
Lecture 7: Stochastic integrals and stochastic differential

equations

Eric Vanden-Eijnden

Combining equations (1) and (2) from Lecture 6, one sees that W N
t satisfies the recur-

rence relation
W N

tn = W N
tn + ξn+1

√
∆t, W N

0 = 0. (1)

where tn = n/N , ∆t = 1/N and {ξn}n∈N are i.i.d. random variables taking values ±1 with
probability 1

2 as before. A natural generalization of this relation is

XN
tn+1

= XN
tn + b(XN

tn , tn)∆t + σ(XN
tn , tn)ξn+1

√
∆t, X0 = x (2)

If the last term were absent, this would be the forward Euler scheme for the ordinary
differential equation (ODE) Ẋt = b(Xt, t). If b(x, t) and σ(x, t) meet appropriate regularity
requirements, it can be shown that XN

t converges to a stochastic process Xt as N → ∞
(i.e. as ∆t → 0 with n∆t → t). The limiting equation for Xt is denoted as the stochastic

differential equation (SDE)

dXt = b(Xt, t)dt + σ(Xt, t)dWt, X0 = x, (3)

as a remainder that the last term in (2) divided by ∆t does not have a standard function as
limit. The notation dWt comes from (1) since this equation can be written as W N

tn+1
−W N

tn =

ξn+1

√
∆t. We note that the convergence of XN

t to Xt holds provided only that the ξn’s are
i.i.d. random variables with mean zero, Eξn = 0, and variance one, Eξ2

n = 1. The standard
choice in numerical schemes is to take ξn = N(0, 1), in which case

√
∆t ξn+1

d
= Wtn+1

− Wtn .

In the discussion below, however, we will stick to the choice where {ξn}n∈N are i.i.d. random
variables taking values ±1 with probability 1

2 since it facilitates the calculations.
Next, we study the properties of Xt solution of (3) and introduce some nonstandard

calculus due to Itô to manipulate this solution.

1 Itô isometry and Itô formula

Consider the recurrence relation

XN
tn+1

= XN
tn + f(W N

tn )ξn+1

√
∆t, XN

0 = 0.
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Let us investigate the properties of the limit of XN
n∆t as N → ∞, assuming that this limit

exists. The limiting form of the recurrence relation above is traditionally denoted as

dXt = f(Wt, t)dWt, X0 = 0,

which can also be expressed as the stochastic integral

Xt =

∫ t

0
f(Ws, s)dWs.

Stochastic integral have special properties called the Itô isometry

E

∫ t

0
f(Ws, s)dWs = 0,

E

(

∫ t

0
f(Ws, s)dWs

)2
=

∫ t

0
Ef2(Ws, s)ds.

The first of these identity is often written and used in differential form

Ef(Ws, s)dWs = 0.

The Itô isometry is easy to demonstrate. The first identity is implied by

EXN
tn = E

n−1
∑

m=0

f(W N
tm , tm)ξm+1

√
∆t

=
n−1
∑

m=0

Ef(W N
tm , tm)Eξm+1

√
∆t = 0,

where we used the independence of the ξm’s and Eξm = 0. The second identity is implied
by

E(XN
tn )2 = E

n
∑

m,p=0

f(W N
tm , tm)f(W̄ N

tp , tp)ξm+1ξp+1∆t

=
n

∑

m=0

Ef2(W N
tm , tm)∆t,

where we use the fact that ξm and ξp are independent unless m = p, and ξ2
m = 1 by

definition.
Going back to (3), a very important formula to manipulate the solution of this equation

is Itô formula which states the following. Assume that Xt is the solution of (3) and let f
be a smooth function. Then g(Xt) satisfies the SDE

dg(Xt) = g′(Xt)dXt + 1
2g′′(Xt)σ

2(Xt, t)dt

=
(

g′(Xt)b(Xt, t) + 1
2g′′(Xt)σ

2(Xt, t)
)

dt + g′(Xt)σ(Xt, t)dWt.

If g depends explicitly on t, then an additional term ∂g/∂tdt is present at the right hand-
side. Itô formula is the analog of the chain rule in ordinary differential calculus. However
ordinary chain rule would give

dg(Xt) = g′(Xt)dXt.
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Here because of the non-differentiability of Xt, we have the additional term that depends
on g′′(x).

The proof of Itô formula can be outlined as follows. We Taylor expand g(XN
tn+1

)−g(XN
tn )

using the recurrence relation (2) for XN
tn and keep terms up to O(∆t):

g(XN
tn+1

) − g(XN
tn )

= g′(XN
tn )(XN

tn+1
− XN

tn ) + 1
2g′′(XN

tn )(XN
tn+1

− XN
tn )2 + · · ·

= g′(XN
tn )(XN

tn+1
− XN

tn )

+ 1
2g′′(XN

tn )
(

b(XN
tn , tn)∆t + σ(XN

tn , tn)ξn+1

√
∆t

)2
+ O(∆t3/2)

= g′(XN
tn )(XN

tn+1
− XN

tn ) + 1
2g′′(XN

tn )σ2(XN
tn , tn)ξ2

n+1∆t + O(∆t3/2)

= g′(XN
tn )(XN

tn+1
− XN

tn ) + 1
2g′′(XN

tn )σ2(XN
tn , tn)∆t + O(∆t3/2),

where in the last equality we used ξ2
n+1 = 1. The Itô formula follows in the limit as ∆t → 0.

