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1 Introduction

Even in systems with a negative vertical density gradient, instability is possible if the density
is controlled by two components (e.g. temperature T and salinity S) that diffuse at different
rates [24]. In the oceans, temperature diffuses approximately 100 times faster than salt,
and so many regions of the ocean are potential candidates for so-called “double-diffusive
instability”.

Doubly-diffusive effects were observed by several authors before Stern [24] explained
the physical mechanism responsible. Jevons [4] and Ekman [1] had previously observed
instability at the interface between temperature stratified water and an overlying layer
of denser fluid, but neither recognised the significance of double-diffusion. Later, Stommel
et al. [28] showed that a “perpetual salt fountain” can arise when a tube is inserted vertically
through the interface between a layer of warm, salty water overlying cold, fresh water. The
fountain persists until the system becomes well mixed. This experiment has recently been
realised on an industrial scale [29].

There are two forms of double-diffusive instability, referred to as “salt fingers” and
“diffusive convection”.

1.1 Salt fingers

Suppose a fluid system contains positive vertical gradients of both temperature T and
salinity S, such that the total density gradient is negative (i.e. stably stratified). We describe
this configuration as “warm salty over cold fresh” (see Figure 1). In the absence of diffusive
effects, a parcel of fluid displaced vertically downwards would find itself more buoyant than
its surroundings, and therefore rise. However, if temperature diffusion is sufficiently strong,
and salt diffusion sufficiently weak, then the parcel can come into thermal equilibrium with
its surroundings before it rises, whilst still remaining salty. It therefore becomes less buoyant
than its surroundings, and continues to fall under gravity. This process leads to “salt fingers”
propagating down through the medium and, conversely, fresh fingers propagating upward
(see Figure 2).
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Figure 1: Schematic of the salt finger mechanism.

Figure 2: Salt fingers in a laboratory experiment [3].

1.2 Diffusive convection

Suppose we have negative vertical gradients of both T and S such that the total density
gradient remains stably stratified, i.e. “cold fresh over warm salty”(see Figure 3). A par-
cel of fluid displaced vertically downwards now quickly absorbs heat by diffusion from its
surroundings, and so “overshoots” when rising back through the medium. This leads to an
oscillation of growing amplitude, i.e. an oscillatory instability.

Both kinds of double-diffusive instability are thought to play a role in small-scale mixing
of the world’s oceans. However, since the conditions necessary for salt fingers are more
common, we focus here primarily on this instability.
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Figure 3: Schematic of the diffusive convection mechanism.

2 Mathematical formulation

2.1 The linear instability

We begin with the Boussinesq equations, which are valid over height scales less than the
pressure and density scale heights, provided the flow speed remains much less than the
sound speed.

0 = ∇ · u, (1)

∂u

∂t
+ u · ∇u = −

1

ρ0

∇p − g
ρ

ρ0

k̂ + ν∇2
u, (2)

∂T

∂t
+ u · ∇T = kT∇

2T, (3)

∂S

∂t
+ u · ∇S = kS∇

2S, (4)

ρ − ρ0

ρ0

= β(S − S0) − α(T − T0). (5)

Here, kT and kS represent diffusivity of heat and salt, ν is the kinematic viscosity and
(ρ0, p0, T0, S0) denote the (constant) reference values of density, pressure, temperature and
salinity.

We consider linear perturbations to a background state with u = 0, T z ≡
dT (z)

dz
=

const > 0, Sz ≡
dS(z)

dz
= const > 0 and

∂p

∂z
= −gρ. (Overbars are used to denote unper-

turbed quantities, and primes will be used for their linear perturbations.) The background
is stably stratified provided that density is decreasing with height, i.e.

