
Lecture 10: Convection Diffusion Problems

George C. Papanicolaou

1 2-D Convection-Diffusion

Consider a 2-D divergence-free, periodic, steady flow field u(t, x) in a domain without any

boundaries. Let ρ̃(t, x) be the concentration of a passive scalar, say temperature. Then the

non-dimensional governing equations for the non-dimensional variables ρ̃ and u are:

ρ̃t + u · ∇ρ̃ = ǫ∆ρ̃ , (1)

∇ · u = 0 , (2)

together with the initial condition ρ̃(0, x) = ρ̃0(x). Note that ǫ is dimensionless parameter

since ǫ−1 ∼ UL/ν = Pe, where Pe is the Peclet number and L is the size of the peri-

odic cell. By integrating (1) over R
2 and using (2), we see that if

∫

R2 ρ̃
0(x)dx = 1, then

∫

R2 ρ̃(t, x)dx = 1. Also if ρ̃0(x) ≥ 0, then ρ̃(t, x) ≥ 0. Since ∇ · u = 0 and the flow is 2-D,

it is possible to introduce a stream function ψ(x):

u = (−ψy, ψx) . (3)

If ψ(x, y) = sinx sin y + δ cos x cos y, then we have a cellular flow if δ = 0, and a shear flow

if δ = 1. Since x(t) is the position of a diffusing particle, the evolution equation for x(t)

can be written as the following SDE:

dx(t) = u(x(t))dt +
√

2ǫ dW (t). (4)

If there is no diffusion (i.e. there is no
√

2ǫ dW (t) term in (4)), a particle starting on a

particular streamline remains on the streamline. If we have diffusion, there is a possibility

for a particle which starts in the region (a) to move to the region (b) (See Figure 1). In

that case, ρ̃ can be interpreted as the probability density of x(t).
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Figure 1: Rough sketch of the periodic cell

2 Effective diffusivities

Consider a diffusing particle, limt→∞
1
t
E
[

{(x(t) − x(0)) · e}2
]

always exists for u(x) which

is periodic and satisfies ∇ · u = 0 and 〈u(x)〉 = 0, where 〈·〉 represents the periodic cell

average. We denote this limit as σ∗ǫ (e), so called the effective diffusivity. It is a quadratic

form of e.

We now take the large time, long distance limit of the PDE (1) by changing the variables

t→ n2t, x→ nx and letting n→ ∞. (This process is called the homogenization.) ρn(t, x) =

ρ(n2t, nx) converges to ρ(t, x) in an appropriate sense as n → ∞, where ρ(t, x) is the

solution of the homogenized equation

ρt = ∇ · (σ∗ǫ∇ρ) , (5)

with ρ(0, x) = ρ0(x). σ∗ǫ (e) is a constant matrix, or more precisely

σ∗ǫ (e) = 〈(ǫI + Ψ)(∇χ+ e) · e〉 , (6)

where I is the identity matrix, χ(x) is a periodic function in R
2, and

Ψ(x) =

(

0 −ψ(x, y)

ψ(x, y) 0

)

.

(7)

It is found that σ∗ǫ (e) satisfies the polarization relation

(σ∗ǫ )ij =
1

4
[σ∗ǫ (ei + ej) − σ∗ǫ (ei − ej)] , i, j = 1, 2, (8)

where e1 = (1, 0), e2 = (0, 1). Apart from the homogenized equation (5), the homogeniza-

tion process also yields the cell problem, that is

∇ · [(ǫI + Ψ(x))(∇χ+ e)] = 0 . (9)
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σ∗ǫ can be calculated by solving (9) for χ and plugging it into (6). The full derivation of

(5), (6) and (9) will be shown in the next section. The physical interpretation of σ∗ǫ (e) is

the average flux in the direction e when there is a unit average gradient in the direction e.