2 Examples

The Itô isometry and the Itô formula are the backbone of the Itô calculus which we now use
to compute some stochastic integrals and solve some SDEs. As an example of stochastic
integral, consider

∫ t

0
WsdWs.

Taking f(x) = x2 in Itô formula gives

1
2dW 2

t = WtdWt + 1
2dt.

Therefore
∫ t

0
WsdWs = 1

2W 2
t − 1

2t.

Notice that the second term at the right hand-side would be absent by the rules of standard
calculus. Yet, this term must be present for consistency, since the expectation of the left
hand-side is

E

∫ t

0
WsdWs = 0,

using the first Itô isometry, and the expectation of the right hand-side is zero only with the
term 1

2 t included since 1
2EW 2

t = 1
2t.

As a first example of SDE, consider

dXt = −γXtdt + σdWt, X0 = x

This is the Ornstein-Uhlenbeck process. Using Itô formula with f(x, t) = eγtx, we get (this
is Duhammel principle)

d
(

eγtXt

)

= γeγtXtdt + eγtdXt = σeγtdWt.
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Figure 1: Three realizations of the Ornstein-Uhlenbeck process with X0 = 0 and γ = σ = 1.

Integrating gives

Xt = e−γtx + σ

∫ t

0
e−γ(t−s)dWs.

This process is Gaussian being a linear combination of the Gaussian process Wt. Its mean
and variance are (using the Itô isometry)

EXt = e−γtx

E(Xt − EXt)
2 = σ2

∫ t

0
(e−γ(t−s))2ds =

σ2

2γ
(1 − e−2γt).

Thus when γ > 0

Xt
d→ N

(

0,
σ2

2γ

)

,

as t → ∞.
As a second example of SDE, consider the so-called geometric Brownian motion

dYt = Ytdt + αYtdWt, Y0 = y.

This process has some application in mathematical finance. Itô’s formula with f(x) = log x
gives

d log Yt =
1

Yt
(Ytdt + αYtdWt) −

1

2Y 2
t

α2Y 2
t dt.

Integrating we get

Yt = yet−
1
2α2t+αWt .

Note that by the rules of standard calculus, we would have obtained the wrong answer

Yt = yet+αWt (wrong!)
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Indeed the term −1
2α2t in the exponential is important for consistency since taking the

expectation of the SDE for Yt using the first Itô isometry gives

dEYt = EYtdt,

and hence
EYt = yet.

The solution above is consistent with this since

EeαWt = e
1

2
α2t.

3 Generalization in multi-dimension

The definition of Itô integrals and SDE’s can be extended to multi-dimension in a straight-
forward fashion. The SDE

dXj
t = bj(Xt, t)dt +

K
∑

k=1

σjk(Xt, t)dW k
t , j = 1, . . . , J

where {W k
t }K

k=1 are independent Wiener processes, defines a vector-valued stochastic process
Xt = (X1

t , . . . ,XJ
t ). The only point worth noting is the Itô formula, which in multi-

dimension reads:

df(Xt) =

J
∑

j=1

∂f(Xt)

∂xj

dXj
t + 1

2

J
∑

j,j′=1

∂2f(Xt)

∂xj∂xj′

(

K
∑

k=1

σjk(Xt, t)σkj′(Xt, t)
)

dt

4 Forward and backward Kolmogorov equations

Consider the stochastic ODE

dXt = b(Xt)dt + σ(Xt)dWt, X0 = y.

Define the transition probability density ρ(x, t|y) via
∫ x2

x1

ρ(x, t|y)dx = P{Xt+s ∈ [x1, x2)|Xs = y}.

(ρ(x, t|y) does not depends on s because b(x) and σ(x) are time-independent.) The tran-
sition probability density is an essential object because the process Xt is Markov, in other
words: for any t, s ≥ 0

P(Xt+s ∈ B[x1, x2)|{Xs′}0≤s′≤s}) = P(Xt+s ∈ B[x1, x2)|{Xs}),

i.e.the future behavior of Xt given what has happened up to time s depends only on what
Xs was. We will derive equation for ρ. Let f be an arbitrary smooth function. Using Itô
formula, we have

f(Xt) − f(y) =

∫ t

0
f ′(Xs)dXs + 1

2

∫ t

0
f ′′(Xs)a(Xs)ds,
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where a(x) = σ2(x). Taking expectation on both sides, we get

Ef(Xt) − f(y) = E

∫ t

0
f ′(Xs)b(Xs)ds + 1

2E

∫ t

0
f ′′(Xs)(Xs)ds.

or equivalently using ρ

∫

R

f(x)ρ(x, t|y)dx − f(y)

=

∫ t

0

∫

R

f ′(x)b(x)ρ(x, s|y)dxds + 1
2

∫ t

0

∫

R

f ′′(x)a(x)ρ(x, s|y)dxds.

