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1 Introduction.

In the previous lecture (Lecture 14) we sketched the derivation of the nonlinear Schrödinger
equation (NLS)

i∂τA + α∂2

ξ A + β∂2

ζ A + γ|A|2A = 0, (1)

where {α, β, γ} are real constants related to the original physical system from which the NLS
was derived. Equation (1) is an important approximate model to describe deep water waves.
In probing into the existence of stable wave patterns that propagate with (nearly) permanent
form in deep water, we encountered the modulational (or Benjamin-Feir) instability. In most
cases, 1D plane wave solutions of the NLS were found to be unstable to 1D perturbations
(along the wave propagation axis) and 2D perturbations (transverse to the wave propagation
axis).

We continue studying the existence and stability of waves with either 1-D or 2-D surface
patterns in this lecture, focusing on more recent work. We discuss two topics: (1) what
happens after the initial development of the Benjamin-Feir instability for “high”-amplitude
nonlinear plane waves, namely Fermi-Pasta-Ulam (FPU) recurrence (with additional sub-
tleties), and (2) the possible stabilization of “low”-amplitude nonlinear plane waves against
the Benjamin-Feir instability by dissipation.

2 Near recurrence of initial states.

Benjamin & Feir [2] showed that a periodic wave train with initially uniform finite amplitude
is unstable to infinitesimal perturbations. The instability takes the form of a growing
“modulation” of the plane wave, or when viewed in terms of the Fourier spectrum, as
exponentially growing sidebands to the plane wave frequency. But this instability is only
the beginning of the story: the long-time behavior of such wave trains is arguably even
more remarkable.

Lake, Yuen, Rungaldier & Ferguson [10] proposed that with periodic boundary condi-
tions, the focusing 1-D NLS (σ = 1 in (3)) should exhibit near recurrence of initial states
just as the Korteweg-de Vries equation does (see Lecture 5).
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Figure 1: Example of the long-time evolution of an initially nonlinear wave train. Initial
wave frequency is 3.6 Hz; oscillograph records shown on expanded time scale to display indi-
vidual wave shapes; wave shapes are not exact repetitions each modulation period because
modulation period does not contain integral number of waves.

To illustrate very qualitatively what ”near recurrence of initial states” may mean, we
take the linearized equations on deep water with periodic boundary conditions as an exam-
ple, one solution of which will be

η(x, t) =

N
∑

m=1

am cos{mx − ωmt + φm}, where ω2

m = gm. (2)

Since frequencies are not rationally related (recall that ωm = ω1

√
m), η is not periodic in

time. But for functions η that can be written as a sum over a finite number N of such
terms, the solution returns close to its initial state.

The situation for solutions of the NLS is of course different, owing to the nonlinear
nature of the equation, but is not entirely unrelated. Just as for the KdV, we saw that
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the NLS can be solved using an inverse scattering transform. In the previous lecture, we
discussed the case of an infinite domain, which yields, just as for the KdV, a finite number
of soliton solutions, each related to a discrete eigenvalue and corresponding eigenmode of
the scattering problem. A related scattering problem can be constructed in the periodic
domain, and similarly yields a finite number of eigenvalues and eigenmodes. Hence, the
dynamics of the solutions of the NLS in the periodic domain are limited to understanding
the evolution of a finite number of periodic modes. By contrast to the linear case described
above, the solution of the NLS is not a linear superposition of these modes, but nevertheless
exhibits a similar recurrence phenomenon. This type of long-time behavior, generic to
many nonlinear systems (KdV, NLS, ...) was first discovered by Fermi, Pasta & Ulam [5]
in numerical experiments, and has become known as the of Fermi-Pasta-Ulam (or FPU)
recurrence phenomenon.

