
Lecture 3: Simple Flows

E. J. Hinch

In this lecture, we will study some simple flow phenomena for the non-Newtonian fluid.
From analyzing these simple phenomena, we will find that non-Newtonian fluid has many
unique properties and can be quite different from the Newtonian fluid in some aspects.

1 Pipe flow of a power-law fluid

The pipe flow of Newtonian fluid has been widely studied and well understood. Here, we
will analyze the pipe flow of non-Newtonian fluid and compare the phenomenon with that
of the Newtonian fluid.

We consider a cylindrical pipe, where the radius of the pipe is R and the length is L.
The pressure drop across the pipe is ∆p and the flux of the fluid though the pipe is Q
(shown in Figure 1). Also, we assume that the flow in the pipe is steady, uni-directional
and uniform in z.

Thus, the axial momentum of the fluid satisfies:

0 = −
dp

dz
+

1

r

∂(rσzr)

∂r
. (1)

Integrate this equation with respect to r and scale dp
dz

with ∆p
L

, we have:

σzr =
r

R
σwall, (2)

where σwall represents the stress on the wall and is given by σwall = ∆pR
2L

. For the power-law
fluid, the constitutive equation is:

σzr = kγ̇n, (3)
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Figure 1: Pipe flow
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n = 1  n<1

Figure 2: Flow profile

where k is a constant and γ̇ is the scalar strain rate. For the pipe flow, the strain rate can
be expressed as:

γ̇ = −
dw

dr
, (4)

where w is the axial velocity. Substitute the expression for the strain rate into the consti-
tutive equation, then put the constitutive equation into the equation (2); we find

−k

(

dw

dr

)n

=
r

R
σwall. (5)

Integrate this equation with respect to r; we have:

w =
( σw

kR

)
1

n R
1

n
+1 − r

1

n
+1

1
n

+ 1
. (6)

For the different choices of n, the relation of the axial velocity to the radius is different(see
Fig. 2). For Newtonian flow (Poiseuille flow) with n = 1, the structure of the flow is
quadratic (w ∝ r2). For shear thinning fluid with n < 1, the profile of the flow is flatter in
the middle and decays faster towards the wall. Near the middle of the pipe, the stress σ is
low, and the viscosity µ is high; near the boundary of the pipe, the stress σ is high, and the
viscosity µ is low.

The volume flux Q of the flow through the pipe is given by:

Q =

∫ R

0

w2πrdr =
πR3

1
n

+ 3

(

∆PR

2Lk

)
1

n

. (7)

The volume flux Q of the shear thinning non-Newtonian fluid increases more quickly with
pressure gradient than the Newtonian fluid. The flow of a power law fluid along pipe has
common applications in wire coating, film draining and drop spreading.

2 Capillary rheometry

In Capillary rheometry, the shear viscosity of a fluid can be determined by shear rate.
Assuming the flux through the pipe to be Q and the axial velocity to be w, the flux of the
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fluid can be expressed as:

Q =

∫ R

0

w2πrdr = wπr2|R0 −

∫ R

0

dw

dr
πr2dr. (8)

Since the axial velocity is zero at the boundary (no slip boundary conditions), then wπr2|R0 =
0. Also, the strain rate γ̇ can be expressed as γ̇ = dw

dr
. Thus,

Q = −

∫ R

0

γ̇πr2dr. (9)

From the calculation of the flow through the pipe in Section 1, we know that the stress can
be expressed as:

σzr =
r

R
σwall. (10)

This relation does not depend on the constitutive equation, and the stess σzr linearly de-
pends on the stress on the wall σwall. Therefore, the radius can also be expressed as a
function of the stress: r = Rσrz

σwall

Changing the integration variable from the radius r to the stress σ, we may express the
flux through the pipe:

Q = −
πR3

σ3
wall

∫ σwall

0

γ̇(σ)σ2dσ. (11)

