant flux. Using dimension analysis, one
can write orders of magnitude of the total buoyancy force Fg

Fg =

∫∫∫

V

∂p

∂x
dx dy dz

= −ρ g

∫∫∫

V

∂h

∂x
dx dy dz

∼ ρ g H2W

∼ (ρ g q2 W/L2) t2α

(29)

and the total viscous force Fν

Fν = µ

∫∫∫

V

∂2u

∂z2
dx dy dz

∼ µULW/H

∼ µ q−1L3Wt−α−1

(30)
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Figure 19: The continuity equation. The change in velocity flux F is balanced by the change
in unknown elevation h.

The buoyancy and viscous forces balance (Fν ∼ Fg) leading to an estimate of the total
extension of the gravity flow

L = (g q3/ν)1/5t(3α+1)/5 (31)

A.2 Lubrication theory analysis

We use the approximations of lubrication theory, where we neglect both surface tension and
contact line effects (Hocking 1981). Both can be neglected if the Bond number

B = ρ g l2/T � 1 (32)

where ρ is the density of the fluid, l is a representative length scale of the current, and T
is the surface tension. Using the x-momentum equation, and the thin layer approximation
uxx = 0, one obtains

∂2

∂z2
u =

ρ g

µ

∂

∂x
h (33)

We consider the boundary conditions

u = 0, at z = 0

uz = 0, at z = h
(34)

The solution velocity is

u(x, z, t) = − g

2 ν

∂h

∂x
z(2h − z) (35)

where ν = µ/ρ is the kinematic viscosity. The velocity flux is

F =

∫ h

0
u dz = −1

3

g

ν
h3 ∂h

∂x
(36)

The velocity flux has the dimensions of F ∼ L2 T−1. Another constraint of the problem is
the conservation of mass. The local continuity requires that the difference in velocity flux
between to neighboring columns is balanced by the change of height

∂h∂x + ∂F∂t = 0 (37)
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or
∂F
∂x

+
∂h

∂t
= 0 (38)

Using equation (36), one obtains

∂h

∂t
− β

∂

∂x

(

h3 ∂h

∂x

)

= 0 (39)

where β = g/3ν. Equation (39) corresponds to the nonlinear diffusion equation. The global
continuity equation can be written

∫ xN (t)

0
h(x, t) dx = q tα (40)

where q tα corresponds to the cumulative (with time) influx of material volume. The method
used by H2 to determine a similarity solution is to write down the governing equation in
terms of dimension. Equation (39) can leads to

h

t
∼ β h4

x2
or h3 ∼ x2

βt
(41)

now assuming no influx of mass (α = 0), and a conserved area A, one has hxN ∼ A. So
one gets

x5

β A3 t
∼ 1 (42)

which suggests the following dimensionless quantity

η = (β A3)1/5 x t−1/5 (43)

to be suitable for similarity variable. One obtains the estimate

xN ∼ (β A3)1/5 t1/5 (44)

Introducing ηN , the value of η at the nose (x = xN ) of the current, and using

h ∼ A

xN
∼

(

A2

β

)1/5

t−1/5 (45)

we use the change of variable

h(x, t) = η
2/3
N (A2/β)1/5t−1/5 φ(η/ηN ) (46)

and we further define y ≡ η/ηN with 0 < y < 1. The partial derivatives become

∂t = dt −
1

5

y

t
dy

∂x =
y

x
dy

(47)
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For example, one has

ht = η
2/3
N (A2/β)1/5

{

1

5
t−4/5φ + yt−4/5φ′

}

(48)

The partial differential equation governing the height of the gravity current becomes the
ordinary differential equation

(φ3 φ′)′ +
1

5
φ′ +

1

5
φ = 0 (49)

with the boundary conditions φ = 0 and regular at y = 1. Integrating twice, we find

φ(y) =

(

3

10

)1/3

(1 − y2)1/3 (50)

and ηN = 1.411. We find that the problem is not solvable analytically for α 6= 0. In general
however, one has

xN = ηN

(

β q3
)1/5

t(3α+1)/5 (51)

Above theory agrees with experiments.

