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1 Introduction

Suppose that we have a non-dissipative system that obeys a variational principle with
a Lagrangian density, L(φ, φt, φxi

; t, x), where the field values are elements of the vector
valued field φ(t, xi), t is time and the spatial variables are xi with i = 1, 2, . . .. The
governing equation of such a system is the Euler-Lagrange equation,

∂

∂t

(

∂L

∂φt

)

+
∂

∂xi

(

∂L

∂φxi

)

−
∂L

∂φ
= 0 , (1)

where we have implied summation over the index, i. Using the calculus of variations,
we can recover conservation laws which correspond to the symmetries of the Lagrangian.
Energy conservation corresponds to a time symmetry, ∂tL = 0, and momentum conservation
corresponds to space symmetry, ∂xi

L = 0. Wave action conservation corresponds to a phase
symmetry.

If we seek a solution to describe waves superimposed on a mean flow, we introduce a
phase parameter, θ, such that,

φ(t, xi, θ + 2π) = φ(t, xi, θ) . (2)

As an example, small amplitude waves might have,

φ(t, xi) ≈ a sin(kixi − ωt+ θ) , (3)

where ki is the wavenumber vector, ω is the wave frequency and a is the wave amplitude.
Finally, we define a phase average by using the angle bracket notation,

〈·〉 =
1

2π

∫

2π

0

(·)dθ . (4)

Another common notation for denoting averages is the bar notation, ·̄, which we will use
interchangeably with the angle bracket notation, 〈·〉. Note that all averaged quantities are
independent of θ. Thus, we may write the entire function as a linear combination of the
mean flow, 〈φ〉, and a wave field, φ̂,

φ = 〈φ〉 + φ̂ , (5)

where by definition, 〈φ̂〉 ≡ 0.
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2 Wave action

A useful consequence of the Euler-Lagrange equation (1) is that if we take any field with
the same dimensions as φ, then we get the equation [4],

∂

∂t

(

ψ
∂L

∂φt

)

+
∂

∂xi

(

ψ
∂L

∂φxi

)

= ψt
∂L

∂ψt

+ ψxi

∂L

∂φxi

+ ψ
∂L

∂φ
. (6)

If we put ψ = φθ and phase average we get,

∂

∂t

〈

φ̂θ

∂L

∂φt

〉

+
∂

∂xi

〈

φ̂θ

∂L

∂φxi

〉

= 0 , (7)

noting that the Lagrangian has no intrinsic dependence on the parameter θ. If we define
the following quantities,

A = 〈φ̂θ
∂L

∂φt

〉, Bi = 〈φ̂θ
∂L

∂φxi

〉 , (8)

we can see that the corresponding phase symmetry is,

∂A

∂t
+
∂Bi

∂xi
= 0 . (9)

A is the wave action density and Bi is the wave action flux. Physically, the wave action
is the wave energy divided by the intrinsic wave frequency (which we shall define later).
So, when a wave’s frequency decreases (increases), the wave gains (loses) energy from (to)
the mean flow in order to conserve wave action. Being wave quantities, if A and B are
zero, then there are no waves. As such, wave action is a good measure of wave activity.
Equation (9) is a conservation law in all unforced, non-dissipative systems (as is the case
with the system we are considering). Formally, the wave action conservation law is valid
without restriction on amplitude or on the relative time and space scales of the waves (with
respect to the mean flow).

If we now suppose that the mean flow, background medium and wave parameters are
slowly varying, we may write the wave field as,

φ̂ ∼ φ̂(S(t, xi) + θ; t, xi) . (10)

As we are assuming that S varies much more rapidly than the wave field’s explicit depen-
dence on t or xi, the explicit derivatives ∂φ̂/∂xi and ∂φ̂/∂t are small terms. Therefore, we
can write

φ̂t ∼ φ̂θ

∂S

∂t
φ̂xi

∼ φ̂θ

∂S

∂xi
, (11)

noting that,
∂S

∂t
= −ω

∂S

∂xi
= κi , (12)

where ω is the local frequency and κi is the local wavenumber. Substituting equations (12)
into equations (11), we get

φ̂t ∼ −ωφ̂θ φ̂xi
∼ κxi

φ̂θ . (13)
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Substitution into equations (8) yields

A =

〈

φ̂θ

∂L

∂(−ωφ̂θ)

〉

B =

〈

φ̂θ

∂L

∂(κiφ̂θ)

