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1 Introduction

Nonlinearity in water waves can lead to wave breaking. We can observe easily that waves
break as they come to a beach. The waves on a current also may break. In this lecture we
derive modulation equations of water waves using Whitham’s averaged Lagrangian method.
Then we consider the interaction of nonlinear water waves with currents and slopping bot-
tom topography (e.g. waves on a beach).

2 Water waves in the linear approximation

In the linear approximation, the surface elevation ζ for sinusoidal unidirectional waves is

ζ(x, t) = a cos θ, θ = kx− ωt+ α, (1)

for waves of amplitude a, wavenumber k (> 0), and frequency ω. Here α is an arbitrary
constant ensemble parameter. When there is no mean current the dispersion relation is

ω2 = gk tanh(kH), (2)

where g is the acceleration due to gravity and H is the mean water depth.
If there is a constant horizontal mean current U , in the frame moving with the current

(x′ = x−Ut), the dispersion relation remains similar to (2). Then, θ can also be written as

θ = kx− ωt+ α = k(x′ + Ut) − ωt+ α = kx′ − (ω − kU)t+ α, (3)

so that the dispersion relation of water waves on a horizontal mean current, in the rest

frame is
ω = Uk + ω∗. (4)

where ω∗ is the intrinsic frequency (i.e. ω∗ = ±[gk tanh(kH)]1/2), which has two branches.
The total frequency ω is thus decomposed into the Doppler shift Uk and the intrinsic
frequency ω∗.
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3 Modulation equations of water waves

Now suppose that the amplitude, wave number, frequency, mean current and mean depth
vary slowly relative to the wave field. Then (1) is replaced by the Fourier series expansions
as

ζ(x, t) ∼ a(x, t) cos θ + a2 cos 2θ +O(a3), (5)

θ = φ(x, t) + α, k =
∂φ

∂x
, ω = −∂φ

∂t
. (6)

Here φ is the phase, and the ensemble parameter α is constant, and the coefficient a2 ∼
O(a2) depends on ω∗, k, U,H. It is convenient to introduce a velocity potential Ψ defined
as

Ψ = Ux−Bt+ Φ(θ, z), (7)

where Φ is the wave component of Ψ, and B is related to the mean height of the waves.
Now, Φ is expanded as Fourier series in the form

Φ(θ, z) = A1 cosh(kz) sin θ +A2 cosh(2kz) sin 2θ +O(a3), (8)

where A1 ∼ O(a) and A2 ∼ O(a2). This is because of the kinematic boundary condition at
free surface ∂Ψ

∂z = ∂ζ
∂t + ∂Ψ

∂x
∂ζ
∂x . From (6), the equation for conservation of waves is,

∂k

∂t
+
∂ω

∂x
= 0. (9)

The issue is to determine how the amplitude, wavenumber, frequency, mean current and
mean depth vary (slowly) in space and time. The mean current U(x, t) and depth H(x, t)
can be decomposed into background components u(x, t), h(x) and a wave-induced O(a2)
component.

The modulation equations for the wave amplitude, wavenumber, frequency, mean cur-
rent and mean depth are found using Whitham’s averaged Lagrangian method. The La-
grangian of the water wave system is (Whitham, 1974, chapter 13.2)

L = −
∫ ζ

−h

{

∂Ψ

∂t
+

1

2

(

∂Ψ

∂x

)2

+
1

2

(

∂Ψ

∂z

)2

+ gz

}

dz. (10)

Substituting (7) into (10), we obtain

L =

∫ ζ

−h

[

B + ω
∂Φ

∂θ
− 1

2

(

U + k
∂Φ

∂θ

)2

− 1

2

(

∂Φ

∂z

)2

− gz

]

dz,

=

(

B − 1

2
U2

)

H − 1

2
gH2 + gHh

+(ω − Uk)

∫ ζ

−h

∂Φ

∂θ
dz −

∫ ζ

−h

1

2

[

k2

(

∂Φ

∂θ

)2

+

(

∂Φ

∂z

)2
]

dz. (11)

Note that ζ + h = H and ζ2 − h2 = (ζ + h)2 − 2(ζ + h)h.

179



Averaging the Lagrangian (11) in α, we obtain

L =
1

2π

∫ 2π

0
Ldα = L

(m)
(U,B,H, h) + L

(w)
(E∗, ω∗, k,H), (12)

E∗ =
ga2

2
, k =

∂φ

∂x
, ω = −∂φ

∂t
, U =

∂Ψ

∂x
, B = −∂Ψ

∂t
. (13)

The functions L
(m)

(U,B,H, h) and L
(w)

(E∗, ω∗, k,H) are mean and wave components of
averaged Lagrangian respectively.