Before the change of variables, the strain rate is a function of the radius, which describes
the geometric property of the strain rate. After the change the variable, the strain rate
is a function of the stress, which describes the material property of the strain rate. If we
differentiate the above equation with respect to the stress on the wall σwall, we have:

γ̇wall = −
1

σ2
wall

d

dσwall

(

σ3
wallQ

πR3

)

= −
1

πR3

(

3Q + σwall

dQ

dσwall

)

. (12)

Since the stress on the wall σw is linearly proportional to the pressure gradient ∆p, we may
simplify this equation as:

γ̇wall = −
1

πR3

(

3 +
d ln Q

d ln ∆p

)

. (13)

Here d ln Q
d ln ∆p

is the slope of the ln Q and ln ∆p plot. For a Newtonian flow (Poisseuille fluid),

we have d ln Q
d ln ∆p

= 1. For a shear thinning fluid with n = 1/4, the relationship will be:
d ln Q
d ln ∆p

= 4. But for any fluid, by measuring the volume flux through the pipe Q and the
pressure gradient ∆p, the value of the strain rate on the wall can be calculated from the
above equation. Thus the viscosity on the wall can be expressed as:

µwall =
σwall

γ̇wall

=
∆pR

2Lγ̇wall

, (14)

which gives the rheological law.

30



Torque T L

b

Ω

a

Figure 3: Couette device

3 Bingham yield fluid in a Couette device

For a Bingham fluid, if the applied stress σ is smaller than the yield stress, the fluid will
remains rigid. But if the applied stress σ is larger than the yield stress, the fluid yields and
shears. For a Couette device containing Bingham fluid, we assume that the inner radius is
a and the outer radius is b and apply a torque T on the outer cylinder (see Figure 3). For
an axisymmetric steady flow with velocity field (0, uθ(r), 0), conservation of momentum in
the θ direction demands that:

0 =
1

r2

d

dr
(r2σθr). (15)

Integrating this equation with respect to r, we have:

σrθ =
T

2πLr2
. (16)

The constitutive equation for the Bingham fluid is:

γ̇ = 0 if σ < σy (17)

σrθ = σy + µγ̇ if σ > σy, (18)

where σy is the yield stress and γ̇ is the only non-zero component of the strain rate tensor:
γ̇ = r d

dr

(

uθ

r

)

. Therefore, we could get the yield radius ry in the device to be:

ry =

√

T

2πLσy

. (19)

Therefore, the different positions for ry correspond to different flow types of the Bingham
fluid in the Couette device:

Yield throughout if ry > b, (20)

Yield nowhere if ry < a, (21)

Intermediate situation if a < ry < b. (22)
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In the intermediate state,for a < ry < b, the material yields and shears; but for ry < r < b,
the material rotates rigidly. Now we will calculate these two regions separately. For a <
r < ry, the shear rate is expressed as:

γ̇ = r
d

dr

(uθ

r

)

=
σy

µ

(

r2
y

r2
− 1

)

. (23)

Integrating this equation with respect to r, we find:

uθ

r
=

σy

µ

(

1

2

(

1

a2
−

1

r2

)

− ln
(r

a

)

)

. (24)

For the region ry < r < b, the solid body rotation can be expressed as:

uθ

r
= Ω, (25)

where Ω is the constant rotation rate. At r = ry, we match the velocity in these two regions
to find that

Ω =
σy

µ

(

1

2

(

1

a2
−

1

r2

)

− ln
(r

a

)

)

. (26)

Since the radius for the yield surface ry is also a function of the torque T , the angular
velocity of the solid body rotation Ω is a function of the applied torque T .

4 Rod climbing of a second order fluid

As we have seen in earlier lectures, a well-documented phenomenon of non-Newtonian fluids
is rod climbing. When a rod is rotated in a non-Newtonian fluid, the fluid is forced towards
the center instead of being thrown away from the rod as in a Newtonian fluid. In a non-
Newtonian fluid, tension in the streamlines, or the hoop stress, has a radial force inward
that forces the fluid towards and then up the rod. In this section we determine the free
surface of a weakly non-linear second-order fluid caused by a rod of radius a rotating at a
frequency Ω in the fluid (figure 4).

