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Hamiltonian mechanics is an alternative formulation of the laws of classical mechanics
that was developed by William Rowan Hamilton in the early 19thcentury. It is desirable
to express mathematical systems in Hamiltonian form, as this brings us one step closer to
determining whether they are completely integrable. We first present a brief overview of
Hamiltonian systems, then demonstrate that the problem of inviscid surface water waves
presented in the previous lectures is in fact Hamiltonian. We conclude by discussing the
consequences of this result in terms of integrability.

1 Review of Hamiltonian systems

We begin with a brief introduction to Hamiltonian mechanics and the properties of Hamil-
tonian systems. The interested reader is referred to [1] for a more comprehensive discussion
of this topic.

1.1 Formal definition

A system of 2N first-order ordinary differential equations is said to be Hamiltonian if there
exist N pairs of coordinates in the phase space,

{pj(t), qj(t)} , j = 1, 2, . . . ,N, (1)

and a real-valued Hamiltonian function

H(p(t),q(t), t),

where p(t) = (p1(t), . . . , pN (t))T and q(t) = (q1(t), . . . , qN (t))T , such that the original
equations expressed in this coordinate system are:

q̇j =
dqj
dt

=
∂H

∂pj
, ṗj =

dpj

dt
= −

∂H

∂qj
, j = 1, . . . ,N. (2)

While not all systems of 2N equations are Hamiltonian, many commonly known exam-
ples are. For example, consider the equation of a nonlinear oscillator,

d2θ

dt2
+ ω2θ + αθ3 = 0, (3)
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where ω,α ∈ R. This equation describes for example the gravity-driven evolution of the
angle θ of a pendulum with the downward vertical, for small angles |θ| ≪ 1. Indeed, for an
undamped pendulum of unit length, Newton’s second law states that

d2θ

dt2
= −g sin θ = −g

(

θ − 1

6
θ3

)

+ O
(

θ5
)

, (4)

which reduces to (3) for small angles (i.e. neglecting terms of O
(

θ5
)

) and setting ω2 = g

and α = −g/6. Choosing q(t) = θ(t) and p(t) = θ̇(t), we now express (3) as the following
system of first-order ordinary differential equations,

ṗ = −ω2q − αq3, q̇ = p. (5)

We find that an appropriate choice of H is

H (p(t), q(t), t) = 1

2
p2 + 1

2
ω2q2 + 1

4
αq4, (6)

and it is readily verified that the Hamiltonian equations (2) yield the equations of motion
(5) upon evaluation of the partial derivatives of H.

1.2 Properties of Hamiltonian systems

The Hamiltonian is frequently, but not always, the total energy of the system. In the case
of the nonlinear oscillator H is exactly the constant total energy E, which may be seen by
multiplying (3) by θ̇ and integrating,

E =
1

2
θ̇2 +

g

2
θ2 −

g

24
θ4 = H(θ̇, θ, t).

An essential property of a Hamiltonian system is that the ‘flow’ of the coordinates (1)
in the phase space is volume-preserving. Consider a system of M time-dependent variables
xj(t), j = 1, . . . ,M governed by M first-order ordinary differential equations,

dxj

dt
= vj (x, t) , j = 1, . . . ,M. (7)

The vector x(t) = (x1(t), . . . , xM (t))T may be thought of as the coordinates of a “fluid”
particle in M -dimensional phase space, and v(x, t) = (v1(x, t), . . . , vM (x, t))T as the fluid
velocity vector. The fluid is “incompressible”, so volume is preserved if

∇ · v = 0. (8)

Now suppose that M = 2N and that (7) is a Hamiltonian system satisfying (2) with
pj = x2j−1 and qj = x2j for j = 1, . . . ,N . Then

∇ · v =

M
∑

j=1

∂vj

∂xj
=

M
∑

j=1

∂

∂xj

(

dxj

dt

)

=

N
∑

j=1

∂

∂pj

(

dpj

dt

)

+
∂

∂qj

(

dqj
dt

)

=

N
∑

j=1

∂

∂pj

(

−
∂H

∂qj

)

+
∂

∂qj

(

∂H

∂pj

)

= 0.
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The final equality above requires that H has continuous 2nd partial derivatives with respect
to pj and qj. Thus every sufficiently continuous Hamiltonian system meets the “incom-
pressibility” condition and thereby preserves volume. Note that (8) is a necessary, but not
sufficient, condition for a system to be Hamiltonian. A more comprehensive discussion of
this property may be found in [1], page 69.

