Lecture 10: Convection Diffusion Problems

George C. Papanicolaou

1 2-D Convection-Diffusion

Consider a 2-D divergence-free, periodic, steady flow field $u(t, x)$ in a domain without any boundaries. Let $\tilde{\rho}(t, x)$ be the concentration of a passive scalar, say temperature. Then the non-dimensional governing equations for the non-dimensional variables $\tilde{\rho}$ and u are:

$$
\begin{gather*}
\tilde{\rho}_{t}+u \cdot \nabla \tilde{\rho}=\epsilon \Delta \tilde{\rho}, \tag{1}\\
\nabla \cdot u=0, \tag{2}
\end{gather*}
$$

together with the initial condition $\tilde{\rho}(0, x)=\tilde{\rho}^{0}(x)$. Note that ϵ is dimensionless parameter since $\epsilon^{-1} \sim U L / \nu=P e$, where $P e$ is the Peclet number and L is the size of the periodic cell. By integrating (1) over \mathfrak{R}^{2} and using (2), we see that if $\int_{\mathfrak{R}^{2}} \tilde{\rho}^{0}(x) d x=1$, then $\int_{\mathfrak{R}^{2}} \tilde{\rho}(t, x) d x=1$. Also if $\tilde{\rho}^{0}(x) \geq 0$, then $\tilde{\rho}(t, x) \geq 0$. Since $\nabla \cdot u=0$ and the flow is 2-D, it is possible to introduce a stream function $\psi(x)$:

$$
\begin{equation*}
u=\left(-\psi_{y}, \psi_{x}\right) \tag{3}
\end{equation*}
$$

If $\psi(x, y)=\sin x \sin y+\delta \cos x \cos y$, then we have a cellular flow if $\delta=0$, and a shear flow if $\delta=1$. Since $x(t)$ is the position of a diffusing particle, the evolution equation for $x(t)$ can be written as the following SDE:

$$
\begin{equation*}
d x(t)=u(x(t)) d t+\sqrt{2 \epsilon} d W(t) \tag{4}
\end{equation*}
$$

If there is no diffusion (i.e. there is no $\sqrt{2 \epsilon} d W(t)$ term in (4)), a particle starting on a particular streamline remains on the streamline. If we have diffusion, there is a possibility for a particle which starts in the region (a) to move to the region (b) (See Figure 1). In that case, $\tilde{\rho}$ can be interpreted as the probability density of $x(t)$.

Figure 1: Rough sketch of the periodic cell

2 Effective diffusivities

Consider a diffusing particle, $\lim _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}\left[\{(x(t)-x(0)) \cdot e\}^{2}\right]$ always exists for $u(x)$ which is periodic and satisfies $\nabla \cdot u=0$ and $\langle u(x)\rangle=0$, where $\langle\cdot\rangle$ represents the periodic cell average. We denote this limit as $\sigma_{\epsilon}^{*}(e)$, so called the effective diffusivity. It is a quadratic form of e.

We now take the large time, long distance limit of the PDE (1) by changing the variables $t \rightarrow n^{2} t, x \rightarrow n x$ and letting $n \rightarrow \infty$. (This process is called the homogenization.) $\rho_{n}(t, x)=$ $\rho\left(n^{2} t, n x\right)$ converges to $\rho(t, x)$ in an appropriate sense as $n \rightarrow \infty$, where $\rho(t, x)$ is the solution of the homogenized equation

$$
\begin{equation*}
\rho_{t}=\nabla \cdot\left(\sigma_{\epsilon}^{*} \nabla \rho\right), \tag{5}
\end{equation*}
$$

with $\rho(0, x)=\rho^{0}(x) . \sigma_{\epsilon}^{*}(e)$ is a constant matrix, or more precisely

$$
\begin{equation*}
\sigma_{\epsilon}^{*}(e)=\langle(\epsilon I+\Psi)(\nabla \chi+e) \cdot e\rangle, \tag{6}
\end{equation*}
$$

where I is the identity matrix, $\chi(x)$ is a periodic function in \mathfrak{R}^{2}, and

$$
\Psi(x)=\left(\begin{array}{cc}
0 & -\psi(x, y) \tag{7}\\
\psi(x, y) & 0
\end{array}\right)
$$