Lake et. al. [10] investigated experimentally the long-time behavior of nonlinear wave
trains generated by a wavemaker in a water tank. During the early stages of evolution,
an initially unmodulated wave train develops an amplitude modulation as predicted by the
analysis of Benjamin & Feir (see results for x = 5, 10 and 15 ft in Figure 1). As the wave train
evolves further, the modulation increases in amplitude and the results of their linearized
stability analysis no longer apply. However, as the system continues evolving, the wave
train is observed to “demodulate” and the wave form returns to a relatively uniform state
(x = 30 ft in Figure 1). Therefore the recurrence of wave patterns in deep water observed
by Lake et. at. might be the first physical evidence of the FPU recurrence phenomenon.

3 2-D free surface.

Let us first briefly summarize the results from the last lecture. We saw that the 1D nonlinear
Schrödinger equation,

i∂τA + α∂2

ξ A + γ|A|2A = 0 (3)

has one-soliton solution,s as for example

A = a

∣

∣

∣

∣

2α

γ

∣

∣

∣

∣

1/2

sech{a(ξ − 2bτ)} exp{ibξ + iα(a2 − b2)τ}, (4)

in the case of αγ > 0 (a and b are constants). These solutions are envelope solitons. There
are also “dark solitons” when αγ < 0. The dark solitons are a local reduction in the
amplitude of a wave train.

The 1D NLS is often rewritten as

i∂τA + ∂2

ξA + 2σ|A|2A = 0. (5)

by a change of variables, with no loss of generality. In that case, envelope solitons occur for
σ = 1 and dark solitons for σ = −1. The stability of solutions of the 1D NLS to transverse
perturbations is studied using the 2D NLS:

i∂τA + ∂2

ξ A + β∂2

ζ A + 2σ|A|2A = 0. (6)
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Figure 2: Evolution of water packet in a long tank, showing the transverse instability that
was absent in the shorter tank of Figure 2. (Courtesy of J. Hammack)

Zakharov & Rubenchik [12] showed that in the case of σ = 1, for either sign of β, envelope
solitons are unstable to 2-D perturbations; in the case of σ = −1, for either sign of β, dark
solitons are unstable to 2-D perturbations. They also found that the unstable perturbations
will have long transverse wavelengths.

As discussed in the previous lecture, Hammack had found “stable” 1D envelope solitons
(where the only evolution of the soliton was caused by a weak damping), in apparent contra-
diction to the aforementioned results. However he later performed additional experiments
using the same wavemaker and imposing nearly identical initial conditions, but in a longer
tank. It turns out that the longer tank admitted the destabilizing transverse modes that
were artificially excluded in the shorter tank, as seen in Figure 2.

Let us now discuss aspects of the 2D NLS which are specific to 2D solutions, first in
theory, then in experiments.

Zakharov & Synakh [13] considered the elliptic focusing NLS in 2-D case by choosing
β = σ = 1 in equation (6) to obtain

i∂τA + ∂2

ξ A + ∂2

ζ A + 2|A|2A = 0. (7)
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Figure 3: Evolution of a nonlinear finite amplitude wave train: wave forms and power
spectral densities vs. propagation distance. (a) Initial stage of side-band growth, z = 5 ft,
carrier wave with small amplitude modulation. ( b ) z = 10 ft, strong amplitude modu-
lation, energy spread over many frequency components. (c) z = 25 ft, reduced amplitude
modulation, return of energy to frequency components of original carrier wave, its side
bands and harmonics. f0 = 3.25Hz, (ka)0 = δ = 0.23, (ka)5ft = 0.29.

They were able to find the following four conservation laws:

I1 =
∫ ∫

(|A|2)dξdζ, (8)

I2 =
∫ ∫

(A∂ξA
∗ − A∗∂ξA)dξdζ, (9)

I3 =
∫ ∫

(A∂ζA
∗ − A∗∂ζA)dξdζ, (10)

H = I4 =
∫ ∫

(|∇A|2 − |A|4)dξdζ. (11)

If we consider the function J(τ) =
∫ ∫

((ξ2 + ζ2) |A|2)dξdζ, and interpret |A|2(ξ, ζ, τ) as the
”mass density”, then I1 is the ”total mass” and J(τ) ≥ 0 is the ”moment of inertia”. It
follows by direct calculations that

d2J

dτ2
= 8H, (12)

where H is defined in (11). If H < 0, J(τ) will become negative in finite time, and it may
happen while quantities I1, I2, I3 and H are kept conserved. This phenomenon, which is
so called ”wave collapse”, has been important in nonlinear optic; nevertheless, since the
governing equation (6) (when β = σ = 1) does not apply to the surface-wave case, it is not
our major concern in present discussion.

