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1 Introduction

We sketch here a different derivation of the Korteweg–de Vries equation, applicable to a
wider range of problems, including internal waves and waves in sheared flows in addition to
surface water waves. After beginning with the Euler equations and discarding small terms,
the problem is reduced to a superposition of various modes — but through dispersion,
after sufficient time has passed each mode becomes isolated, so we may consider solitary
wave (soliton) solutions. The problem is then treated with an asymptotic expansion in
small parameters characterizing the amplitude and dispersion. To first order we recover the
linear long wave solutions, and to second order we find that the amplitude evolves according
to the KdV equation. The extended KdV (eKdV) equation is discussed for critical cases
where the quadratic nonlinear term is small, and the lecture ends with a selection of other
possible extensions.

2 Derivation for surface and internal waves: Basic Setup

In the basic state, the motion is assumed to be two-dimensional and the fluid has a den-
sity ρ0(z), a corresponding pressure p0(z) such that the background state is hydrostatic
(p0z(z) = −gρ0), and a horizontal shear flow u0(z) in the x-direction. In this lecture we
consider only the case where the bottom is flat (h is constant). Extensions considering
variable depth are possible and lead to a variable-coefficient KdV equation (see Lecture 9).

The equations of motion relative to this basic state are the Euler equations:

ρ0(ut + u0ux + wu0z) + px = −ρ0(uux + wuz) − ρ(ut + u0ux + wu0z + uux + wuz) (1)

pz + gρ = −(ρ0 + ρ)(wt + u0wx + uwx + wwz) (2)

g(ρt + u0ρx) − ρ0N
2w = −g(uρx + wρz) (3)

ux + wz = 0 (4)

Here (u0 + u, w) are the velocity components in the (x, z) directions, ρ0 + ρ is the density,
p0 + p is the pressure and t is time. The equations are arranged such that for linear long
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waves all terms on the right hand side can be neglected (this statement is proved in Section
4). Here N(z) is the buoyancy frequency, defined by

ρ0N
2 = −gρ0z. (5)

The boundary conditions are
w = 0 at z = −h, (6)

p0 + p = 0 at z = η, (7)

w = ηt + u0ηx + uηx at z = η. (8)

It is useful to use the vertical particle displacement ζ as the primary dependent variable.
ζ is readily measured in the ocean and is related to the buoyancy frequency. The vertical
particle displacement is defined by

Dζ

Dt
= ζt + u0ζx + uζx + wζz = w. (9)

The perturbed density field is given by the difference between the density at the vertical
position a fluid particle originates from, and that of its current location: ρ = ρ0(z − ζ) −
ρ0(z) ≈ gρ0N

2ζ as ζ → 0, where we have assumed that as x → −∞, the density field relaxes
to ρ0(z). Isopycnal surfaces (i.e. ρ0 + ρ =constant) are then given by z = z0 + ζ where z0

is the far-field level. The physical meaning of ζ is clearest on the free surface (z = η). In
terms of ζ, the kinematic boundary condition (8) becomes ζ = η at z = η.

3 Linear long waves

To describe internal solitary waves, we seek solutions whose horizontal length scales are
much greater than h (shallow water, long waves) and whose time scales are much greater
than N−1 (linear behavior). We now solve the Euler equations by omitting the right-hand
side of equations (1-4) and utilizing the linearized free-surface boundary conditions of (7,8).
Solutions are sought in the form

ζ = A(x − ct)φ(z) (10)

Plugging this solution for ζ into the linear Euler equations gives values for the remaining
dependent variables:

u = A ((c − u0)φ)z , p = ρ0(c − u0)
2Aφz, gρ = ρ0N

2Aφ. (11)

Here c is the linear long wave speed, and the modal functions φ(z) are defined by the
boundary-value problem

{ρ0(c − u0)
2φz}z + ρ0N

2φ = 0 for h < z < 0 (12)

φ = 0 at z = −h, (c − u0)
2φz = gφ at z = 0. (13)

Equation (12) is the well-known Taylor-Goldstein equation for perturbations in stratified
shear flows, here expressed in the long-wave limit.
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Typically, the boundary value problem (12,13) has an infinite sequence of linear long-
wave modes solutions, φ±

n (z), n = 0, 1, 2, . . ., with corresponding wave speeds, c±n (z). Here,
the superscript “±” indicates waves with c+

n > uM = max u0(z) and c−n < um = min u0(z).
We shall confine our attention to these regular modes, and consider only stable shear flows.
Mathematically, this implies that we do not consider modes with complex eigenvalues c,
nor modes with c ∈ [um, uM ]. Analogous theory can be developed for singular modes with
um < c < uM .

