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1 Introduction

This lecture builds on the foundations of Lecture 13 where we introduced the triad interac-
tion process. We first recall the main properties of triad interactions, before discussing one
of the important cases alluded to in Lecture 13, namely that of the explosive instability.

The dispersion relation w(k) for linear waves propagating in any physical system can be
obtained by linearization of the governing equations (we consider a non-dissipative system
here). A resonant triad exists if w(k) admits 3 pairs {k,w(k)} verifying :

k1 + k2 + k3 =0 and w(kl) + w(kg) + w(kg) =0. (1)

If this is not the case, the system follows the 4-wave equations describing a resonant quartet.

1.1 3-wave equations

In the case of a triad interaction, the 3-wave amplitude equations are obtained by using the
method of multiple scales. For a single triad {k;, ko, ks}, the solution is written as:

3
u(x,t;e) =€ Z A (ex, et) exp{iky, - X — iwpt} +cc| + O(e?) (2)
m=1

where the amplitude depends on the slow spatial and time variables. When (2) is substituted
back into the governing nonlinear equations, a compatibility condition yields the amplitude
evolution equations (see Lecture 13):

0A

a—fm + Cp - VA, =i6m AL AL, (3)
with m,n,l = {1,2,3} and by assumption m, n and [ are all different. These three coupled
equations have been studied for capillary-gravity waves or in nonlinear optics using xo
material. But as seen in Lecture 13, the 3-wave resonance is impossible for pure gravity
waves.
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1.2 4-wave equations

When 3-resonance is impossible, we are forced to consider resonant quartets with ky = ko +
k3 + k4 =0 and w(kl) + w(kg) + w(kg) + w(k4) = 0.
A special case always exists where :

(k+ 6k} + (k- 0k} ~k=Kk, (4)
{w(k) + dw} + {w(k) — dw} — w(k) = w(k), (5)

i.e. the resonant quartet describes the interaction between waves with very close wave
numbers and frequencies. In this case, as shown in Lecture 14, the equation for the slowly
varying complex amplitude naturally recovers the nonlinear Schrédinger equation (‘NLS’)
for the one wave-field (in 1-D):

[ 0A 0A 0?A 2
7 <8_T + CG—X> +e€ [am +’7|A| A:| =0, (6)

where « is a real-valued constant obtained from w(k), and v is the interaction coefficient
and is real (for a non-dissipative problem).

For more complex interactions, with waves modes interacting with themselves and with
other modes, the evolution of the amplitudes are described by coupled NLS equations. In
the case of 4-wave mixing in 1-D, we have [2] :

2

Qm

or 0X

4
n=1

with {m,p,q,r} € {1,2,3,4} and p, q,r # m, ¢, is the group velocity, {7} are interaction
coefficients and {4d,,} are real-valued coefficients of the 4-wave mixing terms.

These NLS equations are obtained for example in the case of gravity-driven surface
waves and in nonlinear optics using x3 material.

1.3 Explosive instability

As discussed in Lecture 13 in the case of the 3-wave equations, Coppi, Rosenbluth & Sudan
in 1969 [3] showed that if {1, 02,03} in equation (3) all have the same sign, then A;, A, A3
can all blow up at the same time, everywhere in space. This is called the explosive instability,
appropriately describing the waves blowing up everywhere to infinity in finite time (as
(1 — 7)~1). This blow-up occurs even with no spatial structure (ie A,, = A,,(7)) so there
is no wave collapse or self-focussing.

B. Safdi and H.Segur [7] found in 2007 the same possibility of explosive instability even
in the case of the 4-wave equations where the 3-wave resonance is impossible. Both cases
are now studied in more detail.

2 Explosive instability in ODEs

2.1 3-wave mixing

As seen in Lecture 13, the simplest model of 3-wave mixing ignores the spatial dependence
of the interacting modes and the set of equations described in (3) reduces to three coupled
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ordinary differential equations, with {01, d2, 03} known and real-valued:
Al(1) =i ASAE  AL(1) = i6 ATAL  AL(T) = id3 AT AS. (8)

It can be shown (see below) that if the ¢; have different sign, the solutions are bounded for
all time.