Experiments of 2D NLS wave patterns have revealed a variety of puzzling features. For
example, we discussed in Section 2 the notion of FPU recurrence, and its apparent obser-
vations in the experiments of Lake, Yuen, Rungaldier & Ferguson [10]. However, a closer
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Figure 4: Experimentally stable wave patterns in deep water. Frequency=3Hz, wave-
length=17.3cm.

inspection of the results presented in Figure 1 reveals that the period of the recurring pat-
tern increases with distance in the tank (compare the first and last panel), a phenomenon
called frequency downshifting. Downshifting has also been observed and studied in optics
(see Figure 3, and [6], [7]). Interestingly, however, downshifting does not occur in simula-
tions based on 1-D or 2-D NLS, neither in those based on Dysthe’s generalization of NLS
([4]). It remains poorly understood.

In 1990s, Hammack built a new tank to study 2-D wave patterns on deep water. He
found experimental evidence, in some situations, of apparently stable wave patterns in
deep water (see Figure 4), despite the theoretical results described above [13]. How do we
reconcile the experimental observations with Benjamin-Feir instability? There are a few
possible explanations.

The first is that the modulational instability only appears in 1-D plane waves, but not
in 2-D periodic patterns. Motivated by Hammack’s experiments, many researchers began
to investigate theoretically the existence of 2-D periodic surface patterns of permanent
form on deep water. Craig & Nicholls [3] proved that such solutions are admitted in the
full equations of inviscid water waves with gravity and surface tension. Recently, Iooss &
Plotnikov [9] proved the existence of such patterns for pure gravity waves on deep water.
But neither of these papers considers the stability of the solutions, and the question remains
open as to whether they are stable or not.

Another possibility, explored in the next Section, has recently been proposed based on
even more puzzling experimental results: Hammack found that conditions on the water
surface may be essential for the instability. Figure 5(a) shows a 2D NLS experiment in
a tank using recently poured water, which clearly exhibits strong instabilities. Meanwhile
using the same volume of water after leaving it sit in the tank for a few days, in exactly
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(a) (b)

Figure 5: Surface conditions may play an important role of determining the Benjamin-Feir
instability. (a) f = 2Hz, new water; (b) f = 3Hz, old water.

the same experiment otherwise, reveals the presence of much more stable wave patterns,
as shown in Figure 5(b). (For more pictures and movies, visit Pritchard Lab’s website
at www.math.psu.edu/dmh/FRG). Why should “old” water stabilize the wave pattern?
A possible explanation is that impurities accumulating on the water surface provide an
additional damping mechanism, to suppress the growth of the slowly-growing modulational
instability.

4 Stabilization by damping

To study the possibility of stabilization by damping, let us consider the 1-D NLS with an
added damping effect.

i(∂tA + cg∂xA) + ǫ(α∂2

xA + γ|A|2A + iδA) = 0, (13)

where cg is the group velocity, ǫ is a small parameter, and δA is the small damping term
with δ ≥ 0. By introducing variables ξ = t − x

cg
and X = ǫ x

cg
, we obtain

i∂xA + α∂2

ξ A + γ|A|2A + iδA = 0. (14)

Define A(ξ,X) = e−δXA(ξ,X), then (14) becomes

i∂XA + α∂2

ξA + γe−2δX |A|2A = 0. (15)

Equation (15) is in fact a Hamiltonian equation, with a Hamiltonian

Ĥ(X) = i

∫

(

α|∂ξA|2 − γ

2
e−2δX |A|4

)

dξ. (16)

