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1 Introduction

The previous lectures have been dedicated to the study of specific nonlinear problems, most
of them involving solitons. It is now time to discuss the problem of triad resonances, as
they are actually the most basic nonlinear phenomenon that can occur between two waves.
As their name indicates, triad resonances involve the weak interaction between two waves
combining to form a third wave.

We construct a set of equations describing single-triad interactions in Section 2, and
study their mathematical structure in Section 3. Insights into the behavior of a real system,
subject to multiple triad resonances, are presented in Sections 4 and 5.

2 Derivation of the 3-wave equations

2.1 Weakly nonlinear interactions

For dispersive waves of small amplitude, resonant triad interactions are the first nonlinear
interactions to appear (if they are possible). Let’s start with a physical system of evolu-
tionary partial differential equations with no dissipation, described by a set of equations

N(u) = 0

with u = 0 being the state of rest.
To study the nonlinear interaction of three waves of weak amplitude, the procedure is,

as usual, to linearize around u = 0. From previous lectures, we expect the linear solution
to take the form:

u(x, t, ε) = ε

[

∑

k

A(k)ei(k·x−ω(k)t) + c.c.

]

+ O(ε2)

This linear problem is associated with a dispersion relation:

ω = ω(k).

Once this dispersion relation is found, the next step is to build a weakly nonlinear model.
In order to do so, one has to see if the linear problem admits three pairs {ki, ω(ki)}, with
ki 6= 0 for i = 1, 2, 3, satisfying a triad relationship:
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k1 ± k2 ± k3 = 0, (1)

ω(k1) ± ω(k2) ± ω(k3) = 0. (2)

A graphical procedure to investigate this possibility has been discovered several times
(e.g. Ziman (1960) [18], Ball (1964) [1]) and is illustrated in Figure 1. In Figure 1(a), the
solid line represents the linearized dispersion relation of pure gravity waves in deep water:

ω = ±
√

g|k|,

while Figure 1(b) shows the linearized dispersion relation of capillary-gravity waves in deep
water:

ω = ±

√

g|k| +
σ

ρ
|k|3.

The graphical procedure to detect resonant triads is the following. First, pick any point
(k1, ω1) on one of the branches (solid lines) of the dispersion curve. Then reproduce all
branches of the dispersion relation with the origin translated to (k1, ω1), here drawn as
the dashed lines. Let P be a point where the two curves intersect. Its coordinates in
the original coordinate system are identified as (k3, ω3), and as (k2, ω2) in the translated
coordinate system. Then by construction,

k1 + k2 = k3,

ω1 + ω2 = ω3.

In Figure 1(a), the only point of intersection is at the origin on the solid curve (k3 = 0)
contrary to our requirements. Hence, there is no possibility of forming any resonant triad
with pure gravity waves. In Figure 1(b) on the other hand one can notice that there are at
least two possibilities of forming a resonant triad in top right and in the bottom left hand
corner of the figure. In fact, for most choices of k1 there will be at least two intersection
points, leading to another two new triads. Hence, for capillary-gravity waves in 1D, there
are infinitely many possible triads.

We have just described the 1-D case in which k1, k2 and k3 are collinear, so they are
effectively scalars. In 2D, k1, k2 and k3 are two-component vectors. A similar procedure
can be applied, except that both solid and dashed curves now become 2-D surfaces. The
two surfaces typically intersect on 1-D curves (or not at all), showing that in 2D there are
an infinite number of possible triads associated with a given pair (k1, ω(k1)).

To conclude, there are two simple alternatives: if triplets of waves satisfying equa-
tions (1) and (2) exist, then triad resonances are expected. If there are no such triplets, one
has to look for resonant quartets (4-waves interactions). The latter alternative is discussed
in Lectures 14, 15 and 20.

2.2 Single triad

Suppose that equations (1) and (2) are satisfied for exactly one triad. Let us write u as a
superposition of the three interacting waves plus weak interaction terms:
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(b) Capillary-gravity waves, deep water

Figure 1: Linearized dispersion relations of: – (a) pure gravity waves in deep water, – (b)
capillary-gravity waves in deep water. In (a), no resonant triad can be formed and in (b),
(k1, ω1), (k2, ω2) and (k3, ω3) form a resonant triad.

u(x, t; ε) = ε

[

3
∑

m=1

Amei(km ·x−ωmt) + c.c.