〉

. (14)

Both A and B are O(a2), where a is the wave amplitude in the small amplitude limit,
although, these equations are formally valid without any restriction on amplitude. It can
be shown that

〈

φ̂θ

∂L

∂(−ωφ̂θ)

〉

= φ̂θφ̂
−1

θ

∂〈L〉

∂(−ω)

⇒ A = −
∂L̄

∂ω
, (15)

where we note that ω is already an averaged quantity. Similarly for Bi, we get,

Bi =
∂L̄

∂κi
. (16)

where again we note that κi is an averaged quantity. Here L̄ ≡ 〈L〉, is the averaged
Lagrangian and, similarly to ω and κi, is a slowly varying function of t and xi.

Finally for slowly varying waves, we also require the equation for conservation of wave
action,

∂κi

∂t
+
∂ω

∂xi
= 0 (17)

3 Linearised waves

We are now in a position where we can decompose the Lagrangian as follows,

L = L0(φ̄t, φ̄xi
, φ̄; t, xi) + L1(φ̂t, φ̂xi

, φ̂; t, xi) , (18)

where φ̄ ≡ 〈φ〉. Here L0 = L(φ̄, φ̄t, φ̄xi
; t, xi) is the Lagrangian for the mean flow and

L1 = L(φ̂, φ̂t, φ̂xi
; txi) is the Lagrangian for the wave field. While the Lagrangian for the

wave field depends on the Lagrangian for the mean flow, the dependence is not explicit but
instead is present implicitly via the explicit dependence on t and xi.

We may further simplify equation (10) by assuming a small amplitude,

φ̂(t, xi) ≈ a(t, xi) sin(S(t, xi) + θ) . (19)

If we substitute into equation (18) and then average, we find that the average of the La-
grangian wave field is, to leading order, given by

L̄1 ≈ D(ω∗, κi; t, xi)a
2 . (20)

We note that there are no linear terms in a, as these terms average to zero, furthermore,
the error is O(a4). In equation (20), we have extracted the dependence of the wave field on
the mean field, where Ui is the mean velocity field and ω∗ is the intrinsic frequency
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given by ω∗ = ω−Uiκi, while the rest of the fields remain suppressed in the explicit xi and
t dependencies. In the linearised approximation, the mean fields are known, with the result
that L̄1 depends only on the mean velocity Ui through the intrinsic frequency, ω∗, which
follows from Galilean invariance.

If we substitute equation (20) into our expressions for A and B, equations (15) and (16),
we obtain,

A = −
∂D

∂ω∗
a2 (21)

B =
∂D

∂κi
a2 , (22)

where we note that (∂D/∂ω∗)(∂ω∗/∂ω) = ∂D/∂ω∗ as Ui is slowly varying. Furthermore,
we note that the variation of L̄ is independent of a, ∂L̄1/∂a = 0. As a result of this latter
relation, we find that the dispersion relation is,

D(ω∗, κi; t, xi)2a = 0

∴ D(ω∗, κi; t, xi) = 0 . (23)

It follows, upon differentiation with respect to κi (remembering the definition of the intrinsic
frequency) that,

∂D

∂ω∗
cgi

+
∂D

∂κi

= 0 , (24)

where cgi
= ∂ω/∂κi = Ui + cg

∗

i
is the group velocity and cg

∗

i
= ∂ω∗/∂κi is the intrinsic

group velocity. Use of equations (21) and (22) gives us the relation Bi = cgi
A, which, upon

substitution into the wave action equation (9), yields the result,

∂A

∂t
+
∂(cgi

A)

∂xi

= 0 . (25)

4 Energy and momentum

In order to provide a more physical interpretation of wave action, we consider the conser-
vation laws for energy and momentum. Supposing that we have a full Lagrangian system
governed by equation (1), L(φ, φxs

;xs) where s = 0, 1, 2, 3 and we note that x0 = t is a
time-like variable. Recalling equation (6), we write,

∂

∂xs

(

ψ
∂L

∂φxs

)

= ψxs

∂L

∂φxr

+ ψ
∂L

∂φ
.