Conditions for explosive instability. The following are necessary and sufficient con-
ditions for blow-up in finite time:

e At least two of {A41(0), A2(0), A3(0)} are non-zero. Indeed, when at least two of them
are zero at time 7 = 0 then the right-hand-sides are zero and nothing changes.

e {01,02,03} all have the same sign and are non-zero [3].

These necessary condition are related to the existence of the constants of motion .Jy, Jo
associated with the problem written in its Hamiltonian form (see Lecture 13):

_ AP AP Ty — [Aaf* | As]?

& 51 53 5o 53 9)

We see that if sign(d,,) # sign(d,) for any m # n, there is no blow-up. For instance, if
81 < 0 and d3 > 0, then J; < 0 and is constant, so both |4;]? and |A3|? are bounded and
neither can blow up. But since .J; is also constant then |A3|? is bounded as well, so none
of the wave fields can blow up. Thus it is necessary that {0, 2,03} all have the same sign
and are non-zero for the amplitudes to blow-up.

Let us now suppose that {01, d2, 03} all have the same sign and are non-zero. One shows
by direct substitution into (8) that a special 3-parameter family of singular solutions to the
governing ODEs is:

10
Am(T):1/ Om € , 91+92+93:g+27rN,form:1,2,3, (10)

010003 To — T

where {7,,61,02} are 3 free real-valued parameters. This expression readily exhibits blow-
up in the finite time 7,. To find a general solution of the ODEs, we can assume that this
special solution is the first term in a Laurent series in the neighbourhood of the pole 7, and
write:

eiﬁm
An(r) = 52 S [ (7o = ) + Bl = 72 + (70 = 7)° + O((7 - >}( |
11

By substituting this ansatz into the original ODEs, the complex coefficients can be deter-
mined order by order to yield:

apy =0, %(ﬁm) =0, 8?(ﬁl + B2+ 63) =0, 8?(’71%) =0

S(11) =S(12) = 3(13) =1.
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Thus, the general solution of the equation can be written:

eiem
Am(T) =\ o [1 + 5m(7—o - T)2 + Z"Y(To - T)3 + O((TO - 7—)4] ’ (12)

010003 To — T

where {71,,01,02, 31, 32,7} are 6 free real-valued constants, and (31 + 2 + 33 = 0. Note how
every nontrivial solution of the ODEs near 7 = 7, blows up at 7 = 7,,.
Mathematically, the series converges absolutely if:

1. B =By =0,|2=| < 1 or

2. |Bn| < B,|y| < B2 |1, —7’B < 1.

Physical interpretation of blow-up. Recall that the theory of non-linear resonant
interactions is a weakly nonlinear theory and assumes that the 3-wave equations evolve on
the long time-scale (¢t = O(e™!)). In finite-time blow-up, both of these model assumptions
break down as 7 — 7, and strongly nonlinear interactions must be taken into account.
For instance in the case of vorticity waves, the outcome of the explosive instability can be
wave breaking or intense vortex formation [8]. Note that additional information can be
obtained from the model before it breaks down completely. For example, it can reveal that
significant energy is transferred into the wave modes from a background source (pump wave
in nonlinear optics, shear flows in fluid dynamics, etc..). Indication to the presence of such
a background source is that all four ¢ coefficients should have the same sign.

2.2 4-wave mixing

The equivalent 4-wave mixing equations without spatial dependence can be written:

4
iAL + A Y Yol Anl? + 0 AR A7 AT = 0. (13)

n=1

These are four coupled complex ODEs with known real-valued coefficients.
The necessary and sufficient conditions for blow-up in finite time in this case are the
following:

e At least three of {A;(0), A2(0), A3(0), A4(0)} are non-zero.

e {01,02,03,04} all have the same sign and non-zero.

4
Z '7mn|5n| < 4+/01090304.

m,n=1

In the same way as in the 3-wave mixing case, it can be found [7] that the general solution
of (13) is an 8-parameter family of solutions that all blow up.

Open problem. So far there is no known physical example of an explosive instability
caused by 4-wave mixing. As with 3-wave mixing, an explosive instability in a 4-wave
system requires a background source of energy, from which the waves modes extract energy
to grow in intensity together.
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2.3 Effect of damping on the blow-up

It is interesting to introduce a damping component in the governing amplitude equations
to see if the blow-up can be stopped by the damping. If we add damping in (8) for example
we have:

A (7) = 16 Ay Ar = Ay with v, > 0. (14)
Different situations occur depending on whether the v, coefficients are all the same (uniform
damping) or differ (non-uniform damping).