Mean : L
(m)

=

(

B − U2

2

)

H − gH2

2
+ gHh, (14)

Wave : L
(w)

=
DE∗

2
+
D2k

2E∗2

2g
+O(E∗3), (15)

where

D =
ω∗2

gkT
− 1, D2 = −9T 4 − 10T 2 + 9

8T 4
, T = tanh(kH), ω∗ = ω − Uk. (16)

These expressions are derived first by finding Ψ and thus L to get L̄. The coefficients
A1, A2, a2 in (7) are obtained by solving the variational equations

∂L

∂A1
= 0,

∂L

∂A2
= 0,

∂L

∂a2
= 0, (17)

for A1, A2, a2. The resulting Φ is then used to find Ψ (8), which is then re-substituted into
L (11) and then L. See Whitham (1974, chapter 16.6) and Whitham (1967) for details.

To obtain the modulation equations, the averaged variational principle

δ

∫ ∫

Ldxdt = 0, (18)

is used for variations in δE∗, δφ, δψ, δH, and we have

δE∗ :
∂L

∂E∗
= 0, (19)

δφ :
∂

∂t

(

∂L

∂ω

)

− ∂

∂x

(

∂L

∂k

)

= 0,
∂k

∂t
+
∂ω

∂x
= 0, (20)

δΨ :
∂

∂t

(

∂L

∂B

)

− ∂

∂x

(

∂L

∂U

)

= 0,
∂U

∂t
+
∂B

∂x
= 0, (21)

δH :
∂L

∂H
= 0. (22)

From (19), the dispersion relation is obtained as

D

2
+
k2D2E

∗

g
+O(E∗2) = 0. (23)
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From (21) we obtain

∂H

∂t
+

∂

∂x

[

UH + k

(

E
(ω − Uk)

gkT

)]

=
∂H

∂t
+

∂

∂x
(HV ) = 0, (24)

where

V = U +
kA

H
, A =

∂L

∂ω
= E

(ω − Uk)

gkT
. (25)

From (22) we obtain

B =
1

2
U2 + gH − gh+

1

2

(

1 − T 2

T

)

kE∗ +O(E∗2). (26)

Using (25) and (26), we obtain

∂

∂t
(HV ) +

∂

∂x
(HV 2) +

∂

∂x

(

gH2

2

)

+
∂S

∂x
= gH

∂h

∂x
, (27)

where

S = k(F − V A) + L
(w) −H

∂L
(w)

∂H
, F = −∂L

(w)

∂k
. (28)

Equation (20) can be written as
∂A

∂t
+
∂F

∂x
= 0. (29)

Now, (19), (29), (24), and (27) are the dispersion relation, the wave action equation, the
mean flow and mean momentum equations of the modulation equations respectively. To
these we add equation (9) for conservation of waves.

∂k

∂t
+
∂ω

∂x
= 0. (30)

These equations are fully nonlinear. A is the wave action density and F is the wave
action flux. In the linearized approximation (H ≈ h, U ≈ u) the dispersion relation (23)
becomes

D(ω∗, k, h) = 0, ω = ω∗ + ku, ω∗2 = gk tanh(kh) (31)

A =
∂D

∂ω∗

E∗

2
=
E∗

ω∗
, F = cgA = (c∗g + u)A, (32)

where c∗g = ∂ω∗

∂k is the intrinsic group velocity. S is the radiation stress, which in the
linearized approximation reduces to

S =

(

kc∗g + h
∂ω∗

∂h

)

A =

(

2kc∗g −
ω∗

2

)

A, (33)

since for water waves,

h
∂ω∗

∂h
= kc∗g −

ω∗

2
. (34)

The equation for conservation of waves (30) becomes

∂k

∂t
+ u

∂k

∂x
= −k∂u

∂x
− ∂ω∗

∂h

∂h

∂x
,

∂ω

∂t
+ u

∂ω

∂x
= k

∂u

∂t
. (35)

Note that for steady backgrounds the frequency is conserved.
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4 Waves on a current

Now we consider a unidirectional steady current u = u(x), with constant depth h.

