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Figure 1: Satellite image of Hurricane Floyd approaching the east coast of Florida in 1999.
The image has been digitally enhanced to lend a three-dimensional perspective. Credit:
NASA/Goddard Space Flight Center.

1 Atmospheric Boundary Layers

The flux of sensible and latent heat at the surface boundary layer can drive major at-
mospheric disturbances as for example hurricanes. On the other hand the surface winds
associated with these disturbances, influence the surface fluxes which leads to an essential
feedback. Our understanding of boundary layer fluxes is therefore crucial for the under-
standing of many meteorological phenomena. We will here derive some simple scaling laws
for the simplified cases of a boundary below a semi-infinite domain. First we will consider
the cases of convective and mechanically driven turbulence separately and then briefly dis-
cuss how the results might be generalized. In section 1.4 we will show how the interaction
between surface winds and surface heat flux can lead to growing wave-like perturbations.
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Finally section 1.5 will show that turbulent heat flux in the boundary layer is essential to
wipe out the thermodynamically unstable radiative equilibrium state.

1.1 Convective Boundary Layers

Assume a lower boundary under a semi-infinite domain. The turbulent flux of buoyancy
through the boundary at z=0 is then given by

Q = w′B′ = −

∫

∞

0

Ḃdz , (1)

where Ḃ denotes the radiative cooling in the domain. The buoyancy flux has the dimension
of a length squared over a time cubed:

Q ∼ L2t−3 (2)

Since no length scale is intrinsic to the system, dimensional analysis gives a velocity scale

w′ ∼ (Qz)
1

3 (3)

i.e. the turbulent velocity increases as z
1

3 . Similarly we find

B′ ∼ Q
2

3 z−
1

3 (4)

This would imply infinite buoyancy perturbations as z → 0. To overcome this problem we
have to consider a thin surface layer in which diffusion or the roughness of the boundary
becomes important. For atmospheric applications the boundary roughness scale is generally
much larger than the scale at which molecular diffusion starts to play a role. The above
scaling laws then apply only down to the height of the boundary layer roughness scale zT

0

(where T stands for ”thermal”) and from (3) and (4) we get

w′

0 ∼ (QzT
0 )

1

3 (5)

and

B′

0 ∼ Q
2

3 zT
0

−
1

3 . (6)

Similar to the buoyancy perturbations, the mean buoyancy above the roughness scale has
to vary as z−

1

3 . We thus find

B̄ − B̄0 ∼ Q
2

3 [(zT
0 )−

1

3 − z−
1

3 ] . (7)

This result implies that for z � zT
0
, B̄ converges to the constant value B̄ ∼ Q

2

3 zT
0

−
1

3 which
is determined by the surface flux and the roughness length.

Note that the above arguments change dramatically if an upper lid would be considered.
In this case another length scale h given by the height of the domain would exist. The
turbulent velocity scale in this case is given by the Deardorff [2] scaling.

w′ ∼ (Qh)
1

3 (8)

If more than one length scale exists in the problem, simple scaling laws can generally no
longer be found, since all quantities can be functions of the non-dimensional numbers that
are then intrinsic to the problem.
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1.2 Shear Driven Boundary Layers

A similar analysis can be performed if turbulence is dominated by mechanical forcing. Again
assuming a semi-infinite domain we find that the flux of momentum through the boundary
is given by

M =

∫

∞

0

(u̇)dz (9)

where u̇ generally represents any velocity source. In a steady state and in a nonrotating
system (or if rotation can be neglected on the regarded scales) we find:

M =

∫

∞

0

1

ρ

∂p

∂x
dz . (10)

M has the dimension of a velocity squared. Defining u∗2 ≡ M we directly find that the
turbulent velocity has to scale as

w′ ∼ u∗ (11)

and is thus constant with height, unlike in the buoyancy driven case. A scaling for the shear
of the mean wind is given by

dū

dz
∼
u∗

z
. (12)

Integrating and assuming that ū vanishes at z0, which is the roughness length for momen-
tum, gives

ū ∼ u∗ ln
z

z0
. (13)

And for the background velocity difference between the heights z1 and z2

∆ū ∼ u∗ ln
z2
z1
. (14)

This can be solved to get an equation for the surface momentum flux

M = u∗2 ∼
(∆ū)2

(ln z2

z1
)2
. (15)

This equation allows one to determine the surface flux from a given mean velocity profile
(given that the necessary proportionality constant is determined).