1

ρ0

ρz = βSz − αT z < 0. (6)
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The perturbations then obey the equations

0 = ∇ · u′, (7)

∂u

∂t
= −

1

ρ0

∇p′ − g
ρ′

ρ0

k̂ + ν∇2
u
′, (8)

∂T ′

∂t
+ w′T z = kT∇

2T ′, (9)

∂S′

∂t
+ w′Sz = kS∇

2S′, (10)

ρ′

ρ0

= βS′ − αT ′. (11)

Salt fingers typically exhibit much longer vertical scales than horizontal scales, so we seek
solutions that are proportional to exp(λt) sin(k1x) sin(k2y). We then obtain three algebraic
equations relating λ to κ2 ≡ k2

1
+ k2

2
:

λw′ = −g(βS′ − αT ′) − νκ2w′, (12)

λT ′ + w′ T z = −kT κ2T ′, (13)

λS′ + w′ Sz = −kSκ2S′. (14)

(15)

For given κ, there are three solutions for λ, one real and two complex conjugate. The
complex solutions represent slowly decaying internal waves. The real solution represents
double-diffusive instability if λ > 0. To determine the instability criterion, we analyse the
marginal stability condition, λ = 0; we then find

g

(

βSz

kS
−

αT z

kT

)

= νκ4. (16)

This equation has solutions with κ ∈ R provided that the LHS is positive. The necessary
condition for instability is therefore

Rρ ≡
αT z

βSz

<
kT

kS
. (17)

The quantity Rρ is called the density ratio. In the ocean, the diffusivities of temperature
and salt are, respectively, 1.4 × 10−7m2 s−1 and 1.1 × 10−9m2 s−1, so instability requires
Rρ . 100. We also require Rρ > 1 so that the background state is stably stratified (see
equation (6)). The growth rate of the salt finger instability is greatest when Rρ ≈ 1.

2.2 Instability scales

We assume Rρ is of order unity, in which case equation (16) implies

g
βSz

kS
∼ g

αT z

kT
∼ νκ4. (18)
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The typical horizontal scale of the salt fingers is then d, where

d ∼
2π

κ
∼ 2π

(

kT ν

gαT z

)1/4

(19)

For typical parameter values (α ∼ 10−4K−1, g ∼ 10m s−2, T z ∼ 0.01K m−1, ν ∼ 10−6m2 s−1)
we find d ∼ 0.06m. The characteristic timescale and velocity for temperature diffusion are
then t ∼ d2/kT ∼ 104s and v ∼ kT /d ∼ 10−5ms−1.

3 The role of salt fingers in the oceans

The necessary conditions for double-diffusive instability are common within the world’s
oceans (see Figure 4). In particular, 90% of the main Atlantic thermocline has density

Figure 4: Regions of the ocean potentially susceptible to (a) salt fingers; (b) diffusive
convection [35].

ratio Rρ < 2.3, and is therefore strongly unstable to salt fingering. Shadowgraph imaging
of the North Atlantic reveals finger-like structures with the centimetre horizontal scale
characteristic of salt finger instability (see Figure 5).

Both salt fingers and diffusive convection are readily observed in laboratory experiments
and numerical simulations. Importantly, salt fingers are found to be robust to interactions
with internal gravity waves at Richardson numbers > 0.5. At smaller Richardson numbers,
horizontal shear interrupts the vertical flux of heat and salt [27].

The main interest in salt fingers within the oceanographic community arises from their
implications for vertical mixing [9, 22]. However, they may also explain the temperature–
salinity patterns within the oceans (see Figure 6), and in particular the observed “ther-
mohaline staircases” [26, 21]. Finally, salt fingers have been used to explain the lateral
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Figure 5: Shadowgraph images of the North Atlantic at 300m depth. The observed filaments
are believed to be salt fingers, tilted by shear [9].

intrusions that are regularly observed in the ocean’s temperature and salinity profiles [25].

4 The layered and smooth-gradient regimes of double-diffusive

instability

Depending on the density ratio Rρ, there are two different regimes of salt fingering. For
larger values of Rρ, both T and S have approximately linear vertical gradients, with small
perturbations on the scale of the salt fingers. For smaller values of Rρ, thermohaline stair-
cases develop, with horizontal layers of approximately uniform temperature and salinity
separated by thin interfaces (see Figure 7). The vertical scale of these layers is typically
much larger than the scale of the fingers themselves, e.g. tens of metres in the ocean, and
the transition between these two regimes occurs at around Rρ = 1.9 [21].