1.3 Extension to continuous variables

We now extend Hamiltonian mechanics to systems that depend on continuous variables,
such that the discrete pj(t) and qj(t) are replaced by functions p(x, t) and q(x, t). Consider
the following nonlinear wave equation with periodic boundary conditions,

θtt = c2θxx − ω2θ − αθ3, (9)

where θ = θ(x, t) and θt denotes partial differentiation with respect to t. We proceed as
we did with the nonlinear oscillator, first seeking an energy equation. Multiplying (9) by θt

and integrating with respect to x over the domain considered yields
∫

{

θtθtt + ω2θθt + αθ3θt + c2θxθxt − c2 (θtθx)x
}

dx = 0,

where the second derivative in x has been split to allow integration by parts. The final
term in the integrand may be integrated exactly with respect to x, and disappears due to
the periodic boundary conditions. The remaining terms then form an exact derivative with
respect to t, which leads to the following energy equation,

E [θt, θ, t] =

∫

{

1

2
(θt)

2 + 1

2
c2(θx)

2 + 1

2
ω2θ2 + 1

4
αθ4

}

dx,
dE

dt
= 0,

where E is now a functional of θt, θ and t. Following the method of Section 1.1, we guess
that a suitable Hamiltonian is H = E, and choose

p(x, t) = θt(x, t), q(x, t) = θ(x, t).

The new functions p and q are called the conjugate variables. The Hamiltonian functional
of the system is then

H [p, q, t] =

∫

{

1

2
p2 + 1

2
c2(qx)2 + 1

2
ω2q2 + 1

4
αq4

}

dx. (10)

If (10) is indeed the correct Hamiltonian for this system, then we expect to recover the
nonlinear wave equation (9) via a set of equations analogous to (2), namely

dq

dt
=
δH

δp
,

dp

dt
= −

δH

δq
, (11)

where δ/δp denotes a variational derivative with respect to p. For a small change δp of the
function p in the functional H, the variational derivative δH/δp is defined as the coefficient
of δp in the leading-order contribution to the integrand in the following expression:

H [p+ δp, q, t] −H [p, q, t] =

∫
{(

δH

δp

)

δp + O
(

(δp)2
)

}

dx.
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In the case of the nonlinear wave equation (10) it is straightforward to show that

δH

δp
= p =

dq

dt
,

but δH/δq requires more work. Taking a small variation δq, we find that the integrand of
δH contains a derivative of δq,

H [p, q + δq, t] −H [p, q, t] =

∫

{

c2qx (δq)x + (ω2q + αq3)δq + O
(

(δq)2
)}

dx.

In order to express the integrand as a sum of terms proportional to powers of δq, we must
integrate the first term by parts,

∫

{

c2qx(δq)x
}

dx =

∫

{

c2 (qxδq)x − c2qxxδq
}

dx = −

∫

{

c2qxxδq
}

dx,

where the final equality follows by noting that once integrated, the boundary term vanishes.
Indeed, for the perturbed functions p+ δp and q+ δq to satisfy the boundary conditions of
the original problem, it is sufficient to require that the perturbations (both δq and δp) are
zero on the boundary. Hence,

δH

δq
= −c2qxx + ω2q + αq3 = −

dp

dt
,

and so H is a Hamiltonian for the nonlinear wave equation.

2 Water waves as a Hamiltonian system

We now turn our attention to the equations of inviscid, incompressible, irrotational water
waves propagating on a free fluid surface. Many attempts were made to prove that this
system is Hamiltonian, but it was Vladimir Zakharov who finally published the Hamiltonian
structure in 1968[2]. The full details of the following can be found, albeit in a compacted
form, in Zakharov’s paper.

