
Lecture 9: The use of variational methods for high-contrast

conductivity problems

George C. Papanicolaou

1 Introduction

In this lecture we will consider the conductivity in a high-contrast medium. Besides its
physical importance, the model under consideration will serve as an illustration of the use
of variational principles. This will provide a good introduction to variational principles
before using them in a more difficult form in the next lecture, where convection-diffusion
problems at high Péclet numbers (strong convection versus weak diffusion) are considered.

2 General formulation

Consider a smooth region Ω ⊂ R
2 with outward unit normal n(x) and with given non-

negative conductivity σ(x)1. The governing equation for the potential Φ is

∇ · [σ(x)∇Φ] = 0, x ∈ Ω, (1)

with Neumann boundary condition2

σ(x)
∂Φ

∂n
= I(x), x ∈ ∂Ω. (2)

The outgoing current I(x) is assumed to be equilibrated, hence
∫

∂Ω
IdS = 0. (3)

Next, let us introduce s(x) by assuming that the conductivity has the form

σ(x) = σ0e
−s(x)/ǫ, (4)

where we are interested in the high-contrast limit characterised by ǫ ↓ 0.

Plugging (4) into (1) leads to

ǫ∆Φ −∇s · ∇Φ = 0. (5)

1The analysis will not be affected qualitatively in 3 dimensions, but for simplicity we will consider R
2.

2Dirichlet boundary condition Φ|∂Ω = Ψ can be analysed as well, without qualitative changes.
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Notice that the operator on Φ in (5) is self-adjoint, as opposed to the similar equation for
a divergence-free fluid, which will be discussed in more detail in the next lecture. In fact,
(5) is difficult to solve in general, hence in the following section the classical variational
principles will be introduced to help us estimate the solution without solving the equation
itself.

3 Variational principles

To introduce the classical variational principles, we first need to define Dirichlet-to-Neumann
(DtN) and Neumann-to-Dirichlet (NtD) maps.

The DtN map Λ takes Dirichlet boundary data Φ|∂Ω = Ψ to the outgoing current
I = σ ∂Φ

∂n , hence ΛΨ = I. Furthermore, given (3) the NtD map can be defined as the inverse
of the DtN map, namely, Ψ = Λ−1I. Without going into details, let us note that after
determining these two maps, one has almost all the information about the problem that
can be observed at the boundary.

Λ is a self-adjoint, positive semidefinite map with respect to the standard inner product.
Indeed,

(ΛΨ,Ψ) =

∫

∂Ω
ΛΨ(x)Ψ(x) dS =

∫

∂Ω
I(x)Ψ(x) dS = (using the boundary conditions)

=

∫

∂Ω
σ(x)

∂Φ(x)

∂n
Φ(x) dS =

∫

∂Ω
Φ(x)σ(x)∇Φ · n dS = (by the divergence theorem)

=

∫

Ω
∇ · (Φ(x)σ(x)∇Φ) dV =

∫

Ω
σ(x)∇Φ · ∇Φ dV ≥ 0. (6)

which demonstrates that Λ is positive semidefinite. In the last step we integrated by parts
and used (1). Now let Ψ1 and Ψ2 be two different sets of Dirichlet boundary data. Using
(6) we see that

(ΛΨ1,Ψ2) =

∫

∂Ω
ΛΨ1(x)Ψ2(x) dS =

∫

Ω
σ(x)∇Φ1 · ∇Φ2 dV = (by symmetry)

=

∫

∂Ω
ΛΨ2(x)Ψ1(x) dS = (Ψ1,ΛΨ2) (7)

and thus the map Λ is self adjoint.
Now we are ready to introduce the Dirichlet variational principle(DVP):

(ΛΨ,Ψ) = min
Φ̃

{
∫

Ω
σ∇Φ̃ · ∇Φ̃ dV | ∇Φ̃ is square-integrable and Φ̃|∂Ω = Ψ

}

. (8)

To prove the DVP (8), we consider the Euler-Lagrange equations for the variational problem
on the right hand side. If an integral K is of the form

K =

∫

Ω
f

(

Φ̃, Φ̃xi

)

dV, where Φ̃xi
=

∂Φ̃

∂xi
, (9)
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then the corresponding Euler-Lagrange equations for solving δK = 0 by varying Φ are,
using the summation convention,

∂f

∂Φ̃
−

∂

∂xi

(

∂f

∂Φ̃xi

)

= 0. (10)

For equation (8) f(Φ̃, Φ̃xi
) = σΦ̃xi

Φ̃xi
and thus the Euler-Lagrange equations become

∂

∂xi

(

σΦ̃xi

)

= 0. (11)

This is simply our original conductivity equation (1), and thus the integral in the DVP
(8) is minimised when Φ̃ = Φ where Φ solves (1). The integral in the DVP is called the
Dirichlet integral and measures the rate of energy dissipation.