B Solidification

Solidification is the growth of a solid from a liquid phase. It is an important processing
route for metals and alloys and has a number of important geological problems associated
with it. In most geological problems, it is assumed that the magma has a well-defined
melt temperature at which the phase change from liquid to solid occurs. The problem of
solidification can be defined by Stefan’s condition. The Stefan condition for heat flux q and
velocity of solidification Vn is given by

ρsLVn = [n, q]. (52)

where L is the latent heat per unit mass, ρs is the density of the solid and n is the normal to
the surface. Operator [a, b] implies the difference between a · b on either side of the solid-
liquid interface, where a discontinuity in temperature gradient occurs. The location of the
phase change boundary or the interface between the solid and liquid is determined as part
of the solution. A complication, however, is the changing of this boundary as solidification
proceeds. Another difficulty is to keep track of the latent heat of fusion, which is located
at the solid-liquid interface as solidification takes place.

B.1 Planar 1-component solidification

Sometimes the solidification occurs in organised planar way. An example of such solidifica-
tion is that of a horizontal layer of magma that solidifies from its upper surface downwards
as a result of being cooled from above. In this case, the overall flow thickness is unimportant
in describing the solidification process as long as a molten region is present. The planar
1-component solidification is given by the equation (53), where T is the temperature.
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Figure 20: Schematic showing the interface between Solid and Liquid with the boundaries
at x = 0 and x = s(t). For simplicity material properties are assumed equal.

Tt = κTxx (53)

where κ is thermal diffusivity. The boundary conditions are:

T = TB at x = 0,

T = TS at x = s(t),

T → ∞ as x → ∞.

The Stefan’s condition, (52) in this case is given by

ρsLs′ = k(Tx|s
−

− Tx|s+
). (54)

where k is the thermal conductivity and s′ is the first derivative of s with respect to t. This
has similarity solution of the form

s(t) = 2λ(κt)1/2. (55)

This can be represented using erf(x) and λ, which is an eigenvalue of this system defined as
a function of S and R. The form of the solution is given by the following expression, where
λ1 is defined as sm/2

√
κt. sm gives the solidification interface.

λ = f [S, R] , (56)

where

S =
L

c(TS − TB)
(57)

is the Stefan number relating latent heat to heat capacity and

R =
T∞ − TS

TS − TB
(58)

is the nondimensional thermal forcing. The constant λ1 is determined by requiring that the
latent heat liberated at the solidification boundary be conducted vertically upward, away
from the interface.
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B.2 Binary alloys

Binary alloys are formed when 2 or more components melt. Sinking of salty water in
polar seas or the mixing or iron and impurities in liquid outer core of the Earth are both
examples of binary alloys. Figure 21 shows the Phase Diagram for Binary alloys. This
representation is often correct in equilibrium but can be very different in many cases. It
is worth noting that the freezing temperature (liquidus) is function of composition TL(C).
The solid that freezes has a very different composition (given by solidus) than the liquid.
Typically, aqueous solutions have vertical solidus.

Composition
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Figure 21: An equilibrium Phase Diagram for Binary Alloys.

B.2.1 Stefan Problem for an alloy

This problem is similar to the Planar 1-component solidification. The equilibrium liquidus
can be written as

Ti = TL(Ci). (59)

The Stefan condition is
ρsLs′ = −[kTx]ls. (60)

The solute conservation is given by

(Ci − Cs)s
′ = −DCx|s+

. (61)

The governing differential can be written in terms of Tt and Ct.

Tt = κTxx, (62)

Ct = DCxx. (63)
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where D is the diffusion coefficient of C, typically D � κ. Similarity solution can be found
of the form

s(t) = 2µ(Dt)n.

The solidification rate is controlled by the concentration diffusion. This is morphologically
unstable leading to ’Mushy Layers’, which are small scale reactive matrix bathed in intersti-
tial liquid. An example of mushy layer is sea ice. Seeking averaged description of local mean
temperature (T (x, t)), mean composition of interstitial liquid (C(x, t)) and solid fraction
(φ(x, t)) leads to the equations for the Mushy layer.

ρ̄c(Tt + u.∇T ) = ∇.(k̄∇T ) + ρsLφt, (64)

(1 − φ)(Ct + u.∇C) = ∇.(D̄∇C) + (C − Cs)φt. (65)

At equilibrium,
T = TL(C).

It is safe to say that multicomponent melts solidify into mushy layers, which are often
accompanied by strong compositional convection. In many circumstances, it is possible
quantitatively to predict structure and rate of growth of mushy layers. An example of
solidification is the almost pure iron inner core that has been slowly solidifying for about
1.8× 109 years (just under half the age of the Earth). During all this time strong composi-
tional convection has maintained the geodynamo protecting us from cosmic radiation.
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