2.1 The inviscid water wave problem

Consider an incompressible, irrotational, inviscid fluid of constant density ρ with velocity
u(x, y, z, t) and pressure p(x, y, z, t). The fluid lies above a rigid, impermeable lower bound-
ary z = −h(x, y), and has a single-valued surface at z = η(x, y, t) that is subject to surface
tension (with coefficient σ). In all that follows, we restrict our study to a finite-size domain
with periodic boundary conditions, although a similar proof can be derived for an infinite
domain with φ and η going to 0 at ±∞. This set-up is illustrated in Figure 1. In the
first lecture of this series we showed that this system is governed by the following set of
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Figure 1: Capillary-gravity waves on the surface of an inviscid, incompressible, irrotational
fluid of constant density.

equations and boundary conditions,

∂η

∂t
+ ∇φ · ∇η =

∂φ

∂z
on z = η(x, y, t), (12a)

∂φ

∂t
+ 1

2
|∇φ|2 + gη =

σ

ρ
∇ ·







∇η
√

1 + |∇η|2







on z = η(x, y, t), (12b)

∇2φ = 0 −h(x, y) < z < η(x, y, t), (12c)

∂φ

∂z
+ ∇φ · ∇h = 0 on z = −h(x, y), (12d)

where φ(x, y, z, t) is the velocity potential defined as ∇φ = u. The Hamiltonian structure
for this system is developed entirely in terms of the surface variables η(x, y, t) and a new
function ψ,

ψ(x, y, t) = φ(x, y, η, t),

the velocity potential at the free surface. This approach is plausible because although
the entire system is time-dependent, the time-derivatives only appear in the boundary
conditions at the free surface. That is, if at a given time t = t0, η(x, y, t0) and ψ(x, y, t0)
are known, then the solution in the rest of the fluid domain is determined uniquely by the
boundary conditions and Laplace’s equation (12c). The functions η and ψ are therefore
plausible conjugate variables for the Hamiltonian.

We obtain an energy equation for the inviscid water wave equations by multiplying (12c)
by ∂φ/∂t and integrating over −h(x, y) ≤ z ≤ η(x, y, t),

∫ η

−h

φt∇
2φdz = 0.

Integrating by parts, we apply Leibniz’s rule and the boundary conditions (12a), (12b) and
(12d) to obtain the following conservation law for the energy,

∂E

∂t
+ ∇

H
· F = 0, (13)
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where

E(x, y, t) =

∫ η

−h

1

2
|∇φ|2dz + 1

2
gη2 +

σ

ρ

(

√

1 + |∇η|2 − 1
)

,

F(x, y, t) = −

∫ η

−h

φt∇H
φdz −

σ

ρ

ηt∇η
√

1 + |∇η|2
, (14)

are the energy flux and energy density respectively, and ∇
H

= (∂/∂x, ∂/∂y, 0)T is the two-
dimensional gradient vector. Note that this derivation takes a little work, and that an
additional constant was added to E to set E = 0 if both φ and η are identically 0.

We obtain the expression for the total conserved energy of the system by integrating
(13) over the horizontal domain R ⊂ R

2,

∂

∂t

∫∫

R

E dxdy +

∫

∂R

F · n̂ds = 0,

where we have applied Green’s theorem to express the second term as an integral over the
boundary ∂R. Recalling that the system has periodic boundary conditions, the integral
over ∂R vanishes, showing that the total energy of the system is constant:

∫∫

R

E dxdy = constant. (15)

2.2 Hamiltonian structure

We now show that the inviscid water wave problem is Hamiltonian, and that the correct
Hamiltonian is simply the total energy given by (15). We define

H [η, ψ] =

∫∫

R

dxdy

{
∫ η

−h

1

2
|∇φ|2dz + 1

2
gη2 +

σ

ρ

(

√

1 + |∇η|2 − 1
)

}

, (16)

and seek to show that the Hamilton equations,

∂η

∂t
=
δH

δψ
,

∂ψ

∂t
= −

δH

δη
, (17)

are equivalent to the boundary conditions at the free surface, (12a) and (12b).
As the Hamiltonian (16) is a functional of η and ψ, it is practical to express the boundary

conditions at z = η in terms of the surface variables. It is also desirable that their form
should be similar to that of the Hamilton equations (17). We therefore rearrange (12a) and
(12b) in terms of η, ψ and the component of the velocity normal to the free surface n̂η · ∇φ
(where n̂η is the vector normal to the z = η surface). Let

F (x, y, z, t) = z − η(x, y, t),

such that F (x, y, z, t) = 0 defines the free surface. The gradient vector ∇F is then normal
to the surface, so we may write the normal unit vector as

n̂η =
∇F

|∇F |
=

(−ηx,−ηy, 1)
T

√

1 + |∇η|2
.
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The velocity normal to the surface is then

∇φ · n̂η =
−∇φ · ∇η + φz

√

1 + |∇η|2
, (18)

