
Lecture 3: Solutions to Laplace’s Tidal Equations

Myrl Hendershott

1 Introduction

In this lecture we discuss assumptions involved in obtaining Laplace’s Tidal Equations
(LTE) from Euler’s equations. We first derive an expression for the solid Earth tides.
Solutions of LTE for various boundary conditions are discussed, and an energy equation for
tides is presented.

Solutions to the Laplace Tidal equations for a stratified ocean are discussed in §2. We
obtain expression for solid earth tide in §3. Different models of dissipation are examined in
§4. Boundary conditions for LTE’s are discussed in §5. In §6 the energy equation for LTE’s
is derived.

2 The Laplace Tidal equations for a Stratified ocean

To obtain the LTE for stratified ocean we assume pressure is hydrostatic and seek seperable
solutions of the form

u(x, y, z, t) = U(x, y, t)Fu(z),

w(x, y, z, t) = W (x, y, t)Fw(z),

p(x, y, z, t) = Z(x, y, t)Fp(z).

The LTE for stratified ocean are

Ut − fV = −gZx , (1)

Vt − fU = −gZy , (2)

Zt + Dn(Ux + Vy) = 0 , (3)

Fwzz
+

N2

gDn
Fw = 0 , (4)

where n is an index for the normal modes in the ocean. These equations are the constant
depth LTE but where Dn is the equivalent depth of each mode, and Dn 6= D∗, rather

Dn =
[
∫

0

−D∗

N(z′)dz′]2

gn2π2
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and N(z) is the buoyancy frequency. For the zeroth mode or n = 0, D∗ ≈ D. The eigenvalue
problem in (4) can be solved to determine the Dn using the following boundary conditions

Fw = 0 at Z = −D∗,

Fw − DnFwz
= 0 at Z = 0.

2.1 Barotropic Solution (n = 0)

The normal mode equations described above and indexed by n an integer can be solved for
specific modes. The zeroth order mode is given by n = 0 and is also called the barotropic or
external mode. It is characterized by a solution which is depth independent. Below we will
solve for the barotropic mode without rotation and no variations in the y direction (f = 0
and ∂/∂y = 0). If we assume a plane wave solution, solving (1) - (4) gives,

Z0 = ae−iσt+ikx ,

U0 = a

(

gk

σ

)

e−iσt+ikx ,

σ = ±k
√

gD∗.

Figure 1 shows the barotropic solution for velocity. For the semidiurnal tidal frequency, the
phase velocity of the zeroth mode wave, given by c0 =

√
gD0 = σ/κ = 200 m/s. Since this

speed is also given by λ/T , where λ is the horizontal wavelength of the wave (distance from
wave crest to wave crest), then λ = 8640 km. This wave is very fast and very long. For the
case of no rotation this wave is dispersionless, but not when f 6= 0.

2.2 Baroclinic Solution, Mode 1 (n = 1)

The first baroclinic mode, indexed by n = 1 is also called the first internal mode. The rest
of the modes for n > 1 are also internal modes and have more variation in depth. We can
solve (1) - (4) for n = 1 without rotation and with no variations in y (f = 0 and ∂/∂y = 0)
giving the first internal mode,

Zn = ae−iσt+ikx ,

FU1
= cos(

π(z + D∗)

D∗

) ,

FW1
= sin(

π(z + D∗)

D∗

) ,

σ = ±k
√

gD1.

The mode one solution is shown in figure 1. For the baroclinic modes, the phase velocity
and horizontal wavelength are given by

cn =
N0D∗

nπ
=

(1.45 × 10−3)(4000m)

nπ
=

1.85 m/s

n
,

λtidal =
80 km

n
.
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So the lower modes travel more quickly, and have larger horizontal scales. The M2 internal
tide is found primarily as a mode 1 tide throughout the world’s oceans, while higher order
modes tend to dissipate nearer their source. Due to recent (last decade) improvements, the
M2 internal tide can now be seen by satellite altimetry. The ocean surface displacement
due to internal tides is given by

wfree surface
winterior maximum

≈ N2
0 D∗

gnπ
≈ 3 × 10−4,

which means that for an internal tide displacement of isopycnals on the order of 100m
(which is quite large but not impossible), the surface expression would be about 30cm,
easily resolved by satellite altimetry measurements which have accuracy on the order of a
few centimeters.
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Figure 1: (a) Barotropic or depth independent solution for u velocity. Wave amplitude is
greatly exaggerated. (b) Mode 1 solution for u and w velocity.

