
Lecture 11: Analysis of the Childress cell problem and

stability of cellular flows

George C. Papanicolaou

1 Introduction

In the first part of this lecture we will discuss the Childress analysis of the cell flow problem
and apply to it variational methods. Furtheremore the general case of coupled Childress
cells will be briefly analyzed. In the second part of the lecture we will discuss the stability
of 2D cell flows for the forced Navier–Stokes equation.

2 Childress analysis of of the advection-diffusion problem for

a simple cell flow

In the previous lecture we have seen that the multiscale analysis gives us the following large
scale equation

∇ [(ǫI + Ψ)(∇χ+ e)] = 0, (1)

where I is the unit matrix and Ψ is the matrix given by

Ψ(x, y) =

(

0 −ψ(x, y)
ψ(x, y) 0.

)

(2)

The effective diffusivity is equal to

σ∗ǫ (e) = 〈(ǫI +Ψ)(∇χ+e) ·e〉 = σ∗ǫ (e) = 〈(ǫI +Ψ)(∇χ+e) ·(∇χ+e〉 = ǫ+ǫ〈∇χ ·∇χ〉. (3)

The background flow is assumed to be given by a very simple velocity field u = (−∂yψ, ∂ψ)
with stream function

ψ(x, y) = sinx sin y, (4)

which is represented on Figure 1. Note that due to the symmetries of the flow (4) it is
sufficient to consider a quarter of the original cell [0, 2π] × [0, 2π]. Indeed, a fluid particle
which is initially contained in the cell [0, π] × [0, π] will stay in this cell for all times, see
Figure 1.

Equation (1) can be also written as

ǫ∆χ+ u · ∇χ+ e · u = 0. (5)
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(a) (b) 

Figure 1: Simple cellular flow with stream function ψ(x, y) = sinx sin y within the cell
[0, 2π] × [0, 2π] (a) and the quarter cell [0, π] × [0, π] (b).

Chose e = (1, 0) and let ρ = χ+ x. Then we obtain the equation

ǫ∆ρ+ u · ∇ρ = 0. (6)

The boundary conditions are specified as follows

ρ(0, y) = 0 ρ(π, y) = 0; (7)

∂

∂y
ρ(x, 0) = 0

∂

∂y
ρ(x, π) = 0. (8)

The effective diffusivity can be calculated as follows

σ∗ǫ =
ǫ

π2

∫ π

0

∫ π

0

(∇ρ)2 dxdy, (9)

where σ∗ǫ (e1) = σ∗ǫ . To calculate the effective diffusivity (9) boundary layer theory can be
applied [1]. On dimensional grounds the thickness of the boundary layer is expected to be
of order

√
ǫ. Indeed, the boundary layer can be estimated by equating the convection time

scale tconv ∼ L/U0 and and the diffusion time scale tdiff ∼ l2/ν (U0 is the characteristic
velocity and ν is the viscosity). The quantity l/L is the width of the boundary layer.

Equating tconv and tdiff we obtain L
U0

∼ l2

ν and Lν
U0L2 ∼

(

l
L

)2
. Since ǫ = 1

Pe ∼
(

l
L

)2
it follows

that the width of the boundary laye is given by l
L ∼ √

ǫ. The same arguments apply to the
case of more general periodic flows (discussed in [2]) such as the one given by the stream
function

ψ(x, y) = sinx sin y + δ cosx cos y, (10)

see Figure 2.
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Figure 2: Cellular flows with stream function ψ(x, y) = sinx sin y+ δ cos x cos y for different
δ’s.

Cellular flows connected with each other by slight random deformations of saddle points
have been considered by Isichenko in [3]. The deformation is assumed to be of the form

ψ(x, y) = sinx sin y + δψ̃(x, y), (11)

where the parameter δ is assumed to be small and the function ψ̃ is random with certain
properties [4].

In the periodic case the effictive diffusivity can be estimated by using the fact that ρ
changes significantly only in the boundary layer. Therefore ∇ρ is of the order of 1/

√
ǫ and

σ∗ǫ ∼ ǫ
(

1√
ǫ

)2 √
ǫ ∼ √

ǫ.

More precise results can be obtained by using the boundary layer method. We introduce
boundary coordinates

(x, y) −→ (ψ, θ), 0 ≤ ψ ≤ 1, −4 ≤ θ ≤ 4. (12)

Note that ψ is just the value of the stream function which is equal to zero on the boundary.
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Furthermore , the level lines of ψ and θ are orthogonal

∇ψ · ∇θ = 0, |∇ψ| = |∇θ| on ψ = 0. (13)

It is suitable to rescale the coordinate ψ in the neighborhood of the boundary. We define

(h, θ) =

(

ψ√
ǫ
, θ

)

. (14)

The standard chain rule yields

∂ρ

∂x
=
∂h

∂x

∂ρ

∂h
+
∂θ

∂x

∂ρ

∂θ

and
ρxx = hxxρx + h2

xρhh + 2hxθxρh,θ + θxxρθ + θ2
xρθθ.