It follows immediately that dĤ
dX 6= 0.
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There is a solution to (15) corresponding to a wave train that is uniform in ξ

A1 = A0 exp

{

iγ|A0|2
(

1 − e−2δX

2δ

)}

(17)

If we perturb A around A1 by setting

A(X, ξ) = exp

{

iγ|A0|2
(

1 − e−2δX

2δ

)}

[|A0| + µ(u + iv)] + O(µ2), (18)

and insert (4) into (15), then equating O(µ) terms to zero yields

∂Xv = 2γe−2δX |A0|2u + α∂2

ξ u, (19)

∂Xu = −α∂2

ξ v . (20)

Without loss of generality, we seek solutions in the form

u(X, ξ) = û(X)eimξ + û∗(X)e−imξ , and v(X, ξ) = v̂(X)eimξ + v̂∗(X)e−imξ , (21)

where ∗ stands for the complex conjugate. It follows from (19) and (20) that

d2û

dX2
+

[

αm2

(

αm2 − 2γe−2δX |A0|2
)]

û = 0. (22)

By Lyapunov’s definition, a uniform wave train solution is said to be linearly stable if
for every ǫ > 0 there is a ∆(ǫ) > 0 such that if a perturbation (u, v) satisfies

∫

[u2(ξ, 0) + v2(ξ, 0)]dξ < ∆(ǫ) at X = 0, (23)

then necessarily
∫

[u2(ξ,X) + v2(ξ,X)]dξ < ǫ for all X > 0. (24)

It follows that there is a universal bound B which the total growth of any Fourier mode
can not exceed. To demonstrate the stability, one can choose ∆(ǫ) so that

∆(ǫ) <
ǫ

B2
. (25)

Using Lyapunov’s definition, we can see that there is a growing mode of equation (22) if

αm2

(

αm2 − 2γe−2δX |A0|2
)

< 0. (26)

It is not difficult to see that the growth stops eventually for any δ > 0. Moreover, the total
growth is bounded (see Figure 6.).
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Figure 6: The shaded region shows the location of the growing modes in wavenumber space.
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∣
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∣

∣

∣

1

2 m
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∣

∣

∣

β
γ

∣

∣

∣

1

2 l
|A| . Note that the experimental results

presented are for the β = 0 case.

5 Experimental verification.

We compare the theory presented above with data from a series of experiments ([11]). Figure
7 shows measured water surface displacement in column 1 and modal amplitudes obtained
from the corresponding Fourier transforms in column 2, measured at different distance from
the wavemaker. At X1, the Fourier spectrum shows that most of the power is in the carrier
wave frequency (at 3.3Hz) and its first harmonic, as well as two small peaks very close to
3.3Hz. These provide a long-wave sinusoidal modulation of the carrier wave, as observed
in the left-hand column. As the modulated wavetrain propagates downstream, we observe
two changes: its overall amplitude decays, and the shape of the modulation changes. By
inspection of the Fourier spectrum, we see that additional sidebands with frequencies near
that of carrier wave 3.3Hz have grown between X1 and X8

Figure 8 compares the measured and predicted amplitudes of the set of initially seeded
sidebands. Since the original Benjamin-Feir analysis did not include dissipation, direct
comparison between their non-dissipative theory with the experiments shows very poor
agreement (and is not shown in the Figure). A somewhat better agreement, as proposed
by Benjamin (1968), can be obtained by calculating the growth rate of the side-bands and
subtracting from this estimate their theoretical dissipation rate (which can be deduced
from that of the carrier wave, since they nearly have the same frequency). As shown in the
Figure 8, the amplitude predictions using this method agree with the experiments for short
distances along the tank. However, for longer distances this simple estimate is no longer
valid.