Substituting (12a) in the above and rearranging leads to the following alternative form for
the kinematic boundary condition,

∂η

∂t
=

√

1 + |∇η|2 [n̂η · ∇φ]z=η (19)

Having expressed for ∂η/∂t purely in terms of surface variables, we now seek a similar
expression for the time derivative of ψ, our other conjugate variable. We first apply the
chain rule for differentiation as follows,

∂ψ

∂t
=
∂φ

∂t

∣

∣

∣

∣

z=η

+
∂η

∂t

∂φ

∂z

∣

∣

∣

∣

z=η

=
∂φ

∂t

∣

∣

∣

∣

z=η

+
∂φ

∂z

∣

∣

∣

∣

z=η

[

∂φ

∂z
−∇φ · ∇η

]

z=η

,

where the final equality follows from (12a). Substituting this into (12b) leads to the following
expression for the dynamic boundary condition,

∂ψ

∂t
+

1

2

[

(

∂φ

∂x

)2

+

(

∂φ

∂y

)2

−

(

∂φ

∂z

)2
]

z=η

+

[

∂φ

∂z
(∇φ · ∇η)

]

z=η

+ gη −
σ

ρ
∇ ·







∇η
√

1 + |∇η|2







= 0. (20)

Although we are unable to write ∂ψ/∂t purely in terms of surface variables, we shall see
that in fact we are still able to obtain this equation from the Hamiltonian.

Our task is now to show that the Hamilton equations (17) are equivalent to the rewritten
kinematic and dynamic boundary conditions at the free surface, (19) and (20). Let us first
consider variations of the Hamiltonian with respect to η. Remembering that φ implicitly
depends on η, we find that

H [η + δη, ψ] −H [η, ψ] =

∫∫

R

dxdy

{
∫ η+δη

η

1

2
|∇(φ+ δφ)|2 dz (21)

+

∫ η

−h

∇φ · ∇δφdz + gη δη +
σ

ρ

∇η · ∇δη
√

1 + |∇η|2

}

+ O
(

(δη)2
)

.

Here we have expanded the expressions in the integrand in the small variations δη and δφ,
retaining only first-order terms. We may resolve the first term in the integrand of (21) by
noting that, by the definition of integration,

∫ η+δη

η

1

2
|∇(φ+ δφ)|2 dz =

[

1

2
|∇(φ+ δφ)|2

]

z=η
δη+O

(

(δη)2
)

= 1

2
|∇φ|2

∣

∣

∣

z=η
δη+O

(

(δη)2
)
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for infinitesimally small variations δη. In the final term of (21) we may integrate by parts
and apply Green’s theorem to obtain the following,

∫∫

R

dxdy

∫ η

−h

σ

ρ

∇η · ∇δη
√

1 + |∇η|2
dz =

∫

∂V

σ

ρ

δη∇η
√

1 + |∇η|2
·n̂ ds−

∫∫∫

V

∇·

{

σ

ρ

∇η
√

1 + |∇η|2

}

δη dV.

where V denotes the volume bounded by R in the horizontal direction, and by −h and η in
the vertical direction. Here the first term vanishes due to the periodic boundary conditions,
leaving only the second term to contribute to δH.

The second term of (21) requires more work. We note first that

∫∫∫

V

∇φ · ∇δφdV =

∫∫∫

V

∇ · (δφ∇φ) dV

because ∇2φ = 0 everywhere in the fluid from (12c). We then apply the divergence theorem
to this integral to transform it into an integral over the fluid boundaries ∂V ,

∫∫∫

V

∇ · (δφ∇φ) dV =

∫∫

∂V

δφ∇φ · n̂ds =

∫∫

δφ [∇φ · n̂η]z=η dsη. (22)

where ds denotes an infinitesimal area of the fluid boundary ∂V , while dsη denotes an
infinitesimal area on the free surface only. The final equality follows because the component
of the velocity normal to the surface vanishes at z = −h (12d), and because the lateral
boundary terms cancel out in this periodic domain, so that in fact we are left with an
integral over the free surface z = η. Noting that we may expand variations in φ due to
variations in η at the free surface as

δφ =
∂φ

∂z

∣

∣

∣

∣

z=η

δη on z = η,

we transform the integral on the free surface to an integral over x and y only, using the
following expression for an infinitesimal area,

∫∫

dsη =

∫∫

R

√

1 + |∇η|2 dxdy. (23)

and our expression for the normal velocity at the free surface (18). We thus obtain

∫∫

δφ [n̂η · ∇φ]
z=η

dsη =

∫∫

R

dxdy

[

∂φ

∂z
δη

(

∇φ · ∇η −
∂φ

∂z

)]

z=η

.