2.3 Numerical Solution to LTE

The complete problem that we would like to solve numerically to estimate the tides are the
stratified linear equations,

ut − fv = −px

ρ0

+ Γx, (5)

vt + fu = −py

ρ0

+ Γy, (6)

ζt + (uD)x + (vD)y = 0, (7)

where Γ is full tide generating potential and D(x, y) is the bottom topography. The domain
is defined by the coasts of continents, ocean bottom and free surface. However, in order
to solve this system of equations one must resolve short horizontal scales due to bottom
topography where the bottom boundary condition on w is w = −u · ∇D. Very few current
modes are capable of this, though some have begun to resolve mode 1 in their simulations.
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Instead the Laplace tidal equations for u and v may be substituted, of (5)-(7).

ut − fv = −gζx + Γx, (8)

vt + fu = −gζy + Γy, (9)

where ζ is the free surface and a smoother bottom topography is substituted,

w = −u · ∇Dsmooth. (10)

However, because ζ is no longer a function of z while p in (5)-(7) was, we cannot determine
u(z) and (8)-(9) will only give the barotropic solution.

In the literature, the TGP is usually neglected and instead the barotropic tides and
stratification are specified, which allows the simplification of (5)-(7) as

ut − fv = −px

ρ0

, (11)

vt + fu = −py

ρ0

. (12)

From this, the internal tides result from a single scattering of the barotropic tide by bottom
relief wint = uB · ∇D(x, y). In particular, if we decomposed D into low- and high-passed
components,

D(x, y) = Dlo(x, y) + Dhi(x, y). (13)

Then the ζ equation and bottom boundary conditions become

ζ0t + ∇ · (uBDlo(x, y)) = 0,

wint = uB · ∇Dhi(x, y).

And the internal tide results from the bottom topography. However, this neglects multiple
scattering from the topography and does not apply when the bottom slope is greater than
the characteristic slope of internal waves. Currently, numerical models like the Princeton
Ocean Model (POM) solve the (5)-(7). An example of numerically solved tides is shown in
figure 2. In this paper, all tidal constituents were solved for using a hydrodynamic model
and data assimilation from tide gauges and altimetry [1].

3 Solid Earth Tide

It has long been known that Earth’s crust yields elastically to the tidal forces of the moon
and sun. If we consider earth to be an incompressible elastic solid, then we can write
equations for the deformation of the Earth as the following

−px + µ∇2u = 0, (14)

−pz + µ∇2w = 0. (15)

where, p is pressure, (u, v) are the velocity and µ is viscosity of earth (see figure 3). Using
the following boundary conditions,
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Figure 2: Cotidal map of the M2 component. Coamplitude lines are drawn following the
scaling indicated below the map. Units are in centimeters. Cophase lines are drawn with
an interval of 30◦, with the 0◦ phase as a larger drawing, referred to the passage of the
astronomical forcing at Greenwich meridian [1].

u, w → 0 as z → −∞,
τxz = 2µ(uz + wx) = 0 at z = 0,

τzz = −p + 2µwz = −load ≡ −ρwgaeikx,

where term ρwgaeikx gives the loading on earth surface due to ocean tide, a is the tidal
amplitude and k is its horizontal wavenumber, we solve (14) and (15) with the above b.c.’s
for a load of ρwgaeikx to get an Earth surface wave displacement of

hρwgaeikx, (16)

where h is called “Love Number”. In this case, h = 1

2µk
.

Ω

a
θ(V )

φ(U)

G

ζ

δ

z = −D

z = 0

Figure 3: Solid earth tide, ζ is geocentric surface tide and δ is geocentric solid earth tide.
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We can then write the tide generating potential in spherical harmonic (n) decomposition
including the solid Earth tide as,

Γn = Un + knUn + qαnζon + k′

nqαnζon, (17)

where Un is obtained from astronomy, knUn is earth yielding to astronomical potential,
qαnζon is potential of tidal shell and k′

nqαnζon is earth yielding to tidal potential.
Proceeding as above, solid earth tide is given as,

δn = hn
Un

g
+ h′

nαnζon. (18)

kn, k′

n, hn and h′

n are all “Love numbers” similar to h in (16). From (17) and (18) we find
(

Γ

g
− δ

)

n

=

(

1 + kn − hn

g

)

Un + (1 + k′

n − h′

n)αnζon. (19)

And upon summing up this series we get Farrell Green’s function [2]

∑

n

(1 + k′

n − h′

n)αnζon =

∫ ∫

dθ′dφ′GF (θ′, φ′|θ, φ)ζ0(θ
′, φ′). (20)

Now taking into account the solid Earth tide, we can rewrite Euler’s equations from
Lecture 2 as