3 Asymptotics for ρn(t, x)

Recall the passive scalar advection equation in the fast variables

∂ρn

∂t
= ∇ · ([I + Ψn(x)]∇ρn) (10)

with initial condition

ρn(0, x) = ρ0(x)

where I is the identity matrix, Ψn was defined previously, and we have set ǫ = 1. First we

must check that (10) solves (1)

∂ρn

∂t
=

(

∂ρn

∂x
+ ψn

∂ρn

∂y

)

x

+

(

∂ρn

∂y
− ψn

∂ρn

∂x

)

y

= (ρn)xx + (ρn)yy − (ψn)x(ψn)y + (ψn)y(ψn)x − ψn(ρn)xy + ψn(ρn)yx

= ∆ρn − u · ∇ρn.

Next we expand ρn in an asymptotic series

ρn(t, x) = ρ(t, x) +
1

n
ρ(1)(t, x, nx) +

1

n2
ρ(2)(t, x, nx) + ...

It is clear that for this problem we have a clean separation of scales. The fast time scale

does not appear because the coefficients are time homogeneous.

Let nx = ξ so that ∇ → ∇x + n∇ξ. Plugging ρn into (10) we get

∂

∂t

(

ρ+
1

n
ρ(1) +

1

n2
ρ(2) + ...

)

=

(∇x + n∇ξ) ·
[

(I + Ψn(ξ)) · (∇x + n∇ξ)

(

ρ+
1

n
ρ(1) +

1

n2
ρ(2) + ...

)]

.

As is standard procedure, we equate the coefficients for powers of n. At O(n2):

∇ξ · [(I + Ψn(ξ))∇ξρ] = 0. (11)

Note (11) is automatically satisfied since ρ is not a function of ξ. At O(n):

∇ξ · [(I + Ψn(ξ))∇xρ] + ∇x · [(I + Ψn(ξ))∇ξρ] + ∇ξ ·
[

(I + Ψn(ξ))∇ξρ
(1)
]

= 0. (12)
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The second term in (12) is zero via (11). Upon rewriting (12) we get

∇ξ ·
[

(I + Ψn(ξ))
(

∇ξρ
(1) + ∇xρ

)]

= 0 (13)

which resembles the cell problem (9). Equation (13) is a PDE for ρ(1)(ξ) (periodic in ξ).

We can cast (13) into the cell problem by letting

ρ(1)(t, x, ξ) =

d
∑

j=1

χej
(ξ)

∂ρ

∂xj

(t, x)

which separates the ξ dependence from the t, x dependence. The function χe(ξ) satisfies

∇ξ · [(I + Ψn(ξ)) (∇ξχe(ξ) + e)] = 0. (14)

At O(1):

∂ρ

∂t
= ∇ξ ·

[

(I + Ψn(ξ))∇xρ
(2)
]

+ ∇ξ ·
[

(I + Ψn(ξ))∇xρ
(1)
]

+

∇x ·
[

(I + Ψn(ξ))∇ξρ
(1)
]

+ ∇x · [(I + Ψn(ξ))∇xρ]

which is a PDE for ρ(2)(ξ) (periodic in ξ) with t, x as parameters. This can be re-written

as

∇ξ ·
[

(I + Ψn(ξ))∇ξρ
(2)
]

+ S = 0 (15)

where

S = ∇ξ ·
[

(I + Ψn(ξ))∇xρ
(1)
]

+ ∇x ·
[

(I + Ψn(ξ))∇ξρ
(1)
]

+ ∇x · [(I + Ψn(ξ))∇xρ] −
∂ρ

∂t
.