The flow is weakly non-linear so to leading order, the fluid behaves like a Newtonian fluid.
The velocity, which has only an azimuthal component, is determined from the azimuthal
component of the momentum equation,

µ
∂

∂r

(

1

r

∂

∂r
(ruθ)

)

. (27)

Integrating this equation and applying boundary condition of r = a and r = ∞ yields

uθ =
Ωa2

r
, (28)

and the strain rate is

γ̇ = r
d

dr

(uθ

r

)

= −
2Ωa2

r2
. (29)
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z = h(r)

Ω

Figure 4: Geometry of rod climbing problem. A cylinder of radius a is rotating with
frequency Ω, which causes a displacement of the free surface which is described by h(r).

The constitutive equation of a second-order fluid is given by

σ = −pI + 2µE − 2α
O

E +βE · E, (30)

where
O

E is the upper convective derivative of the strain tensor E, and the last two terms
of equation (30) are small compared to the others. Then, because Erθ = Eθr = 1

2
γ̇, the

components of stress are given by

σθr = µγ̇, (31)

σrr = −p +
1

4
βγ̇2, (32)

σθθ = −p +

(

2α +
1

4
β

)

γ̇2, (33)

σzz = −p. (34)

In order to determine the pressure dependence in the radial direction, we apply the
steady state Stokes equation and consider the radial component in cylindrical coordinates
to find

0 =
∂σrr

∂r
+

σrr − σθθ

r
, (35)

where the last term is the normal stress N1 or the hoop stress. Using equations (32) and
(33) we can write the normal stresses in terms of r. Integrating with respect to r yields

σrr + 2α
Ω2a4

r4
= −p +

1

4
(2α + β)γ̇2 = f(z), (36)

where f is an arbitrary function of z. The axial or vertical component of the Stokes equation
gives a hydrostatic balance

0 =
∂σzz

∂z
+ ρg. (37)
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Integrating with respect to z and applying the boundary condition p = 0 at the free surface,
z = h(r), we find

p = ρg (h(r) − z) . (38)

Finally, we choose f(z) = ρgz to cancel the z dependence in the pressure to find that the
free surface height is described by

h(r) =
1

ρg
(2α + β)

Ω2a4

r4
. (39)

Therefore as long as 2α + β > 0 rod climbing occurs in the fluid. If this term is negative,
though, it implies that the fluid is plunging down the rod rather than climbing up the rod.
This solution seems unphysical and may be due to an improper force balance or improper
definition of the constitutive equation.

5 Unchanged flow field for some second order fluids

In the previous section we have assumed that there is no small non-linear correction to the
flow field uθ as there is in the constitutive equation (30). In this section we sketch how to
show that this is a valid assumption for some flows. At the end of the section we will see
that the method described here does not necessarily verify an unchanged flow field in the
rod climbing problem. The following proof will require the use of the identity,

∇ ·

(

O

E +4E · E

)

=
D

Dt
∇2u + ∇u · ∇2u + ∇(E : E). (40)

As we only touched on this topic briefly in lecture, we will not prove the identity here, but
leave it as an exercise for the interested reader.