ζ0 = ζ − δ , (21)

ut − (2Ω sinθ)v = −g(ζ0 − (Γ/g − δ))φ

a cosθ
+

F φ

ρD
, (22)

vt + (2Ω sinθ)u = −g(ζ0 − (Γ/g − δ))θ

a
+

F θ

ρD
, (23)

(ζot − δt) +
1

a cosθ
[(uD)φ + (vD cosθ)θ] = −

∑

n

(

1 + kn − hn

g

)

Un

−
∫ ∫

dθ′dφ′GF (θ′, φ′|θ, φ)ζ0(θ
′, φ′) ,

(24)

where U is mostly U2, k2 ≈ 0.29 and h2 ≈ 0.59.

4 Dissipation Models

It is not easy to estimate the dissipation terms (F θ and F φ) in (22) and (23). This dissipation
is mainly due to bottom drag and internal tides. If we model it as bottom drag, we get

F = −ρCD|u|u, (25)

where CD ≈ 0.0025 known from direct measurement in shallow water. The direct effect
of (25) is that most of dissipation is limited to shallow seas where u and CD are large.
However, global tidal computations are mostly confined to deep-water zones for practical
reasons (shallow water tides require much finer grid-spacing). So dissipation can only be
properly represented by radiation of energy out of the model into bounding seas.

There are two main empirical models used to get an expression for dissipation in deep
oceans. These are,
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Figure 4: Jayne & Laurent model, dissipation due to barotropic tide scattering into internal
tides over rough topography.

Jayne & Laurent In their runs of the Hallberg Isopycnal Model (HIM), the dissipation
term is modeled as,

F = −1

2
ρkh2Nbu. (26)

This model is based on assumption that dissipation occurs due to barotropic tide scat-
tering into internal tides due to the rough bottom topography. h represents the height
of bottom topography whose dominant horizontal wavenumber is k (see figure 4).

Arbic In his runs of the HIM for the dissipation term we have,

F = −p′IW∇h

= ρ(∇χ · u)∇h, (27)

where,

χ =
Nb

√

σ2 − f2

2πσ

∫ ∫

h(x′)

|x − x′|dx′dy′ (28)

for tide of frequency σ. Nb is buoyancy freqency, f is the Coriolis parameter and h(x)
is bottom topography. Arbic’s model is based on the assumption that tidal dissipation
can be calculated by finding the pressure drop in tidal currents across topographic
features at the bottom.

5 Boundary Conditions

Laplace tidal equations have never been solved well enough so as to remove tides from
altimetry without data assimilation. Different methods use different boundary conditions
for solution of LTE at numerical coast. Some of the main boundary conditions in use are,

1. u · ĥ = 0 at the numerical coast.
This is the most commonly used boundary condition. This boundary condition rep-
resents a no-energy-flux coast. It is important to have correct information regarding
dissipation if this boundary is used since all energy must be dissipated within the sys-
tem. Numerical schemes need to resolve −ρCDu|u| well which requires high resolution
in shallow waters.
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2. ζ = ζobs at the numerical coast.
This boundary condition allows a energy flux (ρgD|u| · ĥζ) through the coast. The
scheme is less sensitive to the details of the dissipation model used, and is less sensitive
to the discretization used. However, this system can still respond resonantly. Another
problem with this scheme is that observed tidal data is not easily available along all
coasts.

3. ζ = c (u · ĥ) at the numerical coast.
This boundary allows energy to be dissipated at coast. In this boundary the parameter
c can be adjusted so as to get results to match the observed tidal results. This leads
to an energy flux of < ρgDcζ2 > flowing out of the coast.

6 Energetics

If we ignore the solid Earth tide, we can derive equations of energy and perhaps estimate
dissipation due to the tides as a residual. Starting with Laplace’s tidal equations,

ut − fv = −g(ζ − Γ/g)x + F x/ρD × ρuD

vt + fu = −g(ζ − Γ/g)y + F y/ρD × ρvD

ζt + (uD)x + (vD)y = 0 × ρgζ

Then multiplying by the terms at right, adding the three equations together and assum-
ing that ρ, g and D are constant, we arrive at

1

2
ρD(u2 + v2)t +

1

g
ρg(ζ2)t + ∇ · (ρgζuD) = ρζtΓ + ∇ · (ρuDΓ) + u · F (29)

KEt + PEt + ∇ · Eflux =
Fluid crossing

equipotentials

vertically

+
Fluid crossing

equipotentials

horizontally

+
Work by

dissipative

forces

(30)

where KEt is the time derivative of kinetic energy, PEt is the time derivative of potential
energy, and Eflux is energy flux.