4.1 Linear approximation

In the linearized approximation (H ≈ h, U ≈ u), equation (30) becomes

∂k

∂t
+
∂ω

∂x
= 0, ω = uk + ω∗, ω∗2 = gk tanh(kh). (36)

The steady solution is ω = ω0 (constant), with k = k(x). The wave amplitude is obtained
from the wave action equation (29), which reduces to

∂A

∂t
+

∂

∂x
(cgA) = 0, cg = u+ c∗g, A =

E∗

ω∗
. (37)

The steady solution has constant wave action flux F0,

2cgA =
cgc

∗a2

tanh(kh)
= 2F0, c∗ =

ω∗

k
. (38)

For simplicity, we now make the deep-water approximation kh→ ∞, so that ω∗2 = gk,
c∗g = c∗/2. Suppose that u(x = 0) = 0 and the intrinsic phase speed is c∗ = c0 > 0 at x = 0.
Then the steady solution of (36) is obtained as follows. Since ω = ω0,

u(x)k(x) +
√

gk(x) −
√

gk(0) = 0. (39)

Dividing (39) by k(x), we obtain

u(x) + c∗(x) − c∗2(x)

c0
= 0. (40)

Here we used c∗(x) =
√

g/k(x), c0 = c∗(0) =
√

g/k(0). Then the solution of (40) is

c∗(x) =
c0
2

±
{

c0u(x) +
c20
4

}1/2

. (41)

The condition at x = 0 means we choose the plus sign. Note that the group velocity is

cg(x) = u(x) +
c∗

2
= u(x) +

c0
4

± 1

2

{

c0u(x) +
c20
4

}1/2

. (42)

Thus, for an advancing current u(x) > 0, x > 0, we must choose only the plus sign, and
so c∗(x), cg(x) both increase as u(x) increases, while then k(x) = g/c∗2 decreases. Since
cgc

∗a2 = 2F0, the wave amplitude decreases.
For an opposing current u(x) < 0, x > 0, there is a stopping velocity at x = xc ,

u(xc) = −c0/4, and the waves cannot penetrate past this point, since cg(xc) = 0. Instead
the waves reflect, with the minus sign in (41, 42). Both c∗(x), cg(x) decrease as |u(x)|
increases, while k(x) increases. Since cgc

∗a2 = 2F0 = c20a
2
0, the wave amplitude increases
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from the initial value a0, and a2 → ∞ as x → xc. Of course, this result is outside the
linear approximation, and in practice the waves will break at xb < x = xc. Here we use an
experimental breaking criterion, ak(xb) = 0.44 (Miche, 1944); note that xb depends on a0

and c0. Using (41, 42) and cgc
∗a2 = 2F0 = c20a

2
0, the wave steepness ak can be calculated

as follows,
ak = a0k0(G1G2)

−1/2G−2
1 , (43)

where

G1 =
1

2
+

(

u

c0
+

1

4

)1/2

, (44)

G2 =
u

c0
+

1

2
G1. (45)

The relation between u/c0 and ak (i.e. equation (43)) is shown as Figure 1.
This rather simple theory has applications to the formation of giant (rogue, freak)

waves in the ocean, for example on the Agulhas current. There are also applications to the
modulation of water waves by an underlying internal solitary wave, whose surface current is
u(x) = u0sech

2(Kx) say (Fig. 2). To explore these further, we take a wave packet solution
of the wave action equation (37)

cgA = cgc
∗a2 = c20a

2
0b

2(t− τ), τ =

∫ x

0

dx

cg
. (46)

Here a0b(t) is the wave amplitude at x = 0, and we assume that the shape function b(t)
is localized (e.g. Gaussian), varying from 0 to a maximum of 1 at t = 0. Then the waves
break throughout the zone, xb < x < xc, over a time interval determined by the width of
the packet.

4.2 Nonlinear effects

In deep water, the wave-induced components of U,H are negligible and so the Lagrangian
(12) becomes just (15) given now by

L
(w)

=

(

ω∗

gk
− 1

)

E∗

2
− k2E∗2

2g
+O(E∗3), (47)

where now ω∗ = ω − ku(x). The nonlinear dispersion relation (23) becomes

ω∗2 = gk + 2k3E∗ +O(E∗2). (48)

Conservation of wave action (29) and conservation of waves (30) again yield for a steady
solution ( ∂

∂t = 0)

F = −∂L
(w)

∂k
= F0, ω0 = ω∗ + u(x)k, (49)

where F0, ω0 are constants. When combined with (48) these yield two coupled equations
for k, E∗ in terms of u(x). Now the dispersion relation (48) depends on the amplitude,
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Figure 1: Wave steepness ak versus u/c0; a0k0 = 0.1, 0.2 (black, blue), where a0k0 are
wave steepness at x = 0. Wave breaking criterion ak = 0.44 (red dash), yields breaking for
|u|/c0 > 0.18, 0.092.