More generally, scaling analysis show that the surface flux of any tracer θ in a mechan-
ically driven boundary layer is given by

F = cu∗(θ̄0 − θ̄a) , (16)

where θ̄a denotes the background tracer concentration at some fixed height and c is a
constant that depends on the choice of this height. For more details on the derivation of
this equation see chapter three in [4].
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1.3 Boundary Layers with Shear and Convection

In real atmospheric boundary layers, thermal convection and vertical shear of the back-
ground flow usually come together. Assuming prescribed surface fluxes of buoyancy and
momentum, Q and M , a natural length scale is given by

L =
M

3

2

Q0

=
u∗3

w′B′
. (17)

This is referred to as the Monin-Obukov length1. It can be gained by comparing the
turbulent vertical velocities in the buoyancy driven boundary layer (3) and in the shear
driven boundary layer (11). This makes clear that the Monin Obukov length separates the
boundary into regions where the turbulence is dominantly driven by shear (z � L) and by
convection (z � L). Since this adds a lengthscale to the system, all vertical dependences
of quantities can now contain functions of the nondimensional number z/L, which can
obviously not be determined from simple scaling laws.

1.4 The Linear WISHE Model

Figure 2: Sketch of the mechanism acting in the WISHE model. Positive superposition of
the background easterlies with the easterly disturbance gives rise to an increased surface
buoyancy flux, while the partial cancellation of the background flow and the disturbance
reduces the buoyancy flux on the left.

The fact that when a momentum source is present, the surface flux of heat depends on
the surface wind speed can cause a convective disturbance in the presence of a background
flow to grow and propagate, as sketched in figure 2. A simple linear model describing this
will be derived in this section. The model is a dry version of the WISHE model derived in
[3]. Assuming that the surface heat flux is dominated by mechanically driven turbulence,
we can use equation (16) to get the buoyancy flux at the surface

Q = c2u(Bs −B) , (18)

1Strictly speaking the Monin-Obukov length is conventionally defined with the opposite sign, thus being

negative if the surface buoyancy flux is positive
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where Bs denotes the buoyancy at the surface (which will be assumed to be constant in the
following) while B denotes the buoyancy at some fixed finite height above the surface. All
variables in (18) denote mean values over a temporal and spatial scale larger than the scale of
the background turbulence. In the following we will consider two-dimensional pertubations
u′, B′ with much larger temporal and spatial scale then the background turbulence and a
constant zonal background flow ū and buoyancy B̄. We further assume that the buoyancy
fluctuations are constant with height over the whole depth h of the boundary layer2. This
is generally a good approximation in a convective layer. Linearizing in the perturbations
we then get for the anomalous surface heat flux

Q′ = h

(

∂B′

∂t
+ ū

∂B′

∂x

)

= [c2u
′(Bs − B̄) − c2ūB

′]|z=0 , (19)

where h is the depth of the boundary layer.
The vorticity equation in the x-z plane becomes

(

∂

∂t
+ ū

∂

∂x

)

∆ψ =
∂B′

∂x
(20)

where we used the incompressibility condition which allows us to introduce a streamfunction
so that

u′ = −
∂ψ

∂z
and w′ =

∂ψ

∂x
. (21)

Rescaling

(x, z) → h(x, z) and t→
h

ū
t (22)

and using (19) and (21), we get

(

∂

∂t
+

∂

∂x

)2

∆ψ = −

[

α
∂2ψ

∂x∂z
+ c2

(

∂

∂t
+

∂

∂x

)

∆ψ

]

z=0

(23)

where

α =
Q̄h

ū3
.