A much better agreement is obtained by using the full dissipative theory described
above. This experiment thus clearly demonstrates that the stabilization of the side-bands
results from the gradual decay of the amplitude of the carrier wave by dissipation, which
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Figure 7: Experimental wave records. Column 1: water displacement (in cm) with time
abscissa; column 2: corresponding Fourier coefficients (in cm) with frequency abscissa.
Distance of the wave gauge from the wavemaker: 128 cm at X1, and 478 cm at X8. See
also [11].

in turn stronly reduces the growth rate of the modulational instability.

Figure 8: Prediction (solid curves) from the damped NLS theory (22) and measurements
(dots) of the amplitudes of the two seeded sidebands |a−1| and |a1| as functions of distance
from the wavemaker. X = 0 corresponds to 128 cm from the wavemaker. The dashed line
corresponds to the Benjamin-Feir growth rate to which the side-band dissipation rate has
been substracted.

The growth of the next two unseeded sidebands are shown in Figure 9. Since none of
these were seeded, they started with smaller amplitudes than seeded the ones and remained
smaller. Again, the damped NLS theory adequately predicts their evolution.
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Figure 9: Prediction (solid curves) and measurements (dots) of the amplitudes of the two
unseeded sidebands, (a) |a−2| and (b) |a2|, and the amplitudes of the third set of sidebands,
(c) |a−3 and (d) |a3|, as functions of distance from the wavemaker. X = 0 corresponds to
128 cm from the wavemaker, and the starting values of the amplitude were taken from data
measured at the n = 1 location.

6 Summary.

The Benjamin-Feir instability implies that (1D) stable wave patterns propagating on deep
water with nearly permanent form do no exist without presence of damping effects. But any
amount of damping of the right kind can stabilize the instability. This dichotomy between
with and without damping applies to both 1-D plane waves and to 2-D periodic surface
patterns. However, this explanation is still somewhat controversial.

References

[1] M. Ablowitz & H. Segur, Solitons and the inverse scattering transform, Society for
Industrial Mathematics, (2000)

[2] T. Benjamin & J. Feir, The disintegration of wave trains on deep water Part 1. Theory,
J. Fluid Mech., 27, 417, (1967)

[3] W. Craig & D. Nicholls, Traveling two and three dimensional capillary gravity water

waves, SIAM journal on mathematical analysis, 32, 2, 323-359, (2000)

156



[4] K. Dysthe, Note on a Modification to the Nonlinear Schrodinger Equation for Appli-

cation to Deep Water Waves, Proc. R. Soc. Lond. A, 369, 105-114, (1979)

[5] E. Fermi, J. Pasta & S. Ulam, Studies of nonlinear problems, 1940. In Collected Papers
of Enrico Fermi, 2, 978. University of Chicago Press, (1962)

[6] J. Gordon, Theory of the soliton self-frequency shift, Optics Letters, 11, 10, 662-664,
(1986)

[7] F. Mitschke & L. Mollenuar, Discovery of the soliton self-frequency shift, Optics Letters,
11, 10, 659, (1986)

[8] A. Hasegawa & Y. Kodama, Solitons in optical communications , Clarendon press
Oxford, (1995)

[9] G. Iooss & P. Plotnikov, Small divisor problem in the theory of three-dimensional water

gravity waves, Memoirs of AMS. 200, No 940, (2009)

[10] B. M. Lake, H. C. Yuen, H. Rungaldier & W. E. Ferguson, Nonlinear deep-water waves:

theory and experiment. Part 2. Evolution of a continuous wave train, J. Fluid Mech.,
83, 1, 49-74, (1977)

[11] H. Segur, D. Henderson, J. Carter, J. Hammack, C. Li, D. Pheiff & K. Socha, Stabilizing

the Benjamin-Fair instability, J. Fluid Mech., 539, 229-271, (2005)

[12] V. Zakharov & A. Rubenchik, Instability of waveguides and solitons in nonlinear media,
Sov. Phys. JETP, 38, 494-500, (1974)

[13] V. Zakharov & V. Synakh, The nature of self-focusing singularity, Sov Phys JETP, 41,
441-448, (1976)

157