Figure 2: Breaking waves on the internal wave current u = u0sech
2(Kx), for u0/c0 =

−0.2,−0.1 (black, blue), where the red lines give the breaking zones for a0k0 = 0.1, 0.2
(upper, lower). This shows that the waves of a0k0 = 0.1 (0.2) will break when they are on
|Kx| < 0.33 (0.94) if the waves are on internal wave current indicated by black line.
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ω∗ = ω∗(k,E∗) as well as the wavenumber. Conservation of wave action flux becomes

WA = F0, W = −∂L
(w)

∂k

/

∂L
(w)

∂ω
= u(x) +

ω∗

2k
+ k2A, (50)

A =
∂L

(w)

∂ω
=
E∗

ω∗

(

1 +
2k2E∗

g

)

. (51)

These are combined with (48) and (49),

ω∗2 = gk + 2k3ω∗A, ω0 = ω∗ + u(x)k, (52)

to yield two equations for k, A in terms of u(x). Note that for an opposing current u(x) < 0
(x > 0) there is now no stopping velocity, as W → 0, A→ ∞ is not allowed.

The equation of wave steepness ak in terms of u(x)/c0 is obtained by the same method
used to derive (43), but is more complicated. For convenience, we define

s(ak) = ω∗k2A, s0 = s(a0k0), (53)

and

ŝ =
g + 2s0
g + 2s

. (54)

Then the first equation of (52) is written as

ω∗ = k(g + 2s), (55)

so A and W can be written as follows,

A =
E∗

ω∗

(

1 +
2k2E∗

g

)

,

=
c∗a2g

2(g + 2s)
(1 + a2k2), (56)

W = u+
ω∗

2k
+ k2A,

= u+
c∗

2
+

c∗a2k2g

2(g + 2s)
(1 + a2k2),

= u+ c∗
[

1

2
+

a2k2g

2(g + 2s)
(1 + a2k2)

]

, (57)

where c∗ = ω∗/k =
√
g + 2s/k. Because u(x = 0) = 0, A0 and W0 are written as

A0 = c0a
2
0

g

2(g + 2s0)
(1 + a2

0k
2
0), (58)

W0 = c0

[

1

2
+

a2
0k

2
0g

2(g + 2s0)
(1 + a2

0k
2
0)

]

. (59)

From the second equation of (52), we obtain

k0

k
=
c∗

c0
+
u

c0
. (60)
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Using (54), k0/k can be written as

k0

k
= ŝ

(

c∗

c0

)2

. (61)

From (60) and (61), we obtain the quadratic equation for c∗/c0 as

ŝ

(

c∗

c0

)2

−
(

c∗

c0

)

− u

c0
= 0, (62)

and its solutions are
c∗

c0
=

−1 ±
√

1 + 4ŝ(u0/c0)

2ŝ
. (63)

Conservation of wave action flux can be written as

WA = W0A0. (64)

Multiplying (64) by (60)2, we obtain

WA

(

c∗

c0
+
u

c0

)2

= W0A0

(

k0

k

)2

. (65)

Substituting (56)-(59) to (65), we obtain

{

u

c0
+
c∗

c0

[

1

2
+

a2k2g

2(g + 2s)
(1 + a2k2)

]}{

c∗

c0
a2k2 g

2(g + 2s)
(1 + a2k2)

}(

c∗

c0
+
u

c0

)2

=

[

1

2
+

a2
0k

2
0g

2(g + 2s0)
(1 + a2

0k
2
0)

]

a2
0k

2
0

g

2(g + 2s0)
(1 + a2

0k
2
0), (66)

where c∗/c0 can be calculated by (63). Because s and ŝ are functions of ak, equation (66)
describes the relation between ak and u/c0, and it is shown as Figure 3.