Collecting together the above results yields the following expression for the variation of the
Hamiltonian with respect to η,

δH =

∫∫

R

dxdy







[

1

2
|∇φ|2 +

∂φ

∂z

(

∇φ · ∇η −
∂φ

∂z

)]

z=η

+ gη −
σ

ρ
∇ ·





∇η
√

1 + |∇η|2











δη.

(24)

30



Thus, the Hamilton equation
∂ψ

∂t
= −

δH

δη

is exactly equivalent to the dynamic boundary condition on the free surface (20).
Let us now consider variations of the Hamiltonian with respect to ψ. The form of (16)

is such that only the first term in the integrand (the kinetic energy) depends on ψ,

H[η, ψ + δψ] −H[η, ψ] = δ

∫∫∫

V

1

2
|∇φ|2dV.

However, the dependence of this term on ψ is not initially clear, so we proceed by noting
that

∇φ · ∇φ = ∇ · (φ∇φ) ,

because ∇2φ = 0 everywhere in the fluid from (12c). We use this to rewrite our expression
for the kinetic energy and apply the divergence theorem, which yields the following surface
integral,

∫∫∫

V

1

2
|∇φ|2dz =

∫∫

∂V

1

2
φ∇φ · n̂ds

where again ∂V is the surface bounding the fluid and ds is an infinitesimal area of that
surface. By a similar argument as was used to derive equation (22), the surface integral
vanishes on the horizontal and bottom boundaries, leaving only an integral over the free
surface. Transforming back to an integral over the horizontal domain using (23) yields

∫∫

1

2
φ∇φ · n̂dsη =

∫∫

R

dxdy 1

2
ψ [∇φ · n̂η]z=η

√

1 + |∇η|2. (25)

All that now remains is to relate [∇φ · n̂η]z=η to ψ. Using a Dirichlet-to-Neumann map, it
can be shown that there exists a symmetric Green’s function of two variables G(x, y;µ, ν)
such that

[∇φ · n̂η]z=η
=

∫∫

ψ(µ, ν, t)G(x, y;µ, ν) dsη =

∫∫

R

dµ dν ψ(µ, ν, t)G(x, y;µ, ν)S(µ, ν, t),

(26)
where we have written S(x, y, t) =

√

1 + |∇η(x, y, t)|2 for convenience. We may now find
δH/δψ by substituting this into (25) as follows,

δ

∫∫

R

dxdy 1

2
ψ [∇φ · n̂η]z=η S(x, y, t)

= δ

∫∫

R

dxdy 1

2
ψ(x, y, t)S(x, y, t)

∫∫

R

dµ dν ψ(µ, ν, t)G(x, y;µ, ν)S(µ, ν, t).

Taking variations with respect to ψ and neglecting terms of O
(

(δψ)2
)

yields

1

2

∫∫

R

dxdy S(x, y, t)

∫∫

R

dµ dν G(x, y;µ, ν)S(µ, ν, t)

× [ψ(µ, ν, t)δψ(x, y, t) + ψ(x, y, t)δψ(µ, ν, t)]
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Finally, we use the property that the Green’s function is symmetric, so we may rewrite this
as,

∫∫

R

dxdy S(x, y, t)δψ(x, y, t)

∫∫

R

dµ dν ψ(µ, ν, t)G(x, y;µ, ν)S(µ, ν, t)

=

∫∫

R

dxdy
√

1 + |∇η|2 [∇φ · n̂η]z=η
S(x, y, t)δψ,

where the second equality follows from (25). Thus,

δH

δψ
=

√

1 + |∇η|2 [∇φ · n̂η]z=η
=
∂η

∂t
, (27)

as required, and so (16) is indeed the correct Hamiltonian for water waves.

3 Summary

In this lecture we have studied the foundations of Hamiltonian mechanics, and we have
shown that the problem of inviscid, irrotational surface waves is Hamiltonian. It is desirable
to formulate a system as a Hamiltonian because this immediately confers a number of
useful properties. The fact that the “flow” in phase space is volume-preserving means that
asymptotic stability of the system is impossible – only neutral stability is possible. It also
means that we can not have attractors or repellers (“sources” and “sinks”) in phase space.
These properties make the system suitable for symplectic integration, a form of numerical
integration that makes use of the preservation of volume in phase space.

