
Lecture 4: Experiments and Numerics

E. J. Hinch

1 Experiments

In this section we discuss experimental approaches to characterizing materials and assessing
the behavior of flowing materials. Standard apparatuses used to determine fluid rheology
were described in section 3 of Lecture 1. Here we emphasize practical problems in measuring
the rheology of non-Newtonian fluids, the importance of using standard fluids, and methods
for observing flow properties.

1.1 Materials

What is a complete rheological description? Measuring the shear viscosity, normal stresses
and elastic modulus in shear flow is not sufficient to describe a fluid, as two fluids may
be similar in these characteristics and yet have distinct behavior in extensional flow. It is
important to document experimental details carefully, including measurement technique,
fluid preparation and molecular weight distributions, so that others can reproduce the
results. To this end, rheologists study standard fluids. Meissner [1] coordinated a project
to examine low density polyethylene fluids. In more recent years, there has been a transition
from the use of hot melts to cold solutions as standard fluids for logistical ease.

An example of a modern standard fluid is the M1 (‘magic’) fluid which consists of 0.244 %
polyisobutylene (molecular weight 3.8 ×106 g/mol) and 7% kerosene in polybutene. The
M1 fluid is a Boger fluid, that is, one which has a shear viscosity that is approximately
independent of shear rate, thus allowing a separation of shear and elastic effects. There is
good agreement amongst different shear rheometers in the measurements of shear viscosity
of the M1 fluid. However a series of extensional viscosity measurements demonstrates that
different measurement techniques can lead to a range of extensional viscosities [2] (up to four
orders of magnitude; see figure 2 from Lecture 1. A rational explanation of this phenomenon
will be given in Lecture 9.

1.1.1 Practical problems

There are many experimental difficulties in measuring the properties of non-Newtonian
fluids. These include:

• Flow instabilites in Couette and cone-and-plate apparatuses can produce a jump in
torque that may be erroneously interpreted as an increase in viscosity.
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Figure 1: Stick-slip from flow of a mixture of clay powder and oil through a 20 mm diameter
steel dye at 13 mm/s [4].

• The no-slip boundary condition at walls is generally assumed but is not always valid
(figure 1).

• There can be slipping along internal layers, known as shear banding. Rheometers can
be designed to observe this phenomena to avoid misinterpretations.

• Friction from shearing viscous fluids increases temperatures in the fluids, which causes
a reduction in fluid viscosity.

• Phase-separation and crystallisation will cause changes in rheological properties. The
standard S1 (‘silly’) fluid (5% polyisobutylene in decalin [3] by weight) has been
problematic because it tends to phase separate.

• Degradation of the fluid due to UV radiation, bio-organisms or mechanical breaking
of polymers by the flow itself (e.g., figure 2).

1.2 Observations

Standard methods of flow observation include direct visualisation, laser doppler anemometry
and particle image velocimetry. Fluid properties and flow characteristics can also be inferred
from measurements of fluid fluxes and normal stresses for flow through a simple geometry
such as flow through a pipe. There are however complications associated with this technique.
There is a large pressure drop at pipe entry, an effect that can be accounted for by using a
range of pipe lengths and extrapolating the data to an infinite pipe. Additionally there is
an error associated with measuring normal stresses using pressure taps in the walls, because
flow past the hole creates normal stresses.

Visualization may be complemented by assessing stresses from flow-induced anisotropy
in the optical index of refraction of the fluid (birefringence). When plane-polarized monochro-
matic light passes through the fluid and then through a second polarizer, the birefringence
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Figure 2: Plot showing drag reduction for aqueous PEO solutions with time related to
mechanical degredation of polymers. The symbols correspond to experiments at different
Reynolds numbers (2.0×10−5 < Re < 18.1×10−5). t is the residence time of the solution
in the flow and t∗ is the half-degradation time [5].

of the fluid causes constructive and destructive interference fringes (figure 3) from which
stress contours are deduced (figure 4). A linear relationship between stress and index of
refraction (n) is sometimes assumed,

σ = c∆n, (1)

where c, the stress optical coefficient, is a constant determined from a simple test flow.
For qualitative assessment (1) is not required however the quantitative application of this
technique depends on the validity of the stress optical law. This law may fail because
birefringence measures bond alignment and not the magnitude of the stretching. This is
particulary problematic in strong extensional flows.