2.3.1 Uniform damping

In the simple case of uniform damping v; = v = v3 = v, it can be shown [6] that the
change of variables T' = =2 A, (1) = e "y, (r) (with m = 1,2,3) transforms the
equation (14) into the non-damping equation (16). This shows that uniform damping does
not always stop the blow-up but instead introduces a threshold for the initial amplitudes
below which blow-up is suppressed. However, if {d1,02,d3} all have the same sign and

|An (0)] > 4/ 51%7;53 %=y, then the solutions still blow-up in finite time. A similar result
can be found for the 4-wave equations.

2.3.2 Non-uniform damping

In this case, the general Laurent series for the solution is too restrictive since the singularity
is not a pole, so one seeks instead a solution with:
5m eiem

Ap (1) = 510905 79 — 1 [1+ am(To = 7) + b (70 — 7)2In(7o — 7) + Bu(7o — 7)? + ]( ) |
15

where the coefficients {a,,} and {b,,} are real and depend on {v,}, while the coefficients
{Bm} are real with {31, B2} free.

These ODEs are no longer completely integrable and the singularity is no longer a pole
but blow-up persists for a 6-parameter family of solutions. The damping does not prevent
blow-up, but as in the uniform case, introduces a threshold for blow-up.

3 Blow-ups in PDEs

The general set of amplitude equations for triad interactions are the following partial dif-
ferential equations:

0A,,
or
(for m = 1,2,3). Zakharov and Manakov [9] found that the 3-wave PDEs are completely
integrable. Kaup [4] solved these equations in 1-D on whole line through numerical and
analytical work to learn about blow-up. But what happens in the case of periodic boundary
conditions or in more than one spatial dimension remains unknown.
Here, we use an alternative approach based on the general ODE solutions derived above:

eitgm
Ap(r) = 4] (4 B — 72 4 in(ro — 7 4 O(r0 — 7)Y . (17)

515253 To — T

F o - VA = i, A% AT (16)
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where {7,,01,02, 1, 32,7} are real-valued (and (; + 2 + B3 = 0). To take into account
the spatial dependency, we consider a variation of the parameters, looking for f; = (31 (x),

P2 = fa2(x) and v = y(x):

eiﬁm
A7) = | 5 [ B (070 = 2 + g 3) + (00} 7~ 7)° + O((7, — ()}) ,
18

with {f(x), 82(x),v(x)} real-valued and arbitrary while the {g,,(x)} are real-valued and
known (in terms of first derivatives of the (3,,(x) functions). Note that again we must also
have 31 + B2 + B3 = 0.

If we allow an additional spatial dependency for #; and 65, then one finds that the
solutions of the PDEs can be written:

PR LI
m(x7 T) - 616263 T,—T [ + Zam(x)(TO - 7—)

+ {8 (x) + b (%)} (7o — 7)°
+{gm(x) + iy () Hro — 1) + ], (19)

where the functions a,,(x) involve first derivatives of {f(x),02(x),603(x)}, the functions
by, (x) involve first and second derivatives of the same functions, and finally the functions
gm(x) also involve first and second derivatives of the {6,,(x)} as well as first derivatives of
f1(x) and f2(x). Thus this family of formal solutions of the PDEs admits five free functions
of x. These functions must be infinitely differentiable, but are otherwise arbitrary, and can
be members of any desired function space.

A (formal) general solution of (16), with six functions that must be real-valued and
smooth, but are otherwise arbitrary, is:

Om (X eiGm(x) .
A (%,7) = 4 /515253 P TS(}Z) ——[1+ i (%) (7, — 7)
+ { B (%) + ibp (%)} (1, — 7)?

+{gm (%) +iv(x) (o — 7)° + .., (20)

with the p,, functions verifiying:

pi(x) = (1 —cy- Vro(x)) - (1 — ¢35 - V7o(x)), (21)
pg(x) =(1—-c3-Vrp((x)) (1 —cy-Vro(x)), (22)
p3(x) = (1 —c1 - V7o(x)) - (1 — ¢z - V7o(x)). (23)

There are still open questions regarding the convergence of the series in this case, and the
constraints on the free functions for blow-up.
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