An important property of a Hamiltonian formulation is that it allows us, in some cases,
to identify systems of equations that are completely integrable, thus guaranteeing that
the system can be solved explicitly. The following procedure is due to Liouville, and is
described in more detail in [1]. We begin by defining the Poisson bracket {A,B}. For a
Hamiltonian system of 2N ordinary differential equations (ODEs) with conjugate variables
(p1, . . . , pN , q1, . . . , qN ), the Poisson bracket for any pair of functions on the phase space is

{A,B} =

N
∑

j=1

∂A

∂pj

∂B

∂qj
−
∂A

∂qj

∂B

∂pj
.

The Hamiltonian system of these 2N coupled ODEs is said to be completely integrable if
(i) the Hamiltonian does not depend explicitly on time, and (ii) the equations admit N
constants of the motion Pj (for j = 1, . . . ,N) that are functionally independent of each
other and that are “in involution”, i.e.

{Pj , Pk} = 0 for any pair j, k = 1, . . . ,N.

Suitable combinations of these constants of motion are called “action variables”. Conjugate
on them are N “angle variables”, Qj (for j = 1, . . . ,N). The action and angle variables
provide an alternative complete set of 2N coordinates on the phase space.
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Note that while the Hamiltonian H might depend on all of the original variables
(p1, . . . , pN , q1, . . . , qN ), it must now be independent of the angle variables since the ac-
tion variables are constants of motion. Indeed,

dPj

dt
= −

∂H

∂Qj
= 0, for j = 1, . . . ,N,

so that
H = H(P1, . . . , PN )

only, and Pj(t) is constant. The other half of Hamilton’s equations,

dQj

dt
=
∂H

∂Pj
, for j = 1, . . . ,N,

can be integrated trivially because ωj = ∂H/∂Pj is necessarily constant, so

Qj(t) = ωjt+ φj, for j = 1, . . . ,N.

The set of functions Pj(t) and Qj(t) for j = 1, . . . ,N , as derived above, form the complete
solution of the system for all time.

The geometry on the phase space is as follows. The N action variables define an N-
dimensional manifold within the 2N-dimensional phase space. The trajectory of any solution
must remain on this (time-independent) manifold for all time. If the manifold is compact,
then one can show that it must be an N-dimensional torus, and that the solution must
be either periodic or quasiperiodic in time. The N angle variables provide coordinates
on the manifold (whether that manifold is a torus or not), and the solution consists of
uniform translation along a straight line on the manifold. Thus, in terms of the action-
angle variables, the solution of a completely integrable problem is very simple. However,
note that the canonical transformation between the action-angle variables and the original
variables (p1, . . . , pN , q1, . . . , qN ) can be complicated, so this inherently simple motion can
appear quite complex when viewed in terms of the original variables.

How does this discussion of completely integrable Hamiltonian systems relate to the
equations of surface water waves? As discussed above, these equations are Hamiltonian,
but no one has shown that they are completely integrable (at least, not yet). However, in
Lecture 5 we show that in some particular limit, the water wave problem is approximated by
the Korteweg-de Vries (KdV) equation. Zakharov and Faddeev [3] took an important step in
the development of soliton theory when they showed that the KdV equation can be viewed
as a completely integrable, nonlinear Hamiltonian system with an infinite-dimensional phase
space. In lecture 7, we discuss the Kadomtsev-Petviashvili (KP) equation, which is a natural
generalization of the KdV equation; the KP equation is also completely integrable. In Lec-
ture 13, we discuss the “three-wave equations”, which approximate the water wave equations
in another limit; these coupled equations are also completely integrable. In Lecture 14, we
discuss the nonlinear Schrödinger equation, which approximates the water wave equations
in yet another limit, and, once again, completely integrable (in one spatial dimension).

Completely integrable Hamiltonian systems are apparently rare: most Hamiltonian sys-
tems are not integrable. Before the discovery of soliton theory in the 1960s, no nontrivial
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examples were known of nonlinear Hamiltonian partial differential equations that are com-
pletely integrable. Now we know of infinitely many examples of such equations, but very
few of them are relevant to problems of physical interest. So it is remarkable that the water
wave problem has so many approximations that are completely integrable. But we live in
a remarkable world.
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