Layers also form in numerical and laboratory experiments of oscillatory diffusive convec-
tion (see Figure 8). The layers merge until, perhaps, reaching a maximum size. Regarding
the interfaces between layers as approximately laminar and steady, the (upward) fluxes of
temperature and salt across an interface of thickness h are

FT ∼ kT
∆T

h
and FS ∼ kS

∆S

h
, (20)

where ∆T and ∆S represent the total variations of temperature and salinity across the
interface. The interface is stable provided that the total (upward) density flux, Fρ, is
negative, where Fρ = ρ0(βFS − αFT ). We must therefore have

β∆S

α∆T
<

kT

kS
. (21)

We would like to know what determines the vertical flux of T and S through the system
and, in particular, how this depends on the density ratio Rρ. We analyse the staircase and
smooth-gradient regimes separately, seeking flux laws in either case.
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Figure 6: Temperature and salinity profiles in the West Atlantic near Venezuela.

4.1 The interfacial flux laws

We suppose that the fluxes of temperature and salt are determined by conditions within the
interfaces, and independent of the height of the layers. By dimensional analysis, we conclude

that the dimensionless temperature flux
FT /(∆T )4/3

(gαkT )1/3
can depend only on the dimensionless

quantities
α∆T

β∆S
,

ν

kT
and

kT

kS
. This leads to Turner’s 4/3 flux law [30]:

FT , FS ∝ (α∆T )4/3. (22)

Laboratory experiments typically exhibit an exponent slightly less than 4/3, though it is
unclear to what extent these experiments can be extrapolated to describe the ocean [20,
10, 6, 7]. The hypothesis that temperature and salinity fluxes in the ocean are independent
of layer thickness has been tested by Wilson [34]; if the ocean’s thermohaline staircases
are in a steady state, then the fluxes, and hence the temperature variations, should be
the same across each interface. Figure 9 shows the variation of α∆T and β∆S with layer
thickness for a typical Ice-Tethered Profiler (ITP) observation in the Arctic. The observation
supports Turner’s key assumption that temperature and salt fluxes are not correlated with
the thickness of the layers.

4.2 The gradient flux laws

In the smooth-gradient regime, we are concerned with perturbations to a background state
that has linear profiles of T and S. After non-dimensionalising with respect to the scales
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Figure 7: The gradient and staircase regimes of salt fingers [7].

Figure 8: The formation of layers in diffusive convection [12]. The colour shows the depar-
ture of temperature from a uniform gradient.

obtained for the linear perturbations, we are left with the equations

0 = ∇ · u, (23)

1

Pr

[

∂u

∂t
+ u · ∇u

]

= −∇p + (T − S)k̂ + ∇2
u, (24)

∂T

∂t
+ u · ∇T + w = ∇2T, (25)

∂S

∂t
+ u · ∇S +

w

Rρ
= τ∇2S, (26)

where τ = kS/kT is the Lewis number and Pr = ν/kT is the Prandtl number. From these
equations, we conclude that the dimensionless temperature and salt fluxes can depend only
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Figure 9: Temperature and salinity changes across interfaces between layers of thickness H.

on the dimensionless numbers Rρ, τ and Pr. In particular, we can write

−FT

kT T z

= Nu(Rρ, τ,Pr), (27)

where Nu is the Nusselt number. Regarding the diffusivities as fixed, we would like to
determine the variation of the Nusselt number with the density ratio Rρ. Stern [26] noted
that salt fingers can excite gravity waves and conjectured that this would lead to a collective

instability of the salt finger regime when the Stern number A =
βFS − αFT

ν(αT z − βSz)
becomes

order unity, in which case the nonlinear regime would be characterised by A ≈ 1. However,
the results of laboratory experiments suggest that the Stern number varies with Prandtl
number. Observations of heat–salt fingers typically yield A = O(1), Pr ≈ 7 and τ ≈ 0.01,
whereas sugar–salt fingers have A ∼ 0.001 − 0.1, Pr ≈ 1000 and τ ≈ 1/3 [23, 8, 2, 7].
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5 Asymptotic analysis of the fingering regime