If we now put ψ = φxr
, we find a conservation law,

∂

∂xs

(

φxr

∂L

∂φxs

)

=
∂φxr

∂xs

∂L

∂φxr

+
∂φ

∂xr

∂L

∂φ

∂

∂xs

(

φxr

∂L

∂φxs

)

=
dL

dxr

−

(

∂L

∂xr

)

e

, (26)
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where (·)e indicates that the derivative is taken keeping φ and φxr
fixed while,

dL

dxr
≡

∂L

∂xr
+ φxr

∂L

∂φ
+

∂L

∂φxs

∂φxs

∂φxr

(27)

may be recognised as the total derivative. Furthermore, we note that dL
dxr

= δrs
dL
dxr

=
∂

∂xr
δrsL in which δrs is the Kronecker delta symbol. This gives us the result

∂

∂xs

(

φxr

∂L

∂φxs

− Lδrs

)

=
∂L

∂xr

∂Trs

∂xs
= −

∂L

∂xr
, (28)

where Trs = φxr

∂L
∂φxs

−Lδrs can be identified as the energy-momentum tensor from classical
physics.

While the exact components of the tensor depend on the problem being studied, we
can identify T00 as the energy density, T0j as the energy flux and Ti0 as the momentum
density and Tij as the corresponding fluxes. We may apply the averaging operator to the
conservation law, equation (28), which gives us the averaged total energy 〈T00〉 and averaged
total momentum, 〈Ti0〉. These are not, on their own, particularly useful, as they contain
both the mean and wave fields. Typically, the wave field is O(a2), and as such, is small
relative to the mean field contribution.

We follow the averaging procedure of [2], by putting ψ = φ̂xs
, recalling that φ = φ̄+ φ̂,

and essentially follow the same procedure as for the full wave field to yield,

∂Trs

∂xs
= −

∂L̄1

∂xr
(29)

where now

Trs =

〈

φ̂xr

∂L1

∂φ̂xs

− δrsL1

〉

. (30)

We may now identify T00 as the pseudoenergy density, T0j as the pseudoenergy flux and
Ti0 as the pseudomomentum density and Tij is the pseudomomentum flux. Recalling that

φ = φ̄+ φ̂, we can see that we are able to replace φ with φ̂ throughout as there is a linear
relation between the two, with the value for φ̄ and its derivatives being slowly varying.
We also recall that the total Lagrangian is a linear combination of the average and wave
Lagrangians, L = L0 + L1. However, we note that L0 is not a function of φ̂, and as such
terms like ∂L0/∂φ̂ = 0. These approximations make Trs an O(a2) wave property (where we
recall that a is the wave amplitude). Note, however, that equation (30) is not a conservation
law unless L1 is independent of xs. As a consequence, the mean flow, φ̄ is also required to
be independent of xs.

If we put ψ = φ̂θ, we regain equation (8). If a suitable ergodic principle exists, we may
identify the phase with a particular coordinate, θ = xs. This allows us to identify Ts0 = A
and Tsi = Bi. We note that the diagonal term Tss is thus absent from the conservation
law, equation (30). As such, we can now say that wave action is pseudoenergy for time
averaging and is pseudomomentum for space averaging.
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Generally speaking, wave energy is not as useful a quantity as wave action, since wave
energy is not generally conserved. If we suppose that the mean flow consists of a mean
velocity Ui, and a vector valued mean field, λ, that we require to satisfy the equation,

dλ

dt
+ Λijλ

∂Ui

∂xj
= 0 , (31)

where d

dt
≡ ∂

∂t
+Ui

∂
∂xi

is the material derivative and Λ is a dyadic of basis vectors. Physically,
λ incorporates quantities such as mean depth, mean density or even mean magnetic field.
We can now follow [3] and define the wave energy E as the pseudoenergy in a reference
frame moving with the mean flow,

E = T00 + UiTi0 (32)

E =

〈

dφ̂

dt

∂L1

∂φ̂t

− L1

〉

, (33)

where we note that T00 = 〈∂φ̂
∂t

∂L1

∂φ̂t

− L1〉 and UiTi0 = 〈Uiφ̂xi

∂L1

∂φ̂t

〉 from equation (30).