Failure of the stress-optical law was demonstrated by [7] with simultaneous measure-
ments of birefringence and extensional stress of polymer solutions in a filament stretching
rheometer. The data indicate a non-linear relationship between stress and birefringece. Fur-
thermore, stress relaxation was faster than birefringence relaxation, leading to a hysteresis
in the stress optical law (figure 5).

2 Numerics

2.1 Discretization

There are three methods of discretisation which are commonly used in the numerical solution
of non-Newtonian fluid flow problems. These are finite element, spectral and finite difference
methods. Finite element techniques are good for problems with complex geometries, and as
solvers for elliptic equations. Spectral methods are very accurate but only work for periodic
geometries such as a wavy-wall tube. They are often used for turbulent drag problems.
Finite difference methods are relatively simple and are most easily applied to mappable
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Figure 3: Photographs of fringe patterns for fluid flowing into a slit for a range of shear
rates. Dark fringes are areas of destructive interference and each additional fringe indicates
that the slow ray is an additional wavlength behind the fast light ray. From [6]

Figure 4: The first normal stress contours corresponding to the flow shown in Figure 3, part
(b).
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Figure 5: Stress versus birefringence for extensional flow and subsequent relaxation at a
range of Weissenberg numbers; asterisk: Wi = 41.7, circle: Wi = 16.8, square: Wi = 2.84,
line: conformation dependent FENE model with Wi = 2.84.

geometries (i.e., domains that can be mapped onto a quadrilateral grid). We include only
a brief overview of each of these methods. For further details, see e.g. [8].

2.1.1 Finite Elements

The domain is divided into a grid of triangular or quadrilateral elements, (note that use of
a triangular grid can lead to difficulties with list processing associated with the storing of
neighbouring elements). The unknown fields (such as velocity) are represented by a sum
(over the elements) of the product of known functions, φi, and unknown amplitudes, fi,

u(x) =
N

∑

fi φi(x), (2)

where φi are referred to as test functions. These summation representations are substituted
into the governing equations, and then on projection we have

∫
(

ρ
Du

Dt
+ ∇p − µ∇2u −∇ · σelast

)

· φs(x) dV = 0, for s = 1, 2, ...N. (3)

By requiring the above relation to hold, we obtain a set of ordinary differential equations
for the functions fi. These can be solved easily (e.g. using a Runge-Kutta scheme) to find
the fi and hence the unknown fields.

2.1.2 Spectral Methods

Similar to the finite element method, the spectral representation of flows is a summation
of the product of an unknown amplitude with a known basis function (such as Fourier or
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Chebyshev modes) so

f(x) =
N

∑

fn einx. (4)

The elegance of this method lies in the fact that spatial derivatives of (4) become mul-
tiplications, which are numerically simple to perform, and the error term in such a repre-
sentation is exponentially small,

f ′(x) =
N

∑

fnin einx + O(e−N ). (5)

A disadvantage of this method is that the product of two functions requires summing
over cross terms which is computationally expensive,

f(x)g(x) =
N

∑

n

N
∑

k

fk gn−ke
inx. (6)

In order to avoid this expense, pseudo-spectral methods are used instead. This method
calculates the derivatives using (5) but the product of functions is calculated with the
actual function values (using Fast Fourier transforms to switch between the two). To avoid
aliasing it is common to remove the top third of the spectrum (for quadratic nonlinearities).
Spectral methods are ideal for periodic boundaries but cannot represent discontinuities in
the flow very well because the basis functions are smooth.

2.1.3 Finite Difference Methods

Finite difference methods are widely employed in modeling fluid dynamics problems. This
method involves a coordinate grid so the labelling and interaction of nodes is straight-
forward. The equations are generally discretised using a second-order central differencing
scheme. For example, the second derivative is approximated by

f ′′
≈

f(x + h) − 2f(x) + f(x − h)

h2
. (7)

It is important to note that the discretization process can sometimes lead to errors. For
example the finite difference expression for the divergence of radial flow is not the same as
the analytical expression,

2.2 Benchmark numerical cases

Solutions from benchmark problems are used for testing numerical codes. Some common
examples are shown in figure 6 below.