]

+ ε2

[

3
∑

m=1

m
∑

n=−m

Bmn(t)ei((km +kn)·x−(ωn+ωm)t) + c.c.

]

+ O(ε3)

If we substitute this ansatz in the original set of equations N(u) = 0, we expect to recover
the linearized equations to O(ε). At O(ε2), we obtain a set of equations for the coefficients
Bnm(t), which, in a manner similar to the cases described in Lectures 5 and 6, have a LHS
equal to the LHS of the homogeneous linearized equations, and a RHS which depends on
the first order amplitudes Am times a phase function ei(km ·x−ωmt). By construction of the
resonant triad, some of these phases are in resonance with the LHS, leading to solutions
Bmn(t) which grow linearly with time. If that is the case, after a duration t ∼ 1/ε, the
O(ε2) terms are as important as the O(ε) terms and the asymptotic expansion is no longer
valid.

To solve the problem, we introduce as in Lectures 5 and 6 a slower timescale1 in the
wave amplitudes, perform a multiple-scale analysis, and find a compatibility condition to
prevent the amplitudes from blowing up. Hence, let u now be:

u(x, t; ε) = ε

[

3
∑

m=1

Am(εx, εt)ei(km ·x−ωmt) + c.c.

]

+ O(ε2).

In the general case, as found by Benney & Newell (1967) ([2]) among others, the amplitudes
have to satisfy this set of compatibility conditions in order to prevent any unphysical growth
in the equations:

1and/or a longer lengthscale. . .
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∂τA1 + c1 · ∇A1 = iδ1A
∗

2A
∗

3,

∂τA2 + c2 · ∇A2 = iδ2A
∗

1A
∗

3,

∂τA3 + c3 · ∇A3 = iδ3A
∗

1A
∗

2,

(3)

where τ = εt is the slow timescale, cn = dω/dk|k=kn
is the group velocity of the nth mode,

and δn is a real-valued constant which depends on the nonlinear terms of the original set
of equations N(u) = 0 and can be deduced from an analysis of the original Hamiltonian.
These equations can be applied in various contexts, e.g. capillary-gravity waves ([13]) or
χ2 materials in optics ([3]). Equations (3) are the so-called PDE version of the equations
of triad resonances.

3 Mathematical structure of a single triad of ODEs

A special case occurs when the complex wave amplitude depends on only one independent
variable. This can happen for example for systems in which the spatial planform is fixed
but its amplitude varies with time. In this case, equations (3) reduce to:

A′

1 = iδ1A
∗

2A
∗

3,

A′

2 = iδ2A
∗

1A
∗

3,

A′

3 = iδ3A
∗

1A
∗

2,

(4)

where A′

n is either ∂τAn or cn∂xAn. These equations are the so-called ODE version of the
equations of triad resonances.

3.1 Hamiltonian structure and integrability

If the original system is hamiltonian, so is this reduced system. The conjugate variables for
the single-triad ODEs are

qn(τ) = sign(δn)
An(τ)
√

|δn|
,

pn(τ) =
A∗

n(τ)
√

|δn|
for n = 1, 2, 3

and the Hamiltonian of the system is

H = i(A1A2A3 + A∗

1A
∗

2A
∗

3)

= i
√

|δ1δ2δ3|(sign(δ1δ2δ3)q1q2q3 + p1p2p3).

It is easy to verify that H and all the {pn, qn} verify

q′n =
∂H

∂pn

and p′n = −
∂H

∂qn

for n = 1, 2, 3.

126



The following quantities are constants of the motion:

−iH = A1A2A3 + A∗

1A
∗

2A
∗

3, (5)

J1 =
A1A

∗

1

δ1
−

A3A
∗

3

δ3
, (6)

J2 =
A2A

∗

2

δ2
−

A3A
∗

3

δ3
. (7)

(and so is the equivalently defined J3, although J3 is not independent of J1 and J2). Equa-
tions (6) and (7) are known as the Manley-Rowe equations.