Similarly, the wave energy flux is given by,

Fi =

〈

dφ̂

dt

∂L1

∂φ̂xi

− UiL1

〉

. (34)

Here, we note that L1 = L1(φ̂, φ̂t, φ̂xi
;Ui, λ;xi, t). If we suppose that the dependence of E

and F is solely through the material derivative, then it can be shown that

∂E

∂t
+
∂Fi

∂xi

= −Rij
∂Ui

∂xj

−

(

dL̄1

dt

)

e

(35)

where (. . .)e indicates the explicit derivative with respect to t and xi while the wave field,
φ̂ and the mean fields, Ui, λ are held constant and R is the radiation stress tensor,

Rij = −Tij + UjTi0 − Λijλ
∂L̄1

∂λ
. (36)

The final piece of the puzzle is an equation for the mean flow, which is gained by variation
of the mean field. In order to achieve this, we apply the averaging operator, equation (4),
to the Lagrangian, equation (1), subject to the constraint described by equation (31),

∂

∂t

(

∂L0

∂Ui

)

+
∂

∂xj

(

Ui
∂L0

∂Ui
− Λijλ

∂L0

∂λ
+ L0δij

)

−

(

∂L0

∂xi

)

e

= −
∂Rij

∂xj
+

(

∂L̄1

∂xi

)

e

. (37)

This equation may also be derived using Whitham’s variational principle. When Λ is
isotropic, Λij = Mδij , then there is a mean pressure Q, such that equation (37) becomes,

−
∂Rij

∂xj
= −

∂Ti0

∂t
−
∂(UjTi0)

∂xj
+
∂Q

∂xi
. (38)
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5 Slowly varying waves

In the circumstances where we have a slowly varying, almost-plane wave field (where the
dependence on phase S(xi) is rapidly varying compared to the explicit dependence of the
field on xi), which can be reasonably approximated by equation (10). Recall that under
such circumstances the frequency is given by ω = −∂S/∂t and wavenumber is given by
κi = ∂S/∂xi. We also get useful reductions for pseudoenergy,

T00 ≈ωA− L̄1 (39)

T0i ≈ωBi , (40)

for pseudomomentum,

Ti0 ≈− κiA (41)

Tij ≈− κiBj − L̄1δij , (42)

for wave energy,

E ≈ω∗A− L̄1 (43)

F ≈ω∗(Bi − UiA) , (44)

and the radiation stress tensor reduces to

Rij ≈ κi(Bj − UjA) + L̄1δij − Λijλ
∂L̄1

∂λ
. (45)

For linearised waves, we can achieve further results by recalling the dispersion relation,
equation (23), which implies that the intrinsic frequency is ω∗ = Ω(κi;λ;xi, t), and ω =
κiUi + ω∗. We also recall the wave action equation, equation (25) with the group velocity
given by cgi

= Ui + ∂Ω/∂κi. Noting, that for linearised waves L̄1 = 0, which implies that
the wave energy is given by E = ω∗A and the pseudoenergy is give by T00 = ωA, giving
new expressions for the wave energy equation (35) and the radiation stress equation (36),

∂E

∂t
+

∂

∂xi

([Ui + cg
∗

i
]E) = −Rij

∂Ui

∂xj

+
E

ω∗

(

dΩ

dt

)

e

(46)

Rij = A

(

κicgj
+ Λijλ

∂Ω

∂λ

)

. (47)

It is worth noting that there are some linear, almost plane waves for which this approxima-
tion does not hold, with one of the more notable exceptions being Rossby Waves.

6 Extensions

The theory outlined above can be extended to modal waves. That is, waves that are
confined to a wave guide, such that the direction of propagation is in a reduced set of
spatial dimensions and a modal structure in the remaining set of dimensions. Examples of
such waves are water waves and internal waves.
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The general theory outlined above can still be used, although we need to combine the
Lagrangian averaging with integration across the waveguide.

In order to apply the theory outlined in the previous sections to fluid flows, we need
to identify a suitable Lagrangian. Sometimes it is possible to find it directly from the
Eulerian formulation, however, it is usually most convenient to find the Lagrangian using a
Lagrangian formulation of the equations of motion.

In order to consider finite amplitude waves, it is best to use generalised Lagrangian

mean theory (GLM) developed by [1, 2]. In GLM theory, we define the particle dis-
placements from a mean position that moves with the mean velocity Ui. As such, xi are
Lagrangian variables moving with the Lagrangian mean velocity Ui, relative to which the
particle displacements are defined as ξi. The Eulerian variables thus become x′i = xi + ξi
and the Eulerian velocity becomes

u′i = Ui +
dξi
dt

, (48)

where we note that the material derivative is d

dt
≡ ∂

∂t
+ Ui

∂
∂xi

, and we note that 〈ξi〉 = 0.
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