5 Waves on a beach

In this section, we consider the waves on a beach. We recall that the full modulation
equations are

∂A

∂t
+
∂F

∂x
= 0, A =

∂L
(w)

∂ω
, F = −∂L

(w)

∂k
, (67)

∂H

∂t
+

∂

∂x
(HV ) = 0, V = U +

kA

H
, (68)

∂V

∂t
+ V

∂V

∂x
+ g

∂ζ

∂x
+

1

H

∂S

∂x
= 0, (69)

S = k(F − V A) + L
(w) −H

∂L
(w)

∂H
, (70)

∂k

∂t
+
∂ω

∂x
= 0, (71)
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Figure 3: Wave steepness ak versus u/c0; a0k0 = 0.1, 0.2, 0.3 (black, blue,red); wave break-
ing criterion ak = 0.44 (red dash) yields breaking for |u|/c0 > 0.27, 0.21, 0.13. The dash
line is the linear solution for a0k0 = 0.1.

where

L
(w)

=
DE∗

2
+
D2k

2E∗2

2g
+O(E∗3), (72)

and

D =
ω∗2

gk tanh(kH)
− 1, ω∗ = ω − Uk. (73)

The mean momentum equation (69) has been rewritten.
Suppose that h = h(x) → 0 as x→ 0, and that there is no background current. Then the

steady solution ( ∂
∂t = 0) of these modulation equations yields the dispersion relation (71,

73), constant frequency ω = ω0 , and constant wave action flux and zero mass transport,

−∂L
(w)

∂k
= F0, V = U +

kA

H
= 0, ω∗ = ω0 − Uk. (74)

Thus there is a mean Eulerian flow U = −kA/H, opposing the Stokes drift due to the
waves. The mean momentum equation (69) then yields the wave set-up ζ,

g
∂ζ

∂x
+

1

H

∂S

∂x
= 0, S = kF0 + L

(w) −H
∂L

(w)

∂H
. (75)

From (74), S as known in terms of H, and so

gζ = −
∫ x 1

H

∂S

∂x
dx = −

∫ H 1

H

∂S

∂H
dH. (76)
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To illustrate, first make the small amplitude approximation. Then ω∗ ≈ ω0, H ≈ h, so
that the dispersion relation becomes ω2

0 = gk tanh(kh) and yields k = k(h), D = 0. The
constant wave action flux condition reduces to

cga
2 = cg0a

2
0, (77)

where subscript “0” indicates the values at the depth h = h0 offshore. The expression (76)
can be written as follows. At first, we consider the total derivative of D. Now D can be
considered as D = D(k(h), h), so

dD

dh
=
∂D

∂k

∂k

∂h
+
∂D

∂h
= 0. (78)

Because
∂L

(w)

∂h
=
E∗

2

∂D

∂h
,

∂L
(w)

∂k
=
E∗

2

∂D

∂k
= −F0, (79)

using (78) we obtain

∂L
(w)

∂h
= F0

∂k

∂h
. (80)

Using (80), 1
h

∂S
∂h becomes

1

h

∂S

∂h
=

1

h

{

kF0 −
∂

∂h

(

h
∂L

(w)

∂h

)}

,

=
1

h

{

F0
∂k

∂h
− ∂L

(w)

∂h
− h

∂2L
(w)

∂h2

}

,

= −∂
2L

(w)

∂h2
.

Then, (76) becomes

gζ = −
∫ h 1

h

∂S

∂h
dh,

=

∫ h ∂2L
(w)

∂h2
dh,

=
∂L

(w)

∂h
,

= −1

2

(

1 − tanh2(kh)

tanh(kh)

)

kE∗,

= −1

2

(− sinh2(kh) + cosh2(kh)

sinh(kh) cosh(kh)

)

kE∗,

= − kE∗

sinh(2kh)
, (81)
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so that,

ζ = − ka2

2 sinh(2kh)
, (82)

where ζ0 = 0. This is always negative, and so is a set-down. In shallow water kh → 0,
cg ≈ (gh)1/2, and

k

k0
≈
(

h0

h

)1/2

,
a

a0
≈
(

h0

h

)1/4

, (83)

so that, (82) can be approximated by

ζ ≈ − a2

4h
=
a2

0h
1/2
0

4h3/2
. (84)

Since this small-amplitude theory predicts infinite amplitudes as h → 0, we must con-
sider nonlinear effects. One option is to impose an empirical wave-breaking condition
a/h = 0.44 (Thornton and Guza, 1982, 1983), which defines the depth h = hb, beyond
which there is a surf zone. Here, we shall examine nonlinear effects in h > hb in the shallow
water approximation kH → 0. Then the Lagrangian (72) becomes

L
(w) ≈ DE∗

2
− 9E∗2

16gk2H4
, D ≈ ω∗2

gHk2

(

1 +
k2H2

3

)

− 1. (85)

This Lagrangian is only valid when ak ≪ k3H3, that is, for a very small Stokes num-
ber (Stokes, 1847). Using the linear shallow water expressions (83) we require that S0 =
a0/k

2
0h

3
0 ≪ (h/h0)

9/4, which must fail as h → 0. Hence, we infer that in shallow water
we need to use a new theory, valid for Stokes number of order unity, so we consider the
Korteweg-de Vries model next.