We can now use some of the properties of Hamiltonian systems discussed in Lecture 4 to
study the integrability of the problem. Recall that the notion of integrability first requires
the definition of the Poisson bracket {F,G} for any two real-valued functions F (pn, qn, t)
and G(pn, qn, t):

{F,G} =

3
∑

m=1

(

∂F

∂pm

∂G

∂qm
−

∂F

∂qm

∂G

∂pm

)

=

3
∑

m=1

δm

(

∂F

∂A∗

m

∂G

∂Am
−

∂F

∂Am

∂G

∂A∗

m

)

.

We have already identified 3 constants of motion for our 6-dimensional phase space. We
next have to verify that these constants of motion are in involution, i.e. that any two pairs
have a null Poisson Bracket. This can indeed be verified, as for example:

{−iH, J1} =

3
∑

m=1

δm

(

∂(−iH)

∂A∗

m

∂J1

∂Am
−

∂(−iH)

∂Am

∂J1

∂A∗

m

)

= (A∗

1A
∗

2A
∗

3 − A1A2A3) + 0 + (−A∗

1A
∗

2A
∗

3 + A1A2A3)

= 0.

It can be easily shown in a similar way that {−iH, J2} = {J1, J2} = 0. Moreover, any 3
independent linear combination of these constants of motion will then also be in involution.
All that remains to be done is to construct the 3 action variables Pn (n = 1, 2, 3) as linear
combinations of −iH, J1 and J2, together with the 3 conjugate angle variables, such that
the {Pn, Qn} pairs satisfy

∂H

∂Qn

= −
dPn

dt
= 0

∂H

∂Pn

=
dQn

dt

The resultant system is completely integrable. As we saw in Lecture 4, the 3 action variables
define a 3-D surface in the 6-D phase space. Every solution of the ODEs consists of straight-
line motion on this surface.

The topology of the 3-D surface depends uniquely on the signs of δ1, δ2 and δ3. For the
Hamiltonian system defined above, it can be shown that the general solution can be written
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in terms of elliptic functions. In this case, the surface defined by {−iH, J1, J2} is compact
if and only if {δ1, δ2, δ3} do not all have the same sign. To see this, first note that if the
signs of δ1 and δ3 are different for example, then J1 = constant is the equation for an ellipse
in the (|A1|, |A3|) plane. It follows that provided at least one of the δn has a different sign,
it is always possible to select a pair among the three possible Jn for which the 2 equations
Ji=const and Jj=const combined describe a torus.

In the unusual situation however where δ1, δ2 and δ3 all have the same sign, Coppi,
Rosenbluth & Sudan (1969) [7] showed that A1, A2 and A3 can all blow up together, in
finite time: indeed, as J1 is a constant of the motion, if |A1| increases, |A3| has to increase
also according to equation (6) and as J2 is also a constant of the motion, |A2| has to
increase as well. . . This is the explosive instability, which is discussed in Lecture 21. It has
applications in plasma physics ([9]), density-stratified shear flows ([6, 8]) and for vorticity
waves ([14]).

3.2 Properties of single-triad systems

Consider a single triad of ODEs, without dissipation. In this example we consider a system
which has coefficients such that δ1 > 0, δ2 > 0 and δ3 < 0.

One property of such a configuration is that only A3 can share energy with the other
modes. This can be readily seen from the definition of J1 and J2 in equations (6) and (7),
which can be rewritten here as:

J1 =
|A1|

2

|δ1|
+

|A3|
2

|δ3|
and J2 =

|A2|
2

|δ2|
+

|A3|
2

|δ3|
.

Therefore, if |A1| (respectively |A2|) initially has almost all the energy, then J2 (respectively
J1) is initially small. Since J2 (J1) is a constant of motion, it necessarily remains small
thereby limiting the amplitude of the other modes. By contrast, if |A3| starts with almost
all the energy, it can distribute it to the whole system.

Moreover, Hasselmann (1967) [10] proved that in a single triad of ODEs in which
{δ1, δ2, δ3} do not all have the same sign, the interaction coefficient δn with the oppo-
site sign from the other two (in our example, that would be |A3|) is always the wave mode
with the highest frequency in the triad.