For ǫ≪ 1 the left hand side of (6) can be written as

ǫ(ρxx+ ρyy) →
ǫ√
ǫ
∆ψρh + |∇ψ|2ρhh + ǫ∆θρθ + ǫ(∇θ)2ρθθ.

Form the condition (13) follows

−ψyρx + ψxρy = −∇⊥ψ · ∇θρθ = |∇ψ|2ρθ + h.o.t.

The boundary layer equation has the form

ρhh + ρθ = 0, h > 0, −4 ≤ θ ≤ 4 (15)

with boundary conditions

ρ(0, θ) = 0, for 0 ≤ θ ≤ 2 (16)

ρ(0, θ) = π, for − 4 ≤ θ ≤ −2 (17)
∂ρ
∂n = 0, for − 2 ≤ θ ≤ 0 and 2 ≤ θ4. (18)

Finally, we obtain the Childress equation

1√
ǫ
σ∗ǫ →

1

π2

∫ ∞

0

∫ 4

−4

ρ2
ndhdθ. (19)

This problem has been treated by A. Soward in [5].
Finally, let us remark that boundary layer coordinates can be used to give an estimation

of the scaling of σ∗ǫ in the case of random flows. As before we suppose that the boundary is
given by the level set ψ = 0. However, due to the randomness of the flow this boundary has
a complicated fractal structure. For small ψ let the characteristic velocity at ψ be denoted
as U(ψ) and the width of the boundary layer by l(ψ). Just as in the case of periodic flows we
equate the diffusion time scale to the convection time scale U2(ψ)/ǫ ∼ l(ψ)/U0. Percolation
methods can be applied to calculate the width of the boundary layer in dependence on ψ
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[4]. This gives l(ψ) ∼ ψ−7/4. Since the velocity is assumed to be smooth it follows that
U(ψ) ∼ ψ and U0 = O(1). Therefore

ψ ∼ ǫ4/15. (20)

Supposing that the gradient of ρ is of order 1
ψ we obtain from (9)

σ∗ǫ ∼ ǫ

(

1

ψ

)2

l(ψ)U(ψ) ∼ ǫ3/13, (21)

where l(ψ)U(ψ) is the area of the boundary layer. Therefore, for random flows the effective

diffusivity scales like ǫ
3

13 .

3 Variational analysis

The discussion of variational method results in this section is largely based on [2]. Denoting
E+

e1
= ∇χ+ e1 equation (1) becomes

∇ · (I + Ψ)E+
e1

= 0 (22)

and E+
e1

satisfies conditions ∇ × E+
e1

= 0 and 〈E+
e1
〉 = 0. We also consider the adjoint

problem
∇ · (I − Ψ)E−

e2
= 0, (23)

with ∇× E−
e2

= 0 and 〈E−
e2
〉 = 0. For convenience of notation define

D+
e1

= (I + Ψ)E+
e1
, E−

e2
= (I − Ψ)E−

e2
. (24)

Then the effective diffusivity becomes

σ∗(e1,e2) = 〈D+
e1

· e2〉. (25)

Define now

E′
12 =

1

2
(E+

e1
− E−

e2
) D′

12 =
1

2
(D+

e1
−D−

e2
), (26)

E12 =
1

2
(E+

e1
+ E−

e2
) D12 =

1

2
(D+

e1
+D−

e2
), (27)

(28)

It follows that

D′
12 = E′

12 + ΨE12, ∇ ·D′
12 = 0, ∇× E′

12 = 0 (29)

D12 = E12 + ΨE′
12, ∇ ·D12 = 0, ∇× E12 = 0. (30)

The effective diffusivity can be written as

σ∗ = 〈D+
e1

· e2〉 = 〈1
2
〈D+

e1
· e2〉 +

1

2
〈D−

e2
· e1〉 =

1

2
〈D+

e1
· E−

e2
〉 +

1

2
〈D−

e2
·E+

e1
〉 =
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1

4
〈(D+

e1
+D−

e2
)(E+

e1
+ E−

e2
)〉 − 1

4
〈(D+

e1
−D−

e2
)(E+

e1
− E−

e2
)〉 = 〈D12 ·E12〉 − 〈D′

12 ·E′
12〉.

Then we obtain the following matrix equation

σ∗ = 〈
(

−I Ψ
Ψ I

)(

E′
12

E12

)

·
(

E′
12

E12

)

〉. (31)

Note that the matrix

(

−I Ψ
Ψ I

)

is symmetric but indefinite.