We define p1 and p2 as the pressure that satisfies the Stokes flow and the pressure related
to the non-linear elastic effect, respectively. Then u and p1 satisfy the equation for Stokes
flow,

0 = ∇p1 + µ∇2u. (41)

Since u does not have an elastic correction, we must be able to show that u and p2 satisfy

∇ · σ = 0, (42)

σ = −p2I + 2µE − 2α
O

E −4αE · E (43)

with

p2 = p1 −
α

µ

Dp1

Dt
+ αE : E. (44)

We can show that this is indeed true by using the identity given in (40). (Details are again
left for the interested reader). Note that in (43) β has the specific value −4α. Recall that
for rod climbing to occur 2α+β > 0, and therefore the method sketched here does not apply
to the rod climbing problem. This analysis does show that for some flows, the equations
of motion and the constitutive equation are satisfied without a small elastic correction to
the flow field u. This holds in planar and uni-directional flows without a restriction on the
relationship between α and β.
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6 Anisotropic converging channel flow of a suspension of

rigid rods

The constitutive equation for a suspension of rigid rods is given by

σ = −pI + 2µshearE + 2µext.p̂p̂ (p̂ · E · p̂) , (45)

where p̂ is the unit vector in the direction of the rods. The shear and extensional viscosities,
µshear and µext., are constants with µext. representing an additional viscosity over µshear in
the direction of the rods. In this problem it is assumed that the rods are fixed in the
direction of the flow, and we will describe the formation of recirculating eddies (cf. lecture
2) around a point sink.

The flow field is described by a two-dimensional sink flow in the half plane given by

u =

(

f(θ)

r
, 0

)

, p̂ = (1, 0) (46)

in polar coordinates, where the radial direction represents the distance for the point sink
and the azimuthal direction varies between 0 and π in the upper half plane. Therefore the
velocity is purely in the radial direction and satisfies incompressibility.

Using the constitutive equation given in (45), we can determine the different components
of the stress using

Err =
∂ur

∂r
, Erθ =

1

2r

∂ur

∂θ
, Eθθ =

ur

r
. (47)

Note that the extensional viscosity only makes a contribution to σrr, so

σrr = −
g(θ)

r2
− 2(µshear + µext.)

f

r2
, (48)

σrθ = µshear

f ′

r2
, (49)

σθθ = −
g(θ)

r2
+ 2µshear

f

r2
, (50)

where g(θ)/r2 is the pressure, which is an unknown function of θ, and primes here denote
differentiation with respect to θ. Now the two unknows, f(θ) and g(θ), can solved for by
applying the two components of momentum conservation.

Assuming steady state and taking the azimuthal component of the steady Stokes equa-
tion ∇ · σ = 0 (see table in Bird et al.),

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+ 2

σrθ

r
= 0. (51)

Using equations (49) and (50), this can then be written in terms of f and g by

g′ = 2µshearf
′. (52)

Similarly, the radial component of ∇ · σ = 0 gives

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

σrr − σθθ

r
= 0. (53)
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Non−Newtonian Fluid

Newtonian Fluid

Figure 5: Diagrams of point sink converging channel flow. The diagram on the left shows
that for a Newtonian fluid, recirculating vortices only appear when the plane is bent past
horizontal. Non-Newtonian fluids can generate recirculating vortices even with a flat plate
because of the additional extensional viscosity. The streamlines shown here are not valid
close to the point sink as the flow is no longer purely radial in this region.

or in terms of f and g

f ′′ +

(

4 + 2
µext.

µshear

)

f = const. (54)

The equation for f is a harmonic oscillator equation. We require that f goes to zero on
the boundaries θ = 0, π to satisfy the condition of no slip, and we expect the maximum flow
rate to occur in the middle, or θ = π/2. For a Newtonian fluid, the additional extensional
viscosity µext. = 0 and by applying the no-slip boundary condition we find to within a
multiplicative constant that

f = 1 − cos(2θ), (55)

and there are no recirculating eddies. If the plate is bent at an angle larger than π then
recirculating eddies are present even in a Newtonian fluid. For a non-Newtonian fluid,
µext. 6= 0 and we can solve equation (54) to find,

f = cos
λπ

2
− cos λ

(

θ +
π

2

)

, (56)

where λ = sqrt4 + 2µshear/µext.. In this case there are always recirculating eddies on both
sides of the sink (figure 5). Note that these equations approximate the flow far from the sink
so that the streamlines are always in the radial direction. Close to the sink the streamlines
must turn to form the vortices. From (56) we can see that the angle of the flow into the
sink, and thus the size of the vortices, is determined by the ratio

√

µshear/µext..