2.3 Pressure

The pressure in two-dimensional calculations for Newtonian fluids can be avoided by taking
the curl of the momentum equation to obtain the vorticity equation. However this is not
possible for calculations involving non-Newtonian fluids because all components of the stress
tensor are required to give an accurate description of the flow.
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Sphere in a tube:

Contraction:

Journal bearing:

Wavy-wall pipe:

Dominated by shear

Difficult sharp corner

Good for spectral methods

Good for spectral methods

Figure 6: Benchmark problems for testing numerical code.
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2.3.1 Fractional step with pressure projection

Consider the pressure equation (found by taking the divergence of the momentum equation),

∇
2p = ∇ ·

[

−ρ
Du

Dt
+ ∇ · (σvisc + σelast)

]

. (8)

When solving numerically for the pressure, incompressibility is usually satisfied only to
within a small error, so that

∇ · u ≈ 0. (9)

Over many timesteps these small errors can accumulate, leading to a significant error.
This problem can be reduced using a fractional step with pressure projection. This nu-
merical technique (used with finite differencing, finite element and spectral methods) finds
an approximate solution u∗ and then makes a correction which removes the error in the
incompressibilty condition and guarantees that ∇ · u = 0 exactly.

The fractional step uses u∗ found by solving

u∗
− un

∆t
= −(ρu · ∇u)n + ∇ · (σvisc + σelast)n, (10)

with the no-slip boundary condition and then the pressure projection gives the solution for
the next timestep,

un+1 = u∗
− ∆t∇pn+1. (11)

Note therefore that

∇ · un+1 = ∇ · u∗
− ∆t ∇2pn+1 = ∇ · u∗

−∇ · u∗ = 0. (12)

The disadvantage of this technique is that the no-slip boundary condition is not exactly
satisifed by un+1.

2.3.2 Fractional step with pressure update

The method described above can be refined by using a fractional step with a pressure
update. This includes the pressure term explicitly in the calculations, so adjustments are
made to the pressure at the previous time, as opposed to recalculating the pressure field at
each timestep. This method is much better at handling the boundary conditions and leads
to a closer approximation to the no-slip condition.

The velocity at the fractional step, u∗ is given by

u∗
− un

∆t
= −∇pn− 1

2 +
[

−ρu · ∇u + ∇ · σelast
]n+

1

2

+
[

∇ · σvisc
]n+

1

2 , (13)

where pn−1/2 is the pressure at the last step. Then the non-zero divergence of u∗ is given
by

∇ · u∗ = ∆t ∇2δpn+
1

2 . (14)

The solution (including the pressure field) is then updated by

un+1 = u∗
− ∆t ∇δpn+

1

2 , (15)

pn+
1

2 = pn− 1

2 + δpn+
1

2 . (16)
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Figure 7: Contours of the configuration tensor component < QQ >xx around a cylinder for
flow of an Oldroyd-B fluid through a linear array of cylinders with De = 1. From [10].

2.3.3 Staggered grids

Central differencing can lead to spurious pressure modes (oscillations on the scale of the
grid). In finite difference techniques these can be avoided by using a staggered grid, in
which different fields are held on different points, (e.g. velocities on the midpoints of cells
boundaries, shear stresses on the corners and momentum terms at the cell center). However,
a staggered grid is not possible with finite element models. This leaves an essential difficulty
in such schemes.

2.4 Elliptic and hyperbolic parts

The elliptic pressure equation is relatively easily solved. However the stress equation is a
hyperbolic partial differential equation and there is no easy method of solution. With a finite
difference code, the method of characteristics can be employed (using the streamlines as the
characteristics). An alternative is ‘black box magic’ such as the code MINMOD, which
uses second order discretization over the domain except in the vicinity of shocks where
the discretization is first-order. For finite-element methods an upwinding technique can
offer a method of solution, however this generates large numerical diffusion. Alternatively
a lagrangian grid can be used, so that the grid and the elements defined on it travel along
with the flow, such as that employed by [9].

2.5 Numerical Problems

There are a number of problems which develop when computing non-Newtonian flows. Con-
vergence tests are often neglected and numerical instabilities can develop when simulating
flows with sharp corners, interfaces between shear layers, and thin layers of high stress (e.g.
7). More grid resolution is needed in these areas, however it is computationally expensive.

A limitation of the Upper Convective Maxwell and Oldroyd-B models is that there
appear to be no solutions for large Deborah numbers (high strain rates). For flow past a
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sphere in a tube, the maximum Deborah numbers are Demax = 2.17 and Demax = 1.28 for
the UCM and Oldroyd-B models, respectively [11]. At greater than these critical Deborah
numbers there is a region in which the extensional viscosity is negative. The FENE model
(Finite Extension Nonlinear Elasticity), overcomes this problem and is sucessful up to De ≈

100 (see Lecture 2).

Notes by Alison Rust and Julia Mullarney
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