Using an approach of the form ψ = f(y) exp(i(kx − ct)) this can be solved for the phase
velocity cr = <(c) and growth rate σ = =(c). The results for c2 = 10−3 and α = 1 as
well as α = 5 are shown in figure 3. We find exponentially growing disturbances in all
cases. The growth rate increases with wavenumber, though the increase stagnates as the
wavelength becomes short compared to the depth of the fluid. Further we find that the
phase velocity relative to the mean flow is always opposite to the latter. For large α, i.e.
small background flows or strong heatflux, and long horizontal wavelength, we even find
absolute phase propagation opposite to the mean flow.

2The boundary layer here is in general the convective part of the atmosphere up to the first inversion. In

the tropics this would usually be the tropopause
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Figure 3: Left: Nondimensional growth rate (blue) and phase propagation (green) for the
WISHE model with α = 1 and c2 = 10−3. Right: As left but for α = 5. Note that the mean
flow has velocity 1, i.e. the phase propagation relative to the mean flow is always negative.

1.5 Radiative Equilibrium and Thermodynamic Disequilibrium

Convective adjustment is an important process in the atmosphere, because radiative equilib-
rium temperature profiles are generally in thermodynamic disequilibrium with the surface.
This shall be illustrated here with a simple layered radiative equilibrium model for the
atmosphere.

The model is sketched in figure 4. The incoming shortwave radiation is described by
an equivalent effective emission temperature Te. The atmosphere consists of one layer
which is completely opaque (ε = 1) for longwave radiation but transparent to short-wave
radiation.An additional thin layer (εA � 1) represents the atmospheric boundary just above
the surface. The radiative equilibrium for the whole system directly yields that

T1 = Te . (24)

From the radiative equilibrium for the surface and the boundary layer, and neglecting the
radiative effects of this thin surface layer, layer we find

Ts
4 = Te

4 + T1
4 (25)

and
2TA

4 = T1
4 + Ts

4 . (26)

This yields

TA
4 =

(

3

4

)

Ts
4 (27)

and therefore TA < Ts. We thus find that in radiative equilibrium the temperature of
the atmosphere right above the surface would be lower than the surface temperature itself
which would be instable and trigger convection. Qualitatively similar result are obtained
with more complex continuous radiative equilibrium models. Thus radiative equilibrium
states will generally have convecting boundary layers.
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Figure 4: Sketch of a radiative equilibrium model. See text for details.

2 Compressible Convection

For a homogeneous fluid, the specific volume α (=1/ρ) can be expressed as a function of
two variables, which are chosen to be pressure p and entropy sd here, i.e. α = α(p, sd). The
entropy (in dry case) sd is defined by:

sd = cp ln(
T

To
) −Rd ln(

p

po
) (28)

where To and po are reference temperature and pressure. We can derive buoyancy B based
on entropy sd:

B = −g
(δρ)p

ρ
(29)

= g
(δα)p

α

= −
dp

dz
(δα)p (by hydrostatic balance)

(30)

then, since

(δα)p = (
∂α

∂sd
)pδsd = (

∂T

∂p
)sd
δsd, (31)

where the last equation is because of the Maxwell equation:

(
∂α

∂sd
)p = (

∂T

∂p
)sd

(32)
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Figure 5: Entropy sd as a function of height z.

B = −
dp

dz
(
∂T

∂p
)sd
δsd (plug equation 31 into 30)

= −(
∂T

∂z
)sd
δsd (33)

≡ Γδsd (34)

where Γ ≡ −(
∂T

∂z
)sd

= dry adiabatic lapse rate (rate of change of T for a parcel of air moved

vertically and adiabatically) =
g

cp
= 9.8K/km for the Earth’s atmosphere.