The DVP can be written in another form, namely,

(ΛΨ,Ψ) = min
Ẽ

{
∫

Ω
σẼ · Ẽ dV | Ẽ = ∇Φ̃ is a curl-free field and Φ̃|∂Ω = Ψ

}

. (12)

This form of the DVP helps to illustrate better the duality of DVP with the Kelvin
variational principle(KVP):

(I,Λ−1I) = min
j̃

{
∫

Ω
σ−1j̃ · j̃ dV | ∇ · j̃ = 0 and j̃ · n|∂Ω = I

}

, (13)

where j̃ = σ∇Φ̃ is the divergence-free current. A similar calculation shows that the mini-
mum is realized by j = σ∇Φ, where Φ is again the solution of (1).

Notice that while we cannot solve the conductivity equation (1) in general, we know
beforehand that the solution must be the minimiser of the functionals appearing in both
the DVP and KVP. This important feature allows us to bound both Λ and Λ−1 from above
by taking appropriately well-constructed test functions Φ̃ and j̃. It can be shown that this is
equivalent to finding both upper and lower bounds for the map Λ. In some problems these
bounds coincide, giving rise to the exact solution. This method is particularly well-suited
for problems in the high-contrast limit, where we try to find an asymptotic form for the
solution or at least bound it from both above and below.

4 The high-contrast conductivity problem

In this part of the lecture, we consider a particular problem which will serve as a bench-
mark to illustrate the application of the variational principles in the conductivity-related
problems.

Consider the conductivity equation (1) with Φ(x, y) = χ(x, y) + x,

∇ · [σ(∇χ + e1)] = 0, (14)

75



where for simplicity we have dropped the arguments (x, y). Here e1 is the unit vector along
the x-axis. Let the domain be the square region D = [−1/2, 1/2] × [−1/2, 1/2]. Consider
solutions with periodic potential χ(x, y), which must be unique up to an additive constant.
We will be interested in the quantity

σ∗(e1) = 〈σ(∇χ + e1) · e1〉, (15)

where the average 〈 〉 is taken over D. σ∗(e1) can be interpreted as the average flux per
unit average gradient in the direction e1.

Suppose σ(x, y) satisfies σ(x, y) = σ0e
−s(x,y)/ǫ with the high-contrast assumption 0 <

ǫ ≪ 1. Then we can write σ∗(e1) in the following form (justified by an integration by parts
and (15)):

σ∗(e1) = 〈σ(∇χ + e1) · (∇χ + e1)〉 =

∫

D
σ(∇χ + e1) · (∇χ + e1) dx dy. (16)

Furthermore, using the Dirichlet variational principle,

σ∗(e1) = min
χ̃

∫

D
σ0e

−s/ǫ(∇χ̃ + e1) · (∇χ̃ + e1) dx dy. (17)

We will now consider the case where there is a single saddle point in our domain (Figure
1). The integral in (17) cannot be tackled by Laplace’s method, since χ itself depends on
the infinitesimal parameter ǫ. In fact, the major contribution in the integral comes from
the neighbourhood of the saddle point, which, without loss of generality, can be assumed
to be at the origin with principal axes aligned with the coordinate axes. Since the gradient
of the function at a saddle point vanishes, we have the following Taylor expansion of s(x, y)
up to second order:

s(x, y) ≈ s0 −
k1

2
x2 +

k2

2
y2, (18)

where k1 and k2 are the principal curvatures of the level curves of s intersecting at the
saddle point.

Next, we pass into an approximate inequality by shrinking the integration region to
∆ = [−δ, δ] × [−δ, δ] and plugging the truncated expansion (18) into (17), as well as by
minimising only among the functions χ(x, y) = χ(x):

σ∗(e1) . min
χ̃(x)

∫

∆
σ0 exp

(

−
1

ǫ

[

s0 −
k1

2
x2 +

k2

2
y2

]

)

(χ̃x + 1)2 dx dy

≈ σ0e
−s0/ǫ

√

2πǫ

k2
min
χ̃(x)

∫ δ

−δ
e

k1

2ǫ
x2

(χ̃x + 1)2 dx. (19)

By DVP, the solution of (14) is the minimiser of the functional above, hence we will look
for χ(x) satisfying the equation

(e
k1

2ǫ
x2

(χ̃x + 1))x = 0, (20)
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Figure 1: Topography of s(x, y) in the square region D. At the origin there is a saddle point.
The filled line through the origin is a valley, the dashed line a ridge. The local maximum
is a filled circle, the local minima a hollow circle. The analysis focuses on a small region ∆
near the saddle point.

as well as the periodicity condition for χ, which implies

〈χ̃x〉 = 0. (21)

Since ǫ is very small, the average in (21) can be taken over the neighbourhood of the saddle
point [−δ, δ] as well as over the whole interval [−1/2, 1/2] without changing the leading
order asymptotic term.