In general, this boundary value problem has to be solved numerically. Typically, the
n = 0 mode denotes the surface gravity waves for which c scales with

√
gh, while the

n = 1, 2, 3, . . . modes denote internal gravity waves for which c scales with Nh. The surface
mode φ0 has no extrema in the interior of the fluid and takes its maximum value at z = 0.
The internal modes φ±

n (z), n = 1, 2, 3, . . ., have n − 1 extremal points in the interior of
the fluid and φ nearly vanishes near z = 0 (because c2 ≪ gh for internal waves, and using
equation (13)).

The solution of the linearized long wave equations is given asymptotically1 by

ζ ∼
∞

∑

n=0

A±

n (x − c±n t)φ±

n (z) as t → ∞. (14)

Here the amplitudes A±
n are determined from initial conditions. Assuming that the speeds

c±n of each mode are sufficiently distinct, the modes will separate spatially for large times,
so we can consider a single mode in isolation. Henceforth, we shall omit the index n and
assume that the single mode has speed c, amplitude A and modal function φ(z).

4 Asymptotic expansion

Having waited sufficiently long for the modes to separate also implies that hitherto neglected
nonlinear terms may begin to have an effect. The nonlinear effects are balanced by dispersion
(also neglected in linear long wave theory); this balance emerges as time increases and results
in the Korteweg-deVries equation for the wave amplitude.

The formal derivation of the evolution equation requires the introduction of two small
parameters, ε and δ, characterizing the wave amplitude and inverse wave-length, respec-
tively. As seen in Lecture 5, for nonlinearity to be balanced by dispersion (KdV balance), it
is required that ε = δ2 (note that the leading nonlinear term is of order ǫ2 while the leading
dispersive term is of order ǫδ2). It was also shown that the nonlinear dynamics take place
on a slow timescale T .

As in Lecture 5, we first introduce the scaled variables

T = δεt, X = δ(x − ct). (15)

We then assume solutions of the form

ζ = εA(X, T )φ(z) + ε2ζ2 + . . . (16)

1The reason why this is only valid asymptotically and not for all times is a technical issue: the modes

defined do not necessarily form an orthogonal set so additional transient terms must be added to match the

initial conditions in some cases.
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with similar expressions analogous to 11 for the other dependent variables. Plugging these
solutions into the full Euler equations results in the linear long wave solution for the modal
function, φ(z) and the speed, c, at leading order. Since the modal equations (12,13) are
homogeneous, we are free to impose a normalization condition on φ(z). A commonly used
condition is that φ(zm) = 1 where |φ(z)| achieves a maximum value at z = zm. In this case,
the amplitude εA is uniquely defined as the amplitude of ζ to O(ε) at the depth zm.

Continuing the expansion to the next order in ε, it can be shown that this leads to the
following equation for ζ2:

{ρ0(c − u0)
2ζ2Xz}z + ρ0N

2ζ2X = M2, for − h < z < 0 (17)

and the corresponding boundary condition

ζ2X = 0 at z = −h, ρ0(c − u0)
2ζ2Xz − ρ0gζ2X = N2 at z = 0. (18)

The inhomogeneous terms M2, N2 are due to nonlinearity and dispersion, and are known
in terms of the first-order functions A(X, T ) and φ(z). They are given by

M2 = 2{ρ0(c − u0)φz}zAT + 3(ρ0(c − u0)
2φ2

z)zAAX − ρ0(c − u0)
2φAXXX , (19)

N2 = 2{ρ0(c − u0)φz}AT + 3(ρ0(c − u0)
2φ2

z)AAX (20)

Equations (17,18) are identical to the equations defining the modal function (12,13), with an
additional forcing term on the right-hand side in (17). There will be a solution for the forced
equation (17) that satisfies the boundary conditions (18) only if a certain compatibility
condition is satisfied. We can obtain this compatibility condition for example by a direct
construction of ζ2.