This section has shown that the case of a single triad of ODEs is well understood. If
the complex wave amplitude do not depend on only one independent variable, we have to
move on to the case of a single triad of PDEs.

4 Triads of PDEs

Zakharov & Manakov (1976) [17] showed that the system of equations (3) of PDEs is
completely integrable. Kaup (1978) [11] partly solved the initial-value problem in 1-D
on −∞ < x < ∞, with restrictions. Kaup, Reiman & Bers (1980) solved the initial-value
problem in 3-D in all space, under some restrictions. Besides that, few physical applications
of this theory have been developed so far.

Zakharov (1968) [16] went further than a single resonant triad interaction of PDEs
and considered all possible interactions, including the non-resonant ones. This led to the
Zakharov’s integral equation for the amplitudes:
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∂tA(k) + iω(k)A(k) = −i

∫∫

[V (k,k1,k2)δ(k + k1 + k2)A∗(k1)A∗(k2) + perm.] dk1dk2

−i

∫∫∫

[W (k,k1,k2,k3)δ(k + k1 + k2 + k3)A∗(k1)A∗(k2)A∗(k3) + perm.] dk1dk2dk3.

(8)

V and W are generalized interaction coefficients and perm. stands for the permutations in
the combinations of k’s, e.g. δ(k ± k1 ± k2). . . This equation acts on the fast timescale
whereas equations (3) acted on the slow timescale τ . As the slow timescales are still present
in equation (8), everything has to be resolved and a numerical integration is therefore slow
and expensive.

In general, single triads of ODEs are insufficient (i) when wave envelopes have spatial
variability, in which case PDEs are required, (ii) when there are multiple triad interactions,
in which case more ODEs (or PDEs) are required and (iii) when dissipation occurs, in
which case one needs to study non-Hamiltonian ODEs (the case of a single dissipative triad
is studied in Lecture 20). Having discussed a few properties of single triads of PDEs, let
us now discuss problems associated with multiple triad interactions under experimental
conditions.

5 Application to capillary-gravity waves

In Section 2.1, we saw that for capillary-gravity waves (and most realistic systems) there
exists a continuum of triads. So one can rightfully wonder whether any of the results
described in Section 3 for single-triad resonance remain applicable. If not, under what
conditions is it possible to model the problem with just a small number of triads? Under
what conditions are we instead forced to consider all possible triads, as in Zakharov’s
integral formulation seen in Section 4? This section discusses these questions in the light of
experimental results.

Simmons (1969) [15] conjectured that the magnitudes of the interaction coefficients δn

do not vary much across the continuum of possible capillary-gravity waves resonant triads.
Should this be correct, then any energy input into a single wave mode will eventually be
transferred to all the other modes, triad by triad, thus generating a broad-banded response
of the system to the applied forcing.

Perlin, Henderson and Hammack(1990) [12] attempted to test this conjecture experi-
mentally. In their work, a tank of typical size 10 cm× 1m filled with water is forced with a
paddle oscillating at a frequency f0 = 25Hz, therefore exciting capillary-gravity waves that
are subject to triad interactions. As we have seen in Section 2.1, in 2D and unbounded con-
figurations, the spectrum of possible interactions is a continuum. Although this geometry
is bounded, it is large enough to have a significant number of possible modes and one can
therefore expect to have a broad response in the frequency space.

A first series of experiments was performed and contrary to expectations did not display
the expected broad-band response, as can be seen in Figure 2. All figures show that, no
matter what the forcing amplitude is, the response of the fluid is localized in a few modes
with frequency mainly around f0. Figures 2(a) and 2(b) show results of the experiment

129



with two different forcing amplitudes. The components that are to be seen in this picture
are:

• a strong signal at f0,

• a second harmonic at f0 + f0 = 50Hz,

• a third harmonic at 2f0 + f0 = 75Hz,

• a very weak component at fc = 60Hz that can only be seen in Figure 2(b). It is an
internal frequency of the computer that controls the forcing mechanism and that is
transmitted to the tank as mechanical vibration.