It is found that $\sigma_{\epsilon}^{*}(e)$ satisfies the polarization relation

$$
\begin{equation*}
\left(\sigma_{\epsilon}^{*}\right)_{i j}=\frac{1}{4}\left[\sigma_{\epsilon}^{*}\left(e_{i}+e_{j}\right)-\sigma_{\epsilon}^{*}\left(e_{i}-e_{j}\right)\right], \quad i, j=1,2, \tag{8}
\end{equation*}
$$

where $e_{1}=(1,0), e_{2}=(0,1)$. Apart from the homogenized equation (5), the homogenization process also yields the cell problem, that is

$$
\begin{equation*}
\nabla \cdot[(\epsilon I+\Psi(x))(\nabla \chi+e)]=0 . \tag{9}
\end{equation*}
$$

σ_{ϵ}^{*} can be calculated by solving (9) for χ and plugging it into (6). The full derivation of (5), (6) and (9) will be shown in the next section. The physical interpretation of $\sigma_{\epsilon}^{*}(e)$ is the average flux in the direction e when there is a unit average gradient in the direction e.

3 Asymptotics for $\rho_{n}(t, x)$

Recall the passive scalar advection equation in the fast variables

$$
\begin{equation*}
\frac{\partial \rho_{n}}{\partial t}=\nabla \cdot\left(\left[I+\Psi_{n}(x)\right] \nabla \rho_{n}\right) \tag{10}
\end{equation*}
$$

with initial condition

$$
\rho_{n}(0, x)=\rho^{0}(x)
$$

where I is the identity matrix, Ψ_{n} was defined previously, and we have set $\epsilon=1$. First we must check that (10) solves (1)

$$
\begin{aligned}
\frac{\partial \rho_{n}}{\partial t} & =\left(\frac{\partial \rho_{n}}{\partial x}+\psi_{n} \frac{\partial \rho_{n}}{\partial y}\right)_{x}+\left(\frac{\partial \rho_{n}}{\partial y}-\psi_{n} \frac{\partial \rho_{n}}{\partial x}\right)_{y} \\
& =\left(\rho_{n}\right)_{x x}+\left(\rho_{n}\right)_{y y}-\left(\psi_{n}\right)_{x}\left(\psi_{n}\right)_{y}+\left(\psi_{n}\right)_{y}\left(\psi_{n}\right)_{x}-\psi_{n}\left(\rho_{n}\right)_{x y}+\psi_{n}\left(\rho_{n}\right)_{y x} \\
& =\Delta \rho_{n}-u \cdot \nabla \rho_{n}
\end{aligned}
$$

Next we expand ρ_{n} in an asymptotic series

$$
\rho_{n}(t, x)=\rho(t, x)+\frac{1}{n} \rho^{(1)}(t, x, n x)+\frac{1}{n^{2}} \rho^{(2)}(t, x, n x)+\ldots
$$

It is clear that for this problem we have a clean separation of scales. The fast time scale does not appear because the coefficients are time homogeneous.

Let $n x=\xi$ so that $\nabla \rightarrow \nabla_{x}+n \nabla_{\xi}$. Plugging ρ_{n} into (10) we get

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\rho+\frac{1}{n} \rho^{(1)}+\frac{1}{n^{2}} \rho^{(2)}+\ldots\right)= \\
& \left(\nabla_{x}+n \nabla_{\xi}\right) \cdot\left[\left(I+\Psi_{n}(\xi)\right) \cdot\left(\nabla_{x}+n \nabla_{\xi}\right)\left(\rho+\frac{1}{n} \rho^{(1)}+\frac{1}{n^{2}} \rho^{(2)}+\ldots\right)\right] .
\end{aligned}
$$

As is standard procedure, we equate the coefficients for powers of n. At $O\left(n^{2}\right)$:

$$
\begin{equation*}
\nabla_{\xi} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{\xi} \rho\right]=0 . \tag{11}
\end{equation*}
$$

Note (11) is automatically satisfied since ρ is not a function of ξ. At $O(n)$:

$$
\begin{equation*}
\nabla_{\xi} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{x} \rho\right]+\nabla_{x} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{\xi} \rho\right]+\nabla_{\xi} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{\xi} \rho^{(1)}\right]=0 \tag{12}
\end{equation*}
$$