Let us first define the linear operator L such that

L(φ) = {ρ0(c − u0)
2φz}z + ρ0N

2φ. (21)

Any pair of functions ψ and φ satisfying the lower boundary condition of the problem
(ψ(−h) = 0 and φ(−h) = 0) also satisfies

∫ z

−h
{ψL(φ) − φL(ψ)}dz = ρ0(c − u0)

2(ψφz − φψz) = W (ψ, φ; z) (22)

where we have defined the Wronskian functional of ψ and φ as

W (ψ, φ; z) ≡ ρ0(c − u0)
2(ψφz − φψz). (23)

If ψ and φ are solutions to the modal equation (12), then Lφ = Lψ = 0 so that

dW

dz
= ψLφ − φLψ = 0 (24)

Hence W (ψ, φ; z) is actually independent of z.
Now, for ζ2X solution of the forced equation (17), we have

φL(ζ2X) − ζ2XL(φ) = φM2 =
dW (φ, ζ2X ; z)

dz
, and (25)
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and similarly for ψ. Integration of (25) and elimination of ξ2Xz results in

φ

∫ z

−h
ψM2dz − ψ

∫ z

−h
φM2dz = ζ2XW (ψ, φ; z), (26)

The general solution of ζ2X is then the sum of a general solution for the unforced problem
plus the particular solution just identified,

ζ2X = A2Xφ + φ

∫ z

−h

M2ψ

W (ψ, φ)
dz − ψ

∫ z

−h

M2φ

W (ψ, φ)
dz. (27)

where we recall that W (ψ, φ) is constant. This general solution for ζ2X was so far obtained
by applying only the boundary condition on the bottom (z = −h). In the process, we have
introduced another modal function ψ and the Wronskian, W . By applying the free surface
boundary condition, and requiring that ψ be linearly independent of φ such that ψ(0)
does not satisfy the upper boundary condition of (17), we can now obtain a compatibility
condition that is independent of ψ and W . Plugging the solution of ζ2X into the free surface
boundary condition in (18), we obtain

ρ(c−u0)
2

{

φz

∫

0

−h

M2ψ

W
dz − ψz

∫

0

−h

M2φ

W
dz

}

−ρ0g

{

φ

∫

0

−h

M2ψ

W
dz − ψ

∫

0

−h

M2φ

W
dz

}

= N2.

(28)
Recalling that ρ(c−u0)

2φz = ρ0gφ at z = 0 from (13), it then follows that the compatibility
condition is

∫

0

−h
M2φdz = [N2φ]z=0. (29)

Here we have obtained the compatibility condition through the direct construction of ζ2.
However, the compatibility condition can be obtained more easily without knowledge of ζ2

(or higher-order ζn), and without the need to introduce an additional function ψ.
The compatibility condition is that the inhomogeneous terms in (17,18) should be or-

thogonal to the solution of the adjoint of the modal equations (12,13). This construction is
fairly straightforward. We first begin by combining equations (22) and (25) into

φM2 = {ρ0(c − u0)
2(φζ2Xz − ζ2Xφz)}z. (30)

Integrating (30) and applying the free-surface boundary condition for the modal function φ
(13) first, then the free-surface boundary condition (18) results in the compatibility condi-
tion (29) found earlier. This last method can easily be applied at any order in the expansion.

Note that the amplitude A2 is left undetermined at this stage; further expansion into
higher orders will result in an evolution equation for A2. In general, solutions for ζn+1 will
result in a compatibility condition and thus, an evolution equation for An.

5 Korteweg-deVries (KdV) equation

Substituting the expressions for M2 and N2 (19, 20) into the compatibility condition (29),
we obtain the evolution equation for A(X, T ), namely the KdV equation

AT + µAAX + λAXXX = 0, (31)
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where the coefficients µ (nonlinearity) and λ (dispersion) depend on the modal function φ:

Iµ = 3

∫

0

−h
ρ0(c − u0)

2φ3
zdz, (32)

Iλ =

∫

0

−h
ρ0(c − u0)

2φ2dz, (33)

where I = 2

∫

0

−h
ρ0(c − u0)φ

2
zdz, (34)

The KdV equation (31) is solved with the initial condition A(X, T = 0) = A0(X) where
A0(X) is determined from linear long wave theory, and is in essence the projection of the
original initial conditions onto the appropriate linear long wave mode. Localized initial
conditions lead to (at sufficiently large time) the generation of a finite number of solitary
waves, or internal solitons.