5.1 Sugar–Salt fingers

Within the high-Prandtl number regime relevant to sugar–salt fingers we can justify ne-
glecting the inertial terms in equation (24). The problem is also simplified by the narrow
range of unstable density ratios (1 < Rρ < τ−1 ≈ 3). Several authors [31, 32, 13, 5, 14, 18]
have undertaken a weakly nonlinear analysis of the marginally unstable modes. The follow-

ing model is based on an expansion in which ε =

(

1

τRρ
− 1

)

is small [19]. The space and

time scales arise from the linear theory, and so we define x = ε−1/4
x0 and t = ε−3/2t0. The

remaining quantities scale as

u ∼ x/t ∼ ε5/4

∇2T ∼ ∇2S ∼ w ∼ ε5/4

⇒ (T, S) ∼ ε3/4

∇p ∼ ∇2
u

⇒ p ∼ ε3/2

After expanding the equations in powers of ε, the leading order balances are

T0 = S0 (28)

w0 = ∇2

0T0 = ∇2

0S0 (29)

and the second order balances are

∇0p0 = (T1 − S1)k̂ + ∇2

0u0 (30)

∂T0

∂t0
+ ∇0 · (u0T0) + w1 =

(
(

(
(

((2∇0 · ∇1T0 + ∇2

0T1 (31)

1

τ

[

∂S0

∂t0
+ ∇0 · (u0S0)

]

+ w0 + w1 =
(

(
(

(
((2∇0 · ∇1S0 + ∇2

0S1 (32)

(33)

After eliminating all second order terms, we are left with a closed system of asymptotic
equations:

(
1

τ
− 1)

[

∂T0

∂t0
+ ∇0 · (u0T0)

]

= (∇4

0 − 1)∇2

0T0 −
∂

∂z0

∇2

0p0 (34)

(

∂2

∂x2
0

+
∂2

∂y2
0

)

p0 = −
∂

∂z0

∇4

0T0 (35)

∇2

0u0 =
∂p0

∂x0

(36)

∇2

0v0 =
∂p0

∂y0

(37)

The power law scaling for the heat flux is therefore 〈wT 〉 ∼ w0T0 ∼ ε2. Similarly, the thermal
variance and density flux are found to scale as

〈

T 2
〉

∼ ε3/2 and 〈wρ〉 ∼ ε5/2 respectively.
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In this weakly nonlinear framework, the saturation of the double-diffusive instability can
be explained in terms of triad interactions between the various normal modes. Numerical
simulations of the 2D equations roughly reproduce the asymptotic prediction; the scaling
laws within the numerical results are estimated to be

〈wT 〉 ∼ ε1.73
〈

T 2
〉

∼ ε1.43 〈wρ〉 ∼ ε2.71. (38)

5.2 Heat–Salt fingers

For Heat–salt fingers, the Prandtl number is ≈ 7, so we cannot neglect inertial effects.
Also, the density ratio in the oceans is typically close to unity, so weakly nonlinear models
are unlikely to be of much relevance. Instead, Radko [17] examined the strongly nonlinear

regime, with δ =
√

1 − R−1
ρ � 1. Two dimensional numerical simulations of this regime

show “modons”, small coherent vortex pairs that seem to be largely responsible for the
transport of heat and salt (see Figure 10). In the limit δ → 0, an explicit solution for a

Figure 10: Stongly nonlinear heat–salt fingers in 2D, and properties of a single “modon”.

circular, rectilinearly propagating modon can be found, in polar coordinates, by expanding
in powers of δ. The solutions have w ∼ δ−3/4 and T, S ∼ δ−1/4, so that FT , FS ∼ 1/δ, as-
suming that the modons dominate transport. Again, 2D numerical simulations are roughly
in agreement with the asymptotic theory.