Effective diffusivity can be computed as solution of the following variational problem

σast(e1,e2) = inf
〈F 〉= e1+e2

2
,∇×F=0

sup
〈F ′〉= e1−e2

2
,∇×F ′=0

{A(F,F ′)} (32)

where the matrix A(F,F ′) is given by

A(F,F ′) = 〈
(

−I Ψ
Ψ I

)(

F ′

F

)

·
(

F ′

F

)

〉.

The algebraic technique which underlies this calculation is that of a partial Legendre trans-
form.

We will now give upper and lower bounds. First analyze the supremum. Consider the
equation

∇F ′ + ∇ · (ΨF ) = 0 (33)

with

F ′ ==
e1 − e2

2
− ΓΨF, (34)

where Γ∇∆−1∇ is the projection operator on the space of divergence-free vector fields. It is
easily verified that (34) gives (33). Now we plug F ′ into the expression (32) setting e1 = e2.
Then we obtain the following upper bound for the effective diffusivity

σ∗ǫ (e) = inf
∇×F=0, 〈F 〉=e

{ǫ〈F · F 〉 +
1

ǫ
〈ΓΨF · ΓΨF 〉. (35)

Choose F = ∇f with f = f(h, θ). Then the first term 〈F · F 〉 in (35) gives

|∇f |2 = |∇h|2
(

∂f

∂h

)2

+ |∇θ|2
(

∂f

∂θ

)2

, (36)

where we have used (13). Since the second term in (36) is of order ǫ in comparison to the
first term we obtain

ǫ〈F · F 〉 ∼ ǫ

π2

∫ ∞

0

∫ 4

−4

|∇h|2 1

J(h, θ)

(

∂f

∂h

)2

dh dθ ∼
√
ǫ

π2

∫ ∞

0

∫ 4

−4

(

∂f

∂h

)2

dh dθ. (37)

Here we have used the fact that near the boundary J(h, θ) ∼ √
ǫ|∇h|2.

To calculate the second term in (35) suppose that 1
ǫΓΨ∇f = ∇f ′ so that f ′ is the

solution of the Poission equation

ǫ∆f ′ = (−ψy, ψx) · ∇f. (38)
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The second term of (35) becomes now

1

ǫ
〈ΓΨ∇f · ΓΨ∇f〉 = ǫ〈∇f ′ · ∇f ′〉. (39)

To obtain f ′ up to the leading order in ǫ it suffices to replace equation (38) by

∂2f ′

∂h2
∼ ∂f ′

∂θ
, (40)

where we have again used the fact that J(h, θ) ∼ √
ǫ|∇h|2 near the boundary. Solving (40)

by direct integration we can calculate the left hand side in (39) in the same way as we have
done for ǫ〈∇f · ∇f〉. This gives

1

ǫ
〈ΓΨ∇f · ΓΨ∇f〉 ∼

√
ǫ

π2

∫ ∞

0

∫ 4

−4

(
∫ h

∞

∂f

∂h′
dh′

)2

dh dθ. (41)

Finally we obtain the following inequality

lim
ǫ→0

1√
ǫ
σ∗ǫ (e) .

1

π2
inf
f

∫ ∞

0

∫

[

(

∂f

∂h

)2

+

(
∫ h

∞

(

∂f

∂θ

)

dh′
)2

]

dhdθ. (42)

In a similar a lower bound can be given. Note that Childress problem appears in both lower
and upper bounds bounds and represents therefore an asymptotic relation [2].

4 Coupled Childress problems

In each cell we have different functions fi(hi, θ) and the following system of Childress equa-
tions

∂2fi
∂h2

+
∂fi
∂θ

= 0, h > 0, θ ∈ [0, li]. (43)

We have to impose the following boundary conditions: fi|edges = fik(θ), where k is one of
the edges.

For common interior edges we have the conditions

∂fi
∂h

+
∂fj
∂h

|h=0 = 0. (44)

This allows us to construct a network approximation for convection-diffusion problems with
many cells, see Figure 3.

5 The Stability of Cellular Flows

Let us consider the two dimensional Navier-Stokes equations driven by a spatially periodic
force F (y):

{

Uτ + (U · ∇)U = −∇p̃+ 1
Re∆U + F

∇ ·U = 0
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Figure 3: Network approximation for problem of many coupled cells.

where the Reynolds number Re = UL
ν is based on a length scale L which is proportional to

the period of the forcing, taken to be equal to 2π.
As we are in two dimensions, the incompressibility condition ∇ · U = 0 implies that

there exists a stream function Φ so that U =
(−Φ2

Φ1

)

.
Writing the Navier-Stokes equations above in terms of the stream function Φ we have:

∂

∂t
∆Φ + Jyy(Φ,∆Φ) =

1

Re
∆2Φ + f (45)

where Jyy(u, v) = −u2v1 +u1v2. Here f = −F1,2 +F2,1 is 2π periodic in R2. It is chosen so
that it gives rise to a stream function φ which is a time independent, mean-zero, periodic
solution of the Navier-Stokes equations:

Jyy(φ(y),∆φ(y)) =
1

Re
∆2φ(y) + f(y) (46)

Let Φ(τ, y) = φ(y) + Φ̃(τ, y) be a perturbation of the stationary solution φ(y). If the

stream function of the basic flow is an eddy of size k−
1

2 , that is if φ(y) is an eigenfunction
of the Laplacian

∆φ = −kφ, (47)

then the driving force f(y) is

f(y) = − k2

Re
φ(y)
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and Φ̃(τ, y) satisfies:

∂τ∆Φ̃(τ, y) + Jyy(φ(y), (k + ∆)Φ̃(τ, y)) + Jyy(Φ̃(τ, y),∆Φ̃(τ, y)) =
1

Re
∆2Φ̃(τ, y) (48)

What concerns us here is the stability of eddy flows like (46) and (47) subject to an
initial modulational perturbation, a perturbation on a scale much larger than that of the
eddy (see Dubrulle and Frisch([8] for references about previous works in this direction). For
this purpose, we introduce a small parameter ǫ and define the large-scale time and space
variable

t = ǫ2τ, x = ǫy (49)

respectively and analyse a special class of asymptotic solutions of (48), where Φ̃(τ, y) =
Ψǫ(t, x) is expressed in the large-scale or slow variables as:

Ψǫ(t, x) = Ψ(t, x) + ǫΨ1(t, x, x/ǫ) + ǫ2Ψ2(t, x, x/ǫ) + . . . (50)

One can derive (see [6] for details) from (48) the large scale modulational equation for
Ψ(t, x) in the vorticity form:

∂t∇2Ψ(t, x) + αnonlinjikl ∇ji(∇kΨ(t, x)∇lΨ(t, x)) = νjikl∇j∇i∇k∇lΨ(t, x) (51)

(where we used the convention ∇i = ∂
∂xi

).

The coefficients νjikl are the tensor of eddy viscosity and αnonlinjikl are the effective coef-
ficients of another tensor which we call the nonlinear α-tensor (see [6] for details). Both
tensors are derived as necessary solvability conditions of auxiliary cell problems that guar-
antee the validity of the separation of scales for some finite time.

We will consider a family of cellular flows with a stream function

φ = sin(y1) sin(y2) + δ cos(y1) cos(y2), 0 ≤ δ ≤ 1

All coefficients of the eddy viscosity tensor νjikl but one, called ν ′ can be computed
analytically. The large-scale modulation equation corresponding to ν ′ is:

∂

∂t
∇2Ψ +

Re2

8
(∇2

2 −∇2
1)[δ((∇1Ψ)2 + (∇2Ψ)2) + (1 + δ2)∇1Ψ∇2Ψ] + +Jxx(Ψ,∇2Ψ)

=
1

Re
∇4Ψ − Re

8
[(∇1 + δ∇2)

2 + (δ∇1 + ∇2)
2]∇2Ψ + +(

Re

2
(1 + δ2) + ν ′)(∇2

2 −∇2
1)Ψ (52)

The ν ′ can be computed numerically for Re ≤ 32, and for closed cellular flows φ =
sin(y1) sin(y2) it can be shown that ν ′ = O(Re2.5) for large Re. This is done using an
extension of the variational principles discussed earlier in this lecture (for details see [6]).
Previously, Sivashinsky and Yakhot ([7]) and also Dubrulle and Frisch ([8]) have done a
small Reynolds number linear stability analysis (see [7]), but in our case we are concerned
with large Reynolds number flow.

The modulational perturbations of closed cellular flows (δ = 0 in (5)) are much more
stable than the shear cellular flows (δ = 1 in (5)) for large Reynolds numbers. More specif-
ically, exponential solutions Ψ(t, x) = exp(σt) exp(k1x1 + k2x2) are asymptotically unstable
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as Re → ∞ only if k1 ≈ ±k2 for closed cellular flows. This result is to be contrasted with
a similar stability result for shear flows, where exponential solutions are asymptotically
unstable as Re → ∞ if C1 ≤ |k1|/|k2| ≤ C2 where C1 = 1/C2 ≈ 0.45 6= 1. It can also be
shown that because of the presence of ν ′ = O(Re2.5) for closed cellular flows, the stability
at high Reynolds numbers is significantly better for flows with closed streamlines. Cell-like
mesoscale ocean flows (which are at high Reynolds numers in the range of 10 − −103) are
close to closed celluar flows, and so the previous analysis may explain their persistance.

Notes by Ravi Srinivasan, Dani Zarnescu and Walter Pauls.
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