For waves moving to the right, where c > uM = max u0(z), I and λ are always positive.
For the surface mode, φ(z) > 0 and φ(0) = 1 (no extrema in the interior) we see that µ > 0.
In general, µ can take either sign, and may be zero in some special situations. Explicit
evaluation of the coefficients µ and λ requires knowledge of the modal function, and hence
they are usually evaluated numerically. The modal function is known in several instances,
and we illustrate the process with two simple examples.

5.1 Example 1: Surface water waves with no surface tension

For water waves, we set ρ= constant so that N2 = 0. We also assume that there is no
background shear. The modal solution to equation (12) satisfying the boundary conditions
(13) is then

φ =
z + h

h
for − h < z < 0, c = (gh)1/2. (35)

Note that there are no other modes in this system. Plugging in the modal function into
equations (32-34), the coefficients I, µ and λ are

I =
2ρ0c

h
and µ =

3c

2h
and λ =

ch2

6
. (36)

Thus the KdV equation for water waves is, in the original variables,

ζt + cζx +
3c

2h
ζζx +

ch2

6
ζxxx = 0. (37)

Note that here zm = 0 so we identified A with ζ(x, 0, t), the free surface displacement, to
leading order. For zero surface tension, this is the equation derived by Korteweg and de
Vries in 1895 (and first by Boussinesq in the 1870’s).

57



5.2 Example 2: Interfacial waves

For a two-layer fluid, waves may occur at the interface. Let the density be constant with
value ρ1 in an upper layer of height h1 and ρ2 in the lower layer of height h2 = h− h1. We
assume the fluid is stably stratified such that ρ2 > ρ1. The density in the fluid is ρ0(z) =
ρ1H(z + h1) + ρ2H(−z − h1) and the buoyancy frequency is ρ0N

2 = g(ρ2 − ρ1)δ(z + h1).
Here H(z) is the Heaviside function and δ(z) is the Dirac δ-function. For simplicity, we
assume that ρ1 ≈ ρ2, the usual situation in the ocean. As mentioned earlier, the upper
boundary condition for φ(z) then is approximately φ(0) ≈ 0. The modal function is then

φ =
z + h

h2

for − h < z < −h1, φ = − z

h1

for − h1 < z < 0. (38)

The corresponding coefficients are

µ =
3c(h1 − h2)

h1h2

, λ =
ch1h2

6
, c2 =

g(ρ2 − ρ1)

ρ2

h1h2

h1 + h2

. (39)

When the interface is closer to the free surface than to the bottom (h1 < h2), the nonlinear
coefficient µ for these interfacial waves is negative. For single-layer water waves µ always
remains positive. In the case when h1 ≈ h2, µ nearly vanishes and it is necessary to
introduce higher- order nonlinearity in order to balance the dispersion.

6 Extended Korteweg-deVries equation

As seen in the example of interfacial waves, the quadratic nonlinearity may vanish, and in
this instance, it is necessary to use an extended KdV equation which contains higher-order
nonlinearities and additional terms.

6.1 Higher-order expansions

Proceeding to the next highest order in the asymptotic expansion yields a set of equation
analogous to (17,18) for ζ3, whose compatibility condition then determines an evolution
equation for the second-order amplitude A2. Using the transformation A + εA2 → A,
and then combining the KdV equation (31) with the evolution equation for A2 leads to a
higher-order KdV equation

AT + µAAX + λAXXX + ε(λ1AXXXXX + σA2AX + µ1AAXXX + µ2AXAXX) = 0. (40)

Explicit expressions for the coefficients are known analogs of (32-34). This higher-order
KdV equation is Hamiltonian provided µ2 = 2µ1.

It is important to note that equation (40) is not unique: the near-identity transformation
A → A+ε(aA2 +bAXX) reproduces the same equation (40) to the same order in ε provided
the coefficients are also changed to

(λ1, σ, µ1, µ2) → (λ1, σ − aµ, µ1, µ2 − 6aλ + 2bµ).