Upon taking the cell average of (15), we obtain

〈

∇x ·
[

(I + Ψn(ξ))∇ξρ
(2)
]〉

+ 〈S〉 = 0 (16)

and since ∇ξρ
(2) is a gradient of a periodic function, 〈S〉 = 0 which yields

∂ρ

∂t
=
〈

∇ξ ·
[

(I + Ψn(ξ))∇xρ
(1)
]〉

+
〈

∇x ·
[

(I + Ψn(ξ))∇ξρ
(1)
]〉

+

〈∇x · [(I + Ψn(ξ))∇xρ]〉
= ∇x ·

[〈

(I + Ψn(ξ))
(

∇ξρ
(1) + ∇xρ

)〉]
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since ∇xρ
(1) is the gradient of a periodic function. In component form

∂ρ

∂t
=
∑

i,j

∂

∂xi

〈

Aij(ξ)

(

∂ρ(1)

∂ξj
+

∂ρ

∂xj

)〉

=
∑

i,j

∂

∂xi

〈

Aij(ξ)

(

∂

∂ξj

(

∑

k

χek
(ξ)

∂ρ(t, x)

∂xk

)

+
∂ρ

∂xj

)〉

=
∑

i,j

∑

k

〈

Aij

(

∂χek

∂ξj

∂2ρ

∂xi∂xk

+ δjk
∂2ρ

∂xi∂xk

)〉

=
∑

i,k





∑

j

〈

Aij

(

∂χek

∂ξj
+ δjk

)〉





∂2ρ

∂xi∂xk

where Aij = Iij + Ψij(ξ). Thus, we obtain the homogenized equation

∂ρ

∂t
=
∑

i,k

σ∗ik
∂2ρ

∂xi∂xk

(17)

with

σ∗ik =
∑

j

〈

Aij

(

∂χek

∂ξj
+ δjk

)〉

or

∂ρ

∂t
= ∇ · (σ∗ǫ∇ρ) . (18)

In summary, the key ideas for homogenization are:

1) Perform a multiscale expansion

t, x ∼ macroscopic scales (slow)

n2t, nx ∼ microscopic scales (fast)

the resulting PDE will involve both fast and slow variables. In our case ψ → ψ(nx). In

general ψ → ψ(n2t, nx, t, x).

2) Seek an expansion in which the principle term is slowly varying (t, x).

3) The coefficients of the slowly varying equation come from a cell problem. In this case

the term of interest was ρ and we had to go to O(1) to get the cell problem.
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The effective diffusivity matrix, σ∗ǫ is given by

σ∗ǫ = 〈(ǫI + Ψ) (∇χ) · e〉
= 〈(ǫI + Ψ) (∇χ+ e) · (∇χ+ e)〉

where we added ∇χ to e because ∇ · [(ǫI + Ψ) (∇χ+ e)] = 0 (9). Also since (∇χ+ e) ·
(∇χ+ e) is a quadratic form and Ψ is skew symmetric, we obtain

σ∗ǫ (e) = ǫ
〈

|∇χ+ e|2
〉

= ǫ+ ǫ
〈

|∇χ|2
〉

.

From this it is clear that convection always enhances diffusion since σ∗ǫ (e) ≥ ǫ.

Finally we check convergence of the asymptotic expansion

1)

max
0≤t≤T,x∈ℜ2

|ρn(t, x) − ρ(x, t)| ≤ max
0≤t≤T,x∈ℜ2

∣

∣

∣

∣

1

n
ρ(1) +O

(

1

n

)∣

∣

∣

∣

≤ CT

1

n

provided ρ0 decays rapidly at infinity and is smooth.

2)

∫ ∞

0

∫

ℜ2

(∇ρn −∇ρ) θ(t, x)dxdt → 0

where θ is a test function. This says that on average the gradient converges. Calculating

∇ρn we obtain

∇ρn = ∇ρ+ ∇ξρ
(1)(t, x, nx) + ...

3)

sup
0≤t≤T

∫

ℜ2

∣

∣

∣
∇ρn −

(

∇ρ+ ∇ξρ
(1)
)∣

∣

∣

2
dx ≤ CT

1

n

thus ρ(1) closes the problem and allows us to determine ∇ρn. Note that 3) implies 2).

Notes by Tiffany A. Shaw and Aya Tanabe.
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