The second term in (12) is zero via (11). Upon rewriting (12) we get

$$
\begin{equation*}
\nabla_{\xi} \cdot\left[\left(I+\Psi_{n}(\xi)\right)\left(\nabla_{\xi} \rho^{(1)}+\nabla_{x} \rho\right)\right]=0 \tag{13}
\end{equation*}
$$

which resembles the cell problem (9). Equation (13) is a PDE for $\rho^{(1)}(\xi)$ (periodic in ξ). We can cast (13) into the cell problem by letting

$$
\rho^{(1)}(t, x, \xi)=\sum_{j=1}^{d} \chi_{e_{j}}(\xi) \frac{\partial \rho}{\partial x_{j}}(t, x)
$$

which separates the ξ dependence from the t, x dependence. The function $\chi_{e}(\xi)$ satisfies

$$
\begin{equation*}
\nabla_{\xi} \cdot\left[\left(I+\Psi_{n}(\xi)\right)\left(\nabla_{\xi} \chi_{e}(\xi)+e\right)\right]=0 \tag{14}
\end{equation*}
$$

At $O(1)$:

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=\nabla_{\xi} \cdot {\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{x} \rho^{(2)}\right]+\nabla_{\xi} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{x} \rho^{(1)}\right]+} \\
& \nabla_{x} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{\xi} \rho^{(1)}\right]+\nabla_{x} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{x} \rho\right]
\end{aligned}
$$

which is a PDE for $\rho^{(2)}(\xi)$ (periodic in ξ) with t, x as parameters. This can be re-written as

$$
\begin{equation*}
\nabla_{\xi} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{\xi} \rho^{(2)}\right]+S=0 \tag{15}
\end{equation*}
$$

where

$$
S=\nabla_{\xi} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{x} \rho^{(1)}\right]+\nabla_{x} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{\xi} \rho^{(1)}\right]+\nabla_{x} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{x} \rho\right]-\frac{\partial \rho}{\partial t}
$$

Upon taking the cell average of (15), we obtain

$$
\begin{equation*}
\left\langle\nabla_{x} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{\xi} \rho^{(2)}\right]\right\rangle+\langle S\rangle=0 \tag{16}
\end{equation*}
$$

and since $\nabla_{\xi} \rho^{(2)}$ is a gradient of a periodic function, $\langle S\rangle=0$ which yields

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}= & \left\langle\nabla_{\xi} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{x} \rho^{(1)}\right]\right\rangle+\left\langle\nabla_{x} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{\xi} \rho^{(1)}\right]\right\rangle+ \\
& \left\langle\nabla_{x} \cdot\left[\left(I+\Psi_{n}(\xi)\right) \nabla_{x} \rho\right]\right\rangle \\
= & \nabla_{x} \cdot\left[\left\langle\left(I+\Psi_{n}(\xi)\right)\left(\nabla_{\xi} \rho^{(1)}+\nabla_{x} \rho\right)\right\rangle\right]
\end{aligned}
$$

since $\nabla_{x} \rho^{(1)}$ is the gradient of a periodic function. In component form

$$
\begin{aligned}
\frac{\partial \rho}{\partial t} & =\sum_{i, j} \frac{\partial}{\partial x_{i}}\left\langle A_{i j}(\xi)\left(\frac{\partial \rho^{(1)}}{\partial \xi_{j}}+\frac{\partial \rho}{\partial x_{j}}\right)\right\rangle \\
& =\sum_{i, j} \frac{\partial}{\partial x_{i}}\left\langle A_{i j}(\xi)\left(\frac{\partial}{\partial \xi_{j}}\left(\sum_{k} \chi_{e_{k}}(\xi) \frac{\partial \rho(t, x)}{\partial x_{k}}\right)+\frac{\partial \rho}{\partial x_{j}}\right)\right\rangle \\
& =\sum_{i, j} \sum_{k}\left\langle A_{i j}\left(\frac{\partial \chi_{e_{k}}}{\partial \xi_{j}} \frac{\partial^{2} \rho}{\partial x_{i} \partial x_{k}}+\delta_{j k} \frac{\partial^{2} \rho}{\partial x_{i} \partial x_{k}}\right)\right\rangle \\
& =\sum_{i, k}\left(\sum_{j}\left\langle A_{i j}\left(\frac{\partial \chi_{e_{k}}}{\partial \xi_{j}}+\delta_{j k}\right)\right\rangle\right) \frac{\partial^{2} \rho}{\partial x_{i} \partial x_{k}}
\end{aligned}
$$