Energy Averaged Over One Tidal Period, Integrated Over the Ocean

It is convenient to consider the energy as averaged over one tidal period. For a periodic
tide, let < · > denote the average over one period. This will simplify the above equations,
since

< KEt >=< PEt >= 0. (31)

Then from (29) we are left with

∇· < P >=< Wt > + < u · F >, (32)

where P is energy flux and Wt is the working by potential vertical and horizontal forces.
Now if we reconsider the case of the basin with no flow through its boundaries

(~u· < n̂ >= 0), then we further have that
∫

∇· < P > dxdy = 0 since there can be no
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net energy flux into or out of the basin. Then we can integrate the remaining terms in the
energy equation over the ocean basin and find that

∫

< Wt > dxdy =

∫

ocean

ρζtΓdxdy = −
∫

ocean

< u · F > dxdy. (33)

One caveat is that the solid Earth tide is not dissipation free, i.e. the Love numbers are
complex, but this equation is true provided that they are real. Now, since −

∫

< u·F > dxdy
is balanced by working of fluid moving up and down. This fluid movement ζ can be measured
from global altimetry, giving an estimate if dissipation of energy due to the tides.

6.1 Including the solid earth tide

If we now include the solid Earth tide, then our third equation becomes

(ζ − δ)t + ∇ · ~uD = 0 (34)

and if we follow the same procedure as before we have

KEt = −∇ · (ρgD~u(ζ − Γ/g)) + ρg(ζ − Γ/g)∇ · ~uD + u · F
= −∇ · (ρgD~u(ζ − Γ/g)) − ρg(ζ − Γ/g)(ζt − δt) + ~u · F
= ∇ · ρDuΓ + ρ(ζ − δ)tΓ −∇ · ρgDuζ − ρgζ(ζ − δ)t + u · F.

Similarly for potential energy,

PE =

∫ ζ

−D+δ

ρgzdz =
1

2
ρg(ζ2 − (−D + δ)2),

PEt = ρg(δδt − ζζt − Dζt).

Adding these together we find that

KEt + PEt + ∇ · (ρguDζ) = ∇ · ρDuΓ + ρ(ζ − δ)tΓ + u · F
− ρgζ(ζt − δt) + ρg(ζζt − δδt + Dδt)

= ∇ · ρDuΓ + DuΓ + ρ(ζ − δ)tΓ + u · F + ρg(ζ − δ + D)δt.

Then if we consider the observed tide only, ζ0 = ζ − δ, the difference between the ocean
tides and the solid earth tide, we have the energy equation.

KEt + PEt + ∇ · ~P = Wt + u · F, (35)

with

KE =
1

2
ρD(u2 + v2), (36)

PE =
1

2
ρg(ζ2

0 + 2ζ0δ + 2δD), (37)

~P = ρgD~u(ζ0 + δ), (38)

Wt = ρζ0t
Γ + ρ∇ · uDΓ + ρg(ζ0 + D)δt. (39)

42



Energy Averaged Over One Tidal Period, Integrated Over the Ocean

If we again average over one tidal period, then

∇· < P >=< Wt > + < u · F > (40)

Given altimeter data ζ1 it may be possible to map < u · F > [3].
If we further assume that the tides are periodic as (e−iσt), then noting that in the

equation for Wt that
∫

ocean
ρ∇ · uDΓ = 0 and < ρgDδt >= 0,

∫

oc

< Wt > dxdy =
1

2
Re {int0 − σρζ0Γ

∗ + iσgρζ0δ
∗} ,

where (·)∗ is the complex conjugate. Using the Love number decomposition from §3,
∫

oc

< Wt > dxdy =
1

2
Re

∫

0

∑

n

−iσρζ0n

(

(1 + kn)u∗

n + gαnζ∗0n + k′

ngαnζ∗0n

)

+ iσρζ0n(hnu∗

n + δh′

nαnζ∗0n)

=
1

2
Re

∑

n

∫

−iσρ(1 + kn − hn)ζ0nu∗

n. (41)

This last equation is true provided that the solid earth tide is dissipation-less, that is to
say, that the Love numbers are real. Now, since again

∫

ocean
∇· < P > dxdy = 0,

∫

ocean

< u · F > dxdy =

∫

ocean

< Wt > dxdy =
1

2
Re

∑

n

∫

−iσρ(1 + kn − hn)ζ0nu∗

n (42)

and we can estimate the dissipation of energy due to the tides if we know the observed
tides, ζ0.

Notes by Vineet Birman and Eleanor Williams Frajka
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