Note that (40) at O(1) needs to be used to transform terms of the kind εAAT and εAXXT .
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Furthermore, when µ 6= 0, λ 6= 0, the enhanced transformation

A → A + ε

(

aA2 + bAXX + a′AX

∫ X

AdX + b′XAT

)

(41)

reduces (40) to the KdV equation. From a mathematical point of view, this implies that
KdV is a normal form of the system, or in other words, the lowest order and simplest form
characterizing the dynamics given the long-wave, small amplitude approximation made.
Physically, this implies that for small perturbations with ε ≪ 1, no additional dynamics are
introduced by the higher-order terms.

6.2 Extended KdV equation

A particularly important case arises when the nonlinear coefficient µ is close to zero. In
this case, the near-identity transformation (41) cannot cancel out the the cubic nonlinear
term in the higher-order KdV equation (40) at this order. This identifies this particular
higher-order term as being the most important one in balancing dispersion if µ → 0. The
KdV equation (31) is then replaced by the extended KdV (or Gardner) equation,

AT + µAAX + εσA2AX + λAXXX = 0. (42)

For µ ≈ 0, a rescaling is needed, and the optimal choice is to assume µ is O(δ), and then
replace A with A/δ. The amplitude parameter is δ instead of δ2. The resulting equation in
the canonical form is

AT + 6AAX + 6βA2AX + AXXX = 0. (43)

Like the KdV equation, the Gardner equation is integrable and can be solved using the
Inverse Scattering method. The coefficient β can be either positive or negative, and the
structure of the solutions depends on which sign is appropriate.

6.3 Solitary wave solutions

The solitary wave solutions for the extended KdV equation are given by

A =
a

b + (1 − b) cosh2 γ(x − V t)
, (44)

where V = a(2 + βa) = 4γ2, b =
−βa

(2 + βa)
. (45)

There are two cases to consider. If β < 0, then there is a single family of solutions such
that 0 < b < 1 and a > 0. As b increases from 0 to 1, the amplitude a increases from 0 to a
maximum of −1/β, while the speed V also increases from 0 to a maximum of −1/β. In the
limiting case when b → 1, the solution (44) describes the so-called “thick” or “table-top”
solitary wave, which has a flat crest of amplitude am = −1/β (see Figure 1). If β > 0, then
the family of solutions allows both waves of depression and of elevation. In particular, there
is a region of depression where solutions are not permitted, as indicated by the blue curve
in Figure 1. As the amplitude is reduced, the solution becomes a “breather”, a solitary
wave with periodically-varying amplitude.
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Figure 1: (top) Solitary wave solutions for β < 0. Note that there is a finite amplitude
for the waves. Once this amplitude is achieved, the wave broadens and exhibits a “table
top” behavior, indicated by the blue curve. (bottom) Solitary wave solutions for β > 0.
Solutions can be both waves of elevation and depression. There is a minimum amplitude
for waves of depression as indicated by the blue curve. Because of this, a breather solution
is supported.
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7 Other long-wave models

So far we have considered simple single-layer water wave examples. For a more realistic
model of the ocean with a stratified near-surface layer lying above a deep ocean with constant
density, a different scaling from the KdV equation is needed. In the surface layer, the long-
wave scaling still holds, but this needs to be matched to a different scaling in the deep
lower layer, where the vertical scale matches the horizontal scale. We therefore introduce a
rescaled layer depth H, with h = H/δ. In this scenario, the KdV equation is replaced by
the intermediate long-wave (ILW) equation

Aτ + µAAX + δL(AX) = 0, (46)

where L(A) = − 1

2π

∫

∞

−∞

k coth kH exp(ikX)F(A)dk (47)

and F(A) =

∫

∞

−∞

A exp(−ikX)dX. (48)

Here the nonlinear coefficient µ is again given by (32) with −h now replaced by −∞,
while the dispersive coefficient δ is defined by Iδ = {ρ0c

2φ2}z→∞.In the limit H → ∞,
k coth kH → |k|, the ILW equation (46) becomes the Benjamin-Ono (BO) equation. In the
opposite limit, where H → 0, then (46) reduces to a KdV equation. Both equations are
integrable.
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