Solving (20), one finds

χ̃x + 1 = Ce−
k1

2ǫ
x2

, (22)

while the constant C can be found from (21):

1 = 〈χ̃x + 1〉 = 〈Ce−
k1

2ǫ
x2

〉 ∼ C

√

2π
ǫ

k1
, (23)
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Hence the optimising function satisfies the approximate equation, which is asymptotic to
the solution of (14) as ǫ → 0

χ̃x + 1 ∼
1

√

2π ǫ
k1

e−
k1

2ǫ
x2

. (24)

Plugging into the integral (19) leads to

σ∗(e1) . σ0e
−s0/ǫ

√

2π
ǫ

k2

∫ δ

−δ

e−
k1

2ǫ
x2

2π ǫ
k1

∼ σ0e
−s0/ǫ

√

k1

k2
, (25)

which is the conductivity at the saddle point σ0e
−s0/ǫ, multiplied by the factor

√

k1

k2
deter-

mined by the curvatures of the level sets passing through that saddle point. For instance,
small k2 corresponds to a narrow saddle point, where the conductivity is large.

Using KVP for the backward NtD map, one can find a lower asymptotic bound for
σ∗(e1) which turns out to be exactly the same as in (25)! This leads to the exact asymptotic
expression for the average resulting flux in the x-direction

σ∗(e1) ∼ σ0e
−s0/ǫ

√

k1

k2
, as ǫ → 0. (26)

The corresponding resistance ρ∗ = 1/σ∗ is given by

ρ∗(e1) ∼
1

σ0
es0/ǫ

√

k2

k1
, as ǫ → 0. (27)

5 Complicated topography

We now consider the situation where we have multiple saddle points in our domain. Figure
2 gives an example of such a situation.

To understand how current flows through the domain in Figure 2 it is useful to make an
analogy with the flow of water. Consider the case where current flows into the domain over
a. It will flow directly to the nearest point of maximum conductivity, node 1. There current
will “pool” before escaping through the “channels” (saddle points) to the adjacent nodes.
From these nodes current will then flow either to other nodes via the channels, or out of
the boundary. Hence intuitively the domain can be thought of as behaving as a network of
channels.

More formally, we have that the dominant contribution to the DtN map Λ as ǫ ↓ 0
is determined by the saddle points of s(x, y). At each saddle point we can calculate the
resistance of the saddle using the result for a single saddle (27). Denote the resistance of
the saddle point between node i and node j as Rij. Note that Rij is symmetric: Rij = Rji.
Since each saddle can be considered as a single resistor, we can reduce the problem to a
simple resistor network (Figure 3).
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Figure 2: An example domain with multiple saddle points. The topography of s(x, y) is
shown. The filled circles are local maxima of conductivity, and are numbered 1, 2, 3, 4
(we will refer to these as the nodes). The lines dividing the domain are the valleys. The
corresponding divided parts of the boundary are labelled a, b, c, d. The saddle points are
shown as two short parallel lines, resembling channels. The resistance Rij has been labelled
by each saddle (see later discussion).

The DtN map Λ of the full problem is asymptotic as ǫ ↓ 0 to the DtN map of the
resistor network. Consider the Dirichlet problem where the potential Φ is specified on the
boundary, Φ|∂Ω = Ψ. Then equation (8) becomes

(ΛΨ,Ψ) = min
Φ̃,Φ̃|∂Ω=Ψ

∫

Ω
σ∇Φ̃ · ∇Φ̃ dV . min

Φ̃k,Φ̃k|∂Ω=Ψk

∑

j∈nodes

∑

k∈νj

1

Rjk

(

Φ̃j − Φ̃k

)2
. (28)

The above expression specifies an asymptotic upper bound for the DtN map Λ. Here the
set νj is the set of nodes adjacent to the node j, and Φ̃j is the potential at node j. Ψk are
the integrated potentials specified on the sections of boundaries k. The boundary condition
is now that the potentials Φ̃k of nodes adjacent to the boundary are equal to the potentials
Ψk on the boundaries. For the example domain, the boundary condition becomes Φ̃1 = Ψa,
Φ̃2 = Ψb, Φ̃3 = Ψc, and Φ̃4 = Ψd. In this simple case it means that all Φ̃k have been
determined, but in more complicated cases there can be Φ̃k in the interior of the domain
which are not directly specified by the boundary condition. Even in these more complicated
cases, the minimisation is now just an easy to solve matrix problem.

Similarly we can solve the dual problem (13) where the current j is specified on the
boundary rather than the potential Φ. The dual problem yields a corresponding asymp-
totic upper bound for the inverse map Λ−1, and thus an asymptotic lower bound for Λ. As
in the single saddle case it turns out that the asymptotic lower bound for Λ is the same as
the asymptotic upper bound, and thus we get an asymptotic equality.

Notes by Khachik Sargsyan and John Rudge.
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Figure 3: Resistor network corresponding to the domain in Figure 2. Current flows into or
out of the network over the boundaries a, b, c, d.
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