Since this holds for all smooth f , we obtain

∂ρ

∂t
= − ∂

∂x
(b(x)ρ) + 1

2

∂2

∂x2
(a(x)ρ) (4)

with the initial condition limt→0 ρ(x, t|y) = δ(x − y). This is the forward Kolmogorov

equation for ρ in terms of the variables (x, t). It is also called the Fokker-Planck equation.
Equivalently, an equation for ρ in terms of the variables (y, t) can be derived. The

Markov property implies that

ρ(x, t + s|y) =

∫

R

ρ(x, t|z)ρ(z, s|y)dz.

Hence

ρ(x, t + ∆t|y) − ρ(x, t|y) =

∫

R

ρ(x, t|z)ρ(z,∆t|y)dz − ρ(x, t|y)

=

∫

R

ρ(x, t|z)
(

ρ(z,∆t|y) − δ(z − y)
)

dz.

Dividing both side by ∆t and taking the limit as ∆t → 0 using the forward Kolmogorov
equation one obtains

∂ρ

∂t
=

∫

R

ρ(x, t|z)
(

− ∂

∂z
(b(z)δ(z − y)) + 1

2

∂2

∂z2
(a(z)δ(z − y))

)

dz,

which by integration by parts gives

∂ρ

∂t
= b(y)

∂ρ

∂y
+ 1

2a(y)
∂2ρ

∂y2
. (5)

This is the backward Kolmogorov equation for ρ in terms of the variables (y, t). The operator

L = b(y)
∂

∂y
+ 1

2a(y)
∂2

∂y2
,

is called the infinitesimal generator of the process. The coefficient b and a can be expressed
as

b(y) = lim
t→0

1

t
(EyXt − y), a(y) = lim

t→0

1

t
Ey(Xt − y)2,
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Figure 2: Snapshots of the density of the Ornstein-Uhlenbeck process at time t = 0.01
(blue), t = 0.1 (red), t = 1 (green), and t = 10 (magenta). Here X0 = y = 1 and γ = σ = 1.
The last snapshot at t = 10 is very close to the equilibrium density.

where Ey denotes expectation conditional on X0 = y,
Both the forward and the backward equations can be considered with different initial

conditions. In particular, given a smooth function f , if we define

u(y, t) = Eyf(Xt),

then u(y, t) =
∫

R
f(x)ρ(x, t|y) and hence it satisfies

∂u

∂t
= b(y)

∂u

∂y
+ 1

2a(y)
∂2u

∂y2
,

with the initial condition u(y, 0) = f(y). In this sense, the SDE for Xt is the characteristic
equation that is associated with this parabolic PDE, much in the same way as the ODE
Ẋt = b(Xt) is the characteristic equation associated with the first order PDE ∂u/∂t =
b(y)∂u/∂y. This can be generalized in many ways. For instance, the solution of

∂v

∂t
= c(y)v(y) + b(y)

∂v

∂y
+ 1

2a(y)
∂2v

∂y2
.

with the initial condition v(y, 0) = f(y), can be expressed as

v(y, t) = Eyf(Xt)e
R t

0
c(Xs)ds.

This is the celebrated Feynman-Kac formula in the context of SDEs.
Let us consider an example. The forward differential equation associated with the

Ornstein-Uhlenbeck process introduced in the last section is

∂ρ

∂t
= γ

∂

∂x
(xρ) +

σ2

2

∂2ρ

∂x2
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The solution of this equation is

ρ(x, t|y) =
1

√

πσ2(1 − e−2γt)/γ
exp

(

−γ(x − ye−γt)2

σ2(1 − e−2γt)

)

.

This shows that the Ornstein-Uhlenbeck process is a Gaussian process with mean ye−γt

and variance σ2(1 − e−2γt)/2γ. It also confirms that this process tends to N(0, σ2/2γ) as
t → ∞ since

ρ(x) = lim
t→∞

ρ(x, t|y) =
e−γx2/σ2

√

πσ2/γ
.

Generally, the limit of ρ(x, t|y) as t → ∞, when it exists, gives the equilibrium density ρ of
the process. It satisfies

0 = − ∂

∂x
(b(x)ρ) +

1

2

∂2

∂x2
(a(x)ρ).

Forward and backward Kolmogorov equations can also be derived for multi-dimensional
processes. They read respectively

∂ρ

∂t
= −

J
∑

j=1

∂

∂xj

(bj(x)ρ) +
1

2

J
∑

j,j′=1

∂2

∂xi∂xj
(ajj′(x)ρ)

and

∂ρ

∂t
=

J
∑

j=1

bj(x)
∂ρ

∂xj

+
1

2

J
∑

j,j′=1

ajj′(x)
∂2ρ

∂xi∂xj
,

where ajj′(x) =
∑K

k=1 σjk(x)σj′k(x).

Notes by Walter Pauls and Arghir Dani Zarnescu.
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