6 Thermohaline Staircases

One of the most intriguing aspects of double diffusive convection is its ability to transform
smooth vertical gradients into a stepped structure consisting of mixed layers separated by
thin stratified interfaces. These layers have great significance for small-scale mixing in the
oceans; tracer release experiments in the North Atlantic central thermocline suggest that
the presence of layers increases the effective diffusivity by salt fingers from 0.1cm2 s−1 to
1cm2 s−1 [22, 33, 27, 9]. Staircases are routinely observed in regions where the density ratio
is Rρ < 1.9 [21], but their origin is still poorly understood. Several questions can be raised:
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• What is the origin of thermohaline staircases?

• What are the conditions for staircase formation?

• What sets the vertical scale of the layers?

6.1 Explanation of layer formation

Several hypotheses have been put forward to explain the origin of thermohaline staircases,
e.g. [26, 11]. Here, we look at the suggestion by Radko [15] that layers formation arises
from an instability of the flux gradient laws. A secondary instability then allows layers to
merge, until the staircase achieves a stable vertical scale. This mechanism can be tested
against numerical simulations of staircase formation (see Figures 11 and 12).

Figure 11: Formation and evolution of layers in a numerical experiment. The temperature
field is shown at t = 50, t = 400 and t = 800.

Figure 12: Total x-averaged density for the same simulation as in Figure 11 at t = 100, 400,
500, 600, 700, 800.
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6.2 Instability of a uniform gradient

After averaging over small-scale variations of T and S, we have (1D) conservsation equations

∂T

∂t
= −

∂

∂z
FT (39)

∂S

∂t
= −

∂

∂z
FS (40)

We suppose that the Nusselt number Nu and flux ratio γ depend only on the local density
ratio Rρ:

FT

−kT Tz
= Nu(Rρ) (41)

αFT

βFS
= γ(Rρ) (42)

We now consider small (linear) perturbations (T1, S1, R1) to a background state (T0, S0, R0)
with uniform gradient in T and S. The qualitative form of γ(Rρ) is indicated schematically
in Figure 13. In the weakly unstable regime as Rρ → 1/τ , the flux ratio must become

Figure 13: Dependence of the flux ratio γ on the density ratio R

unity. In the strongly unstable regime as Rρ → 1 we expect “eddy mixing” to render both
temperature and salt fluxes equal. Experiments at intermediate values of Rρ suggest that
γ may obtain a minimum < 1 for some Rρ = Rmin [20].

A normal mode analysis for perturbations of the form (T1, S1) ∝ sin(kz) exp(λt) yields
an eigenvalue equation for the growth rate λ:

λ2 + λ

(

D2 + Nu(R0) − D1Nu(R0)R0 −
R0D2

γ(R0)

)

k2 − D1Nu2(R0)k
4/R0 = 0 (43)

where

D1 =
∂(1/γ)

∂R

∣

∣

∣

∣

Rρ=R0

R0 (44)
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and

D2 =
∂(Nu)

∂R

∣

∣

∣

∣

Rρ=R0

R0. (45)

So the basic uniform gradient is linearly unstable if D1 > 0, i.e. if γ decreases with increasing
Rρ. If the dependence of γ on Rρ is of the form shown in Figure 13 then instability is present
for any Rρ < Rmin. The physical mechanism responsible for this instability is sketched in
Figure 14. With Rρ and γ as shown, there is a convergence of heat flux in the lower
domain, amplifying the perturbation to the background linear temperature gradient. In the
nonlinear regime, this instability produces well-defined layers and interfaces.

Figure 14: The physical mechanism behind the γ-instability. A decrease in γ with R results
in the growth of the perturbation to a uniform T–S gradient.