The Korteweg-de Vries (KdV) equation for weakly nonlinear long water waves, propa-
gating on a constant undisturbed mean depth H, is given by (Mei, 1983, chapter 11.5.3)

∂ζ

∂t
+ c0

∂ζ

∂x
+

3c0
2H

ζ
∂ζ

∂x
+
c0H

2

6

∂3ζ

∂x3
= 0, c0 = (gH)1/2. (86)

The KdV balance has linear dispersion, represented by H3 ∂3ζ
∂x3 , balanced by nonlinearity,

represented by ζ ∂ζ
∂x . To leading order, the waves propagate unchanged in form with the

linear long wave speed c0 = (gH)1/2 . Nonlinearity leads to wave steepening, opposed by
wave dispersion, resulting in the KdV balance and the well-known solitary wave

ζ = assech
2[κ(x− ct)],

c

c0
− 1 =

as

2H
=

2κ2H2

3
. (87)

The periodic wave solution of KdV equation (86) is

ζ = 2a
[

b(m) + cn2(γθ;m)
]

, ω = −∂θ
∂t
, k = −∂θ

∂x
, (88)

b =
1 −m

m

E(m)

mK(m)
,

a

H
=

2

3
mγ2(kH)2, γ =

K(m)

π
, (89)
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c =
ω

k
= c0

{

1 +
a

H

[

2 −m

m
− 3E(m)

mK(m)

]}

, (90)

Here cn(x;m) is the elliptic function of modulus m where 0 < m < 1, and K(m), E(m) are
elliptic integrals of the first and second kind. The amplitude is a and the mean value is 0.
As m→ 1, this solution becomes a solitary wave, since then b→ 0 and cn2(x) → sech2(x).
As m → 0, γ → 1/2, and it reduces to sinusoidal waves of small amplitude a ∼ m. This
cnoidal wave (88) contains two free parameters; we take these to be the amplitude a and
the wavenumber k.

We now use the cnoidal wave expression (88) to evaluate the averaged Lagrangian (12),
incorporating a mean current U ,

L
(w)

=

(

c∗2

gH
− 1

)

G(m)
E∗

2
+O(E∗2), E∗ =

ga2

2
(91)

where
G(m) = 8(< cn4(γθ;m) > −b2), (92)

or

G(m) =
8[EK(4 − 2m) − 3E2 −K2(1 −m)]

3K2m2
. (93)

To leading order the phase speed c∗ = W = (gH)1/2, while the wave action density, wave
action flux and radiation stress now become, to leading order

A =
∂L

(w)

∂ω
=
G(m)E∗

ω∗
, F = −∂ω

(w)

∂k
= (U + c∗)A, (94)

S =
3ω∗A

2
=

3G(m)E∗

2
. (95)

As before, we now seek the steady solutions ( ∂
∂t = 0), so again ω = ω0 is the constant

wave frequency, and to leading order kh1/2 = k0h
1/2
0 is constant. Next F = F0 is the

constant wave action flux, implying that, to leading order in wave amplitude,

h1/2G(m)a2 = constant. (96)

Then using the expression (89) we find that a ∝ mK2k2h3 and so finally we get that

G̃(m) = K4m2G(m) = constant · h−9/2. (97)

The wave amplitude determined from (96, 97) is shown in Figure 4. As m → 0, G ∝ 1,
G̃ ∝ m2, and so m ∝ h−9/4, a ∝ h−1/4 which is the linear Green’s law (Green, 1837) result.
But, as m→ 1, G ∝ K−1, G̃ ∝ K3, a ∝ h−1.

Wave set-up is found from (69, 95) and is given by

gζ = −1

h

∂S

∂x
, S =

3ωA

2
=

3G(m)E∗

2
. (98)
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Figure 4: The wave amplitude is determined from (96, 97). The plots are for an initial
modulus m0 = 0.1, 0.5 (black, blue), while the linear solution ζ ∝ h−1/4 is the red curve.

But since the wave frequency ω = kc0, c0 = (gh)1/2 and the wave action flux c0A are
conserved (see (96)), we readily find that

ζ = −a
2G(m)

4h
= −a02h

1/2
0 G(m0)

4h3/2
, (99)

This is just the linear law again, and is independent of how the wave amplitude varies. Note
that for a0/h0 ≪ 1, m0 ≈ 0, G(m0) ≈ 1.
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