where $A_{i j}=I_{i j}+\Psi_{i j}(\xi)$. Thus, we obtain the homogenized equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=\sum_{i, k} \sigma_{i k}^{*} \frac{\partial^{2} \rho}{\partial x_{i} \partial x_{k}} \tag{17}
\end{equation*}
$$

with

$$
\sigma_{i k}^{*}=\sum_{j}\left\langle A_{i j}\left(\frac{\partial \chi_{e_{k}}}{\partial \xi_{j}}+\delta_{j k}\right)\right\rangle
$$

or

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=\nabla \cdot\left(\sigma_{\epsilon}^{*} \nabla \rho\right) \tag{18}
\end{equation*}
$$

In summary, the key ideas for homogenization are:

1) Perform a multiscale expansion

$$
\begin{array}{cc}
t, x \sim \text { macroscopic scales } & \text { (slow) } \\
n^{2} t, n x \sim \text { microscopic scales } & \text { (fast) }
\end{array}
$$

the resulting PDE will involve both fast and slow variables. In our case $\psi \rightarrow \psi(n x)$. In general $\psi \rightarrow \psi\left(n^{2} t, n x, t, x\right)$.
2) Seek an expansion in which the principle term is slowly varying (t, x).
3) The coefficients of the slowly varying equation come from a cell problem. In this case the term of interest was ρ and we had to go to $O(1)$ to get the cell problem.

The effective diffusivity matrix, σ_{ϵ}^{*} is given by

$$
\begin{aligned}
\sigma_{\epsilon}^{*}= & \langle(\epsilon I+\Psi)(\nabla \chi) \cdot e\rangle \\
& =\langle(\epsilon I+\Psi)(\nabla \chi+e) \cdot(\nabla \chi+e)\rangle
\end{aligned}
$$

where we added $\nabla \chi$ to e because $\nabla \cdot[(\epsilon I+\Psi)(\nabla \chi+e)]=0$ (9). Also since $(\nabla \chi+e)$. $(\nabla \chi+e)$ is a quadratic form and Ψ is skew symmetric, we obtain

$$
\begin{aligned}
\sigma_{\epsilon}^{*}(e) & \left.=\epsilon\langle | \nabla \chi+\left.e\right|^{2}\right\rangle \\
& \left.=\epsilon+\left.\epsilon\langle | \nabla \chi\right|^{2}\right\rangle .
\end{aligned}
$$

From this it is clear that convection always enhances diffusion since $\sigma_{\epsilon}^{*}(e) \geq \epsilon$.

Finally we check convergence of the asymptotic expansion
1)

$$
\max _{0 \leq t \leq T, x \in \Re^{2}}\left|\rho_{n}(t, x)-\rho(x, t)\right| \leq \max _{0 \leq t \leq T, x \in \Re^{2}}\left|\frac{1}{n} \rho^{(1)}+O\left(\frac{1}{n}\right)\right| \leq C_{T} \frac{1}{n}
$$

provided ρ_{0} decays rapidly at infinity and is smooth.
2)

$$
\int_{0}^{\infty} \int_{\Re^{2}}\left(\nabla \rho_{n}-\nabla \rho\right) \theta(t, x) d x d t \rightarrow 0
$$

where θ is a test function. This says that on average the gradient converges. Calculating $\nabla \rho_{n}$ we obtain

$$
\nabla \rho_{n}=\nabla \rho+\nabla_{\xi} \rho^{(1)}(t, x, n x)+\ldots
$$

3)

$$
\sup _{0 \leq t \leq T} \int_{\Re^{2}}\left|\nabla \rho_{n}-\left(\nabla \rho+\nabla_{\xi} \rho^{(1)}\right)\right|^{2} d x \leq C_{T} \frac{1}{n}
$$

thus $\rho^{(1)}$ closes the problem and allows us to determine $\nabla \rho_{n}$. Note that 3) implies 2).

Notes by Tiffany A. Shaw and Aya Tanabe.