The potential temperature θ, a measure of the entropy of a gas, is defined by

θ = T (
po

p
)R/cp (35)

where p is the pressure, po some reference pressure, R the ideal gas constant, and cp the
heat capacity of the gas at constant pressure. The relation between θ and sd is given by:

sd = cp ln(θ) + constant. (36)

Both variables are conserved for reversible dry adiabatic processes. Figure 5 shows the
stability of entropy as a function of height. It is unstable if entropy decreases with height
while it is stable if entropy increases with height. A model aircraft measurement in a desert
region near Albuquerque, New Mexico, on August 1993 is shown in Figure 6. In this dry
case, the virtual potential temperature doesn’t change much with height and the mean
entropy is conserved [7].

However, above a thin boundary layer, most atmospheric convection involves phase
change of water. Moist convection has significant heating owing to phase changes of wa-
ter, and helps global redistribution of water vapor. Water vapor, being one of the most
important greenhouse gases, is the primary tropospheric infrared absorber while condensed
phases are a significant contributor to stratiform cloudiness which absorb infrared radiation
and scatter short wave radiation as well. Figure 7 shows the phase equilibria of H2O, and
changes of phase cause significant release or absorption of heat.
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Figure 6: Observations of virtual potential temperature made with an RPV (remotely
piloted vehicle) flight in a desert region near Albuquerque, New Mexico, on August 1993.
The observations during ascent (inside the plume) are represented by dots; observations on
descent (outside of the plume) are represented by crosses.

Figure 7: Phase equilibria of H2O.
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The equation of state for water vapor is given by:

eαv = RvT (37)

where e is the vapor pressure, αv the specific volume for water vapor, and Rv = R
m

mv
the

gas constant for water vapor.

e =
RvT

αv
=
R
m

mv
T

αv
= qp

m

mv
(38)

gives the expression for vapor pressure, where q is the mass concentration of water vapor,
m the mean molecular weight of air, mv the molecular weight for water vapor. Saturation
vapor pressure e∗ is also a function of T, i.e. e∗ = e∗(T ). If we decrease p(or q), both e
and e∗ will decrease, but since e∗ decreases more rapidly, i.e. e > e∗, water vapor will be
supersaturated.

Supersaturated vapor always condenses onto ambient aerosols called cloud condensation
nuclei in a process called heterogeneous nucleation. Cloud condensation nuclei include sea
salt from bursting bubbles, windblown dust, combustion products (i.e., organic carbon and
soot), photochemically-produced sulfate (i.e., smog), volcanic aerosols, and meteoric debris.
The drop size distribution is quite sensitive to the size distribution of cloud condensation nu-
clei. While stochastic coalescence is a way to form precipitation, the Bergeron-Findeisen pro-
cess is another important alternative way of initiating precipitation in mid-latitude clouds.
Precipitation formation is a strongly nonlinear function of the cloud water concentration.
The time scale of precipitation formation is about 10 to 30 minutes.

We used entropy sd to discuss the stability for dry air, and specific volume α can be
expressed as a function of sd and p, i.e. α = α(sd, p). In the moist convection case, we
can define an approximately conserved thermodynamic variable, the specific entropy s, a
function of temperature, pressure, and water concentration,

s = cp ln(
T

To
) −Rd ln(

p

po
) + Lv

q

T
− qRv ln(H) (39)

where H ≡
e

e∗
= relative humidity. Specific volume α now depends on three variables

rather than two, i.e. α = α(s, p, qt), where qt is the total concentration of H2O of all
phases, thus we cannot compare the densities of two samples at the same pressure using
just a single entropy variable, a fact of profound consequences for the character of moist
convection. But we can make progress by first defining a saturation entropy s∗, the specific
entropy air would have if it were saturated with water vapor at the same temperature and
pressure. It is given by:

s∗ = cp ln(
T

To
) −Rd ln(

p

po
) +

Lvq
∗

T
= s(T, p, q∗) (40)

and
α = α(s∗, p, qt) (41)
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Figure 8: Structure of s′ and s∗′.