To test whether variations of γ are essential for the formation of layers, we turn to
the results of numerical simulations. If we define ρf as the horizontal average of the full
(nonlinear) perturbation of density to the uniform background gradient, then we can write

∫

ρf
∂ρf

∂t
dz =

∫

ρf
∂

∂z
(FT − FS) dz (46)

⇒
d

dt

∫

ρ2

f

2
dz =

∫

ρf (1 −
FS

FT
)

∂

∂z
FT dz +

∫

ρfFT
∂

∂z
(−

FS

FT
) dz (47)

≡ INu + Iγ (48)

where the integrals INu and Iγ respectively quantify the effects of variation in heat flux
and flux ratio. The values of INu and Iγ were continuously recorded in the course of a
numerical simulation and the results are shown in Figure 15. We see that INu typically
makes a negative contribution to the density variance, so a positive contribution from Iγ is
essential for the formation of layers.

6.3 Merger of thin layers

Numerical simulations suggest that the layers formed by the γ-instability are not steady.
The second process in the creation of staircases is the merger of thin layers, increasing the
T and S variations across each interface. To explain the observed layer interaction, we
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Figure 15: Balance of terms in the density variance equation (48). (a) The time evolution
of Iγ and INu, indicated by solid and dashed lines. (b) Time integrals of Iγ and INu over
the period of layer formation.

now consider the stability of a series of salt finger interfaces. As illustrated by Figure 16,
we perturb the temperature profile, making alternate interfaces weaker and stronger. The

Figure 16: Temperature profiles of an infinite series of interfaces, taken from [16]. (a)
Unperturbed state with equal steps (b) Perturbed state in which the T–S jumps at the even
interfaces are decreased, and the jumps at odd interfaces are increased.

temperatures of the layers then evolve according to

H
∂

∂t
T12 = FT2 − FT1 (49)

H
∂

∂t
T23 = FT3 − FT2 (50)

We calculate the temperature fluxes across each interface using Turner’s 3/4 flux law:
FT = C(Rρ)(∆T )4/3 (see §4.1). Assuming that (∆T1−∆T2) � ∆T and (∆S1−∆S2) � ∆S
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we perform a normal mode analysis, which results in an eigenvalue problem for the growth
rate λ:

λ2 + λ(...) −
∂(γ−1)

∂Rρ

∣

∣

∣

∣

Rρ=R0

64T
2/3

0z

3H4/3
C2(R0)k

4 = 0 (51)

As before, there exists a positive root of this equation if
d(1/γ)

dRρ
> 0, so the equally stepped

state is unstable if γ is a decreasing function of Rρ.

6.4 Equilibration of thermohaline staircases

We have yet to explain the mechanism that halts the merging of the layers, and thus sets
the scale of the observed steady staircases. To do this, we augment the analysis of §6.3 with
convective dynamics, parameterised by the convective flux law NuL = CLRa0.2

ρ [7]. This
situation is illustrated by Figure 17. We now find that layers become stable above a certain

Figure 17: Temperature profiles of an infinite series of interfaces [16], including convective
fluxes across each layer (c.f. Figure 16).

critical height, Hcr, given by

Hcr =

(

CL

C

)15/8

(

Rmin

R0
− 1

)9/4 (

Rmin

γmin
− 1

)1/4

(

Rmin

γmin
− Rmin

R0

)5/2

(

1

γmin

− 1

)3/8 (

kT Nu

gαT0z

)1/4

. (52)

Numerical simulations of the parameterised (1D) equations [16] demonstrate both the initial
instability of the uniform gradient and the secondary merging instability (see Figure 18).
The merging events halt when the layers become larger than the predicted critical height
Hcr.

7 Future challenges

Although progress has been made in quantifying the effect of double diffusion on tempera-
ture flux, we are still lacking a unified theory for the whole parameter space. Little is known
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Figure 18: Results of a 1D simulation including parameterisations for both salt fingers and
convection (taken from [16]).

regarding the dependence of the Nusselt number on the Lewis number or Prandtl number.
The large-scale consequences of double diffusion have also not been fully studied, such as its
role in controlling the T–S relation, diapycnal velocity and lateral mixing. Further analysis
is required to predict and explain the magnitude and dynamics of thermohaline intrusions.
Finally, there are unanswered questions regarding the modification of double-diffusive in-
stability in the presence of shear, waves and turbulence, and the nature of the salt finger
anisotropy.
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