• a frequency fα = 35Hz = f0 − fc,

• two frequencies fβ = 10Hz and fγ = 15Hz, characterized by fβ + fγ = f0.

If we ignore the second and third harmonics of the forcing, the specific transmission chain
is then the following: fc and f0, the forcing frequencies, interact to form fα, then f0 and
fα interact to form fβ which then interacts with f0 to form fγ .

A second series of experiments was later performed with a newer computer which did not
perturb the system with the additional frequency at fc = 60Hz. In these new experiments,
a broad frequency spectrum was observed in response to the forcing. It is therefore quite
remarkable to note how the whole system dynamics change depending on the presence or
absence of the additional forcing at fc, even when the forcing is so weak as to be barely
detected in Figure 2. The difference between the two sets of experiments suggests the
presence of a selection mechanism for individual triads through the additional forcing.

Now let us focus on the experiment related to Figure 2. In the triad involving fα = fc−f0

and following the notations of Section 3.2, A1, A2 and A3 correspond to f0, fα and fc

respectively. A3 is the highest frequency but A1 has almost all the energy initially, so
A2 and A3 should remain small. Although they indeed remain small compared to A1, A2

gets significantly bigger than A3, in contradiction with Section 3.2. In the triad involving
fα − f0 = fβ, (with A1, A2 and A3 corresponding to f0, fβ and fα this time), again we
have A3 ≪ A1, but A2 gains some energy in the process. Only in the last triad involving
f0−fβ = fγ is the highest mode also the most energetic one. Hasselmann’s results presented
in Section 3.2, which were valid for a single triad, are clearly not relevant here.

These experiments have revealed two surprising features: the selection of a small number
of triads among the possible continuum by a weak periodic signal, and the invalidation of
single-triad theory (see Section 3.2) as soon as more than one triad is involved. In an actual
physical problem involving 3-wave interactions, these two conclusions show how difficult
it may be, in practice, to make even qualitative predictions about a system’s response to
forcing. In general, it is indeed very hard to predict whether a single, a few, or all triads
must be taken into account. Any process has to be investigated in detail before answering
this question, following Prof. Einstein2:

2
Albert Einstein (14 March 1879, Ulm, Germany – 18 April 1955, Princeton, USA) German-born

scientist who was somehow active as a theoretical physicist but who unfortunately died four years too soon
to benefit from any Geophysical Fluid Dynamics summer course. If it had been the case, which could have
been possible given the quality of his resume, there is no doubt that he could have achieved much more.
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(a) Lower amplitude (b) Higher amplitude

Figure 2: Periodograms resulting from the excitation of capillary-gravity waves. The forcing
frequency is f0 = 25Hz. The figures from top to bottom show the field at various locations,
further away from the forcing apparatus.
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A good mathematical model of a physical problem should be as simple as possible,
and no simpler.

6 Summary and conclusion

Among all the nonlinear phenomena studied in this summer course, triad interactions are,
at first glance, the simplest, most natural and most intuitive ones. This lecture introduced
the mathematical theory of triad interactions, beginning with the simplest possible example,
namely the single triad of ODEs. It is interesting to note that despite its “simplicity”, the
problem of single triads of ODEs was only solved approximately at the same time as the
first results on solitons were published. The cases of a single triad of PDEs, and/or multiple
triad interactions, were solved later and are very briefly described here.

In the last part of these notes, theoretical results are confronted to an experimental
situation which sheds light on the difficulty in isolating single-triad interactions in practice.
These results should cast some doubt on the belief that these problems are simple, if such
a belief ever existed.

Triad interactions have a lot in common with other topics discussed in this lecture
course: for example, the KdV model seen in Lecture 5 could be seen as a triad interaction
between spatial frequencies 0, 0 and 0: 0 + 0 = 0. Another more explicit example is the
NLS model (see Lectures 3 and 13), which can also be seen as the interaction between a
wave of spatial frequency k and a wave of spatial frequency k + δk close to k.

This problem, even in its most simple configurations such as single triads or simple
triad clusters, is still the center of active mathematical attention (see e.g. Bustamante &
Kartashova (2009) [4, 5]).
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