Then we can add an arbitrary function of qt to s∗ such that the specific volume can be
expressed approximately by two variables,

α ∼= α(s∗′, p) (42)

Figure 8 gives the profile of entropy s′ and saturation entropy s∗′ of the surrounding atmo-
sphere. The straight upward lines are the entropy profile of a parcel which is lifted upward
or downward since entropy is conserved. If a parcel is lifted upward with the same entropy
as the surrounding atmosphere at the surface, it will rise dry adiabatically until reaching
the lifting condensation level (LCL); further ascent will be saturated adiabatic. However
only until reaching the crossing point with s∗′ will the parcel be stable; after that the parcel
would attain positive buoyancy since its entropy (which will equal its saturation entropy
since by then the parcel is saturated) will be larger than that of its environment.

Tropical temperature soundings are, to a first approximation, moist adiabatic. Figure 9
is a buoyancy diagram, showing the difference between the density temperature (a temper-
ature that has been corrected for the presence of water vapor and condensed water, so as
to accurately measure the density of the air sample) of a reversibly lifted parcel and that
of its environment, as a function of the level from which the parcel is lifted and the level to
which it is lifted. Note that the environment is almost neutral to a parcel lifted reversibly
from around 950 hPa.

When condensed water precipitates, this irreversible process depletes water from the
ascending cloudy currents and causes much of the air to be subsaturated when it subse-
quently descends. Updrafts due to convective instability can be quite strong over a very
small fractional area. After reaching the level of neutral buoyancy, it diverges and spreads
out laterally, injecting its properties into the large-scale environment. In equilibrium, the
surface enthalpy flux Fk, which is given by Ckρ|V |(k∗o −ka), with k∗o representing the satura-
tion enthalpy of air in contact with the ocean and ka the enthalpy at the boundary, should
be equal to the vertically integrated radiative cooling, where Ck is the enthalpy exchange
coefficient, |V | the magnitude of the surface wind, and the specific enthalpy k given by
k = cpT + Lvq.
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Figure 9: Contour plot of the difference between the environmental density temperature
and the density temperature of a parcel lifted reversibly and adiabatically from the pressure
level given on the abscissa to the pressure level on the ordinate. This quantity has been
averaged over several thousand soundings taken at Kapingamarangi in the tropical western
South Pacific.

3 Hurricanes and friends

There are lots of meteorological phenomena related to waves and vortices driven by interfa-
cial fluxes, such as hurricanes, polar lows, dust devils, agukabams, and convectively coupled
equatorial waves.

Figure 10 shows the equivalent potential temperature (a measure of moist entropy)of
Hurricane Inez in September 28, 1966 as a function of radial distance from the geometrical
center of the eye and pressure. Note that the entropy is high at the hurricane center.

By using conserved variables, such as energy, saturation entropy and angular momen-
tum, the potential intensity of the hurricane within the eyewall region can be expressed
as:

|V |2 =
Ck

CD

Ts − To

To
(k∗o − k) (43)

where CD is the surface drag coefficient, Ts the sea surface temperature and To the temper-
ature at the top of the hurricane [1].

Like the engine in a Carnot Cycle, the energy cycle of hurricanes is one of isothermal
expansion, adiabatic expansion, isothermal compression and adiabatic compression. The
total rate of heat input to the hurricane is given by:

Q̇ = 2π

∫ ro

0

ρ[Ck|V |(k∗o − k) + CD|V |3]rdr (44)

where ro is the radius from the storm center, and the first term within the square brackets
is the surface enthalpy flux and the second one is the dissipative heating. In steady state,
work is used to balance frictional dissipation:
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Figure 10: Equivalent potential temperature of Hurricane INEZ in September 28, 1966 as
a function of radial distance from the geometrical center of the eye and pressure.