7 Spinning of an Oldroyd B fluid

Finally, the last simple flow we will consider is fiber spinning of an Oldroyd B fluid. The
constitutive equation of an Oldroyd B fluid is given by

σ = −pI + 2µE + GA, (57)

where GA is the elastic stress, and A is a measure of the deformation of the microstructure.
The time dependence of A is described by

DA

Dt
= A · ∇U + (∇U)T · A −

1

τ
(A − 1). (58)
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Figure 6: Geometry of fiber spinning of an Oldroyd B fluid. The fluid is pulled from a
reservoir by a spinning wheel. After a brief initial transient region, the fluid is pulled into
a cylinder whose radius decreases and velocity increases in the direction of positive z.

The first two terms on the right hand side describe the stretching of the microstructure
while the last term describes relaxation back to the steady state, A = 1, on a time scale τ .

The geometry for this problem is shown in figure 6. Fluid begins in a reservoir, and
after a brief initial transient region is pulled out into a cylinder beginning at z = 0 by a
spinning wheel. The fluid is stretched and accelerated so that the velocity w increases and
the radius R decreases moving in the direction of positive z. The flux and tension are both
constant and are given by

Q = πR2w (59)

and
F = πR2σzz (60)

respectively.
Considering the constitutive equation and applying the boundary condition of no radial

stress on the free surface σrr = 0 (57) gives

p = −µ
dw

dz
+ GArr. (61)

Then, considering the axial component of stress and using the expression for pressure given
above, we find

σzz = 3µ
dw

dz
+ G (Azz − Arr) =

Fw

Q
, (62)

where we have made use of the expressions for the tension and the flux in the cylinder.
Finally, from equation (58) the steady state equations for the radial and axial components
of the deformation of A can be written as

w
dArr

dz
= −Arr

dw

dz
−

1

τ
(Arr − 1) (63)

w
dAzz

dz
= 2Azz

dw

dz
−

1

τ
(Azz − 1) . (64)

In general, for a given Deborah number, De = τ dw
dz

, the equations above must be solved
numerically. However, we will consider two limits where the equations are analytically
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tractable. In the Newtonian limit of small Deborah number, De � 1, the two terms on the
right hand side of equations (63) and (64) balance to give

Arr ∼ 1 − τ
dw

dz
, Azz ∼ 1 + 2τ

dw

dz
. (65)

Plugging these expressions for Arr and Azz into (62) gives a simple linear equation

3(µ + Gτ)
dw

dz
=

Fw

Q
, (66)

which has the solution

w(z) = w(0) exp

[

Fz

3Q(µ + Gτ)

]

. (67)

Therefore in the Newtonian regime the velocity increases exponentially until the elastic
limit is reached, in which the relaxation rate is comparable to the shear, or τ dw

dz
∼ 1.

In the elastic limit the stretching term in the axial direction dominates radial stretching
and viscosity, µdw

dz
� GArr � GAzz, and therefore

σzz ∼ GAzz =
Fw

Q
. (68)

From (64) we have

w
dAzz

dz
= 2Azz

dw

dz
−

1

τ
(Azz) (69)

since Azz � 1. Plugging Azz = Fw/Q into this equation yields a simple linear differential
equation which has the solution

w = w1 +
z

τ
. (70)

Upon reaching the elastic regime the velocity only grows linearly. Numerical results indicate
that there is an abrupt change in the dynamics of the thread as the fluid transitions between
the Newtonian and elastic regimes. This transition affects not only the velocity, but also
the radius of the thread as given from the thread’s flux and tension relationships (59) and
(60).

Notes by Junjun Liu and Andrew Thompson
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