W = 2π

∫ ro

0

ρ[CD|V |3]rdr (45)

=
Ts − To

Ts
Q̇ (46)

= 2π
Ts − To

Ts

∫ ro

0

ρ[Ck|V |(k∗o − k) + CD|V |3]rdr. (47)

If we assume that the integrals are dominated by the values of their integrands near the
radius of maximum wind speed, then it gives an approximate expression for the maximum
wind speed:

|Vmax|
2 ∼=

Ck

CD

Ts − To

To
(k∗o − k) [6]. (48)

This equation, however, can be derived exactly from considerations of thermal wind balance.
Figure 11 shows the maximum wind speed profile as a function of sea surface temperature
(SST) and To when the relative humidity is 0.75 and Ck/CD equals 1.2.

Figures 12 and 13 exhibit the relationship between the potential intensity (PI) and
intensity of real tropical cyclones [5] [6]. Since the cumulative distribution function (CDF)
is linear for tropical storms, within each regime, there is a roughly equal likelihood of a given
storm reaching any given intensity up to its potential intensity. In addition, CDFs of the
wind speeds in North Atlantic and western North Pacific tropical cyclones were calculated.
The peak winds reached during the storms, normalized by their theoretical maximum values,
tend to fall into one of two linear CDFs depending on whether the storm does or does not
reach hurricane intensity, as shown in Figure 9. This means that a randomly chosen tropical
cyclone has the same probability of reaching any given intensity up to marginal hurricane
intensity, and another probability of reaching any intensity between marginal hurricane
intensity and the maximum theoretical intensity at that time and place.
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Figure 11: Maximum wind speed profile as a function of sea surface temperature (SST) and
To when the relative humidity is 0.75 and Ck/CD equals 1.2.

Figure 12: Cumulative distribution function (CDF) of lifetime maximum wind speeds for
all tropical cyclones of tropical storm strength 18 m s−1 or greater after 1957 whose life-
time maximum intensity was not limited by declining potential intensity. Wind speed is
normalized by monthly climatological potential wind speed at the reported position of the
tropical cyclones. The ordinate shows the total number of events whose normalized lifetime
maximum wind speed exceeds the value on the abscissa.
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Figure 13: Total number of tropical cyclones with normalized wind speeds exceeding the
value on the abscissa, from 1957 to 1999 in the North Atlantic and from 1970 to 1999 in the
western North Pacific. Wind speed is normalized by the theoretical maximum wind speed
calculated from climatological data.

Polar lows, agukabams, dust devils and convectively coupled equatorial waves are, to-
gether with hurricanes, meteorological phenomena related to waves and vortices driven by
interfacial fluxes. Polar lows have similar mechanisms as hurricanes, but they are small-scale
storms with ice. Their smaller scale is consistent with theoretical estimates of the maximum
radius of a convective storm which is proportional to 1/f . Agukabams draw their energy
from enthalpy transferred from hot, moist soils. When agukabams happen, there is usually
a big drop in the soil temperature, reflecting the heat transferred from the soil to the air.
Dust devils are essentially dry hurricanes, and like agukabams, they draw energy from the
sensible heat of the sand. It has been observed that Dust devils happen not only on the
Earth but also on Mars.

For convectively coupled equatorial waves, a wavenumber-frequency spectrum analysis
of the satellite-observed outgoing longwave radiation (OLR) was performed within the re-
gion between 15oS− 15oN by Wheeler and Kiladis (1999) [8]. After removing an estimated
background spectrum, the spectral peaks correspond nicely with dispersion relations from
equatorially trapped wave modes of shallow water theory. Figure 14 shows the symmetric
component of OLR and some peaks corresponding to the dispersion relations of the equa-
torially trapped wave modes. These so-called convectively coupled equatorial waves are the
Kelvin, n = 1 equatorial Rossby wave, mixed Rossby-gravity, n = 0 eastward inertio-gravity,
n = 1 westward inertio-gravity (WIG), and n = 2 WIG waves. The Madden-Julian oscilla-
tion (MJO) and the tropical depression-type (TD-type) disturbances are also present in the
spectra, but they are unlike the convectively coupled equatorial waves due to their location
away from the equatorial wave dispersion curves in the wavenumber-frequency spectrum.
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